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Abstract

Is a cycle-free partial order recognisable from its abstract automorphism group? This

thesis resolves that question for two disjoint families: those cycle-free partial orders which

share an automorphism group with a tree; and those which satisfy certain transitivity

conditions, before giving a method for combining the two.

Chapter 1, the introduction, as well as introducing some notation and defining the cycle-

free partial orders (CFPOs), gives a list of the results that this thesis calls upon.

Chapter 2 gives a structure theorem for ℵ0-categorical trees, which is of particular

interest here as their reconstruction problem is completely solved, and for the ℵ0-

categorical CFPOs, which when combined with the results in Chapter 3, gives a complete

reconstruction result for ℵ0-categorical CFPOs.

Chapter 3 asks which CFPOs have an automorphism group isomorphic to one of a tree.

It gives conditions on the CFPO and the automorphism group that allow the invocation

of the work done by Rubin on the reconstruction of trees. In a brief epilogue the results

are also used to show that many of the model theoretic properties of the trees are also

properties of the CFPOs.

The second family is addressed in Chapter 4 using a method used by Shelah and Truss on

the symmetric groups of cardinals, which uses the alternating group on five elements.

In Chapter 5 I give a method of attaching structures of the first kind to structures of the

second, which admits a second order definition in the abstract automorphism group of the

automorphism groups of the components.

The last chapter is a discussion of how the work done here can be made more complete. I

have included an appendix, which lists the formulas used in Chapters 4 and 5, which the

reader can tear out and keep at hand to save flicking between pages.
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Chapter 1

Introduction

How much information about a structure is contained in its group of automorphisms?

There are two closely related approaches to this problem: finding collections of structures

whose automorphism groups are isomorphic to a given group; and ‘defining’ the original

structure using the maps. The first approach involves looking for ‘pathologies’, easily

described objects that cannot be recognised from the maps. The second asks for an

interpretation of the original structure inside the group using some formal logic.

1.1 Summary

This thesis is concerned with the reconstruction of cycle-free partial orders (CFPOs) from

their automorphism groups, as abstract groups, a problem posed by Matatyahu Rubin in

his memoir about the reconstruction of trees [23]. Intuitively, a cycle-free partial order is

a generalisation of a tree, in that one is allowed to branch as one moves down the order as

well as up. The number of times one can ‘change direction’ in this way is referred to as

the ‘width’ of the CFPO.

I take two different approaches to this problem, working with two very different
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subclasses of CFPOs: those which share an automorphism group with a tree (is treelike),

and those which possess a certain degree of transitivity.

In Chapter 3, I give two kinds of condition that show when a CFPO is treelike. The first

kind is related to the properties of the CFPO under the action of its automorphism group,

two key results of which are:

Theorem 1.1.1 (Theorem 3.1.11) If a CFPO has a point that is fixed by every

automorphism then it is treelike.

Theorem 1.1.2 (Theorem 3.1.14 and Corollary 3.1.15) If a CFPO has ‘finite width’ then

it is treelike.

The second kind gives conditions on the abstract automorphism group, related to

the presence of a subgroup isomorphic to the infinite dihedral group which is not

contained in a supergroup which is contained in a certain family of groups, which I call

‘dendromorphic groups’ .

Theorem 1.1.3 (Theorem 3.2.13) A CFPO is not treelike if and only if its automorphism

group contains a copy of D∞ which is not contained in a dendromorphic group .

These results show when we may appeal directly to Rubin’s results and methods. However

many CFPOs are not treelike, in particular if we assume that a CFPO is 1-transitive and

is not a tree, then it is not treelike.

In Chapter 4 we use a method used by Shelah in his work on the reconstruction of the

permutation groups of cardinals from the corresponding abstract group ([31], [30] and

[33]). We take a very different class of CFPOs, that of ‘cone transitive’ CFPOs where

both the upward and downward ramification order are at least 5. Cone transitivity implies

1-transitivity, and ensures that the automorphism group is rich, while the assumption on
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the ramification orders guarantees the existence of finite subgroups isomorphic to A5, the

alternating group on five elements, chosen because it is the smallest non-abelian simple

group.

We show that tuples of automorphisms whose elementary diagram is that of A5 must fix a

common point, and then use various first-order formulas exploiting the non-abelian simple

nature of A5 to express, among other things, disjointness of support. The culmination of

this is:

Theorem 1.1.4 (Section 4.2) If M is a cone transitive CFPO where both the upward

and downward ramification orders are at least 5 then the family of first order formulas

described in Chapter 4 gives an interpretation of M with the betweenness relation in its

abstract automorphism group.

I fully recover the order with first order formulas in limited circumstances, and

everywhere with Lω1,ω formulas, but reconstructing betweenness is sufficient for most

purposes.

These two subclasses of CFPOs far from cover the whole class, and Chapter 5 seeks

to address that by attaching treelike CFPOs to cone transitive ones in a process called

decoration. The main result of Chapter 5 is:

Theorem 1.1.5 (Theorems 5.2.8 and 5.2.16) Given an abstract automorphism group of a

decorated CFPO, we can use second order formulas to define groups isomorphic to the

automorphism groups of the components of the decorated CFPO.

Rubin gives a stronger result in [23] for the ℵ0-categorical trees, so in Chapter 2 I give a

classification of first the ℵ0-categorical trees and then the ℵ0-categorical CFPOs. These

classifications work by looking at important substructures, maximal chains for the trees

and CFPOs of shorter width for the CFPOs, with some extra structure added to them.
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While too technical to give here, the classification guarantees that all ℵ0-categorical

CFPOs are treelike, and hence Rubin’s stronger result applies directly to them.

The remainder of this introduction is devoted to various historical notes, a brief

introduction to CFPOs, and a short proof-less summary of Rubin’s results about trees.

1.2 History of CFPOs and Related Results

In order to pose the question about the reconstruction of cycle-free partial orders, Rubin

had to define them. However there were a few problems with the definition he gave in

[23], and so Warren gave in [39] a different version that better matches our intuition. The

technical details of this can be found in Subsection 1.3.1.

Warren’s memoir, a polishing of his Ph.D. thesis [38], is concerned with various

homogeneity and transitivity questions concerning CFPOs.

Definition 1.2.1 A model M is said to be k-transitive if for every finite A,B ∈ M such

that A ∼= B and |A| = k there is an automorphism of M that maps A to B. If M is

k-transitive for all k then M is called transitive.

A model M is said to be k-homogeneous if for every finite A,B ∈ M such that A ∼= B

and |A| = k then every isomorphism from A to B extends to an automorphism of M . If

M is k-homogeneous for all k then M is called homogeneous.

Rather than ‘vanilla’ homogeneity and transitivity, Warren is primarily concerned with

CS-homogeneity and transitivity, where the CS stands for ‘connecting set’. This means

that the conditions of homogeneity and transitivity are weakened; the conditions only

apply to the finite substructures which are connecting sets, defined in Definition 1.3.13.
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1.2.1 Homogeneous and Transitive Orders

There is a large body of work dedicated to studying the homogeneity and transitivity

properties of ordered structures. Morel produced the first result in this direction,

classifying the countable transitive linear orders in [16]. A considerable amount is known

about transitive linear orders of larger cardinalities, and I would recommend reading

Chapter 8 of [21] to learn more, but there is one result in that work that I wish to draw

special attention to, especially for a lemma used in the proof of it.

That result is Rosenstein’s classification of the ℵ0-categorical linear orders, first published

in [20]. The Ryll-Nardzewski Theorem allows us to recast ℵ0-categoricity as a transitivity

property.

Definition 1.2.2 A model M is said to be almost k-transitive if M has only finitely many

k-orbits. M is called almost transitive if it is almost k-transitive for all k.

If a countable linear order is almost transitive, then its theory is ℵ0-categorical (see [15],

Theorem 7.3.1). In the production of this result, Rosenstein proves the following lemma:

Lemma 1.2.3 If a linear order is almost 2-transitive then it is almost transitive.

This is a very useful result, which inspired an analogue result for the CFPOs (Lemma

2.2.12), which gets used in many places in this thesis. It is arguably a quantifier

elimination-style result, if stated in the following form:

Lemma 1.2.4 Let x̄ be an n-tuple from CFPO M . Then

qftp(x̄) ∪
⋃

tp(xi, xj) ⊢ tp(x̄)
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Many similar results exist, and not just for almost transitivity. In particular, Droste and

Macpherson in [11] show that if a partial order is both 1- and 4-homogeneous then

it is homogeneous, and in the same paper find for each n an n-homogeneous graph

which is not (n + 1)-homogeneous, showing the total absence of an analogous result

for homogeneity in graphs.

Schmerl in [29] gave a classification of all countable homogeneous partial orders, and

subsequently structure theorems for countable transitive, k-transitive, homogeneous and

k-homogeneous trees were given by Droste in [6] and [7], and Chicot gave in her Ph.D.

thesis [4] a classification of the 1-transitive trees. Accounts of these results and sketches

of their proofs can be found in a survey by Truss, [37], if one feels disinclined to read the

original papers.

As well as considering different types of partial orders, we may also add restrictions to the

type of finite substructures we use in our definitions of homogeneity and transitivity. As

mentioned earlier, Warren considered CS-transitivity, finding the class of k-CS-transitive

CFPOs much richer class than the class of k-transitive CFPOs.

Droste, Holland and Macpherson considered in [8], [9] and [10] weakly 2-transitive trees,

i.e. trees whose automorphism groups are transitive on related pairs. Chicot, while

working towards her classification of 1-transitive trees in [4], gave a classification of the

lower 1-transitive linear orders, the linear orders which have only one initial segment up

to isomorphism.

Instead of weakening our transitivity and homogeneity conditions, we could add

additional structure to our orders by adding colour predicates to the language. Examples

of this kind of result include Campero-Arena and Truss’ [2], which classifies the countable

1-transitive coloured linear orders and Mwesigye and Truss’ classification of the coloured

ℵ0-categorical linear orders in [17].
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1.2.2 CFPOs

Warren’s definition of the CFPOs takes place in what is known as the Dedekind-

MacNeille completion. Since this is not necessarily definable, this leads to the question

of whether the class of CFPOs is axiomatisable or not. Truss answered this question in

[36], an account of which can be found in Section 1.3.1.

Warren’s study of k-CS-transitive CFPOs was extended by two papers in 1998, [35] by

Truss and [5] by Creed, Truss and Warren, both of which add to cases not fully dealt with

by Warren in [39].

Gray and Truss in [14] examine the relationship between ends of a graph and CFPOs, and

extract a number of results from this relationship. This viewpoint is rather illuminating,

even if one is not familiar with ends of graphs.

1.3 Preliminaries

Definition 1.3.1 A tree (also called a semi-linear order) is a partial order that satisfies

the two additional axioms:

• ∀x, y, z(x, y ≤ z → (x ≤ y ∨ y ≤ x))

• ∀x, y∃z(z ≤ x, y)

Definition 1.3.2 A λ-coloured tree is a structure 〈T,≤, Ci : i ≤ λ〉 such that 〈T,≤〉 is a

tree, while the Ci are mutually exclusive unary predicates.

Definition 1.3.3 If f ∈ Aut(M) then the support of f is the following set:

supp(f) := {x ∈M : f(x) 6= x}
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If F ⊆ Aut(M) and x ∈M then

F (x) := {f(x) : f ∈ F}

and the support of F is the following set:

supp(F ) :=
⋃

f∈F

supp(f)

Definition 1.3.4 Let L0 and L1 = 〈Pi, fj , ck : i ∈ I j ∈ J k ∈ K〉 be two languages,

where the Pi are predicate symbols, the fj are function symbols and the ck are constant

symbols. Let αi and βj be the arities of Pi and fj respectively. Let K0 and K1 be classes

of models in L0 and L1 respectively and let R ⊆ K0 ×K1. If x̄ is a tuple, let l(x̄) be the

length of the tuple.

We say that K1 is interpretable in K0 relative to R if there are the following:

• an L0-formula φDom(x̄);

• an L0-formula φEq(ȳ0, ȳ1);

• for each i ∈ I an L0-formula φPi
(z̄i0, . . . , z̄

i
αi
);

• for each j ∈ J an L0-formula φfj(w̄
j
0, . . . , w̄

j
βj
, v̄j);

• for each k ∈ K an L0-formula φck(v̄
k);

such that:

l(x̄) = l(ȳ0) = l(ȳ1)

= l(z̄i0) = . . . = l(z̄iαi−1
) for all i ∈ I

= l(w̄j0) = . . . = l(w̄jβj−1
) = l(v̄j) for all j ∈ J

= l(z̄k) for all k ∈ K
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and if M0 ∈ K0 and M1 ∈ K1 are such that R(M0,M1) then there is a surjection

τ : φDom(M0) → M1 such that:

τ(ā) = τ(b̄) ⇔ M1 |= φEq(ā, b̄)

M0 |= φPi
(ā0, . . . , āαi

) ⇔ M1 |= Pi(τ(ā0), . . . , τ(āαi
))

M0 |= φfj(ā0, . . . , āβj) = b̄ ⇔ M1 |= fj(τ(ā0), . . . , τ(āβj)) = τ(b̄)

M0 |= φck(ā) ⇔ M1 |= τ(ā) = ck

The collection of formulas

{φDom(x̄), φEq(ȳ0, ȳ1), φPi
(z̄i0, . . . , z̄

i
αi
),

φfj(w̄
j
0, . . . , w̄

j
βj
, v̄j), φck(v̄

k) : i ∈ I, j ∈ J, k ∈ K}

is called an interpretation.

If all the formulas in an interpretation are first order, second order, or Lω1,ω, then we

call that interpretation a first order interpretation, a second order interpretation or an

Lω1,ω-interpretation respectively.

We say that K1 and K2 are bi-interpretable if:

1. there is Φ, a first order interpretation of K1 in K2 such that Φ is an interpretation

of K1 in 〈ψDom(K2), ψEq, . . . , 〉;

2. there is Ψ, a first order interpretation of K2 in K1 such that Ψ is an interpretation

of K1 in 〈φDom(K2), φEq, . . .〉;

3. the interpretation of K1 inside the interpretation of K2 in K1 is ∅-definable; and

4. the interpretation of K2 inside the interpretation of K1 in K2 is ∅-definable.

Remark 1.3.5 If P is a partial order, then x ≤P y means that P |= x ≤ y. The symbols

<P , ≥P and >P are defined similarly.



10 Chapter 1. Introduction

1.3.1 Cycle-free Partial Orders

This section will deal with the definition of CFPOs, as well as certain useful concepts

relating to them. Observations about the properties of the CFPOs as first order models

depend on results proved in Chapter 3, so will be made then, in Section 3.3.

The problem that this thesis seeks to address was posed before the objects of study were

fully defined. In the introduction to his memoir on the reconstruction of trees, Rubin

suggested extending the problem to cycle-free partial orders, which he defined as follows:

Definition 1.3.6 (Definition 0.19 of [23]) Let M = 〈A,<〉 be a poset. M is cycle-free, if

for every a0, . . . an−1 ∈ A: if for every i < n either ai < ai+1modn or ai > ai+1modn, then

there are i, j < n such that j 6= i, j 6= i+ 1(modn) and aj belongs to the closed interval

whose end points are ai and ai+1(modn).

This seeks to define the class by forbidding ‘diamonds’ and the class of structure called

‘n-crowns’:

Definition 1.3.7 The four-element partial order {p0, p1, p2, p3} is called a diamond if

p0 ≤ p1 ≤ p3 and p0 ≤ p1 ≤ p3 but p1 6≤ p2 and p2 6≤ p1. This is depicted in Figure 1.1.

p0

p1 p2

p3

Figure 1.1: A Diamond
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Definition 1.3.8 The finite partial order P is said to be a n-crown if:

• P = {p1, . . . p2n};

• for all i ∈ Z, if j = 2i− 1mod 2n and k = 2i+ 1mod 2n

pj ≤ p2i ≥ pk

• otherwise pi 6≤ pj and pi 6≥ pj .

. . .

p2n−1

p2n

p1

p2

p4

p3

Figure 1.2: An n-crown

CFPOs are a generalisation of trees. Unfortunately Definition 1.3.6 does not behave well

with taking substructures. This observation is due to Richard Warren in his Ph.D. thesis

[39], who gives the example of the 2-crown and one of its superstructures.

a b

c d

'
a b

c d

e

Z

Figure 1.3: Warren’s Example

Rubin’s definition views neither of these orders as cycle-free, but this seems counter-

intuitive. While the notion of a, b, c and d forming a cycle in ' (Mercury) seems
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acceptable, in Z (Uranus) this cycle repeatedly passes through e. If we were to insist

that e must be contained in that tuple, Rubin’s definition would count Z as cycle-free.

However, such a definition would produce a class not closed under taking substructures

(' ⊆ Z). These worries were resolved by Warren, whose definition goes via the concept

of Dedekind-MacNeille completion. The following are taken from Warren’s memoir [39].

They introduce some notation which will be used throughout:

Definition 1.3.9 Let P be partially ordered by ≤, and let a, b ∈ P and X, Y, I, F ⊆ P .

1. a and b are comparable (written as a ≤≥ b) if a ≤ b or a ≥ b (if a ≤≥ b and a 6= b

then we write a <> b);

2. a and b are incomparable (written as a ‖ b) if a and b are not comparable;

3. X is a chain if it is linearly ordered by ≤;

4. Y is an antichain if it is pairwise incomparable;

5. infP (X) is the infimum of X in P if it exists;

6. supP (Y ) is the supremum of Y in P if it exists;

7. a ≤ X if ∀x ∈ X(a ≤ x); (a < X , a ≥ X , a > X , X ≤ Y and X < Y are

defined similarly);

8.
∨P X := {p ∈ P : p ≥ X};

∧P X := {p ∈ P : p ≤ X};

9. I is a Dedekind Ideal, written I ∈ ID(P ) if I 6= ∅,
∧P I 6= ∅ and

∧

P
∨

P I = I
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10. F is a Dedekind Filter, written F ∈ FD(P ) if F 6= ∅,
∨P F 6= ∅ and

∨

P
∧

PF = F

11. X is downwards closed in P if for all p ∈ P , if p ≤ x for some x ∈ X then p ∈ X;

(upwards closed is defined similarly);

12. P⊖ is ID(P ) ordered by inclusion; P⊕ is FD(P ) ordered by reverse inclusion;

13. P≤x := {p ∈ P : p ≤ x}; (P<x, P≥x and P>x are defined similarly);

14. if I ∈ P⊖ and there exists an x ∈ P such that I = I≤x then I is said to be a

principal ideal; (principal filters are defined similarly)

Facts 1.3.10 Gap

1. P can be embedded into both P⊖ and P⊕;

2. there is an isomorphism from P⊖ to P⊕ which fixes P pointwise;

3. ∀a, b ∈ P⊖, if a ‖ b and ∃c (c ≤ {a, b}) then infPD({a, b}) exists;

4. ∀a, b ∈ P⊖, if a ‖ b and ∃c (c ≥ {a, b}) then supPD({a, b}) exists;

Definition 1.3.11 Gap

1. We call PD := P⊖ the Dedekind-MacNeille completion of P .

2. If PD ∼= P then we say that P is Dedekind-MacNeille complete.

Facts 1.3.12 Gap

1. For all partial orders, (PD)D ∼= PD. i.e. Dedekind-MacNeille completions are

Dedekind-MacNeille complete.
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2. If P and Q are partial orders such that P ⊆ Q and Q is Dedekind-MacNeille

complete then there is an embedding β : PD → Q such that β|P = id.

Warren introduces the notion of path and connecting set in the Dedekind-MacNeille

completion in order to define cycle-freeness. Both he and I routinely use the notion of

path when talking about CFPOs; it is an extremely useful concept, and provides a good

definition of the class.

Definition 1.3.13 (2.3.2 of [39]) If M is a partial order and a, b ∈ M , then the n-tuple

C = 〈c1, c2, . . . , cn〉 (for n ≥ 2) is said to be a connecting set from a to b in M , written

C ∈ CM〈a, b〉, if the following hold:

1. c1 = a, cn = b, c2, . . . , cn−1 ∈MD

2. if 1 ≤ i ≤ n− 1, then ci 6‖ ci+1

3. if 1 < i < n, then ci−1 < ci > ci+1 or ci−1 > ci < ci+1

Definition 1.3.14 (2.3.3 of [39]) Let M be a partial order, a, b ∈ M , and let C =

〈c1, c2, . . . , cn〉 be a connecting set from a to b in M . Let σk (for 1 < k < n) be maximal

chains in MD with endpoints ck, ck+1 ∈ σk, such that if x ∈ σi ∩ σj for some i < j, then

j = i+ 1 and x = ci+1. Then we say that P =
⋃

0<k<n σk is a path from a to b in M .

Definition 1.3.15 A partial order M is said to be a cycle-free partial order (CFPO) if

for all x, y ∈M there is at most one path between x and y in MD. If it exists, this unique

path is denoted by Path〈x, y〉

Definition 1.3.16 A partial order is said to be connected if there is a path between any

two points, i.e. Path〈x, y〉 exists for all x, y ∈M , and is said to be disconnected otherwise.
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Let M be a partial order and let C ⊆M . We say that C is a connected component of M

if it is a maximal connected subset of M , i.e. for all x, y ∈ M if x ∈ C and Path〈x, y〉

exists then y ∈ C.

We will also need the concept of paths between sets, as well as between points.

Definition 1.3.17

Path〈x, Y 〉 :=
⋂

y∈Y

Path〈x, y〉

Path〈X, y〉 :=
⋂

x∈X

Path〈x, y〉

Path〈X, Y 〉 :=
⋂

x∈X
y∈Y

Path〈x, y〉

Since this definition is about the Dedekind-MacNeille completion of a partial order, rather

than the partial order itself, we may be concerned about whether the class of CFPOs is

axiomatisable or not. Truss finds an axiomatisation in [36], but also shows that there is

no axiomatisation of the class of connected CFPOs.

We are able to refer to paths in a CFPO’s Dedekind-MacNeille completion as we do not

require the full completion, just points that are definable. These points are the ‘meet’ and

the ‘join’ of pairs of elements, which are defined below.

Definition 1.3.18 Let M be a partial order and let x, y ∈ M . The meet of x and y is

written and defined as:

x ∧ y := sup{t ∈ T : t ≤ x, y}

The join of x and y is written and defined as:

x ∨ y := inf{t ∈ T : t ≥ x, y}

Facts 3 and 4 of Facts 1.3.10 show that while x ∧ y and x ∨ y may not exist in M , they

will always exist in MD.
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Connectedness is not a first order property as it would require us to ask for arbitrarily long

paths, something that would require infinite disjunction.

Definition 1.3.19 Gap

1. An upwards cone of a point t is a maximal set C such that

∀c ∈ C t < c and t < c0 ∧ c1 for all c0, c1 ∈ C

2. An downwards cone of a point t is a maximal set C such that

∀c ∈ C t > c and t > c0 ∨ c1 for all c0, c1 ∈ C

3. If C is a upwards or downwards cone of t then C’s extended cone is the following

set:

{x ∈M : Path〈x, t〉 ∩ C 6= ∅}

1.4 Some Reconstruction Results

One may think of an automorphism group in a number of ways. It can be considered

as an abstract group, i.e. a model of the theory of groups in the language of groups

(LG = 〈◦, −1, id〉). This abstract group can be added to the original model to form a two

sorted structure, i.e. from model M in language LM we obtain

〈M,Aut(M),LM ,LG,Op〉

where

Op :







Aut(M)×M → M

(f, x) 7→ f(x)



Section 1.4. Some Reconstruction Results 17

We may strip the structure of the original language to obtain 〈M,Aut(M),LG,Op〉, the

permutation group. In this structure, we may define a topology on the group, where

the basic open neighbourhoods of id are the point-wise stabilisers of finite sets. The

topological group is 〈Aut(M),LG, τ〉, where τ is the topology just mentioned.

With all these different notions of automorphism group there is a risk that when reading

‘Aut(M) ∼= Aut(N)’, one will be left wondering in what way are the two isomorphic?

Therefore I introduce the following notation.

Definition 1.4.1

Aut(M) ∼=A Aut(N) ⇔ 〈Aut(M),LG〉 ∼= 〈Aut(N),LG〉

Aut(M) ∼=T Aut(N) ⇔ 〈Aut(M),LG, τM〉 ∼= 〈Aut(N),LG, τN〉

Aut(M) ∼=P Aut(N) ⇔ 〈Aut(M),M,LG,Op〉 ∼= 〈Aut(N), N,LG,Op〉

The subscript A stands for ‘abstract’, T for ‘topology’ and P for ‘permutation’

Ahlbrandt and Ziegler showed in [1] that ifM andN are countable and ℵ0-categorical in a

countable language then Aut(M) ∼=T Aut(N) implies that M and N are bi-interpretable.

Previously it was already known that if the automorphism groups of M and N are

isomorphic as permutation groups then not only are they bi-interpretable, but that we may

take the domain of the interpretation in either direction to be M1 or N1 as appropriate.

The corresponding result for abstract automorphism groups is false, but the situation

is still very well understood thanks to Rubin, who examined the reconstruction of ℵ0-

categorical structures from their abstract automorphism groups in [24]. He showed that

if M and N are ℵ0-categorical structures which have an ‘∀∃-interpretation’, and no

algebraicity (i.e. for all finite A, there is no a 6∈ A algebraic over A) then

Aut(M) ∼=A Aut(N) ⇔ 〈M,LM〉 and 〈N,LN〉 are bi-interpretable
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Rubin also considered Boolean algebras and their automorphism groups. He managed

to get a strong reconstruction result concerning groups that act in a certain way on

complete atomless Boolean algebras. He uses this result in several other settings.

The reconstruction of linear orders and reducts of linear orders from their abstract

automorphism groups; manifolds from their abstract autohomeomorphism groups; and

the reconstruction of trees; these all depend on his results about Boolean algebras.

There is a large body of work concerning the properties of the automorphism group of

an ordered structure, a particularly pertinent example being [12]. Unfortunately I am

insufficiently familiar with this work to give a good account of it, but I can say that

it concerns the reconstruction of 2-homogeneous linear orders with countable cofinality

from quotients of the automorphism group.

In this thesis, I have borrowed a method for reconstruction from Shelah in [31, 30] and

from Shelah and Truss in [33]. This utilises the alternating group on five elements to

define the permutation structure of the symmetric groups of cardinals and their quotients

inside those groups as abstract groups. This approach works well for CFPOs with a certain

degree of transitivity, as we shall see in Chapter 4.

1.4.1 The Reconstruction of Trees

This section, apart from some minor comment and narrative on my part, is taken from

[22, 23, 25, 26]. While the comment is my own, the results belong to Rubin and Rubin

and McCleary. The reference [23] is the chief source for the results, but the powerful

methods used have their history throughout the other three references.

Definition 1.4.2 Let K be a class of first-order models. K is said to be faithful if

∀K0, K1 ∈ K (Aut(K0) ∼=A Aut(K1) ⇒ K0
∼= K1)
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Definition 1.4.3 K′ ⊂ K is said to be canonical if K′ is faithful and

∀K ∈ K∃L ∈ K′ (Aut(L) ∼=A Aut(K))

If the larger K is not faithful, then there may be many possible canonical subfamilies.

While the axiom of choice implies that there is a canonical subfamily of every family of

first order models, this would teach us nothing about the structure of the models involved.

Besides, we are looking for a way of defining a canonical model inside its automorphism

group. The chances of defining a member of a class we obtained using non-constructive

methods are rather slim!

Therefore we must make some moral decision as to which first order models we add to

a canonical class. A great deal more can be said by adding colour predicates, so Rubin

works with the class of coloured trees, rather than the non-coloured trees.

Proposition 1.4.4 Let 〈P,≤〉 be a partial order, and let I be a unary predicate such that

〈PD,≤, I〉 |= I(x) ⇔ x ∈ PD \ P

Then Aut(P,≤) ∼=A Aut(PD,≤, I).

Proof

The I predicate ensures that any automorphism of PD preserves P , and since P is dense

in PD every automorphism of P extends uniquely to an automorphism of PD. 2

However, this is not the end of it. Many different notions of completion also exhibit this

property.
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Q

Q Q

Y

Q

Q Q

Y+

R

R R

YD

R

R R

YR

Figure 1.4: Saturn (Y) and its Completions

Y is the partial order with domain {0, 1, 2} ×Q and order

(i, x) ≤Y (j, y) iff







i = 0 and j = 1, 2 or

i = j and x ≤Q y

Y+ is obtained by adding a single point a such that

((i, x) ≤Y
+ a⇔ i = 0) and (a ≤Y

+ (i, x) ⇔ i = 1, 2)

This is known as the ramification completion or path completion, and is defined for any

tree in Definition 2.2.3, and any CFPO in Definition 2.5.1.

YD is the standard Dedekind-MacNeille completion of Y, while YR is given by adding two

points b and c to YD such that

((i, x) ≤
Y

R b⇔ i = 0) and (b ≤
Y

R (i, x) ⇔ i = 1)

and

((i, x) ≤
Y

R c⇔ i = 0) and (c ≤
Y

R (i, x) ⇔ i = 2)
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This YR is called the Rubin completion of a tree. If the I predicate is defined for each of

these completions in the same way as in Proposition 1.4.4 then

Aut(Y,≤) ∼=A Aut(Y+,≤, I) ∼=A Aut(YD,≤, I) ∼=A Aut(YR,≤, I)

Definition 1.4.5 Let T be a Dedekind-MacNeille complete tree. T is said to be Rubin

complete if for all t ∈ T , if there is more than one cone above t then all the cones above

t have a least element.

If T is any tree then TR is defined to be the least Rubin complete tree that contains T .

The Rubin completion has many of the same properties as the Dedekind-MacNeille

completion. Every tree has a unique minimal Rubin completion, and every automorphism

of a tree extends uniquely to an automorphism of the completion. Please refer to Chapter

3 of [23] for details and proofs.

Proposition 1.4.6 Let T be any tree, and let I be a unary predicate such that

TR |= I(x) ⇔ x ∈ TR \ T

Then

Aut(T,≤) ∼=A Aut(T,≤, I)

Completions are not the only way two trees can share an automorphism group!

Proposition 1.4.7 Let 〈T,≤〉 be a tree. We say that a0, . . . , an−1 ∈ T is an n-chain of

unique successors if for all i:

• ai is the unique predecessor of ai+1; and

• ai+1 is the unique successor of ai.
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Let 〈S,≤, Ci : i ∈ ω〉 be the coloured tree obtained by replacing every n-chain of unique

successors with a single point for each n, where 〈S,≤, Ci : i ∈ ω〉 |= Cn(x) if and only

if x was added to replace an n-chain of unique successors.

Then Aut(〈T,≤〉) ∼=A Aut(〈S,≤, Ci : i ∈ ω〉).

Proposition 1.4.8 Let ♀ and ♂ be the trees pictured in Figure 1.5.

♀ ♂

Figure 1.5: Trees ♀ and ♂

Then Aut(♀) ∼=A Aut(♂).

Proposition 1.4.9 Let 〈T,≤T 〉 be a tree. Let a ∈ T . Let {Ci : i ∈ I} be the family of

cones above a and let Ci ∼ Cj if and only if there is an automorphism of T that maps Ci

to Cj . This is an equivalence relation, and we let {cα : α ∈ β} be the set of equivalence

classes. We define 〈S(a),≤S, P2〉 to be the tree on the domain

{a} ∪ {cα : α ∈ β} ∪
⋃

i∈I

Ci

where P2 is a unary predicate given by S(a) |= P2(x) if and only if x = cα for some α.

The ordering is given by:

x ≤S y ⇔







x ≤T y or
x = a or
x = cα ∧ y ∈ Ci ∈ cα
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Let 〈T̃ ,≤, P2〉 be the tree obtained by taking T and at every a, replacing T≥a by S(a).

Then Aut(T ) ∼=A Aut(T̃ ).

Figure 1.6: An example of T≥a and S(a)

These four propositions are what we call pathologies; they describe behaviour that leads

to trees sharing automorphism groups. However, these pathologies let us make canonical

choices. We prefer coloured Rubin-complete trees to incomplete trees. We prefer

coloured singletons to chains of unique successors with arbitrary length. We prefer ♀

to ♂ as Aut(♀) acts transitively on the levels of ♀, while the same cannot be said about ♂.

We prefer trees where either all or none of the cones above a point can be swapped.

There is, however, a pathology where it is not clear how a choice can be made:

Proposition 1.4.10 (Z2)
ℵ0 ≀ S3

∼=A ((Z2)
ℵ0 ≀ S3) × Z2. For a definition of ≀, the wreath

product, please see Definition 3.2.3 or 5.1.7.

((Z2)
ℵ0 ≀S3)×Z2 is the automorphism group of the tree pictured below, while (Z2)

ℵ0 ≀S3 is

the automorphism group of the tree obtained by only taking the vertices drawn as circles.

The diamond and square ornaments indicate that there are unary predicates that prevent

the second highest level from being switched while fixing the third highest level.

How Z2 moves through various kinds of product is the source of this pathology, and is

unfortunately not fully understood, for example:
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. . . . . . . . .

ℵ0

Figure 1.7: Resolved pathology involving Z2

Question 1.4.11 The trees in question are drawn in Figure 1.8.

The empty rectangles are intended to show that a copy of the tree depicted in the filled

rectangle is inside, the bottom vertex identified with the top vertex the rectangle touches.

This process continues forever. Once again, we let M0 be the tree of circular vertices,

while M1 is the tree depicted by all the vertices. Does Aut(M0) ∼=A Aut(M1) hold?

These problems force Rubin to exclude all trees T such that there is an s such that s has

a successor t which is a maximal element, and the orbit of t under the action of Aut(s)(T )

has exactly two elements. Very loosely, in the abstract group context, if Z2 occurs in an

uncontrolled way, then we are unable to find a canonical tree.

With all the pathologies discussed, here is the class of trees where Rubin’s methods work,

and his canonical class of trees.
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...
...

...
...

...
...

...
...

...

Figure 1.8: Unresolved Pathology involving Z2

Definition 1.4.12 Let T be a tree, let G ⊆ Aut(T ), and let t ∈ T .

Or(t : G) := {s ∈ T : f(t) = s for some f ∈ G}

Definition 1.4.13 Let T be a tree, s, t ∈ T and s < t. Then Or(t : Aut(s)(T )) is called

rigid if for all f, g ∈ Auts(T )

f(t) = g(t) ⇒ f |Or(t:Aut(s)(T )) = g|Or(t:Aut(s)(T ))

Or(t : Aut(s)(T )) is called a bad orbit if it is rigid and |Or(t : Aut(s)(T ))| > 2

TGood is the class of trees that have no bad orbits.

Example 1.4.14 Let 〈Z×{z},≤〉 be the Cartesian product of the integers with itself with

the lexicographic order. If a and b lie in different copies of Z then Or(a : Aut(b)(T )) is a

bad orbit.
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Definition 1.4.15 Let TCAN ⊆ TGood be the class of good trees T such that each of the

following hold:

1. T is Rubin-complete;

2. for all s ∈ T there is no t ∈ T with t > s such that u > s⇒ u ≥ t;

3. for all t ∈ T , if t is a maximal element and the successor of some s ∈ T then there

is a φ ∈ Auts(T ) such that φ(t) 6= t;

4. for all t > s, if all φ ∈ Auts(T ) fix t then t is either a successor of s or is a maximal

element of T which is the successor of no element of T ;

5. for all t ∈ T if one of the cones above t can be mapped by an automorphism to

another cone above t, then there is an automorphism that takes that cone to any of

the cones above t;

6. T≥t 6∼= ♀ for all t ∈ T .

TRub ⊂ TCAN is the class which also satisfy the additional axioms:

7. for all t > s, if all φ ∈ Auts(T ) fix t then t is a successor of s;

8. if t and u are the only successors of s, if x and y are successors of t then there is a

φ ∈ Aut(T ) such that φ(x) = y;

9. for all s, t ∈ T , if t is the successor of s and |Or(t : Aut(s)(T ))| = 2 then t is not

maximal.

Conditions 2., 3., 4. and 7. are all related to the pathology caused by successors

(Proposition 1.4.7). Conditions 2. and 3. forbid aberrant behaviour caused by successors.

4. and 9. are ensure that ‘small’ orbits are caused by manageable behaviour.



Section 1.4. Some Reconstruction Results 27

Theorem 1.4.16 There is a function CAN : TGood → TCAN such that:

• if ∼ is the binary relation

T |= x ∼ y ⇔ ∃φ ∈ Aut(T ) (φ(x) = y)

then 〈T,≤,∼〉 ∼= 〈CAN(T ),≤,∼〉;

• KCAN is second order interpretable in KGood with respect to CAN.

Theorem 1.4.17 KRub is faithful.

Rubin reconstructs the trees by building complete atomless Boolean algebras around

them, and then using his powerful reconstruction results about Boolean algebras to

reconstruct them. As we will see in the next chapter, trees have the property that the

behaviour of tuples is controlled by the behaviour of adjacent pairs (Theorem 2.2.14).

Much of the machinery of this method relies on this property, and since the CFPOs

share this property, it seems reasonable that one would be able to adapt the Boolean

algebraisation method to CFPOs.
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Chapter 2

ℵ0-categorical Trees and CFPOs

This chapter gives a structure theorem for the ℵ0-categorical trees and cycle-free partial

orders. As well as being of intrinsic interest, this leads to a more complete reconstruction

result for the ℵ0-categorical trees.

2.1 Motivation

Definition 2.1.1 A tree T is said to be definably complete if for all non-empty subsets

A ⊆ T which are definable over some finite B ⊆ T both inf(A) and sup(A) exist in T .

In particular, this means that for all a, b ∈ T their meet, a ∧ b, is an element of T .

This following definition and theorem are rephrasings of Definition 11.1 and Theorem

11.2 of Rubin’s memoir [23].

Definition 2.1.2 KCAT is the set of ℵ0-categorical trees such that T ∈ KCAT if and only

if all of the following hold:

1. T is definably complete;
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2. no t ∈ T has exactly one successor;

3. for every t ∈ T , either all of the successors of t can be switched by automorphisms,

or none of them can;

4. for all s, t ∈ T , if s < t and t is definable over s then t is either a successor of s or

a maximal element of T , but not both;

5. T≥t 6∼= ♀ for all t ∈ T (see Proposition 1.6.7).

Theorem 2.1.3 Let ∼ be the relation as defined in Theorem 1.4.16, i.e.

T |= x ∼ y ⇔ ∃φ ∈ Aut(T ) (φ(x) = y)

Then:

1. for every ℵ0-categorical tree S there is a T ∈ KCAT such that Aut(S) ∼= Aut(T );

and

2. for every S, T ∈ KCAT if Aut(S) ≡ Aut(T ) then 〈S,≤〉 ∼= 〈T,≤〉

Thus the reconstruction of ℵ0-categorical trees is better understood than the reconstruction

of trees in general. Part of this greater understanding stems from the work of Schmerl in

[27], whose paper has a number of important results concerning the decidability of the

theory of the ℵ0-categorical trees.

Therefore the structure theorem for ℵ0-categorical trees in this chapter is of slight interest

to those interested in reconstruction, but it has intrinsic value. Corollary 2.5.11 together

with Subsection 3.1.1 show that all ℵ0-categorical CFPOs share an automorphism group

with a tree, so Theorem 2.1.3 applies directly.
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2.2 Ramification Completions

Definition 2.2.1 The ramification order of a point t is the number of cones above t.

Definition 2.2.2 A tree T is said to be ramification complete if it contains the meet of

any two points, i.e. x ∧ y exists for every x, y ∈ T .

Definition 2.2.3 The ramification completion of a tree T is the intersection of all S such

that:

• T ⊆ S ⊆ TD; and

• ∀x, y ∈ S x ∧ y ∈ S.

It is written as T+.

From now until Section 2.6, if the word ‘completion’ is used without qualification it is

used to mean ‘ramification completion’.

Definition 2.2.4 t ∈ T+ is said to be irrational if t ∈ T+ \ T .

Proposition 2.2.5 The completion of a countable tree is countable.

Proof

Every ramification point corresponds to at least one 2-element antichain, of which there

are countably many. 2

Definition 2.2.6 The n-orbits of a tree are the equivalence classes of n-tuples with no

repeated elements under the relation x ∼ y, which is given by “x can be mapped to y by

an automorphism”.
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Definition 2.2.7 A tree is said to be almost n-transitive if it has only finitely many n-

orbits.

Theorem 2.2.8 A tree T is ℵ0-categorical if and only if it is almost n-transitive for all n.

This is a reformulation of the Ryll-Nardzewski Theorem. A proof for this context can be

found in [15], Theorem 7.3.1.

The next few lemmas and definitions allow us to reduce to the case n = 2 when

considering almost n-transitivity.

Definition 2.2.9 The completion of an n-tuple p is a tuple of least length which contains

p and is closed under ∧.

If p is a complete tuple, i.e. p is its own completion, then we label the points of p in a

canonical way; pi,j is the ith point that is a successor of a point labelled as pk,j−1 for some

k. This is pictured in Figure 2.1.

p0,0

p1,1 . . .pi1,1p0,1

p0,2 p1,2 p2,2 p3,2 pi2,2 pi2+1,2

...

p0,k
...

p1,k
...

. . .p2,k
...

pik,k

Figure 2.1: The canonical labelling of a complete tuple



Section 2.2. Ramification Completions 33

Definition 2.2.10 A complete n-orbit of T is the orbit of some complete n-tuple.

Definition 2.2.11 T is said to be almost n-complete transitive if it has finitely many

complete n-orbits.

Lemma 2.2.12 A complete tree T is almost n-complete transitive for every n ≥ 2 if and

only if T is almost m-transitive for each m ≥ 2.

Proof

If T is almost m-transitive for every m ≥ 2 then T is automatically almost n-complete

transitive for every n ≥ 2. To see the other direction, first notice the following three facts:

1. If p is a complete n-tuple then there are at most 2n orbits of tuples with p as their

completion;

2. If q is an n-tuple then the length of the completion of q is at most 2n;

3. If p and q lie in the same orbit then their completions lie in the same orbit.

1. holds since every tuple which has p as a completion is a subtuple of p, and p has 2n

subtuples.

To see that 2. is true let q = (q0, . . . , qn−1). Every time a point is introduced to complete

q the ramification point of at least two points is added. This process is repeated finitely

many times, so the maximum number of points added is n − 1, therefore the maximum

length of a completion of an n-tuple is bounded by 2n.

3. is true as the automorphism between p and q will also carry p’s completion to q’s

completion.

Suppose T is almost n-complete transitive for every n ≥ 2. Let sn be the number of

n-complete orbits. The number of m-orbits is bounded by Σ2m
i=m2

si as each m-orbit
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contains a tuple with a completion of length between m and 2m − 1 (say i), and this

completion corresponds to at most 2si non-isomorphic m-tuples. Hence T is almost

m-transitive for each m ≥ 2. 2

Lemma 2.2.13 In any finitely coloured partial order there are finitely many coloured

order types of n-tuples.

Proof

There are four possible order types that a pair (x, y) can satisfy

x < y x > y x = y x ‖ y

and since which of these each pair realises determines the order type there can only be

finitely many order types. Since there are only finitely many colours, this extends to

coloured order types. 2

The following theorem was first proved by Pierre Simon, who published it as proposition

4.5 in [34], where it is used to show that coloured trees are dp-minimal. Since the concept

of ramification completion is used in the main theorem as well as underpinning this

version of the result, and since this proof is more combinatorial in flavour, I have included

it despite its greater length than Simon’s proof.

Theorem 2.2.14 Let T be a tree with T = T+. If T is almost 2-transitive then T is almost

n-transitive for each n ≥ 2.

Proof

Let T be an almost 2-transitive tree such that T = T+ with finitely many 2-orbits. This

proof makes use of the canonical labelling of a complete tuple, as pictured in Figure 2.1,
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so if I refer to pi,j , please recall that p0,0 is the least element of the tuple p̄, and pi,j is the

ith point that is a successor of a point labelled as pk,j−1 for some k.

By Lemma 2.2.12 it suffices to prove ‘if T is almost 2-transitive then T is almost n-

complete transitive for all n’. We shall proceed by induction, so we assume that T is

almostm-transitive form < n. Let p be a complete n-tuple and let q be another complete-

n-tuple such that q has the same coloured order type as p and if pi,j+1 is a successor of

pk,j then (pi,j+1, pk,j) lies in the same 2-orbit as (qi,j+1, qk,j).

Note that corresponding adjacent pairs of p and q must have the same colourings, as p

and q have the same coloured order type. This assumption is valid since the number

of possible coloured order types of p is finite and we are assuming almost transitivity.

The number of n-orbits will be determined by the number of 2-types and the number of

coloured order types for n-tuples.

Since for all j ≤ i1 (recall that i1 is the maximum value that p−,1 can be labelled with) the

pairs (p0,0, pj,1) and (q0,0, qj,1) lie in the same 2-orbit, there is an automorphism fj carrying

the first to the second. Now pj,1 is the least element of a complete mj-tuple, and this

subtuple and its corresponding part of q satisfy the theorem, so there is an automorphism

gj carrying the first to the second.

Now let h be the partial function from T to itself given by

h(t) =



















gj(t) if t ≥ pj,1

fj(t) if p0 < (t ∧ pj,1) ≤ pj,1

f0(t) if t ∧ p0 ≤ p0

Since h maps pi to qi and h consists of automorphisms patched together and these

automorphisms agree at their meeting points, h is a partial automorphism. We now seek

to extend h to an automorphism by finding automorphisms that send the points not in

the domain of h, i.e. the cones of p0 that do not contain any member of p, to the points
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not in the image of h. We first extend h by taking h(t) = f0(t) when t 6∈ Dom(h) and

f(t) 6∈ Im(h). However this might not fully extend h as f0 might map some cones that

do not contain a member of p to cones that do contain a member of p.

Since p is finite and f0 is an automorphism, f0 can map only finitely many cones that

do not contain a member of p to a cones that do contain a member of p. Let qα,1 be an

element of q that lies in a cone whose preimage under f0 does not contain an element of

p. Either f0(pα,1) lies in the image of h or it does not. If it does not lie in the image of h

then, since f0 is an automorphism which maps p0 to q0 and by assumption (p0, pα,1) and

(q0, qα,1) lie in the same 2-orbit, (p0, f
−1
0 (qα,1)) lies in the same 2-orbit as (q0, f0(pα,1))

and so there is an automorphism h1 that maps (p0, f
−1
0 (qα,1)) to (q0, f0(pα,1)), which we

extend h by.

If f0(pα,1) is in the image of h then it must lie in a cone that contains a element of q

(which we will denote by qα0,1) and we may repeat the process until we find a qαk,1 such

that f0(pαk,1) does not lie in the image of h and we are in the situation dealt with in the

previous paragraph. This process can be repeated for each of the cones that are not in the

image of h until we have extended h to a total automorphism. 2

2.3 Linear Orders and Maximal Chains

Since trees are built up from linear orders, this section will deal with the properties of

linear orders and shows what kinds of linear orders can occur in an ℵ0-categorical tree. We

first present the known results about ℵ0-categorical linear orders, as well as the definitions

required to understand them.

Definition 2.3.1 If 〈L0, <0〉 and 〈L1, <1〉 are linear orders then their concatenation,
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denoted by L0
∧L1 is the linear order 〈L0 ∪ L1, <〉, where

x < y iff



















(x, y ∈ L0 and x <0 y) or

(x, y ∈ L1 and x <1 y) or

(x ∈ L0 and y ∈ L1)

Definition 2.3.2 〈Qn, <Qn
, C1 . . . Cn〉 a countable dense linear order where the colours

occur interdensely, i.e. for all x and y there are z1, . . . zn between x and y such thatCi(zi)

holds for each i.

Qn can also be described as the Fraı̈ssé limit of n-coloured linear orders, and is therefore

countably categorical.

Definition 2.3.3 Let 〈L1, <1〉, . . . , 〈Ln, <n〉 be linear orders. For each q ∈ Qn we define

L(q) to be a copy of 〈Li, <i〉 if Ci(q). The Qn-shuffle of

〈L1, <1〉, . . . , 〈Ln, <n〉

denoted by Qn(L1, . . . Ln), is the linear order 〈
⋃

q∈Qn
L(q), <〉, where

x < y iff







x, y ∈ L(q) and x <i y or

x ∈ L(q) , y ∈ L(p) and q <Qn
p

Theorem 2.3.4 (Rosenstein [20], [21]) If L is an ℵ0-categorical linear order then L is

built up from singletons by a finite number of concatenations or shuffles.

This result was extended to the coloured linear orders by Mwesigye and Truss in the

following theorem.

Theorem 2.3.5 (Mwesigye, Truss [17]) A finite or countable coloured linear order

(A,≤, C0, . . .) is ℵ0-categorical if and only if it can be built up in finitely many steps

from coloured singletons using concatenations or shuffles.
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Rosenstein’s theorem leads to a natural method of describing the countably categorical

linear orders.

Definition 2.3.6 A term is built as follows:

Singleton The singleton 1 is a term.

Concatenation If t0, t1 are terms then t0
∧ t1 is a term.

Qn-shuffle If t0, . . . tn−1 are terms then Qn(t0, . . . , tn−1) is a term.

Where Qn-shuffle is allowed for all n ∈ N

A finite term is a term that represents a finite linear order. Similarly, an infinite term is

one that represents an infinite linear order.

The terms correspond to linear orders in the obvious way, and I will not be particularly

careful about distinguishing the two. That every ℵ0-categorical linear order is represented

by a term is Theorem 2.3.4, however we will see that it is possible for a linear order to

have many different representations.

Lemma 2.3.7 If f is a permutation of n then the two terms

Qn(t0, t1, . . . tn−1) and Qn(tf(0), tf(1), . . . tf(n−1))

represent isomorphic linear orders.

Proof

This immediately follows from the fact that relabelling the colours of Qn does not affect

its isomorphism type. 2

Remark 2.3.8 Since there is no natural way of choosing an order of shuffled terms, we

shall now work with equivalence classes of terms, given by permuting shuffled terms.
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Lemma 2.3.9 The linear order expressed by the term

Qn+1(t0, . . . , tn−1, ti)

where i < n is also expressible by Qn(t0, . . . , tn−1).

Proof

Both of the terms are characterised by the fact that t0, . . . tn−1 occur interdensely

(i.e. each ti occurs between any two points not contained in the same tj), and so are

isomorphic. 2

Lemma 2.3.10 The linear order expressed by a term of the form

Qm+1(t0, . . . tm−1,Qn(t0, . . . tn−1))

where m < n, can also be expressed as Qn(t0, . . . tn−1).

Proof

The first expression is obtained by colouring Q interdensely with m + 1 colours and

replacing the points coloured by the ith with one of t0, . . . tm−1 or Qn(t0, . . . tn−1).

Therefore this linear order is characterised by the fact that between any two points

there occurs a copy of every ti and Qn(t0, . . . tn−1). However every ti for i < n occurs

interdensely in Qn(t0, . . . tn−1), so the two terms represent the same linear order. 2

Lemma 2.3.11 The linear order expressed by the term

Qm(t0, . . . , tm−1)
∧τ∧Qm(t0, . . . , tm−1)
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where τ is either the empty set or one of the ti for 0 ≤ i ≤ m − 1, can also be expressed

as Qm(t0, . . . tm−1).

Proof

This lemma is an obvious consequence of the facts that Qm(t0, . . . tm−1) is obtained by

taking a copy of Q that is interdensely coloured with m colours and replacing the ith

colour with ti and that both Q∧Q and Q∧1∧Q are isomorphic to Q. 2

Using these lemmas it is possible to derive a unique representation of not only ℵ0-

categorical linear orders, but also ℵ0-categorical coloured linear orders (by allowing

coloured singletons to occur in our terms) and infinite concatenations of ℵ0-categorical

linear orders. Such representations have certain properties that facilitate a proof regarding

the maximal chains of trees.

Definition 2.3.12 We use induction over the formation of terms to define when a term is

in normal form (n.f.).

1. All finite terms are in n.f..

2. A term of the form Qm(t0, . . . , tm−1) is in n.f. if all the ti are in n.f. and it does not

satisfy the conditions of Lemma 2.3.9 or 2.3.10. As stated in Lemma 2.3.7, if the ti

are permuted then the linear order the terms represent are the same, so we consider

shuffles where the terms are permuted to be the same, as in Remark 2.3.8.

3. A term of the form t∧0 . . . tn−1 is in n.f. if all the ti are in n.f. and no ti−1
∧ti

∧ti+1 or

ti−1
∧∅ ∧ti+1 satisfies the conditions of Lemma 2.3.11.

4. If ti is finite then ti+1 is infinite.

A possibly infinite sequence of terms (si) is said to be in normal form if:
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1. each si is in normal form;

2. no si−1
∧si

∧si+1 or si−1
∧∅ ∧si+1 satisfies the conditions of Lemma 2.3.11;

3. if sj is finite either:

(a) sj+1 is infinite; or

(b) (si) is an infinite sequence and sj = sk = 1 for all k ≥ j.

The process of showing that such representations are unique and can describe every ℵ0-

categorical linear order is both tedious and unilluminating, consisting of the statement

‘Open intervals of Q are isomorphic to Q’ repeated dozens of times, so we shall not

provide the proof, and simply state the pertinent facts about normal form representations:

Facts 2.3.13 gap

1. For every sequence of terms (ti) there is a sequence in normal form (t′i) that

represents the same linear order as (ti).

2. If (ti) and (si) are both in normal form and represent the same linear order then

(ti) = (si)

3. If (ti) is in normal form then all contiguous subsequences of (ti) are also in

normal form (excluding the case where (ti) ends in a tail of 1 and the contiguous

subsequence contains only part of this tail).

Lemma 2.3.14 If L and K be ℵ0-categorical linear orders such that

∀x ∈ L∃y ∈ K L≤x ∼= K≤y

then L is an initial segment of K.
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Proof

Let L and K be ℵ0-categorical linear orders such that

∀x ∈ L∃y ∈ K L≤x ∼= K≤y

Let σ0,
∧ . . .∧ σn be the normal form representation of L.

Suppose that σn is finite. Let x be the maximal element of L, and let y ∈ K be such that

L≤x ∼= K≤y. Since x is the maximal element, L≤x ∼= L, so L is an initial segment of K.

Suppose that σn is infinite and let x ∈ σn, and let y ∈ K be such that there is an

isomorphism φ : L≤x → K≤y.

Since σn is infinite, it is of the form Qk(τ0, . . . , τk−1) for some n.f. terms τ0, . . . , τk−1.

Let ψ := σn → Qk be the map that sends x ∈ σn to z ∈ Qk if x is in the copy of τi that

replaced z in the construction of σn.

Let J := ψ−1(Q<ψ(x)
k ). Since Q<ψ(x)

k is an initial segment of Q≤ψ(x)
k , this J is also an

initial segment of σ≤x
n . Additionally, Q<ψ(x)

k
∼= Qk and J can obtained from Q<ψ(x)

k using

the same construction that we used to build σn from Qk.

Thus J ∼= σn and

L ∼= σ0
∧ . . .∧ σn−1

∧J

φ(σ0
∧ . . .∧ σn−1

∧J) is an initial segment of K, so L is an initial segment of K. 2

These facts are required to show the following theorem about the possible maximal chains

of an ℵ0-categorical tree.

Theorem 2.3.15 If T is an ℵ0-categorical coloured tree then every maximal chain of T

is an ℵ0-categorical coloured linear order.
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Proof

Let L be a maximal chain of T which is not ℵ0-categorical as a linear order. We will

consider separately the cases where L has a maximal element and where L does not.

Let l be the maximal element of L. Since L is not ℵ0-categorical there must be an infinite

list of pairs (xi, yi) such that each pair lives in a different 2-orbit of L, so each triple

(xi, yi, l) lives in a different 3-orbit of L. Since T is ℵ0-categorical there must be (xi, yi, l)

and (xj , yj, l) such that they lie in the same 3-orbit of T and i 6= j . Since they lie in the

same 3-orbit of T there is an automorphism of T that carries (xi, yi, l) to (xj , yj, l), which

preserves l and therefore preserves L setwise, so restricts to an automorphism of L which

carries (xi, yi) to (xj, yj), resulting in a contradiction.

Now suppose L does not have a maximal element. As in the previous paragraph every

initial section of L is an ℵ0-categorical linear order. Therefore L is expressible as the

concatenation of an infinite list of ℵ0-categorical linear orders (Li). Since L is not ℵ0-

categorical the normal form of this sequence is also infinite (as Rosenstein’s classification

of the countable ℵ0-categorical linear orders, Theorem 2.3.4, states that a countable linear

order is ℵ0-categorical if and only if it is represented by a finite term), and so we assume

that (Li) is in normal form.

For each i let xi be a member of Li. If T is ℵ0-categorical then it only has finitely many

orbits of pairs, and so there must be an automorphism φ that sends (x0, xn+1) to (x0, xm+1)

for some m < n.

The restriction of φ to T≤xn+1 can be viewed as an isomorphism that maps L≤xn+1 to

L≤xm+1 . When used in this role, we denote φ as φ̃. Since it is an isomorphism, φ̃ must

send the set of predecessors of xn+1 to the predecessors of xm+1.

We suppose that Ln+1 is finite and therefore φ̃ maps L0
∧ . . . ∧Ln to L0

∧ . . . ∧Lm. Thus

the finite sequences (Li)
n
i=0 and (Li)

m
i=0 are isomorphic and Fact 3. from Facts 2.3.13

shows that these sequences are in normal form. This shows that (Li)
n
i=0 = (Li)

m
i=0, and
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so m = n, giving a contradiction.

Suppose that Ln+1 is a shuffle, which we denote by Qn(τ0, . . . , τi). We also suppose that

xn+1 is contained in a copy of τ0, and we use z to label the point in Qn that is replaced by

that particular copy of τ0, and let L′
n+1 be the initial section of Ln+1 that corresponds to

(−∞, z), the interval of Qn.

Since (−∞, z) ∼= Qn:

L0
∧ . . . ∧Ln

∧Ln+1
∼= L0

∧ . . . ∧Ln
∧L′

n+1

Since L′
n+1

∼= Ln+1, the normal form representation of L′
n+1 is equal to the n.f.

representation of Ln+1. The function φ̃ is an isomorphism, so the n.f. representation

of φ̃(L0
∧ . . . ∧Ln

∧L′
n+1) is L0

∧ . . . ∧Ln
∧Ln+1.

Therefore φ̃ maps Li to itself for i ≤ n+1, and thus the n.f. representation of τ≤x00 is also

the n.f. representation of Ln+1
∧ . . . ∧L

≤xm+1

m+1 .

Since we are assuming that T is ℵ0-categorical, we may also assume that for all k ∈ N

there is an mk ∈ N such that there is an automorphism mapping (x0, xn+1) to (x0, xmk
).

Again, we conclude that the n.f. representation of τ≤x00 is also the n.f. representation of

Ln+1
∧ . . . ∧L

≤xmk+1

mk+1 for all k.

This is a contradiction, as the n.f representation of τ≤x00 is of fixed length. 2

Theorem 2.3.16 If T is a countable ℵ0-categorical tree then T has only finitely many

maximal chains up to isomorphism.

Proof

Let T be a tree with infinitely many non-isomorphic maximal chains, countably many of
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which we call Ln for n ∈ ω. For each I ⊆ ω we introduce colour predicate CI such that

T |= CI(a) if and only if

I = {i ∈ ω : a is contained in a maximal chain isomorphic to Li}

We introduce the following notation:

I := {I ⊆ ω : T |= ∃xCI(x)}

If I 6= J and T |= CI(a) ∧ CJ(b) then there is a maximal chain A such that A passes

through a, but no maximal chain passing through b is isomorphic toA. Any automorphism

of T that maps a to b will have to map A to a maximal chain that contains b, showing that

a and b lie in different orbits of Aut(T ), and hence

Aut(T ) = Aut(〈T,≤, {CI}〉)

So if I is infinite then there are infinitely many 1-orbits of T , and T cannot be ℵ0-

categorical. We therefore assume that I is finite. Since T has infinitely many maximal

chains,
⋃

I is infinite, so there must be an infinite element contained in I.

If a ≤ b and T |= CI(a) ∧ CJ(b) then J ( I , so if I0 is a least element of

{I ⊆ ω : T |= ∃xCI(x)}

then there exists an a0 ∈ T such that T≥a0 is mono-chromatically coloured by CI0 .

T is an ℵ0-categorical tree, and so has finitely many orbits. The addition of the CI

predicates do not alter the automorphism group of T , so only finitely many of these CI

can be realised. Since T has infinitely many non-isomorphic maximal chains, there is a

J ∈ I such that J is infinite and T |= CJ(x). Let I0, . . . Ik−1 be the minimal elements of
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I such that there is a y ≥ x such that T |= CIj(y).

J ⊆
⋃

j<k

Ij

Since J is infinite, at least one of the Ij is infinite. We assume that I0 is. Let y ∈ T realise

CI0 , and let S := T≥y. Since I0 is minimal S is monochromatic.

In short, from our T we have found another tree, S which has infinitely many maximal

chains up to isomorphism and every element of S lies on a copy of each of these maximal

chain. Theorem 2.3.15 shows that each of these maximal chains is an ℵ0-categorical linear

order. Let {L0, . . .} be the infinite set of pairwise non-isomorphic ℵ0-categorical linear

orders which occur as maximal chains of S.

Let K0 be a maximal chain of S which is isomorphic to L0 and pick an arbitrary s ∈ K0.

Since there is a maximal chain of S that contains swhich is isomorphic to Li for all i ∈ N,

this s can be regarded as an element of each of the Li.

S is a tree, so S≤s is a linear order, and it is also an initial segment of Li for all i ∈ N.

Therefore every initial segment of L0 is also an initial segment of Li for all i ∈ N.

Therefore for all i ∈ N

∀x ∈ L0∃y ∈ Li L
≤x
0

∼= L≤y
i

Lemma 2.3.14 shows that Li is an initial segment of L0 for all i, but since L0 is

ℵ0-categorical it has finitely many 1-orbits, and hence finitely many initial segments up

to isomorphism, giving a contradiction. 2
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2.4 Trees

2.4.1 Ramification Predicates

Trees contain more information than which linear orders occur as their maximal chains,

so in order to classify the ℵ0-categorical trees using them we need a way to encode that

extra information.

Definition 2.4.1 Let T be an ℵ0-categorical tree, and let {Li : i ≤ n} be the maximal

chains of T . We define Ri
m for m ∈ ω ∪ {ω} to be a unary predicate that is only realised

by x ∈ T if there are exactly m copies of Li which contain x.

Lemma 2.4.2 If (x0, y0) and (x1, y1) lie in the same orbit of 〈T,≤〉 then they lie in the

same orbit of 〈T,≤, Ri
m : i ≤ n ,m ∈ ω ∪ {ω}〉.

Proof

If φ ∈ Aut(T ) maps (x0, y0) to (x1, y1), then φ maps the maximal chains that contain

x0 (resp. x1) to the ones that contain y1 (resp. y1), so x0 realises the same Ri
m as y0,

and x1 realises the same Ri
m as y1. In other words, introducing the Ri

m does not kill any

automorphisms. 2

Theorem 2.4.3 If 〈T,≤〉 is ℵ0-categorical then so is 〈L,≤, Ri
m : i ≤ n, m ∈ ω ∪ {ω}〉

for any maximal chain L.

Proof

Suppose that 〈L,≤, Ri
m : i ≤ n, m ∈ ω ∪ {ω}〉 is not ℵ0-categorical. Let (an, bn) be

an infinite list of pairs from L such that each pair lies in a different 2-orbit. Since T is

ℵ0-categorical there are k and j such that (ak, bk) and (aj, bj) lie in the same orbit of T .
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As we saw in the proof of Theorem 2.3.15 we can find an automorphism of T , which we

will call φ, that preserves L and carries (ak, bk) to (aj , bj). Lemma 2.4.2 shows that φ

preserves theRi
m, and hence so does φ’s restriction to L, which carries (ak, bk) to (aj, bj),

giving a contradiction. 2

2.4.2 Classification

Proposition 2.4.4 If (T,<) is ℵ0-categorical then (T+, <) is ℵ0-categorical.

Proof

Suppose that (T+, <) is not ℵ0-categorical but (T,<) is ℵ0-categorical. T+ is not almost

2-transitive, so there is an infinite list of pairs (αi, βi) such that

• for all i, j there is no automorphism that carries (αi, βi) to (αj , βj)

• for all i either αi or βi is not contained in T

If αi is not in T then there must be a pair ai and bi such that ai ∧ bi = αi and they are

both contained in T . If αi is in T then set ai, bi = αi. Repeat this procedure for βi

to obtain ci and di. Now we have an infinite list of quartets (ai, bi, ci, di) in T . Since

T is ℵ0-categorical it has finitely many 4-orbits. This means that for some distinct

j and k there is an automorphism between (aj , bj , cj, dj) and (ak, bk, ck, dk), but any

automorphism of T extends to an automorphism of T+, giving a contradiction. 2

Unfortunately T+ being ℵ0-categorical is not enough to ensure that T is ℵ0-categorical,

as the next example shows.
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0

1

Figure 2.2: The tree from Example 2.4.5

Example 2.4.5 T is obtained by first taking a copy of Q and deleting ω then attaching

to every point (including the deleted points) another copy of Q. While (T+, <) is ℵ0-

categorical, as the theorem in the next section shows, it is apparent that (T,<) has

infinitely many 2-orbits.

This suggests that we need a way of restricting how points in (T+, <) can be deleted to

ensure that the remaining structure is still ℵ0-categorical. Recall from Definition 2.2.4

that an irrational point of T+ is a point in T+ \ T .

Theorem 2.4.6 Let I be a unary predicate such that I(t) if and only if t is an irrational

point in T . Then (T,<) is ℵ0-categorical if and only if (T+, <, I) is ℵ0-categorical.

Proof

The argument that a tree is ℵ0-categorical if and only if it is almost 2-transitive is valid

in this expanded language, because I is a unary predicate and does not interfere with the

piecing together of automorphisms.

In the ⇒ direction, notice that the inclusion of a new unary predicate increases the number

of possible n-orbits, but since there are finitely many 2-orbits in (T,<) there are finitely

many in (T+, <).
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In the ⇐ direction, note that since I is a predicate any isomorphism preserves I , so any

automorphism restricts to an automorphism of (T,<). Since (T+, <, I) is ℵ0-categorical,

it only has finitely many 2-orbits. The number of 2-orbits of pairs where neither of the

elements satisfy I equals the number of 2-orbits in (T,<), so (T,<) is almost 2-transitive

and so ℵ0-categorical. 2

Lemma 2.4.7 If (T+, <, I) is ℵ0-categorical then if L is a maximal chain of T+ then the

linear order (L,<, I) is ℵ0-categorical.

Proof

The proof of Proposition 2.4.3 is easily adapted to this lemma. 2

We are now ready to prove our main theorem about trees.

Theorem 2.4.8 (T+, I, <,Ri
m : i ≤ k, m ∈ ω ∪ {ω}) is ℵ0-categorical if and only if:

1. only finitely many of the Ri
m are realised;

2. if L is a maximal chain of T+ then 〈L,<, I, Ri
m : i ≤ k, m ∈ ω ∪ {ω}) is

ℵ0-categorical; and

3. there are only finitely many maximal chains of T+ up to isomorphism in the

language 〈<, I, Ri
m : i ≤ n, m ∈ ω ∪ {ω}〉.

Proof

⇒: Since (T+, I, <,Ri
m : i ≤ k, m ∈ ω∪{ω}) is ℵ0-categorical it only has finitely many

2-orbits. This means that only finitely many of the Ri
m’s can be realised. Theorem 2.3.15
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shows that (L,<, I, R0
0, . . .) is ℵ0-categorical and Condition 3 is shown by Theorem

2.3.16.

⇐: If two trees, T and S, satisfy the required conditions, have isomorphic maximal chains

in the language 〈<, I, Ri
m : i ≤ k, m ∈ ω ∪ {ω}〉 then we may build an isomorphism

from T to S using back-and-forth. Let tα and sβ for α, β ∈ N be enumerations of T and

S respectively

Base Case Pick T0, a maximal chain of T that contains t0 and let φ0 : T0 → S0 be an

isomorphism from T0 to S0, a suitable maximal chain of S. This φ0 is also a partial

isomorphism from T to S.

Odd Step Let n be odd, let Tn := Dom(φn) and let t ∈ Tn \ Tn−1. For each cone of t

that is disjoint from Tn, pick a maximal chain that contains the element of the cone

which is enumerated with the smallest number. We denote these maximal chains as

Li(t), where i ∈ I(t), an indexing set for each t.

Since φn is a partial isomorphism of the language 〈<, I, Ri
m : i ≤ k, m ∈ ω∪{ω}〉,

the image φn(t) satisfies all of the same Ri
m, therefore there is a maximal chain

Ki(t) of S that passes through φn(t) such that:

〈Li(t), <, I, R
i
m : i ≤ k, m ∈ ω ∪ {ω}〉

∼=

〈Ki(t), <, I, R
i
m : i ≤ k, m ∈ ω ∪ {ω}〉

φn maps t to φn(t) and is a partial isomorphism, so T≤t ∼= S≤φn(t), and:

〈Li(t)
≤t, <, I, Ri

m : i ≤ k, m ∈ ω ∪ {ω}〉

∼=

〈Ki(φn(t))
≤φn(t), <, I, Ri

m : i ≤ k, m ∈ ω ∪ {ω}〉
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Therefore there is an isomorphism ψi,t that maps

〈Li(t), t, <, I, R
i
m : i ≤ k, m ∈ ω ∪ {ω}〉

to

〈Ki(φn(t)), φn(t), <, I, R
i
m : i ≤ k, m ∈ ω ∪ {ω}〉

This ψi,t is also a partial automorphism from T to S. Since ψi,t(t) = φn(t) the

union φn ∪ (ψi,t|Li(t)>t) is also a partial isomorphism. Indeed, since each Li(t) lies

in a different cone to any other Li(t),

φn+1 := φn ∪
⋃

t∈Tn\Tn−1

⋃

i∈I(t)

ψi,t|Li(t)>t

is a partial isomorphism.

Even Step Let n be even, let Sn := Im(φn) and let s ∈ Sn \ Sn−1. For each cone of s

that is disjoint from Sn, pick a maximal chain that contains the element of the cone

which is enumerated with the smallest number. We denote these maximal chain as

Ki(s), where i ∈ I(s), an indexing set for each t.

Since φ−1
n is a partial isomorphism of the language 〈<, I, Ri

m : i ≤ k, m ∈

ω ∪ {ω}〉, the pre-image φ−1
n (s) satisfies all of the same Ri

m, therefore there is a

maximal chain Li(s) of T that passes through φ−1
n (s) such that:

〈Ki(s), <, I, R
i
m : i ≤ k, m ∈ ω ∪ {ω}〉

∼=

〈Li(φ
−1
n (s)), <, I, Ri

m : i ≤ k, m ∈ ω ∪ {ω}〉
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Since φ−1
n maps s to φ−1

n (s) and is a partial isomorphism, T≤s ∼= S≤φ−1
n (s), so

〈Ki(s)
≤s, <, I, Ri

m : i ≤ k, m ∈ ω ∪ {ω}〉

∼=

〈Li(φ
−1
n (s))≤φ

−1
n (s), <, I, Ri

m : i ≤ k, m ∈ ω ∪ {ω}〉

Therefore there is an isomorphism χi,s that maps

〈Ki(s), s, <, I, R
i
m : i ≤ k, m ∈ ω ∪ {ω}〉

to

〈Li(φ
−1
n (s)), φ−1

n (s), <, I, Ri
m : i ≤ k, m ∈ ω ∪ {ω}〉

χi,t is also a partial automorphism from S to T . Since χi,t(s) = φ−1
n (s), the union

φ−1
n ∪ (χi,t|Ki(s)>s) is also a partial isomorphism. Indeed, since each Ki(s) lies in a

different cone to any other Ki(s),

φ−1
n+1 := φ−1

n ∪
⋃

s∈Sn\Sn−1

⋃

i∈I(s)

χi,s|Ki(s)>s

is a partial isomorphism.

Let φ :=
⋃

φn. This φ is an isomorphism from T to S. To show ℵ0-categoricity, we have

some more work to do. Let T be a tree that satisfies the conditions of the theorem.

Suppose that there are infinitely many 2-orbits, and let (xj , yj) be such that each lies in a

different 2-orbit. We’re going to try and build an automorphism that takes some (x0, y0)

to some other (x1, y1), so we need to throw out a lot of unsuitable candidates and do some

relabelling.

Only finitely many of the Ri
m are realised, so we may assume that infinitely many of the

(xj , yj) satisfy the same suite of them, and restrict our attention to those (xj , yj). There are

only finitely many maximal chains up to isomorphism, so we may assume that infinitely
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many of the (xj , yj) lie on a copy of L0. We further restrict our attention to those (xj , yj).

Since the (xj , yj) lie on a copy ofL0, which is ℵ0-categorical, we may assume that (x0, y0)

and (x1, y1) lie in the same 2-orbit of L0. Thus, if we go through the procedure mentioned

at the beginning of this proof, but specifying that the isomorphism that maps T0 to S0 takes

(x0, y0) to (x1, y1), then we obtain an automorphism of T .

Therefore T has only finitely many 2-orbits and is ℵ0-categorical. 2

This gives us necessary and sufficient conditions for (T,≤) to be ℵ0-categorical. A

description of the coloured ℵ0-categorical trees is contained in the proof of Theorem 2.4.8,

as we will now show.

Corollary 2.4.9 A coloured tree (T,<, C0, . . .) is ℵ0-categorical iff

• only finitely many of the Ri
m are realised;

• 〈L,<, I, R0
0, . . . , C0, . . .〉 is ℵ0-categorical for every maximal chain L; and

• there are only finitely many such maximal chains up to isomorphism in the language

〈<, I, R0
0, . . . , C0, . . .〉.

where the Ci are the colour predicates.

Proof

Since being finitely coloured is an obvious requirement of ℵ0-categoricity, the proof of

Theorem 2.4.8 is easily adapted, by considering (I ∧ Ri
m ∧ Cj) and (I ∧ ¬Ri

m ∧ Cj)

instead of (I ∧ Ri
m) and (I ∧ ¬Ri

m). 2
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2.5 Cycle-free Partial Orders

The aim of this section is to extend the above result to the cycle-free partial orders. We

shall develop the analogue of ramification completeness for the CFPOs.

2.5.1 Setup

Definition 2.5.1 A CFPO M is said to be path complete if for every pair (a, b) ∈ M

the connecting set that witnesses Path〈a, b〉 is contained in M . The path completion of

M , written as M+, is obtained by only taking the points of MD that are elements of

a connecting set of a path connecting points in M . This M+ is countable as it is the

countable union of finite sets.

A tuple is said to be path complete it contains every element of the connecting set of every

path between elements of the tuple. The path completion of a tuple p ∈ M is a tuple

q ∈M+ such that the following are true:

• p ⊆ q

• q is path complete

• if q′ ( q is path complete then p 6⊆ q′

Note that M is path complete if and only if M is ramification complete, i.e. if u and v

are incomparable and u, v are contained in a substructure of M that is isomorphic to a

semi-linear order then u ∧ v or u ∨ v is contained in M , and the ramification completion

of a tree is the same structure as the path completion.

From now on, we will be working in (M+, <, I), where I(x) holds if and only if x ∈

M+ \ M , as in Theorem 2.4.6. First we will show that we are able to move between

(M,<) and (M+, <, I) in the same manner as in the trees.
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Proposition 2.5.2 〈M,<〉 is ℵ0-categorical iff 〈M+, <, I〉 is.

Proof

⇒: x0 ∨ x1 and y0 ∨ y1 lie in different 1-orbits of 〈M+, <, I〉 if and only if (x0, x1) and

(y0, y1) lie in different 2-orbits of M . The same remark holds for x0 ∧ x1 and y0 ∧ y1.

Let ā ∈ M+. If ai ∈ M then let b(ai) := ai. If ai ∈ M+ \ M then there is a pair

b(ai) := (bi, b
′
i) ∈ M such that ai = (bi ∧ b′i) or (bi ∨ b′i), and let b(ā) be the tuple

(b(a0), . . .) ∈M . The length of b(ā) is at most twice the length of ā.

ā, ā′ ∈ M+ lie in the same orbit if and only if b(ā) and b(ā′) lie in the same orbit of

M . Therefore the number of n-orbits of M+ is bounded by the number of m-orbits of

M where m ≤ 2n. Since 〈M,<〉 is ℵ0-categorical the number of m-orbits is finite, so

〈M+,≤, I〉 is ℵ0-categorical.

⇐: All automorphisms of (M+, <, I) preserve M set-wise, so M cannot have more

n-orbits than (M+, <, I). 2

We are able to prove the familiar lemma about almost 2-transitivity in this context.

Lemma 2.5.3 A CFPO is almost n-transitive only if it is almost 2-transitive.

Proof

Let M be an almost 2-transitive CFPO. We may assume that M is path complete

(Proposition 2.5.2). Let (xi) and (yi) be path complete n-tuples with the same order

type such that if xk 6‖ xj then (xk, xj) is in the same orbit as (yk, yj). We will now prove

that there is an automorphism from (xi) to (yi) by induction on n. This is obviously true

for the case when n = 2.

We assume thatM is almost k-transitive for k < n. Let x̄ be a path complete n-tuple. In x̄

there must be a xi such that there is another xj where xj ∈ Path〈xi, xk〉 for any k 6= i, j,



Section 2.5. Cycle-free Partial Orders 57

and we can rearrange the tuple so that i = n− 1 and j = n− 2. Let ȳ be another n-tuple

such that if xi and xj are ‘adjacent’ then (xi, xj) lies in the same 2-orbit as (yi, yj). By

the inductive hypothesis the n − 1 tuples (x0, . . . xn−2) and (y0, . . . yn−2) lie in the same

n − 1 orbit, witnessed by φ1. We also know that (xn−2, xn−1) lies in the same 2-orbit as

(yn−2, yn−1), witnessed by φ2. We define

φ(m) :=







φ1(m) m ∈ {t ∈M : x0 ∈ Path〈t, x2〉}

φ2(m) m ∈ {t ∈M : x0 6∈ Path〈t, x2〉}

This is a valid definition as the two sets only ’touch’ at xn−2 they partition M , and

φ1(xn−2) = φ2(xn−2). This φ carries (xi) to (yi). Since there are only finitely many order

types that an n-tuple can satisfy and there are only finitely many choices for the orbits

that each pair lie in there can be only finitely many n-orbits. 2

Definition 2.5.4 Alt is the partial order with the domain {ai : i ∈ Z} ordered by

• if i is odd then ai−1 > ai < ai+1

• if i is even then ai−1 < ai > ai+1

Altn is defined to be Alt restricted to {a0, . . . an−1}. Note that flipping the order does

not affect the definition of Alt, but does affect Altn. We will write Alt∗n for the reverse

ordering of Altn.

Altω is defined to be Alt restricted to {ai : i ∈ ω}. Again, the reverse ordering is denoted

by Alt∗ω

That Alt is a CFPO is readily apparent.

Proposition 2.5.5 Let M be a CFPO. If Altn ⊆ M for all n ∈ N then M is not ℵ0-

categorical.
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a−2

a−1

a0

a1

a2

. . . . . .

Figure 2.3: The Alternating Chain

Proof

For each n ∈ N, let an, bn ∈ M be such that the connecting set of Path〈an, bn〉 is

isomorphic to Altn. Since paths are preserved by automorphisms, if (an, bn) and (am, bm)

lie in the same 2-orbit then n = m. Therefore there are infinitely many 2-orbits so M is

not ℵ0-categorical. 2

Definition 2.5.6 We say that M , a CFPO is a CFPOn if M embeds Altn but not Altn+1.

We may therefore restrict our attention to the CFPOns. What will now be useful is

a concept of a maximal CFPOm in a CFPOn for m < n, analogous to the idea of a

maximal chain in a semi-linear order.

Definition 2.5.7 If N is a CFPOn then M is said to be a maximal CFPOm in N if the

following hold:

1. M is a substructure of N;

2. M is a CFPOm; and

3. if α 6∈M then there is a β ∈M such that the path Path〈α, β〉 is at leastm+1 long.

Proposition 2.5.8 If N is a CFPOn with maximal CFPOn−1 M then the connected

components of N \M are trees or reverser ordered trees.
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Proof

Let a, b ∈ N \M be connected in N \M . Since M is maximal there is a copy of Altn

with the last point a and all the other points contained in M . We will denote the final

point of the section contained in M by the letter cn−1. We may assume that cn−1 < a (we

can reverse the order if not) and this assumption shows that cn−1 < b because a and b are

connected in N \M and if cn−1 6< b then we arrive at a method of embedding a longer

alternating chain than possible.

It is not possible to embed
∧

in the connected component that contains a as this would

lead to a cycle, as the antichain of
∧

would be above cn−1. This means that the path

between a and b is a
∨

, and since b is a general point the connected components ofN \M

are either trees or reverse ordered trees. 2

Definition 2.5.9 Let N be a CFPOn and M ⊆ N a maximal CFPOm for m < n. We

say that T is an attached connected component (ACC) of M if the following hold:

1. ∃!t ∈ T ∩M

2. if x, y ∈ T then Path〈x, y〉 ∩M ⊆ {t}

3. if T ′ satisfies 1. and 2. and T ∩M = T ′ ∩M then T ′ ⊆ T .

Definition 2.5.10 Let N be an ℵ0-categorical CFPOn with M , a maximal CFPOn−1. If

Si is an ACC of M then we also use Si to be a unary predicate on N that is realised by

x ∈M if and only is x is contained in an ACC isomorphic to Si.

2.5.2 Classification

Corollary 2.5.11 If N is an ℵ0-categorical CFPO then N is a CFPOn for some n.



60 Chapter 2. ℵ0-categorical Trees and CFPOs

Proof

If N embeds Altn then N also embeds Alti for all i < n. Therefore if N is not a CFPOn

for some n, then N embeds Alti for all i ∈ N, and Proposition 2.5.5 shows that any such

N would not be ℵ0-categorical. 2

Theorem 2.5.12 If N is a CFPOn with M , a maximal CFPOn−1 (resp. CFPOn−2) such

that

1. If S is an ACC of M then it is a member of a finite list of ℵ0-categorical trees or

reverse ordered trees; and

2. (M,<, S0, . . . Si−1) is an ℵ0-categorical coloured CFPOn−1 (resp. CFPOn−2);

then 〈N,≤, S0, . . . , Si−1〉 is ℵ0-categorical.

Proof

Let M be a maximal CFPOn−1 or CFPOn−2 of N which satisfy Conditions 1. and 2. To

show that there can only be finitely many 2-orbits we consider where the elements of a

representative of the orbit can lie.

• M has only finitely many 2-orbits so only finitely many 2-orbits can have

representatives entirely contained in M .

• There are only finitely many non-isomorphic ACCs, each of which have only

finitely many 2-orbits so only finitely many of the 2-orbits of N can have

representatives entirely contained in an ACC.

• We now consider 2-orbits with a representative of the form (a, b) where a is an

ACC and b ∈ M . Too see this let c be the root of the ACC that contains a. The

previous two cases show that there are only finitely many orbits that (a, c) and (b, c)
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can lie in, hence there are only finitely many 3-orbits of the form (a, b, c). If there

were infinitely many 2-orbits with representatives of the form (a, b) there would

be infinitely many of these 3-orbits, so there must be finitely many 2-orbits with

representatives of this form.

• The final case to consider is that a and b lie in different ACCs, in which case let c

(resp. d) be the root of the ACC that contains a (resp. b). By the first two cases

there are only finitely many orbits that (a, c), (c, d) and (b, d) can lie in, so there are

only finitely many possible orbits of the form (a, b, c, d).

Since all orbits have representatives in one of the forms in the above list there can be only

finitely many 2-orbits, and so (N,<, S0, . . . , Si−1) is ℵ0-categorical. 2

Lemma 2.5.13 Let N be a ℵ0-categorical CFPOn, and let M be a maximal CFPOn−1.

Every ACC of M is an ℵ0-categorical tree or reverse ordered tree.

Proof

Let S be an ACC of M , let {s} = S ∩M and let t ∈ S. There are a0, . . . , an−2 ∈M such

that {a0, . . . , an−2, s, t} is a copy of either Altn or Alt∗n. We assume that s < t.

If S is not a tree then there is a x ∈ S such that s 6< x but x < t. Then

{a0, . . . , an−2, s, t, x} is a copy of either Altn+1, contradicting the assumption that N

is a CFPOn. If s > t then we conclude that S is a reverse ordered tree.

We assume that S is a tree. For all t ∈ S there are a0, . . . , an−3 such that

{a0, . . . , an−3, s, t}
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is isomorphic to Altn. Given any φ ∈ Aut(N),

{φ(a0), . . . , φ(an−3), φ(s), φ(t)}

Therefore if φ(t) ∈ S then φ(s) = s. Therefore if there is an automorphism between

x̄, ȳ ∈ S then there is a map ψ ∈ Aut{S}(N) that maps x̄ to ȳ.

Since {φ|S : φ ∈ Aut{S}(N)} ≤ Aut(S), this means that since there are only finitely

many n-orbits in N , there can be only finitely many n-orbits in S. 2

Lemma 2.5.14 Let N be a ℵ0-categorical CFPOn, and let M be a maximal CFPOn−1.

There are only finitely many trees and reversed trees that occur as ACCs of M .

Proof

Suppose n ≥ 4 and let S0, S1 be ACCs of M such that Si is a tree and {si} = Si ∩M .

Let x, y ∈M . We consider the extended cones of s0 (Definition 1.3.19).

Since n ≥ 4 and S0 is a tree, there are a0 . . . an−3 ∈ M such that {a0 . . . an−3, s0, t} is a

copy of Altn for every t ∈ S0. Therefore there is an upwards cone of s0 whose extended

cone is not a tree. Indeed there is only one such extended cone, as otherwise we could

find a copy of Altn+1. This is depicted in Figure 2.4, labelled as a0, . . . , an−3, s0, b0, b1.

If φ ∈ Aut(N) maps s0 to s1, then φ must map the extended cones of s0 to the extended

cones of s1. As before, there is only one upwards cone of s1 whose extended cone is not

a tree. Therefore φ(S0) = S1. Since there are only finitely many 1-orbits, this means that

there can be only finitely many ACCs which are trees up to isomorphism. The argument

for reverse ordered trees is almost identical.

Suppose n = 3. Then N consists of a tree which is above a linear order, which in turn

is above a reverse ordered tree (depicted in Figure 2.5). M is a maximal chain of N . Let

S0, S1 be ACCs of M such that Si is a tree and {si} = Si ∩M .
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a0

a1
. . . . . .

an−3

s0

b1

b2

S0

N≤s0

Figure 2.4: The Extended Cones of s0

We are going to define an N ′, which will extend N . If M has a maximal element then

let N ′ = N . If M does not have a maximal element then we insert one, extending the

domain of N as follows:

N ′ := N ∪· {φ(M) : φ ∈ Aut(N)}

with the order is

x ≤N ′ y ⇔







x ≤N y x, y ∈ N

x ∈ φ(M) y = φ(M)

Note that N ′ has at most one more 1-orbit than N (the orbit that contains Id(M)), and

at most twice as many 2-orbits as N (the orbits of N and where the greater of the pair is

some φ(M)), so N ′ is also ℵ0-categorical, and that every automorphism of N ′ preserves

N .

So if φ ∈ Aut(N ′) maps (s0, Id(M)) to (s1, Id(M)) then φ maps S0 to S1, and thus

there are only finitely many ACCs which are trees up to isomorphism. The argument for



64 Chapter 2. ℵ0-categorical Trees and CFPOs

A tree

A linear order

A reversed tree

Figure 2.5: A typical CFPO3

reverse ordered trees is almost identical. 2

Theorem 2.5.15 Theorem 2.5.16 If 〈N,≤〉 is an ℵ0-categorical CFPOn then there is an

M , a maximal CFPOn−1 of CFPOn−2 such that:

1. If S is an ACC of M then it is a member of a finite list of ℵ0-categorical trees or

reverse ordered trees; and

2. (M,<, S0, . . . Si−1) is an ℵ0-categorical coloured CFPOn−1.

Proof

Let N be a CFPOn and let K be a maximal CFPOn−1 of N and suppose Aut(〈N,≤〉)

preserves K setwise. We set M := K. Lemma 2.5.13 and Lemma 2.5.14 shows that the

ACCs of M are members of a finite list of ℵ0 categorical trees or reverse ordered trees.

Now suppose that K is not preserves set-wise. We define L to be the set:







x ∈M : ∃a1, . . . , an−2 ∈M∃t ∈ N \K





(x, a1, . . . an−2, t) ∼= Altn

(x, a1, . . . an−2, t) ∼= Alt∗n

∨
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N \ L is a maximal CFPOn−1 of N . If a ∈ L then a is an element on the end of a copy

of Altn. Therefore Aut(N) can either map a into L or into N \K, so Aut(N) preserves

M setwise. Let S0 be an ACC of M and let {si} = Si ∩M .

We set M := K \ L, which is a maximal CFPOn−2 of N . Every ACC of M is also an

ACC of K or of N \ L, so Lemma 2.5.13 shows that the ACCs of M are ℵ0 categorical

trees or reverse ordered trees.

Lemma 2.5.14 shows that there are finitely many ACCs of K up to isomorphism and that

there are finitely many ACCs of N \L up to isomorphism. Since every ACC of M is also

an ACC of K or of N \ L, this means that the ACCs of M are ℵ0 categorical trees or

reverse ordered trees.

We now have an M , which satisfies Condition 1. whether or not if Aut(N) preserves K

setwise. We turn our attention to 2.

Let S0 be an ACC of M , and let {si} = Si ∩M . Since Aut(N) preserves M setwise,

given any φ ∈ Aut(N), the image φ(s0) must also have an ACC attached to it, and this

ACC must be isomorphic to S0. Therefore

Aut(〈N,≤〉) ∼=P Aut(〈N,≤, S0, . . . Si−1〉)

Since M is preserved setwise, this means that 〈M,≤, S0, . . . Si−1〉 is also ℵ0-categorical.

2
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Chapter 3

Treelike CFPOs

The work of Rubin in [23] is impressive in its scope and complexity. This chapter seeks

to appeal to that work directly by saying when a CFPO shares its automorphism group

with a tree (treelike). Conditions that guarantee this will be given on the order first.

We will also give conditions on the abstract automorphism group of a CFPO that will let

us recognise when there is a tree which has that group as its automorphism group.

While these conditions were initially studied for the purposes of reconstruction, they can

be used to deduce that the CFPOs share a number of model theoretic properties with the

trees, which is how we end this chapter.

3.1 Treelike CFPOs

The concept of path is the central tool for much of this thesis, and since it gets its first good

work out here, I will give a reminder of some notation, as well as some new concepts.
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Definition 3.1.1 This is Definition 1.4.1 repeated

Aut(M) ∼=A Aut(N) ⇔ 〈Aut(M),LG〉 ∼= 〈Aut(N),LG〉

Aut(M) ∼=T Aut(N) ⇔ 〈Aut(M),LG, τM〉 ∼= 〈Aut(N),LG, τN〉

Aut(M) ∼=P Aut(N) ⇔ 〈Aut(M),M,LG,Op〉 ∼= 〈Aut(N), N,LG,Op〉

The subscript A stands for ‘abstract’, T for ‘topology’ and P for ‘permutation’

Definition 3.1.2 CFPO M is said to be treelike if there is a coloured tree T such that

Aut(M) ∼=A Aut(T )

If G ≤ Aut(M) then the action of G is said to be treelike if there is a tree T such that

(M,G) ∼=A Aut(T )

We start with CFPOs which have points which are fixed by every automorphism (which

we call fixed points), and for the rest of this subsection, M will denote a (possibly

coloured) CFPO with a fixed point. We will take from the midst of M our fixed point

and plant it in the ground, before straightening out the paths of M into branches.

The colouring of M is largely irrelevant for this work, and so takes a very back-

seat role. Indeed, for the rest of this subsection the term ‘monochromatic’ will mean

‘monochromatic with respect to U’, where U is the predicate introduced in the next

definition.

Definition 3.1.3 Let 〈M,≤M〉 be a connected CFPO whose automorphism group fixes

the point r. We will construct T (M) by specifying a new order on |M |. Let r be the fixed

point of M , which will become the root of T (M). The colour of r ∈ M is the same in

T (M).
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We denote the order on T by ≤T and define it as follows:

• r ≤T (M) s for all s ∈M

• s ≤T (M) t if and only if s ∈ Path〈r, t〉

We also add a new unary predicate, which we call U . We define the following sets:

X0 := {t ∈ M : r ≤M t}

Y0 := {t ∈ M : t <M r}
...

Xn := {t ∈ M : y ≤M t for some y ∈ Yn−1} \
⋃

i<n(Xi ∪ Yi)

Yn := {t ∈ M : t <M x for some x ∈ Xn−1} \
⋃

i<n(Xi ∪ Yi)
...

We also define X :=
⋃

Xi and say that U(t) holds whenever t ∈ X , and

X := {Xi, Yi : i ∈ ω}

.

Lemma 3.1.4 X partitions |M |.

Proof

By construction

Xi ∩Xj 6= ∅ ⇒ i = j

Yk ∩ Yl 6= ∅ ⇒ k = l

so it remains to show that X covers |M |. We pick an arbitrary z ∈ |M | and consider

Path〈z, r〉, which exists as all CFPOs considered are connected.



70 Chapter 3. Treelike CFPOs

r

M

X0

Y0

Y1

X1

X2

X0 Y0

Y1 X1

X2

T

Figure 3.1: Turning M with fixed point r into T (M)

Let z0(= z), z1, . . . zn(= r) be the endpoints of Path〈z, r〉. We know that zn ∈ X0 as

zn = r, and hence zn−1 6‖ zn implies that zn−1 ∈
⋃

X . Similarly zn−2 6‖ zn−1 implies that

zn−1 ∈
⋃

X and so on along Path〈z, r〉 until we deduce that z ∈
⋃

X . 2

Note that if we start with a rooted tree, and use the root for our procedure, our construction

returns the original structure with an additional predicate which is realised everywhere.

Our eventual goal is to say that the canonical representative of M is the canonical

representative of T (M), and to do so we must show that T (M) is a tree with the same

automorphism group as M .

This construction has the curious and unfortunate property that we may have to make a

choice of fixed point, and the resulting structures depend on this choice. However, since

our claim is that T (M) is a tree, rather than a canonical tree, we may sweep this difficulty

under the carpet of Rubin’s work.
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Proposition 3.1.5 〈T (M),≤T (M), U〉 is a tree.

Proof

M is connected so ≤T (M) is defined everywhere.

If s0, s1 ≤T (M) t then {s0, s1} ⊆ Path〈t, r〉, and since M is cycle-free this means that

either s0 ∈ Path〈s1, r〉 or s1 ∈ Path〈s0, r〉, showing that s0 6‖ s1, and thus all initial

sections of T (M) are linearly ordered. Finally, r ∈ Path〈r, t〉 for all t, so every pair from

T has a common lower bound, showing that 〈T (M),≤T (M), U〉 is a tree. 2

Of course, this construction is without merit if it does not preserve the automorphism

group. We work towards that goal with the following lemmas.

Lemma 3.1.6 〈M,≤M , r〉 is interpretable in 〈T (M),≤T (M), U〉.

Proof

If you require a recap, the definition of interpretation can be found at Definition 1.3.4.

The following formulas form an interpretation of 〈M,≤M , r〉 in 〈T (M),≤T (M), U〉.

1. φDom(x), which defines the domain of the interpretation. We take

x = x

2. φEq(x), which defines equivalence classes on the domain of the interpretation.

Again, we take

x = x

3. A formula φ≤M
(x, y). We take the disjunction of the following clauses:

(a) (x ≤T y ∧ ∀z(x ≤T z ≤T y → U(z)))
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(b) (y ≤T x ∧ ∀z(y ≤T z ≤T x→ ¬U(z)))

(c) (U(y) ∧ ¬U(x))∧

∃z























z ≤T (M) {x, y}∧

∀w(z ≤T (M) w ≤T (M) y → U(w))∧

∀w(z ≤T (M) w ≤T (M) x→




(U(w) → ∀v(z ≤T (M) v ≤ w → U(v)))∧

(¬U(w) → ∀v(w ≤T (M) v ≤ x→ ¬U(v)))



























4. A formula φr(x). We take

∀z¬(z ≤ x)

While φDom, φEq and φr are self-explanatory, to show that φ≤M
does what is required of

it, we examine it clause by clause.

Clause (a) shows that when both x and y lie in the same Xi for some i and x ≤T (M) y

then x ≤M y. Clause (b) shows that when both x and y lie in the same Yi for some i and

y ≤T (M) x then x ≤M y. Clause (c) covers when y ∈ Xi and x ∈ Yi+1 ∪ Yi−1 for some

i, one instance of which is depicted in Figure 3.2. No clause is required for y ∈ Yi and

x 6∈ Yi, because if x ≤M y then x ∈ Yi 2

Lemma 3.1.7 Suppose M0 and M1 are connected CFPOs with fixed points r0 and r1

respectively. Then 〈M0,≤M0, r0〉
∼= 〈M1,≤M1, r1〉 if and only if

〈T (M0),≤T (M0), UT (M0)〉
∼= 〈T (M1),≤T (M1), UT (M1)〉

Proof

Since we constructed ≤T and U using path-betweenness and ≤M , both of which are
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y

z

x

Xi
Yi+1

T (M)

y

z

x

Xi

Yi+1

M

Figure 3.2: Clause (c) of φ≤M
in Lemma 3.1.6

preserved by isomorphism,

〈M0,≤M0 , r0〉
∼= 〈M1,≤M1 , r1〉 ⇒

〈T (M0),≤T (M0), UT (M0)〉
∼= 〈T (M1),≤T (M1), UT (M1)〉

The other direction of the isomorphism is a consequence of the fact that in Lemma 3.1.6

the domain of the interpretation is T (M) itself. 2

This second lemma shows that the construction behaves when we take certain

substructures. We will take from M an extended cone C, and show that T (C) is

isomorphic to either the corresponding substructure of T (M), or the corresponding

substructure with the roles of U and ¬U reversed.
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Lemma 3.1.8 Let r be a fixed point of M and let x ∈M . We define

N := {y ∈M : x ∈ Path〈y, r〉}

If we add a colour to N which is only realised by x (to ensure that x is a fixed point of N

as a structure in its own right), and use x to construct

〈T (N),≤T (N), UT (N)〉

then if x ∈ X (recall Definition 3.1.3) then

〈N,≤T (M), UT (M)〉 ∼= 〈T (N),≤T (N), UT (N)〉

otherwise x ∈M \X (recall Definition 3.1.3) implies that

〈N,≤T (M), UT (M)〉 ∼= 〈T (N),≤T (N),¬UT (N)〉

Proof

This is a simple consequence of the fact that Path〈y, r〉 = Path〈y, x〉 ∪ Path〈x, r〉 for all

y ∈ N 2

Lemma 3.1.9 The members of X are preserved setwise by Aut(M).

Proof

All automorphisms fix r, so X0, the points greater than r, and Y0, the points less than r,

are fixed setwise.

Let xn ∈ Xn and let yn−1 ∈ Yn−1 with yn−1 ≤M xn, and assume as an induction

hypothesis that for i < n both Xi and Yi are fixed setwise by Aut(M). Let φ ∈ Aut(M)
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be arbitrarily chosen. By the induction hypothesis φ(yn−1) ∈ Yn−1, and since φ is an

automorphism φ(yn−1) ≤M φ(xn). If φ(xn) ∈
⋃

i<n(Xi ∪ Yi) then φ−1 violates the

induction hypothesis, so Xn is preserved by Aut(M). The argument for Yn is identical. 2

Lemma 3.1.10 Aut(T ) preserves the members of X setwise.

Proof

Let x ∈ Xn. Since T |= U(x) and T |= ¬U(y) for all y ∈
⋃

Yi, we cannot map x to

any member of
⋃

Yi. By taking a witness that x ∈ Xn, and a witness that that witness

lies in Yn−1 and so on, we obtain a maximal chain x1 ≤T (M) x2 ≤T (M) . . . xn(= x) such

that U(xi) if and only if ¬U(xi−1) and ¬U(xi+1), with the additional property that for all

xi ≤T (M) t ≤T (M) xi+1 either [xi, t] or [t, xi] is monochromatic.

Any automorphism would have to send this chain to a similar chain below the image

of x, but the length of this chain is determined by n, thus all images of x lie in Xn. A

similar argument shows the same for Yn, and so we conclude that Aut(T (M)) preserves

the members of X setwise. 2

Theorem 3.1.11 Aut(〈M,≤M〉) ∼=P Aut(〈T (M),≤T (M), U〉)

Proof

In the proof of Lemma 2.5.3 we proved that if x̄ and ȳ are path complete n-tuples such

that they have the same order type and if (xi, xj) is an adjacent pair then (xi, xj) and

(yi, yj) lie in the same orbit.

Thus if all the 1- and 2-orbits of M coincide with the 1- and 2-orbits of T (M) then

Aut(T (M)) ∼=P Aut(M). We will start with the 1-orbits, which we will prove by

induction on X .



76 Chapter 3. Treelike CFPOs

Since 〈X0,≤M〉 is a tree

〈X0,≤M〉 = 〈X0,≤T (M)〉

and since 〈X0,≤T (M), UT (M)〉 is monochromatic,

Aut(〈X0,≤M〉) ∼=P Aut(〈X0,≤T (M), UT (M)〉)

From this we conclude that for all a, b ∈ X0, if a and b lie in different orbits of M but the

same orbits of T then

〈{t ∈M : a ∈ Path〈t, r〉},≤M〉 6∼= 〈{t ∈M : b ∈ Path〈t, r〉},≤M〉

and

〈{t ∈M : a ≤T (M) t},≤T (M), UT (M)〉

∼=

〈{t ∈M : b ≤T (M) t},≤T (M), UT (M)〉

However, this contradicts Lemma 3.1.8, so if a and b lie in the same orbit of T (M) then

they lie in the same orbit of M . By symmetry, we also conclude that if a and b lie in the

same orbit of M then they lie in the same orbit of T (M). Similarly, if a, b ∈ Y0 then a

and b lie in the same orbit of M if and only if they lie in the same orbit of T (M).

So now suppose that for i < n the 1-orbits on Xi and Yi from Aut(M) and Aut(T (M))

coincide and let x, y ∈ Xn. We define, as we did in Lemma 3.1.10, x1, . . . xn and

y1, . . . , yn, which are linearly ordered by ≤T (M), are the connecting sets of Path〈x, r〉

and Path〈y, r〉 in ≤M .

If xn and yn belong to the same orbit of M then the automorphism that witnesses this

also witnesses that xn−1 and yn−1 lie in the same orbit of M , and hence by our induction
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hypothesis, the same orbit of T . Since there is an automorphism that maps xn−1 to yn−1,

〈{z ∈M : xn−1 ∈ Path〈r, z〉},≤M〉 ∼= 〈{z ∈M : yn−1 ∈ Path〈r, z〉},≤M〉

and hence (using Lemmas 3.1.7 and 3.1.8)

〈{z ∈M : xn−1 ∈ Path〈r, z〉},≤T (M), UT (M)〉

∼=

〈{z ∈M : yn−1 ∈ Path〈r, z〉},≤T (M), UT (M)〉

And so there is an isomorphism of T that maps xn to yn. The arguments for xn, yn being

in the same orbit of T , and for xn, yn ∈ Yn are, again, extremely similar, and so omitted.

We now turn out attention to the 2-orbits. Since r is fixed by both Aut(M) and Aut(T ),

the 1-orbits can be thought of as 2-orbits where one of the elements is r, and the 2-orbits

can be thought of as 3-orbits where r is one of the elements. This viewpoint is exploited

to show the coincidence of the 2-orbits of Aut(M) and Aut(T ).

Suppose (x0, x1) and (y0, y1) lie in the same orbit of M . We need only consider the case

when x0 ∈ Path〈x1, r〉 as otherwise we can take x2 to be the intersection of Path〈x0, r〉,

Path〈x0, x1〉 and Path〈x1, r〉, and patch automorphisms together around x2. Note that x2

would be the meet of x0 and x1 in T (M).

There is an automorphism of M that maps x0 to y0, and as we have just seen, this means

that

〈{z ∈M : x0 ∈ Path〈r, z〉},≤M〉 ∼= 〈{z ∈M : y0 ∈ Path〈r, z〉},≤M〉

Since (x0, x1) and (y0, y1) lie in the same orbit of M , there is an isomorphism from

〈{z ∈M : x0 ∈ Path〈r, z〉},≤M〉 to 〈{z ∈ M : y0 ∈ Path〈r, z〉},≤M〉
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that maps x1 to y1. By Lemmas 3.1.7 and 3.1.8 this results in an isomorphism from

〈{z ∈M : x0 ≤T (M) z},≤T (M), UT (M)〉

to

〈{z ∈ M : y0 ≤T (M) z},≤T (M), UT (M)〉

which maps x1 to y1. We call this isomorphism φ, and we take any automorphism that

takes x0 to y0 and call it ψ. The function

θ(t) :=







φ(t) t ≥T (M) x0

ψ(t) otherwise

is an automorphism of T which maps (x0, x1) to (y0, y1), and thus the 2-orbits of T contain

the 2-orbits of M .

Once again, the argument to show that the 2-orbits of M contain the 2-orbits of T is

extremely similar, due to the symmetric nature of Lemmas 3.1.7 and 3.1.8, and thus we

conclude that the 2-orbits of M and T coincide, and so

Aut(〈M,≤M 〉) ∼=P Aut(〈T (M),≤T (M), U〉)

2

Lots of CFPOs have fixed points, but the CFPOs of the kind discussed in the next lemma

reoccur frequently.

Lemma 3.1.12 Let M be a connected, Rubin complete CFPO. If there are connected

A,B ( M which are disjoint and fixed setwise by Aut(M) then there are c, d which are

fixed points of M and Path〈A,B〉 = Path〈c, d〉.
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Proof

Let M be a Rubin complete CFPO, and let A,B be connected proper subsets of M which

are disjoint and fixed setwise by Aut(M). We use the notation

Path〈x, y〉− := {z ∈ Path〈x, y〉 : ∃a, b ∈ Path〈x, y〉 (z = (a ∧ b) ∨ z = (a ∨ b))}

In words, Path〈x, y〉− are the local maxima and minima of Path〈x, y〉. Just as with

Path〈x, y〉, if X and Y are subsets of M then:

Path〈x, Y 〉− :=
⋂

y∈Y Path〈x, y〉−

Path〈X, y〉− :=
⋂

x∈X Path〈x, y〉−

Path〈X, Y 〉− :=
⋂

x∈X
y∈Y

Path〈x, y〉−

Note that Path〈x, y〉− always has finite cardinality.

We are going to find a fixed point using (possibly transfinite) induction. Fix b ∈ B.

Base Case Pick a0 ∈ A. We set c0 = a0 and let D0 = {x ∈ A : c0 ∈ Path〈x, b〉}.

Successor Step Suppose we have aα−1, cα−1 and Dα−1.

Pick aα ∈ A \Dα−1. Since b ∈ Path〈cα−1, b〉 and b ∈ Path〈aα, b〉,

Path〈{cα−1, aα}, b〉 6= ∅

Let

Cα := {x ∈ Path〈{cα−1, aα}, b〉 : |Path〈{cα−1, aα}, b〉
−| = |Path〈x, b〉−|}

Cα is linearly ordered, and is bounded both above and below by elements of

Path〈cα−1, b〉
− ∪ Path〈aα, b〉

−. Since M is Rubin complete, Cα has both a maximal

and a minimum element.
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Let cα ∈ Cα be such that Path〈{cα−1, aα}, b〉 = Path〈cα, b〉.

aα

cα−1
cα

b

Cα

Figure 3.3: Finding cα in Lemma 3.1.12

Since A is connected, Path〈cα−1, aα〉 ⊆ A, and since cα ∈ Path〈cα−1, aα〉, we have

that cα ∈ A.

We define Dα = {x ∈ A : cα ∈ Path〈x, b〉}. If Dα = A then let c = cα and stop.

Limit Step Let nλ = min{|Path〈cα, b〉
−| : α < λ}.

Cλ := {x ∈ Path〈cα, b〉 : |Path〈cα, b〉
−| = nλ}

Cα is linearly ordered, and is bounded both above and below by elements of
⋃

α<λ Path〈cα, b〉
−, so has both a maximal and minimal element.

Let cλ ∈ Cλ be such that Path〈cλ, b〉 ⊆ Path〈{cα, aα}, b〉. We define Dλ = {x ∈

A : cλ ∈ Path〈x, b〉}. If Dλ = A then let c = cλ and stop.
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We have found a c such that c ∈ Path〈A, b〉. If we repeat this induction, fixing c and

choosing bα from B then we find a d such that

Path〈c, d〉 = Path〈A,B〉

Let φ ∈ Aut(M).

Path〈φ(c), φ(d)〉 = φ(Path〈c, d〉)

= φ(Path〈A,B〉)

= Path〈φ(A), φ(B)〉

= Path〈A,B〉

= Path〈c, d〉

Therefore both c and d are fixed by all automorphisms of M . 2

3.1.1 CFPOn

Lemma 3.1.13 If M is a connected CFPO3 then M is treelike.

Proof

A CFPO3 can be split into three possibly empty sections, a tree which is above a linear

order, which in turn is above a reverse ordering of a tree. If the tree section is empty the

reverse tree cannot be empty, and vice versa.

By marking the reversed tree with a unary predicate and reversing its order we obtain a

tree which has the same automorphism group as the CFPO3. 2

Theorem 3.1.14 If M is a connected CFPO2n+1 then M is treelike.
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A tree

A linear order

A reversed tree

Figure 3.4: A typical CFPO3

Figure 3.5: A Tree with the same Automorphism Group

Proof

Our strategy is to find a subset of M which is a CFPO3 and is fixed setwise by Aut(M),

and add cones to the tree corresponding to this CFPO3 to obtain a tree with the same

automorphism group as M .

We consider the φ(an) and φ(a∗n), the images in M of the midpoints of Alt2n+1 and

Alt∗2n+1 under all possible embeddings φ. Let C be the set of all such φ(an) and φ(an∗).

This is the candidate for the CFPO3 we require for our strategy, but first we must show

that it is indeed a CFPO3, and that it is fixed setwise by Aut(M).

Suppose that C contains an antichain xn, yn. Since M is connected there must be a path

between xn and yn. We also pick particular copies of either Alt2n+1 or Alt∗2n+1 that

contain xn and yn, and label the points using xi and yi appropriately. X is the set {xi},

while Y = {yi}.
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To show that the maximum length of a path though C is 3 we consider how the ends of

Path〈xn, yn〉 interact with X and Y .

xn−1

xn

xn+1

Path〈xn, yn〉

xn−1

xn

xn+1

Path〈xn, yn〉

Case 1 Case 2

Figure 3.6: Interactions between X and Y

The cases where xn is an upper point of Path〈xn, yn〉 are reverse orderings of Cases 1 and

2, so will not be done explicitly. Also there is nothing special in our choice of X , so these

arguments also apply to Y .

Case 1 In this case xn is a lower point of both X and Path〈xn, yn〉.

If [xn, xn+1] ∩ Path〈xn, yn〉 6= ∅ then [xn, xn−1] ∩ Path〈xn, yn〉 = ∅, otherwise xn−1 and

xn+1 would be related. So the union of at least one of {x0, . . . xn−1} or {xn+1, . . . x2n}

with Path〈xn, yn〉 is a copy of a finite section of Alt.

Case 2 In this case xn is an upper point of X but a lower point of

Path〈xn, yn〉. As both xn−1 and xn+1 lie below xn the two paths Path〈xn−1, yn〉 and

Path〈xn+1, yn〉 both contain and have the same length as Path〈xn, yn〉. We also know

that xn−2 cannot be contained in Path〈xn−1, yn〉, as this would require xn−2 and xn to

be related. Similarly xn+2 cannot be contained in Path〈xn+1, yn〉. Thus we see that both

{x0, . . . xn−2}∪Path〈xn−1, yn〉 and {x2n, . . . xn+2}∪Path〈xn+1, yn〉 are copies of a finite

section of Alt.
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Thus in both cases, at least one of {x0, . . . xn−1} or {xn+1, . . . x2n} with Path〈xn, yn〉 is

a copy of a finite section of Alt. M is a cycle free partial order so, assuming that the

configurations of X , Y and Path〈xn, yn〉 result in the shortest possible finite alternating

chain,

P := {x0, . . . , xn−2} ∪ Path〈xn−1, yn+1〉 ∪ {yn+2, . . . y2n}

is a copy of a finite section of Alt. The length of P is

2n− 2+ | Path〈xn−1, yn+1〉 |

By assumptionM is a CFPO2n+1, so P has at most 2n+1 elements, thus | Path〈xn, yn〉 |

≤ 3 and C is a CFPO3.

To see that C is fixed setwise by automorphisms, simply note for any x ∈ C and φ ∈

Aut(M), the image of the copy of Alt2n+1 that witnesses the fact that x ∈ C will witness

φ(x) ∈ C.

We now have the CFPO3 our strategy demands, so now we focus on how we may adjoin

cones to it to obtain a tree with the same automorphism group as M .

For each x ∈ C, we define B(x) := {y ∈ M : Path〈x, y〉 ∩ C = {x}}. If we introduce

a predicate that fixes x to B(x), then we are able to apply the construction in Definition

3.1.3 to B(x) using x as the root to obtain T (B(x)). We also know that if there is an

automorphism of M that maps x0 to x1 then B(x0) ∼= B(x1).

For each isomorphism type of B(x), we add a colour predicate Px to 〈C,≤〉 such that

C |= Px(y) if and only if B(y) ∼= B(x). We obtain 〈C,≤M , {Px}〉, a CFPO3 such that:

Aut(〈C,≤M , {Px}〉) ∼=P {g ∈ Aut(C) : ∃h ∈ Aut(M) h|C = g}
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Lemma 3.1.13 shows that there is a tree, which we call T (C) such that

Aut(T (C)) ∼= {g ∈ Aut(C) : ∃h ∈ Aut(M) h|C = g}

We define T to be the structure whose domain is

TC ∪
⋃

x∈C

T (B(x))

under the equivalence relation that identifies the root of TB(x) with the point of TC that

corresponds with x. We give T the transitive closure of the order inherited from TC and

all the TB(x). This structure is clearly a tree with the automorphism group of M .

Note that this method not only gives a tree T such that Aut(M) ∼=A Aut(T ), but also a

tree T such that Aut(T ) ∼=P Aut(M). 2

M

C TC

T

Figure 3.7: Turning a CFPO2n+1 into a Tree
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Corollary 3.1.15 If M is a connected CFPO2n then M is treelike.

Proof

Let e ∈ M be an image of a0 ∈ Alt2n (if Alt2n does not embed into M we may consider

M∗ instead). Below every point in Or(e) we adjoin a new point, coloured with a new

unary predicate. This new structure is a CFPO2n+1 with the same automorphism group

as M , so M shares its abstract automorphism group with a tree. 2

While we have found a tree T such that Aut(M) ∼=A Aut(T ), and thereby proved the

corollary, we may do better than that. We can delete the points we added to M from T

without introducing new automorphisms (as we added these points to every point in an

orbit of M), getting a T ∗ such that Aut(M) ∼=P Aut(T ∗).

3.1.2 CFPOω

Definition 3.1.16 If M is a CFPO then:

1. M is said to be a CFPOω if Altω embeds but Alt does not; and

2. M is said to be a CFPO∞ if Alt embeds.

Theorem 3.1.17 If M is a connected CFPOω then M is tree-like.

Proof

This proof works in a similar fashion to the proofs of Theorem 3.1.11, Lemma 3.1.13 and

Theorem 3.1.14; by altering the order on the CFPO we produce a tree, while maintaining

the automorphism group. Let M be a Rubin-complete CFPO.

We say that A ⊆M is a maximal copy of either Altω or Alt∗ω if
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• A is the image of Altω (or Alt∗ω respectively).

• There is no image of Altω or Alt∗ω that properly contains A.

Every copy of Altω is contained in a maximal copy of either Altω or Alt∗ω. To see this,

let {An ⊆ M : n ∈ ω} be such that each An is isomorphic to either Altω or Alt∗ω and if

n < m then An ( Am. This means that

⋃

n∈N

(An \ A0) ∼= Altω or Alt∗ω

and therefore

A0 ∪
⋃

n∈N

(An \ A0) ∼= Alt

We now describe a procedure that transforms M into a tree while preserving its

automorphism group. Again, we add a unary predicate U to remind us when we’ve

changed direction.

1. Let M0 be the following set:

{x ∈M : x is the first element of a maximal copy of eitherAltω or Alt∗ω}

If x ∈M0 is witnessed by a maximal copy of Altω then x ∈M0 cannot be witnessed

by a maximal copy of Alt∗ω. To see this, let {x, a1, . . .} be a maximal copy of Altω

and let {x, b1, . . .} be a maximal copy of Alt∗ω.

b1 > a1, but b2||a1, as b2||x, so {b3, b2, b1, a1, . . .} is a copy of Altω, contradicting

the assumption that {x, a1, . . .} was a maximal copy of Altω.
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b3

b2

b1

x

a1

a2

a3

Figure 3.8: Witnessing x ∈M0

Let ∼C be the relation on M0 given by

x ∼C y ⇔











{x, a1, . . .} witnesses x ∈M0

if and only if

{y, a1, . . .} witnesses y ∈ M0.











That ∼C is an equivalence relation is readily apparent. We denote the ∼C-

equivalence classes as C0
i .

Let x ∈ M0, and let this be witnessed by {x, a1, . . .}, a copy of Altω. For every

y ∈ [x]∼C
, we know that y > a1, and thus [x]∼C

∪ a1 is a tree. Similarly, if x ∈M0

is witnessed by a copy of Alt∗ω then [x]∼C
is a reverse ordered tree.

Let {C0
i } be the set of ∼C-equivalence classes of M0.

2. Assume we have defined Mn−1 and the Cn−1
i s. We define Mn to be:











x ∈M \
⋃

i<n

Mi :
x is the first element ofAwhich is a maximal

copy of eitherAltω or Alt∗ωin

(

M \
⋃

i<n

Mi

)











Again, Mn is a disjoint union of trees and reverse ordered trees, which we call Cn
i .

If Cn
i is a tree then T (Cn

i ) := 〈Cn
i ,≤, U〉 where U is realised nowhere, and if Cn

i is a

reverse ordered tree then T (Cn
i ) := 〈(Cn

i )
∗,≤, U〉 where U is realised everywhere.
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We define T0 to be the disjoint union of {T (C0
i )} with no new relations added to the

ordering. If we have already defined Tn−1 then

Tn := Tn−1 ∪
⋃

{T (Cn
i )}

We add to the order inherited from Tn−1 and T (Cn
i ) pairs of the form (x, y) where

x ∈ T (Cn
i ) for some i

and y is in T (Cn−1
j ), where Cn−1

j is a cone of x. We then take the transitive closure to

obtain an ordering.

Put T (M) :=
⋃

n∈N
Tn. Since the Mn partition M and since at each stage we place trees

above elements of trees, T (M) is a tree.

If Aut(M) does not preserve the Mn then we would have a map that sends a maximal

copy of Altω or Alt∗ω to a non-maximal copy. T (M) realises U in monochromatic convex

subsets. In the tree obtained by collapsing each of those subsets to a singleton, every

maximal chain is isomorphic to ω∗, so T (M) preserves the Mn set-wise too.

Since each T (Cn
i ) is monochromatic, and is order-isomorphic to either Cn

i or (Cn
i )

∗, if

Aut(T (M)) 6= Aut(M) then we must either:

1. be unable send a T (Cn
i ) to a T (Cn

j ) where we can map Cn
i to a Cn

j ; or

2. be able to send T (Cn
i ) to T (Cn

j ) where we cannot map Cn
i to Cn

j .

If T (Cn
i )

∼= T (Cn
j ) but we cannot map one to the other using an automorphism of T (M)

then we must eventually attach T (Cn
i ) to something different to what we attach T (Cn

j ) to,

but then Cn
i emanates from a point that is different to the point that Cn

i emanates from,

and we cannot map Cn
i to Cn

i .
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M

C0
0

C1
0

T (C0
0)

T (C1
0)

T

Figure 3.9: Turning a CFPOω into a Tree

If we do this argument in reverse we obtain point 2.

Therefore every Rubin-complete CFPOω is treelike. Let 〈M,≤M〉 be a not necessarily

Rubin complete CFPOω, with Rubin completion 〈MR,≤M , I〉. There is a tree T (M)R

such that

Aut(〈MR,≤M , I〉) ∼=P Aut(〈T (MR),≤T , I, U〉)

We define T (M) := {x ∈ T (MR) : T (MR) |= ¬I(x)}. Then

Aut(〈M,≤M〉) ∼=P Aut(〈T (M),≤T , U〉)

2

3.1.3 Disconnected CFPOs

While this section has only proved results about connected CFPOs, they are readily

extended to disconnected CFPOs.
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Proposition 3.1.18 Let M be a possibly disconnected CFPO with connected components

Ai, where the i are indexed by I . If Ai is treelike for all i ∈ I then M is treelike.

Proof

For all i ∈ I , let 〈T (Ai),≤, U〉 be the coloured tree such that Aut(〈T (Ai),≤i, Ui〉) ∼=A

Aut(Ai).

T := 〈{r} ∪
⋃

(T (Ai)),≤T , UT 〉 where

T |= (x ≤T y) ⇔ ((∃i ∈ I (x ≤i y)) ∨ (x = r))

T |= UT (x) ⇔ ∃i ∈ I Ui(x)

Aut(M) ∼=A Aut(T ), as each of the cones of r ∈ T share an automorphism group with

its corresponding Ai, and may only be mapped to one another by an automorphism of T

if their corresponding Ai are isomorphic. 2

Remark 3.1.19 If each of the T (Ai) are obtained using Definition 3.1.3, then we may

adapt the interpretation in Lemma 3.1.6 by changing φDom to x 6= r to obtain an

interpretation of 〈M,≤M〉 in T .

3.2 The Infinite Dihedral Group

Definition 3.2.1 D∞, the infinite dihedral group, is the group with the following

presentation 〈σ, τ | σ2 = 1, στσ = τ−1〉.

How D∞ occurs as a subgroup of an automorphism group of a CFPO characterises

whether it is treelike or not. We will first examine how D∞ can act on trees.
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3.2.1 Dendromorphic Groups

Definition 3.2.2 If T is a tree that contains points a and b then

B(a; b) := {t ∈ T : a < t ∧ b}

B(a; b) is the cone of a that contains b. If a 6< b then B(a; b) = ∅. If B is a set such that

a ≤ B then

B(a, B) :=
⋃

b∈B

B(a; b)

Definition 3.2.3 Given an abstract group G and a permutation group (H,S, µ(h, s))

their wreath product, written as G ≀S H , is the abstract group on domain

H × {η : S → G}

We use η(s) to denote the function s 7→ η(s), and so η(s0s) is the function s 7→ η(s0s).

The group operation of G ≀S H is given by

(h0, η0(x))(h1, η1(x)) = (h0h1, η0(µ(h
−1
1 , x))η1(x))

When G = Aut(M) and H = Aut(N) their wreath product G ≀ H is the automorphism

group of the structure obtained by replacing every element of N with a copy of G.

Remark 3.2.4 Z≀Z2 is the automorphism group of the structure obtained by replacing the

elements of a 2-element antichain by copies of (Z,≤), while Z2 ≀ Z is the automorphism

group of the structure obtained by replacing the elements of (Z,≤) with 2-element

antichains (the lamplighter group).

Remark 3.2.5 If group G acts on set X , with X0 ⊆ X , then G{X0} is the set-wise

stabiliser of X0, while G(X0) is the point-wise stabiliser. Similarly for automorphism



Section 3.2. The Infinite Dihedral Group 93

Z2 ≀ ZZ ≀ Z2

Figure 3.10: Mnemonic for the Wreath Product

Figure 3.11: Example of a Regular Tree

groups, Aut{X0}(M) is the set-wise stabiliser of X0 in M , while Aut(X0)(M) denotes the

point-wise stabiliser. If X0 = {x} then these two notions coincide and we use the pithier

expression Gx or AutX0(x).

Definition 3.2.6 A tree T is said to be regular if:

1. all the maximal chains are isomorphic to each other;

2. the maximal chains are isomorphic to a finite linear order or N;

3. the ramification order of any non-maximal element of T is at least 2 but finite; and

4. if |T≤x| = |T≤y| then the ramification order of x equals the ramification order of y.

A tree T is said to be fh-regular (finite height) if it is regular and the maximal chains are

finite.
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...

...

...

...

. . . . . .

Figure 3.12: Example of Trees whose automorphism group is a dendromorphic group

Remark 3.2.7 Let T be a finite tree. Aut(T ) acts 1-transitively on the maximal elements

of T if and only if T is fh-regular.

Definition 3.2.8 A group G is said to be a dendromorphic group if it is a Cartesian

product of copies at least one of:

1. Z ≀ Z2;

2. Sym(ω);

3. Sym(ω) ≀ Z2; and

4. the automorphism group of a regular tree;

Examples of the automorphism group of a regular tree include Sn, in particular Z2, and

(Sn ≀ Z2).

Definition 3.2.9 (Recall Definition 1.3.3) Let M be a CFPO, let x ∈ M and let G ⊆

Aut(M).

G(x) := {y ∈M : ∃g ∈ Gg(x) = y}
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Theorem 3.2.10 If T is a tree and there exists a G ≤ Aut(T ) such that G ∼= D∞ then

there exists an H such that G ≤ H ≤ Aut(T ) and H is a dendromorphic group .

Proof

Let T be a tree such that there isG ≤ Aut(T ) andG ∼= D∞. We use the same presentation

of D∞ that we gave in Definition 3.2.1, so here σ and τ are automorphisms of T that

generate G and satisfy the identities σ2 = 1 and στσ = τ−1.

Let t ∈ T . How does σ constrain the structure ofG(t)? If t < σ(t) then σ(t) < σ2(t) = t,

which is a contradiction. Similarly σ(t) < t also leads to a contradiction, so if t 6= σ(t)

then t ‖ σ(t). Since στ 6= τσ, we know that supp(σ) ∩ supp(τ) 6= ∅.

First suppose that t ∈ T is such that {φ|G(t) : φ ∈ G} 6∼= D∞. This means that there is

some n ∈ Z and i ∈ {0, 1} such that τ |nG(t)σ|
i
G(t) = id|G(t).

1. If σ|G(t) = id|G(t) then the identity στ = τ−1σ becomes τ = τ−1 and we learn that

G(t) = {t} and Aut(G(t)) is trivial.

2. If τ |nG(t) = id|G(t) then G(t) is a finite antichain and so G(t)+ is a finite tree whose

automorphism group acts transitively on its maximal elements, and by Remark 3.2.7

is fh-regular, so Aut(G(t)) is the automorphism group of the fh-regular tree G(t)+.

3. If στn|G(t) = id|G(t) then we can deduce that σ|G(t) = τn|G(t), and thus τ 2n|G(t) =

id|G(t).

Now we suppose t ∈ T is such that {φ|G(t) : φ ∈ G} ∼= D∞.

We now examine the possible action of τ on t. Since τ has infinite order, {τn(t) : n ∈ Z}

and {τnσ(t) : n ∈ Z} are infinite. We now consider various cases to deduce the structure

of G(t).
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Case 1: t < τ(t) or t > τ(t)

Without loss of generality we assume that t < τ(t).

Since t < τ(t) we know that τm(t) < τn(t) if and only if m < n, where m,n ∈ Z.

Suppose σ fixes one of these τm(t). Hence

στm(t) = τm(t)

but in D∞ we know that τ−mσ = στm, so

τ−mσ(t) = τm(t)

σ(t) = τ 2m(t)

which means that σ maps t to τ 2m(t), which in this case is assumed to be greater

than t, which we have already shown yields a contradiction, and thus σ does not fix

any τn(t).

We suppose that there is an n ∈ Z such that τn(t) ≤ t ∧ σ(t). We know that

στn(t) ‖ τn(t), which is the situation depicted in Figure 3.13.

t σ(t)

t ∧ σ(t)

τn(t) στn(t)

τn(t) ∧ στn(t)

Figure 3.13: Deduced Structure of G(t) if (τn(t) ≤ t ∧ σ(t))

However σ maps the pair (t, τn(t)) to (σ(t), στn(t)), so τn(t) < t implies that
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στn(t) < σ(t), providing a contradiction.

So there is no n such that τn(t) ≤ t∧ σ(t) and then we are in the situation depicted

in Figure 3.14.

t ∧ s(t)

τ(t)

t

τ−1(t)

τ−1σ(t)

σ(t)

τσ(t)

Figure 3.14: Deduced Structure of G(t) if (t ∧ σ(t) ≤ τ i(t))

The automorphism group of this structure is clearly Z ≀ Z2, and so

Aut(G(t)) ∼= Z ≀ Z2

Case 2: t ‖ τ(t) and τm(t) ∧ τn(t) = τm
′

(t) ∧ τn
′

(t) for all m 6= n,m′ 6= n′. We call

denote common ramification point, τm(t) ∧ τn(t) for m 6= n, by x. In other words,

the τn(t) form an antichain, which ramifies from x.

If x = σ(x) then the whole orbit of t is an infinite (as G(t) is infinite) antichain

above x, and thus Aut(T ) is Sym(ω).

If x 6= σ(x) then the whole orbit of t is two infinite (as both {τn(t) : n ∈ Z} and

{τnσ(t) : n ∈ Z} are infinite) antichains , one ramifying from x, the other from

σ(x). In this case Aut(T ) ∼= Sym(ω) ≀ Z2.

Case 3: t ‖ τ(t) and τm(t) ∧ τn(t) 6= τm
′

(t) ∧ τn
′

(t) for some m,n,m′, n′.

For m ∈ N \ {0} let Gm := {σiτmn : i ∈ {0, 1} n ∈ Z}. Note that Gm
∼= D∞.
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For brevity’s sake, xn will denote τmn(t) ∧ τm(n+1)(t). Suppose that xi 6= xi+1 for

all i. Note that τmk(xn) = xn+k because greatest lower bounds are preserved by

automorphisms. For any i ∈ Z both xi and xi+1 are below τm(i+1)(t), so {xi :

i ∈ Z} is linearly ordered and acted on by τm, showing that τm(xi) < xi or

τm(xi) > xi.

If {φ|Gm(x0) : φ ∈ Gm} 6∼= D∞, then Gm(x0) is an antichain, but we have just

established that τ(xi) < xi or τ(xi) > xi, so {φ|Gm(x0) : φ ∈ Gm} ∼= D∞, and we

may now apply Case 1 to Gm(x0) and find that Aut(Gm(x0)) ∼= (Z ≀ Z2).

Since each xi 6= xi+1, we can deduce the structure depicted in Figure 3.15.

x0 ∧ σ(x0)

x1

x0

x−1

σ(x1)

σ(x0)

σ(x−1)

τm(t)

t σ(t)

τmσ(t)

Figure 3.15: Deduced Structure needed for Case 3

Thus we see that Aut(Gm(t)) ∼= (Z ≀ Z2). If we redefine xn := τmn+k(t) ∧

τm(n+1)+k(t) and repeat this argument, we see that Aut(Gm(τ
k(t))) ∼= (Z ≀ Z2)

Let m0 be the least element of the set

{i = lcm(n−m,n′ −m′) : τm(t) ∧ τn(t) 6= τm
′

(t) ∧ τn
′

(t)}

Note that τm0n(t) ∧ τm0(n+1)(t) 6= τm0(n+1)(t) ∧ τm0(n+2)(t) for all n, so m0 is in

fact the least number such that Aut(Gm0(t))
∼= (Z ≀ Z2).
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G(t) consists of m0 − 1 copies of Gm0(t), which are preserved by σ, and τ acts

cyclically on them, and indeed their least elements, which we call L. This gives us

{φ|L : φ ∈ G} 6∼= D∞, and σ|L = id|L, so L is trivial and Aut(G(t)) ∼= (Z ≀ Z2)

Therefore for all t ∈ T the group Aut(G(t)) is either trivial or :

1. Z ≀ Z2 (from Cases 1 and 3);

2. Sym(ω) (from Case 2);

3. Sym(ω) ≀ Z2 (from Case 2); or

4. the automorphism group of an fh-regular tree;

each of which is a dendromorphic group .

We pick one t ∈ T such that G(t) 6= {t}, and let s := inf(G(t)+). The next phase of this

proof is to show that the additional automorphisms of Aut(G(t)) extend to B(s;G(t)).

We do this by addressing each of the possibilities in the above list individually.

Let λ ∈ Aut(G(t)) \ G. We wish to extend λ to B(s;G(t)) and show that the group of

the extensions of elements of Aut(G(t)) is a dendromorphic group .

1. Suppose Aut(G(t)) ∼= (Z ≀ Z2). Then λ is characterised by where it maps t and

σ(t). Let’s suppose that λ(t) = τn(t) and λ(σ(t)) = τmσ(t). Then we define λ̄ to

be the following:

λ̄ : x 7→







τn(x) x ∈ B(s; t)

τm(x) x ∈ B(s; σ(t))

If λ(t) = τnσ(t) and λ(σ(t)) = τm(t) then

λ̄ : x 7→







τmσ(x) x ∈ B(s; t)

τnσ(x) x ∈ B(s; σ(t))
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Thus we may extend λ to a unique element of Aut((B(s;G(t))), so

Aut((B(s;G(t))) ∼= (Z ≀ Z2)

2. Suppose Aut(G(t)) ∼= Sym(ω). If there is some b ∈ G(t) such that σ(b) = b and

σ|B(s;b) 6= id|B(s;b) then there are two possible extensions of λ. If x ∈ B(s, a) and

τn(a) = λ(a) = τmσ(a) then

λ̄0 : x 7→ τn(x)

λ̄1 : x 7→ τmσ(x)

Since each λ may be extended to two elements of Aut((B(s;G(t))), we know that

Aut((B(s;G(t))) ∼= (Z2 × Sym(ω))

Otherwise if x ∈ B(s; a) and λ(a) = τnσi(t) then

λ̄ : x 7→ τnσi(x)

and we uniquely extend λ, showing

Aut((B(s;G(t))) ∼= Sym(ω)

3. Suppose Aut(G(t)) ∼= (Sym(ω) ≀ Z2). If x ∈ B(s; a) and λ(a) = τnσi(t) then

λ̄ : x 7→ τnσi(x)

so we can uniquely extend λ, showing

Aut((B(s;G(t))) ∼= (Sym(ω) ≀ Z2)



Section 3.2. The Infinite Dihedral Group 101

4. Suppose G(t)+ is an fh-regular tree, and suppose that there is an x ∈ B(s;G(t))

such that {φ|G(x) : φ ∈ G} ∼= D∞. Clearly G preserves B(s;G(t)), so

G(x) ⊆ B(s;G(t))

Suppose that x ∈ B(s; t). Then τnσi(x) ∈ B(s; τnσi(t)) for all n ∈ Z and i ∈

{0, 1}, therefore for all y ∈ G(t)

G(x) ∩ B(s; y) 6= ∅

Rather than look at λ ∈ Aut(G(t)), we instead extend every µ ∈ Aut(G(x)) to

obtain a dendromorphic supergroup of G in B(s,G(t)).

Now we suppose that there is no x ∈ B(s;G(t)) such that {φ|G(x) : φ ∈ G} ∼= D∞.

We will define by induction a family of sets that we will call Xk which will help us

extend λ.

Let X0 be the maximal subset of B(s,G(t)) such that for all φ, ψ ∈ G

φ|G(t) = ψ|G(t) ⇒ φ|X0 = ψ|X0

Let x ∈ B(s; y) and let φ ∈ G be such that λ(y) = φ(y).

λ̄ : x 7→ φ(x)

Since all the possible φ agree, this map is a well-defined, unique extension of λ,

so Aut(X0) ∼= Aut(G(t)+). If X0 = B(s;G(t)) then we have extended λ to

B(s;G(t)) and we are done.

Suppose that we have defined Xk−1, but Xk−1 6= B(s;G(t)). Let xk ∈ B(s,G(t))\
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Xk−1. Let Xk be the maximal subset of B(s,G(x1)) such that for all φ, ψ ∈ G

φ|G(t) = ψ|G(t) ⇒ φ|X1 = ψ|X1

Again, Aut(Xk) ∼= Aut(G(xk)
+) and if Xk = B(s;G(t)) then we have extended

λ ∈ Aut(Xk) to B(s;G(t)) and we are done.

If Xk 6= B(s;G(t)) then we define X :=
⋃

k∈N
Xk. We know how to extend λ to X ,

so if we can show that:

(a) X = B(s;G(t)); and

(b) there is a regular tree F such that Aut(X) = Aut(F );

then we will have shown that Aut(B(s,G(t)) ∼= Aut(F ).

(a) For all k, the orbit |G(xk)| > |G(xk−1)|, as there are φ, ψ ∈ G such that

φ(xk−1) = ψ(xk−1) but φ(xk) 6= ψ(xk), so the set {|G(xk)| : k ∈ N} is

unbounded.

If y ∈ B(s;G(t)) \X then for all k

τ |G(xk)|(y) 6= y

so G acts as D∞ on G(y), and we have already seen how to extend λ to

B(s;G(t)) in this case, so we may assume now that X = B(s;G(t)).

(b) Since Xk extends Xk−1 and since s is the root of both G(xk−1)
+ and G(xk)

+,

we know that G(xk)
+ is an extension ofG(xk−1)

+. Therefore we consider the

tree F :=
⋃

k∈N
G(xk)

+.

Let (s, y1 . . .) and (s, z1, . . .) denote maximal chains of F . Since each G(xk)
+

is an fh-regular tree, given any two maximal chains of F there is a partial

automorphism from the initial k elements of the first to the initial k elements
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of the second. The union of all these partial automorphisms will be an

automorphism of F , and thus Aut(F ) acts transitively on every maximal

chain, which is Condition 1 of Definition 3.2.6.

The initial section of every maximal chain of F finite, so every maximal chain

is isomorphic to N, Condition 2 of Definition 3.2.6.

If y ∈ F then y ∈ G(xk)
+ for some k, so the ramification order of any

non-maximal element of F is at least 2 but finite, showing that F satisfies

Condition 3 of Definition 3.2.6.

Finally, if |F≤y| = |F≤z| then there is a k such that y, z ∈ G(xk)
+ and

|(G(xk)
+)≤y| = |(G(xk)

+)≤z|, so the fact that G(xk)
+ is fh-regular implies

that F satisfies Condition 3 of Definition 3.2.6, and is regular.

Therefore there is a regular tree F such that Aut(B(s,G(t)) ∼= Aut(F ).

For any t ∈ T let st be the root of G(t)+. Consider the set

B := {B(st;G(t)) : |G(t)| 6= 1} ∪ {{t} : |G(t)| 6= 1}

Let H be the group of all automorphisms of T that fix every B ∈ B setwise.

H =
∏

B∈B

Aut(B)

Since the Cartesian product of dendromorphic groups is dendromorphic, H is also

dendromorphic. We have already seen that G fixes every B ∈ B setwise, so G ≤ H . 2

If you are familiar with automorphism groups as topological groups, you may have

realised that in the proof of Theorem 3.2.10 we are essentially calculating the closure

of the copy of D∞. In Theorem 3.2.13 we will see that a CFPO is not treelike if and only

if its automorphism group contains a closed copy of D∞.
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While describing this situation using the language of topological groups might have

been more elegant, I prefer this approach as it makes it clear that these properties are

recognisable from the abstract group.

3.2.2 D∞ in CFPOs

Corollary 3.2.11 Aut(Alt) 6∼= Aut(T ) for all trees T .

Proof

Aut(Alt) ∼= D∞, so if Aut(T ) ∼= Aut(Alt) then the whole automorphism group is a copy

of D∞, and so cannot be contained in a dendromorphic group . 2

So we’ve established that D∞ can occur as a subgroup of the automorphism group of

a CFPO in a different way than it can as a subgroup of the automorphism group of a

tree. The rest of this subsection is devoted to finding out how copies of D∞ that aren’t

contained in a dendromorphic group can act on a CFPO.

Definition 3.2.12 Let M be a CFPO. If X ⊆ M then Xcc, the connection closure of X ,

is the following set
⋃

x,y∈X

Path〈x, y〉

In particular, if G ≤ Aut(M) and x ∈ M then this combines with the notation of

Definition 1.3.3 to give:

G(x)cc :=
⋃

g,h∈G

Path〈g(x), h(x)〉

Theorem 3.2.13 Let M be a Rubin complete CFPO and let G ≤ Aut(M). If G ∼= D∞

then either G is contained in a dendromorphic group or G acts on a copy of Alt in M , but

not both.
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Proof

If M is a CFPOn for some n ∈ N or a CFPOω then by Theorem 3.1.14, Corollary 3.1.15

and Theorem 3.1.15 there is a tree T such that Aut(M) ∼= Aut(T ). Thus Theorem 3.2.10

shows that G is contained in a dendromorphic group and G cannot act on a copy of Alt,

as M does not contain a copy of Alt. We now suppose that M is a connected CFPO∞.

If G fixes a ∈ M then G ≤ Auta(M). By adding a colour predicate to M that only a

realises, we find a CFPO with a fixed point whose automorphism group is Auta(M). Since

this CFPO has a fixed point it is treelike (Theorem 3.1.11), and Theorem 3.2.10 shows

that there is a dendromorphic group X which is contained in Auta(M) and contains G.

Therefore if M \ supp(G) 6= ∅ then G is contained in a dendromorphic group .

Now suppose that G has no fixed point and that G(m)cc is not a CFPO∞ for any m ∈ M .

We can view the connected components of M \G(m)cc as extended cones of elements of

G(m)cc. For all a ∈ G(m)cc

C(a) := {x ∈M \G(m)cc : a ∈ Path〈x,G(m)cc〉}

i.e. C(a) is the union of all the extended cones of M \ G(m)cc that ramify from a. If

φ ∈ Aut(〈G(m)cc,≤M〉) does not extend to an automorphism of M then φ must map a to

b but C(a) 6∼= C(b).

If for all CFPOs C such that ∃a ∈ G(m)cc C ∼= C(a) we introduce a colour predicate PC

to 〈G(m)cc,≤M 〉 such that

〈G(m)cc,≤M〉 |= PC(a) ⇔ C(a) ∼= C

Every automorphism of 〈G(m)cc,≤m, PC〉 is a restriction of an automorphism of M .

Each G(m)cc is G-invariant, as otherwise we would be able to map a path inside G(m)cc

to one outside by an element of G, but this map must take the endpoints of this path with
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it, and these endpoints are elements of G(m)cc.

We choose one m ∈M . Since G(m)cc is not a CFPO∞, it is treelike. All of the extended

cones that are contained in M \G(m)cc are treelike if we fix the point in G(m)cc that they

emanate from, so by replacing G(m)cc and the extended cones, we may find a tree T such

that G ≤ Aut(T ) ≤ Aut(M), and so G is contained in a dendromorphic group .

So now suppose that a ∈M is such that G(a)cc is a CFPO∞. From such an a we define

b := Path〈a, Path〈τ−1(a), τ(a)〉〉

(because Path〈τ−1(b), b〉 ∩ Path〈b, τ(b)〉 = {b}) and consider G(b)−, the set of maximal

and minimal points of G(b)cc. If τZ(b) = G(b) then G(b)− is a copy of Alt on which G

acts.

If σ(b) 6∈ τZ(b) then we consider G’s action on

Path〈τZ(b), τZ(σ(b))〉

which, if non-empty, will be fixed pointwise by τ , and on which σ will have a fixed point,

contradicting the assumption that G has no fixed points.

If Path〈τZ(b), τZ(σ(b))〉 is empty then we are in the situation depicted in Figure 3.17.

In Figure 3.17 c0 is σ(b) and ck := τk(c0), which forces στk(b) to be cj for some j (whose

relationship with k will be deduced shortly). Note that σ and τ satisfy the identity

στ = τ−1σ

which implies the following equations:
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τ−1(b) b τ(b)

τ−1(σ(b)) σ(b) τ(σ(b))

Path〈τZ(b), τZ(σ(b))〉

Figure 3.16: Path〈τZ(b), τZ(σ(b))〉

ci = στ j(b)

= τ−jσ(b)

τ j(ci) = c0

ci+j = c0

so ci = σ(τ−i(b)). Let the di be the points fixed by σ on Path〈τ i(b), ci〉 respectively. Then
⋃

Path〈di, dj〉 is a copy of Alt which is acted on as desired.

Let A be the family of copies of Alt in M . We now show that if Act(A,Aut(M)) (the

action of Aut(M) on A) is isomorphic to D∞ for some A ∈ A then Act(A,Aut(M))

τ−1(b) b τ(b)c−1 c0 c1

d−1 d0 d1

Figure 3.17: Path〈τ i(b), ci〉
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cannot be contained in a dendromorphic group , thus showing the exclusivity of the

theorem.

If for some A ∈ A the action of Aut(M) is D∞ then Act(A,Aut(M)) ∼= D∞ and

there is no dendromorphic group contained in Aut{A}(M) that contains Act(A,Aut(M)).

Therefore if Act(A,Aut(M)) is contained in a dendromorphic group X , then

X 6≤ Aut{A}(M)

In particular this implies that if g ∈ X \ Act(A,Aut(M)) then g(A) 6= A.

Let AU be the set of upper points of A, enumerated by {. . . , a−2, a0, a2, . . .}. Since

(AU ,Act(A,Aut(M))) is 1-transitive so is (X(AU), X), and so

(X(AU), X) ∼= (X(AU), X0)

where X0 is one of the factors of X (i.e. Sym(ω), Z ≀ Z2 or
∏

Sn). This X0 cannot be

Sym(ω) as then it would be possible to map the triple (a−2, a0, a2) to (a−2, a2, a0), but

any map that does this has to change the length of Path〈a−2, a2〉, and so cannot be an

isomorphism. This same argument prevents X0
∼=
∏

Sn.

Let σ be the infinite order generator of Act(A,Aut(M)) and τ be the finite order generator.

Suppose X0
∼= Z ≀ Z2, generated by α, β and γ, where α and β have infinite order and γ

has finite order. Since Act(A,Aut(M)) contains an element of finite order, both supp(α)

and supp(β) must have a non-empty intersection with AU .

Since α, β and γ generate X and either preserve or switch supp(α) and supp(β), every

member of Act(A,Aut(M)) either preserves or switches supp(α) and supp(β). So both

supp(α) ∩ AU and supp(β) ∩ AU cannot both be singletons, as only the identity will

preserve supp(α) ∩ AU and supp(β) ∩ AU and no member of Act(A,Act(M)) will swap

them. Since supp(α)∩AU is not a singleton, the action on it determines the action on the
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whole of AU , and so α and β cannot act independently. So X0 cannot be isomorphic to

Z ≀ Z2. 2

Corollary 3.2.14 Let M be a CFPO. If there is an A ⊆ M and a G ≤ Aut(M) such

that:

1. A is a copy of Alt;

2. G ∼= D∞; and

3. G acts on A.

then M is not treelike.

Proof

If M is treelike then Theorem 3.2.10 shows that G is contained in a dendromorphic

group, but Theorem 3.2.13 shows that this is impossible. 2

3.3 CFPOs in Model Theory

The section promised all those pages ago in the introduction is finally here!

The theory of trees is known to have certain model theoretic properties. Parigot showed

in 1982 that the theory of trees is NIP, and classified the stable ones [18], while Simon

showed in 2011 that the theory of trees is inp-minimal [34]. The observations that have

been made in this section give an easy method for extending these results to the theory of

CFPOs.



110 Chapter 3. Treelike CFPOs

3.3.1 NIP and Trees

Definition 3.3.1 A formula φ(x̄, ȳ) is said to have the independence property (for a

complete theory T ) if in every model M of T there is, for each n < ω, a family of tuples

b̄0, b̄1, . . . b̄n−1 such that for every I ⊆ {0, 1, . . . n − 1} there is some tuple ā ∈ M such

that

M |= φ(ā, b̄i) ⇔ i ∈ I

T is said to be NIP if no formula in T has the independence property.

Note that if T is interpretable in S then if φ has the independence property for T then

the interpretation of φ has the independence property for S. This means that if T is

interpretable in S and S is NIP, then T is NIP.

The ‘headline’ result of [18] does not mention NIP.

Theorem 3.3.2 (Parigot, Theorem 2.6 of [18]) A type over a tree never has more than

2ℵ0 coheirs.

‘Coheirs’ were defined by Poizat, appearing in [19] in 1981, the year before Parigot’s

paper was published. If you wish to read the proof of this theorem, but find Poizat’s

French too daunting, then I recommend the seminar notes of Casanovas [3], which are

in English. I am not aware of any publicly available English translation or account of

Parigot’s paper.

Definition 3.3.3 (Poizat, [19]) Let M,N be models such that M ≺ N . Let p(x) ⊆ q(x)

where q ∈ S1(N) and p ∈ S1(M). We say that q is a coheir of p if q is finitely satisfiable

in M .

Theorem 3.3.4 (Poizat, [19]) Let T be a theory.
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1. If T has the NIP then for all M such that T |= M and |M | = λ ≥ |T |, for all

p ∈ S1(M) there are at most 2λ coheirs of p.

2. If T has the IP then for every λ ≥ |T | there is an M such that T |= M and

|M | = λ ≥ |T |, and there is p ∈ S1(M) such that p has 22
λ

coheirs.

Parigot’s results do not stop with trees, however. He extends to ‘arborescent’ structures,

defined by Schmerl.

Definition 3.3.5 (Schmerl [28]) Let L = 〈R0, . . . , Rm−1, U0, . . . , Un−1〉 be a finite

language where each Ri is a binary predicate and each Ui is a unary predicate.

Let (x, y) ≡ (u, v) by the following quaternary formula:

x 6= y ∧ u 6= v ∧
∧

i<m

((Ri(x, y) ↔ Ri(u, v)) ∧ (Ri(y, x) ∧ Ri(v, u)))

Let M be an L-structure. M is said to be arborescent if for all finite B ⊆ M , if |B| ≥ 2

then there are distinct a, b ∈ B such that if c ∈ B \ {a, b} then (a, c) ≡ (b, c)

Finitely coloured trees are examples of arborescent structures.

Proposition 3.3.6 (Parigot, Corollary 2.8 of [18]) All arborescent structures are NIP.

3.3.2 inp-minimality and Trees

Definition 3.3.7 (Shelah, Definition 7.3 of [32]) An independence pattern (an inp-

pattern) of length κ is a sequence of pairs (φα(x, y), kα)α<κ of formulas such that there

exists an array 〈aαi : α < κ , i < λ〉 such that:
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• Rows are kα-inconsistent: for each α < κ, the set {φα(x, aαi ) : i < λ} is kα-

inconsistent,

• Paths are consistent: for all η ∈ λκ, the set {φα(x, aαη(α)) : α < κ} is consistent.

Note that if M is interpretable in N then any independence pattern in M is also an

independence pattern of N .

Definition 3.3.8 (Goodrick [13]) A theory is inp-minimal if there is no inp-pattern of

length two in a single free variable.

Theorem 3.3.9 (Simon, Proposition 4.7 of [34]) If 〈T,≤, Ci〉 is a coloured tree then

Th(〈T,≤, Ci〉) is inp-minimal.

3.3.3 CFPOs

How can we apply these results to CFPOs?

Let M be a CFPO with connected components Ai, indexed by I . For each Ai, pick an

ai ∈ Ai and introduce a new unary predicate A such that

M |= A(x) ⇔ ∃i ∈ I x = ai

Since we are adding an additional symbol to the language Th(〈M,≤M〉) can be

interpreted in Th(〈M,≤M , A〉) simply by forgetting A.

ai is a fixed point of every 〈Ai,≤M , A〉 so we may invoke Remark 3.1.19 to note that

Th(〈M,≤M , A〉 is interpretable in Th(T ).

Therefore every CFPO is interpretable in an NIP, inp-minimal theory, and hence is NIP

and inp-minimal.
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This shows that if a property that is closed under taking an interpretation is possessed by

the theory of coloured trees, then it is possessed by the CFPOs, but the interpretation here

is of a special form. If we are allowed to fix points in a CFPO, we are essentially handling

a tree, thus I expect any property of the coloured trees that allows reference to a set of

parameters to also be possessed by the CFPOs.
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Chapter 4

CFPOs with Transitivity Conditions

This chapter is concerned with the reconstruction of a certain class of CFPOs which

fulfil some transitivity assumptions. These assumptions guarantee that the automorphism

groups are rich enough to use the methods employed by Shelah in [31] and [30], and by

Shelah and Truss in [33], for reconstructing the symmetric groups of cardinals and their

quotients as permutation groups from them as abstract groups.

Throughout this chapter we will not assume that the CFPOs in question are Rubin

complete, but we will assume that they are path complete.

4.1 Transitivity

Definition 4.1.1 We say that CFPO M is 1-transitive if for all x, y ∈ M there exists a

ϕ ∈ Aut(M) such that ϕ(x) = y.

Definition 4.1.2 We say that a CFPOM is cone transitive if it is 1-transitive and ifC and

D are cones emanating from point x in the same direction then there exists a ϕ ∈ Aut(M)

such that ϕ(C) = D.
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Since every element may be sent to any other, if M is 1-transitive then M is

monochromatic. M is cone transitive implies that M is one-transitive, so all cone

transitive CFPOs are monochromatic.

Cone transitive CFPOs are the arena for an interpretation inspired by Shelah and Truss’

work. Unfortunately, there are very few Rubin complete cone transitive CFPOs. However,

these methods still work when we do not have Rubin completeness, so for this chapter we

drop the assumption that M is Rubin complete.

We require one additional assumption before we begin our interpretation.

Definition 4.1.3 The upwards ramification order of x in M , written as Ro ↑ (x), is the

number of cones above x.

The downwards ramification order of x inM , written asRo ↓ (x), is the number of cones

below x.

Proposition 4.1.4 If M is 1-transitive then for all x and y

Ro ↑ (x) = Ro ↑ (y) and Ro ↓ (x) = Ro ↓ (y)

Proof

Any automorphism that maps x to y also maps the cones above x to the cones above y.

The same is true for the cones below. 2

Definition 4.1.5 Let M be 1-transitive. The upwards (resp. downwards) ramification

order of M , written as ro ↑ (M) (resp. ro ↓ (M)), is equal to Ro ↑ (x) (resp. Ro ↓ (x))

for some x.

To get a sufficiently rich automorphism group we must also assume that both ro ↑ (M)

and ro ↓ (M) are at least 5.
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Definition 4.1.6 Let KCone be the class of cone transitive CFPOs such that

5 ≤ ro ↑ (M) ≤ ro ↓ (M)

for all M ∈ KCone.

We have made the additional assumption that ro ↑ (M) ≤ ro ↓ (M) because the

reverse ordering of M always has the same automorphism group as M , but is not always

isomorphic to M .

Definition 4.1.7 Let m,n ∈ N be such that 5 ≤ n ≤ m and let L be a 1-transitive linear

order. X(n,m, L) is defined to be the CFPO where every point has upwards ramification

order n, downwards ramification order m, and every maximal chain is isomorphic to L.

We can use a back-and-forth argument to establish that if two CFPOs could possibly be

represented by X(n,m, L) then they are isomorphic, so X(n,m, L) is well-defined.

Remark 4.1.8 X(n,m, L) ∈ KCone.

Before jumping into the interpretation, here are a few observations about the properties of

the elements of KCone.

Definition 4.1.9 Let L be a linear order and let a ∈ L. A neighbourhood of a is a convex

subset of L that contains a. A discrete (resp. dense) neighbourhood is one where the

convex set is discrete (resp. dense).
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Lemma 4.1.10 Let M ∈ KCone and let L be a maximal chain of M . If L has a discrete

(resp. dense) neighbourhood then every maximal chain of M is discrete (resp. dense).

Proof

Let x ∈ M have a discrete neighbourhood in a copy of L that passes through it. This

means that the cones above and below x that contain L have least and greatest elements

respectively. Since M is cone transitive, all the cones that emanate from x have least

or greatest elements. M is 1-transitive, so every element of x only has successors and

predecessors, andM contains no dense chains. Therefore every maximal chain is discrete.

Similarly, if L has a dense neighbourhood, then there is a point which has no successors

or predecessors, and so every maximal chain of M is dense. 2

Proposition 4.1.11 If M ∈ KCone is Rubin complete then all the maximal chains of M

are discrete and Dedekind complete.

Proof

If M is Rubin complete then all of the cones above and below any point have least and

greatest elements respectively. Hence all the maximal chains are discrete. Suppose that

there is an L, a maximal chain of M which is not Dedekind complete. Let I be a cut of

L. Since M is Rubin complete, the ideal {x ∈ M : x ≤M m for some m ∈ I} has a

maximal element, which we call a.

There is an l ∈ L such that {x ∈ M : x ≤M m for some m ∈ I} ≤ l, and so a ≤ l.

Since L is maximal, a ∈ L, giving a contradiction. 2

Proposition 4.1.12 Let M ∈ KCone. If M is Rubin complete then M ∼= X(n,m,Z) for

some cardinal n,m such that 5 ≤ n ≤ m.
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Proof

Let M be Rubin complete. By the definition of KCone there are cardinals n and m such

that ro ↑ (M) = m and ro ↓ (M) = n and 5 ≤ n ≤ m.

Proposition 4.1.11 shows that all the maximal chains are discrete. Let L be one of these

discrete maximal chains of M . Since M is 1-transitive, there are maps taking a point to

any of its successors and predecessors, and so any x ∈ L is contained in a copy of Z.

Thus L ∼= I × Z for some linear order I . This is only Dedekind complete if I is the

one-element linear order.

Therefore every maximal chain of M is isomorphic to Z, and hence M is of the form

X(n,m,Z). 2

This means that the structure of the cone-transitive Rubin-complete CFPOs is somewhat

restricted, so I have developed the methods used in the following sections to work in path

complete cone transitive CFPOs, which is a wider class.

4.2 Reconstructing Betweenness in KCone

All the CFPOs we are handling are from KCone, so are path complete, cone transitive,

both ro ↑ (M) and ro ↓ (M) are greater than 4, and ro ↑ (M) ≤ ro ↓ (M).

We are now ready to give the interpretation of M inside Aut(M). The interpretation uses

pairs of subgroups isomorphic to A5, the alternating group on five elements, to represent

the points of the CFPO. A5 is chosen because it is the smallest non-abelian finite simple

group.

Since we are now trying to find an interpretation of M in Aut(M), we will be seeing a

lot of long formulas. I recommend tearing out the appendix so you don’t have to keep
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flicking back and forth. It repeats the definitions and gives the intended meaning of the

abbreviations, which may also illuminate matters.

Definition 4.2.1 Let f̄ , f̄0, f̄1, ḡ, ḡ0 and ḡ1 be 60-tuples from Aut(M).

1. For all φ ∈ Aut(M), if φ preserves X set-wise then φ|X , the restriction of φ to

X , is the map obtained by taking the union of the standard restriction, which is a

partial automorphism, and the restriction of the identity to M \X . Symbolically:

φ|X := φ|X ∪ id|M\X

This is only a total automorphism in certain circumstances which crop up often in

this chapter.

2. (Definition 1.3.3) If f̄ ∈ Aut(M) and x ∈M then

f̄(x) := {y ∈M : ∃f ∈ f̄ f(x) = y}

3. A5(f̄) is the formula that states “f̄ satisfies the elementary diagram of A5”. This is

the conjunction of formulas of the form fifj = fk and fifj 6= fk.

4. Comm(f̄ , ḡ) is the formula

Alt5(f̄) ∧ Alt5(ḡ) ∧
∧

fi∈f̄
gj∈ḡ

(figj = gjfi)

5. if f̄ and ḡ satisfy Alt5 and φ ∈ Aut(M) is any automorphism then

f̄ ∗ ḡ := (figi) f̄φ := (φfiφ
−1)

φ ∗ f̄ := (φfi) f̄ ∗ φ := (fiφ)
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6. Indec(f̄) is the formula

¬∃ḡ, h̄(ḡ ∗ h̄ = f̄ ∧ Comm(ḡ, h̄))

7. Disj(f̄ , ḡ) is the formula

Indec(f̄) ∧ Indec(ḡ) ∧ Comm(f̄ , ḡ)

8. [supp(f̄) ⊑ supp(ḡ)] is the formula

Indec(f̄) ∧ Indec(ḡ) ∧ ¬disj(f̄ , ḡ) ∧

¬∃φ[¬disj(f̄φ, f̄) ∧ disj(ḡφ, ḡ)] ∧

¬∃φ(f̄φ = f̄ ∧ ḡφ 6= ḡ) ∧

9. [supp(ḡ) < supp(f̄)] is the formula

[supp(ḡ) ⊑ supp(f̄)] ∧ ¬[supp(f̄) ⊑ supp(ḡ)]

10. SamePD(f̄ , ḡ) (Same Point and Direction) is the formula

∀h̄([supp(h̄) < supp(f̄)] ↔ [supp(h̄) < supp(ḡ)])

11. RepPoint(f̄0, f̄1) is the formula

disj(f̄0, f̄1) ∧ ∀ḡ∃h̄¬disj(ḡ, h̄) ∧





SamePD(f̄0, h̄)

SamePD(f̄1, h̄)
∨
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12. EqRepPoint(f̄0, f̄1; ḡ0, ḡ1) is the formula

RepPoint(f̄0, f̄1) ∧ RepPoint(ḡ0, ḡ1)∧

(SamePD(f̄0, ḡ0) ∧ SamePD(f̄1, ḡ1)) ∨ (SamePD(f̄0, ḡ1) ∧ SamePD(f̄1, ḡ0))

4.2.1 The Domain of the Interpretation

Lemma 4.2.2 If Aut(M) |= Alt5(ḡ) holds then ḡ fixes at least one point.

Proof

Every transitive action of Alt5 is isomorphic to its action on a coset space [Alt5 : H ] for

some H ≤ A5. The subgroups of A5 can have orders 1, 2, 3, 4, 5, 6, 10, 12 and 60 and

hence the possible values for |ḡ(x)| are 60, 30, 20, 15, 12, 10, 6, 5 and 1.

Every element of ḡ has finite order so for all x we know that ḡ(x) is an antichain. Pick

one x such that |ḡ(x)| 6= 1 (possible, as A5 is not the identity), so there are gi that act

non-trivially.

Let

S :=
⋃

xi,xj∈ḡ(x)

Path〈xi, xj〉
−

The definition of Path〈x, y〉− can be found in Lemma 3.1.12. Since each Path〈xi, xj〉
− is

finite and ḡ(x) is finite, S is also finite, and therefore must be a CFPOn for some n.

In Subsection 3.1.1 we showed that there was a tree T such that Aut(S) ∼=P Aut(T ). The

root of T is fixed by every automorphism of S, and hence by every element of ḡ. 2

Lemma 4.2.3 If supp(f̄) and supp(ḡ) are disjoint then Aut(M) |= Comm(f̄ , ḡ).
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Definition 4.2.4 Let f̄ be such that Aut(M) |= A5(f̄) and Ci are the connected

components of supp(f̄). We say that E ⊆ M is an extended connected component of

supp(f̄) if:

1. E contains a union of Ci and at most one element fromM \ supp(f̄), which we call

e;

2. if C ⊆ E then f̄(C) ⊆ E;

3. if e exists then E contains at least two connected components, C0 and C1, and

{e} = Path〈C0, C1〉; and

4. if D satisfies conditions 1-3 and E ∩D 6= ∅ then E ⊆ D.

Lemma 4.2.5 If X is an extended connected component of some supp(f̄) then

Path〈X,M \X〉 is a singleton.

Proof

Condition 2 of Definition 4.2.4 shows that X is preserved setwise by f̄ , so by Lemma

3.1.12 there are x and y such that Path〈X,M \X〉 = Path〈x, y〉. Both x and y are fixed

by f̄ , so x, y ∈M \X .

Suppose one of the extended cones above x (Definition 1.3.19) intersects X and one

of the cones below x intersects X . Let U be the upwards extended cone and let D be

the downwards extended cone. f̄(U) ∩ f̄(D) = ∅, as f̄ fixes x, so f̄(U) ∩ X satisfies

conditions 1-3, and does not contain X giving a contradiction.

Therefore we may assume that X is contained in extended cones above x. Let y0 and y1

lie in different extended cones below x. The definition of extended cone guarantees that

Path〈x, y0〉 ∩ Path〈x, y1〉 = {x}, so Path〈x, y〉 = {x}. 2
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Lemma 4.2.6 Let f̄ satisfy Alt5. If we partition supp(f̄) into two collections of extended

connected components, which we will call X and Y , then (fi|
X) and (fi|

Y ) satisfy Alt5.

Proof

First of all, we must show that this lemma makes sense, i.e. f̄ preserves the

extended connected components of supp(f̄) set-wise and therefore fi|
X and fi|

Y are

automorphisms.

Since the supports of (fi|
X) and (fi|

Y ) are disjoint, Comm(fi|
X), (fi|

Y )) holds. We

consider the positive statements of the formula A5 that f̄ satisfies, which are of the form

fifj = fk.

Since fi = fi|
Xfi|

Y for all i we can deduce that

fi|
Xfj |

Xfi|
Y fj |

Y = fk|
Xfk|

Y

and since (fα|
Xfα|

Y )|X = fα|
X we conclude that (fi|

X) and (fi|
Y ) satisfy all the positive

statements of Alt5. We now consider the negative statements, those of the form fifj 6= fk.

Repeating the argument for the positive statements allows us to deduce

fi|
Xfj |

Xfi|
Y fj |

Y 6= fk|
Xfk|

Y

which only guarantees that at least one of fi|
Xfj|

X 6= fk|
X or fi|

Y fj |
Y 6= fk|

Y . Without

loss of generality we assume that fi|
Y fj |

Y 6= fk|
Y . In A5 there is the positive statement

fifj = fl for some fl 6= fk, so if fi|
Xfj |

X = fk|
X , then fk|

X = fl|
X .

We define the homomorphism

Φ :







f̄ → (fi|
X)

fi 7→ fi|
X
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Φ−1(id) is a normal subgroup of f̄ . We have just found distinct fk and fl such that

fk|
X = fl|

X , so since A5 is simple, this means that fi|
X = id for all fi ∈ f̄ , contradicting

the fact that X ∩ supp(f̄) 6= ∅.

Therefore if A5(f̄) then A5((fi|
X)) and A5((fi|

Y )). 2

Lemma 4.2.7 If ḡ ∗ h̄ = f̄ and Comm(ḡ, h̄) then supp(ḡ), supp(h̄) ⊆ supp(f̄).

Proof

Suppose there is an x such that gj(x) 6= x for some j and fi(x) = x for all i. Therefore

∀i higi(x) = x

∀i gi(x) = h−1
i (x)

There are gj and gk such that gjgk(x) 6= gkgj(x) as A5 is non-abelian, and if we substitute

h−1
j for gj we find that

h−1
j gk(x) 6= gkh

−1
j (x)

contradicting M |= Comm(ḡ, h̄). 2

Lemma 4.2.8 Let X and Y be extended connected components of supp(f̄) and supp(ḡ).

If Comm(f̄ , ḡ) and |X ∩ Y | ≥ 1 then either X ⊆ Y or Y ⊆ X .

Proof

Let {x} = Path〈X,M \X〉 and {y} = Path〈Y,M \ Y 〉. These are singletons by Lemma

4.2.5. Suppose X * Y and Y * X .
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First suppose that x = y. This means that Path〈X, Y 〉 = {x}, and that X and Y are

entirely contained in the upwards and downwards extended cones of x, as illustrated in

Figure 4.1.

X Y

x = y

Figure 4.1: If x = y in Lemma 4.2.8

Recall Definition 4.2.4, and note that ḡ(X ∩ Y ) satisfies conditions 1 and 3 because both

X and Y do, and by definition it satisfies condition 2. Therefore Y ⊆ ḡ(X ∩ Y ). Thus if

ḡ(X ∩ Y ) ⊆ X then Y ⊆ X and we are done. Similarly if f̄(X ∩ Y ) ⊆ Y then X ⊆ Y

and we are done.

We now suppose that there is a z ∈ X ∩ Y such that f̄(z) * Y and ḡ(z) * X . Let Cz

be the extended cone of x that contains z. We consider the action of f̄ and ḡ on the set

f̄(Cz) ∪ ḡ(Cz).

Let fi ∈ f̄ map Cz into X \ Y and let gj map Cz into Y \X . Then

figj(Cz) = gj(Cz) and gjfi(Ci) = fi(Cz)

contradicting the assumption that Aut(M) |= Comm(f̄ , ḡ). This is depicted in Figure

4.2.

Now suppose that x 6= y. Suppose x 6∈ Y and y ∈ X , and let z ∈ Y . By definition,

y ∈ Path〈z, x〉, and since x is an endpoint of that path, Path〈z, x〉 ⊆ X , and so z ∈ X .

This is depicted in Figure 4.3.
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Czfi(Cz) gj(Cz)gjfi

X

Y

Figure 4.2: Images of Cz

x

y

z

Figure 4.3: x 6∈ Y and y ∈ X

If both x 6∈ Y and y 6∈ X then Path〈x, y〉 ⊆M \ (X ∪ Y ). This is depicted in Figure 4.4.

Let z ∈ Y . By definition y ∈ Path〈x, z〉 and since Path〈x, y〉 * X , we know that z 6∈ X .

Similarly, if z ∈ X then z 6∈ Y , contradicting the assumption that X ∩ Y 6= ∅.

We therefore suppose that x ∈ Y and y ∈ X .

x ∈ Path〈y, fi(y)〉 for any fi, as otherwise X will not be an extended connected

component.
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x y

Path〈x, y〉X Y

Figure 4.4: x 6∈ Y and y 6∈ X

Path-betweenness is preserved by automorphisms, so

gj(x) ∈ Path〈gj(y), gjfi(y)〉

and f̄ and ḡ commute, and y is fixed by ḡ, hence

gj(x) ∈ Path〈y, fi(y)〉

By symmetry

y ∈ Path〈x, gj(x)〉

and

fi(y) ∈ Path〈x, gj(x)〉

From these facts we can deduce the path-configuration of x, y, gj(x) and fi(y).

x y
Path〈x, y〉

Figure 4.5: Path〈x, y〉

Since y ∈ Path〈x, gj(x)〉 and x ∈ Path〈y, fi(y)〉 we may add to Figure 4.5 fi(y) and gj(x)

to obtain Figure 4.6.

But we also know that fi(y) ∈ Path〈x, gj(x)〉, so we deduce that fi(y) = x. Similarly
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x y gj(x)fi(y)

Figure 4.6: Path〈x, y〉, fi(y) and gj(x)

gj(x) ∈ Path〈y, fi(y)〉 shows that gj(x) = y. This contradicts the fact that f̄ fixes x and

ḡ fixes y, so we conclude that either X ⊆ Y or Y ⊆ X .

2

Lemma 4.2.9 If Aut(M) |= Comm(f̄ , ḡ) and supp(f̄) ∩ supp(ḡ) 6= ∅ then f̄ ∗ ḡ has an

orbit of length 20 in supp(f̄) ∩ supp(ḡ). If f̄ ∗ ḡ has an orbit of length 20 then it also has

a non-trivial orbit of some length other than 20.

Proof

Lemma 3.5 of [33] is:

“Suppose that f̄ , ḡ are subgroups of Sym(X ) isomorphic to A5 (in the specified listings)

which centralize each other, and such that 〈f̄ , ḡ〉 is transitive on X . Then f̄ ∗ ḡ has an

orbit of length 20. Moreover, if f̄ ∗ ḡ has an orbit of length 20 then is also has an orbit of

some other length greater than 1.”

Let {Ai : i ∈ I} be the ECC of supp(f̄) and let {Bj : j ∈ J} be the ECC of supp(ḡ).

Lemma 4.2.8 shows that if Ai ∩ Bj 6= ∅ then Ai ⊆ Bj or Bj ⊆ Ai.

Pick one such A and B, and without loss of generality assume that A ⊆ B. Let X be a

connected component of A.

X := 〈f̄ , ḡ〉(X)

Each member of X is a translate of X .

We define φf : f̄ → Sym(X ) as follows: φf (fi) = (X 7→ fi(X)). This is a

homomorphism, and since A5 is simple, so φ’s kernel is trivial, and φf(f̄) ∼= A5.
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Similarly, if we define φg : ḡ → Sym(X ) as follows: φg(gi) = (X 7→ gi(X)). then

φg(ḡ) ∼= A5.

The ‘specified listings’ in Shelah and Truss’ Lemma 3.5 refers to the fact that the formula

A5(f̄) will be different depending on how we enumerateA5. For example, we could insist

that f0 is the identity, and this would give a different formula to if we insisted that f5 is

the identity. Our formula A5 is fixed so we need not worry about this assumption.

〈φf(f̄), φg(ḡ)〉 is transitive on X since X is an orbit of 〈f̄ , ḡ〉.

Therefore Lemma 3.5 of [33] is applicable to X . 2

Lemma 4.2.10 If Aut(M) |= A5(f̄) then no orbit of f̄ has length 60.

Proof

Let x ∈ M be such that |f̄(x)| = 60, and let {x0, . . . x59} be an enumeration of f̄(x).

Take X(5, 60,Z), and pick an arbitrary z ∈ X(5, 60,Z), and label the successors of

z as z0, . . . z59. For each fi ∈ f̄ , let gi ∈ Aut(X(5, 60,Z) be induced by the partial

automorphism

zn 7→ zm if fi(xn) = xm

Aut(X(5, 60,Z)) |= A5(ḡ) and ḡ has an orbit of length 60. Let Ci be the extended cone

of z that contains zi.

For each y ∈ ḡ(z) there is a unique gi ∈ ḡ such that gi(z) = y, so we may label ḡ(x) by

elements of ḡ. In this way, we can view the action of ḡ on ḡ(x) as left multiplication.

We define h̄ on each g ∈ h̄ as follows:

hi : g 7→ gg−1
i
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This h̄ commutes with ḡ, as

higj(g) = hi(gjg)

= (gjg)g
−1
i

= gj(gg
−1
i )

= gj(hi(g))

= gjhi(g)

We may extend each hi ∈ h̄ to an automorphism of X(5, 60,Z) as follows

y 7→







y z ∈ X(5, 60,Z) \
⋃

i<60Ci

gj(y) y ∈ Ck and gj : Ck 7→ hi(Ck)

We now have a h̄ ∈ Aut(X(5, 60,Z)) such that Aut(X(5, 60,Z)) |= Comm(ḡ, h̄)

Remember that id ∈ ḡ and consider ḡ ∗ h̄. For all gihi ∈ ḡ ∗ h̄

gihi(id) = giidg
−1
i

= id

Since id(x) was labelled as id, this means that x ∈ supp(ḡ)∩supp(h̄), but x 6∈ supp(ḡ∗h̄),

contradicting Lemma 4.2.7.

2

Lemma 4.2.11 If Aut(M) |= A5(f̄) and there is an x ∈ M such that |f̄(x)| = 30 then

there are ḡ and h̄ such that Aut(M) |= Comm(ḡ, h̄) and f̄ = ḡ ∗ h̄.

Proof

Let Aut(M) |= A5(f̄) be such that there is an x ∈ M such that |f̄(x)| = 30. Let X be the

ECC of supp(f̄) that contains x.
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Let G and H be subgroups of A5 such that |G| = 12 and |H| = 10. There is a transitive

action of A5 on {aG : a ∈ A5} × {bH : b ∈ A5} which is isomorphic (as permutation

groups) to f̄ ’s action on f̄(x).

We may therefore label each cone of X as (aG, bH).

We define ḡ, h̄ ∈ Aut(M) as follows:

gi : z 7→







fi(z) z ∈M \X

fj(z) fj((aG, bH)) = (giaG, bH)

hi : z 7→







z z ∈M \X

fj(z) fj((aG, bH)) = (aG, hibH)

If ḡ and h̄ are not well-defined then there is an fi such that fi((aG, bH)) = (aG, bH) but

there is a z ∈ (aG, bH) such that fi(z) 6= z. However f̄ acts transitively on the (aG, bH),

so |f̄(z)| = 60. Lemma 4.2.10 shows that no such f̄ exists.

If z ∈ M \X then gihi(z) = gi(z) = fi(z), so (ḡ ∗ h̄)|M\X = f̄ |M\X . If z ∈ (aG, bH)

then gihi((aG, bH)) = (gi(a)G, hi(b)H) = fi((aG, bH)), therefore gihi(z) = fi(z), and

so (ḡ ∗ h̄)|X = f̄ |X .

Together, we now have (ḡ ∗ h̄) = f̄ , so the lemma is proved. 2

Proposition 4.2.12 Aut(M) |= Indec(f̄) if and only if supp(f̄) has exactly one extended

connected component and every orbit has less than 30 members.

Proof

First we prove that if supp(f̄) has exactly one extended connected component and every

orbit has less than 30 members then Aut(M) |= Indec(f̄) by contradiction. Let ḡ and h̄

witness the fact that f̄ does not satisfy Indec, i.e. f̄ = ḡ ∗ h̄ and Aut(M) |= Comm(ḡ, h̄).
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If supp(ḡ) ∩ supp(h̄) = ∅ then f̄ fixes supp(ḡ) and supp(h̄) setwise, and hence supp(ḡ)

and supp(h̄) lie in different ECCs of supp(f̄).

If supp(ḡ) ∩ supp(h̄) 6= ∅ then Lemma 4.2.9 shows that ḡ ∗ h̄ has an orbit of length at

least 20. If ḡ ∗ h̄ has an orbit of length 20 then there is also another orbit of length other

than 20. Since the length is other than 20, this other orbit cannot lie in the same ECC as

the orbit of length 20.

Therefore if supp(f̄) has exactly one extended connected component and every orbit has

less than 30 members then Aut(M) |= Indec(f̄). We now turn our attention to the other

direction, which we also do by contradiction.

Suppose supp(f̄) has multiple extended connected components. We let X be one of these

extended connected components and consider f̄ |X and f̄ |M\X . These two both satisfy

Alt5 (by Lemma 4.2.6) and their supports are disjoint, so they satisfy Comm. Finally

f̄ |X ∗ f̄ |M\X = f̄ , showing that f̄ |X and f̄ |M\X witness the fact that f̄ does not satisfy

Indec.

Lemma 4.2.10 shows that f̄ cannot have an orbit of length 60. Lemma 4.2.11 shows that

if f̄ has an orbit of length 30 then Aut(M) |= ¬Indec(f̄). 2

Lemma 4.2.13 If Aut(M) |= disj(f̄ , ḡ) then supp(f̄) ∩ supp(ḡ) = ∅.

Proof

Suppose supp(f̄) ∩ supp(ḡ) 6= ∅. By Lemma 4.2.8 either

supp(f̄) ⊆ supp(ḡ) or supp(f̄) ⊆ supp(ḡ)

Now assume that supp(f̄) $ supp(ḡ) and let z ∈ supp(f̄).
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Path〈supp(f̄),M \ supp(f̄)〉 is a singleton, as Aut(M) |= Indec(f̄). Let

{xf} := Path〈supp(f̄),M \ supp(f̄)〉

xf 6∈ supp(f̄), but since supp(f̄) ( supp(ḡ), we know that xf ∈ supp(ḡ).

Let gi ∈ ḡ. By definition xf ∈ Path〈g−1
i (xf ), z〉. Since paths are preserved by

automorphisms, this translates to

gi(xf ) ∈ Path〈xf , gi(z)〉

Thus if gi 6= id then gi(z) 6∈ supp(f̄), i.e. fjgi(z) = gi(z) for all j, but since z ∈ supp(f̄)

there is a k such that fk(z) 6= z. This is depicted in Figure 4.7.

gi(z) = fkgi(z)

= gifk(z)

6= gi(z)

This is a contradiction. Therefore if supp(f̄) ∩ supp(ḡ) 6= ∅ then supp(f̄) = supp(ḡ).

gi(z) z fk(z)

supp(ḡ)

xfgi(xf )

supp(f̄)

gi fk

Figure 4.7: supp(f̄) ( supp(ḡ)

Suppose that supp(f̄) = supp(ḡ). Again, Path〈supp(f̄),M \ supp(f̄)〉 is a singleton, as
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Aut(M) |= Indec(f̄) so we let

{xf} := Path〈supp(f̄),M \ supp(f̄)〉

Both f̄ and ḡ must act transitively on the same antichain of immediate successors or

predecessors of xf , which f̄ ∗ ḡ must also act on. Since Aut(M) |= Indec(f̄) and

Aut(M) |= Indec(ḡ), Proposition 4.2.12 shows that this antichain must have less than 30

members, but Lemma 4.2.9 showed that f̄ ∗ ḡ must have an orbit of at least 20 members.

Lemma 4.2.9 also showed that if f̄ ∗ ḡ has an orbit of length 20 then there was another

orbit. Therefore f̄ acts transitively on a set with strictly more than 20 elements, and hence

at least 30, which contradicts Proposition 4.2.12.

Therefore supp(f̄) ∩ supp(ḡ) = ∅. 2

Lemma 4.2.14 Recall that [supp(f̄) ⊑ supp(ḡ)] is the formula

Indec(f̄) ∧ Indec(ḡ) ∧ ¬disj(f̄ , ḡ) ∧

∀φ[disj(ḡφ, ḡ) → disj(f̄φ, f̄)] ∧

∀φ(ḡφ 6= ḡ → f̄φ = f̄) ∧

If f̄ and ḡ satisfy this formula then the support of ḡ is contained in the support of f̄ .

Proof

The two sentences

∀f̄ , ḡ











(∀φ[disj(ḡφ, ḡ) → disj(f̄φ, f̄)])

↔

(¬∃φ[¬disj(f̄φ, f̄) ∧ disj(ḡφ, ḡ)])
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and

∀f̄ , ḡ











(∀φ(ḡφ 6= ḡ → f̄φ = f̄))

↔

(¬∃φ(f̄φ = f̄ ∧ ḡφ 6= ḡ))











are tautologies, so the formula given here is equivalent to the one given in Definition 4.2.1.

Suppose that f̄ and ḡ are such that

Indec(f̄) ∧ Indec(ḡ) ∧ ¬disj(f̄ , ḡ)

This means that supp(f̄) and supp(ḡ) each have exactly one ECC, which have a non-

empty intersection. We define

xf := Path〈supp(f̄),M \ supp(f̄)〉

xg := Path〈supp(ḡ),M \ supp(ḡ)〉

If supp(f̄) = supp(ḡ) then supp(f̄φ) = supp(ḡφ) for all φ ∈ Aut(M). Therefore for all

φ ∈ Aut(M)

Aut(M) |= (disj(f̄φ, f̄) ↔ disj(ḡφ, ḡ))

and

Aut(M) |= (ḡφ 6= ḡ ↔ f̄φ = f̄)

Thus Aut(M) |= [supp(f̄) ⊑ supp(ḡ)].

We now suppose that supp(f̄) 6= supp(ḡ). In Case 1 we consider supp(ḡ) ( supp(f̄). In

Case 3 we consider supp(f̄) ( supp(ḡ). If neither supp(ḡ) ( supp(f̄) nor supp(f̄) (

supp(ḡ) then we are either in Case 2, where xf 6= xg, or Case 4 where xf = xg.

In Case 3 we must prove that Aut(M) |= [supp(f̄) ⊑ supp(ḡ)], while in Cases 1 and

2, we must show that the converse holds. Finally, in Case 4 we show that Aut(M) |=

[supp(f̄) ⊆ supp(ḡ)] if and only if supp(f̄) = supp(ḡ).
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ḡ

f̄

Case 1

f̄

ḡ

Case 2

f̄

ḡ

Case 3

f̄ ḡ

Case 4

= xg= xf

Figure 4.8: Cases of Lemma 4.2.14

Case 1 Since xf is moved by ḡ there is an x′f such that xf and x′f lie in the same ḡ-orbit

and xf 6= x′f . Let φ be an automorphism that switches xf and x′f , but fixes anything that

it does not have to move. If z ∈ supp(f̄) then φ(z) 6∈ supp(f̄) and so disj(f̄φ, f̄). Since

Path〈xf , x
′
f 〉 ⊆ supp(ḡ) we know that supp(ḡ) = supp(ḡφ) and therefore ¬disj(ḡφ, ḡ)

Thus φ witnesses the fact that f̄ and ḡ do not satisfy [supp(ḡ) ⊑ supp(f̄)].

Case 2 Let x′f be such that xf ∈ Path〈xg, x
′
f〉 and xf ‖ x′f . Since X(n,m,Z) is 1-

transitive there is an automorphism φ such that φ(xf) = x′f . We know that disj(f̄φ, f̄)

as

Path〈supp(φ ∗ f̄), supp(f̄)〉 = Path〈f, f ′〉

which cannot be empty, as xf ‖ x′f . Since xf ∈ Path〈xg, x
′
f〉 and xf ∈ supp(ḡ) the support

of ḡ must contain x′f . However x′f is clearly contained in supp(φ ∗ ḡ), so ¬disj(φ ∗ ḡ, ḡ).

Thus φ witnesses the fact that f̄ and ḡ do not satisfy [supp(ḡ) ⊑ supp(f̄)].

Case 3 For a contradiction, assume that

Aut(M) |= ∃φ[disj(f̄φ, f̄) ∧ ¬disj(ḡφ, ḡ)]
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and let φ witness this. Since disj(f̄φ, f̄) holds, and supp(ḡ) is contained in supp(f̄), we

know that disj(ḡφ, ḡ), giving a contradiction.

Now assume that

Aut(M) |= ∃φ(f̄φ = f̄ ∧ ḡφ 6= ḡ)

Let C0, C1 be two of the cones of xf that are contained in the support of f̄ and let fi ∈ f̄

map C0 to C1. Since ḡφ 6= ḡ, there is an x ∈ supp(ḡ) such that φ(x) 6= x. We suppose

without loss of generality that x ∈ C0.

If φ(x) 6∈ C1 then fφi will map x to fiφ(x) 6= fi(x) and so f̄φ 6= f̄ . If φ(x) ∈ C1 then

conjugation by φ will at least switch the roles C0 and C1, and so f̄φ 6= f̄ .

Case 4 In this case, xf = xg. Let Cf
0 , . . . be the cones of f that are contained in f̄ , and

let Cg
0 , . . . be the cones of xg that are contained in ḡ. We may pick our indices such that

Cf
i ∈ supp(f̄) ∩ supp(ḡ) if and only if Cg

i ∈ supp(f̄) ∩ supp(ḡ).

Assume that only one Cf
i is not in the intersection of the supports, and assume without

loss of generality that this is Cf
0 . Let φ ∈ Aut(M) be such that supp(φ) ( Cg

0 and . Then

Aut(M) |= (f̄φ = f̄ ∧ ḡφ 6= ḡ), showing that f̄ and ḡ do not satisfy [supp(f̄) ⊑ supp(ḡ)].

Now we assume that more that one Cf
i is not in the intersection of the supports, without

loss of generality Cf
0 and Cf

1 . Let φ ∈ Aut(M) be such that φ swaps Cg
0 and Cg

1 and fixes

everything else point-wise. Since φ fixes supp(f̄) point-wise, Aut(M) |= f̄φ = f̄ .

Now consider a elements of ḡ which switches Cg
0 and CG

2 . The corresponding elements

of ḡφ will switch Cg
1 and Cg

2 , and so Aut(M) |= ḡφ 6= ḡ. 2

Corollary 4.2.15 Recall that [supp(ḡ) < supp(f̄)] is the formula

[supp(ḡ) ⊑ supp(f̄)] ∧ ¬[supp(f̄) ⊑ supp(ḡ)]
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Aut(M) |= [supp(ḡ) < supp(f̄)] if and only if supp(ḡ) is properly contained in supp(f̄).

Definition 4.2.16 Let Aut(M) |= Indec(f̄) ∧ Indec(ḡ) and let

xf := Path〈supp(f̄),M \ supp(f̄)〉

xg := Path〈supp(ḡ),M \ supp(ḡ)〉

We say that f̄ and ḡ have the same direction, or act in the same direction if

∃y ∈ supp(f̄) (xf < y) ⇔ ∃z ∈ supp(ḡ) (xg < z)

We say that f̄ and ḡ have different directions, or act in different directions if

∃y ∈ supp(f̄) xf < y ⇔ ∃z ∈ supp(ḡ) (xg > z)

Lemma 4.2.17 Recall that SamePD(f̄ , ḡ) is the formula

∀h̄([supp(h̄) < supp(f̄)] ↔ [supp(h̄) < supp(ḡ)])

Let

{xf} := Path〈supp(f̄),M \ supp(f̄)〉

{xg} := Path〈supp(ḡ),M \ supp(ḡ)〉

If

Aut(M) |= SamePD(f̄ , ḡ)

then f = g and f̄ and ḡ have the same direction.

Proof

Suppose Aut(M) |= SamePD(f̄ , ḡ)

We will first show that xf = xg by contradiction. Suppose that xg ∈ supp(f̄). If

supp(ḡ) ⊂ supp(f̄) then f̄ witnesses that f̄ and ḡ cannot satisfy SamePD(f̄ , ḡ). If
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supp(ḡ) 6⊂ supp(f̄) then the supports of f̄ and ḡ are as in the pictures in Case 2 of

Figure 4.8.

Let h̄ be a tuple such that:

1. Aut(M) |= Indec(h̄);

2. {xf} = Path〈supp(h̄),M \ supp(h̄)〉; and

3. f̄ and ḡ act in different directions.

Then supp(h̄) ⊂ supp(ḡ) and supp(h̄) ∩ supp(f̄) = ∅, giving a contradiction.

Now suppose that xg 6∈ supp(f̄) and xf 6∈ supp(ḡ). We consider two situations, where

the point of Path〈xf , xg〉 next to xf is in the same direction as f̄ or in the other direction

(depicted in Figure 4.9).

f̄

xf

x1

x2

Figure 4.9: Path〈f, g〉 and the Direction of f̄

This picture depicts both situations. By “the point of Path〈xf , xg〉 immediate to f is in

the same direction as f̄” we mean that x1 ∈ Path〈f, g〉, while x2 ∈ Path〈f, g〉 is the other

situation we need to consider.

Suppose x1 ∈ Path〈f, g〉 and let φ be an automorphism of M which fixes f and switches

x1 with a member of supp(f̄). Then φ ∗ f̄ witnesses the fact that f̄ and ḡ cannot satisfy
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SamePD(f̄ , ḡ). If x2 ∈ Path〈f, g〉 then any tuple that satisfies Indec, fixes f and moves

x2 will do as a witness.

We know that if Aut(M) |= SamePD(f̄ , ḡ) then xf = xg. If f̄ and ḡ act in different

directions then we may pick any point in supp(ḡ) and any tuple that fixes that point and

moves xf to find our counter-example.

It remains to show that if f̄ and ḡ fix the same point and have the same direction then they

satisfy SamePD. Assume without loss of generality that f̄ and ḡ act on the successors of

xf . Let h̄ be any tuple such that

[supp(f̄) < supp(h̄)]

This means that h̄ moves xf and all its successors, and therefore supp(ḡ) contains the

support of ḡ, and so h̄ satisfies [supp(f̄) < supp(h̄)]. 2

Lemma 4.2.18 Recall that RepPoint(f̄0, f̄1) is the formula

disj(f̄0, f̄1) ∧ ∀ḡ∃h̄(¬disj(ḡ, h̄) ∧ (SamePD(f̄0, h̄) ∨ SamePD(f̄1, h̄)))

Let

{x0} := Path〈supp(f̄0),M) \ supp(f̄0)〉

{x1} := Path〈supp(f̄1),M) \ supp(f̄1)〉

Then

Aut(M) |= RepPoint(f̄0, f̄1)

if and only if x0 = x1 and f̄0 and f̄1 act in different directions.

Proof

First we will prove that if f̄0 and f̄1 are such that x0 = x1 and f̄0 and f̄1 act in different



142 Chapter 4. CFPOs with Transitivity Conditions

directions then

Aut(M) |= RepPoint(f̄0, f̄1)

If ¬disj(ḡ, f̄0) or ¬disj(ḡ, f̄1) then we may take h̄ = f̄0 or h̄ = f̄1, so suppose that

disj(ḡ, f̄0) and disj(ḡ, f̄1).

Let

{xg} := Path〈supp(ḡ),M) \ supp(ḡ)〉

and let h̄ be such that

(SamePD(f̄0, h̄) ∨ SamePD(f̄1, h̄))

and Path〈x0, xg〉 ⊂ supp(h̄). Clearly this h̄ is as required by the formula.

Now we must prove that if

Aut(M) |= RepPoint(f̄0, f̄1)

then f̄0 and f̄1 are as desired. If x0 6= x1 then there is some y such that none of the

following hold

y ∈ Path〈x0, x1〉 x0 ∈ Path〈y, x1〉 x1 ∈ Path〈y, x0〉

Let ḡ be such that Path〈y, {x0, x1}〉 6⊂ supp(ḡ) and

y = Path〈supp(ḡ),M \ supp(ḡ)〉

This ḡ witnesses the fact that f̄0 and f̄1 do not satisfy RepPoint(f̄0, f̄1).

Now suppose that x0 = x1 but

Aut(M) |= SamePD(f̄0, f̄1)
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In this case any ḡ whose support is disjoint from that of f̄0 and f̄1 and which fixes f0 will

be a witness. 2

We now have our formula that defines the domain of interpretation, however there will be

a lot of pairs that satisfy RepPoint but fix the same point.

Lemma 4.2.19 Recall that EqRepPoint(f̄0, f̄1; ḡ0, ḡ1) is the formula

RepPoint(f̄0, f̄1) ∧ RepPoint(ḡ0, ḡ1)∧

(SamePD(f̄0, ḡ0) ∧ SamePD(f̄1, ḡ1)) ∨ (SamePD(f̄0, ḡ1) ∧ SamePD(f̄1, ḡ0))

Let

xf := Path〈supp(f̄0),M) \ supp(f̄0)〉

xg := Path〈supp(ḡ0),M) \ supp(ḡ0)〉

If

Aut(M) |= EqRepPoint(f̄0, f̄1; ḡ0, ḡ1)

then xf = xg.

Proof

Clearly xf 6= xg if and only if SamePD(f̄i, ḡj) holds for some choice of indices. 2

4.2.2 Interpreting Betweenness

From now on we will adopt the convention that when a lower case letter, such as g, appears

in one of our formulas, it is actually a pair (ḡ0, ḡ1) that satisfies RepPoint. We will refer

to the point represented by g as xg.
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Definition 4.2.20 Temp1PB(g; h, k) is the following formula:

∃l(EqRepPoint(ḡ0, ḡ1; l̄0, l̄1) ∧





¬disj(l̄0, h̄0) ∧ ¬disj(l̄0, h̄1)∧

¬disj(l̄1, k̄0) ∧ ¬disj(l̄1, k̄1)





supp(h̄1)

supp(h̄0)

supp(l̄1)

supp(l̄0)

supp(k̄1)

supp(k̄0)

gh k

Path〈h, g〉

Path〈g, k〉

Figure 4.10: What is described by Temp1PB(g; h, k)

Temp2PB(g; h, k) is the formula

φ(g; h, k) ∧ ∀l φ(l; h, k) →





Temp1PB(g; l, k) ∧

Temp1PB(g; l, h)





where φ is the formula that requires, using disj, the configurations of the supports of ḡ0,

ḡ1, h̄0, h̄1, k̄0 and k̄1 depicted in Figure 4.11, for all permutations of the indices and that

each pair represents different points.

PathBetween(g; h, k) is the formula

Temp1PB(g; h, k) ∨ Temp2PB(g; h, k)
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supp(h̄1)

supp(h̄0)

supp(ḡ1)

supp(ḡ0)

supp(k̄1)

supp(k̄0)

supp(l̄1)

supp(l̄0)

xgxh xk

xl

Path〈xg, xl〉

Path〈xh, xg〉 Path〈xg, xk〉

All suitable xl occur in supp(ḡ0)

Figure 4.11: What is described by Temp2PB(g; h, k)

Lemma 4.2.21 The previously defined formulas express the following properties of the

structure:

1. Temp1PB(g; h, k) holds if and only if Path〈xh, xk〉 contains a chain of length at

least three, of which xg is one of the middle points.

2. Temp2PB(g; h, k) holds only if xg is a local maximum or minimum of Path〈xh, xk〉.

3. PathBetween(xg; xh, xk) holds if and only if xg ∈ Path〈xh, xk〉.

Proof

Without loss of generality, we suppose that the situation is the same as depicted in the

diagrams above.

1. Since the formula Temp1PB insists that xh ∈ supp(ḡ1) and xk ∈ supp(ḡ0), and

since any path between something in supp(ḡ0) and something in supp(ḡ1) must

pass through xg, we conclude that xg ∈ Path〈xh, xk〉. Additionally, since ḡ0 and

ḡ1 point in different directions there must be both an immediate successor and an
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immediate predecessor of xg lying on Path〈xh, xk〉 thus showing that if Temp1PB

holds then the properties it was intended to describe hold. The other direction is

immediate.

2. Since the formula Temp2PB holds both xh and xk are in supp(ḡ1), if xg ∈

Path〈xh, xk〉 then it is either a local maximum or a local minimum, as supp(ḡ0)

is an extended connected component originating at xg. If xg 6∈ Path〈xh, xk〉 then

{xg} ( Path〈xg, xh〉 ∩ Path〈xg, xk〉

Any

xl ∈ [Path〈xg, xh〉 ∩ Path〈xg, xk〉] \ {xg}

will prevent Temp2PB from holding. Again, the other direction is immediate.

3. If xg ∈ Path〈xh, xk〉 then either xg is a local maximum or minimum, or xg lies on

a chain of length at least 3, so Temp1PB and Temp2PB successfully cover every

case.

2

Definition 4.2.22 Related(f, g) is the formula

∀h(PathBetween(h; f, g) → Temp1PB(h; f, g))

Lemma 4.2.23 Related(f, g) holds if and only if xf ≤ xg or xg < xf .

At this point we have recovered M up to order reversal. We may, if we wish, recover the

full order using a variety of different methods, which I will detail later, but from here we

can prove that the class is faithful by recovering the betweenness reduct of the CFPOs in

question.
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Definition 4.2.24 B(h; f, g) is the formula

PathBetween(h; f, g) ∧





Related(f, g) ∧
Related(f, h) ∧
Related(g, h)





Lemma 4.2.25 B(h; f, g) if and only if xh is between xf and xg.

Theorem 4.2.26 KCone is faithful.

Proof

Let 〈M,≤〉, 〈N,≤〉 ∈ KCone. Let Φ be the first-order interpretation comprising of:

• RepPoint(x) as the formula that defines the domain of interpretation;

• EqRepPoint(x, y) as the equivalence relation on the domain of interpretation;

• B(z; x, y) as the betweenness relation.

We have established previously that for all M

Φ(Aut(〈M,≤〉)) ∼= 〈M,B〉

Therefore Aut〈M,≤〉 ∼= Aut〈N,≤〉 if and only if 〈M,B〉 ∼= 〈N,B〉.

If 〈M,B〉 ∼= 〈N,B〉 then 〈M,≤〉 ∼= 〈N,≤〉 or 〈M,≤〉 ∼= 〈N,≤∗〉 (the reverse ordering).

By assumption, this means that 〈M,≤〉 ∼= 〈N,≤〉, thus the class is faithful. 2
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4.3 Reconstructing the Order

It is impossible to reconstruct the order of all members of KCone with a first-order

interpretation. X(5, 5,Z), in many ways our best behaved member of KCone, is

isomorphic to its own reverse ordering, and so the automorphism group has no idea which

direction is ‘up’.

In those circumstances, it will be necessary to make an artificial choice over which way

is ‘up’. When reconstructing linear orders in [26], McCleary and Rubin use a parameter

pair for this purpose, obtaining a formula φ(x1, x2; y1, y2), which interprets

x1 ≤ x2 ⇔ y1 ≤ y2

This approach is also possible in this context, but not in a first order way.

Since all members ofKCone embed the alternating chain, as the path between {x1, x2} and

{y1, y2} grows, we require longer and longer formulas. We must use an Lω1,ω formula to

recover the order with this technique.

Another approach would be to exploit the fact that we have insisted that

ro ↓ (M) ≤ ro ↑ (M)

Ramification order is definable when finite, so if ro ↓ (M) < {ro ↑ (M),ℵ0}, then we

can find a first order formula that depends on ro ↓ that interprets the order.

While first order, I find this far less satisfactory, as it gives lots of different formulas, each

of which only work in limited circumstances. Even together they do not work everywhere.

However, I will present both.
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4.3.1 ro ↓ (M) < {ro ↑ (M),ℵ0}

Definition 4.3.1 Let Kn
Cone := {M ∈ KCone : ro ↓ (M) ≤ n < ro ↑ (M)}.

Definition 4.3.2 x⋖n y is the following formula

Related(x, y) ∧ ∃x0, . . . , xn























∧

0≤i≤n

Related(x, xi) ∧

∧

i 6=j

¬Related(xi, xj) ∧

∧

i 6=j

PathBetween(x; xi, xj) ∧

¬PathBetween(x; y, x0)























Theorem 4.3.3 If M ∈ Kn
Cone then Aut(M) |= x⋖n y if and only if M |= x <M y.

Proof

By definition, x⋖n y → Related(x, y), so if Aut(M) |= x⋖n y then M |= x ≤≥M y.

Each of the xi are related to x, but {xi : i = 0, ..., n} forms an antichain. Suppose that

none of the xi’s lie above x. Since ro ↓ (M) ≤ n this means that at least two of the xi’s,

say x0 and x1, are contained in the same downwards cone of x.

Therefore x0 ∨ x1 < x, but the connecting set of the path from x0 to x1 must be

{x0, x0 ∨ x1, x1}

which would imply that x 6∈ Path〈x0, x1〉, which contradicts the assumption that

Aut(M) |= x⋖n y. Thus at least one of the xi’s is above x.

Suppose, without loss of generality, that x0 is above x. If any of the other xi’s lie below

x0 then they will be related to xi, giving a contradiction. By the above argument, all of

the xi’s lie in different cones.
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On the other hand, any n+1 element antichain above x, where every element is contained

in a different cone above x satisfies the all of the properties demanded of it, except

(
∨

i≤n

¬PathBetween(x; y, xi))

If x < y then we will be able to choose x0 such that x0 is contained in the same cone as

y, so any such antichain will satisfy the formula.

If y < x then any path from any of the xi’s to y will pass through x, and so the formula

cannot be satisfied. 2

4.3.2 Abandoning First Order Logic

Throughout this subsection, we assume that y1 and y2 satisfy Related. All the formulas

mentioned will use y1 and y2 as parameters. We will use y1 and y2 to indicate the direction

of the order, so we suppose that y1 < y2.

Definition 4.3.4 (x1 <0 x2 ⇔ y1 < y2) is the formula that insists that x1, x2, y1 and

y2 are all related and using B(z; x, y) insists that they lie in one of the configurations

depicted below.

Lemma 4.3.5 If Aut(M) |= (x1 <0 x2 ⇔ y1 < y2) then M |= x1 <M x2.

Proof

All possible cases are covered by the definition. 2

Definition 4.3.6 (x1 <1 x2 ⇔ y1 < y2) is the formula

¬(x2 <0 x1 ⇔ y1 < y2) ∧ ¬(x1 <0 x2 ⇔ y1 < y2) ∧ (α1 ∨ α2 ∨ α3 ∨ α4)
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= x2

= x1

y2

y1

Figure 4.12: Defining (x1 <0 x2 ⇔ y1 < y2)

where:

α1 := B(y2; y1, x2) ∧ Related(x1, x2)

α2 := B(x2; x1, y2)

α3 := B(y1; x1, y2) ∧ Related(x1, x2)

α4 := B(x1; y1, x2)

α5 :=
∧

i 6=j

Related(xi, yj) ∧
∧

i=j

¬Related(xi, yj) ∧ Related(x1, x2)

Lemma 4.3.7 If Aut(M) |= (x1 <1 x2 ⇔ y1 < y2) then M |= x1 <M x2.

Proof

Let (x0, x1) ∈ M be such that Aut(M) |= ¬(x1 <0 x2 ⇔ y1 < y2). We will show that

when Aut(M) |= αi then x1 <M x2 for each possible i.

First, assume that Aut(M) |= α1. Since Aut(M) |= B(y2; y1, x2) and we are supposing

that y1 <M y2, we know that x2 >M y2. We also know that x1 cannot be greater than
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x2

y2

x2

x1

y1

x1

x1

x1

x2

x2

α1 α2 α4α3

Figure 4.13: Defining (x1 <1 x2 ⇔ y1 < y2)

x2, as otherwise Aut(M) |= (x1 <0 x2 ⇔ y1 < y2). Since we have asserted that

Aut(M) |= Related(x1, x2), this means that x1 <M x2.

Now we assume that Aut(M) |= α2, so either x1 <M x2 <M y2 or y2 <M x2 <M x1, but

the latter contradicts our assertion that not both of x1 and x2 are related to both y1 and y2.

Assume that Aut(M) |= α3, so x1 <M y1 <M y2. If x2 <M x1 then x2 <M y1, y2,

contradicting Aut(M) |= ¬(x1 <0 x2 ⇔ y1 < y2).

Assume that Aut(M) |= α2, so either x2 <M x1 <M y1 or y1 <M x1 <M x2, but the

former contradicts our assertion that not both of x1 and x2 are related to both y1 and y2.

Assume that Aut(M) |= α5, so Aut(M) |= Related(x1, y2) ∧ ¬Related(x1, y1).

This means that x1 <M y2. If x2 <M x1 then x2 <M y2, but we have asserted that

Aut(M) |= ¬Related(x2, y2). 2
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Definition 4.3.8 Let n ≥ 2. The formula (x1 <n x2 ⇔ y1 < y2) is defined to be the

conjunction of the following four formulas:

∀z

(

∧

i<n−1

¬(x1 <i z ⇔ y1 < y2)

)

∧ ∀z

(

∧

i<n−1

¬(z <i x2 ⇔ y1 < y2)

)

to ensure that the order is yet to be resolved for either x1 or x2;

(∃z ((x1 <n−1 z ⇔ y1 < y2))) ∧ ∀z (¬(z <n−1 x2 ⇔ y1 < y2)))

∨

(∃z ((z <n−1 x2 ⇔ y1 < y2))) ∧ ∀z (¬(x1 <n−1 z ⇔ y1 < y2)))

to ensure that exactly one of x1 and x2 is related by <n−1 to something;

∀z (¬(z <n−1 x2 ⇔ y1 < y2)) →

∃w ((x1 <n−1 w ⇔ y1 < y2) ∧ (x1 <1 x2 ⇔ x1 < w))

to describe what happens when x1 is in the area where the order is defined, but x2 is not,

and;

∀z (¬(x1 <n−1 z ⇔ y1 < y2)) →

∃w ((w <n−1 x2 ⇔ y1 < y2) ∧ (x1 <1 x2 ⇔ w < x2))

to describe what happens when x2 is in the area where the order is defined, but x1 is not.

Proposition 4.3.9 If Aut(M) |= (x1 <n x2 ⇔ y1 < y2) then M |= x1 <M x2.

Proof

We proceed by induction, starting with the base case n = 2. Suppose that

Aut(M) |= (x1 <2 x2 ⇔ y1 < y2)

If

Aut(M) |= ∀z (¬(z <n−1 x2 ⇔ y1 < y2))
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then there is a w ∈ M such that Aut(M) |= (x1 <1 w ⇔ y1 < y2) and so x1 <M w.

Therefore Aut(M) |= (x1 <1 x2 ⇔ x1 < w) implies that x1 <M x2.

If Aut(M) |= ∀z (¬(x1 <1 z ⇔ y1 < y2)) then there is a w ∈ M such that

Aut(M) |= (w <1 x2 ⇔ y1 < y2)

and so w <M x2. Therefore Aut(M) |= (x1 <1 x2 ⇔ w < x2) implies that x1 <M x2.

We now examine the induction step. Suppose that if Aut(M) |= (x1 <n−1 x2 ⇔ y1 < y2)

then x1 <M x2 and also suppose that Aut(M) |= (x1 <n x2 ⇔ y1 < y2).

If Aut(M) |= ∀z (¬(z <n−1 x2 ⇔ y1 < y2)) then there is a w ∈M such that

Aut(M) |= (x1 <n−1 w ⇔ y1 < y2)

and so x1 <M w. Therefore Aut(M) |= (x1 <1 x2 ⇔ x1 < w) implies that x1 <M x2.

If Aut(M) |= ∀z (¬(x1 <n−1 z ⇔ y1 < y2)) then there is a w ∈M such that

Aut(M) |= (w <n−1 x2 ⇔ y1 < y2)

and so w <M x2. Therefore Aut(M) |= (x1 <1 x2 ⇔ w < x2) implies that x1 <M x2. 2

Definition 4.3.10 (x1 < x2 ⇔ y1 < y2) is defined to be the Lω1,ω-formula:

∨

n<ω

(x1 <n x2 ⇔ y1 < y2)
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Theorem 4.3.11 Aut(M) |= (x1 < x2 ⇔ y1 < y2) if and only if M |= x1 <M x2.

Proof

Suppose Aut(M) |= (x1 < x2 ⇔ y1 < y2). In the first clause of their definition, we

ensured that each of the formulas (x1 <n x2 ⇔ y1 < y2) are mutually exclusive. By

Lemmas 4.3.5 and 4.3.7 and Proposition 4.3.9, so no matter which Aut(M) realises, we

have ensured that x1 <M x2.

Suppose M |= x1 <M x2. We examine the length of Path〈{x1, x2}, {y1, y2}〉, which we

shall call j. If j ≤ 2 then at least one of x1 and x2 is related to at least one of y1 and y2.

Suppose that both x1 and x2 are related to both y1 and y2. Since x1 and x2 must occur in

one of the situations described by (x1 <0 x2 ⇔ y1 < y2).

Now suppose that not both of x1 and x2 are related to both y1 and y2, but at least one is.

This situation is fully described by (x1 <1 x2 ⇔ y1 < y2).

If neither x1 nor x2 are related to either y1 or y2 then Aut(M) realises neither

(x1 <0 x2 ⇔ y1 < y2) nor (x1 <1 x2 ⇔ y1 < y2)

as both of those formulas contain instances of B(z; x, y) that prevent this.

Now suppose that j ≥ 3. We also assume that for all z1 and z2 such that z1 <M z2, the

length of Path〈{z1, z2}, {y1, y2}〉 is i for i < j if and only if

Aut(M) |= (z1 <i z2 ⇔ y1 < y2)

Suppose Path〈{x1, x2}, {y1, y2}〉 = j. We first wish to show that (x0, x1) satisfies the first

clause of (x1 < x2 ⇔ y1 < y2), vis.

∀z

(

∧

i<j−1

¬(x1 <i z ⇔ y1 < y2)

)

∧ ∀z

(

∧

i<n−1

¬(z <i x2 ⇔ y1 < y2)

)
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If there is a z such that (x1 <i z ⇔ y1 < y2)) for some i < j − 1 then, by the induction

hypothesis, the length of Path〈{z, x1}, {y1, y2}〉 is less than j − 1. Since x1 <M x2,

this means that the length of Path〈{x1, x2}, {y1, y2}〉 is less than j, contradicting our

assumptions. If there is a z such that (z <i x2 ⇔ y1 < y2)) then we reach a similar

contradiction.

Let us now examine the second clause:

∀z (¬(z <j−1 x2 ⇔ y1 < y2)) →

∃w ((x1 <j−1 w ⇔ y1 < y2) ∧ (x1 <1 x2 ⇔ x1 < w))

If there is a z such that Aut(M) |= (z <j−1 x2 ⇔ y1 < y2) then we are done, so

suppose that there is no such z. Let z1, . . . , zj be the elements of the connecting set of

Path〈{x1, x2}, {y1, y2}〉, such that z1 is related to x1 and x2.

If z2 <M z1 ≤M x2 then Aut(M) |= (z2 <j−1 x2 ⇔ y1 < y2), so we may assume that

x1 ≤M z1 <M z2.

Path〈{z1, z2}, {y1, y2}〉 = Path〈z2, {y1, y2}〉 has length j − 1, so Aut(M) |= (x1 <j−1

z2 ⇔ y1 < y2). Additionally, we have deduced that z2 ‖ x2, and x1 ≤ z2, x2, so

Aut(M) |= (x1 <1 x2 ⇔ x1 < z2), so (x1, x2) satisfies the second clause.

Recall that the third clause we must examine is:

∀z (¬(x1 <n−1 z ⇔ y1 < y2)) →

∃w ((w <n−1 x2 ⇔ y1 < y2) ∧ (x1 <1 x2 ⇔ w < x2))

If there is a z such that Aut(M) |= (x1 <j−1 z ⇔ y1 < y2) then we are done, so suppose

that there is no such z. Again, let z1, . . . , zj be the elements of the connecting set of

Path〈{x1, x2}, {y1, y2}〉, such that z1 is related to x1 and x2.

If x1 ≤M z1 <M z2 then Aut(M) |= (x1 <j−1 z2 ⇔ y1 < y2), so we may assume that

z2 <M z1 ≤M x2.
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Path〈{z1, z2}, {y1, y2}〉 = Path〈z2, {y1, y2}〉 has length j − 1, so

Aut(M) |= (z2 <j−1 x2 ⇔ y1 < y2)

Additionally, we have deduced that z2 ‖ x1, and x2 ≥ z2, x1, so Aut(M) |= (x1 <1 x2 ⇔

z2 < x1), so (x1, x2) satisfies the third clause.

Now suppose that Aut(M) |= (x1 <j x2 ⇔ y1 < y2). Let zk, . . . , zj be the elements of

the connecting set of Path〈{x1, x2}, {y1, y2}〉, such that zk is related to x1 and x2. Since

Aut(M) |= ∀z

(

∧

i<j−1

¬(x1 <i z ⇔ y1 < y2)

)

∧ ∀z

(

∧

i<n−1

¬(z <i x2 ⇔ y1 < y2)

)

the length of Path〈{x1, x2}, {y1, y2}〉 has at least j elements, and thus k ≤ 1. By the

induction hypothesis, either

Aut(M) |= (z1 <j−1 z2 ⇔ y1 < y2) or Aut(M) |= (z2 <j−1 z1 ⇔ y1 < y2)

so if k 6= 1 then (x1, x2) cannot possibly satisfy the second and third coordinates. 2
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Chapter 5

Decorated CFPOs and the Wreath

Product

So far the classes of CFPOs we have reconstructed have been rather limited. The gap

between those which have a singleton orbit and those with a single orbit is somewhat

profound, and so this chapter seeks to redress this failing in a very direct way; we will

combine treelike and members of KCone in such a way that the automorphism groups

of the components are definable in the whole automorphism group, and so our previous

reconstruction results will be applicable.

The first section will give the method of decoration and describe the resulting

automorphism groups as wreath products of the automorphism groups of the components,

while the second will define these components using second order logic. This is a

desirable outcome, because if the components are definable, then we can perform our

interpretations inside the definable sets rather than the whole group, reconstructing the

component structures.
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5.1 Decoration

We will first look at attaching trees above and between points of a member of KCone,

and give conditions for when a general CFPO shares an automorphism group with such a

CFPO.

Definition 5.1.1 If M is a CFPO then we define Map to be the set

{(i, j) ∈M2 : i <M j ∧ ∀k ∈M¬(i <M k <M j)}

ap stands for ‘adjacent pairs’.

Definition 5.1.2 Let〈M,≤M 〉 be a CFPO and let 〈S,≤S〉 and 〈T,≤T , L〉 be trees,

where L is a unary predicate that picks out a maximal chain of T . The structure

Dec(M,S, (T, L)) is the partial order with universe

|M | ∪·
⋃

·
i∈M

|Si| ∪·
⋃

·
(i,j)∈Map

|T(i,j)|

where:

• Si ∼= S for every i ∈M

• T(i,j) ∼= T for every (i, j) ∈ M. We use L(i,j) to denote the maximal chain of T(i,j)

picked out by L.

Dec(M,S, (T, L)) is ordered by ≤D, which is the transitive closure of the following:

x ≤M y or
x ≤Si

y or
y ∈ Sx or

x ≤T(i,j) y or

∃z ∈M L(x,z)(y) or
∃z ∈M L(z,y)(x)
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Informally, we attach a copy of S above every point of M , and glue a copy of T between

every adjacent pair of M along L.

Note that if Map is empty, in other words if M is dense, then

Dec(M,S, (T0, L0)) = Dec(M,S, (T1, L1))

for all (T0, L0) and (T1, L1).

Example 5.1.3 An illustration of the neighbourhood of an element of M in

Dec(M,S, (T, L)) is given in Figure 4.1. A more specific example of decorating is

pictured in Figure 4.2. In this example, we do not need to specify an L, as B has exactly

one maximal chain.

Proposition 5.1.4 Dec(M,S, (T, L)) is a CFPO for any M , S and (T, L).

Proof

Let a and b be such that there are two different paths between them, which we will call

P0 and P1. If a and b are contained in the same copy of S or (T, L) then this contradicts

our assumption that S and (T, L) are trees. If a ∈ Sma
then {ma} ⊆ P0 ∩M ∩ P1. If

a ∈ T(ma,m′

a) then either ma or m′
a is in P0 ∩M . Similarly either ma or m′

a is in P1 ∩M .

Thus the starting point of P0 ∩M is one of a, ma or m′
a, while the ending point is one of

b, mb and m′
b. The same conclusion can be reached for P1 ∩M . If P0 ∩M starts with

ma while P1 ∩ M starts with m′
a then either P0 or P1 has to pass through the starting

point of the other, which implies that one of the paths doubles back on itself, giving a

contradiction. Since P0 ∩M and P1 ∩M have the same start and end points, the fact that

M is a CFPO implies that they must be equal.
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Then P0 and P1 ‘move through’M in the same way, and so must differ by their behaviour

within the copies of S and (T, L). But both S and (T, L) are trees, so have unique paths

and therefore P0 = P1. 2

L

T

S

Figure 5.1: A vague illustration of Decoration
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A = B = Dec(A,B,B) =

Figure 5.2: Example 5.1.3

Lemma 5.1.5 Aut(Dec(M,S, (T, L))) preserves M setwise.

Proof

Since M ∈ KCone, given any a ∈M there are b0, b1 ∈M such that b0||b1 and a = b0∨ b1.

Let φ ∈ Aut(Dec(M,S, (T, L)). Since φ is an automorphism φ(a) = φ(b0) ∨ φ(b1).

S and (T, L) are trees, so φ(b0)∨ φ(b1) cannot be contained in a copy of S or (T, L), and

so all automorphisms of Dec(M,S, (T, L)) preserve M . 2

Theorem 5.1.6 Let M be a CFPO, let A be a 1-orbit such that Aut(M) acts cone

transitively on A, and for any B ⊂ M let ∼B be the equivalence relation x ∼ y ⇔

Path〈x, y〉 ∩ B = ∅. We let C ∈ (M \ A)/ ∼A, and describe two conditions.

1. If Path〈C,M \ C〉 6= ∅ then there is an ac ∈ A such that

Path〈C,M \ C〉 = {aC}

This says that if there is only one way to go from C to M \ C then C is attached to

ac.

2. If Path〈C,M \ C〉 = ∅ then:
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(a) (M \ C)/ ∼C has exactly two elements which we call BC and B′
C; and

(b) there is (aC , a
′
C) ∈ Aap such that

Path〈C,BC〉 = {aC} and Path〈C,B′
C〉 = {a′C}

This says that if there is more than one way to go from C to M \ C then C lies

between an adjacent pair of A.

If every C ∈ (M \ A)/ ∼A satisfy both 1. and 2. then there are trees S and (T, L) and a

cone transitive CFPO X such that

Aut(M) ∼= Aut(Dec(X,S, (T, L))

Proof

Suppose M has a 1-orbit A that satisfies the conditions of the theorem. We define X to

be the substructure of M with domain A.

We define the following set:

CS := {C ∈ (M \A)/ ∼A : Path〈C,M \ C〉 6= ∅}

and let C ∈ CS . We wish to show that C, when acted on by Aut{C}(M), is treelike. If C

does not embed Alt then C, even with its full automorphism group, is treelike (Definition

3.1.2), so we suppose that C does embed Alt, which we enumerate as (. . . c−1, c0, c1, . . .).

There must be some i such that for all j

Path〈aC , ci〉 ⊆ Path〈aC , cj〉 or Path〈aC , ci+1〉 ⊆ Path〈aC , cj〉
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If φ ∈ Aut(M) and i 6= j then φ cannot map ci to cj , otherwise

Path〈aC , ai〉 ∩ Path〈φ(aC), aj〉 = ∅

which contradicts our assumption that Path〈C,M \ C〉 6= ∅. Thus Aut{C}(M) cannot act

as D∞ on any copy of Alt that is contained in C, so C with the action of Aut{C}(M) is

treelike (Theorem 3.2.13), and we let 〈SC ,≤C〉 be a tree with the action of Aut(M).

Pick any a ∈ A and let {C ∈ CS : Path〈C,M \ C〉 = {a}} be enumerated by (Ci : i ∈ I).

We define S to be the tree with domain

{r} ∪
⋃

i∈I

SCi

and order

x ≤S y iff







x = r or

x ≤Ci
y

S is independent of our choice of a because A is an orbit.

To find T , we define

CT := {C ∈ (M \ A)/ ∼A : Path〈C,M \ C〉 = ∅}

Note that if C,D ∈ CT are such that aC = aD and a′C = a′D then C = D, as there is a

path from aC to a′C contained in both C and D.

Let C ∈ CT . Any automorphism of M that fixes C must also fix aC and a′C , and hence

fixes Path〈aC , a
′
C〉 set-wise, so we may introduce a unary predicate L which is realised

exactly on Path〈aC , a
′
C〉. We also use the symbol L to denote Path〈aC , a

′
C〉. Since a path

cannot embed Alt, the set of points realising L is treelike, and indeed the resulting tree is

a linear order, which we call LT with ordering ≤L.



166 Chapter 5. Decorated CFPOs and the Wreath Product

Note that each of the elements of (C \ L)/ ∼L is also treelike, for the same reasons

that the members of CS are treelike. We enumerate the equivalence classes of C \ L as

(Dj : j ∈ J), denote the tree which correspond to Dj by Tj , and for each j we partition

L into

L′
j := {l ∈ L : l ∈ Path〈Dj, aC〉} and

Lj := {l ∈ L : l ∈ Path〈Dj, a
′
C〉} \ L

′
j

Finally we are in a position to define our candidate for (T, L). The domain is

LT ∪
⋃

j∈J

Tj

while the ordering is:

x ≤T y ⇔



















x ≤L y or

x ≤Tj y or

y ∈ Ti and x ∈ Lj

and the predicate L is carried across from C. The (T, L) are independent of our choice of

element from Aap as Aut(M) acts cone transitively on A.

We now have candidates for X , S and (T, L).

Given φ ∈ Aut(Dec(X,S, (T, L)) we seek to show how that φ can be viewed as an

automorphism of M . Since φ preserves X setwise (Lemma 5.1.5), it preserves A.

Aut(M) acts cone transitively on A, so given any two x, y ∈ A there is an automorphism

of M that maps x to y, hence mapping {C ∈ CS : Path〈C,M \ C〉 = {x}} to {C ∈ CS :

Path〈C,M \ C〉 = {y}}. Therefore

⋃

{C ∈ CS : Path〈C,M \ C〉 = {x}} ∼=
⋃

{C ∈ CS : Path〈C,M \ C〉 = {y}}
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By construction

Aut(S) ∼=A Aut(
⋃

{C ∈ CS : Path〈C,M \ C〉 = {x}})

So φ acts as an automorphism of
⋃

CS .

Aut(M) acts cone transitively on A, so given any two (x0, y0), (x1, y1) ∈ Aap there is an

automorphism of M that maps (x0, y0) to (x1, y1). Each C ∈ CT is uniquely determined

by if aC and a′C therefore if C0, C1 ∈ CT then C0
∼= C1. By construction, for all C ∈ CT

Aut(T ) ∼=A Aut(C)

So φ acts as an automorphism of
⋃

CT .

Therefore every automorphism of Dec(X,S, (T, L)) is also an automorphism of M .

If φ is an automorphism of M then it preserves A, and thus X , and since every element

of CS and CT is isomorphic to S or T respectively, it is also an automorphism of

Dec(X,S, (T, L)). 2

Definition 5.1.7 Given an abstract group G and a permutation group (H,S, µ(h, s))

their wreath product, written as G ≀S H , is the abstract group on domain

H × {η : S → G}

We use η(s) to denote the function s 7→ η(s), and so η(s0s) is the function s 7→ η(s0s).

The group operation of G ≀S H is given by

(h0, η0(x))(h1, η1(x)) = (h0h1, η0(µ(h
−1
1 , x))η1(x))
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Definition 5.1.8 Let X ∈ KCone and let S, (T, L) ∈ KRub. We introduce the notation

W (X,S, (T, L)) := Aut((T, L)) ≀Xap
(Aut(S) ≀X Aut(X))

where the action of Aut(S) ≀X Aut(X) on Xap is given by

(φ, η)(x, y) = (φ(x), φ(y))

When only one W (X,S, (T, L)) is being discussed, we may denote it as W for brevity.

Proposition 5.1.9 Let X be a cone transitive CFPO and let S and (T, L) be trees.

Aut(Dec(X,S, (T, L)) ∼= W (X,S, (T, L))

Proof

Even through we regard W (X,S, (T, L)) as an abstract group, it has a natural action on

Dec(X,S, (T, L)), which we will call µ. We introduce the notation Ixy for the identity

map from Sx to Sy, and I
(x,y)
(w,z) for the identity map from T(x,y) to T(w,z), and define µ as

follows:

µ((φ, η, ζ), x) =



















(φ(x)) if x ∈ X

Iαφ(α)(η(α)(x)) if x ∈ Sα

I
(α,β)
φ(α,β)(ζ((α, β))(x)) if x ∈ T(α,β)

For any φ, η and ζ the function x 7→ µ((φ, η, ζ), x) is an automorphism, as φ is an

automorphism and for every α and β both

Iαφ(α)(η(α)(x)) : Sα → Sφ(α) and I
(α,β)
φ(α,β)(ζ((α, β))(x)) : T(α,β) → Tφ(α,β)
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are isomorphisms. Additionally, each (φ, η, ζ) results in a unique automorphism. To see

this suppose for a contradiction that

∀x µ((φ0, η0, ζ0), x) = µ((φ1, η1, ζ1), x)

Since this is for all x, it is true for all x ∈ X in particular, and thus φ0 = φ1. We also have

∀x ∈ Sα η0(α)(x) = η1(α)(x) and ∀x ∈ T(α,β) ζ0((α, β))(x) = ζ1((α, β))(x)

and thus η0 = η1 and ζ0 = ζ1. Finally, if we are able to show that every automorphism of

Dec(X,S, (T, L)) can be represented in this way, we will have proved this proposition.

Let ψ be an automorphism of Dec(X,S, (T, L)). We set φ := ψ|X and we set the function

components as follows:

η(α) = ψ|Sα
and ζ((α, β)) = ψ|T(α,β)

Which gives an element of W (X,S, (T, L)) whose action on Dec(X,S, (T, L)) via µ is

the same as ψ. Thus the map

W (X,S, (T, L)) → Aut(Dec(X,S, (T, L)))

(φ, η, ζ) 7→ µ((φ, η, ζ), x)

is bijective and, since µ is a group action, an isomorphism. 2

5.2 Interpreting Inside a Wreath Product

When we interpreted M ∈ KCone inside its automorphism group, we made use of the

subgroups isomorphic to A5. These subgroups still exist in the automorphism groups of
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the CFPOs we obtained through decoration, as Aut(X) ≤W (X,S, (T, L)).

If we can adapt the interpretation so that it ignores the decoration then we will be able to

recoverX . Subsection 5.2.1 works towards this by adding in a few clauses to the formulas

of Chapter 4.

Subsection 5.2.2 gives second-order formulas that define subgroups of W (X,S, (T, L))

isomorphic to Aut(S) and Aut(T, L).

5.2.1 Reconstructing X

Lemma 5.2.1 Recall that A5(f̄) is the formula that states that f̄ satisfies the elementary

diagram of A5. If W |= A5(f̄) then f̄ fixes an element of X ⊂ Dec(X,S, (T, L)).

Proof

The automorphisms of Dec(X,S, (T, L)) preserve X (Lemma 5.1.5), so if f̄ |X 6= id then

f̄ has a fixed point in X by Lemma 4.2.2. If f̄ |X = id then f̄ fixes X . 2

Lemma 5.2.2 Many of the formulas in Chapter 4 retain either their exact meaning, or

something very similar, in W (X,S, (T, L)), which we call W .

1. If W |= Indec(f̄) then
⋃

x,y∈supp(f̄)

Path〈x, y〉 \ supp(f̄) is a singleton, which we call

f .

2. If W |= Disj(f̄ , ḡ) then the support of f̄ and ḡ are disjoint.

3. If W |= [supp(f̄) < supp(ḡ)] then supp(f̄) ⊂ supp(ḡ).

4. If W |= SamePD(f̄ , ḡ) then either:

• f = g,
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• f ∈ X and g ∈ Sf or g ∈ T(f,h) for some h, or

• g ∈ X and f ∈ Sf or f ∈ T(g,h) for some h.

Proof

Note that for all φ ∈ W if x ∈ supp(φ) then Sx, T(x,y) ⊂ supp(φ) for all y.

1. Suppose W |= Indec(f̄). If f̄ |X 6= id then the singleton we found in Lemma 4.2.2

(unique by Proposition 4.2.12) works in this context.

Suppose that f̄ |X = id. Since f̄ is indecomposable, then either supp(f̄) ⊆ Sx

or supp(f̄) ⊆ T(x,y) for some x ∈ X or (x, y) ∈ Xap. We use xf to denote the

singleton Path〈supp(f̄ ,Dec(X,S, (T, L)) \ supp(f̄)〉.

2. The proof of Lemma 4.2.13 does not require serious adaptation for this context.

3. If W |= [supp(f̄) < supp(ḡ)] and at least one of xf and xg is in W \X then either

supp(f̄) ⊂ supp(ḡ) or supp(f̄) ⊂ supp(ḡ), and the argument in the appropriate

case of the proof of 4.2.15 suffices.

4. If both xf and xg are contained in X then Lemma 4.2.17 shows that xf = xg. If

both xf and xg are in W \X then the proof of Lemma 4.2.17 shows that xf = xg.

Suppose that xf ∈ X and xg ∈ W \ X . If xg ∈ Sy or xg ∈ T(y,y′) for y 6= xf

then the same witness that observes that W |= ¬SamePD(f̄ , h̄) shows that W |=

¬SamePD(f̄ , ḡ), so xg ∈ Sf or xg ∈ T(xf ,y) for some y.

Similarly, if xg ∈ X and xf ∈ W \X then xf ∈ Sf or xf ∈ T(xg ,y) for some y.

2
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Definition 5.2.3 Let MeetsX(f̄) be the following formula

Indec(f̄) ∧ ∃ḡ

(

¬disj(f̄ , ḡ) ∧ ¬SamePD(f̄ , ḡ))∧
¬[supp(f̄) < supp(ḡ)] ∧ ¬[supp(ḡ) < supp(f̄)]

)

Lemma 5.2.4 W |= MeetsX(f̄) if and only if supp(f̄) ∩X 6= ∅.

Proof

First we suppose for a contradiction that both W |= MeetsX(f̄) and supp(f̄) ∩ X = ∅.

Since W |= ¬SamePD(f̄ , ḡ)), we know that xf 6= xg.

Since supp(f̄) ∩ X = ∅, the point xf must be contained in one of the trees that we

decorated X with, so W |= ¬disj(f̄ , ḡ) implies that supp(f̄) ⊆ supp(ḡ) or supp(ḡ) ⊆

supp(f̄), giving a contradiction.

Suppose supp(f̄) ∩ X 6= ∅. We can find a ḡ to witness W |= MeetsX(f̄) by taking any

tuple that fixes a point inside supp(f̄) which moves xf . 2

Definition 5.2.5 Let RepPointDec(f̄0, f̄1) be the formula

disj(f̄0, f̄1) ∧MeetsX(f̄0) ∧MeetsX(f̄1)∧

∀ḡ∃h̄









MeetsX(ḡ)

MeetsX(h̄)
∧



→ ¬



disj(ḡ, h̄) ∧





SamePD(f̄0, h̄)

SamePD(f̄1, h̄)
∨













Proposition 5.2.6 W |= RepPointDec(f0, f1) if and only if xf0 = xf1 ∈ X .

Proof

RepPointDec is only realised by tuples that satisfy MeetsX, so Lemma 4.2.17 shows

that this proposition is true. 2
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Definition 5.2.7 EquivRepPointDec, Temp1PBDec, Temp2PBDec,

PathBetweenDec, RelatedDec and BDec are the formulas EquivRepPoint, Temp1PB,

Temp2PB, PathBetween, Related and B with every instance of RepPoint replaced by

RepPointDec.

Theorem 5.2.8 (RepPointDec,EquivRepPointDec,BDec) is a first order

interpretation of (X,B) inside W .

Proof

Since the other formulas in the interpretation only quantify over the points that realise

RepPointDec, the proofs of Subsection 4.2.2 apply directly. 2

5.2.2 Reconstructing S and (T, L)

Now that we are able to refer to X inside W , we can exploit this fact to define subgroups

isomorphic to Aut(S) and Aut(T, L) inside W . While the initial stages of the definitions

are first order, I am unable to make the final jump without using second order logic.

Definition 5.2.9 Let FunctionPart(φ) be the formula

∀f̄0, f̄1, ḡ0, ḡ1















RepPointDec(f̄0, f̄1)

RepPointDec(ḡ0, ḡ1)
∧



 ∧





(f̄φ0 = ḡ0 ∧ f̄
φ
1 = ḡ1)

(f̄φ1 = ḡ0 ∧ f̄
φ
0 = ḡ1)

∨





→ EquivRepPointDec(f̄0, f̄1; ḡ0, ḡ1)











Lemma 5.2.10 W |= FunctionPart(φ) if and only if φ fixes X point-wise.

Proof

φ fixes X point-wise if and only if ψ(x) = ψφ(x) for all x ∈ X . 2
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Proposition 5.2.11 FunctionPart(W ) ∼=
∏

i∈X

Aut(Si)×
∏

(i,j)∈Xap

Aut(T(i,j), L(i,j))

Proof

φ ∈ FunctionPart(W ) if and only if φ fixes X point-wise, i.e. is of the form (id, η, ζ). 2

Definition 5.2.12 AboveWitness(φ; f̄0, f̄1) is the formula

∀ḡ0, ḡ1(EquivRepPointDec(ḡ0, ḡ1; ḡ
φ
0 , ḡ

φ
1 ) → EquivRepPointDec(f̄0, f̄1; ḡ0, ḡ1))

Definition 5.2.13 BetweenWitness(φ; f̄0, f̄1, ḡ0, ḡ1) is the formula

RelatedDec(f, g) ∧ (∀h¬PathBetweenDec(h; f, g))∧

∀h̄0, h̄1











EquivRepPointDec(h̄0, h̄1; h̄
φ
0 , h̄

φ
1) →





EquivRepPointDec(f̄0, f̄1; h̄0, h̄1)

EquivRepPointDec(ḡ0, ḡ1; h̄0, h̄1)
∨

























Lemma 5.2.14 If W |= AboveWitness(φ; f̄0, f̄1) then for all g ∈ X

φ(g) = g ⇔ g = f

If W |= BetweenWitness(φ; f̄0, f̄1) then f is either a successor or predecessor of g and

for all h ∈ X

φ(h) = h⇔ h = f or h = g

Proof

This is follows from the fact that if (f̄0, f̄1) represents f then (f̄φ0 , f̄
φ
1 ) represents φ(f). 2

Finally we resort to second order logic to define subgroups of FunctionPart(W )

isomorphic to Aut(S) and Aut(T, L).
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Definition 5.2.15 Gap

1. AboveTemp1(A; f) is the second order formula

A � FunctionPart(W ) ∧ ∀φ
(

AboveWitness(φ; f) → φA = A
)

AboveTemp2(A; f) is the second order formula

AboveTemp1(A; f)∧

∀B,C((AboveTemp1(B; f) ∧AboveTemp1(C, f)) → BC 6= A)

and AboveTemp3(A, f) is the formula

AboveTemp2(A; f)∧

∀B 6= A(AboveTemp2(B; f) → ¬∃φ(φ(B) ≤ A)

2. BetweenTemp1(A; f, g) is the second order formula

A � FunctionPart(W ) ∧ ∀φ
(

BetweenWitness(φ; f, g) → φA = A
)

and BetweenTemp2(A; f, g) is the second order formula

BetweenTemp1(A; f)∧

∀B,C((BetweenTemp1(B; f, g) ∧ BetweenTemp1(C, f)) → BC 6= A)

3. Between(A, f, g) is the second order formula

BetweenTemp2(A; f, g)∧

∀B 6= A(BetweenTemp2(B; f, g) → ¬∃φ(φ(B) ≤ A))

Above(A, f) is the second order formula

AboveTemp3(A, f) ∧ ∀B, g(Between(B; f, g) → ¬(A ⊂ B))
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Theorem 5.2.16 Gap

1. If M |= Above(A; f) then A ∼= Aut(S).

2. If M |= Between(A; f, g) then A ∼= Aut(T, L).

Proof

Let πx and π(x,y) be the projection functions from

∏

i∈X

Aut(Si)×
∏

(i,j)∈Xap

Aut(T(i,j), L(i,j))

to Aut(Sx) and Aut(T(x,y), L(x,y)) respectively. Let B be such that

W |= AboveTemp1(B, f)

Since for all φ such that W |= AboveWitness(φ; f)

πx(B) = πφ(x)(B) and π(x,y)(B) = π(φ(x),φ(y))(B)

then for any φ ∈ W we may obtain by patching a ψ such that ψ|Sf
= φ|Sf

and

W |= AboveWitness(φ; f)

and so for any a ∈ Aut(S) there is a ψ such that πf (ψ) = a, and since A is a subgroup

preserved under composition with ψ, we know that a ∈ πf (B).

Variations on this argument show that for all x

πx(B) = Aut(S) or{id} and π(x,y)(B) = Aut(T, L) or{id}
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Similarly, if W |= BetweenTemp1(B, f, g) ∧ BetweenWitness(φ; f, g) then

πx(B) = πφ(x)(B) and π(x,y)(B) = π(φ(x),φ(y))(B)

and

πx(B) = Aut(S) or{id} and π(x,y)(B) = Aut(T, L) or{id}

If W |= AboveTemp2(A, f) then A cannot be realised as the composition of two

subgroups that satisfy AboveTemp1 and so if A is not the identity on Sx then A is the

identity on all the T(z0,z1), and is not the identity on Sy if and only if

∃φ ∈ Autf (W ) φ(x) = y

IfA is not the identity on T(z0,z1) thenA is the identity on all the Sx, and is not the identity

on T(y0,y1) if and only if

∃φ ∈ Autf (W ) φ((z0, z1)) = (y0, y1)

Similarly if W |= BetweenTemp2(A, f, g) then if A is not the identity on Sx then A is

the identity on all the T(z0,z1), and is not the identity on Sy if and only if

∃φ ∈ Aut(f,g)(W ) φ(x) = y

IfA is not the identity on T(z0,z1) thenA is the identity on all the Sx, and is not the identity

on T(y0,y1) if and only if

∃φ ∈ Aut(f,g)(W ) φ((z0, z1)) = (y0, y1)
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If W |= AboveTemp3(A, f) then given any B 6= A that satisfies AboveTemp2(A, f, g),

we are unable to map B into A using members of W (other embeddings may exists, but

not insideW ). This means that either A does not act as the identity on Sf only, or A does

not act as the identity on
⋃

T(f,g).

However, with Between(A, f, g), the only family that does not permit B that satisfy

BetweenTemp2 is the one that only acts non-trivially on T(f,g). Therefore

W |= Between(A, f, g) ⇒ A ∼= Aut(T, L)

If W |= Above(A, f) then A does not contain any subset that satisfies Between, so

A ∼= Aut(S). 2

5.3 Final Results

Definition 5.3.1 Let Z be the one element partial order.

KDec :=







M :
∃X ∈ KCone ∪ {∅, Z} ∃S, (T, L) ∈ KRub ∪ {∅}

M = Dec(X,S, (T, L))







Note that Dec(Z, S, (T, L)) equals S if S is non-empty, or Z if S is empty.

Dec(∅, S, (T, L)) is the empty partial order for any S and (T, L), and Dec(X, ∅, ∅) = X

for any X ∈ KCone.

We allow Z and ∅ as arguments in Dec(X,S, (T, L)) to ensure that KCone, KRub ⊆ KDec.

Theorem 5.3.2 KDec is faithful.
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Proof

Let Dec(X0, S0, (T0, L0)),Dec(X1, S1, (T1, L1)) ∈ KDec and assume that

Aut(Dec(X0, S0, (T0, L0))) ∼= Aut(Dec(X1, S1, (T1, L1)))

Theorem 5.2.8 shows that (X0, B) ∼= (X1, B). For all M ∈ KCone

M∗ ∈ KCone ⇒M ∼= M∗

Therefore X0
∼= X1.

Theorem 5.2.16 shows that S0
∼= S1 and (T0, L0) ∼= (T1, L1). 2

Theorem 5.3.3 Let M be a CFPO, let A be a 1-orbit such that Aut(M) acts cone

transitively on A, and for any B ⊂ M let ∼B be the equivalence relation x ∼ y ⇔

Path〈x, y〉 ∩ B = ∅. We let C ∈ (M \ A)/ ∼A, and describe two conditions.

1. If Path〈C,M \ C〉 6= ∅ then there is an ac ∈ A such that

Path〈C,M \ C〉 = {aC}

This says that if there is only one way to go from C to M \ C then C is attached to

ac.

2. If Path〈C,M \ C〉 = ∅ then:

(a) (M \ C)/ ∼C has exactly two elements which we call BC and B′
C; and

(b) there is (aC , a
′
C) ∈ Aap such that

Path〈C,BC〉 = {aC} and Path〈C,B′
C〉 = {a′C}
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This says that if there is more than one way to go from C to M \ C then C lies

between an adjacent pair of A.

If every C ∈ (M \ A)/ ∼A satisfy both 1. and 2. then there is an N ∈ KDec such that

Aut(M) ∼=A Aut(N).

This final theorem is a reformulation of Theorem 5.1.6. It describes the properties

possessed by the members of KDec which aren’t members of KCone or KRub. While

restrictive, this is much wider than the KCone, and is as wide as this thesis can manage!
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Chapter 6

Further Questions

6.1 Extensions

As proud as I am of the results contained in this thesis (whether justly or unjustly is up to

you) there is a glaring deficiency: they do not reconstruct the full class of CFPOs, merely

a well-behaved subclass. Chapter 3 does exactly what is asked, Chapter 5 gives the hand

it’s dealt a good try; the faults lies with Chapter 4.

The most immediate failing is the assumption that both ro ↑ (M) and ro ↓ (M) are at

least than 5.

Question 6.1.1 Is there an interpretation that works for cone transitive CFPOs where

one of ro ↑ (M) and ro ↓ (M) is less than 5?

The second transitivity condition of Chapter 4 is both strong and unnatural; simply

assuming 1-transitivity is much weaker. In her Ph.D. thesis, Chicot gives a classification

of the countable 1-transitive trees [4]. It is an impressive result; there are 2ℵ0 many, and

they are extremely wild. They may even have multiple non-isomorphic maximal branches,

which are not even 1-transitive!
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The maximal branches do have to be ‘lower isomorphic’, i.e. any two principal initial

sections of any two maximal branches of a 1-transitive tree must be isomorphic. This

suggests to me that the maximal chains of some 1-transitive CFPOs may be only ‘interval

isomorphic’, meaning that any two intervals of the maximal chains are isomorphic.

It would be a wonderful thing to reconstruct the 1-transitive CFPOs. The frustrating thing

is that this second condition is so necessary to the method that I don’t believe there is a

way to eliminate it. How can one use the subgroups isomorphic to A5 without assuming

that there are any?

Nonetheless, this presents a project:

Question 6.1.2 Classify the (countable) 1-transitive CFPOs.

Perhaps a method for reconstruction would present itself if they were better understood.

But as I said, the classification of the 1-transitive trees was an impressive feat. I certainly

do not have the energy for it at present. A more modest objective would be

Question 6.1.3 Give an example of a 1-transitive CFPO where Aut(M) is unable to act

as A5 on the cones of a point, but ro ↑ (M) and ro ↓ (M) are greater than or equal to 5.

Even if we had a reconstruction of the class of 1-transitive CFPOs, we would not be able

to use decoration to reconstruct the whole class of CFPOs.

Example 6.1.4 W (Alt,Z, ∅) is not the automorphism group of a tree, nor a 1-transitive

CFPO, nor the automorphism group of the decoration of a 1-transitive CFPO by trees.

Which informs the next question:

Question 6.1.5 Is there a minimal class of CFPOs such that every automorphism group

of a CFPO occurs as the automorphism group of a decoration of a member of the class

by trees?
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...

. . . . . .

Figure 6.1: Dec(Alt,Z, ∅)

While I find these questions interesting, really a method for reconstruction is available

which sidesteps all these considerations.

Question 6.1.6 Use locally moving groups to reconstruct the CFPOs.

6.2 Ancillary Questions

In various variations, Lemma 2.2.12 is used frequently throughout this thesis. The CFPOs

are not the widest class of partial orders where this is true, for example, instead of insisting

that between any two points there is a unique path, we could insist that between any two

points there are finitely many paths, and the same proof would work.

Definition 6.2.1 Let P be the class of partial orders such that for all tuples ȳ there is a

supertuple (x0, . . . xn−1) such that

qftp(x0, . . . , xn−1) ∪
⋃

xi≤≥xj

tp(xi, xj) ⊢ tp(x0, . . . , xn−1)

Question 6.2.2 Is P axiomatisable?

This property is a useful tool for classifying according to various homogeneity and

transitivity properties, so it seems natural to want to do the following:
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Question 6.2.3 Classify the ℵ0-categorical members of P .

It might also be nice to extend this concept to other settings.

Question 6.2.4 Develop analogous notions to P for other theories.

In [18], as well as showing that all completions of the theory of trees are NIP, Parigot

shows that the theory of a tree is stable if and only if every maximal branch has at most n

elements for some n ∈ N.

While I am almost certain that this is also for the CFPOs, there is perhaps scope for

defining an infinite order even when the maximal branches are finite, for example in Alt

the pairs (a0, a2n) have a natural order. While I would be shocked if this order is definable,

I cannot see a way to prove that it is undefinable in all CFPOs.

Question 6.2.5 Is a CFPO stable if and only if all its maximal branches have at most n

elements for some fixed n ∈ N.
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Appendix A

Appendix of Formulas

This appendix contains a table of the formulas defined in Chapters 4 and 5, with the

meaning that I held in mind when I coined the expression. None of the formulas have

been written out in full, for good reason.

The first formula, A5(f̄) will for each triple (fi, fj , fk) ⊆ f̄ contain an expression either

of the form

fi.fj = fk or ¬fi.fj = fk

f̄ has 60 elements, and there are 216,000 such triples. When writing the formula A5(f̄),

we start with one expression for one of the triples, and when we add the next we also

add a conjunction symbol, a left bracket and a right bracket. Thus there are at least

5 + 215, 999× 8 = 1, 727, 997 symbols in the formula A5(f̄).

An extremely generous estimate for the number of symbols documents formatted as this

thesis can display per line is 100, with at most 30 lines per side. The full expression of the

formulaA(f̄) would take at least 575 sides, which on its own is longer than the maximum

page count prescribed by the University of Leeds’ thesis regulations.

Comm contains two instances of A5, and a third clause of similar length, so let us say

that Comm(f̄ , ḡ) takes 750 pages. Indec adds a fourth clause of similar length to A5, so

would take 1,000 pages. Disj contains two Indec’s and one Comm, so takes 2,750 pages,
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and [supp(f̄) ⊂ supp(ḡ)] uses 3 Disj’s and 2 Indec’s, so takes 10,250 pages. Let’s say

10,000 for simplicity.

SamePD doubles that to 20,000 pages, and RepPoint, the first formula actually in the

interpretation, takes 45,000 pages, and would weigh 2 tons if printed on standard A4

paper. This does not include the ink.

So I have only used abbreviations.
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1. A5(f̄) states that f̄ satisfies the elementary diagram of A5.

2. Comm(f̄ , ḡ) insists that f̄ and ḡ commute.

Alt5(f̄) ∧Alt5(ḡ) ∧
∧

fi∈f̄
gj∈ḡ

(figj = gjfi)

3. Indec(f̄) insists that f̄ is indecomposable.

¬∃ḡ, h̄(ḡ ∗ h̄ = f̄ ∧ Comm(ḡ, h̄))

4. disj(f̄ , ḡ) insists that the supports of f̄ and ḡ are disjoint.

Indec(f̄) ∧ Indec(ḡ) ∧ Comm(f̄ , ḡ)

5. [supp(ḡ) ⊑ supp(f̄)] insists that the support of f̄ is contained in the support of ḡ.

Indec(f̄) ∧ Indec(ḡ) ∧ ¬disj(f̄ , ḡ) ∧

¬∃φ[¬disj(f̄φ, f̄) ∧ disj(ḡφ, ḡ)] ∧

¬∃φ(f̄φ = f̄ ∧ ḡφ 6= ḡ) ∧

6. [supp(ḡ) < supp(f̄)] is the properly contained version of the above formula.

[supp(ḡ) ⊑ supp(f̄)] ∧ ¬[supp(f̄) ⊑ supp(ḡ)]

7. SamePD(f̄ , ḡ) (Same Point and Direction) insists that f̄ and ḡ emanate from the

same point in the same direction.

∀h̄([supp(h̄) < supp(f̄)] ↔ [supp(h̄) < supp(ḡ)])
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8. RepPoint(f̄0, f̄1) is the formula defining the domain of interpretation (φDom in

Definition 1.3.4).

disj(f̄0, f̄1) ∧ ∀ḡ∃h̄¬disj(ḡ, h̄) ∧





SamePD(f̄0, h̄) ∨

SamePD(f̄1, h̄)





9. EqRepPoint(f̄0, f̄1; ḡ0, ḡ1) is the formula defining the equivalence on the domain

of interpretation (φEq).

RepPoint(f̄0, f̄1) ∧ RepPoint(ḡ0, ḡ1)∧

(SamePD(f̄0, ḡ0) ∧ SamePD(f̄1, ḡ1)) ∨ (SamePD(f̄0, ḡ1) ∧ SamePD(f̄1, ḡ0))

10. Temp1PB(g; h, k) is a temporary formula that expresses path-betweenness in some

circumstances.

∃l(EqRepPoint(ḡ0, ḡ1; l̄0, l̄1) ∧





¬disj(l̄0, h̄0) ∧ ¬disj(l̄0, h̄1)∧

¬disj(l̄1, k̄0) ∧ ¬disj(l̄1, k̄1)





11. Temp2PB(g; h, k) is a temporary formula that expresses path-betweenness in other

circumstances.

φ(g; h, k) ∧ ∀l φ(l; h, k) →





Temp1PB(g; l, k) ∧

Temp1PB(g; l, h)





12. PathBetween(g; h, k) insists that g lies on the path between the points h and k.

Temp1PB(g; h, k) ∨ Temp2PB(g; h, k)
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13. Related(x, y) insists that x are related y.

∀z(PathBetween(z; x, y) → Temp1PB(z; x, y))

14. B(z; x, y) insists that z is between x and y.

PathBetween(z; x, y) ∧











Related(x, y) ∧

Related(x, z) ∧

Related(y, z)











15. x⋖n y is the formula that defines x < y in Kn
Cone.

Related(x, y) ∧ ∃x0, . . . , xn























(
∧

i=0,...,n

Related(x, xi) ∧

(
∧

i 6=j

¬Related(xi, xj)) ∧

(
∧

i 6=j

PathBetween(x; xi, xj)) ∧

(¬PathBetween(x; y, x0))























16. (x1 <n x2 ⇔ y1 < y2) is a first order clause of the infinite disjunction in 17. Its

definition is too long to give here.

17. (x1 < x2 ⇔ y1 < y2) is the Lω1,ω formula that recovers x1 < x2 if and only if

y1 < y2.
∨

n<ω

(x1 <n x2 ⇔ y1 < y2)

18. MeetsX(f̄) is the formula that says the support of f̄ ⊂ Aut(W (X,S, (T, L)))

contains an element of X .

Indec(f̄) ∧ ∃ḡ





¬disj(f̄ , ḡ) ∧ ¬SamePD(f̄ , ḡ))∧

¬[supp(f̄) < supp(ḡ)] ∧ ¬[supp(ḡ) < supp(f̄)]
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19. RepPointDec(f̄0, f̄1) is a formula that adapts RepPoint so that it performs the same

duty as RepPoint in a decorated CFPO.

disj(f̄0, f̄1) ∧MeetsX(f̄0) ∧MeetsX(f̄1)∧

∀ḡ∃h̄









MeetsX(ḡ)

MeetsX(h̄)
∧



→ ¬



disj(ḡ, h̄) ∧





SamePD(f̄0, h̄)

SamePD(f̄1, h̄)
∨













20. EquivRepPointDec is the formula EquivRepPoint with every instance of

RepPoint replaced by RepPointDec. Similarly:

Temp1PBDec comes from Temp1PB

Temp2PBDec comes from Temp2PB

PathBetweenDec comes from PathBetween

RelatedDec comes from Related

BDec comes from B

21. FunctionPart(φ) is a formula that lets us recognise the elements of

Aut(W (X,S, (T, L))) that fix X point-wise.

∀f̄0, f̄1, ḡ0, ḡ1















RepPointDec(f̄0, f̄1)

RepPointDec(ḡ0, ḡ1)
∧



 ∧





(f̄φ0 = ḡ0 ∧ f̄
φ
1 = ḡ1)

(f̄φ1 = ḡ0 ∧ f̄
φ
0 = ḡ1)

∨





→ EquivRepPointDec(f̄0, f̄1; ḡ0, ḡ1)











22. The formulas written with the prefixes Above and Between are second-order

formulas that recover Aut(S) and Aut(T, L) from Aut(W (X,S, (T, L))).


