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Abstract

This thesis comprises three essays on assessing methods for modelling the distribution
of healthcare costs.

Chapter 2 extends the literature on modelling healthcare cost data by applying the
generalised beta of the second kind (GB2) distribution to English hospital inpatient cost
data. A quasi-experimental design, estimating models on a sub-population of the data and
evaluating performance on another sub-population, is used to compare this distribution
with its nested and limiting cases. While, for these data, the beta of the second kind (B2)
distribution and generalised gamma (GG) distribution outperform the GB2, our results
illustrate that the GB2 can be used as a device for choosing among competing parametric
distributions for healthcare cost data.

In Chapter 3, we conduct a quasi-Monte Carlo comparison of the recent developments
in parametric and semi-parametric regression methods for healthcare costs, both against
each other and against standard practice. The population of English NHS hospital in-
patient episodes for the financial year 2007-2008 (summed for each patient: 6,164,114
observations in total) is randomly divided into two equally sized sub-populations to form
an estimation set and a validation set. Evaluating out-of-sample using the validation set,
a conditional density approximation estimator shows considerable promise in forecasting
conditional means, performing best for accuracy of forecasting and amongst the best four
(of sixteen compared) for bias and goodness-of-fit. The best performing model for bias is
linear regression with square root transformed dependent variable, while a generalised lin-
ear model with square root link function and Poisson distribution performs best in terms
of goodness-of-fit. Commonly used models utilising a log link are shown to perform badly
relative to other models considered in our comparison.

Chapter 4 examines methods for estimating the full conditional distribution of health-
care costs. Understanding the data generating process behind healthcare costs remains a
key empirical issue. Although much research to date has focused on the prediction of the
conditional mean cost, this can potentially miss important features of the full conditional
distribution such as tail probabilities. We conduct a quasi-Monte Carlo experiment using
English NHS inpatient data to compare 14 approaches to modelling the distribution of
healthcare costs: nine of which are parametric, and have commonly been used to fit health-
care costs, and five others designed specifically to construct a counterfactual distribution.
Our results indicate that no one method is clearly dominant and that there is a trade-
off between bias and precision of tail probability forecasts. We find that distributional
methods demonstrate significant potential, particularly with larger sample sizes where
the variability of predictions is reduced. Parametric distributions such as log-normal,
generalised gamma and generalised beta of the second kind are found to estimate tail
probabilities with high precision, but with varying bias depending upon the cost threshold
being considered.
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Chapter 1

Introduction

This thesis contains three essays on the econometric modelling of healthcare costs.

Each essay extends, and is motivated by, recent advances in the existing large body of

literature on this topic. The work contained in this thesis contributes to the literature

by offering a significant methodological advancement in describing the generalised beta of

the second kind as an appropriate distribution to model healthcare costs (chapter 2); a

rigorous comparison of state of the art approaches (chapter 3); and an empirical assessment

of methods for extending the modelling of healthcare costs to the full distribution (chapter

4).

Healthcare costs (or healthcare expenditures) are of major importance on a macroe-

conomic, as well as microeconomic, level. Historically, and according to most projections,

the quantity of money traded for healthcare has been and is continuing to increase: total

expenditure on healthcare for the UK as a percentage of gross domestic product (GDP),

increased from 4.0% in 1961 to 9.4% in 20111 (Organisation for Economic Co-operation

and Development, 2013), and the King’s Fund project that the UK “could be spending

nearly one-fifth” of its GDP on public provision of health and social care in 50 years’ time

(Appleby, 2013). This means that the precise estimation of healthcare costs is increasingly

important. Because of the economic significance of the results generated through mod-

elling, the sensitivity of results to the various econometric methods is a methodological

research question with important implications for policy.

Models of healthcare costs are important for driving policy and include the estima-

1Public expenditure accounted for 85.1% and 82.8% of total expenditure for these two years respectively.
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tion of key parameters for populating decision models in cost-effectiveness analyses (Hoch

et al., 2002); adjusting for healthcare need in resource allocation formulae in publicly

funded healthcare systems (Dixon et al., 2011); undertaking risk adjustment in insurance

systems (Van de Ven and Ellis, 2000) and assessing the effect of observable lifestyle char-

acteristics such as smoking and obesity on resource use (Johnson et al., 2003; Cawley and

Meyerhoefer, 2012; Mora et al., 2014). Understanding how best to model the features of

healthcare expenditure data is crucial to informing policy decision making.

The focus of this thesis is the assessment of how best to model healthcare cost data

considering the various statistical challenges that this endeavour presents. Healthcare cost

data are highly non-normal: values cannot be negative and their distribution is asymmet-

ric and right-hand skewed.2 In addition, cost data possess long, thick right-hand tails with

some patients exhibiting extremely large costs owing to clinical complications, comorbidi-

ties or rare events. Furthermore, errors are likely to be heteroskedastic and responses to

covariates non-linear.

Various approaches have been used in health economics to model cost data. Linear

regression of costs is used, for example, in Person Based Resource Allocation for risk

adjustment in the UK (see for example Dixon et al., 2009, 2011). This method may be

sensitive to extreme observations, and may incorrectly assume constant additive responses

to covariates. Transforming the dependent variable may improve performance by reducing

skewness, with applied work often using a log (or less frequently a square root) transfor-

mation to reduce the effect of extreme observations (Jones, 2000). Policymakers, however,

require estimates on the raw scale leading to the additional challenge of re-transformation.

Such re-transformations are likely to be problematic in the case of heteroskedastic errors

on the transformed scale (Duan, 1983; Manning et al., 2005).

Alternatively, it is possible to use inherently non-linear specifications, which have the

benefit of estimating effects on the natural scale of costs. These include the generalised

linear model (GLM) family and exponential conditional mean models, which although

often considered for count and duration data, can also be applied more widely to positive

dependent variables. Each model within these families makes different assumptions about

2There is also usually a mass point of costs at zero £, i.e. non-users of healthcare, which are often dealt
with as a first stage of a two-part model, and modelling the positive expenditures forms the second stage
of the two-part model (see Jones, 2000).
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the distribution of the outcome variable. Within the GLM family, it is only necessary

to make assumptions about the functional form of the conditional mean and conditional

variance of the distribution. Duration and count models typically require assumptions

about the parametric form of the entire distribution. Whilst the GLM family is a natural

way to deal with heteroskedasticity, it fails to account explicitly for the issues of skew-

ness and kurtosis, which have implications for the efficiency and robustness of estimators

(Mullahy, 2009). More flexible parametric distributions allow for a greater range of esti-

mated skewness and kurtosis coefficients (McDonald et al., 2013). Manning et al. (2005)

introduce the generalised gamma distribution for use with healthcare costs, a distribution

that features important parametric distributions as nested and special cases, such as the

gamma and log-normal distribution, each with precedent as popular choices of distribution

for modelling healthcare costs.

Another strand of the literature has emphasised the utility of semi-parametric mod-

els including extended estimating equations (Basu et al., 2006), finite mixture models

(Deb and Burgess, 2003) and conditional density approximation estimators (Gilleskie and

Mroz, 2004), which aim to allow for greater flexibility and make fewer assumptions about

the functional form of the whole distribution. The extended estimating equations model

adopts the generalised linear models framework and allows for the link and distribution

functions to be estimated from data, rather than specified a priori: while this may ensure

consistency there may be important efficiency losses. Finite mixture models introduce het-

erogeneity (both observed and unobserved) through mixtures of distributions. Conditional

density approximation estimators are implemented by dividing the emprical distribution

into discrete intervals and then decomposing the conditional density function into ‘dis-

crete hazard rates’. As such these approaches, in principle, offer flexibility in modelling

the distribution of costs, particularly when functional forms are not well approximated by

parametric distributions.

With so many competing econometric methods to choose from, the applied researcher

faces a daunting task in determining which approach is best. As pointed out by Basu

et al. (2006), it is unlikely that economic theory will provide any a priori “guidance

about distributional characteristics and functional forms that may relate the outcome

of interest to covariates”. Thus, there is a need for empirical comparative work to aid
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researchers. Traditionally, econometric methods are compared using a Monte Carlo study.

This typically involves simulating data with certain characteristics and comparing the

performance of estimators given these characteristics. This approach may be inappropriate

for healthcare costs, since we are interested in a very large number of permutations of

assumptions underlying the distribution of the outcome variable. In addition, such studies

are prone to affording advantage to certain models arising from the chosen distributional

assumptions used for generating data. However, studies conducted in this area using this

approach have been useful in uncovering specific distributional characteristics that cause

problems for econometric methods. Manning and Mullahy (2001), for example, find that

certain forms of heavy-tailed data, whilst not affecting consistency, render estimates from

GLM approaches imprecise.

Due to improvements in computational capacity and burgeoning availability of large

datasets through administrative records and surveys, there is a growing literature of em-

pirical comparative assessments using actual healthcare cost data (Deb and Burgess, 2003;

Veazie et al., 2003; Buntin and Zaslavsky, 2004; Basu et al., 2006; Hill and Miller, 2010).

An important limitation of these studies is that none of them is a comprehensive evaluation

of all econometric approaches. In addition, any synthesis of the existing literature would

be inconclusive in terms of which method is most appropriate for a given application.

However, these papers show, amongst other things, that there is no commonly dominant

method. Different models are preferred according to different performance criteria such

as, for example, mean prediction error (bias) and mean absolute prediction error (accu-

racy). The performance of regression methods is judged almost entirely based upon the

conditional mean function, where it is found that distributional characteristics such as the

specification of the variance function can impact upon the performance in terms of the

conditional mean. Another important aspect of this research is that performance is evalu-

ated, at least in part, on observations not contained within the estimation sample. This is

necessary, since competing approaches estimate different numbers of parameters and over-

fitting the sample is an important concern. Chapter 3 further discusses the methodologies

and results of these studies.

The work contained in this thesis uses real data taken from the large English admin-

istrative dataset: Hospital Episode Statistics (HES), collected by the NHS Information
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Centre.3 Analysis is carried out using a dataset comprising 6,164,114 separate observa-

tions, which represents the population of hospital inpatient healthcare users for the year

2007-2008. Since data is taken from administrative records, there is only information on

users of inpatient NHS services, and therefore only contains strictly positive costs. In or-

der to fully exploit the large dataset, it is randomly divided into two equally sized groups

– an ‘estimation’ set and a ‘validation’ set (each with 3,082,057 observations) – before any

analysis is undertaken. Because researchers using observational data from social surveys

typically have fewer observations in their datasets than are present in the ‘estimation’ set

used here, smaller samples of different sizes are drawn from within the ‘estimation’ set

and these are used for estimating the models. These samples are used to estimate regres-

sion models, which are then later evaluated using the data from the ‘validation’ set. This

methodology is called a quasi-experimental design or a quasi-Monte Carlo study, since it

follows Monte Carlo principles of resampling, whilst using actual cost data as opposed

to hypothetical known distributions. Using this methodology, the three papers in this

thesis each make a significant contribution to the literature surrounding the econometric

modelling of healthcare costs.

Chapter 2 is focused around the application of the generalised beta of the second kind

distribution4 (GB2, and its special cases) to modelling healthcare costs. As discussed

earlier, in order to model data with heavy tails, Manning et al. (2005) introduce the three-

parameter generalised gamma distribution. Whilst this distribution is able to more flexibly

model skewness and kurtosis than its limiting and nested cases (such as the Weibull,

log-normal and gamma distributions), generalised gamma is itself a limiting case of the

four-parameter GB2 (and is therefore more restrictive). Jones (2011) considers the use

of GB2 for healthcare costs, but estimates GB2 in such a way as to not feature Manning

et al. (2005)’s generalised gamma as a special case. In chapter 2, GB2 is estimated with

a log link function, making it directly comparable to a whole host of distributions often

applied to healthcare costs. The constraints imposed by certain nested distributions are

directly testable, e.g. Fisk (log-logistic) and Singh-Maddala distributions. Using the quasi-

Monte Carlo study design, this chapter shows that GB2 offers the best fit according to

3Now named the Health and Social Care Information Centre.
4This is elsewhere known as the generalised-F distribution.
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one of the scores that should in principle capture the fit of the whole distribution (Akaike

Information Criterion), however it does not perform best in terms of the bias or accuracy

of its conditional mean forecasts (its special cases – beta of the second kind and log-

normal distribution – are, respectively, best according to these metrics). In addition, GB2

does not perform best in terms of forecasting the probability of very high costs, which

appear to be better-modelled using the more parsimonious log-normal and generalised

gamma distributions. This chapter concludes that GB2 offers considerable benefits over

and above the existing parametric methods to which it is compared, but that in this

illustration it is unclear as to whether it would be the best distribution to apply to the

data, since less flexible distributions perform better in key performance criteria. However,

GB2 shows promise as an umbrella distribution from which more restrictive functional

forms can be chosen through statistical tests.

The contribution of chapter 3 is to provide a systematic comparison of all recent devel-

opments in semi-parametric and fully parametric modelling against each other and against

standard practice. To begin, the chapter provides a review of comparative work using ac-

tual data, exploring the methodology adopted as well as the results attained. From this,

it is clear that there is no comprehensive empirical comparison existing in the literature

prior to this work. In particular, GB2 had only been compared against other fully para-

metric approaches, and not with standard practice or semi-parametric methods, and the

conditional density approximation estimator had previously not been compared to other

techniques using real data. The focus of this chapter is the performance of econometric

methods in terms of predicting the conditional mean, which is the focus of most compara-

tive work, and is inherently important in informing policy in healthcare. In line with other

comparative studies, no model performs best across all metrics of evaluation, which are

bias, accuracy and goodness-of-fit of forecasted conditional means. Using a quasi-Monte

Carlo study design, the results indicate that models estimated with a square root link func-

tion perform much better than those with log or linear link functions. In addition, more

flexibility in the econometric modelling does not necessarily result in better performance.

As previously noted, the link function plays a big role, but when this is flexibly estimated

from the data using the extended estimating equations approach, such an approach per-

forms less well than models with a square root link function. Among models with a square
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root link, additional flexibility in the functional form of the whole distribution is found

to lead to improvements in the accuracy of forecasts, with both a two component gamma

model and GB2 performing among the top four. The conditional density approximation

estimator performs among the top four across all three metrics of performance, and so

demonstrates promise. Another interesting result is that commonly used models such as

linear regression (on levels of and log-transformed costs), a gamma GLM with log link,

and the log-normal distribution, are not among the four best performing models with any

of the chosen metrics. In summary, the findings presented in this chapter illustrate the

sensitivity of results to the choice of econometric method and provide insight into the

best models to consider when interested in bias, accuracy or goodness-of-fit of forecasted

conditional means.

Chapter 4 is focused on the issue of fitting the full conditional distribution of health-

care costs. In so doing, it extends the literature on comparative assessment of econometric

methods for healthcare costs, since these have almost exclusively investigated performance

based on the fit of the conditional mean. As mentioned above, the conditional mean is im-

portant for policymakers, but is generally not the only characteristic that is of interest to

policymakers (a full discussion can be found in Vanness and Mullahy, 2007). In particular,

within health economics there is a particular emphasis on identifying individuals or char-

acteristics of individuals that lead to very large costs. Methods estimated using maximum

likelihood within the existing literature on modelling cost data are compared with distribu-

tional methods which have been more often applied within labour economics (Fortin et al.,

2011). These distributional methods involve running many equations for different points

of the distribution (Han and Hausman, 1990; Foresi and Peracchi, 1995; Chernozhukov

et al., 2013) or at different quantiles (Machado and Mata, 2005; Melly, 2005; Firpo et al.,

2009). Chapter 4 reviews these methods and their applications involving healthcare cost

data, and provides details on how each is estimated. The quasi-Monte Carlo approach is

used to forecast tail probabilities with each of these methods. Unlike Chapter 2, these

tails are throughout the entire distribution of costs, rather than just being very high costs.

This therefore analyses the fit of the whole distribution. Through repeated sampling, tail

probabilities are evaluated in terms of bias and precision. Distributional methods demon-

strate significant potential in modelling tail probabilities, particularly with larger sample
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sizes where the variability of predictions is reduced. Parametric distributions such as log-

normal, generalised gamma and generalised beta of the second kind are found to estimate

tail probabilities with high precision, but with varying bias depending upon which tail

probability is being considered.

Chapter 5 compares and contrasts the findings in Chapters 2, 3 and 4, and identifies

avenues for future research.
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Chapter 2

Beta-type Distributions
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2.1 Introduction

Modelling healthcare costs is of primary importance in health economics and health

services research for, broadly speaking, two reasons. Firstly, cost-effectiveness analyses

that compare costs of treatments to the health gains achieved, often require statistical

methods of modelling cost data, particularly in the absence of clinical trial data. Sec-

ondly, such methods are used for risk-adjustment purposes in either insurance schemes

(for example in the US) or devolving budgets to healthcare organisations (in the case of

the UK). This requires regression methods, applied to large datasets, to predict specific

healthcare costs for individuals or groups of patients (typically over a long period such

as a year), adjusting for the needs for healthcare using morbidity characteristics, together

with socioeconomic information, and age and gender.

Healthcare cost data are highly non-normal and their distributional characteristics

present a number of statistical challenges. Costs cannot be negative and the distribution

is asymmetric and right-hand skewed. In addition, cost data possess long, thick right-hand

tails with some patients exhibiting extremely large costs owing to clinical complications,

comorbidities or rare and costly events. Furthermore, errors are likely to be heteroskedas-

tic and responses to covariates non-linear. In what follows, we focus on modelling positive

costs for hospital inpatients and do not consider the problem of the many zero cost ob-

servations that would be found in a general population sample of users and non-users of

healthcare. Zero costs are often dealt with as a first stage of a two-part model, and mod-

elling the positive expenditures forms the second stage of the two-part model (see Jones,

2000).

Various approaches have been used in health economics to model cost data. Linear

regression of costs is used, for example, in Person Based Resource Allocation for risk

adjustment in the UK (see for example Dixon et al., 2009, 2011). This method may be

sensitive to extreme observations, and may incorrectly assume constant additive responses

to covariates. Transforming the dependent variable may improve performance by reducing

skewness, with applied work often using a log (or less frequently a square root) transfor-

mation to reduce the effect of extreme observations (Jones, 2000). Policymakers, however,

require estimates on the raw scale, leading to the additional challenge of re-transformation.
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Such retransformations, however are likely to be problematic in the case of heteroskedastic

errors on the transformed scale (Duan, 1983; Manning et al., 2005).

Alternatively, it is possible to use inherently non-linear specifications, which have the

benefit of estimating effects on the natural scale of costs. These include the generalised lin-

ear model (GLM) family and exponential conditional mean (ECM) models which, although

often considered for count and duration data, can also be applied more widely to positive

dependent variables. Each model within these families makes different assumptions about

the distribution of the outcome variable. Within the GLM family, it is only necessary to

make assumptions about the functional form of the mean and variance of the distribution.

Duration and count models typically require assumptions about the parametric form of

the entire distribution. Whilst the GLM family is a natural way in which to deal with

heteroskedasticity, it fails to account explicitly for the issues of skewness and kurtosis

which have implications for the efficiency and robustness of estimators (Mullahy, 2009).

More flexible distributions allow for a greater range of estimated skewness and kurtosis

coefficients (McDonald et al., 2013). Manning et al. (2005) introduced the generalised

gamma (GG) distribution for use with healthcare costs, where GG includes important

parametric distributions as nested and special cases, such as the gamma (GAMMA) and

log-normal (LN) distribution, each with precedent as popular choices of distribution for

modelling healthcare costs. In addition, specifying a fully parametric distribution allows

us to extract information from our estimated model about moments beyond the mean and

to look at the whole range of predicted quantiles. In the case of healthcare costs, a poli-

cymaker may be interested in the right-hand tail of the distribution and in knowing the

probability of an individual’s healthcare cost exceeding a certain threshold, for example if

the individual would then become eligible for reinsurance (Deb and Burgess, 2003).

In this paper, we explore the use of the generalised beta of the second kind (GB2),

and its nested and limiting case distributions, on English inpatient healthcare cost data.

Jones (2011) suggests the use of GB2 as part of a comparison of many different methods

for modelling US healthcare costs. Mullahy (2009) considers the use of the Singh-Maddala

distribution (SM) in order to control the heavy right hand tail of cost data, which is nested

within the GB2. Importantly, the GG is also a special limiting case of the GB2. It is well

known that the distribution of healthcare costs differs from application to application (Hill
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and Miller, 2010), and so the GB2 is well placed to discriminate amongst its competing

special case distributions, each of which are potential distributions an applied researcher

might choose to use for modelling healthcare costs. The full set list of distributions

considered in this paper is as follows (with label in parentheses): generalised beta of

the second kind (GB2), Singh-Maddala (SM), Dagum (DAGUM), beta of the second kind

(B2), Lomax (LOMAX), Fisk (FISK), generalised gamma (GG), gamma (GAMMA), log-

normal (LN), Weibull (WEI) and exponential (EXP).

In addition to the ‘umbrella’ function served by the GB2 (Cox, 2008), it is also possible

that its special or nested case distributions have inadequate flexibility to capture the

nature of the underlying data generating process, with the GB2 distribution itself being

the best fit. Bordley et al. (1997) find that the GB2 provides the best fit to US incomes,

following a comprehensive study of gamma- and beta-type distributions, suggesting that

the extra flexibility of the GB2 is required in this case. Each parametric distribution

implies certain restrictions upon the skewness and kurtosis coefficients, which often depend

upon the distribution parameters. In Figure 2.1, adapted from McDonald et al. (2013),

we display the possible combinations of skewness and kurtosis for the GB2 and each of

its nested and limiting cases. In particular, the GB2 allows for a greater flexibility of

possible skewness-kurtosis estimates than any of its nested or limiting cases; Figure 2.1

shows that the possible skewness-kurtosis spaces for all of the nested or limiting cases of

GB2 are enveloped by the skewness-kurtosis space for GB2. Three- and four-parameter

distributions have possible skewness-kurtosis spaces1, whilst two-parameter distributions

only allow for a locus of points, and one-parameter distributions (such as the exponential

distribution) a single point (skewness equal to 2 and kurtosis equal to 9). We superimpose

the skewness and kurtosis coefficients from the quantiles of our hospital inpatient data

(described later), which are shown to lie within the GB2 skewness-kurtosis space.

The GB2 and some of its nested cases can also be estimated where the implied pop-

ulation distribution has undefined moments, such as undefined variance, skewness and

kurtosis coefficients, for certain ranges of parameter values. While the sample moments

must be defined, those of the underlying data generating process may not be. Indeed

1In Figure 2.1 we denote an upper bound with subscript U, and lower bound with subscript L.
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Figure 2.1: Graph showing skewness-kurtosis spaces for each distribution
Note:
The dots shown on Figure 2.1 were generated as follows: the data were divided into ten
subsets using the deciles of a simple linear predictor for healthcare costs using the set of
regressors introduced later. Figure 2.1 plots the skewness and kurtosis coefficients of actual
healthcare costs for each of these subsets, the skewness and kurtosis coefficient of the full
estimation sub-population (represented by the larger circle with cross) and theoretically
possible skewness-kurtosis spaces and loci for each distribution considered in this paper.

Mandelbrot (1963) discusses such distributions, where the mean is finite, but variance

(and measures related to higher moments) are infinite. Some popular distributions used

for healthcare costs lack the flexibility to produce undefined moments (e.g. GAMMA, LN,

WEI and EXP).

The flexibility of beta-type size distributions makes them appropriate in a wide variety

of circumstances, ranging from unemployment duration to fire losses faced by a university,

as well as US incomes and nursing home occupancy rates in the actuarial literature (Mc-

Donald and Butler, 1987; Cummins et al., 1990; Bordley et al., 1997; Sun et al., 2008).

Cummins et al. (1990) find that although the four-parameter GB2 fits the data well, the

parsimonious one-parameter EXP performs only slightly worse. This reaffirms that a flex-

ible distribution is not a substitute for finding the correct distribution for a particular

empirical application (Manning et al., 2005).

This paper contributes to the literature on modelling healthcare costs by comparing

beta-type size distributions – GB2 and its nested and limiting case distributions – specified

using a log link, in a quasi-experimental design using English hospital inpatient cost data
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(Hospital Episode Statistics). Healthcare cost data from a financial year is divided into

an ‘estimation’ and a ‘validation’ sub-population. Models are estimated and tested using

samples of observations from the former, and their forecasting performance evaluated on

the latter, with emphasis on bias, accuracy and goodness of fit of forecasted conditional

means, as well as forecasted probability of costs beyond a certain threshold. Marginal

effects, although of interest, are not the primary concern in this paper. We evaluate

performance at different ‘estimation’ sample sizes, and present response surfaces as a

summary of results following the methodology adopted by Deb and Burgess (2003).

In general, results show GG as providing the best fit for these data and model specifi-

cation, although B2 offers the least biased results of those tested. We find that the relative

performance of models changes little with increasing sample size, in contrast to the results

in Deb and Burgess (2003).

Other, less parametric approaches, including finite mixture models and conditional

density estimators (Deb and Burgess, 2003; Gilleskie and Mroz, 2004) have been employed

on cost data, allowing the researcher to control for heterogeneity encountered in the data.

Here we focus only on parametric models for ease of comparison, and to focus on the

specific issue of choice of the functional form of the whole distribution.

2.2 Empirical Models

We estimate 11 regression models in total, with each model having up to four funda-

mental scale and shape parameters to estimate. All models are estimated, using maximum

likelihood, with only the scale parameter specified as an exponential function of covari-

ates: the four-parameter generalised beta of the second kind (GB2), its three-parameter

nested distributions (Singh-Maddala (SM), Dagum (DAGUM), beta of the second kind

(B2)), its two-parameter nested distributions (Lomax (LOMAX), Fisk (FISK)) and the

limiting cases of the three-parameter generalised gamma (GG), two-parameter gamma

(GAMMA), log-normal (LN) and Weibull (WEI) distributions, and the one-parameter

exponential (EXP) distribution.
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2.2.1 Generalised Beta of the Second Kind

The probability density function (2.1) and first moment (2.2) of the GB2 distribution

are as follows (McDonald, 1984):

f(y) =
ayap−1

bapB(p, q)[1 + (yb )a](p+q)
(2.1)

where B(u, v) = Γ(u)Γ(v)/Γ(u+ v) is the beta function, and Γ(·) is the gamma function.

E(y) = b

[
Γ(p+ 1

a)Γ(q − 1
a)

Γ(p)Γ(q)

]
(2.2)

b is a scale parameter, and a, p and q are shape parameters. Kleiber and Kotz (2003)

describe a as influencing the kurtosis of the distribution (‘thinness of the tails’), with the

relative values of p and q influencing the degree of skewness in the distribution.

In Figure 2.2, we present probability density functions of the GB2, setting b = 1,

and varying values of a, p and q – taken from Kleiber and Kotz (2003). The flexibility

of the GB2, as demonstrated by Figure 2.2, is a considerable strength. We further note

that GB2 can be negatively skewed, and whilst this is unlikely to be useful for healthcare

costs, health-related quality of life measures and hospital occupancy rates are examples of

outcomes that may follow a negatively skewed distribution.

With the Stata module gb2fit developed by Jenkins (2009), it is possible to fit the

GB2 to outcome data, specifying the distribution parameters as either constant scalars

or linear functions of covariates. This code is employed by Jones (2011) to estimate the

GB2 on US cost data from the MEPS dataset, allowing the value of b to vary linearly

with covariates. Here we specify b = exp (x′iβ) and treat the remainder of the parameters

as non-negative scalars, giving a mean proportional to an exponential function of the

covariates. This ensures that predictions are always positive and has a precedent in the

costs literature.2

2Other link functions would be possible such as a square root link, choosing between different forms
could then be aided by testing Pearson correlation coefficients and using Pregibon’s link test (Pregibon,
1980).
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Figure 2.2: Probability density functions for GB2 with different parameter values
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2.2.2 Nested Distributions and Limiting Cases

We estimate each of the nested distributions of GB2, with the exception of the inverse-

Lomax distribution (a = 1 and q = 1), which is theoretically unable to produce estimates

of the mean, and is rarely referred to in the modelling literature (Kleiber and Kotz,

2003). We note that SM, of the beta-type family of distributions, has been discussed

in the healthcare costs literature as a method to deal with the heavy-tailed nature of

cost data (Mullahy, 2009). Kleiber and Kotz (2003) provide a thorough account of these

distributions and their respective histories in the statistics literature. Table 2.1 shows

the probability density functions, cumulative distribution functions and moments of each

of the distributions used here and Figure 2.3 the relationships between the GB2 and its

nested and limiting cases.

This paper builds on advances made in Manning et al. (2005) in terms of parametric

distributions to be applied to healthcare costs. Manning et al. (2005) compare GG with

its nested and limiting cases (GAMMA, WEI, EXP and LN). Similarly, we compare GB2

with its nested and limiting cases. Since GG is a limiting case of GB2, we include all the

distributions used in Manning et al. (2005) (see Table 2.2). In their paper, Manning et al.

(2005) also discuss models where a second parameter is allowed to vary with covariates,

termed ‘heteroskedastic’ models. In principle, the GB2 allows for a second parameter to

be specified as a function of covariates. Preliminary work, however, showed such models

to perform very poorly and we do not investigate these models in this paper.
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1995)
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Table 2.1: Beta-family distribution properties
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Table 2.2: Gamma-family distribution properties
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2.3 Data and Choice of Variables

We use individual-level data from England on the use of hospital inpatient services to

assess the comparative performance of the various parametric distributions. Individual-

level information on healthcare utilisation is taken from the Hospital Episode Statistics

(HES) for the financial year 2007-2008. HES is a large administrative dataset adminis-

tered by the NHS Information Centre3, containing information on all inpatient episodes,

outpatient visits and A&E attendances for all patients admitted to English NHS hospitals.

Information is collected via medical records.

The cost variable used throughout is individual patient annual NHS hospital cost for

all spells finishing in the financial year 2007-2008. Costs generated by inpatient utilisation

of NHS facilities were included using the data on reference cost tariffs from 2008-2009.4

These are applied to the most expensive episode within the spell of an inpatient stay. All

episodes falling within the financial year are summed for each patient. Costs for mental and

maternity health spells together with private sector spells were excluded.5 For purposes

of our analysis we focus on positive costs only, ignoring non-users of services. In total

this provides us with 6,164,114 observations on healthcare costs. With exception of users

of maternity or mental healthcare, this represents the population of hospital inpatient

healthcare users for the year 2007-08.

Table 2.3 indicates the challenges of modelling cost data: the observed costs are heavily

right-hand skewed, with the mean far in excess of the median. They are also highly

leptokurtic, implying that beta-type distributions may be useful in trying to model the

thickness of the tails. Figure 2.4 displays a histogram for raw and transformed data,

including an Epanechnikov kernel plot. Even after log transformation, the distribution

exhibits right-hand skewness.

Following the model used to inform the distribution of healthcare resources across gen-

3Now named the Health and Social Care Information Centre.
4For the purposes of this study outpatient visits were excluded.
5The dataset was constructed to model the determinants of individual healthcare use as part of a wider

project considering the allocation of NHS resources to primary care providers. Data for mental healthcare
is incomplete since a lot of care is undertaken in the community and with specialist providers (and hence
not recorded in HES), and also since healthcare budgets for this type of care are constructed using separate
formulae. Maternity services are excluded since they are unlikely to be heavily determined by morbidity
characteristics, and accordingly for the setting of healthcare budgets are determined using alternative
mechanisms.
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Level Square root Logarithm

N 6, 164, 114
Mean £2, 609.95 43.18 7.25
Median £1, 126 33.56 7.03
Standard deviation £5, 087.96 27.30 1.00
Skewness 13.03 2.84 0.74
Kurtosis 363.18 19.62 2.99
Maximum £604, 701.1 777.63 13.31
99th percentile £19, 015 137.89 13.31
95th percentile £8, 956 94.64 9.10
90th percentile £6, 017 77.57 8.70
75th percentile £2, 722 52.17 7.91
25th percentile £610 24.70 6.41
10th percentile £446 21.12 6.10
5th percentile £406.5 20.16 6.01
1st percentile £347 18.63 5.85
Minimum £217 14.73 5.38

Table 2.3: Descriptive statistics for hospital costs

eral practices within Primary Care Trusts in England (Person-Based Resource Allocation:

Dixon et al., 2009, 2011), we specify a parsimonious set of covariates to model costs based

on morbidity characteristics of individuals (from ICD classifications), together with age

and gender. This specification mirrors common practice in the comparative literature on

econometric approaches to healthcare cost data, such as Deb and Burgess (2003), who use

morbidity markers in the form of Diagnostic Cost Groups. In order to control for age and

gender, we use polynomials up to a cubic term for age together with interactions with gen-

der, as well as a gender dummy. The average age in the observed population is just under

52 years of age and around 54 percent of individuals are female. Morbidity information

is available through the HES dataset, adapted from the ICD10 chapters (WHO, 2007) –

see Appendix A for further details. The 24 different morbidity indicators are coded 1 if

an individual had one or more hospital spells in the financial year with any diagnosis in

the relevant subset of ICD10 chapters. Accordingly, the indicators do not represent the

severity of the condition, merely its presence or absence.

While it is reasonable to question whether it is appropriate to test performance across

estimators when each distribution is estimated on the same set of covariates, this would

seem more appropriate when comparing nested and limiting cases of models each using
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Figure 2.4: Histogram plots of costs

the same link function as is the case here.6

2.4 Methodology

Comparative studies on US health care cost data regressions fall into two broad cate-

gories: those using actual expenditures (Deb and Burgess, 2003; Veazie et al., 2003; Buntin

and Zaslavsky, 2004; Basu et al., 2006; Hill and Miller, 2010) and those that synthesise

expenditures using known distributional forms (Manning et al., 2005; Basu et al., 2004). A

few key lessons emerge from this literature. Firstly, there is no one model that dominates

in all respects and there seems to be a tradeoff between bias and precision (Veazie et al.,

2003). Secondly, the preferred model may vary with the sample size of data on which

the model is estimated (Deb and Burgess, 2003) and may also vary across datasets (Hill

and Miller, 2010). It has also been noted that a more flexible model is not necessarily an

adequate replacement for the correct model (Manning et al., 2005).

6Will Manning, cited in Jones, 2011.
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2.4.1 Quasi-Experimental Design

Our study fits in the category of those using actual expenditures. We exploit the

large amount of observations that are available through the HES data by using a quasi-

experimental design similar to Deb and Burgess (2003).7 The population of observations

(6,164,114) is randomly divided into two equally sized sub-populations: an ‘estimation’

set (3,082,057) and a ‘validation’ set (3,082,057).8 From within the ‘estimation’ set we

randomly draw, 100 times with replacement, samples of size Ns (Ns ∈ 5,000; 10,000;

50,000; 100,000). The model is estimated on the sample, and performance evaluated on

both the ‘estimation’ sample and the full ‘validation’ set.

By employing this method, the study design follows Monte Carlo principles of resam-

pling, whilst using actual cost data as opposed to hypothetical known distributions. Since

it is unlikely that actual costs will follow a simple parametric distribution, this may be

preferable – assuming that we have sufficient data to represent all the features of the dis-

tribution of healthcare costs. In addition we do not influence, a priori, our results towards

any one distribution. Furthermore, evaluating on observations that are not used in estima-

tion guards against over-fitting and embodies the predictive nature of risk adjustment and

resource allocation. Our quasi-experimental design means that we do not know the true

marginal effects of each covariate, as would be the case using synthesised expenditures.

This is often the focus of comparative work. Instead, we concentrate on the ability of

the models to forecast costs for each observation in terms of predictive bias, accuracy and

goodness of fit.

2.4.2 Evaluation of Performance

Estimation Sample Evaluation

As with other flexible models, one benefit is the ability to choose between the more

restrictive nested and limiting case distributions. In order to evaluate competing models

we test the restrictions imposed by each nested model of the GB2 distribution using a

7Such split-sample style modes of evaluation have earlier precedent in the comparitive literature on
healthcare costs, see Duan et al. (1983).

8Given the size of the dataset, any sub-optimality resulting from the proportions allocated to each set
is likely to minimal. To ensure the results are replicable, we set a fixed seed for splitting the dataset into
two sets and for randomly drawing samples.
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Wald test and report rejection rates at the 5 percent significance level as a percentage of

all replications where all models are estimated successfully (see Table 2.4). To compare

beta-type models with the gamma-type models (a limiting case of the former and not a

linear restriction of a parameter), we use Akaike and Bayesian Information Criteria: for

a discussion of the problem with comparing model performance between non-nested (but

special) cases, see Vuong (1989). As a summary statistic, we calculate the average of the

log-likelihood of models estimated over all samples where the models estimate successfully.

AIC and BIC are then calculated, imposing the appropriate penalty upon the summary

log-likelihood, given the number of coefficients estimated.

We also graph mean prediction error (MPE – see next section) by deciles of predicted

levels of costs, analogous to modified Hosmer-Lemeshow and Pearson correlation coefficient

tests, allowing us to visually assess any patterns in bias by decile of predicted level of cost.

In the literature, this kind of assessment is used to decide between link functions. For our

purposes, the link function is set as a log link for all models, and so this interpretation

is more about the appropriateness of the shape parameters in influencing the conditional

means of each competing distribution.

Validation Set Evaluation

In health economics, the estimated conditional mean cost is often the most useful

to policymakers (Arrow and Lind, 1970). This can also be the case in risk-adjustment

formulae, where the goal is often to estimate the expected cost of an individual, or group

of individuals, to the healthcare provider over a certain period of time (Rice and Smith,

2002). Accordingly, we use our models to estimate forecasted mean costs over the year for

individuals (ŷi = E(yi|xi)) and evaluate performance on metrics designed to reflect the

bias (mean prediction error, MPE), accuracy (mean absolute prediction error, MAPE) and

goodness of fit (R2 and root mean square error, RMSE) of these predictions. MPE can

be thought of as measuring the bias of predictions at an aggregate level, while MAPE is a

measure of the accuracy of individual predictions. In addition, we evaluate the variability

of bias across replications (absolute deviations of mean prediction error, ADMPE). Note

that R2 is calculated by an auxiliary regression of actual levels of costs on forecasted
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values.9 These are evaluated on the full ‘validation’ set. Formulae for calculating these

metrics are provided below.10 Only replications where all 11 models are successfully

estimated on the sample are included for evaluation, and model performance according to

each criterion is calculated as an average over all included replications.

MPEmsr =

∑
(yi − ŷi)
Ns

(2.3)

MAPEmsr =

∑
|yi − ŷi|
Ns

(2.4)

RMSEmsr =

√∑
(yi − ŷi)2

Ns
(2.5)

R2
msr = 1−

∑
(yi − (αAUX + βAUX ŷi))

2∑
(yi − ŷi)2 (2.6)

ADMPEmsr =

∣∣∣∣∣MPEmsr −
∑Nr
r=1MPEmsr

Nr

∣∣∣∣∣ (2.7)

In order to get a greater insight into the performance of different distributions, we eval-

uate forecasted conditional means at different levels of cost. We assess MPE and MAPE

for deciles of actual costs, in order to investigate the degree to which flexible parametric

models can model heavily right hand tailed data. This nature of the distribution’s skew-

ness and kurtosis partly motivates the usage of flexible parametric models. Furthermore,

we can use these results to uncover the locations in the distribution of costs where each

model performs well relative to the other models in the comparison.

In addition, we consider the goodness-of-fit of the whole distribution by calculating the

estimated probability of having a cost above a chosen threshold level for each observation.

Since all of the models considered are fully parametric, it is possible to extract this given

estimated parameter values using the cumulative distribution function. Once a probability

is estimated for each observation, we take the average of these, giving the amount of mass

the estimated distribution allocates beyond the chosen value, which can then be compared

9In equation 2.6 coefficients from the ‘auxiliary’ regression are denoted with AUX subscript.
10Where m denotes the model used, s the sample size used, and r the replication.
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to the observed empirical mass from the data given by the proportion of costs above the

chosen level.

Following Deb and Burgess (2003), we construct response surfaces. These produce

polynomial approximations to the relationship between the predicted values and the sam-

ple size of the experiment, Ns. For our purposes, we estimate the following regression for

each model and for each metric of performance (illustrated below for the mean prediction

error).

MPEmsr = αMPE
m + βMPE

m

(
1

Ns

)
+ uMPE

msr (2.8)

We specify the relationship to be between MPE and the inverse of the sample size, reflecting

that we expect reduced bias as the number of observations increases. In particular, the

value of αMPE
m represents the value of MPE to which the model approaches asymptotically

with increasing sample size. Here, uMPE
msr represents the error term from the regression. For

the metrics that cannot be negative, we use the log function of the value as the dependent

variable. As such, in the case of mean absolute prediction error we estimate:

ln (MAPEmsr) = αln(MAPE)
m + βln(MAPE)

m

(
1

Ns

)
+ uln(MAPE)

msr (2.9)

With the log specification, differences in estimates are to be interpreted as percentage

differences, as opposed to absolute differences.

2.5 Results and Discussion

To begin discussing the results, we mainly focus on results using samples with 5,000

observations. We analyse results across increasing sample sizes by summarising and dis-

cussing the response surfaces.

2.5.1 Estimation Sample Results

Where all 11 models were successfully estimated11, we tested the restrictions required

11We discarded estimates from two of the samples with 5,000 observations, since Stata was unable to
predict means for the LOMAX, owing to a large q parameter. No estimates were discarded at larger sample
sizes.
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for each of the nested beta-type size distributions using a Wald test. In Table 2.4 we

present the percentage of replications where the null hypothesis, of the restriction being

valid, was rejected at a 5% level of significance. Accordingly a higher percentage indicates

greater evidence against the nested model being appropriate.

Sample size

Nested model 5,000 10,000

SM (1 restriction) 71% 100%
DAGUM (1 restriction) 20% 82%
B2 (1 restriction) 42% 71%
LOMAX (2 restrictions) 98% 100%
FISK (2 restrictions) 53% 100%

Table 2.4: Results of tests on nested model restrictions (percentage rejected at 5% signif-
icance level)

The restrictions are rejected least often with q = 1 (DAGUM), followed by a = 1

(B2) at a sample size of 5,000 (with 10,000 observations, we reject least often a = 1 (B2)

and then q = 1 (DAGUM)12). These results might lead to the increased use of these two

models over the GB2. Since we use actual data, we cannot observe either where type 1

and type 2 errors occur or their associated losses. Suppose there is little cost associated

with using a more flexible model: efficiency loss is small, there is little extra computational

demand, and overfitting is hard to detect. In this case, the researcher should use the more

flexible model, knowing that any type 1 error (if a more parsimonious model was, in fact,

valid) is associated with little cost. In addition, if a more parsimonious model was used,

as a result of the restriction not being rejected, the reduced goodness-of-fit could present

a large cost due to the type 2 error if the correct model were actually the more flexible

form. It is, therefore, necessary to bear these results in mind when looking at the results

of goodness-of-fit for forecasting out-of-sample. We do not consider here gains or losses

from efficiency or computational demand, although both are relevant in practice.

Results presented in Table 2.5 show that the more flexible models perform well ac-

cording to AIC and BIC. On the whole, models with more estimated parameters perform

better than those with fewer. As such, the one-parameter EXP model performs the worst

according to both AIC and BIC. Of the two-parameter distributions, the FISK model

12Percentage rejected at 5% significance level was 100% with sample sizes 50,000 and 100,000.
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GB2 AIC 83,981
BIC 84,209

SM AIC 84,026
BIC 84,247

DAGUM AIC 83,986
BIC 84,208

B2 AIC 83,984
BIC 84,205

LOMAX AIC 85,822
BIC 86,037

FISK AIC 84,122
BIC 84,337

GG AIC 83,996
BIC 84,217

GAMMA AIC 85,269
BIC 85,484

LN AIC 84,141
BIC 84,356

WEI AIC 85,673
BIC 85,888

EXP AIC 85,899
BIC 86,108

Table 2.5: Values for each model’s average AIC and BIC at sample size 5,000

is found to perform the best, with the LOMAX model the worst. In general, according

to these measures, the two-parameter distributions perform worse than those with three

parameters. The best three-parameter distribution, according to this process, is B2: the

best overall according to BIC. This is unsurprising from the results in Table 2.4, where we

reject the a = 1 restriction in 42% of subsets. The GB2, a four-parameter (and thus the

most flexible) distribution is the top ranking model in terms of AIC and is third according

to BIC.

Figure 2.5 plots MPE against deciles of predicted costs on the estimation set. As

such, it represents a visual attempt to determine structural bias in the model (similar to a

modified Hosmer-Lemeshow (1980) test) – as tested statistically using Pearson correlation

coefficients and Pregibon link tests. In general, the models appear to follow a similar

pattern including large over-estimations on average in the highest decile of predicted costs.

Because of this, we display the smallest nine deciles of predicted cost on one scale, with a

separate scale for the 10th decile (right hand panel of the Figure).

The similarity in pattern of prediction error by decile of predicted cost makes sense
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Figure 2.5: Mean prediction error for each model by each decile of predicted level of cost

given that all of these models use the same log link function and are nested or limiting

cases of the GB2 distribution. Since the link function is the same for all models, it is

unlikely that the observed systematic pattern causes bias in favour of one distribution over

another. However, it is still worth noting that there are observable differences between the

distributions from this plot. With the exception of the SM and DAGUM distributions,

all models over-predict costs in five deciles and under-predict in five. The DAGUM over-

predicts in six of the deciles, and SM in eight of the deciles. SM performs the worst in the

decile with largest costs: over-predicting, on average, by £2, 868. The best performing

distribution, in terms of over-prediction in decile with highest predicted costs, is GG

over-predicting by £448 on average.

2.5.2 Validation Set Results

In displaying these results, we show commonly used metrics to evaluate the fitting of

means. While a policymaker may only be interested in fitting the costs on average, in

which case the informative metric is MPE, they may also be concerned with large errors

for individual costs, in which case they may look at RMSE (where larger errors are more

influential, since they are squared). For illustrative purposes, we display results for all
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metrics, rather than specify a loss function for the policymaker, which would determine

the relative importance of each metric. In addition, the economic importance of differences

in values for each of these metrics is determined by the policymaker’s loss function. It may

be that a small loss of accuracy (MAPE) is compensated for by the gains to reduced bias

(MPE). Since we do not impose a loss function on these results, we discuss each aspect of

the fit of conditional means in turn. It is clear from the results in Table 2.6 that no single

distribution dominates in all of the criteria and that there is a trade-off between accuracy,

bias and goodness-of-fit.

MPE (£) MAPE (£) RMSE R2 ADMPE (£)

GB2 -71.64 1,800.49 4,881.26 0.17859 62.32
SM -397.47 1,958.42 5,251.70 0.17025 77.48
DAGUM -195.40 1,856.35 4,984.90 0.17580 51.43
B2 -8.04 1,772.24 4,818.32 0.18088 46.10
LOMAX -130.91 1,808.06 4,997.68 0.18420 53.33
FISK -25.14 1,782.56 5,028.90 0.17280 45.81
GG 39.52 1,752.94 4,758.02 0.18376 45.72
GAMMA -151.29 1,819.84 4,985.93 0.18681 60.22
LN 60.04 1,735.93 4,830.02 0.18265 42.72
WEI -193.53 1,842.73 5,021.77 0.18708 63.25
EXP -151.29 1,819.84 4,985.93 0.18681 60.22

Table 2.6: Results of model performance, when all converged, sample size 5,000

B2 gives the least biased estimates, overestimating by £8 (0.3% of the mean of the

population) on average over the replications. In this regard, SM performs the worst –

overestimating by 15.2% of the population mean. All of the beta-family of distributions

produce, on average, overestimates of the conditional mean, while GG and LN produce

underestimates from the gamma-family. LN gives the most accurate results, with GG the

second most accurate and SM the least accurate. In the case of LN, the mean absolute

prediction error, averaged over replications, is £1, 736 (66.5% of the population mean);

for SM this is £1, 958 (75.0% of the mean of the population). In terms of goodness of

fit (RMSE), GG performs the best; B2 also performs well. It is worth highlighting that

DAGUM does not perform especially well according to its performance on the tests using

the validation set, despite the strong performance in tests relating to its log-likelihood.

Figures 2.6 and 2.7 show the performance metrics for each decile of the actual level

of costs of the validation set (again displaying the tenth decile on a separate scale to the
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Figure 2.6: Mean prediction error for each model by each decile of level of cost

first nine deciles). This enables us to see how well our models peform on out-of-sample

observations by each decile. For the sake of clarity, we display results for only five of

the distributions: GB2, B2 (least biased model), SM (most biased and least accurate),

GG (best goodness-of-fit) and LN (most accurate). Depending upon their loss function,

a policymaker may place greater emphasis on deciles of higher costs than smaller ones.

In modelling healthcare costs, for example, the decile containing the largest costs may be

considered the most important, and as such models designed to cope with heavy-tailed

data are increasingly popular.

Looking at the mean prediction error (Figure 2.6), we can see which models predict

well on average for each decile of costs being considered. It appears as though there is a

consistent pattern: on average, the highest costs are underpredicted, and the lowest eight

deciles overpredicted, by all models. The models (e.g SM) that predict higher costs in

general are the most biased in overpredicting in low deciles, but then have the best perfor-

mance in the highest cost decile. The ranking of models’ performance over deciles changes

somewhat – it is worth noting that GG does particularly badly in that it underpredicts

costs in the last decile.
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Figure 2.7: Mean absolute prediction error for each model by each decile of level of cost

In terms of fitting the individual expenditures, we present the mean average prediction

error for each decile of actual costs (Figure 2.7). It is clear that the models which perform

the best on average in terms of MPE in the highest decile of costs actually perform worse

in terms of the mean absolute prediction error. This suggests models, such as SM, whilst

forecasting high costs well on average, do a relatively poor job of forecasting individual

costs within the highest decile.

Using the cumulative distribution function, we evaluate each model’s distributional fit

by comparing estimated proportions above a chosen value with actual proportions observed

in our data. Here we plot the ratio of estimated to observed proportion above a selected

value in order to see how the fit of these tail probabilities varies across the models, for the

following levels of cost: £10, 000, £15, 000, £25, 000, £50, 000 and £100, 000.

From Figure 2.8 it is clear that choice of distribution affects the estimated tail proba-

bilities. In the case of SM, the model overestimates the mass for all levels of costs chosen

here. All models of the beta-family overestimate the proportion of data at the highest

chosen value of £100, 000, while all gamma-family models underestimate this proportion

with the exception of the EXP (not shown in Figure 2.8). LN fits the data best for tail

probabilities for costs £15, 000, £25, 000 and £50, 000, and GG best for £100, 000. In
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Figure 2.8: Estimated tail probabilities compared to observed actual proportions in data

Figure 2.8, GB2 predicts best the proportion above the value of £10, 000, although this

was best forecasted by the DAGUM distribution when all models are considered.
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As outlined in the Methodology section, we estimate these models with different sample

sizes. We find that model performance is largely unaffected by sample size, with relative

performance in terms of forecasted mean costs changing little (MPE, MAPE, RMSE and

ADMPE). Some improvement is observed for all models with LADMPE (log(ADMPE)),

suggesting that variation in bias reaches its minimum at a sample size of around 10,000.

However, on the whole, these results suggest that these models are as appropriate at

smaller samples (5,000) as larger ones. Figure 2.9 illustrates this in the form of response

surfaces. With the exception of MPE for B2, all coefficient estimates for the constant term

for all metrics of performance were significantly different from zero at the 5 percent level

implying that, as the sample size approaches infinity, the metric of performance does not

converge to zero.

In Deb and Burgess (2003), it is found that bias falls when models are estimated on

an increasing number of observations. This fall in bias happens more slowly with more

complex (finite mixture) models than with other estimated models. In our results, the

performance of distributions with the most estimated parameters is not different to others,

with increasing sample size. We suggest that this is because the estimation of a further two

shape parameters (GAMMA to GB2) will cause only two additional degrees of freedom

to be lost, compared to the loss of a further 34 degrees of freedom in the estimation of an

additional component for a finite mixture model. This is because the latter requires the

estimation of another coefficient for each independent variable, for the additional shape

parameter and for the probability of class membership.

2.6 Conclusions

We estimate the GB2 distribution on English hospital inpatient data using maxi-

mum likelihood estimation, specifying the conditional mean as an exponential function

of covariates, and evaluate its (and its nested and limiting cases) performance using a

quasi-experimental design. The results suggest that there may be potential for the use

of beta-type distributions in forecasting individual healthcare costs. In particular, B2 ex-

hibits less bias than other models, without losing much accuracy. GG performs well in

terms of accurately forecasting means, and also best forecasts the tail probability for costs
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exceeding £100, 000 from the models chosen, while LN forecasts tail probabilities best for

other high costs (£15, 000, £25, 000 and £50, 000). Unlike results obtained by Deb and

Burgess (2003), the more complicated parametric distributions exhibit little evidence of

worse performance due to smaller sample size.

In summary, the increased flexibility offered by the GB2 due to its additional param-

eters compared to its nested and limiting cases does not result in an improved forecasted

fit over its competing models for the data used here. This may not be the case, however,

for other healthcare cost data, or other model specifications. Hence, in a spirit similar

to Manning et al. (2005), the GB2 could be used as a flexible distribution to allow the

analyst to select among the competing distributions nested by it. In our illustration this

is particularly useful, given that no single model dominates all criteria which may enter

the policymaker’s loss function.
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2.7 Appendix A

We use the variables shown in Table 2A1 to construct our regression models. They are

based on the ICD10 chapters, which are given in Table 2A2.

Variable name Variable description
epiA Intestinal infectious diseases, Tuberculosis, Certain zoonotic bacterial diseases, Other bacterial diseases, In-

fections with a predominantly sexual mode of transmission, Other spirochaetal diseases, Other diseases caused
by chlamydiae, Rickettsioses, Viral infections of the central nervous system, Arthropod-borne viral fevers and
viral haemorrhagic fevers

epiB Viral infections characterized by skin and mucous membrane lesions, Viral hepatitis, HIV disease, Other viral
diseases, Mycoses, Protozoal diseases, Helminthiases, Pediculosis, acaiasis and other infestations, Sequelae of
infectious and parasitic diseases, Bacterial, viral and other infectious agents, Other infectious diseases

epiC Malignant neoplasms
epiD In situ neoplasms, Benign neoplasms, Neoplasms of uncertain or unknown behaviour and III
epiE IV
epiF V
epiG VI
epiH VII and VIII
epiI IX
epiJ X
epiK XI
epiL XII
epiM XIII
epiN XIV
epiOP XV and XVI
epiQ XVII
epiR XVIII
epiS Injuries to the head, Injuries to the neck, Injuries to the thorax, Injuries to the abdomen, lower back, lumbar

spine and pelvis, Injuries to the shoulder and upper arm, Injuries to the elbow and forearm, Injuries to the
wrist and hand, Injuries to the hip and thigh, Injuries to the knee and lower leg, Injuries to the ankle and
foot

epiT Injuries involving multiple body regions, Injuries to unspecified part of trunk, limb or body region, Effects of
foreign body entering through natural orifice, Burns and Corrosions, Frostbite, Poisoning by drugs, medica-
ments and biological substances, Toxic effects of substances chiefly nonmedicinal as to source, Other and
unspecified effects of external causes, Certain early complications of trauma, Comlications of surgical and
medical care, not elsewhere classified, Sequelae of injuries, of poisoning and of other consequences of external
causes

epiU XXII
epiV Transport accidents
epiW Falls, Exposure to inanimate mechanical forces, Exposure to animate mechanical forces, Accidental drowning

and submersion, Other accidental threats to breathing, Exposure to electric current, radiation and extreme
ambient air temperature and pressure

epiX Exposure to smoke, fire and flames, Contact with heat and hot substances, Contact with venomous ani-
mals and plants, Exposure to forces of nature, Accidental poisoning by and exposure to noxious substances,
Overexertion, travel and privation, Accidental exposure to other and unspecified factors, Intentional self-
harm, Assault by drugs, medicaments and biological substances, Assault by corrosive substance, Assault by
pesticides, Assault by gases and vapours, Assault by other specified chemicals and noxious substances, Assault
by unspecified chemical or noxious substance, Assault by hanging, strangulation and suffocation, Assault by
drowning and submersion, Assault by handgun discharge, Assault by rifle, shotgun and larger firearm dis-
charge, Assault by other and unspecified firearm discharge, Assault by explosive material, Assault by smoke,
fire and flames, Assault by steam, hot vapours and hot objects, Assault by sharp object

epiY Assault by blunt object, Assault by pushing from high place, Assault by pushing or placing victim before
moving object, Assault by crashing of motor vehicle, Assault by bodily force, Sexual assault by bodily force,
Neglect and abandonment, Other maltreatment syndromes, Assault by other specified means, Assault by
unspecified means, Event of undetermined intent, Legal intervention and operations of war, Complications
of medical and surgical care, Sequelae of external causes of morbidity and mortality, Supplementary factors
related to causes of morbidity and mortality classified else

epiZ XXI

Table 2A1: Classification of morbidity characteristics

ICD10 codes beginning with U were dropped because there were no observations in the

6,164,114 used. Only a small number (3,170) were found of those beginning with P and

so these were combined with those beginning with O - owing to the clinical similarities.
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Chapter Blocks Title
I A00-B99 Certain infectious and parasitic diseases
II C00-D48 Neoplasms
III D50-D89 Diseases of the blood and blood-forming organs and certain disorders

involving the immune mechanism
IV E00-E90 Endocrine, nutritional and metabolic diseases
V F00-F99 Mental and behavioural disorders
VI G00-G99 Diseases of the nervous system
VII H00-H59 Diseases of the eye and adnexa
VIII H60-H95 Diseases of the ear and mastoid process
IX I00-I99 Diseases of the circulatory system
X J00-J99 Diseases of the respiratory system
XI K00-K93 Diseases of the digestive system
XII L00-L99 Diseases of the skin and subcutaneous tissue
XIII M00-M99 Diseases of the musculoskeletal system and connective tissue
XIV N00-N99 Diseases of the genitourinary system
XV O00-O99 Pregnancy, childbirth and the puerperium
XVI P00-P96 Certain conditions originating in the perinatal period
XVII Q00-Q99 Congenital malformations, deformations and chromosomal abnormali-

ties
XVIII R00-R99 Symptoms, signs and abnormal clinical and laboratory findings, not

elsewhere classified
XIX S00-T98 Injury, poisoning and certain other consequences of external causes
XX V01-Y98 External causes of morbidity and mortality
XXI Z00-Z99 Factors influencing health status and contact with health services
XXII U00-U99 Codes for special purposes

Table 2A2: ICD10 chapter codes
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2.8 Appendix B

Sample size

Nested model 50,000 100,000

SM (1 restriction) 100% 100%
DAGUM (1 restriction) 100% 100%
B2 (1 restriction) 100% 100%
LOMAX (2 restrictions) 100% 100%
FISK (2 restrictions) 100% 100%

Table 2B1: Results of tests on nested model restrictions (percentage rejected at 5% sig-
nificance level)

Sample size

Model 10,000 50,000 100,000

GB2 AIC 167,948 839,650 1,679,333
BIC 168,200 839,958 1,679,666

SM AIC 168,038 840,115 1,680,260
BIC 168,283 840,415 1,680,584

DAGUM AIC 167,959 839,717 1,679,466
BIC 168,205 840,017 1,679,789

B2 AIC 167,954 839,685 1,679,404
BIC 168,200 839,985 1,679,728

LOMAX AIC 171,619 857,922 1,715,877
BIC 171,857 858,213 1,716,191

FISK AIC 168,224 841,013 1,682,054
BIC 168,462 841,304 1,682,368

GG AIC 167,981 839,829 1,679,696
BIC 168,226 840,129 1,680,019

GAMMA AIC 170,559 852,747 1,705,630
BIC 170,797 853,038 1,705,944

LN AIC 168,262 841,177 1,682,389
BIC 168,500 841,468 1,682,703

WEI AIC 171,385 856,974 1,714,108
BIC 171,623 857,265 1,714,422

EXP AIC 171,789 858,825 1,717,724
BIC 172,020 859,107 1,718,029

Table 2B2: Values for each model’s average AIC and BIC at sample sizes 10,000, 50,000
and 100,000
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Decile of predicted cost

Model 1 2 3 4 5 6 7 8 9 10

GB2 -165.36 -236.15 -217.35 -179.12 65.46 87.79 151.18 370.57 622.78 -1,114.90
SM -241.15 -310.65 -297.22 -295.49 -35.46 -60.56 -55.91 98.43 189.08 -2,789.97
DAGUM -208.64 -277.35 -254.72 -238.95 17.73 28.13 51.03 258.65 450.82 -1,692.81
B2 -148.59 -223.62 -202.55 -157.54 75.62 121.36 194.53 416.25 710.65 -780.92
LOMAX 11.62 -78.19 -115.85 -93.83 -19.31 171.67 156.04 309.74 427.20 -2,035.92
FISK -38.86 -88.57 -134.80 -26.57 143.05 214.11 294.99 448.97 661.05 -1,665.84
GG -149.70 -225.25 -202.98 -151.99 72.42 133.39 211.06 456.06 775.33 -415.29
GAMMA 27.83 -65.39 -116.76 -102.36 -41.55 67.11 179.97 267.02 356.25 -2,062.45
LN -49.64 -103.71 -150.41 -46.01 82.03 235.43 297.27 483.76 777.41 -863.41
WEI 39.61 -65.57 -118.35 -106.75 -56.13 16.83 140.25 220.60 278.74 -2,230.64
EXP 27.83 -65.39 -116.76 -102.36 -41.55 67.11 179.98 267.02 356.25 -2,062.45

Table 2B3: Models’ average mean prediction error (£) by decile of predicted cost at sample size 10,000
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Decile of predicted cost

Model 1 2 3 4 5 6 7 8 9 10

GB2 -156.95 -242.73 -226.12 -184.12 54.57 66.85 188.80 366.06 665.94 -1,110.68
SM -238.41 -304.85 -313.72 -289.21 -32.44 -78.27 -23.56 98.20 233.75 -2,759.88
DAGUM -204.83 -282.08 -268.40 -244.46 8.78 9.66 76.91 250.66 492.94 -1,704.27
B2 -139.19 -231.78 -212.98 -161.30 70.58 89.59 228.72 416.73 745.34 -790.08
LOMAX 11.78 -81.69 -116.04 -98.57 -21.16 183.39 139.97 331.27 439.83 -2,061.92
FISK -37.57 -96.37 -140.17 -27.85 127.55 202.22 296.45 460.12 684.12 -1,681.48
GG -136.87 -237.02 -213.42 -157.37 73.61 104.46 245.52 453.24 814.91 -410.70
GAMMA 27.02 -68.67 -123.93 -97.79 -37.02 78.69 175.22 265.66 376.97 -2,100.42
LN -49.24 -108.78 -151.78 -46.89 78.61 228.43 283.82 497.98 800.61 -873.83
WEI 34.87 -67.58 -127.05 -99.83 -55.05 25.25 149.05 217.30 295.61 -2,241.03
EXP 27.02 -68.67 -123.93 -97.79 -37.02 78.69 175.22 265.66 376.97 -2,100.42

Table 2B4: Models’ average mean prediction error (£) by decile of predicted cost at sample size 50,000

Decile of predicted cost

Model 1 2 3 4 5 6 7 8 9 10

GB2 -154.96 -244.64 -225.48 -184.78 55.22 65.42 193.13 369.10 663.77 -1,121.78
SM -239.21 -303.40 -317.74 -285.17 -38.40 -65.00 -25.30 101.73 235.31 -2,768.65
DAGUM -204.09 -282.23 -269.34 -244.74 6.37 13.97 80.08 256.20 490.15 -1,713.99
B2 -137.55 -233.35 -212.47 -161.43 69.36 91.74 232.01 419.79 742.63 -796.99
LOMAX 13.58 -82.83 -120.06 -95.92 -18.25 187.36 139.22 332.83 437.79 -2,068.10
FISK -36.20 -96.87 -143.87 -24.95 127.51 205.05 296.49 464.95 679.76 -1,690.64
GG -134.56 -239.89 -211.56 -158.18 73.71 107.39 246.48 456.74 814.38 -416.21
GAMMA 27.41 -68.03 -127.28 -98.60 -31.98 77.68 172.16 274.18 371.08 -2,088.70
LN -47.65 -111.02 -151.30 -46.53 79.24 233.17 281.07 505.45 794.12 -880.61
WEI 33.62 -65.96 -130.80 -102.49 -50.09 22.44 155.65 219.45 295.47 -2,218.59
EXP 27.41 -68.03 -127.28 -98.60 -31.98 77.68 172.16 274.18 371.08 -2,088.71

Table 2B5: Models’ average mean prediction error (£) by decile of predicted cost at sample size 100,000
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MPE (£) MAPE (£) RMSE R2 ADMPE (£)

GB2 -67.85 1,794.14 4,862.61 0.18018 41.59
SM -387.08 1,948.28 5,220.23 0.17181 55.52
DAGUM -193.16 1,850.90 4,966.87 0.17733 37.94
B2 -5.60 1,766.92 4,803.31 0.18248 32.98
LOMAX -132.10 1,803.23 4,977.98 0.18601 38.79
FISK -26.18 1,778.86 5,011.06 0.17416 30.21
GG 44.43 1,746.55 4,741.17 0.18561 32.68
GAMMA -153.58 1,812.89 4,956.13 0.18986 45.25
LN 60.26 1,731.94 4,815.65 0.18413 29.81
WEI -192.24 1,831.96 4,974.51 0.19119 48.30
EXP -153.58 1,812.89 4,956.13 0.18986 45.25

Table 2B6: Results of model performance, when all converged, at sample size 10,000

MPE (£) MAPE (£) RMSE R2 ADMPE (£)

GB2 -59.42 1,786.73 4,838.82 0.18164 18.51
SM -372.74 1,936.75 5,180.76 0.17323 23.34
DAGUM -188.19 1,844.85 4,942.92 0.17869 17.25
B2 0.06 1,760.95 4,784.22 0.18393 14.97
LOMAX -128.25 1,796.51 4,950.71 0.18771 16.29
FISK -22.97 1,773.56 4,984.77 0.17556 14.91
GG 52.23 1,739.61 4,721.36 0.18733 14.70
GAMMA -150.98 1,804.06 4,922.69 0.19240 20.17
LN 64.56 1,726.68 4,795.68 0.18555 13.74
WEI -187.19 1,819.81 4,928.19 0.19455 21.91
EXP -150.98 1,804.06 4,922.69 0.19240 20.17

Table 2B7: Results of model performance, when all converged, at sample size 50,000
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MPE (£) MAPE (£) RMSE R2 ADMPE (£)

GB2 -59.50 1,786.16 4,835.72 0.18188 13.47
SM -371.64 1,935.53 5,175.13 0.17347 17.42
DAGUM -187.77 1,844.02 4,938.97 0.17893 11.75
B2 0.40 1,760.21 4,780.94 0.18419 9.84
LOMAX -127.87 1,795.51 4,944.40 0.18806 11.54
FISK -22.86 1,772.97 4,981.22 0.17576 9.88
GG 52.87 1,738.71 4,717.85 0.18764 9.62
GAMMA -149.41 1,801.89 4,910.67 0.19309 14.28
LN 64.76 1,726.02 4,792.27 0.18581 9.08
WEI -184.19 1,816.56 4,911.62 0.19546 15.80
EXP -149.41 1,801.89 4,910.67 0.19309 14.28

Table 2B8: Results of model performance, when all converged, at sample size 100,000

60



Decile of actual cost

Model 1 2 3 4 5 6 7 8 9 10

GB2 -1,194.68 -1,082.86 -984.33 -824.72 -736.75 -631.72 -412.20 -201.57 830.17 4,535.73
SM -1,324.18 -1,216.47 -1,118.42 -966.22 -900.65 -822.11 -659.55 -558.37 316.18 3,287.54
DAGUM -1,251.33 -1,142.81 -1,046.99 -890.18 -808.12 -712.31 -511.07 -336.73 645.98 4,112.51
B2 -1,170.80 -1,057.34 -957.85 -796.61 -704.87 -595.00 -364.39 -132.28 929.54 4,782.94
LOMAX -1,201.04 -1,021.40 -865.55 -678.00 -658.94 -581.21 -412.68 -285.27 568.69 3,844.23
FISK -1,100.82 -966.12 -840.62 -677.48 -614.18 -514.92 -325.78 -157.44 782.77 4,178.59
GG -1,163.18 -1,050.13 -952.13 -790.16 -692.29 -578.06 -334.82 -79.90 1,017.04 5,032.71
GAMMA -1,218.69 -1,040.57 -883.03 -686.11 -671.20 -600.51 -432.06 -317.73 533.97 3,820.90
LN -1,108.67 -969.95 -846.39 -674.30 -606.41 -499.79 -282.35 -65.69 948.12 4,721.60
WEI -1,245.16 -1,063.27 -901.98 -699.77 -691.29 -628.14 -465.29 -368.78 462.60 3,683.85
EXP -1,218.69 -1,040.57 -883.03 -686.11 -671.20 -600.51 -432.06 -317.73 533.97 3,820.90

Table 2B9: Models’ average mean prediction error (£) by decile of actual cost at sample size 5,000
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Decile of actual cost

Model 1 2 3 4 5 6 7 8 9 10

GB2 -1,191.00 -1,079.02 -981.23 -821.50 -733.71 -628.60 -408.36 -197.44 833.40 4,542.44
SM -1,317.46 -1,209.51 -1,112.58 -959.76 -894.40 -815.07 -650.69 -546.96 329.29 3,318.77
DAGUM -1,248.50 -1,139.88 -1,045.05 -888.12 -806.28 -710.43 -508.54 -334.17 647.21 4,115.04
B2 -1,167.96 -1,054.32 -955.52 -794.12 -702.68 -592.78 -361.63 -129.62 930.91 4,785.45
LOMAX -1,199.75 -1,021.41 -865.60 -678.53 -658.82 -581.48 -413.55 -287.56 564.54 3,839.09
FISK -1,100.48 -966.41 -842.13 -678.90 -615.42 -516.48 -326.83 -158.86 780.25 4,178.72
GG -1,159.84 -1,046.50 -949.07 -786.76 -689.21 -574.67 -330.45 -74.73 1,022.38 5,046.99
GAMMA -1,217.08 -1,041.51 -882.58 -686.20 -671.02 -601.68 -433.41 -321.54 526.85 3,810.22
LN -1,107.76 -969.68 -846.88 -675.02 -606.69 -500.16 -282.17 -65.60 947.88 4,724.40
WEI -1,242.06 -1,064.15 -901.23 -699.14 -690.14 -628.20 -464.68 -369.79 461.23 3,693.81
EXP -1,217.08 -1,041.50 -882.58 -686.20 -671.02 -601.68 -433.41 -321.54 526.85 3,810.22

Table 2B10: Models’ average mean prediction error (£) by decile of actual cost at sample size 10,000

Decile of actual cost

Model 1 2 3 4 5 6 7 8 9 10

GB2 -1,190.09 -1,076.76 -976.28 -817.79 -730.00 -623.79 -403.59 -189.26 845.75 4,581.28
SM -1,313.72 -1,204.27 -1,104.36 -952.98 -887.09 -806.47 -641.43 -532.73 349.56 3,378.74
DAGUM -1,249.43 -1,139.62 -1,042.24 -886.81 -804.91 -708.23 -506.81 -329.83 654.63 4,144.42
B2 -1,168.18 -1,053.19 -951.71 -791.53 -700.35 -589.54 -358.86 -124.40 939.04 4,813.29
LOMAX -1,201.00 -1,021.29 -862.67 -677.80 -657.09 -579.83 -411.89 -283.82 571.10 3,859.90
FISK -1,103.28 -968.41 -842.01 -680.21 -616.31 -516.95 -327.24 -156.46 786.23 4,210.42
GG -1,159.42 -1,044.50 -944.13 -782.84 -685.73 -570.06 -326.02 -67.31 1,033.66 5,082.69
GAMMA -1,217.95 -1,040.36 -878.27 -684.45 -668.06 -599.52 -431.42 -318.77 530.38 3,816.72
LN -1,109.54 -970.55 -845.55 -675.15 -606.31 -499.19 -281.00 -61.56 955.92 4,754.37
WEI -1,241.46 -1,061.80 -895.93 -696.51 -685.78 -624.67 -460.84 -364.80 468.38 3,709.81
EXP -1,217.95 -1,040.35 -878.26 -684.45 -668.06 -599.52 -431.42 -318.77 530.39 3,816.71

Table 2B11: Models’ average mean prediction error (£) by decile of actual cost at sample size 50,000
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Decile of actual cost

Model 1 2 3 4 5 6 7 8 9 10

GB2 -1,190.81 -1,077.40 -976.46 -817.45 -730.32 -624.01 -404.10 -189.89 845.39 4,583.75
SM -1,314.01 -1,204.44 -1,104.01 -952.03 -886.86 -805.96 -641.10 -532.09 351.04 3,385.75
DAGUM -1,249.98 -1,140.09 -1,042.20 -886.20 -805.01 -708.14 -506.96 -329.89 655.09 4,148.80
B2 -1,168.76 -1,053.69 -951.74 -791.04 -700.48 -589.54 -359.06 -124.58 939.36 4,817.54
LOMAX -1,201.80 -1,021.98 -863.11 -677.97 -657.58 -580.16 -412.36 -284.52 571.40 3,867.56
FISK -1,103.78 -968.92 -842.23 -680.06 -616.61 -517.09 -327.65 -156.98 786.20 4,214.05
GG -1,159.99 -1,044.94 -944.10 -782.27 -685.77 -569.98 -326.04 -67.20 1,034.43 5,088.67
GAMMA -1,219.59 -1,041.62 -878.90 -684.58 -668.63 -599.72 -431.52 -318.61 532.87 3,834.43
LN -1,110.17 -971.15 -845.81 -675.03 -606.62 -499.39 -281.38 -62.02 956.10 4,758.98
WEI -1,243.19 -1,063.16 -896.54 -696.50 -686.21 -624.45 -460.23 -363.35 473.44 3,736.64
EXP -1,219.59 -1,041.62 -878.90 -684.58 -668.63 -599.72 -431.52 -318.61 532.87 3,834.43

Table 2B12: Models’ average mean prediction error (£) by decile of actual cost at sample size 100,000

Decile of actual cost

Model 1 2 3 4 5 6 7 8 9 10

GB2 1,194.68 1,082.86 984.33 824.73 739.83 705.41 865.00 1,334.82 2,498.19 7,768.57
SM 1,324.18 1,216.47 1,118.42 966.23 901.70 867.39 1,016.02 1,504.92 2,634.20 8,028.31
DAGUM 1,251.33 1,142.81 1,046.99 890.19 809.77 769.11 913.42 1,383.18 2,529.15 7,821.25
B2 1,170.80 1,057.34 957.85 796.62 708.71 675.75 838.85 1,305.62 2,475.31 7,728.98
LOMAX 1,201.04 1,021.40 865.56 678.58 691.61 737.37 1,003.46 1,498.31 2,581.42 7,791.23
FISK 1,100.82 966.12 840.62 677.60 633.76 664.33 920.77 1,437.57 2,616.28 7,960.11
GG 1,163.18 1,050.13 952.13 790.17 696.06 657.93 812.52 1,271.42 2,444.79 7,684.57
GAMMA 1,218.69 1,040.57 883.08 687.15 708.74 758.92 1,021.83 1,517.09 2,587.67 7,764.05
LN 1,108.67 969.95 846.39 674.41 623.39 638.64 869.31 1,354.81 2,512.71 7,753.06
WEI 1,245.16 1,063.27 902.09 701.44 731.73 786.66 1,050.06 1,548.78 2,607.71 7,779.48
EXP 1,218.69 1,040.57 883.08 687.15 708.74 758.92 1,021.83 1,517.09 2,587.67 7,764.05

Table 2B13: Models’ average mean absolute prediction error (£) by decile of actual cost at sample size 5,000
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Decile of actual cost

Model 1 2 3 4 5 6 7 8 9 10

GB2 1,191.00 1,079.02 981.23 821.51 736.53 701.72 861.06 1,329.77 2,490.17 7,742.94
SM 1,317.46 1,209.51 1,112.58 959.77 895.24 860.14 1,008.60 1,495.50 2,622.30 7,995.38
DAGUM 1,248.50 1,139.88 1,045.05 888.13 807.63 766.52 909.93 1,378.49 2,521.49 7,797.06
B2 1,167.96 1,054.32 955.52 794.13 706.30 672.82 835.61 1,301.40 2,468.28 7,706.37
LOMAX 1,199.75 1,021.41 865.61 678.97 689.75 735.16 1,000.76 1,494.46 2,573.97 7,761.92
FISK 1,100.48 966.41 842.13 679.00 633.85 663.30 918.22 1,433.61 2,608.45 7,935.57
GG 1,159.84 1,046.50 949.07 786.77 692.77 653.89 808.09 1,265.71 2,436.39 7,659.96
GAMMA 1,217.08 1,041.51 882.59 687.04 706.73 756.67 1,018.67 1,511.95 2,576.49 7,719.56
LN 1,107.76 969.68 846.88 675.11 622.60 636.81 866.17 1,350.53 2,505.47 7,730.53
WEI 1,242.06 1,064.15 901.28 700.42 728.32 782.42 1,043.82 1,539.23 2,590.65 7,716.30
EXP 1,217.08 1,041.50 882.59 687.04 706.73 756.67 1,018.67 1,511.95 2,576.49 7,719.56

Table 2B14: Models’ average mean absolute prediction error (£) by decile of actual cost at sample size 10,000

Decile of actual cost

Model 1 2 3 4 5 6 7 8 9 10

GB2 1,190.09 1,076.76 976.28 817.80 732.51 696.40 855.56 1,321.05 2,479.34 7,714.84
SM 1,313.72 1,204.27 1,104.36 952.98 887.79 851.30 1,000.42 1,483.45 2,607.72 7,954.95
DAGUM 1,249.43 1,139.62 1,042.24 886.82 805.95 763.13 905.62 1,370.65 2,510.68 7,767.84
B2 1,168.18 1,053.19 951.71 791.54 703.67 668.77 831.27 1,294.07 2,458.72 7,681.67
LOMAX 1,201.00 1,021.29 862.67 678.10 686.19 731.12 996.03 1,486.79 2,563.29 7,727.85
FISK 1,103.28 968.41 842.01 680.30 633.01 660.98 914.08 1,425.66 2,596.77 7,903.40
GG 1,159.42 1,044.50 944.13 782.85 689.04 648.79 802.85 1,257.42 2,425.99 7,634.27
GAMMA 1,217.95 1,040.36 878.27 684.99 701.23 750.85 1,012.85 1,503.37 2,563.70 7,676.08
LN 1,109.54 970.55 845.55 675.23 620.72 633.57 861.32 1,342.60 2,495.20 7,704.44
WEI 1,241.46 1,061.80 895.94 697.24 720.69 774.28 1,035.33 1,527.44 2,573.70 7,659.06
EXP 1,217.95 1,040.35 878.27 684.99 701.23 750.85 1,012.85 1,503.37 2,563.70 7,676.08

Table 2B15: Models’ average mean absolute prediction error (£) by decile of actual cost at sample size 50,000
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Decile of actual cost

Model 1 2 3 4 5 6 7 8 9 10

GB2 1,190.81 1,077.40 976.46 817.45 732.82 696.43 855.49 1,320.09 2,477.72 7,710.18
SM 1,314.01 1,204.44 1,104.01 952.04 887.54 850.71 999.91 1,481.92 2,605.51 7,948.66
DAGUM 1,249.98 1,140.09 1,042.20 886.21 806.02 762.89 905.36 1,369.45 2,508.82 7,762.61
B2 1,168.76 1,053.69 951.74 791.05 703.81 668.62 831.01 1,292.89 2,456.92 7,676.84
LOMAX 1,201.80 1,021.98 863.11 678.27 686.41 730.95 995.48 1,485.62 2,560.92 7,719.77
FISK 1,103.78 968.92 842.23 680.15 633.11 660.80 913.80 1,424.81 2,595.35 7,898.95
GG 1,159.99 1,044.94 944.10 782.27 689.10 648.55 802.44 1,256.02 2,423.91 7,629.00
GAMMA 1,219.59 1,041.62 878.91 685.10 701.37 750.18 1,011.41 1,500.55 2,558.57 7,660.58
LN 1,110.17 971.15 845.81 675.11 620.88 633.42 860.96 1,341.55 2,493.49 7,699.55
WEI 1,243.19 1,063.16 896.55 697.19 720.49 773.00 1,032.91 1,523.10 2,566.47 7,638.26
EXP 1,219.59 1,041.62 878.91 685.10 701.37 750.18 1,011.41 1,500.55 2,558.57 7,660.58

Table 2B16: Models’ average mean absolute prediction error (£) by decile of actual cost at sample size 100,000
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Chosen threshold values

Model 10,000 15,000 25,000 50,000 100,000

GB2 0.95 1.22 1.67 1.72 1.46
SM 1.08 1.48 2.23 2.69 2.81
DAGUM 1.01 1.33 1.91 2.12 1.99
B2 0.92 1.15 1.54 1.49 1.17
LOMAX 1.13 1.42 1.89 1.75 1.20
FISK 0.94 1.20 1.63 1.62 1.28
GG 0.89 1.09 1.42 1.32 0.97
GAMMA 1.02 1.25 1.57 1.31 0.77
LN 0.87 1.05 1.31 1.12 0.70
WEI 1.10 1.36 1.74 1.50 0.93
EXP 1.13 1.41 1.85 1.67 1.10

Table 2B17: Estimated to observed tail probabilities at sample size 5,000

Chosen threshold values

Model 10,000 15,000 25,000 50,000 100,000

GB2 0.95 1.21 1.67 1.70 1.43
SM 1.08 1.47 2.22 2.66 2.76
DAGUM 1.01 1.33 1.90 2.11 1.97
B2 0.92 1.15 1.53 1.48 1.15
LOMAX 1.13 1.42 1.89 1.75 1.19
FISK 0.94 1.20 1.63 1.61 1.27
GG 0.88 1.09 1.41 1.30 0.94
GAMMA 1.03 1.25 1.57 1.30 0.75
LN 0.87 1.05 1.31 1.11 0.69
WEI 1.10 1.36 1.74 1.49 0.90
EXP 1.13 1.41 1.85 1.66 1.08

Table 2B18: Estimated to observed tail probabilities at sample size 10,000
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Chosen threshold values

Model 10,000 15,000 25,000 50,000 100,000

GB2 0.95 1.21 1.65 1.67 1.39
SM 1.08 1.46 2.19 2.62 2.70
DAGUM 1.00 1.32 1.89 2.09 1.95
B2 0.91 1.14 1.51 1.46 1.12
LOMAX 1.13 1.42 1.88 1.74 1.17
FISK 0.94 1.20 1.62 1.60 1.25
GG 0.88 1.08 1.39 1.26 0.90
GAMMA 1.03 1.25 1.56 1.28 0.73
LN 0.86 1.04 1.30 1.10 0.68
WEI 1.10 1.36 1.73 1.47 0.88
EXP 1.13 1.41 1.84 1.64 1.05

Table 2B19: Estimated to observed tail probabilities at sample size 50,000

Chosen threshold values

Model 10,000 15,000 25,000 50,000 100,000

GB2 0.95 1.21 1.65 1.67 1.39
SM 1.08 1.46 2.19 2.62 2.70
DAGUM 1.00 1.32 1.89 2.08 1.94
B2 0.91 1.14 1.51 1.45 1.12
LOMAX 1.13 1.42 1.88 1.73 1.16
FISK 0.94 1.20 1.62 1.59 1.25
GG 0.88 1.08 1.38 1.26 0.90
GAMMA 1.02 1.24 1.55 1.27 0.72
LN 0.86 1.04 1.29 1.09 0.67
WEI 1.10 1.35 1.72 1.46 0.86
EXP 1.13 1.41 1.84 1.63 1.04

Table 2B20: Estimated to observed tail probabilities at sample size 100,000

Response surface regressions

Regression coefficient MPE log(MAPE) log(RMSE) log(ADMPE)

α -59.01 7.49 8.48 2.36
(2.17) (0.00) (0.00) (0.08)

β -67,877.12 41.87 48.47 6,672.10
(41,670.39) (10.44) (12.11) (849.97)

Table 2B21: Regression coefficients for GB2 response surface regressions

Response surface regressions

Regression coefficient MPE log(MAPE) log(RMSE) log(ADMPE)

α -370.76 7.57 8.55 2.55
(2.77) (0.00) (0.00) (0.08)

β -139,152.2 60.77 74.95 7,547.27
(51,537.13) (14.17) (17.69) (731.01)

Table 2B22: Regression coefficients for SM response surface regressions
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Response surface regressions

Regression coefficient MPE log(MAPE) log(RMSE) log(ADMPE)

α -187.71 7.52 8.50 2.17
(2.39) (0.00) (0.00) (0.09)

β -41,486.18 34.54 47.39 7,614.33
(34099.92) (8.92) (12.74) (779.22)

Table 2B23: Regression coefficients for DAGUM response surface regressions

Response surface regressions

Regression coefficient MPE log(MAPE) log(RMSE) log(ADMPE)

α 0.52 7.47 8.47 1.95
(1.67) (0.00) (0.00) (0.10)

β -46,299.87 35.63 40.20 7,924.93
(30,371.41) (7.38) (9.49) (848.69)

Table 2B24: Regression coefficients for B2 response surface regressions

Response surface regressions

Regression coefficient MPE log(MAPE) log(RMSE) log(ADMPE)

α -128.33 7.49 8.51 2.09
(1.91) (0.00) (0.00) (0.09)

β -17,618.43 36.08 53.58 8,554.69
(34,299.08) (9.61) (15.62) (708.65)

Table 2B25: Regression coefficients for LOMAX response surface regressions

Response surface regressions

Regression coefficient MPE log(MAPE) log(RMSE) log(ADMPE)

α -23.15 7.48 8.51 1.95
(1.61) (0.00) (0.00) (0.09)

β -13,794.05 28.29 49.11 8,111.43
(29,379.64) (8.01) (13.30) (736.21)

Table 2B26: Regression coefficients for FISK response surface regressions

Response surface regressions

Regression coefficient MPE log(MAPE) log(RMSE) log(ADMPE)

α 53.20 7.46 8.46 1.92
(1.66) (0.00) (0.00) (0.09)

β -72,061.14 42.70 43.89 7,728.32
(30,246.83) (7.18) (8.41) (903.79)

Table 2B27: Regression coefficients for GG response surface regressions

Response surface regressions

Regression coefficient MPE log(MAPE) log(RMSE) log(ADMPE)

α -150.62 7.50 8.50 2.40
(2.28) (0.00) (0.00) (0.08)

β -8,535.90 50.19 73.68 7,014.64
(40,424.21) (11.72) (19.42) (787.65)

Table 2B28: Regression coefficients for GAMMA response surface regressions
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Response surface regressions

Regression coefficient MPE log(MAPE) log(RMSE) log(ADMPE)

α 64.61 7.45 8.47 1.95
(1.51) (0.00) (0.00) (0.08)

β -26,741.8 30.07 40.57 8,006.19
(27,319.42) (6.68) (9.52) (669.79)

Table 2B29: Regression coefficients for LN response surface regressions

Response surface regressions

Regression coefficient MPE log(MAPE) log(RMSE) log(ADMPE)

α -185.56 7.50 8.50 2.48
(2.45) (0.00) (0.00) (0.08)

β -45,269.77 72.22 107.22 6,635.87
(42,870.22) (13.20) (23.71) (756.65)

Table 2B30: Regression coefficients for WEI response surface regressions

Response surface regressions

Regression coefficient MPE log(MAPE) log(RMSE) log(ADMPE)

α -150.62 7.50 8.50 2.40
(2.28) (0.00) (0.00) (0.08)

β -8,535.71 50.19 73.68 7,014.82
(40,424.23) (11.72) (19.42) (787.57)

Table 2B31: Regression coefficients for EXP response surface regressions
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Comparison of Developments
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parametric and semi-parametric regression methods for heavy
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Summary

We conduct a quasi-Monte Carlo comparison of the recent developments in parametric
and semi-parametric regression methods for healthcare costs, both against each other and
against standard practice. The population of English NHS hospital inpatient episodes for
the financial year 2007-2008 (summed for each patient: 6,164,114 observations in total)
is randomly divided into two equally sized sub-populations to form an estimation set and
a validation set. Evaluating out-of-sample using the validation set, a conditional density
approximation estimator shows considerable promise in forecasting conditional means,
performing best for accuracy of forecasting and amongst the best four (of sixteen com-
pared) for bias and goodness-of-fit. The best performing model for bias is linear regression
with square root transformed dependent variable, while a generalised linear model with
square root link function and Poisson distribution performs best in terms of goodness-of-
fit. Commonly used models utilising a log link are shown to perform badly relative to
other models considered in our comparison.
JEL classification: C1; C5
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3.1 Introduction

The distribution of healthcare costs provides many challenges to the applied researcher:

values are non-negative (often with many observations with costs of zero), heteroskedas-

tic, positively skewed and leptokurtic. While these, or similar, challenges are found within

many areas of empirical economics, the large interest in modelling healthcare costs has

driven the development of an expanding array of estimation approaches and provides a

natural context to compare methods for handling heavy-tailed and non-normal distribu-

tions. Econometric models of healthcare costs include applications to risk adjustment

in insurance schemes (Van de Ven and Ellis, 2000); in devolving budgets to healthcare

providers (e.g. Dixon et al., 2011); in studies calculating attributable healthcare costs to

specific health factors or conditions (Johnson et al., 2003; Cawley and Meyerhoefer, 2012)

and in identifying treatment costs in health technology assessments (Hoch et al., 2002).

In attempting to capture the complex distribution of healthcare costs, two broad mod-

elling approaches have been pursued. The first consists of flexible parametric models

– distributions such as the three-parameter generalised gamma and the four-parameter

generalised beta of the second kind. This approach is attractive because of the range

of distributions that these models encompass, whereas models with fewer parameters are

inherently more restrictive, especially in regard to the assumptions they impose upon

higher moments of the distribution (e.g. skewness and kurtosis). The second is the use

of semi-parametric models including extended estimating equations, finite mixture models

and conditional density approximation estimators. The extended estimating equations

model (EEE) adopts the generalised linear models framework and allows for the link and

distribution functions to be estimated from data, rather than specified a priori. Finite

mixture models introduce heterogeneity (both observed and unobserved) through mix-

tures of distributions. Conditional density approximation estimators are implemented by

dividing the empirical distribution into discrete intervals and then decomposing the con-

ditional density function into ‘discrete hazard rates’. Despite the burgeoning availability

of healthcare costs data via administrative records, together with an increased necessity

for policymakers to understand the determinants of healthcare costs and more, it is sur-

prising that no previous study compares comprehensively the models belonging to these
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two strands of literature. In this paper we compare these approaches both to each other

and against standard practice: linear regression on levels, and on square root and log

transformations, of costs and generalised linear models (GLM).

Traditional Monte Carlo simulation approaches would not be appropriate for such an

extensive comparison, as we are interested in a very large number of permutations of as-

sumptions underlying the distribution of the outcome variable. In addition, such studies

are prone to affording advantage to certain models arising from the chosen distributional

assumptions used for generating data. Instead, using a large administrative database con-

sisting of the population of English NHS hospital inpatient users for the year 2007-2008

(6,164,114 unique patients), we adopt a quasi-Monte Carlo approach where regression

models are estimated on observations from one sub-population and evaluated on the re-

maining sub-population. This enables us to evaluate the regression methods in a rigorous

and consistent manner – whilst ensuring results are not driven either by overfitting to rare

but influential observations, or traditional Monte Carlo distributional assumptions – and

are generalisable to hospital inpatient services.

This paper compares and contrasts systematically these recent developments1 in semi-

parametric and fully parametric modelling both against each other and against standard

practice. No comprehensive empirical comparison of these methods is currently present in

existing literature, and given the number of choices available for modelling heavy-tailed,

non-normal data, this study makes an important contribution towards forming a ranking

of possible approaches (for a similar study comparing propensity score methods, see Huber

et al. (2013)).2 The focus of this paper is the performance of these models in terms of pre-

dicting the conditional mean, given its importance in informing policy in healthcare and its

prominence in comparisons between econometric methods in healthcare cost regressions.3

Given our focus, we analyse bias, accuracy and goodness of fit of forecasted conditional

means. We find that no model performs best across all metrics of evaluation. Commonly

1More strictly speaking, recent developments that have featured in a Monte Carlo, cross-validation or
quasi-Monte Carlo empirical comparative study. An example of a promising method that is not compared
is the extension to GLM proposed by Holly et al. (2011) – the fourth order pseudo maximum likelihood
method – which has been applied to healthcare costs in Holly (2009).

2Mihaylova et al. (2011) provide an excellent review of statistical methods for the analysis of healthcare
cost data with an emphasis on data collected alongside randomised trials.

3If the policymaker has a sufficiently large budget, Arrow and Lind (1970) argue that the policymaker
should focus on mean outcomes. Other features of the distribution may be of interest (Vanness and
Mullahy, 2007), especially when the policymaker has a smaller budget to allocate to healthcare.
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used approaches – linear regression on levels of costs, linear regression on log-transformed

costs, the use of gamma GLM with log link, and the use of the log-normal distribution

– are not among the four best performing approaches with any of our chosen metrics.4

Our results indicate that models estimated with a square root link perform much better

than those with log or linear link functions. We find that linear regression with a square

root-transformed dependent variable is the best performing model in terms of bias; the

conditional density approximation estimator (using multinomial logit) for accuracy; and

the Poisson GLM with square root link best in terms of goodness of fit.

3.2 Previous comparative studies

A number of studies have compared the performance of regression-based approaches to

modelling healthcare cost data, where model performance is assessed on either actual

costs (that is, costs with an unknown true distribution) (Deb and Burgess, 2003; Veazie

et al., 2003; Buntin and Zaslavsky, 2004; Basu et al., 2006; Hill and Miller, 2010; Jones

et al., 2014) or simulated costs from an assumed distribution (Basu et al., 2004; Gilleskie

and Mroz, 2004; Manning et al., 2005). Using actual costs preserves the true empirical

distribution of cost data, and all of its complexities, while simulating costs provides a

benchmark using the known parameters of the assumed distribution (classic Monte Carlo)

against which models can be compared.

Studies based on the classic Monte Carlo design are therefore ideally suited to assessing

whether or not regression methods can fit data when specific assumptions, and permu-

tations thereof, are imposed or relaxed. The complexities of the observed distribution of

healthcare costs are such that a comprehensive comparison of modelling approaches would

require an infeasibly large number of permutations of distributional assumptions used to

generate data to make a classic Monte Carlo simulation worthwhile. Choosing a subset

of the possible permutations of assumptions is prone to cause bias the results in favour

of certain methods. A reliance on actual data, as an alternative approach, requires large

datasets so that forecasting is evaluated on sufficient observations to credibly reflect all

of the idiosyncratic features of cost data. With this approach, however, it is difficult to

4Linear regression on levels of costs performs well in terms of bias, the fifth best among models compared,
but is the worst in terms of accuracy.
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assess exactly which aspect of the distribution of healthcare costs is problematic for each

method under comparison.

3.2.1 Studies using cross-validation approaches

With improvements in computational capacity, there has recently been a number of papers

using large datasets to perform quasi-Monte Carlo comparisons across regression models

for healthcare costs. Quasi-Monte Carlo comparisons divide the data into two groups, with

samples repeatedly drawn from one group and models estimated, while the other group

is used to evaluate out-of-sample performance (using the coefficients from the estimated

models).

Deb and Burgess (2003) examine a number of models to predict total healthcare expen-

ditures using a quasi-Monte Carlo approach with data from US Department of Veterans

Affairs (VA) comprised of approximately 3 million individual records. From within these

observations a sub-group of 1.5 million individual records is used as an ‘estimation’ group

and another sub-group of 1 million records formed a ‘prediction’ group. They examine the

predictive performance of models across different sizes of sample drawn from the ‘estima-

tion’ group. For each sample drawn, model predictive performance is assessed on the full

set of observations in the ‘prediction’ group according to mean prediction error (MPE),

root mean squared error (RMSE), mean absolute prediction error (MAPE) and absolute

deviations in mean prediction error (ADMPE). Using this methodology they are able to

show that models based on a gamma density have better performance in forecasting indi-

vidual costs than standard linear regression, with the most accurate individual forecasts

coming from a finite mixture model with two gamma density components. In terms of

bias, the use of linear regression (on levels and square root transformed levels of costs)

performs best. The authors also note that the performance of finite mixture models in

forecasting individual costs improves with increasing sample size, with MAPE between

10-15% lower than linear regression from sample sizes as large as 20,000 observations.

Their results highlight a trade-off between bias and precision, and the need for caution

surrounding the use of finite mixture models at smaller sample sizes.

Jones et al. (2014) focus exclusively on parametric models and suggest the use of the

generalised beta of the second kind as an appropriate distribution for healthcare costs.
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Their quasi-Monte Carlo design compares this distribution together with its nested and

limiting cases, including the generalised gamma. Using data from Hospital Episode Statis-

tics (HES) split into ‘estimation’ and ‘validation’ sets, they find little evidence of perfor-

mance of models varying with sample size, but find variation between models in their

ability to forecast mean costs, with generalised gamma the most accurate and beta of the

second kind the least biased.

Hill and Miller (2010) and Buntin and Zaslavsky (2004) also use cross-validation tech-

niques so that models are estimated on samples of data and evaluated on the remaining

observations. Samples for estimation and the remaining data for evaluation differ across

replications such that, unlike a quasi-Monte Carlo design, individuals may fall into either

the estimation sample or the validation sample at each replication. This approach is less

data intensive and providing sufficient replications should produce sufficient information

in the evaluation exercise to judge model performance. The approaches are similar in that

they both replicate the sampling process to ensure there is no ‘lucky split’, and guard

against overfitting by evaluating out of sample.

Hill and Miller (2010) use the first eight waves of the Medical Expenditure Panel Survey

(MEPS) dataset (from 1996-1997 to 2003-2004) to compare linear regression on untrans-

formed and log transformed dependent variables, as well as Poisson and gamma GLMs

with log link, EEE and a generalised gamma model. They examine four outcomes: total

and prescription expenditures for privately insured adults (28,579 and 22,011 observations

respectively) and elderly adults (12,547 and 11,671 observations respectively). For each

outcome, 1,024 half samples were created for estimation and validation. Models using a log

link are found to perform well in only one of these: total expenditures for privately insured,

nonelderly adults; with this outcome the gamma GLM and generalised gamma model also

perform well (in terms of MPE and MAPE). They show that the flexible link function of

EEE improved goodness of fit, without inducing overfitting, in all four outcomes. In this

way, Hill and Miller (2010) represents the first paper to compare common practice with

the semi-parametric EEE model and the non-nested, fully parametric, generalised gamma

model.

Buntin and Zaslavsky (2004) examine eight alternative estimators, comparing the per-

formance of models with transformed dependent variables and GLMs (with log link). The
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authors use data from the 1996 Medicare Current Beneficiary Survey (MCBS), taking

10,134 observations in total. This is split in half to form an estimation group and a val-

idation group and repeated 100 times in total. They find that predictive performance is

improved with careful consideration of the nature of heteroskedasticity. A GLM with vari-

ance proportional to the mean and using two smearing factors in a transformed dependent

variable model are both found to be good choices for their application in terms of lower

MAPE and mean squared forecast error (MSFE).

In Veazie et al. (2003) 500 half samples are drawn repeatedly from a dataset consisting

of 8,495 observations from MCBS (risk adjusters from 1993 and expenditures from 1994).

In addition, they compare models estimated on the years 1992-1993 (7,450 observations),

and evaluated out-of-sample on the 1993-1994 observations, with the full samples boot-

strapped 500 times to derive results. They find that with linear regression, a square root

transformed dependent variable can reduce MAPE, but not necessarily MPE compared to

using the level of costs.

Finally, Basu et al. (2006) compare EEE to linear regression with a log-transformed de-

pendent variable, as well as GLM with log link and gamma variance, using data from Med-

stat’s MarketScan database (final sample of 7,428 observations). Performance is mainly

assessed in-sample, where the EEE performs well in terms of MPE across deciles of covari-

ates. Split-sampling is used to perform tests of overfitting (Copas, 1983), with the authors

finding little evidence of overfitting by the EEE approach compared to other approaches.

3.2.2 Recent developments in semi-parametric and fully parametric mod-

elling

Figure 3.1 outlines the literature comparing regression models for healthcare costs as

described above. As shown, there is no study that comprehensively and systematically

evaluates all recent developments in approaches. In addition, any synthesis of the existing

literature would be inconclusive in terms of which method is most appropriate for an appli-

cation. Amongst the semi-parametric methods, EEE has never been directly compared in

a rigorous evaluation against any of the finite mixture models. They have both separately

been compared against standard practice (transformed dependent variable regression and

GLM) in Basu et al. (2006); Hill and Miller (2010) and Deb and Burgess (2003), for EEE
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and finite mixture models respectively. The conditional density approximation estimator,

as yet, has not been compared with other healthcare cost regression models using actual

data, although evidence from Monte Carlo studies suggests it to be a versatile approach

(compared with standard practice methods) (Gilleskie and Mroz, 2004). Jones et al. (2014)

introduce the use of the flexible parametric generalised beta of the second kind distribution

with healthcare cost regressions and compare this against the generalised gamma which is

a limiting case of the former. Given an increasing interest in modelling healthcare costs for

resource allocation, risk adjustment and identifying attributable treatment costs, together

with the burgeoning availability of data through administrative records, a comprehensive

and systematic comparison of available approaches would appear timely. The results of

this comparison will have resonance beyond healthcare costs and should be of interest to

empirical applications to other right skewed, leptokurtic or heteroskedastic distributions

such as income and wages.
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Basu et al. 
(2004)

Gilleskie and 
Mroz (2004)

Manning et 
al (2005)

Veazie et al 
(2003)

Buntin and 
Zaslavsky 
(2004)

Basu et al 
(2006)

Hill and 
Miller (2010)

Deb and 
Burgess 
(2003)

Jones et al 
(2013)

This paper

linear regression R R R R R

linear regression (log) R R R R R R

linear regression (square root) R R R R

log-normal R R R R

gaussian GLM R (a)

Poisson R R R

gamma R R R R R R R R R

extended estimating equations R R R

Weibull R R R (b)

generalised gamma R R R R

GB2 R R

finite mixture of gammas R R

conditional density estimator R R

Studies using Monte Carlo Studies using cross-validation Studies using quasi-Monte Carlo

Figure 3.1: Models included in recent published comparitive work
(a) Not commonly used and problematic in estimation for our data in preliminary work.
(b) A special case of generalised gamma and generalised beta of the second kind which are included in our analysis.
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3.3 Specification of models

We compare 16 different models applicable to healthcare cost data. Each makes different

assumptions about the distribution of the outcome (cost) variable. Each regression uses the

same vector of covariates Xi, although the precise way in which they affect the distribution

varies across models. All models specify at least one linear index of covariates X ′iβ.

In addition, linear regression methods with transformed outcome require assumptions

surrounding the form of heteroskedasticity (modelled as a function of Xi), in order to

retransform predictions onto the natural cost scale (Duan, 1983). Within the GLM family,

we explicitly model the mean and variance functions as some transformation of the linear

predictor (Blough et al., 1999). Fully parametric distributions, such as the gamma- and

beta-family of models, require an assumption about the form of the entire distribution.

In this paper, a single parameter is estimated as a function of the linear index. Finite

mixture models allow for multiple densities, each a function of the covariates in linear

form. For conditional density approximation estimator models, the empirical distribution

of costs is divided into intervals, and functions of the independent variables predict the

probability of lying within each interval.

Beginning with linear regression, we estimate three models using ordinary least squares:

the first is on the level of costs, the second and third use a log and square root transformed

dependent variable respectively (log transformation is more commonly used in the litera-

ture (Jones, 2011)). With these approaches, predictions are generated on a transformed

scale, and it is necessary to calculate an adjustment in order to retransform predictions to

their natural cost scale. This is done by applying a smearing factor, which varies according

to covariates in the presence of heteroskedasticity (Duan, 1983).

Given the complications in retransformation in the presence of heteroskedasticity, re-

searchers more frequently use methods that estimate on the natural cost scale and explic-

itly model the variance as a function of covariates. The dominant approach that achieves

these aims is the use of GLM (Blough et al., 1999). There are two components to GLM:

the first is a link function that relates the index of covariates to the conditional mean,

and the second is a distribution function that describes the variance as a function of the

conditional mean. These are estimated simultaneously, using pseudo- or quasi-maximum
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likelihood, leading to estimates that are consistent providing the mean function is cor-

rectly specified. Typically, the link function in applied work takes the form of a log or

square root function. In this paper we consider two types of distribution function, each a

power function of the conditional mean. In the Poisson case, the variance is proportional

to the conditional mean function of covariates and in the gamma case the variance is

proportional to the conditional mean squared. Two of the combinations of link functions

and distribution families are associated with commonly used distributions. In particular,

the GLM with log link and gamma variance is commonly applied to healthcare costs, and

the GLM with a log link and Poisson variance is associated with the Poisson model (see

discussion in Mullahy, 1997).

3.3.1 Flexible parametric models

Within the GLM and OLS approaches, much focus is placed on heteroskedacity and

the form that it takes. Recent developments in fully parametric modelling have been made

where the modeling of higher moments, skewness and kurtosis, is tackled explicitly. With

this approach, the researcher estimates the entire distribution using maximum likelihood,

which requires that the distribution is correctly specified for consistent results. If the

distribution is correctly specified, then estimates are efficient.

Generalised gamma

We estimate two models from within the gamma-family, which have typically been used

for durations, but also have precedent in the healthcare costs literature (Manning et al.,

2005): the log-normal and generalised gamma distributions. Each of these is estimated,

using maximum likelihood, with a scale parameter specified as an exponential function of

covariates, denoted exp (X ′iβ). The probability density function and conditional mean for

the generalised gamma distribution are given below:

f(yi|Xi) =

κ

(
κ−2

(
yi

exp (X′iβ)

)κ/σ)κ−2

exp

(
−κ−2

(
yi

exp (X′iβ)

)κ/σ)
σyiΓ (κ−2)

(3.1)
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E(yi|Xi) =
(
exp

(
X ′iβ

)) (
κ2σ/κ

) Γ
(
κ−2 + σ

κ

)
Γ (κ−2)

(3.2)

where σ is a scale parameter, κ is a shape parameter and Γ(.) is the gamma function

When κ → 0 the generalised gamma distribution approaches the limiting case of the

log-normal distribution, for which the probability density function and conditional mean

are:

f(yi|Xi) =
1

σyi
√

2π
exp

(
− (ln yi −X ′iβ)2

2σ2

)
(3.3)

E(yi|Xi) =
(
exp

(
X ′iβ

))
exp

(
σ2

2

)
(3.4)

Generalised beta of the second kind

We also include the generalised beta of the second kind, which has yet to be compared

with a broad range of regression models.5 Beta-type models, as gamma-type models, re-

quire assumptions about the form of the entire distribution. Until recently, they have been

used largely in actuarial applications, as well as for the modelling of incomes (Cummins

et al., 1990; Bordley et al., 1997). However, they have been suggested for use with health-

care costs due to their ability to model heavy tails, for example in Mullahy (2009), and

have been used with healthcare costs in Jones et al. (2014). We include the generalised

beta of the second kind, since all beta-type (and gamma-type) distributions are nested or

limiting cases of this distribution. It therefore offers the greatest flexibility in terms of

modelling healthcare costs amongst the duration models used here: see for example the

implied restrictions on skewness and kurtosis (McDonald et al., 2013). The probability

density function and conditional mean are:

f(yi) =
ayap−1

i

b(Xi)apB(p, q)[1 + ( yi
b(Xi)

)a](p+q)
(3.5)

E(yi|Xi) = b(Xi)

[
Γ(p+ 1

a)Γ(q − 1
a)

Γ(p)Γ(q)

]
(3.6)

5In Jones et al. (2014), beta-type models are limited to comparison with gamma-type distributions.
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where a is a scale parameter, p and q are shape parameters and B(p, q) = Γ(p)Γ(q)/Γ(p+q)

is the beta function.

We parameterise the generalised beta of the second kind with the scale parameter b as

two different functions of covariates: a log link and a square root link.

3.3.2 Semi-parametric methods

Extended estimating equations

A flexible extension of GLM is proposed by Basu and Rathouz (2005) and Basu et al.

(2006), known as the extended estimating equations (EEE). It approximates the most

appropriate link using a Box-Cox function, where λ = 0 implies a log link and λ = 0.5

implies a square root link:

E(yi|Xi) = (λX ′iβ + 1)
1
λ (3.7)

as well as a general power function to define the variance with constant of proportionality

θ1 and power θ2:

var(yi|Xi) = θ1(E(yi|Xi))
θ2 (3.8)

Suppose that the distribution of the outcome variable is unknown, but has mean and

variance nested within (3.7) and (3.8). An incorrectly specified GLM mean function6

yields biased and inconsistent estimates, while estimates from EEE should be unbiased,

providing the specification of regressors is correct. A well-specified mean function com-

bined with an incorrectly specified distribution form will be inefficient compared to EEE.

If the distribution is known to be a specific GLM form, the EEE is less efficient than the

appropriate GLM, but both are unbiased.

Finite mixture models

Finite mixture models have been employed in health economics in order to allow for

heterogeneity both in response to observed covariates and in terms of unobserved latent

6In common usage GLM mean functions are limited to standard forms such as log and square root link
function.
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classes (Deb and Trivedi, 1997). Heterogeneity is modelled through a number of compo-

nents, denoted C, each of which can take a different specification of covariates (and shape

parameters, where specified), written as fj(yi|Xi), and where there is a parameter for

the probability of belonging to each component, πj . The general form of the probability

density function of finite mixture models is given as:

f(yi|Xi) =
C∑
j

πjfj(yi|Xi) (3.9)

We use two gamma distribution components in our comparison.7 In one of the models

used, we allow for log links in both components (3.10), and in the other we allow for a

square root link (3.11). In both, the probability of class membership is treated as constant

for all individuals and a shape parameter, αj , is estimated for each component.

fj(yi|Xi) =
y
αj
i

yiΓ (αj) exp (X ′iβj)
αj exp

(
−
(

yi
exp (X ′iβj)

))
(3.10)

fj(yi|Xi) =
y
αj
i

yiΓ (αj) (X ′iβj)
2αj

exp

(
−
(

yi

(X ′iβj)
2

))
(3.11)

The conditional mean is given for the log link specification and for the square root link

by (3.12) and (3.13) respectively:

E(yi|Xi) =
C∑
j

πjαj exp (X ′iβj) (3.12)

E(yi|Xi) =
C∑
j

πjαj(X
′
iβj)

2 (3.13)

Unlike the models in the previous section, this approach can allow for a multi-modal

distribution of costs. In this way, finite mixture models represent a flexible extension of

parametric models (Deb and Burgess, 2003). Using increasing numbers of components,

it is theoretically possible to fit any distribution, although in practice researchers tend to

use few components (two or three) and achieve good approximation to the distribution of

7Preliminary work showed that models with a greater number of components lead to problems with
convergence in estimation. Empirical studies such as Deb and Trivedi (1997) provide support for the two
components specification for healthcare use.
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interest (Heckman, 2001).

Conditional density approximation estimators

Finally, we use two additional models that are applications of the conditional density

approximation estimator outlined in Gilleskie and Mroz (2004). Their method is an ex-

tension of the two-part model frequently used to deal with zero costs, in that the range of

outcome variable is divided into Q parts (or intervals), where the mean (of observations

to be used in estimation) within interval j (j = 1, ..., Q) is yj and the lower and upper

threshold values are yj−1 and yj , respectively8. The probability of an observation falling

into interval j can be written as (3.14):

pij(Xi) = P (yj−1 ≤ yi < yj |Xi) =

∫ yj

yj−1

f(yi|Xi)dyi (3.14)

The density function is then approximated by Q ‘discrete hazard rates’, defined as the

probability of lying in interval j conditional on not lying in intervals 1, ..., j−1 and written

as λ(j,Xi) as shown in (3.15):

λ(j,Xi) = P (yj−1 ≤ yi < yj |Xi, yi ≥ yj−1) =

∫ yj
yj−1

f(yi|Xi)dyi

1−
∫ yj−1
y0

f(yi|Xi)dyi
(3.15)

The effect of covariates can vary smoothly, or discontinuously, across intervals depend-

ing upon how the model is specified: with the most flexible case using a separate model

for each interval’s hazard rate. We assume that only the probability of lying within an

interval depends upon covariates, and that the mean value of the outcome variable, for a

given interval, does not vary with covariates. The conditional mean function is therefore

obtained using (3.16):

E(yi|Xi) =
Q∑
j=1

pij(Xi)yj (3.16)

One of the main benefits of this approach is the flexibility afforded with respect to

the intervals that are used. There is flexibility in terms of the number of intervals, and

where the boundaries between them are placed, as well as the degree to which the ‘dis-

8y0 is equal to the lowest observed cost and yQ is equal to the highest observed cost.

85



crete hazard rates’ are estimated separately for each interval. Within our illustration, we

use 15 equally sized intervals across all samples.9 In practice, a researcher would experi-

ment with different intervals and compare model performance in order to decide upon the

specification. Having decided upon the intervals to be used, we use a multinomial logit

specification and an ordered logit specification to model the probabilities of lying within

each interval.10 The multinomial logit specification is similar to running a separate logit

model for each ‘discrete hazard rate’, whereas the ordered logit specification is analogous

to allowing the ‘discrete hazard rate’ to vary discontinuously for each interval but with no

discontinuity in the effects of covariates11.

pij(Xi) =
exp (X ′iβj)∑Q
l=1 exp (X ′iβl)

(3.17)

where β1 = 0 to normalise for estimation purposes

pij(Xi) =
exp (ψj −X ′iβ)

1 + exp (ψj −X ′iβ)
− pij−1 (3.18)

where ψj represents the estimated threshold value for each category from the ordered

logit model, pi0 = 0 and pi15 = 1 − pi14, so we only estimate 14 threshold values (in our

application Q = 15)

Conditional means from these models are calculated as in (3.16), where the probabili-

ties, pij , are calculated using (3.17) for the multinomial logit specification and (3.18) for

the ordered logit specification.

3.4 Data and Choice of Variables

Our study uses individual-level data from the English Hospital Episode Statistics

(HES) (for the financial year 2007-2008).12 This dataset contains information on all

9Gilleskie and Mroz (2004) in their application to healthcare costs find that between 10 and 20 intervals
results in a good aproximation, based on an adjusted log-likelihood to guard against overfitting, and we
found 15 intervals to result in good convergence performance in preliminary work.

10This differs from the less parametric single logit specification adopted in Gilleskie and Mroz (2004),
which is more computationally demanding, and instead uses an approach similar to Han and Hausman
(1990).

11Gilleskie and Mroz (2004) also allow the data to determine how flexibly to estimate the ‘discrete hazard
rates’, see paper for more details.

12In our dataset, episodes are grouped into spells, which can be thought of as discrete admissions for a
patient.

86



inpatient episodes, outpatient visits and A&E attendances for all patients admitted to

English NHS hospitals (Dixon et al., 2011). For our study, we exclude spells which were

primarily mental or maternity healthcare, as well as private sector spells.13 HES is a large

administrative dataset collected by the NHS Information Centre14, with our dataset com-

prising 6,164,114 separate observations, representing the population of hospital inpatient

healthcare users for the year 2007-2008. Since data is taken from administrative records,

we only have information on users of inpatient NHS services, and therefore can only model

strictly positive costs.15

The cost variable used throughout is individual patient annual NHS hospital cost for

all spells finishing in the financial year 2007-2008. In order to cost utilisation of inpatient

NHS facilities, tariffs from 2008-200916 were applied to the most expensive episode within

the spell of an inpatient stay (following standard practice for costing NHS activity). Then,

for each patient, all spells occuring within the financial year were summed. The data are

summarised in Table 3.1 and Figure 3.2.

The challenges of modelling cost data are clearly observed in Table 3.1 and in Figure

3.217: the observed costs are heavily right-hand skewed (even after log transformation),

with the mean far in excess of the median, and are highly leptokurtic (although roughly

mesokurtic following log transformation). Whilst transforming the data clearly reduces

skewness, neither of these transformations result in a completely symmetric distribution,

implying that a flexible link function could be useful. The distribution may also be multi-

modal, or at least noisy with many spikes, which can most clearly be seen in Figure 3.2

on the histogram of the log transformed costs.

We construct a linear index of covariates and divide the data into quantiles according to

13This dataset was compiled as part of a wider project considering the allocation of NHS resources to
primary care providers. Since a lot of mental healthcare is undertaken in the community and with specialist
providers, and hence not recorded in HES, the data is incomplete, and also since healthcare budgets for
this type of care are constructed using separate formulae. Maternity services are excluded since they are
unlikely to be heavily determined by morbidity characteristics, and accordingly for the setting of healthcare
budgets are determined using alternative mechanisms.

14Now named the Health and Social Care Information Centre.
15Zeros are typically handled by a two-part specification and the main challenge is to capture the long

and heavy tail of the distribution rather than the zeros.
16Reference costs for 2005-2006, which were the basis for the tariffs from 2008-2009, were used when

2008-2009 tariffs were unavailable.
17Costs above £30, 000 were excluded, for this figure only, to make the graphs clearer.
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Figure 3.2: Histogram plots of costs
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Figure 3.3: Variance against mean for each of the 20 quantiles of the linear index of
covariates
Note:
The data were divided into twenty subsets using the deciles of a simple linear predictor
for healthcare costs using the set of regressors introduced later. Figure 3.3 plots the means
and variances of actual healthcare costs for each of these subsets, with fitted linear and
quadratic trends.
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Level Square root Logarithm

N 6, 164, 114
Mean £2, 610 43.18 7.25
Median £1, 126 33.56 7.03
Standard deviation £5, 088 27.30 1.00
Skewness 13.03 2.84 0.74
Kurtosis 363.18 19.62 2.99
Maximum £604, 701 777.63 13.31
99th percentile £19, 015 137.89 13.31
95th percentile £8, 956 94.64 9.10
90th percentile £6, 017 77.57 8.70
75th percentile £2, 722 52.17 7.91
25th percentile £610 24.70 6.41
10th percentile £446 21.12 6.10
5th percentile £407 20.16 6.01
1st percentile £347 18.63 5.85
Minimum £217 14.73 5.38

Table 3.1: Descriptive statistics for hospital costs

this, to analyse conditional (on X) distributions of the outcome variable.18 First, we plot

the variances of each quantile against their means (Figure 3.3). This gives us a sense both

of the nature of heteroskedasticity and of feasible assumptions relating these aspects of the

distribution. From Figure 3.3, we can see that there is evidence against homoskedasticity

(where there would be no visible trend), and evidence for some relationship between the

variance and the mean.

We also carry out a similar analysis for higher moments of the distribution, plotting

the kurtosis of each quantile against their skewness. Parametric distributions impose re-

strictions upon possible skewness and kurtosis: one-parameter distributions are restricted

to a single point (e.g. normal distribution imposes a skewness of 0 and a kurtosis of 3),

two-parameter distributions allow for a locus of points to be estimated, and distributions

with three or more parameters allow for spaces of possible skewness and kurtosis combi-

nations. Figure 3.4 shows that the data is non-normal and provides motivation for flexible

methods since they appear better-able to model the higher moments of the conditional

distributions of the outcome variables analysed here.19

18This is done by regressing the outcome variable on the set of covariates we include in our regression
models using OLS.

19A similar analysis can be found in Pentsak (2007). Note also that the lower bound of the Pearson
Type IV distribution, used in Holly and Pentsak (2006), is equal to the upper bound for the beta of the
second kind distribution (also known as Pearson Type VI).
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Figure 3.4: Kurtosis against skewness for each of the 10 quantiles of the linear index of
covariates, adapted from McDonald et al. (2013)
Note:
The dots shown on Figure 3.4 were generated as follows: the data were divided into ten
subsets using the deciles of a simple linear predictor for healthcare costs using the set
of regressors used in this paper. Figure 3.4 plots the skewness and kurtosis coefficients of
actual healthcare costs for each of these subsets, the skewness and kurtosis coefficient of the
full estimation sub-population (represented by the larger circle with cross) and theoretically
possible skewness-kurtosis spaces and loci for parametric distributions considered in the
literature.
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All of the models in the quasi-Monte Carlo comparison use a specified vector of co-

variates, and have at least one linear index of these. This vector mirrors the practice

in the literature regarding comparing econometric methods for healthcare costs, allowing

models to control for age (as well as age squared and age cubed), gender (interacted fully

with age terms), and morbidity characteristics (from ICD classifications).20 Each of the

24 morbidity markers indicates the presence or absence, coded 1 and 0 respectively, of one

or more spells with any diagnosis within the relevant subset of ICD10 chapters, during the

financial year 2007-2008 (see Appendix A). We do not use a fully interacted specification,

since morbidity is modelled with a separate intercept for presence of each type of diagnosis

(and not interacted with age or gender). However, we do allow for interactions between

age and its higher orders and gender. This means that we are left with a specification

close to those used in the comparative literature as well as a parsimonious version of the

set of covariates used to model costs in Person-Based Resource Allocation in England, as

in, for example, Dixon et al. (2011). In addition, making the specification less complicated

aids computation and results in fewer models failing to converge.

3.5 Methodology

3.5.1 Quasi-Monte Carlo Design

By using the HES data, we have access to a large amount of observations representing

the whole population of English NHS inpatient costs. To exploit this, we use a quasi-

Monte Carlo design similar to Deb and Burgess (2003).21 The population of observations

(6,164,114) is randomly divided into two equally sized sub-populations: an ‘estimation’ set

(3,082,057) and a ‘validation’ set (3,082,057).22 From within the ‘estimation’ set we ran-

domly draw, 100 times with replacement, samples of size Ns (Ns ∈ 5,000; 10,000; 50,000;

100,000). The models are estimated on the samples and performance then evaluated on

both the sample drawn from the ‘estimation’ set and the full ‘validation’ set. Figure 3.5

20Morbidity information is available through the HES dataset, adapted from the ICD10 chapters (WHO,
2007) – see Appendix A for further details.

21Using a split-sample to evaluate models has precedent in the comparative literature on healthcare
costs, see Duan et al. (1983); Manning et al. (1987).

22Given the size of the dataset, any sub-optimality resulting from the proportions allocated to each set
is likely to be minimal. To ensure the results are replicable, we set a fixed seed for splitting the dataset
and for randomly drawing samples.
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 Four sample sizes (draws with

replacement)

ܰ௦ {߳5,000; 10,000; 50,000; 100,000}

 Multiple replications at each sample size

=ݎ) 1, . . . ,100)

Pearson correlation test

 Forecasts generated using

estimated parameters.

 Full validation set used to

calculate:

- MPE

- MAPE

- RMSE

- ADMPE

Figure 3.5: Diagram setting out study design

illustrates our study design in the form of a diagram: note the subscript m denotes the

model used, Ns the sample size used, and r the replication number.

In order to execute this quasi-experimental design, we automate the model selection

process for each approach: for instance, with the conditional density approximation es-

timator, we specify a number of bins to be estimated, a priori, rather than undergoing

the investigative process outlined in Gilleskie and Mroz (2004). Similarly, all models have

been automated to some extent, since we set a priori: the specification of regressors (all

models), the parameters that vary with covariates (generalised gamma and generalised

beta of the second kind), and the number of mixtures to model (finite mixture models).

Our specification of regressors was based on preliminary work, which showed alternative
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specifications to give similar results, but with worse convergence performance.23

3.5.2 Evaluation of Model Performance

Estimation Sample

Researchers modelling healthcare costs will typically carry out multiple tests to es-

tablish the reliability of their model specification. These tests are carried out in sample,

and help to inform the selection of models that will then be used for predictive purposes.

They are commonly used to build the specification of the ‘right hand side’ of the regres-

sion: the covariates used and interactions between them. In addition, researchers working

with healthcare costs use these tests to establish the appropriate link function between

covariates and expected conditional mean, and other assumptions about functional form.

We include results from the Pearson correlation coefficient test, which is simple to carry

out and has intuitive appeal.24 In order to carry out the Pearson correlation coefficient

test, residuals (computed on the raw cost scale) are regressed against predicted values

of cost. If the slope coefficient on the predicted costs is significant, then this implies a

detectable linear relationship between the residuals and the covariates, and so evidence of

model misspecification.

Validation Set

We use our models to estimate forecasted mean healthcare costs over the year for

individuals (ŷVi = ̂E(yVi |XV
i )25, V denotes that the observation is from the ‘validation’

set) and evaluate performance on metrics designed to reflect the bias (mean prediction

error, MPE), accuracy (mean absolute prediction error, MAPE) and goodness of fit (root

mean square error, RMSE) of these forecasts. MPE can be thought of as measuring the

bias of predictions at an aggregate level, where positive and negative errors can cancel each

other out, while MAPE is a measure of the accuracy of individual predictions. RMSE is

23For example, one alternative specification featured a count of the number of morbidities instead a
vector of morbidity markers.

24We also carried out Pregibon link, Ramsey RESET and modified Hosmer-Lemeshow tests in prelim-
inary work although only results from the Pearson correlation coefficient tests are included, since they
were found to display the same pattern more clearly (with the other tests there was smaller variation in
rejection rates across the different models).

25This is computed using coefficients from models estimated on the ‘estimation’ set, e.g. for linear

regression ̂E(yVi |XV
i ) = α̂E + β̂EXV

i
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similar to MAPE in that positive and negative errors do not cancel out, however larger

errors count for disproportionately more, since they are squared. In addition, we evaluate

the variability of bias across replications (absolute deviations of mean prediction error,

ADMPE). These are all evaluated on the full ‘validation’ set. Formulae for calculating

these metrics are provided below, where m denotes the model used, s the sample size used,

and r the replication.

MPEmsr =

∑
(yi − ŷi)
Ns

(3.19)

MAPEmsr =

∑
|yi − ŷi|
Ns

(3.20)

RMSEmsr =

√∑
(yi − ŷi)2

Ns
(3.21)

ADMPEmsr =

∣∣∣∣∣MPEmsr −
∑R
r=1MPEmsr

R

∣∣∣∣∣ (3.22)

Only replications where all 16 models are successfully estimated on the sample are

included for evaluation, and model performance according to each criterion is calculated

as an average over all included replications, e.g. MPEms =

∑R

r=1
MPEmsr
R .26

In order to get a greater insight into the performance of different distributions, we

evaluate forecasted conditional means at different values of the covariates. In practice

this is done by patitioning the fitted values of costs into deciles. We assess MPE and

MAPE for deciles of predicted costs, since there is concern that models perform with

varying success at different points in the distribution. Models designed for heavy-tails,

for instance, might be expected to perform better in predicting the biggest costs. This

also represents a desire to fit the distribution of costs for different groups of observations

according to their observed covariates.

We combine the results that we obtain from different sample sizes (Ns), and attempt

26All models estimated successfully every time, except for CDEM and EEE. CDEM could not be es-
timated on two of the 100 replicates with samples of 5,000 observations. EEE could not be estimated
on four, four, six and four of the 100 replicates with sample sizes of 5,000, 10,000, 50,000 and 100,000
observations, respectively.
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to find a pattern in the way in which models perform as sample size varies. To do this

we construct response surfaces (as in, for example Deb and Burgess (2003)). These are

polynomial approximations to the relationship between the statistics of interest and the

sample size of the experiment, Ns. For our purposes, we estimate the following regres-

sion for each model and for each metric of performance (illustrated below for the mean

prediction error).

MPEmsr = αMPE
m + βMPE

m

1

Ns
+ uMPE

msr (3.23)

We specify the relationship between MPE and the inverse of the sample size, reflecting

that we expect reduced bias as the number of observations increases. In particular, the

value of αMPE
m represents the value of MPE to which the model approaches asymptotically

with increasing sample size: testing whether or not this is statistically significant from zero

gives an indication of whether the estimator is consistent. Here, uMPE
msr represents the error

term from the regression. For the metrics that cannot be negative, we use the log function

of the value as the dependent variable, for example in the case of mean absolute prediction

error we estimate:

ln (MAPEmsr) = αLMAPE
m + βLMAPE

m

1

Ns
+ uLMAPE

msr (3.24)

With the log specification, differences in estimates are to be interpreted as percentage

differences, as opposed to absolute differences.

3.6 Results and Discussion

To begin with, we consider the results from the smallest samples that we draw from the

‘estimation’ set (5,000 observations). Results from larger samples are analysed by way of

the response surfaces which we present later. Table 3.2 is a key for the labels we use for

each model in discussion of the results.

3.6.1 Estimation Sample Results

We first conduct tests of misspecification across the models used. Researchers use these
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OLS linear regression
LOGOLSHET transformed linear regression (log), heteroskedastic smearing factor
SQRTOLSHET transformed linear regression (

√
.), heteroskedastic smearing factor

GLMLOGP generalised linear model, log link, Poisson-type family
GLMLOGG generalised linear model, log link, gamma-type family
GLMSQRTP generalised linear model,

√
-link, Poisson-type family

GLMSQRTG generalised linear model,
√

-link, gamma-type family

LOGNORM log-normal
GG generalised gamma
GB2LOG generalised beta of the second kind, log link
GB2SQRT generalised beta of the second kind,

√
-link

FMMLOGG two-component finite mixture of gamma densities, log link
FMMSQRTG two-component finite mixture of gamma densities,

√
-link

EEE extended estimating equations
CDEM conditional density approximation estimator (multinomial logit)
CDEO conditional density approximation estimator (ordered logit)

Table 3.2: Key for model labels

tests to inform the specification of regressors, and the appropriateness of distributional

assumptions, in particular the link function. Since we use the same regressors in all models,

our tests are used to inform choices of distributional assumptions. The Pearson correlation

coefficient test is able to detect if there is a a linear association between the estimated

residuals and estimated conditional means, where the null hypothesis is no association.

A lack of this kind of association suggests evidence against misspecification. It is also

possible, however, that the relationship between the error and covariates is non-linear

which this test cannot detect. Linear regression estimated using OLS, by construction,

generates residuals orthogonal to predicted costs, and so the Pearson test cannot be applied

to this model.

Table 3.3 shows that, according to this test, there is less evidence of misspecification

when the model is estimated using a square root link function compared to other possible

link functions, when all other distributional assumptions are the same. This is also the

case in the GLM family of models, where the link and distribution functions can be flexibly

estimated using EEE, with results indicating that there is less evidence of misspecification

with GLMSQRTP and GLMSQRTG than the flexible case (on average across replications

with sample size 5,000, the estimated λ coefficient in EEE was 0.28 with standard devia-

tion of 0.07, indicating a link function between logarithmic and square root). Whilst EEE

should be better-specified on the scale of estimation (following, effectively, the transfor-

mation of the dependent variable), the re-transformation may lead to increased evidence

of misspecification on the scale of interest (levels of costs). Introducing more flexibility
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Model Pearson

OLS N/A
LOGOLSHET 99%
SQRTOLSHET 0%

GLMLOGP 11%
GLMLOGG 99%
GLMSQRTP 0%
GLMSQRTG 13%

LOGNORM 95%
GG 89%
GB2LOG 96%
GB2SQRT 85%

FMMLOGG 85%
FMMSQRTG 82%

EEE 48%

CDEM 7%
CDEO 1%

Table 3.3: % of tests rejected at 5% significance level, when all converged, 94 converged
replications, sample size 5,000

in terms of the whole distribution, generally, appears to have mixed effects upon results

from this test. In the case of LOGNORM and GLMLOGG which are special cases of

GG, there is the least evidence of misspecification from the most complicated distribu-

tion amongst the three. There is also evidence of less misspecification with FMMLOGG

compared to GLMLOGG, which it nests. Conversely, GG and LOGNORM are special

cases of GB2LOG, for which there is the most evidence of misspecification among these

three models. Looking at the rejection rates above for FMMSQRTG and GLMSQRTG,

there is more evidence of misspecification in the more flexible case. Finally, the results

from CDEM and CDEO are promising, with little evidence of misspecification compared

to other models tested. This may be because there is no retransformation process onto

the scale of interest for these models.

3.6.2 Validation Set Results

All tests in the above section are carried out on the estimation sample. Given the prac-

tical implementation of the models considered here, a researcher may be more interested

in how models perform in forecasting costs out-of-sample. Results based on the estimation

sample may arise from overfitting the data. Therefore, our main focus is the forecasting

97



performance out-of-sample, that is evaluation on the ‘validation’ set.

We look first at performance of model predictions on the whole ‘validation’ set. Then

we consider how well the models forecast for different levels of covariates throughout the

distribution, by analysing performance by decile of predicted costs. Finally, we analyse the

out-of-sample performance with increasing sample size by constructing response surfaces.

Bias Accuracy Goodness of fit

MPE (£) MAPE (£) RMSE

OLS -1.56 1833.49 4475.49
LOGOLSHET -140.53 1816.63 4960.08
SQRTOLSHET 0.11 1725.95 4432.94

GLMLOGP -1.44 1748.43 4557.19
GLMLOGG -147.33 1818.06 4984.86
GLMSQRTP 0.26 1704.77 4426.24
GLMSQRTG 46.71 1689.28 4454.25

LOGNORM 64.25 1734.10 4825.51
GG 44.60 1750.79 4754.22
GB2LOG -63.96 1796.91 4873.13
GB2SQRT 134.84 1686.48 4483.35

FMMLOGG -3.19 1758.06 4782.69
FMMSQRTG 121.80 1690.28 4477.10

EEE -42.31 1727.28 4508.03

CDEM 0.89 1683.40 4444.85
CDEO -10.13 1725.53 4474.84

Table 3.4: Results of model performance, when all converged, sample size 5,000; averaged
across 94 replications

Looking at the results in Table 3.4, where the four best performing models in each

category (MPE, MAPE and RMSE) are emboldened, it is clear that some of the most

commonly used models – OLS, LOGOLSHET, GLMLOGG, and LOGNORM – do not

perform well on any metric. CDEM is among the models with top four performance in

every category illustrating the potential advantages of this approach for analysts concerned

with any of bias, accuracy or goodness of fit. Generally speaking, the results also indicate

that a square root link function is the most appropriate of those featured.

In terms of bias, models which are mean-preserving in sample also perform well out-of-

sample in these results. This is evidenced by the strong performance of OLS, GLMLOGP

and GLMSQRTP, with absolute levels of mean prediction error of £1.56, £1.44 and £0.26

respectively. All models with a square root link function underpredict costs on average,

whereas some log link function models underpredict (LOGNORM and GG) and others
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overpredict on average (LOGOLSHET, GLMLOGP, GB2LOG and FMMLOGG). SQR-

TOLSHET and CDEM perform best and third best respectively, and worst performing is

GLMLOGG, which overpredicts by £147.33 on average (5.64% of the population mean).

With respect to accuracy and goodness of fit, a clear message from the results is

that the best performing link function is the square root. The ordering of the other link

functions varies. For accuracy the flexible link function of EEE is next best, followed by

log link function and then OLS. For goodness of fit OLS is second best, followed by EEE

while the log link is the worst. There is variation in performance amongst different models

with the same link function, which we discuss next when considering the gains to increased

flexibility. In addition, CDEM performs very well according to these criteria.

First we consider the gains to using a mixture of gamma distributions, over the nested

single gamma distribution models. Looking at the results for the GLMLOGG and FMM-

LOGG, the mixture improves forecasting performance in terms of bias, accuracy and

goodness of fit. This is also observed in results from other sample sizes (see Appendix

B). As discussed earlier, the gains to this increased flexibility are insufficient for results

from FMMLOGG to perform better than relatively simple models using a square root link

function (e.g. GLMSQRTP). Comparing results from GLMSQRTG with FMMSQRTG

is more complicated, at sample size 5,000, as seen in Table 3.4, we observe GLMSQRTG

to perform better than FMMSQRTG in all metrics. FMMSQRTG performs better than

GLMSQRTG, at larger samples, in terms of accuracy – with FMMSQRTG the best per-

forming model of all 16 compared – but the nested single distribution case (GB2SQRTG)

performs better, at all sample sizes, in terms of bias and goodness of fit (see Appendix B).

Greater flexibility amongst the fully parametric models has an ambiguous effect on

performance of forecasting means. GG is a limiting case of GB2 and its performance is

better across all metrics. Conversely, LOGNORM, a special case of GG and GB2, per-

forms best of the three in terms of accuracy, the worst in terms of bias, and second in

terms of goodness-of-fit. Using GG or GB2LOG improves performance over special case

GLMLOGG based on MPE, MAPE and RMSE. Once again, the best of these four models

performs worse than certain models with a square root link function. Comparing GLM-

SQRTG and GB2SQRT, we can see that there is not a great deal gained from introducing

more parameters, since performance is worse for GB2SQRT than GLMSQRTG except in
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the cases of accuracy at sample sizes 5,000 and 10,000 (the difference is small at all sample

sizes analysed).

Crucially, these results only consider performance based on the mean, while some of

these models are capable of providing information on higher moments and on other features

of the conditional distribution such as tail probabilities.27 We construct graphs of bias and

accuracy by decile of predicted costs. This can be thought of as analysing the fit of models

for the mean of distributions of costs conditional on observed variables, since each decile

of predicted costs represents a group of observations with certain values of covariates. In

previous analysis, we have considered all observations as equal, but it is possible that a

policymaker prioritises the prediction error of certain observations over others. There is

considerable interest in modelling the outcomes for high-cost patients, since these can be

responsible for large proportions of overall costs. The highest costs are likely to be found

in the highest decile of predicted costs.

27This is a significant qualitative advantage of parametric models over models such as linear regression,
where the models have been used to predict probabilities of lying beyond a threshold value, e.g. tail
probabilities, see Jones et al. (2014) who find that the GG and LOGNORM distribution perform best for
the threshold values they choose.
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Figure 3.6: MPE by decile of fitted costs
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Models with the same link function follow a largely similar pattern. Those, for exam-

ple, with square root link functions underpredict in the decile of highest predicted costs,

whereas log link models overpredict in the last decile. Results with other link functions –

OLS, EEE, CDEM and CDEO – all have different patterns. Generally speaking, the first

decile of predicted costs from square root models are on average underpredictions (only

GB2SQRT overpredicts in the smallest decile), which combined with the underpredicted

last decile gives them a ‘u-shaped’ line. The performance of each model varies across the

deciles. SQRTOLSHET has a ‘u-shaped’ line, and while it performs best in predicting

costs on average across all deciles, the performance for certain groups may be worse than

other models. For example, CDEM performs slightly worse across all ten deciles, but has

a smaller range of over- and underpredictions. In terms of the highest decile of predicted

costs, the model with the lowest MPE is CDEO, underestimating on average £48.96. Gen-

erally this decile tends to be the largest absolute MPE for models, with values as large as

an average overprediction of £2211.47 in the case of GLMLOGG.
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Figure 3.7: MAPE by decile of fitted costs
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When looking at MAPE by decile of predicted cost, it is striking that the pattern across

models is very similar. In all models, except OLS, the MAPE is higher in deciles with larger

predicted costs. The most inaccurate models in the highest decile are those with a log link

function, followed by EEE, then OLS, the conditional density approximation estimators

with the most accurate being models with a square root link function. Generally, it appears

that models that predict larger costs overall are the least accurate in the highest decile,

implying that models which estimate the largest range of predicted conditional means will

not necessarily perform best in forecasting mean costs for patients most likely to be high

cost patients (those with lots of observed morbidity). GLMLOGG overpredicts on average

over the whole validation subset by £147.33, has the largest overprediction in the highest

decile, and is also the least accurate in this decile with MAPE of £6536.24, over twice the

population mean cost.

Figure 3.8 displays the response surfaces constructed to analyse how each model’s

performance varied with increasing sample size for the subset of best performing models

(those emboldened in Table 3.4). We have already touched upon this earlier when looking

at results regarding accuracy between related distributions. The performance of most

estimated models varies little as sample sizes increase above 5,000. There is some evidence

of the variability of MPE (measured using ADMPE) reducing as sample size increases,

although this happens at a similar rate across all models. Largely, though, the response

surfaces for each model are parallel indicating that relative performance of models changes

little. Further, the fact that they are flat represents evidence of performance not changing

for each model with increasing sample size. The exception to this is that the performance

of FMMSQRTG varies with increasing sample size: its accuracy improves, and its bias

worsens. This suggests that this model behaves differently with samples as small as 5,000

observations, possibly because of the number of parameters that are required. On the

whole, though, from samples of 5,000 observations or more, there is little evidence that

more flexible models require more observations than less flexible ones.

104



2.8

3

3.2

3.4

3.6

3.8

Ex
pe
ct
ed
LA
D
M
PE SQRTOLSHET

GLMLOGP

GLMSQRTP

GLMSQRTG

GB2SQRT

2.2

2.4

2.6

2.8

5,000 7,000 9,000 11,000 13,000 15,000 17,000 19,000 21,000 23,000 25,000

Ex
pe
ct
ed
LA
D
M
PE

Sample size

GB2SQRT

FMMSQRTG

CDEM

8.405

8.41

8.415

8.42

8.425

Ex
pe
ct
ed
LR
M
SE

SQRTOLSHET

GLMLOGP

GLMSQRTP

GLMSQRTG

GB2SQRT

8.39

8.395

8.4

5,000 7,000 9,000 11,000 13,000 15,000 17,000 19,000 21,000 23,000 25,000

Ex
pe
ct
ed
LR
M
SE

Sample size

GB2SQRT

FMMSQRTG

CDEM

7.435

7.445

7.455

7.465

Ex
pe
ct
ed
LM
A
PE

SQRTOLSHET

GLMLOGP

GLMSQRTP

GLMSQRTG

GB2SQRT

7.415

7.425

7.435

5,000 7,000 9,000 11,000 13,000 15,000 17,000 19,000 21,000 23,000 25,000

Ex
pe
ct
ed
LM
A
PE

Sample size

GB2SQRT

FMMSQRTG

CDEM

50

70

90

110

130

Ex
pe
ct
ed
M
PE

SQRTOLSHET

GLMLOGP

GLMSQRTP

GLMSQRTG

GB2SQRT

-10

10

30

50

5,000 7,000 9,000 11,000 13,000 15,000 17,000 19,000 21,000 23,000 25,000

Ex
pe
ct
ed
M
PE

Sample size

GB2SQRT

FMMSQRTG

CDEM

Figure 3.8: Reponse surfaces for log(RMSE), log(MAPE), MPE, log(ADMPE) (clockwise
from top left) against sample size, constructed evaluating performance on ‘validation’ set
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3.7 Conclusions

We have systematically evaluated the state of the art in regression models for healthcare

costs, using administrative English hospital inpatient data, employing a quasi-Monte Carlo

design to ensure rigour and drawing conclusions based on out-of-sample forecasting. We

have compared recently-adopted semi- and fully parametric regression methods that have

never before been evaluated against one another, as well as comparing with regression

methods that are now considered standard practice in modelling healthcare cost data.

Our results echo other studies, in that there is no single model that dominates in

all respects: SQRTOLSHET is the best performing model in terms of bias, CDEM for

accuracy, and in terms of goodness of fit the best performer is GLMSQRTP. Therefore

the policymaker has to weigh up these factors in arriving at their preferred model, based

upon their loss function over prediction errors. It is worth noting, however, that CDEM

performs amongst the best four models for all three metrics. Another striking result is that

four models commonly employed in regression methods for healthcare costs do not perform

amongst the best four of any of the three metrics (OLS, LOGOLSHET, GLMLOGG and

LOGNORM). Our analysis by decile shows the way in which models are sensitive to the

choice of link function, with square root link functions underpredicting in the decile of

highest predicted costs, and log link models overpredicting in the last decile. Finally, the

response surfaces indicate that, on the whole, the more recent developments do not suffer

because of the use of smaller sample sizes (from 5,000 observations).
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3.8 Appendix A

We use the variables shown in Table 3A1 to construct our regression models. They are

based on the ICD10 chapters, which are given in Table 3A2.

Variable name Variable description
epiA Intestinal infectious diseases, Tuberculosis, Certain zoonotic bacterial diseases, Other bacterial diseases, In-

fections with a predominantly sexual mode of transmission, Other spirochaetal diseases, Other diseases caused
by chlamydiae, Rickettsioses, Viral infections of the central nervous system, Arthropod-borne viral fevers and
viral haemorrhagic fevers

epiB Viral infections characterized by skin and mucous membrane lesions, Viral hepatitis, HIV disease, Other viral
diseases, Mycoses, Protozoal diseases, Helminthiases, Pediculosis, acaiasis and other infestations, Sequelae of
infectious and parasitic diseases, Bacterial, viral and other infectious agents, Other infectious diseases

epiC Malignant neoplasms
epiD In situ neoplasms, Benign neoplasms, Neoplasms of uncertain or unknown behaviour and III
epiE IV
epiF V
epiG VI
epiH VII and VIII
epiI IX
epiJ X
epiK XI
epiL XII
epiM XIII
epiN XIV
epiOP XV and XVI
epiQ XVII
epiR XVIII
epiS Injuries to the head, Injuries to the neck, Injuries to the thorax, Injuries to the abdomen, lower back, lumbar

spine and pelvis, Injuries to the shoulder and upper arm, Injuries to the elbow and forearm, Injuries to the
wrist and hand, Injuries to the hip and thigh, Injuries to the knee and lower leg, Injuries to the ankle and
foot

epiT Injuries involving multiple body regions, Injuries to unspecified part of trunk, limb or body region, Effects of
foreign body entering through natural orifice, Burns and Corrosions, Frostbite, Poisoning by drugs, medica-
ments and biological substances, Toxic effects of substances chiefly nonmedicinal as to source, Other and
unspecified effects of external causes, Certain early complications of trauma, Comlications of surgical and
medical care, not elsewhere classified, Sequelae of injuries, of poisoning and of other consequences of external
causes

epiU XXII
epiV Transport accidents
epiW Falls, Exposure to inanimate mechanical forces, Exposure to animate mechanical forces, Accidental drowning

and submersion, Other accidental threats to breathing, Exposure to electric current, radiation and extreme
ambient air temperature and pressure

epiX Exposure to smoke, fire and flames, Contact with heat and hot substances, Contact with venomous ani-
mals and plants, Exposure to forces of nature, Accidental poisoning by and exposure to noxious substances,
Overexertion, travel and privation, Accidental exposure to other and unspecified factors, Intentional self-
harm, Assault by drugs, medicaments and biological substances, Assault by corrosive substance, Assault by
pesticides, Assault by gases and vapours, Assault by other specified chemicals and noxious substances, Assault
by unspecified chemical or noxious substance, Assault by hanging, strangulation and suffocation, Assault by
drowning and submersion, Assault by handgun discharge, Assault by rifle, shotgun and larger firearm dis-
charge, Assault by other and unspecified firearm discharge, Assault by explosive material, Assault by smoke,
fire and flames, Assault by steam, hot vapours and hot objects, Assault by sharp object

epiY Assault by blunt object, Assault by pushing from high place, Assault by pushing or placing victim before
moving object, Assault by crashing of motor vehicle, Assault by bodily force, Sexual assault by bodily force,
Neglect and abandonment, Other maltreatment syndromes, Assault by other specified means, Assault by
unspecified means, Event of undetermined intent, Legal intervention and operations of war, Complications
of medical and surgical care, Sequelae of external causes of morbidity and mortality, Supplementary factors
related to causes of morbidity and mortality classified else

epiZ XXI

Table 3A1: Classification of morbidity characteristics

ICD10 codes beginning with U were dropped because there were no observations in the

6,164,114 used. Only a small number (3,170) were found of those beginning with P and

so these were combined with those beginning with O - owing to the clinical similarities.
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Chapter Blocks Title
I A00-B99 Certain infectious and parasitic diseases
II C00-D48 Neoplasms
III D50-D89 Diseases of the blood and blood-forming organs and certain disorders

involving the immune mechanism
IV E00-E90 Endocrine, nutritional and metabolic diseases
V F00-F99 Mental and behavioural disorders
VI G00-G99 Diseases of the nervous system
VII H00-H59 Diseases of the eye and adnexa
VIII H60-H95 Diseases of the ear and mastoid process
IX I00-I99 Diseases of the circulatory system
X J00-J99 Diseases of the respiratory system
XI K00-K93 Diseases of the digestive system
XII L00-L99 Diseases of the skin and subcutaneous tissue
XIII M00-M99 Diseases of the musculoskeletal system and connective tissue
XIV N00-N99 Diseases of the genitourinary system
XV O00-O99 Pregnancy, childbirth and the puerperium
XVI P00-P96 Certain conditions originating in the perinatal period
XVII Q00-Q99 Congenital malformations, deformations and chromosomal abnormali-

ties
XVIII R00-R99 Symptoms, signs and abnormal clinical and laboratory findings, not

elsewhere classified
XIX S00-T98 Injury, poisoning and certain other consequences of external causes
XX V01-Y98 External causes of morbidity and mortality
XXI Z00-Z99 Factors influencing health status and contact with health services
XXII U00-U99 Codes for special purposes

Table 3A2: ICD10 chapter codes
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3.9 Appendix B

Sample size

Model 10,000 50,000 100,000

OLS - - -
LOGOLSHET 100% 100% 100%
SQRTOLSHET 0% 44% 100%

GLMLOGP 46% 100% 100%
GLMLOGG 100% 100% 100%
GLMSQRTP 0% 13% 79%
GLMSQRTG 42% 100% 100%

LOGNORM 99% 100 100%
GG 99% 100% 100%
GB2LOG 100% 100% 100%
GB2SQRT 100% 100% 100%

FMMLOGG 98% 100% 100%
FMMSQRTG 97% 100% 100%

EEE 69% 100% 100%

CDEM 48% 100% 100%
CDEO 6% 89% 99%

Table 3B1: Results Pearson correlation coefficient tests (percentage rejected at 5% signif-
icance level)
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MPE (£) MAPE (£) RMSE

OLS -6.19 1815.31 4460.42
LOGOLSHET -149.73 1811.87 4938.27
SQRTOLSHET -5.63 1715.94 4421.70
GLMLOGP -6.77 1738.14 4522.67
GLMLOGG -155.09 1813.78 4960.21
GLMSQRTP -5.51 1699.16 4416.51
GLMSQRTG 41.14 1685.78 4447.57
LOGNORM 59.19 1732.46 4817.63
GG 43.26 1747.08 4743.14
GB2LOG -68.96 1794.72 4865.08
GB2SQRT 131.03 1684.73 4480.02
FMMLOGG -1.94 1747.21 4728.73
FMMSQRTG 136.06 1672.63 4461.85
EEE -39.21 1716.71 4483.11
CDEM -4.80 1677.85 4433.55
CDEO -15.66 1724.60 4471.24

Table 3B2: Results of model performance, when all converged, sample size 10,000

MPE (£) MAPE (£) RMSE

OLS -1.81 1796.18 4449.72
LOGOLSHET -147.59 1802.19 4906.22
SQRTOLSHET -1.67 1703.75 4413.87
GLMLOGP -1.27 1725.75 4495.21
GLMLOGG -151.88 1804.52 4924.32
GLMSQRTP -1.64 1690.68 4409.46
GLMSQRTG 44.49 1679.73 4442.24
LOGNORM 64.37 1726.74 4795.49
GG 52.19 1739.61 4721.18
GB2LOG -59.70 1786.85 4838.97
GB2SQRT 135.16 1681.21 4478.19
FMMLOGG -1.78 1739.02 4707.86
FMMSQRTG 139.06 1663.82 4453.58
EEE -27.50 1703.97 4461.69
CDEM -1.77 1671.65 4427.06
CDEO -12.33 1721.03 4468.20

Table 3B3: Results of model performance, when all converged, sample size 50,000
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MPE (£) MAPE (£) RMSE

OLS -1.38 1793.94 4448.34
LOGOLSHET -145.55 1799.78 4894.66
SQRTOLSHET -1.13 1702.17 4412.80
GLMLOGP -0.23 1723.93 4491.04
GLMLOGG -149.34 1801.91 4911.21
GLMSQRTP -1.08 1689.60 4408.53
GLMSQRTG 45.22 1679.03 4441.85
LOGNORM 64.92 1725.98 4792.42
GG 52.96 1738.69 4718.07
GB2LOG -59.08 1785.98 4835.64
GB2SQRT 135.08 1680.93 4477.82
FMMLOGG 0.10 1737.17 4702.38
FMMSQRTG 140.53 1662.90 4453.24
EEE -23.27 1700.90 4456.40
CDEM -1.26 1670.77 4426.08
CDEO -11.73 1720.51 4467.82

Table 3B4: Results of model performance, when all converged, sample size 100,000
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Decile of predicted cost

Model 1 2 3 4 5 6 7 8 9 10

OLS 878.41 498.24 301.60 177.47 -103.47 -218.87 -417.56 -627.31 -674.45 169.25
LOGOLSHET 72.19 -41.42 -90.06 -82.74 -18.47 81.12 158.80 294.32 356.78 -2135.90
SQRTOLSHET 366.18 137.92 18.07 -9.74 -104.61 -152.77 -140.83 -199.66 -147.44 233.38
GLMLOGP 23.56 -107.43 -149.27 -105.00 -71.83 -124.65 60.05 209.83 427.23 -176.98
GLMLOGG 50.81 -52.36 -96.95 -79.00 -12.05 94.98 162.95 304.74 364.94 -2211.47
GLMSQRTP 223.58 58.94 -24.00 -35.27 -59.78 -92.82 -82.67 -114.25 -60.64 189.14
GLMSQRTG 124.08 20.66 -59.16 -84.72 -22.72 -9.06 -54.07 -27.41 71.68 507.66
LOGNORM -38.43 -99.80 -131.68 -43.98 97.28 230.40 300.73 510.15 782.57 -964.60
GG -143.01 -210.11 -203.73 -128.22 59.81 146.80 217.61 454.21 789.59 -536.75
GB2LOG -157.20 -222.93 -219.12 -154.65 45.15 111.74 155.70 371.60 642.29 -1212.01
GB2SQRT -50.69 -114.56 -132.83 -109.30 59.73 6.65 -44.19 134.96 396.12 1202.57
FMMLOGG -1.93 -98.99 -135.11 -105.46 -34.17 36.82 179.35 373.03 596.01 -841.44
FMMSQRTG 75.97 -25.76 -89.96 -103.93 -45.77 -31.70 -1.11 78.45 260.96 1100.74
EEE 91.79 0.36 -59.09 -62.56 6.34 75.45 46.98 94.32 103.54 -720.37
CDEM -16.33 -40.35 -73.86 -18.31 69.14 144.93 79.88 -34.04 -302.29 200.10
CDEO -111.98 -176.27 -213.31 -162.65 3.14 63.10 71.40 163.83 212.48 48.96

Table 3B5: Models’ average mean prediction error (£) by decile of predicted cost at sample size 5,000
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Decile of predicted cost

Model 1 2 3 4 5 6 7 8 9 10

OLS 821.88 469.46 293.66 173.65 -134.52 -228.16 -434.91 -634.77 -668.78 279.44
LOGOLSHET 59.60 -52.01 -106.49 -95.15 -30.01 67.37 156.75 280.35 346.95 -2124.82
SQRTOLSHET 333.52 114.76 -5.18 -16.99 -118.91 -169.77 -144.20 -200.53 -145.95 296.31
GLMLOGP -7.46 -138.57 -177.80 -109.04 -69.16 -162.94 55.85 200.82 417.45 -76.94
GLMLOGG 40.74 -61.02 -109.44 -89.01 -26.68 83.26 160.16 288.70 354.38 -2192.10
GLMSQRTP 213.91 46.63 -39.07 -36.10 -76.04 -109.29 -90.19 -119.35 -71.38 225.44
GLMSQRTG 116.40 12.89 -73.70 -100.94 -47.57 12.06 -87.90 -33.00 71.34 541.61
LOGNORM -44.86 -103.90 -143.50 -43.17 85.94 235.45 284.50 508.01 782.45 -968.86
GG -144.37 -226.13 -201.47 -144.25 68.16 134.43 215.00 461.44 792.23 -522.18
GB2LOG -159.65 -237.28 -216.89 -171.23 52.58 96.44 153.83 375.92 640.54 -1223.68
GB2SQRT -55.62 -123.94 -128.14 -126.20 71.97 -5.73 -57.67 130.66 400.15 1204.90
FMMLOGG -15.44 -115.07 -151.67 -104.54 -49.12 10.19 187.04 366.43 605.81 -753.02
FMMSQRTG 66.90 -35.99 -105.13 -132.67 -68.87 -24.54 -10.48 84.48 326.12 1260.66
EEE 85.26 -9.14 -74.40 -82.26 -25.88 88.86 17.44 97.27 116.52 -605.90
CDEM -34.26 -43.05 -87.72 -22.54 58.40 143.35 68.13 -49.86 -328.54 248.16
CDEO -119.90 -182.20 -225.87 -162.25 -17.17 60.67 64.90 165.18 215.17 44.94

Table 3B6: Models’ average mean prediction error (£) by decile of predicted cost at sample size 10,000
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Decile of predicted cost

Model 1 2 3 4 5 6 7 8 9 10

OLS 768.06 444.90 261.71 211.65 -162.65 -224.78 -436.43 -629.07 -636.96 384.46
LOGOLSHET 40.66 -63.18 -120.65 -98.74 -27.11 71.95 154.10 278.92 354.17 -2066.07
SQRTOLSHET 296.11 104.74 -34.85 5.55 -141.65 -177.56 -129.95 -175.76 -131.53 367.73
GLMLOGP -37.97 -170.27 -203.77 -117.15 -50.17 -178.15 68.46 183.92 429.62 62.80
GLMLOGG 26.92 -70.31 -119.89 -90.86 -25.44 83.54 158.30 285.66 358.34 -2125.11
GLMSQRTP 198.14 37.23 -51.29 -24.78 -93.41 -109.47 -92.28 -101.31 -66.36 286.77
GLMSQRTG 104.24 7.93 -83.75 -100.93 -64.08 42.70 -117.01 -23.52 82.48 596.56
LOGNORM -54.04 -111.30 -144.41 -41.15 81.71 236.05 269.16 515.50 789.18 -896.86
GG -141.90 -238.99 -202.57 -154.60 77.50 113.44 230.59 469.88 804.80 -435.95
GB2LOG -160.65 -245.80 -215.95 -181.97 61.39 72.92 174.47 382.37 657.11 -1140.59
GB2SQRT -60.75 -130.80 -119.73 -129.98 82.93 -11.39 -68.85 138.36 413.63 1238.06
FMMLOGG -34.22 -125.95 -161.88 -93.53 -49.81 -1.79 213.11 362.77 611.62 -738.07
FMMSQRTG 56.60 -38.19 -119.91 -132.29 -76.54 -11.73 -25.19 87.49 338.81 1311.47
EEE 76.23 -17.18 -84.60 -87.23 -43.18 103.90 -12.48 106.24 136.25 -453.13
CDEM -47.07 -43.60 -101.08 -24.31 48.17 145.44 57.68 -56.54 -339.01 342.65
CDEO -130.29 -190.45 -234.35 -156.66 -29.08 45.46 73.90 169.07 233.67 95.50

Table 3B7: Models’ average mean prediction error (£) by decile of predicted cost at sample size 50,000
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Decile of predicted cost

Model 1 2 3 4 5 6 7 8 9 10

OLS 761.33 441.25 263.68 211.50 -166.68 -225.62 -434.71 -628.76 -633.12 396.37
LOGOLSHET 38.30 -62.53 -125.03 -100.31 -27.79 72.07 150.17 280.03 355.76 -2036.25
SQRTOLSHET 290.94 106.72 -45.14 6.63 -146.40 -177.43 -131.87 -166.39 -127.88 378.95
GLMLOGP -41.05 -173.23 -207.74 -119.94 -47.60 -178.91 70.02 178.29 432.38 85.42
GLMLOGG 25.07 -69.95 -123.63 -93.28 -24.34 81.28 155.48 285.85 360.55 -2090.44
GLMSQRTP 196.89 35.30 -54.10 -23.58 -98.07 -116.64 -90.84 -95.65 -64.14 299.60
GLMSQRTG 102.64 7.06 -85.09 -104.71 -66.86 47.18 -125.79 -18.43 85.42 610.59
LOGNORM -54.69 -112.28 -143.09 -42.46 81.70 237.09 264.89 516.00 789.82 -887.70
GG -140.56 -241.55 -200.69 -157.87 76.96 109.26 233.94 468.15 806.01 -423.72
GB2LOG -159.90 -247.54 -214.15 -185.09 59.92 65.76 180.76 380.80 659.11 -1130.20
GB2SQRT -61.84 -131.53 -119.32 -130.27 81.62 -11.40 -72.45 139.53 414.41 1241.97
FMMLOGG -35.47 -126.45 -164.61 -88.71 -57.36 -9.50 218.23 360.09 615.49 -710.66
FMMSQRTG 54.01 -39.31 -124.91 -136.39 -76.82 -10.32 -31.55 92.74 344.52 1333.18
EEE 76.77 -19.28 -85.65 -91.64 -45.13 95.20 -15.34 106.00 141.78 -395.60
CDEM -48.70 -44.60 -101.13 -24.65 46.88 145.68 55.88 -58.64 -339.60 356.41
CDEO -131.91 -189.53 -236.78 -153.91 -33.74 44.92 73.75 171.04 236.17 102.71

Table 3B8: Models’ average mean prediction error (£) by decile of predicted cost at sample size 100,000
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Decile of predicted cost

Model 1 2 3 4 5 6 7 8 9 10

OLS 879.77 575.57 639.97 864.80 1120.42 1530.58 1953.91 2437.88 3165.22 5167.22
LOGOLSHET 432.16 567.71 690.35 825.97 1038.71 1341.88 1702.04 2181.12 2896.97 6490.37
SQRTOLSHET 472.78 530.79 673.13 878.29 1104.90 1427.97 1839.97 2275.21 2969.18 5088.17
GLMLOGP 472.76 624.62 749.98 916.79 1127.15 1354.09 1737.56 2192.54 2871.79 5438.02
GLMLOGG 431.11 564.87 686.22 824.57 1032.54 1341.37 1692.92 2175.93 2895.86 6536.24
GLMSQRTP 410.47 531.24 669.20 853.52 1093.50 1405.85 1801.24 2242.47 2942.28 5098.81
GLMSQRTG 407.94 522.60 655.95 849.47 1084.61 1415.75 1778.61 2244.43 2950.61 4983.76
LOGNORM 500.51 580.15 657.62 833.68 1056.19 1325.01 1625.88 2065.70 2789.91 5907.09
GG 601.19 640.44 733.21 888.59 1143.62 1368.59 1622.82 2046.71 2761.63 5701.97
GB2LOG 607.97 648.02 740.91 899.20 1163.18 1389.65 1633.55 2067.98 2790.67 6028.71
GB2SQRT 544.30 584.86 701.04 922.90 1220.87 1420.87 1672.45 2142.12 2837.97 4818.24
FMMLOGG 455.63 598.45 722.83 869.04 1070.73 1338.32 1691.78 2150.84 2837.05 5846.93
FMMSQRTG 422.12 556.24 696.00 879.97 1116.32 1413.42 1772.12 2217.32 2910.98 4919.30
EEE 415.25 531.62 651.85 836.66 1049.22 1386.31 1739.97 2225.07 2966.02 5471.84
CDEM 476.96 555.78 639.96 780.26 1019.69 1335.12 1683.51 2213.41 3013.70 5116.58
CDEO 576.63 626.78 717.86 889.49 1142.60 1409.13 1694.02 2146.64 2915.21 5137.76

Table 3B9: Models’ average mean absolute prediction error (£) by decile of predicted cost at sample size 5,000
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Decile of predicted cost

Model 1 2 3 4 5 6 7 8 9 10

OLS 823.15 555.90 631.90 860.48 1101.13 1540.49 1950.52 2427.09 3139.43 5123.35
LOGOLSHET 431.30 567.50 688.57 816.60 1031.93 1331.88 1709.15 2170.82 2891.03 6480.89
SQRTOLSHET 451.16 528.18 664.82 878.72 1089.47 1422.35 1840.52 2266.38 2951.12 5067.67
GLMLOGP 477.64 625.26 746.17 906.93 1131.35 1337.55 1734.70 2182.37 2859.00 5381.39
GLMLOGG 431.00 565.77 684.20 819.89 1023.22 1333.50 1701.53 2167.19 2890.53 6521.88
GLMSQRTP 405.98 531.14 661.24 856.03 1079.96 1400.72 1803.69 2236.63 2930.65 5086.55
GLMSQRTG 406.69 523.08 654.88 846.33 1064.11 1435.75 1765.19 2241.50 2942.36 4978.86
LOGNORM 502.29 582.93 648.20 841.26 1049.65 1324.72 1618.63 2064.72 2789.15 5903.89
GG 607.39 633.99 727.07 887.22 1142.93 1353.45 1624.78 2046.48 2756.94 5691.36
GB2LOG 614.49 642.18 734.34 900.43 1159.46 1376.05 1637.34 2068.12 2787.27 6028.33
GB2SQRT 549.51 580.31 696.52 918.68 1229.69 1411.57 1668.49 2140.93 2835.99 4816.42
FMMLOGG 460.53 598.19 720.21 864.41 1059.81 1314.83 1694.76 2139.13 2823.88 5797.27
FMMSQRTG 424.65 554.36 697.88 868.73 1084.75 1416.72 1760.39 2185.57 2866.85 4867.40
EEE 413.78 534.75 653.24 833.36 1025.46 1399.82 1727.13 2217.48 2948.43 5414.48
CDEM 478.12 554.96 638.92 778.62 1017.52 1334.62 1678.98 2206.38 3002.68 5088.50
CDEO 581.02 628.72 709.23 898.91 1127.09 1411.07 1695.33 2146.62 2915.49 5133.30

Table 3B10: Models’ average mean absolute prediction error (£) by decile of predicted cost at sample size 10,000
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Decile of predicted cost

Model 1 2 3 4 5 6 7 8 9 10

OLS 768.85 541.26 610.06 881.75 1069.10 1551.55 1933.73 2409.88 3113.74 5082.23
LOGOLSHET 429.58 561.83 688.53 807.53 1024.78 1329.72 1704.85 2164.61 2880.53 6430.87
SQRTOLSHET 422.32 539.92 640.41 893.53 1058.08 1413.50 1840.22 2257.59 2931.13 5041.73
GLMLOGP 480.08 618.62 756.96 878.99 1138.11 1328.83 1746.09 2149.72 2853.08 5307.87
GLMLOGG 431.81 560.11 684.30 814.80 1015.15 1331.36 1698.38 2162.99 2879.88 6467.43
GLMSQRTP 396.93 534.22 650.66 866.29 1055.36 1395.82 1798.02 2233.11 2914.62 5062.77
GLMSQRTG 405.92 521.15 647.28 852.27 1039.32 1459.18 1744.01 2236.95 2932.55 4959.75
LOGNORM 500.44 584.59 645.16 844.44 1053.92 1318.84 1609.03 2065.50 2783.57 5862.68
GG 611.60 629.46 722.95 877.98 1144.29 1330.65 1638.31 2042.62 2750.67 5648.39
GB2LOG 619.63 635.77 732.23 894.72 1155.89 1352.95 1654.53 2062.14 2782.81 5978.79
GB2SQRT 553.94 575.79 690.26 919.19 1235.06 1399.53 1658.93 2139.57 2830.54 4810.14
FMMLOGG 461.64 596.10 713.92 864.25 1043.18 1293.90 1704.38 2120.48 2810.22 5783.08
FMMSQRTG 426.90 554.34 687.22 870.68 1059.59 1428.87 1739.51 2170.59 2851.74 4849.70
EEE 412.88 535.05 649.33 837.32 1004.28 1413.33 1708.59 2212.19 2930.73 5337.10
CDEM 474.76 556.18 640.39 776.69 1017.12 1337.97 1671.41 2201.47 2990.46 5050.98
CDEO 584.29 627.26 708.12 905.02 1116.05 1402.84 1704.46 2140.35 2913.49 5109.27

Table 3B11: Models’ average mean absolute prediction error (£) by decile of predicted cost at sample size 50,000
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Decile of predicted cost

Model 1 2 3 4 5 6 7 8 9 10

OLS 761.93 538.22 613.63 882.50 1061.12 1553.78 1932.49 2407.91 3111.01 5077.11
LOGOLSHET 430.25 562.48 687.36 805.11 1025.77 1329.85 1703.25 2165.65 2877.75 6411.24
SQRTOLSHET 418.79 544.34 632.39 898.00 1053.61 1411.66 1839.24 2258.54 2928.42 5037.66
GLMLOGP 481.31 616.64 760.43 872.17 1138.80 1329.53 1749.36 2141.91 2853.14 5296.89
GLMLOGG 432.92 560.49 683.34 812.21 1017.80 1329.84 1697.54 2163.70 2877.59 6444.67
GLMSQRTP 396.72 535.84 647.29 869.59 1051.08 1391.81 1798.97 2234.50 2912.49 5058.61
GLMSQRTG 407.62 518.79 648.16 851.77 1037.56 1462.26 1739.84 2237.83 2931.44 4956.07
LOGNORM 499.05 585.58 645.14 842.99 1054.22 1319.81 1607.29 2065.35 2782.88 5858.31
GG 613.13 629.43 722.41 875.78 1142.98 1327.14 1643.17 2040.20 2749.96 5643.64
GB2LOG 621.73 634.84 732.10 893.66 1152.43 1347.92 1661.59 2060.34 2782.50 5973.69
GB2SQRT 555.68 575.06 688.65 919.95 1234.31 1399.84 1656.56 2140.01 2829.95 4810.15
FMMLOGG 462.06 595.23 714.82 867.91 1040.55 1288.38 1707.44 2118.45 2808.24 5769.40
FMMSQRTG 426.74 555.77 686.13 872.24 1057.40 1432.20 1734.65 2168.91 2850.22 4845.77
EEE 413.77 533.85 651.76 836.46 1006.16 1408.20 1710.56 2210.26 2926.58 5312.42
CDEM 474.63 554.41 641.63 776.70 1016.61 1339.16 1670.01 2201.30 2988.91 5045.26
CDEO 584.83 627.99 705.53 907.38 1110.80 1404.08 1705.17 2140.17 2913.84 5106.01

Table 3B12: Models’ average mean absolute prediction error (£) by decile of predicted cost at sample size 100,000
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Response surface regressions

Regression coefficient MPE LMAPE LRMSE LADMPE

α -2.46 7.49 8.40 2.11
(1.87) (0.00) (0.00) (0.09)

β -3524.10 113.56 31.89 7432.02
(32871.71) (15.16) (1.98) (773.24)

Table 3B13: Regression coefficients for OLS response surface regressions

Response surface regressions

Regression coefficient MPE LMAPE LRMSE LADMPE

α -148.13 7.50 8.50 2.29
(2.31) (0.00) (0.00) (0.09)

β 27441.85 47.30 64.37 8147.63
(40826.75) (11.91) (18.59) (717.13)

Table 3B14: Regression coefficients for LOGOLSHET response surface regressions

Response surface regressions

Regression coefficient MPE LMAPE LRMSE LADMPE

α -2.44 7.44 8.39 2.11
(1.88) (0.00) (0.00) (0.09)

β 4161.85 72.66 23.83 7496.99
(33067.30) (10.43) (1.29) (828.20)

Table 3B15: Regression coefficients for SQRTOLSHET response surface regressions
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Response surface regressions

Regression coefficient MPE LMAPE LRMSE LADMPE

α -1.75 7.45 8.41 2.14
(1.95) (0.00) (0.00) (0.09)

β -8381.67 73.77 76.03 7947.14
(35203.29) (9.66) (7.89) (721.92)

Table 3B16: Regression coefficients for GLMLOGP response surface regressions

Response surface regressions

Regression coefficient MPE LMAPE LRMSE LADMPE

α -151.94 7.50 8.50 2.37
(2.37) (0.00) (0.00) (0.08)

β 12368.49 44.87 72.04 7680.98
(41957.46) (12.24) (19.88) (735.76)

Table 3B17: Regression coefficients for GLMLOGG response surface regressions

Response surface regressions

Regression coefficient MPE LMAPE LRMSE LADMPE

α -2.40 7.43 8.39 2.11
(1.87) (0.00) (0.00) (0.09)

β 4768.78 47.11 21.02 7661.16
(33017.63) (8.07) (1.08) (707.81)

Table 3B18: Regression coefficients for GLMSQRTP response surface regressions

Response surface regressions

Regression coefficient MPE LMAPE LRMSE LADMPE

α 43.86 7.43 8.40 2.01
(1.74) (0.00) (0.00) (0.09)

β 6300.86 32.27 14.78 8004.18
(30958.31) (6.43) (1.35) (702.89)

Table 3B19: Regression coefficients for GLMSQRTG response surface regressions

Response surface regressions

Regression coefficient MPE LMAPE LRMSE LADMPE

α 63.69 7.45 8.47 1.92
(1.55) (0.00) (0.00) (0.08)

β -6348.01 24.95 36.18 8009.81
(27826.75) (6.92) (9.83) (687.22)

Table 3B20: Regression coefficients for LOGNORM response surface regressions

Response surface regressions

Regression coefficient MPE LMAPE LRMSE LADMPE

α 52.17 7.46 8.46 1.89
(1.70) (0.00) (0.00) (0.10)

β -47610.97 36.78 40.14 8123.00
(30514.46) (7.41) (8.65) (830.41)

Table 3B21: Regression coefficients for GG response surface regressions
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Response surface regressions

Regression coefficient MPE LMAPE LRMSE LADMPE

α -60.42 7.49 8.48 2.29
(2.21) (0.00) (0.00) (0.09)

β -30592.30 32.25 40.50 7699.85
(41448.16) (10.48) (12.11) (733.74)

Table 3B22: Regression coefficients for GB2LOG response surface regressions

Response surface regressions

Regression coefficient MPE LMAPE LRMSE LADMPE

α 134.39 7.43 8.41 2.01
(1.62) (0.00) (0.00) (0.08)

β -4550.79 17.68 6.36 7719.11
(29380.16) (5.35) (1.41) (688.62)

Table 3B23: Regression coefficients for GB2SQRT response surface regressions

Response surface regressions

Regression coefficient MPE LMAPE LRMSE LADMPE

α -0.61 7.46 8.45 2.44
(2.70) (0.00) (0.00) (0.08)

β -13166.18 60.05 83.16 8279.92
(50627.97) (14.09) (19.16) (757.08)

Table 3B24: Regression coefficients for FMMLOGG response surface regressions

Response surface regressions

Regression coefficient MPE LMAPE LRMSE LADMPE

α 142.12 7.42 8.40 2.28
(2.85) (0.00) (0.00) (0.07)

β -93880.38 80.92 27.85 7461.19
(67740.82) (20.79) (6.12) (779.31)

Table 3B25: Regression coefficients for FMMSQRTG response surface regressions

Response surface regressions

Regression coefficient MPE LMAPE LRMSE LADMPE

α -25.08 7.44 8.40 2.36
(2.35) (0.00) (0.00) (0.08)

β -96992.48 78.57 58.99 7962.63
(44199.43) (12.04) (7.25) (726.73)

Table 3B26: Regression coefficients for EEE response surface regressions

Response surface regressions

Regression coefficient MPE LMAPE LRMSE LADMPE

α -2.52 7.42 8.39 2.08
(1.86) (0.00) (0.00) (0.08)

β 9424.60 39.46 22.01 8165.22
(32387.59) (6.22) (1.16) (685.22)

Table 3B27: Regression coefficients for CDEM response surface regressions
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Response surface regressions

Regression coefficient MPE LMAPE LRMSE LADMPE

α -13.02 7.45 8.40 2.16
(1.91) (0.00) (0.00) (0.09)

β 6579.60 15.36 8.26 7808.60
(33749.36) (6.44) (1.00) (741.31)

Table 3B28: Regression coefficients for CDEO response surface regressions
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Chapter 4

Estimating the Full Distribution
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Healthcare Cost Regressions: Going Beyond the Mean to

Estimate the Full Distribution
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Summary

Understanding the data generating process behind healthcare costs remains a key empiri-
cal issue. Although much research to date has focused on the prediction of the conditional
mean cost, this can potentially miss important features of the full conditional distribution
such as tail probabilities. We conduct a quasi-Monte Carlo experiment using English NHS
inpatient data to compare 14 approaches to modelling the distribution of healthcare costs:
nine of which are parametric, and have commonly been used to fit healthcare costs, and
five others designed specifically to construct a counterfactual distribution. Our results
indicate that no one method is clearly dominant and that there is a trade-off between bias
and precision of tail probability forecasts. We find that distributional methods demon-
strate significant potential, particularly with larger sample sizes where the variability of
predictions is reduced. Parametric distributions such as log-normal, generalised gamma
and generalised beta of the second kind are found to estimate tail probabilities with high
precision, but with varying bias depending upon the cost threshold being considered.
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4.1 Introduction

Econometric models of healthcare costs have many uses: to estimate key parameters

for populating decision models in cost-effectiveness analyses (Hoch et al., 2002); to adjust

for healthcare need in resource allocation formulae in publically funded healthcare systems

(Dixon et al., 2011); to undertake risk adjustment in insurance systems (Van de Ven and

Ellis, 2000) and to assess the effect on resource use of observable lifestyle characteristics

such as smoking and obesity (Johnson et al., 2003; Cawley and Meyerhoefer, 2012; Mora

et al., 2014). The distribution of healthcare costs poses substantial challenges for econo-

metric modelling. Healthcare costs are non-negative, highly asymmetric and leptokurtic,

and often exhibit a large mass point at zero. The relationships between covariates and

costs are likely to be non-linear. Basu and Manning (2009) provide a useful discussion of

these issues. The relevance and complexity of modelling healthcare costs has led to the

development of a wide range of econometric approaches, and a description of these can be

found in Jones (2011).

Much of the focus in comparisons of regression methods for the analysis of healthcare

cost data has centered on predictions of the conditional mean of the distribution, E(y|X)

(Deb and Burgess, 2003; Veazie et al., 2003; Basu et al., 2004; Buntin and Zaslavsky, 2004;

Gilleskie and Mroz, 2004; Manning et al., 2005; Basu et al., 2006; Hill and Miller, 2010;

Jones, 2011; Jones et al., 2013, 2014). Applied researchers commonly model cost data using

generalised linear models (GLMs) (Blough et al., 1999). This framework offers a relatively

simple way to incorporate non-linearities in the relationship between the conditional mean

and observed covariates. Furthermore, GLMs allow for heteroskedasticity through a choice

of a ‘distribution’ which specifies the conditional variance as a function of the conditional

mean. GLMs use pseudo-maximum likelihood estimation where the researcher is required

only to specify the form of the mean and the variance. Unlike maximum likelihood estima-

tion, where consistency requires that the whole likelihood function is correctly specified,

pseudo-maximum likelihood is consistent so long as the mean is correctly specified with the

choice of ‘distribution’ affecting the efficiency of estimates. Whilst the GLM framework

has attractive properties for researchers concerned only with E(y|X), there are important

limitations with this method. GLMs have been found to perform badly with heavy-tailed
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data (Manning and Mullahy, 2001), and they implicitly impose restrictions on the entire

distribution. For example, whatever distribution is adopted, the skewness must be directly

proportional to the coefficient of variation and the kurtosis is linearly related to the square

of the coefficient of variation (Holly, 2009). Whilst they may be well placed to estimate

E(y|X) and V ar(y|X), they cannot produce estimates of F (y|X) or P (y > k|X).

While the mean is an important feature of a distribution, which is essential when

the analysis is concerned with the expected total cost, it is generally not the only aspect

that is of interest to policymakers (Vanness and Mullahy, 2007). Analysis based solely on

the mean misses out potentially important information in other parts of the distribution

(Bitler et al., 2006). As a result, a growing literature in econometrics has developed

techniques to model the entire distribution, F (y|X), thus ‘going beyond the mean’ (Fortin

et al., 2011). In health economics there is a particular emphasis on identifying individuals

or characteristics of individuals that lead to very large costs and there is a demand for

empirical strategies to “target the high-end parameters of particular interest” including

tail probabilities, P (y > k) (Mullahy, 2009).

In this paper we conduct a quasi-Monte Carlo experiment to compare the fit of the

entire conditional distribution of healthcare costs using competing approaches proposed in

the economics literature. We therefore consider approaches which offer greater flexibility in

terms of their potential applications by estimating F (y|X), imposing fewer restrictions on

skewness and kurtosis and allowing for a greater range of estimated effects of a covariate.

We first consider developments in the use of flexible parametric distributions for mod-

elling healthcare costs (Manning et al., 2005; Jones et al., 2014), which have been applied

to healthcare costs principally in order to overcome the challenge posed by heavy-tailed

data. Unlike the GLM framework, these models impose a functional form for the entire

distribution with estimation by maximum likelihood. As a result, an estimate of f(y|X)

is produced, which can then be used to calculate E(y|X), V ar(y|X)1 and P (y > k|X) as

required. By using flexible distributions, the restrictions on skewness and kurtosis can be

relaxed somewhat (McDonald et al., 2013), which is likely to lead to a better fit of the full

distribution according to measures based on log-likelihood (Jones et al., 2014).

1Note that population moments may not be defined for all ranges of parameter estimates (Mullahy,
2009).
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A related development is the use of finite mixture models (FMM), which allow the dis-

tribution to be estimated as a weighted sum of distribution components (Deb and Trivedi,

1997; Deb and Burgess, 2003). These are also estimated using maximum likelihood, but

are often referred to as semi-parametric, since the number of components could, in princi-

ple, be increased to approximate any distribution. In this paper we group FMM with the

fully parametric distributions given the similarities to these approaches, especially since

we use a fixed number of components.

Other developments regarding the estimation of f(y|X) for healthcare costs are less

parametric, typically involving dividing the outcome variable into discrete intervals and

estimating parameters for each of these intervals. Gilleskie and Mroz (2004) propose using

a conditional density approximation estimator for healthcare costs to calculate E(y|X) and

other moments, with the density function approximated by a set discrete hazard rates. To

implement this, Jones et al. (2013) use an approach based on Han and Hausman (1990),

where F (y|X) is estimated by creating a categorical variable that denotes the cost interval

into which each observation falls, and running an ordered logit with this as the dependent

variable. This implementation is slightly different from what is proposed by Gilleskie and

Mroz (2004), but has the advantage of being conceived in order to fit F (y|X) and ties

into a related literature on semi-parametric estimators for conditional distributions (Han

and Hausman, 1990; Foresi and Peracchi, 1995; Chernozhukov et al., 2013). While the

ordered logit specification used in the Han and Hausman (1990) method allows for flexible

estimation of the thresholds in the latent scale, methods such as Foresi and Peracchi (1995)

instead estimate a series of separate logit models.

More recently, Chernozhukov et al. (2013) propose that a continuum of logits should

be estimated (one for each unique value of the outcome variable) to allow for an even

greater range of estimates for the effect of a covariate. In an application to Dutch health

expenditures, de Meijer et al. (2013) use the Chernozhukov et al. (2013) method to de-

compose changes in the distribution of health expenditures between two periods. The

authors find that the effect of covariates varies across the distribution of health expendi-

tures, which would have been missed if analysis had focused solely on the mean. They

also find that pharmaceutical costs are growing mainly at the top of the distribution due

to structural effects, whereas growth in hospital care costs is observed more in the mid-
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dle of the distribution and can be explained by changes in the observed determinants of

expenditure.

The methods described above seek to estimate the full distribution, by modelling

F (y|X) for different values of y (interval thresholds) and imposing varying degrees of

flexibility on the covariate effects for these. An alternative is to construct F (y|X) through

the inverse of the distribution function, the quantile function qτ (X).2 We consider two

methods which estimate a range of quantiles separately as functions of the covariates to

allow for flexibility as to the estimated effects of each regressor across the full range of

the distribution. The first was proposed by Machado and Mata (2005) and Melly (2005)

and uses a series of quantile regressions to estimate the full range of quantiles across

the distribution (hereafter MM method). Quantile regressions have been used where the

outcome variable was healthcare costs for analysing the varying effects of race at different

points of the distribution (Cook and Manning, 2009). However we were unable to find

any applications of the MM method to construct a complete estimate of F (y|X) with

healthcare costs as the outcome variable, although the applications in the original papers

were to wages, which share similar distributional characteristics. Quantile functions can

alternatively be estimated using recentred-influence-function (RIF) regression (Firpo et al.,

2009), where the outcome variable is first transformed according to the recentred-influence-

function and then regression used to model the effects of covariates.

This paper provides a systematic comparison of parametric and distributional meth-

ods3 for fitting the full distribution of healthcare costs using real data in a quasi-Monte

Carlo experiment. As such, it is novel in two ways: firstly, it provides a methodology

for comparing the distributional fit of models which are neither special cases nor esti-

mated using the same procedure, and secondly it is the first paper to compare competing

econometric approaches for modelling the distribution of healthcare costs. We find that

distributional methods demonstrate significant potential in modelling tail probabilities,

particularly with larger sample sizes where the variability of predictions is reduced. Para-

metric distributions such as log-normal, generalised gamma and generalised beta of the

second kind are found to estimate tail probabilities with high precision, but with varying

2τ ∈ (0, 1) denotes the quantile being considered.
3This term was used in Fortin et al. (2011).
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bias depending upon the cost threshold being considered.

The study design is described in the next section, followed by a detailed description

of the methods compared. We then discuss the results, and place these in the context

of related research, and remark upon some of the limitations of our study and possible

extensions for future work.

4.2 Methodology and Data

4.2.1 Overview

Rather than comparing competing approaches for estimating E(y|X), which is the

focus of most empirical work in this area (Mullahy, 2009), we assess performance in terms

of tail probabilities, P (y > k), for varying levels of k to assess the fit of the entire dis-

tribution, F (y|X). We compare a number of different regression methods, each with a

different number of estimated parameters. Since more complex methods may capture id-

iosyncratic characteristics of the data as well as the systematic relationships between the

dependent and explanatory variables, there is a concern that better fit will not necessarily

be replicated when the model is applied to new data (Bilger and Manning, 2014). To

guard against this affecting our results, we use a quasi-Monte Carlo design where mod-

els are fitted to a sample drawn from an ‘estimation’ set and performance is evaluated

on a ‘validation’ set. This means that methods are assessed when being applied to new

data.4 Each method is used to produce an estimate of the whole distribution F (y|X),

which can then be used to produce a counterfactual distribution given the covariates in

the ‘validation’ set. The counterfactual distribution could be constructed for certain X

values, such as patients aged over 65 years old, or female patients only. In this paper we

construct the counterfactual distribution for all X values. We evaluate performance based

on forecasting tail probabilities, P (y > k).5

4.2.2 Data

Our data comes from the English administrative dataset, Hospital Episode Statistics

4There are substantial precedents for using split-sample methods to evaluate different regression meth-
ods for healthcare costs, for example Duan et al. (1983); Manning et al. (1987).

5The values of k are not used in estimating the distribution F (y|X).
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(HES)6, for the financial year 2007-2008. We have excluded spells which were primarily

mental or maternity healthcare and all spells taking place within private sector hospitals.7

The remaining spells constitute the population of all inpatient episodes, outpatient visits

and A&E attendances that were completed within 2007-2008 for all patients who were

admitted to English NHS hospitals (where treatment was not primarily mental or mater-

nity healthcare). Spells are costed using tariffs from 2008-20098 by applying the relevant

tariff to the most expensive episode within the spell (where a spell can be thought of as a

discrete admission).9 Our analysis is undertaken at the patient level and so we sum the

costs in all spells for each patient to create the dependent variable, giving us 6,164,114

observations in total. The empirical density and cumulative distribution of the outcome

variable can be seen in Figure 4.1 and descriptive statistics are found in Table 4.1.10

N 6, 164, 114
Mean £2, 610
Median £1, 126
Standard deviation £5, 088
Skewness 13.03
Kurtosis 363.18
Minimum £217
Maximum £604, 701

% observations % of total costs

> £500 82.96% 97.20%
> £1, 000 55.89% 89.80%
> £2, 500 27.02% 72.35%
> £5, 000 13.83% 54.65%
> £7, 500 6.92% 38.67%
> £10, 000 4.09% 29.35%

Table 4.1: Descriptive statistics for hospital costs

In order to tie in with existing literature on comparisons of econometric methods for

healthcare costs, we use a set of morbidity characteristics which we keep constant for

6HES is maintained by the NHS Information Centre, now known as the Health and Social Care Infor-
mation Centre.

7This dataset was compiled as part of a wider project considering the allocation of NHS resources
for secondary care services. Since a lot of mental healthcare is undertaken in the community and with
specialist providers, and hence not recorded in HES, the data is incomplete. In addition, healthcare budgets
for this type of care are constructed using separate formulae. Maternity services are excluded since they
are unlikely to be heavily determined by ‘needs’ (morbidity) characteristics, and accordingly for the setting
of healthcare budgets are determined using alternative mechanisms.

8Reference costs for 2005-2006, which were the basis for the tariffs from 2008-2009, were used when
2008-2009 tariffs were unavailable.

9This follows standard practice for costing NHS activity.
10Costs above £10, 000 are excluded in these plots to make illustration clearer.
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Figure 4.1: Empirical density and cumulative distribution of healthcare costs

each regression method. In addition, we control for age and sex using an interacted,

cubic specification, which leaves us with a set of regressors similar to a simplified resource

allocation formula where health expenditures are modelled as a function of need (proxied

using detailed socio-demographic and morbidity information) (Dixon et al., 2011). In total

we use 24 morbidity markers, adapted from the ICD10 chapters (WHO, 2007), which are

coded as one if one or more spells occur with any diagnosis within the relevant subset of

ICD10 chapters (during the financial year 2007-2008) and zero otherwise.

To give some illustration of the features of the data conditional upon these covariates

we construct an index using these regressors and divide the data from the ‘estimation’ set

into five quantiles (quintiles) according to the value of the index.11 For each quintile we

display the empirical distribution of log-costs12 in Figure 4.2, and in particular pick out

those that exceed ln(£10, 000). It is clear from Figure 4.2 that the conditional distributions

of log-costs (and thus costs) vary dramatically by quintile of covariates in terms of their

shape, range and number of high cost patients, with 17% of observations with annual costs

greater than £10, 000 in the most morbid patients, compared to a population average of

4.09% (and 0.14% in the least morbid quintile). An analysis looking only at the mean of

each quintile would overlook these features of the data.

11This is constructed by regressing cost against the regressors using OLS and taking the predicted cost.
12A log-transformation is used to make the whole distribution easier to illustrate and P (y > k) =

P (ln(y) > ln(k)) since it is a monotonic transformation.
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Figure 4.2: Empirical distribution of log-costs for each of the 5 quintiles of the linear index
of covariates

We also carry out a similar analysis, this time using untransformed costs and dividing

the ‘estimation’ set into 10 quantiles (deciles) of the linear index of covariates, where we

plot the kurtosis of each decile against its skewness. Parametric distributions impose re-

strictions upon possible skewness and kurtosis: one-parameter distributions are restricted

to a single point (e.g. the normal distribution imposes a skewness of 0 and a kurtosis of 3),

two-parameter distributions allow for a locus of points to be estimated, and distributions

with three or more parameters allow for spaces of possible skewness and kurtosis combina-

tions. Figure 4.313 shows that the data is non-normal and provides motivation for flexible

methods, since they appear better able to model the higher moments of the conditional

distributions of the outcome variable analysed here.14 We do not represented the other

approaches used in this paper in this Figure, since the skewness and kurtosis space is not

defined for these approaches. This is because they discretise the distribution or estimate

several models, or both, and the effects on implied skewness and kurtosis is unclear.

13Key for abbreviations: GB2 – generalised beta of the second kind, SM – Singh-Maddala, B2 – beta of
the second kind, GG – generalised gamma, LN – log-normal, WEI – Weibull.

14A similar analysis can be found in Pentsak (2007). Note also that the lower bound of the Pearson
Type IV distribution, used in Holly and Pentsak (2006), is equal to the upper bound for the beta of the
second kind distribution (also known as Pearson Type VI).
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Figure 4.3: Kurtosis against skewness for each of the 10 deciles of the linear index of
covariates
Note: Taken from Jones et al. (2014) and adapted from McDonald et al. (2013). The dots shown on Figure 4.3

were generated as follows: the data were divided into ten subsets using the deciles of a simple linear predictor for

healthcare costs using the set of regressors used in this paper. Figure 4.3 plots the skewness and kurtosis coefficients

of actual healthcare costs for each of these subsets, the skewness and kurtosis coefficient of the full estimation sub-

population (represented by the larger circle with cross) and theoretically possible skewness-kurtosis spaces and loci

for parametric distributions considered in the literature.
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4.2.3 Quasi-Monte Carlo design

In order to fully exploit the large dataset at our disposal, before we undertake analysis

we randomly divide the 6,164,114 observations into two equally sized groups: an ‘estima-

tion’ set and a ‘validation’ set (each with 3,082,057 observations). Because researchers

using observational data from social surveys typically have fewer observations in their

datasets than are present in our ‘estimation’ set, we draw samples from within the ‘es-

timation’ set. On these samples we estimate the regressions that will later be evaluated

using the ‘validation’ set data. In total we randomly draw 300 samples with replacement:

100 samples of each size Ns (Ns ∈ 5,000; 10,000; 50,000), where samples with Ns =

5,000 or 10,000 may be thought of as having a similar number of observations as small

to moderately sized datasets (Basu and Manning, 2009). We estimate 14 methods using

the outcome and regressor data from each sample, where each method can be used to

construct a counterfactual distribution of costs F (y|X) (more details on each method are

found in the Empirical Models section).

Then using all 3,082,057 observations in the ‘validation’ set, we use the covariates from

the data (but not the outcome variable) to construct F (y|X) for each method. Depending

upon which method is being considered, we can either directly obtain P (y > k|X), which

we then integrate out over values of X to produce an estimate of P (y > k), or we can use

F (y|X), which we integrate out over values of X, to give F (y), to then estimate P (y > k).

This process could be carried out for a set of specific X values – for example patients

aged over 65 years old – or over all X values (as in this paper). Once the estimate of

P (y > k) is produced for the ‘validation’ set using either method, it can be compared

to the observed empirical proportion of costs in the data that exceeds the threshold k.15

In this paper we choose round values for k throughout the distribution of the outcome

variable (numbers in brackets correspond to % of population mean): k ∈ £500 (19%);

£1,000 (38%); £2,500 (96%); £5,000 (192%); £7,500 (287%); £10,000 (383%).16 Results

displayed look at performance across each replication for given method with a given sample

15It is worth noting that the practice of comparing observed versus empirical probabilities forms the
basis of the Andrews (1988) chi-square test, although this is designed for use with parametric methods
only, and as such is not implemented in this paper, where we are interested in the performance of both
parametric and semi-parametric approaches.

16Table 4.1 gives the proportion of observations in the population that exceed these thresholds.
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size. We construct a ratio of predicted P (y > k) to observed P (y > k) and look at the

average of these across all replications. In addition, we analyse the variability of these

ratios, for each method and a given sample size, using the average absolute deviation from

the average computed ratio, as well as their standard deviation and their range.

4.3 Empirical models

4.3.1 Overview

We compare, in total, the performance of 14 different estimators, which we divide into

two groups: parametric methods and distributional methods. In addition, we compare

results to a näıve estimate based purely on the sample, where the researcher is assumed

to forecast the same tail probability for the ‘validation’ set as observed in the ‘estima-

tion’ sample (without considering the observed covariates in either dataset). First we

describe each of the parametric distributions and provide its conditional probability den-

sity function – f(y|X) – the equation to calculate P (y > k|X), as well as the procedure

for integrating over X in order to produce an estimate of P (y > k). For the remaining

five methods, the procedure is more varied and complex, so we provide a detailed account

of the steps required to produce estimates of P (y > k) for all of these distributions. Table

4.2 provides a key for the abbreviations used for each method throughout the remainder

of the paper.

GB2 LOG generalised beta of the second kind (log link)
GB2 SQRT generalised beta of the second kind (

√
-link)

GG generalised gamma (log link)
GAMMA two-parameter gamma (log link)
LOGNORM log-normal (log link)
WEIB Weibull (log link)
EXP exponential (log link)
FMM LOG two-component finite mixture of gamma densities (log link)
FMM SQRT two-component finite mixture of gamma densities (

√
-link)

HH Han and Hausman
FP Foresi and Peracchi
CH Chernozhukov, Fernández-Val and Melly (linear probability model)
MM Machado and Mata – Melly (log-transformed outcome)
RIF recentered-influence-function regression (linear probability model)

Table 4.2: Key for method labels
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4.3.2 Parametric methods

All nine of the parametric approaches that we consider, including two variants of finite

mixture models17, are estimated by specifying the full conditional distribution of health-

care costs using between one and five parameters. While it is possible in principle to allow

shape parameters to vary with covariates, preliminary work showed that this produced

unreliable and uninterpretable results, so in all cases we only specify location parameters

as functions of covariates. This means that all models have only one parameter depend-

ing upon covariates, except FMM LOG and FMM SQRT which have scale parameters in

each component that are allowed to vary with covariates. All other parameters are esti-

mated as scalars. In Table 4.3 we give the conditional probability density function and

the conditional survival function for each model we compare.18

17These are elsewhere considered to be semi-parametric, since the number of components can vary, but
we fix the number of components as two, meaning that they are essentially parametric.

18Note that certain distributions’ notation could be simplified, the parameterisation is chosen to max-
imise the reader’s ability to see how distributions are related to one another.
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Table 4.3: Forms of density functions and survival functions for parametric distributions
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The generalised beta of the second kind19 is a four-parameter distribution that was

applied to modelling healthcare costs by Jones (2011) specifying the location parame-

ter as a linear function of covariates using software developed by Jenkins (2009). Jones

et al. (2014) estimated the distribution with a log link (GB2 LOG) making it more com-

parable with commonly used approaches. With this specification, for example, GG (as

proposed by Manning et al., 2005) becomes a limiting case of GB2 LOG. Jones et al.

(2013) also compared GB2 SQRT as well as GB2 LOG against a broad range of models,

finding that the GB2 SQRT performed particularly well in terms of accurately predicting

mean individual healthcare costs. GG has been compared more extensively in terms of

predicting mean healthcare costs, having been found to out-perform a GLM log link with

gamma-distribution in the presence of heavy tails using simulated data (Manning et al.,

2005), and a number of models within the GLM framework when a log link is appropriate

using American survey data; the Medical Expenditures Panel Survey (Hill and Miller,

2010). GB2 LOG, GG and LOGNORM are compared in Jones et al. (2014), with some

indication that GB2 LOG better fits the entire distribution with lower AIC and BIC, al-

though LOGNORM better predicts tail probabilities associated with the majority of high

costs considered. We also consider further special cases of GG (and GB2 LOG) with two

parameters (GAMMA and WEIB) and with one parameter (EXP).20

Finite mixture models have been used in health economics in order to allow for het-

erogeneity both in response to observed covariates and in terms of unobserved latent

classes (Deb and Trivedi, 1997). Heterogeneity is modelled through a number of com-

ponents, denoted C, each of which can take a different specification of covariates (and

shape parameters, where specified), written as fj(y|X), with an associated parameter for

the probability of belonging to each component, πj . The general form of the probability

density function of finite mixture models is given as:

f(y|X) =
C∑
j

πjfj(y|X) (4.1)

19Also known as generalised-F, see Cox (2008).
20The parametric distributions chosen are the set of distributions that are typically used in health

economics. There are many other candidate distributions, for example Walls (2005) uses the skew-normal
distribution to model film returns (which should exhibit empirically similar distributions).

142



We use two gamma-distributed components in our comparison.21 In one of the models

used, we allow for log links in both components (FMM LOG), and in the other we allow

for a square root link in both components (FMM SQRT). In both, the probability of

class membership is treated as constant for all individuals. Unlike the other parametric

methods, this approach can allow for a multi-modal distribution of costs. In this way, finite

mixture models represent a flexible extension of parametric models (Deb and Burgess,

2003). Using increasing numbers of components, it is theoretically possible to fit any

distribution, although in practice researchers tend to use few components (two or three)

and achieve good approximation to the distribution of interest (Heckman, 2001).

Once we have obtained estimates of location parameters (all βs for each regressor)

and shape parameters for each distribution, these are stored in memory and then used

to generate estimates of P (y > k|X), where values for X are the observed covariates in

the ‘validation’ set. These estimated conditional tail probabilities will vary across each

possible combination of X, and hence for any given individual i, and so we take the average

in order to ‘integrate out’ these to provide us with a single estimate of P (y > k) for each

method and replication, which can be compared to the proportion of costs empirically

observed to exceed k. We then take the average across all replications of P (y > k) for

each method in order to assess bias and analyse the variability across replications as an

indicator of precision.

4.3.3 Distributional methods

4.3.4 Methods using the cumulative distribution function

Of the remaining five methods that we compare, three involve estimation of the con-

ditional distribution function and two operate through the quantile function. First we

consider the methods which estimate the conditional distribution function F (y|X). Han

and Hausman (1990) adopts a proportional hazards specification, where the baseline haz-

ard is allowed to vary non-parametrically across a number, denoted DHH , of intervals

of a discretised continuous outcome variable. The logarithm of the integrated baseline

21Preliminary work showed that models with a greater number of components lead to problems with
convergence in estimation. Empirical studies such as Deb and Trivedi (1997) provide support for the two
components specification for healthcare use.
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hazard for each of the DHH − 1 intervals (one is arbitrarily omitted for estimation) is

estimated as a constant δDHH . The effects of covariates are estimated using a particular

functional form, which is typically linear. This approach is similar to the semi-parametric

Cox proportional hazard model (Cox, 1972), but differs in that the baseline hazard is not

regarded as a nuisance parameter and is better suited to data with many ties of the out-

come variable (or in the case of a discrete outcome). In order to implement this method,

we construct a categorical variable for each observation, indicating the interval into which

the value of the outcome variable falls. This is then used as the dependent variable in

an ordered logit regression on the covariates. The cut-points are estimates of the baseline

hazard within each interval δDHH . The authors argue that given a large sample size, finer

intervals should improve the efficiency of the estimator, without providing guidance on a

specific number of intervals to be used. As a result we carried out preliminary work to

establish the largest number of intervals that could be used for each sample size whilst

maintaining good convergence performance,22 which resulted in a maximum of 33 intervals

for sample sizes 5,000 and 10,000, and 36 intervals for a sample size of 50,000.

Foresi and Peracchi’s (1995) method is similar to Han and Hausman’s (1990) in that

it divides the data into a set of discrete intervals. Rather than using an ordered logit

specification, Foresi and Peracchi (1995) estimate a series of logit regressions. For each

upper boundary of the DFP − 1 intervals (the highest value interval is excluded), an

indicator variable is created which is equal to one if the observation’s observed cost is

less than or equal to the upper boundary, and zero otherwise. These are then used as

dependent variables in DFP − 1 logit regressions each using the full set of regressors. In

their application to excess returns in their paper they use zero, as well as the 10th, 15th,

20th, ... , 80th, 85th and 90th percentiles as boundaries. While we do not have information

on patients with zero costs in our dataset, we base our intervals on their specification of

the dependent variables by using the 5th, 10th, 15th, ... , 85th, 90th and 95th percentiles

(vigiciles).

The third approach that we compare is an extension of Foresi and Peracchi (1995) and

is described in Chernozhukov et al. (2013). The crucial difference between the methods

is that Chernozhukov et al. (2013) argue that a logit regression should be used for each

22This was taken to mean that the model converges at least 95 times out of the 100 samples.
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unique value of the outcome variable. A continuum of indicator variables needs to be

generated and then regression models are used to construct the conditional distribution

functions for each value. Given the computational demand of this approach, and lack

of variation in the indicator variables at low and high costs, de Meijer et al. (2013) use

linear probability models in place of logit regressions. We also adopt this approach in our

comparison, since preliminary work showed that, where it was possible to estimate both

logit and linear probability models, there was little difference between the methods.

All of these methods are similar in that they can produce estimates of P (y > k∗|X),

where k∗ represents one of the boundaries of the intervals generated using either Han and

Hausman (1990) or Foresi and Peracchi (1995), or any cost value observed in the sample

when implementing Chernozhukov et al. (2013). Since models are estimated without

knowing what thresholds (k) the policymaker might be interested in, it is not always the

case that k∗ = k. Therefore, for all three methods described above, we use a weighted

average of P (y > k∗|X) for the nearest two values of k∗ to k when k∗ 6= k. Our weight is

based on a simple linear interpolation:

P (y > k|X) = P (y > k∗a|X) +

(
k − k∗a
k∗
b
− k∗a

)(
P (y > k∗b |X)− P (y > k∗a|X)

)
(4.2)

where k∗a and k∗b represent the thresholds analysed in estimation closest below and closest

above k, respectively.23

Since we end up with an estimate for each observation of P (y > k|X), we carry out

the same procedure as with the parametric distributions. This means that we take the

average of P (y > k|X), thus ‘integrating out’ over all possible combinations of X and

giving us an estimate of P (y > k) to be compared against the empirical proportion.

4.3.5 Methods using the quantile function

Machado and Mata (2005) propose a method for constructing a counterfactual distri-

bution based on a series of quantile regressions using the logged outcome variable. They

suggest that a quantile (τ) is chosen at random by drawing from a uniform probability

23This should work well when there are a large number of k∗ spaced throughout the distribution. When
interested in high values of k this linear interpolation may be inappropriate if there are few high values of
k∗, given the often large distances between a high cost and the next highest observed cost.
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distribution between zero and one. After running the quantile regression for the drawn

value, the set of estimated coefficients is used to predict the quantile given the covariate

values observed for a randomly selected observation. The authors repeat this process 4500

times with replacement, generating a full counterfactual distribution. The theoretical mo-

tivation for this procedure is that each predicted quantile based on qτ (X) represents a

draw from the conditional distribution of healthcare costs (f(y|X)). Therefore drawing a

random observation and forecasting qτ enough times with random τ effectively integrates

out X. Running such a large number of quantile regressions is computationally expensive,

and so Melly (2005) suggest running a regression for a fixed number of quantiles spread

over the full range of the distribution, e.g. for each percentile, rather than drawing a quan-

tile at random. We use the Melly (2005) approach for the MM method, running quantile

regressions for each percentile on the ‘estimation’ set, after log-transforming the outcome

variable, and randomly choosing one of these quantiles to forecast for each observation

in the ‘validation’ set.24 Once this has been done, the forecasted values represent the

counterfactual distribution of healthcare costs belonging to the ‘validation’ set. Therefore

to produce an estimate of P (y > k) we observe the proportion of the observations in the

counterfactual distribution that exceed k.

Another method to estimate quantiles of the distribution is developed by Firpo et al.

(2009), which employs recentred-influence-function regressions. For a given observed quan-

tile (qτ ), a recentred-influence-function (RIF) is generated, which can take one of two val-

ues depending upon whether or not the observation’s value of the outcome variable is less

than or equal to the observed quantile:

RIF (y; qτ ) = qτ +
τ − 1 [y ≤ qτ ]

fy (qτ )
(4.3)

Here, qτ is the observed sample (τ) quantile, 1 [y ≤ qτ ] is an indicator variable which

takes the value one if the observation’s value of the outcome variable is less than or equal

to the observed quantile and zero otherwise, and fy (qτ ) is the estimated kernel density

of the distribution of the outcome variable at the value of the observed quantile. The

recentred-influence-function is then used as the dependent variable in an OLS regression

24The prediction is exponentiated to achieve the quantile of the distribution of the levels of healthcare
costs.
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on the chosen covariates, which effectively constitutes a rescaled linear probability model.

These estimated coefficients can then be used to predict the quantile being analysed for

a given observation’s covariates. Following the same thought process as MM, predictions

based on qτ (X) represent a draw from f(y|X). This means that we can use the estimated

quantile functions to predict a counterfactual distribution in the same way for the RIF

method as we do for the MM method.25

4.4 Results

When analysing the performance of the methods, we calculate a ratio of the estimated

P (y > k) to the actual proportion of costs in the ‘validation’ set observed to exceed the

threshold value k (see Table 4.4). Using a ratio allows for greater comparability when

looking at performance at different thresholds. We will look at the average ratio across

replications (with methods estimated on different samples drawn from the ‘estimation’

set26) as well as the variability of the ratios. The former indicates the bias associated

with each method at a given k, while the latter indicates precision of the method. First

we will look at results across methods for a given sample size and threshold cost value:

Ns = 5, 000 and k = £10, 000.27 Second we consider performance for a given sample size,

with a range of values for the threshold cost value, since different methods may be better

at fitting different parts of the distribution of healthcare costs: Ns = 5, 000 and (k ∈ £500;

£1,000; £2,500; £5,000; £7,500; £10,000). Lastly performance at different sample sizes is

evaluated at a given threshold cost value: (Ns ∈ 5,000; 10,000; 50,000) and k = £10, 000.

In Figure 4.4 we present the performance of the 14 methods in predicting the prob-

ability of a cost exceeding £10,000 in the validation set, when samples with Ns = 5, 000

observations are used. The bars indicate the ratio of estimated to actual probability, and

the capped spikes indicate the range of ratios across all of the replications. A ratio of one

represents a perfect fit, i.e. the method correctly predicted that 4.10% of observations

25We calculate the recentred-influence-function using the level of costs and so no re-transformation is
required unlike when using MM.

26Three samples were discarded when Ns = 5, 000, due to being unable to form the categorical variable
for HH. Only one sample was discarded when Ns = 10, 000 and Ns = 50, 000.

27We choose these values of Ns and k since they are the smallest and most challenging sample size and
the largest and most economically interesting threshold value, respectively.
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k % observations in ‘validation’ set > k

£500 82.93%
£1, 000 55.89%
£2, 500 27.04%
£5, 000 13.84%
£7, 500 6.94%
£10, 000 4.10%

Table 4.4: Actual empirical proportion of observations greater than k in the ‘validation’
set
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Figure 4.4: Performance of methods predicting the probability of a cost exceeding £10,000
at sample size 5,000

would exceed £10,000.

From Figure 4.4, it is clear that performance of the methods varies both in terms of

bias (the point – the average ratio) and precision (the variability of ratios as depicted by

the capped spikes showing the range). There is no clear pattern in terms of parametric

versus distributional methods, since in both groups there are methods where the average

ratio is seen to be near the desired value of one, as well as methods in both groups where

the range of computed ratios does not contain one. In terms of bias, the best method

is CH with an average ratio of almost exactly one. It appears that this is not the most

precise method for k = £10, 000, however, with a range of ratios: 0.82 − 1.14, that is

the fifth largest of all methods compared (the largest belongs to FMM SQRT). To more
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clearly represent the tradeoff between bias and precision, see Table 4.5, which gives the

rankings of each method in terms of bias (absolute value of one minus the average ratio),

the range of ratios and also the standard deviation of ratios.

Method Bias Range Standard deviation

GB2 LOG 5th 6th 6th
GB2 SQRT 12th 5th 3rd

GG 9th 4th 2nd
GAMMA 4th 11th 11th
LOGNORM 11th 1st 1st
WEIB 7th 12th 12th
EXP 10th 9th 8th

FMM LOG 3rd 13th 14th
FMM SQRT 8th 14th 13th

HH 6th 7th 9th
FP 13th 3rd 4th
CH 1st 10th 10th

MM 2nd 2nd 5th
RIF 14th 8th 7th

NAÏVE 2nd 11th 13th

Table 4.5: Rankings of methods based on threshold of £10,000 at sample size 5,000

From Table 4.5 it can be seen that three of the parametric distributions – GB2 SQRT,

GG and LOGNORM – demonstrate significant potential in terms of the variability of

their predictions as the three methods with the lowest standard deviations of ratios. MM

performs consistently well across all three measures of performance, especially when vari-

ability is measured by the range of ratios, although the standard deviation is still among

the five lowest of methods compared. From these results it is unclear which method is the

best for forecasting costs greater than £10,000, since there is no outright winner over the

three metrics. Some methods actually perform worse than the näıve sample-based method

across all three metrics, namely FMM LOG and FMM SQRT (with WEIB and GAMMA

worse on two of three metrics).

Whilst the results outlined previously give some indication of the methods’ respective

abilities to forecast high costs, we are interested in the performance of the regression

methods at all points in the distribution. For this reason we carry out a similar analysis

across a range of cost threshold values. To present these results, once again we plot the

average ratio and the range of ratios across the replications. The results presented in
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Figure 4.5 are undertaken using samples with 5,000 observations.
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There is a clear pattern in Figure 4.5: the higher the cost threshold being considered,

the greater the variability in ratio of estimated to actual probability. Besides this, the way

in which performance varies across different thresholds, including by how much variability

increases with higher thresholds, is different for all methods.

Beginning with the parametric distributions, with log links, there seems to be little

difference in the performance of GB2 LOG and GG, except for that GB2 LOG performs

slightly better at the higher costs considered in terms of bias. Looking at the gamma-type

models, LOGNORM demonstrates potential in terms of producing precise estimates of tail

probabilities if not in terms of bias. Since FMM LOG represents a two-component version

of GAMMA, comparing the performance of these methods provides some insight into the

returns from using more complex mixture specifications. The pattern of performance at

different thresholds is quite similar for these, and the main difference seems to be that

FMM LOG produces more variable estimates, especially at low cost thresholds. WEIB

and EXP seem to perform similarly, with high variability forecasts. It is interesting to

note that the square-root link methods differ from their log link counterparts, particularly

in terms of having worse high cost forecasts.

There is considerable variation in performance between the distributional methods.

The methods that use the cumulative distribution function seem to vary predominantly

according to the number of intervals that are used, rather than the specification for pre-

dicting interval membership. CH is practically unbiased for all cost thresholds, illustrating

the strength of this method in forecasting P (y > k) for a range of values of k. As pointed

out earlier, however, the variability of the forecasts across replications is wider than the

majority of other methods considered in this paper. It seems therefore that much of the

bias in HH and FP stems from when k∗a and k∗b are not close to the value of k being

investigated. This is more likely to be the case with FP than with HH, since FP has fewer

intervals (and is highly unlikely using CH – in our application). This is particularly clear

with k = £10, 000, since with HH and FP in this case k∗b will often be the highest observed

cost in the sample. When this occurs, the linear interpolation that we employ is likely to

lead to an overestimation of the forecasted probability (see equation 4.2 for details). For

these three methods the variability of ratios is roughly similar, but when looking also at

the methods using the quantile function, it is clear that MM offers an improvement upon
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Figure 4.6: Performance of methods predicting the probability of a cost exceeding £10,000
at different sample sizes

the variability. Its performance, however, in terms of bias varies across values of k. RIF

seems to perform badly both in terms of bias and precision.

Finally, we look into how our analysis is affected by the number of observations that

are present in the drawn samples. To do this, we return to the style of graph used for

Figure 4.4, but illustrate performances for the three sample sizes analysed (Ns ∈ 5,000;

10,000; 50,000). The results are therefore only for one value of k, but results at other

values followed a similar pattern.

From Figure 4.6 we can see that there is a clear effect of sample size on the performance

of the regression methods fitting the whole distribution. Having more observations does

not particularly affect the bias of each method, but, as expected, it reduces the variability

of the estimates. This therefore means that methods such as CH perform relatively bet-

ter at bigger sample sizes since they remain unbiased, but forecast costs with increased
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precision.

4.5 Discussion

The results of this paper are the first to provide a comparative assessment of paramet-

ric and distributional methods designed to estimate a counterfactual distribution. This

makes them different to most studies concerning econometric modelling of healthcare costs

where performance has largely been judged on the basis of the ability to predict condi-

tional means. Jones et al. (2014) compare parametric distributions (but not distributional

methods) against one another for predicting tail probabilities as well as in-sample fit of the

whole distribution based on log-likelihood statistics. The analysis presented here builds

on this work with a range of thresholds for tail probabilities as well as a broader range

of parametric distributions including mixture distributions and models with a square-root

link as well as those with a log link.

As mentioned in the methodology section of the paper, some of these methods have

been automated in order to make the quasi-Monte Carlo study design feasible. For in-

stance, we only allow location parameters to vary with covariates and we restrict the

number of mixtures used in FMM LOG and FMM SQRT. In practice, analysts are likely

to train their model for a given sample – testing the appropriateness of covariates in the

specification as well as the number of mixtures that are required etc. Since all methods

have been restricted to some degree, e.g. the regressors are the same for all methods, the

results of this paper give some indication of the relative performance of these methods and

illustrate their pitfalls and strengths.

For our application, CH demonstrates potential even for forecasting probabilities of

high costs – such as costs that exceed £10,000. A function of the methodology is that

CH (as well as HH and FP) is unable to extrapolate beyond the observed sample, and

so in applications where sample size is small, or if the decision-maker is interested in the

probability of extremely high costs beyond the largest observed, this method would be

unable to provide any information on this parameter. This represents a limitation for this

type of method for fitting the distribution of healthcare costs, where the underlying data

generating process is heavy-tailed, and any observed sample is unlikely to contain some
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of the potential extreme outcomes. This could be overcome by applying some smoothing

techniques and moving beyond the non-smooth methodology adopted in this paper.

There is considerable variation in the best performing parametric distributions accord-

ing to the specific tail probability being considered. When considering costs that exceed

£10,000, FMM LOG is the least biased parametric method, but is the most imprecise of

all methods considered. At other thresholds, the distribution with the best fit on average

varies: for example WEIB performs best among parametric distributions for costs that

exceed £7,500. This means that the preferred parametric distribution would depend upon

the decision-maker’s loss function. Some distributions are particularly imprecise at all

tails investigated, notably the mixture models – FMM LOG and FMM SQRT – as well

as some of the more restrictive distributions – GAMMA, WEIB and EXP. LOGNORM is

the most precise and thus demonstrates its potential for modelling the whole distribution

of costs. Whilst other papers have focused on the importance of the link function, which

seems to have a large impact on performance when it comes to predicting mean healthcare

costs (see for example Basu et al., 2006), this paper finds that when we are concerned with

predicting tail probabilities the link function is less of an issue than are the distributional

assumptions more generally.

The distributional methods show promise for modelling the full distribution of health-

care costs. In particular, CH is practically unbiased in terms of all forecasted tail prob-

abilities considered. The related methods of FP and HH also perform well in terms of

bias, but not when considering costs that exceed £10,000, because £10,000 is likely to fall

in the highest quantile of costs in either method. CH is better placed to model this tail

probability, since each unique value of costs that is encountered in the sample is used as

the basis for an indicator variable for a separate regression, and using a linear probabil-

ity model does not require variation across all covariates for each value of the dependent

variable. At the smallest sample size of 5,000 observations, these three methods exhibit

highly imprecise forecasted probabilities, but this becomes less of an issue at larger sample

sizes where the variability is lower for all 14 methods. MM delivers better precision, but

its performance on average varies across the different tail probabilities. RIF appears to be

the worst among the distributional methods for this dataset and specification.28

28Our results are in line with results from a simulation comparing quantile and distribution regression
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methods conducted in supplemental material of Chernozhukov et al. (2013), which show that quantile
regression methods perform worse when there is a non-continuous outcome variable such as ours (given
the observed number of mass-points).
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4.6 Appendix A

We use the variables shown in Table 4A1 to construct our regression models. They are

based on the ICD10 chapters, which are given in Table 4A2.

Variable name Variable description
epiA Intestinal infectious diseases, Tuberculosis, Certain zoonotic bacterial diseases, Other bacterial diseases, In-

fections with a predominantly sexual mode of transmission, Other spirochaetal diseases, Other diseases caused
by chlamydiae, Rickettsioses, Viral infections of the central nervous system, Arthropod-borne viral fevers and
viral haemorrhagic fevers

epiB Viral infections characterized by skin and mucous membrane lesions, Viral hepatitis, HIV disease, Other viral
diseases, Mycoses, Protozoal diseases, Helminthiases, Pediculosis, acaiasis and other infestations, Sequelae of
infectious and parasitic diseases, Bacterial, viral and other infectious agents, Other infectious diseases

epiC Malignant neoplasms
epiD In situ neoplasms, Benign neoplasms, Neoplasms of uncertain or unknown behaviour and III
epiE IV
epiF V
epiG VI
epiH VII and VIII
epiI IX
epiJ X
epiK XI
epiL XII
epiM XIII
epiN XIV
epiOP XV and XVI
epiQ XVII
epiR XVIII
epiS Injuries to the head, Injuries to the neck, Injuries to the thorax, Injuries to the abdomen, lower back, lumbar

spine and pelvis, Injuries to the shoulder and upper arm, Injuries to the elbow and forearm, Injuries to the
wrist and hand, Injuries to the hip and thigh, Injuries to the knee and lower leg, Injuries to the ankle and
foot

epiT Injuries involving multiple body regions, Injuries to unspecified part of trunk, limb or body region, Effects of
foreign body entering through natural orifice, Burns and Corrosions, Frostbite, Poisoning by drugs, medica-
ments and biological substances, Toxic effects of substances chiefly nonmedicinal as to source, Other and
unspecified effects of external causes, Certain early complications of trauma, Comlications of surgical and
medical care, not elsewhere classified, Sequelae of injuries, of poisoning and of other consequences of external
causes

epiU XXII
epiV Transport accidents
epiW Falls, Exposure to inanimate mechanical forces, Exposure to animate mechanical forces, Accidental drowning

and submersion, Other accidental threats to breathing, Exposure to electric current, radiation and extreme
ambient air temperature and pressure

epiX Exposure to smoke, fire and flames, Contact with heat and hot substances, Contact with venomous ani-
mals and plants, Exposure to forces of nature, Accidental poisoning by and exposure to noxious substances,
Overexertion, travel and privation, Accidental exposure to other and unspecified factors, Intentional self-
harm, Assault by drugs, medicaments and biological substances, Assault by corrosive substance, Assault by
pesticides, Assault by gases and vapours, Assault by other specified chemicals and noxious substances, Assault
by unspecified chemical or noxious substance, Assault by hanging, strangulation and suffocation, Assault by
drowning and submersion, Assault by handgun discharge, Assault by rifle, shotgun and larger firearm dis-
charge, Assault by other and unspecified firearm discharge, Assault by explosive material, Assault by smoke,
fire and flames, Assault by steam, hot vapours and hot objects, Assault by sharp object

epiY Assault by blunt object, Assault by pushing from high place, Assault by pushing or placing victim before
moving object, Assault by crashing of motor vehicle, Assault by bodily force, Sexual assault by bodily force,
Neglect and abandonment, Other maltreatment syndromes, Assault by other specified means, Assault by
unspecified means, Event of undetermined intent, Legal intervention and operations of war, Complications
of medical and surgical care, Sequelae of external causes of morbidity and mortality, Supplementary factors
related to causes of morbidity and mortality classified else

epiZ XXI

Table 4A1: Classification of morbidity characteristics

ICD10 codes beginning with U were dropped because there were no observations in the

6,164,114 used. Only a small number (3,170) were found of those beginning with P and

so these were combined with those beginning with O - owing to the clinical similarities.
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Chapter Blocks Title
I A00-B99 Certain infectious and parasitic diseases
II C00-D48 Neoplasms
III D50-D89 Diseases of the blood and blood-forming organs and certain disorders

involving the immune mechanism
IV E00-E90 Endocrine, nutritional and metabolic diseases
V F00-F99 Mental and behavioural disorders
VI G00-G99 Diseases of the nervous system
VII H00-H59 Diseases of the eye and adnexa
VIII H60-H95 Diseases of the ear and mastoid process
IX I00-I99 Diseases of the circulatory system
X J00-J99 Diseases of the respiratory system
XI K00-K93 Diseases of the digestive system
XII L00-L99 Diseases of the skin and subcutaneous tissue
XIII M00-M99 Diseases of the musculoskeletal system and connective tissue
XIV N00-N99 Diseases of the genitourinary system
XV O00-O99 Pregnancy, childbirth and the puerperium
XVI P00-P96 Certain conditions originating in the perinatal period
XVII Q00-Q99 Congenital malformations, deformations and chromosomal abnormali-

ties
XVIII R00-R99 Symptoms, signs and abnormal clinical and laboratory findings, not

elsewhere classified
XIX S00-T98 Injury, poisoning and certain other consequences of external causes
XX V01-Y98 External causes of morbidity and mortality
XXI Z00-Z99 Factors influencing health status and contact with health services
XXII U00-U99 Codes for special purposes

Table 4A2: ICD10 chapter codes

161



4.7 Appendix B

Cost threshold (£k)

Method 500 1000 2500 5000 7500 10000

GB2 LOG 1.045 1.076 0.927 0.759 0.859 0.950
GB2 SQRT 1.038 1.095 0.969 0.753 0.789 0.809
GG 1.044 1.082 0.935 0.745 0.821 0.887
GAMMA 1.004 1.138 1.089 0.868 0.950 1.022
LOGNORM 1.032 1.103 0.970 0.754 0.814 0.866
WEIB 0.955 1.091 1.101 0.911 1.011 1.097
EXP 0.899 1.018 1.061 0.913 1.028 1.125
FMM LOG 1.030 1.058 0.995 0.844 0.927 0.984
FMM SQRT 1.024 1.074 1.013 0.842 0.892 0.898
HH 1.006 1.018 1.003 0.977 1.021 1.078
FP 1.000 0.999 1.007 0.990 1.084 1.209
CH 0.999 0.999 0.999 0.999 0.998 0.999
MM 1.043 1.011 0.929 0.806 0.920 1.013
RIF 0.836 0.751 0.800 0.860 1.078 1.223

Table 4B1: Mean ratios of predicted to actual survival probabilities, sample size 5,000

Cost threshold (£k)

Method 500 1000 2500 5000 7500 10000

GB2 LOG 0.016 0.048 0.081 0.104 0.161 0.232
GB2 SQRT 0.017 0.040 0.080 0.113 0.174 0.229
GG 0.017 0.044 0.080 0.108 0.156 0.206
GAMMA 0.025 0.039 0.135 0.153 0.245 0.342
LOGNORM 0.019 0.034 0.089 0.109 0.140 0.169
WEIB 0.037 0.042 0.113 0.156 0.255 0.371
EXP 0.028 0.060 0.121 0.137 0.204 0.295
FMM LOG 0.072 0.073 0.163 0.198 0.279 0.407
FMM SQRT 0.065 0.110 0.191 0.242 0.318 0.431
HH 0.032 0.051 0.094 0.144 0.231 0.254
FP 0.026 0.054 0.082 0.163 0.219 0.195
CH 0.030 0.050 0.103 0.140 0.220 0.312
MM 0.041 0.073 0.100 0.119 0.144 0.184
RIF 0.060 0.061 0.095 0.131 0.184 0.275

Table 4B2: Range of ratios of predicted to actual survival probabilities, sample size 5,000
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Cost threshold (£k)

Method 500 1000 2500 5000 7500 10000

GB2 LOG 0.003 0.008 0.015 0.021 0.034 0.047
GB2 SQRT 0.003 0.007 0.015 0.021 0.031 0.041
GG 0.003 0.008 0.015 0.021 0.031 0.040
GAMMA 0.005 0.008 0.027 0.034 0.047 0.061
LOGNORM 0.003 0.007 0.016 0.021 0.030 0.039
WEIB 0.009 0.009 0.022 0.034 0.049 0.065
EXP 0.006 0.012 0.024 0.029 0.040 0.053
FMM LOG 0.016 0.016 0.029 0.042 0.071 0.095
FMM SQRT 0.018 0.020 0.035 0.036 0.056 0.089
HH 0.007 0.010 0.021 0.029 0.049 0.057
FP 0.005 0.011 0.017 0.035 0.045 0.045
CH 0.006 0.011 0.019 0.030 0.042 0.060
MM 0.006 0.012 0.019 0.024 0.034 0.045
RIF 0.012 0.014 0.022 0.028 0.040 0.053

Table 4B3: Standard deviation of ratios of predicted to actual survival probabilities, sam-
ple size 5,000

Cost threshold (£k)

Method 500 1000 2500 5000 7500 10000

GB2 LOG 1.045 1.077 0.928 0.759 0.859 0.950
GB2 SQRT 1.037 1.095 0.970 0.753 0.789 0.808
GG 1.043 1.083 0.936 0.745 0.820 0.885
GAMMA 1.004 1.138 1.092 0.871 0.954 1.026
LOGNORM 1.032 1.103 0.971 0.755 0.814 0.867
WEIB 0.953 1.088 1.102 0.914 1.015 1.101
EXP 0.900 1.019 1.063 0.916 1.031 1.128
FMM LOG 1.034 1.055 0.988 0.845 0.931 0.989
FMM SQRT 1.028 1.076 1.002 0.835 0.890 0.901
HH 1.006 1.018 1.001 0.978 1.020 1.083
FP 0.999 0.999 1.004 0.988 1.083 1.209
CH 0.999 0.999 0.999 1.000 0.997 1.002
MM 1.043 1.010 0.929 0.804 0.915 1.007
RIF 0.836 0.747 0.800 0.862 1.080 1.222

Table 4B4: Mean ratios of predicted to actual survival probabilities, sample size 10,000
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Cost threshold (£k)

Method 500 1000 2500 5000 7500 10000

GB2 LOG 0.012 0.031 0.059 0.075 0.111 0.144
GB2 SQRT 0.010 0.028 0.058 0.070 0.093 0.126
GG 0.011 0.026 0.055 0.081 0.122 0.159
GAMMA 0.019 0.027 0.077 0.105 0.166 0.224
LOGNORM 0.011 0.029 0.062 0.075 0.107 0.135
WEIB 0.036 0.039 0.068 0.101 0.166 0.233
EXP 0.016 0.034 0.070 0.088 0.140 0.195
FMM LOG 0.054 0.050 0.126 0.149 0.265 0.363
FMM SQRT 0.073 0.096 0.112 0.135 0.213 0.321
HH 0.022 0.038 0.073 0.102 0.161 0.191
FP 0.020 0.036 0.060 0.125 0.145 0.144
CH 0.020 0.035 0.064 0.094 0.138 0.238
MM 0.019 0.052 0.076 0.074 0.100 0.136
RIF 0.043 0.062 0.104 0.103 0.158 0.225

Table 4B5: Range of ratios of predicted to actual survival probabilities, sample size 10,000

Cost threshold (£k)

Method 500 1000 2500 5000 7500 10000

GB2 LOG 0.002 0.006 0.011 0.014 0.022 0.030
GB2 SQRT 0.002 0.005 0.011 0.015 0.021 0.027
GG 0.002 0.005 0.010 0.014 0.022 0.029
GAMMA 0.004 0.006 0.017 0.023 0.033 0.044
LOGNORM 0.002 0.005 0.011 0.014 0.021 0.027
WEIB 0.006 0.007 0.014 0.023 0.035 0.047
EXP 0.004 0.008 0.016 0.020 0.028 0.038
FMM LOG 0.013 0.010 0.021 0.027 0.050 0.069
FMM SQRT 0.013 0.015 0.020 0.024 0.042 0.064
HH 0.005 0.007 0.015 0.022 0.035 0.042
FP 0.004 0.008 0.011 0.026 0.032 0.028
CH 0.004 0.008 0.012 0.021 0.032 0.046
MM 0.004 0.009 0.015 0.015 0.021 0.030
RIF 0.009 0.012 0.017 0.020 0.032 0.043

Table 4B6: Standard deviation of ratios of predicted to actual survival probabilities, sam-
ple size 10,000
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Cost threshold (£k)

Method 500 1000 2500 5000 7500 10000

GB2 LOG 1.045 1.078 0.928 0.758 0.857 0.945
GB2 SQRT 1.037 1.096 0.970 0.753 0.787 0.806
GG 1.043 1.084 0.937 0.744 0.817 0.879
GAMMA 1.004 1.139 1.092 0.871 0.954 1.025
LOGNORM 1.032 1.103 0.971 0.754 0.813 0.864
WEIB 0.951 1.086 1.101 0.914 1.015 1.102
EXP 0.900 1.020 1.063 0.915 1.031 1.128
FMM LOG 1.038 1.053 0.981 0.845 0.935 0.997
FMM SQRT 1.033 1.079 0.996 0.828 0.885 0.899
HH 1.004 1.017 0.998 0.984 1.011 1.072
FP 0.999 1.001 1.004 0.985 1.076 1.211
CH 1.000 1.000 0.999 0.999 0.994 0.995
MM 1.043 1.010 0.929 0.803 0.908 0.997
RIF 0.834 0.745 0.803 0.861 1.072 1.204

Table 4B7: Mean ratios of predicted to actual survival probabilities, sample size 50,000

Cost threshold (£k)

Method 500 1000 2500 5000 7500 10000

GB2 LOG 0.006 0.013 0.029 0.034 0.055 0.075
GB2 SQRT 0.006 0.011 0.030 0.037 0.052 0.064
GG 0.006 0.012 0.028 0.037 0.053 0.070
GAMMA 0.010 0.012 0.045 0.064 0.087 0.107
LOGNORM 0.005 0.011 0.028 0.038 0.053 0.065
WEIB 0.015 0.017 0.034 0.064 0.093 0.119
EXP 0.009 0.018 0.041 0.055 0.075 0.093
FMM LOG 0.024 0.019 0.082 0.099 0.114 0.150
FMM SQRT 0.008 0.016 0.034 0.059 0.101 0.136
HH 0.011 0.022 0.028 0.040 0.060 0.074
FP 0.011 0.021 0.026 0.053 0.075 0.063
CH 0.010 0.016 0.026 0.041 0.079 0.088
MM 0.011 0.024 0.038 0.036 0.044 0.069
RIF 0.019 0.025 0.038 0.049 0.080 0.112

Table 4B8: Range of ratios of predicted to actual survival probabilities, sample size 50,000
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Cost threshold (£k)

Method 500 1000 2500 5000 7500 10000

GB2 LOG 0.001 0.003 0.005 0.007 0.010 0.014
GB2 SQRT 0.001 0.003 0.006 0.007 0.010 0.013
GG 0.001 0.003 0.005 0.007 0.010 0.013
GAMMA 0.002 0.002 0.008 0.010 0.015 0.020
LOGNORM 0.001 0.002 0.005 0.007 0.010 0.013
WEIB 0.003 0.003 0.006 0.011 0.016 0.022
EXP 0.002 0.003 0.007 0.009 0.013 0.017
FMM LOG 0.002 0.004 0.009 0.013 0.019 0.025
FMM SQRT 0.001 0.003 0.007 0.010 0.016 0.022
HH 0.002 0.004 0.006 0.008 0.012 0.017
FP 0.002 0.005 0.005 0.012 0.014 0.011
CH 0.002 0.004 0.006 0.009 0.015 0.019
MM 0.002 0.004 0.007 0.007 0.010 0.013
RIF 0.004 0.005 0.009 0.010 0.017 0.022

Table 4B9: Standard deviation of ratios of predicted to actual survival probabilities, sam-
ple size 50,000
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Chapter 5

Conclusions

The common theme of the chapters in this thesis is the comparative empirical assess-

ment of econometric methods for modelling the distribution of healthcare costs.

In chapter 2, the generalised beta of the second kind distribution (GB2) is shown

to be a flexible parametric distribution which features prominent distributions in the

modelling of healthcare costs as special cases. Importantly, it allows for greater flexibility

in estimating skewness and kurtosis than the generalised gamma distribution and so builds

upon the work of Manning et al. (2005). Whilst these properties are already known in

the statistics literature, chapter 2 provides a rigorous assessment of the extent to which

these lead to better ability to forecast healthcare costs using real data. When considering

flexible models, a major concern is overfitting the data. Chapter 2 adopts two approaches

to taking account of this possibility. First, tests based on the ‘estimation’ sample build

in some penalty for additional parameters. And second, most of the results are obtained

using data from the ‘validation’ set, which was not used in the estimation of models. With

tests based on the ‘estimation’ sample, the generalised beta of the second kind is found

to provide the best fit of the distribution according to the Akaike Information Criterion

(AIC). With a larger penalty for additional parameters, as imposed using the Bayesian

Information Criterion (BIC), the nested beta of the second kind distribution is the best.

The results based on out-of-sample forecasts of conditional means and tail probabilities

(for very high costs) suggest that the additional flexibility provided by GB2 is not helpful

in modelling these parameters. The special cases of beta of the second kind, generalised

gamma and log-normal distributions perform the best of models compared when looking
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at bias, goodness-of-fit and accuracy of forecasted conditional means, respectively, and the

generalised gamma and log-normal distributions perform best in terms of the forecasted

tail probabilities considered.

The results from chapter 2 also open up new research questions that are addressed in

later chapters of the thesis. Firstly, while chapter 2 investigates the performance of GB2

relative to other parametric distributions, it does not compare GB2 to commonly used

methods in this area. Secondly, it is shown that GB2 performs best in fitting the whole

distribution of healthcare costs (according to AIC measure), but that this is not borne out

in performance in terms of fitting either the conditional mean, or the probability of very

high costs. The first of these is addressed by chapter 3, and the second by chapter 4.

In addition, there is scope for further research based on chapter 2. When considering

multiple-parameter functional forms of the distribution, it is not clear which parameters

should be allowed to vary with covariates (and the covariates that should be included).

In chapter 2, the GB2 was parameterised with its scale parameter, b, as an exponential

function of covariates, but future research may allow one or more of its shape parameters:

a, p and q to also be specified as functions of covariates. In Manning et al. (2005), the

authors allow for both its µ and σ parameters to be functions of covariates, for example.

Furthermore, there are other multiple-parameter distributions that could be used as al-

ternatives to GB2 for modelling healthcare costs, for example Holly and Pentsak (2006)

propose the use of Pearson Type IV distribution. These competing approaches could be

compared against each other, once coding issues are resolved.

As well as comparing GB2 to standard practice, chapter 3 implements a systematic

comparison of developments of both a parametric and semi-parametric nature against both

each other and commonly used methods. Chapter 3 begins with a review of comparative

studies, with a particular focus on work using real, as opposed to synthesised, data. From

this it is clear that there is a need for a thorough comprehensive study, which chapter

3 provides. It also provides details for implementing recently developed econometric ap-

proaches, including the conditional density approximation estimator. In this chapter, all

evaluation is based on forecasting the conditional mean of the distribution. The results in-

dicate that the link function plays a particularly important role. The methods with square

root link functions perform best with the chosen specification of covariates and data. Ad-
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ditional flexibility in the functional form of the whole distribution improves the accuracy

of forecasts, with a two component gamma model and GB2 performing among the top

four. The results clearly show that the conditional density approximation estimator is a

promising method for the econometric analysis of healthcare costs.

It is interesting to note that the conditional density approximation estimator performs

so well in terms of forecasting conditional means. This method essentially approximates

the whole distribution by dividing the outcome into discrete intervals and modelling the

probability of an outcome taking a value within each interval. As such, an important

research question revolves around the accuracy of the approximation of the entire distri-

bution. Since this approach is estimated using an approach inspired by Han and Hausman

(1990), this question is addressed in chapter 4, where numerous distributional regression

methods, including the Han and Hausman (1990) approach, are compared against para-

metric methods for fitting the distribution.

The main result of chapter 3 is the illustration of the sensitivity of results to the

choice of econometric method. However it is not clear which specific aspects of the data

generating process of healthcare costs drives this result. As such, there is the potential

for illuminating research using traditional Monte Carlo studies, where the performance of

each method can be evaluated under controlled circumstances by individually changing

certain assumptions about the data generating process. Another result of chapter 3 is that

the Pearson correlation coefficient test performs well in discriminating between methods

(particularly in terms of the bias of forecasts). A number of model misspecification tests

and model selection algorithms have been suggested for econometric modelling of health-

care costs – see inter alia Manning and Mullahy (2001); Gilleskie and Mroz (2004); Basu

et al. (2006) – and research into the effectiveness of these methods in a real data context

could be highly informative to applied researchers.

Chapter 4 seeks to directly address the research question regarding the appropriateness

of econometric methods for fitting the whole distribution of healthcare costs. Many of

the methods proposed in modelling healthcare costs are motivated by this underlying

objective, however comparative empirical work has evaluated performance based solely on

the conditional mean of the distribution. The chapter begins by reviewing econometric

methods which can be used to produce an estimate of the conditional distribution. These
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include approaches used before with healthcare costs, as well as approaches used in labour

and financial economics. Performance in chapter 4 is based entirely upon forecasting

tail probabilities, which, by considering various tails, provides an assessment of the fit of

the whole distribution (and has precedent in providing the basis for the Andrews (1988)

test). The chapter’s results are highly informative, since little empirical work has been

carried out on methods for estimating tail probabilities for healthcare costs. There is

a trade-off between how well methods perform on average (bias), and the variability of

performance across replications (precision). More flexible parametric methods are found

to produce precise results, but they are biased (the extent to which depends upon the tail

being considered). Additional flexibility does not appear to necessarily increase precision,

with the most precise method being the two-parameter log-normal distribution. On the

other hand, distributional regressions, in particular Chernozhukov et al. (2013), produce

unbiased results with a lack of precision. The chapter concludes that at large sample

sizes, distributional regressions may be the best approach for this type of application,

since the precision of all methods improves with increasing sample size. One important

caveat is provided: that distributional regressions have less ability to extrapolate beyond

observed values of the outcome in the sample compared to parametric approaches. Such

extrapolation outside-of-support could be conducted with the adoption of some sort of

smoothing technique, while the implementation here is non-smooth. A result of this might

be worse performance at the threshold values considered here and as such a trade-off may

be encountered. Further research into smoothing and non-parametric methods - more

generally - would be very interesting in this field.

The results from chapter 4 concerning parametric distributions can be combined with

some of the results from chapter 2. It is interesting to note that distributions that per-

formed well in forecasting tail probabilities for very high costs in chapter 2 – log-normal

and generalised gamma – also perform well for tail probabilities throughout the distribu-

tion in chapter 4. As such, the additional flexibility provided by GB2 and the impressive

performance based on AIC in chapter 2 is not borne out in either of the chapter’s tail

probability evaluations. In contrast to the finding surrounding the importance of the link

function in chapter 3, the link function is found to have little impact when considering

tail probabilities as opposed to the conditional mean.

170



While it is clear that the mean is generally not the only informative feature of the

distribution of healthcare costs, further research is required on the loss-functions of poli-

cymakers in order to direct future methodological studies. Considering cost-effectiveness

analysis as a potential application of these methods, characterising uncertainty for proba-

bilistic sensitivity analysis requires modelling of the entire distribution. In addition, while

decisions in health technology assessment are currently based on expected net health ben-

efit, there are arguments for altering the decision rule in order to account for societal risk

aversion if considering spending on health technologies as a portfolio of risky investments

(Zivin, 2001; Bridges, 2004). Given this perspective, other features of the distribution of

healthcare costs are relevant, including higher order moments (Elbasha, 2005).

Throughout the work contained in the thesis, a number of simplifying assumptions

are made in order to facilitate the automated quasi-Monte Carlo study design. This is

necessary given that models are estimated on hundreds of different samples. To some ex-

tent, simplification is common to all types of methods, since the specification of regressors

was fixed. However, the more complex methods were simplified in other ways too. For

example, when discretising the outcome variable before estimating the conditional density

approximation estimator, Gilleskie and Mroz (2004) propose an algorithm for deciding

upon the optimal number of bins and bin widths, which was infeasible to implement as

part of the study design adopted throughout this thesis. By fixing these elements, some

of the ‘semi-parametric’ methods could be better considered as extensions to parametric

methods, rather than being truly semi-parametric. As mentioned previously, similar re-

strictions were placed on flexible parametric distributions by allowing only one parameter

to vary with covariates. As a result there is scope for a great deal of research into model

selection algorithms. Chapter 2 makes some progress towards this by considering tests of

restrictions on GB2 for its special cases, where GB2 can be thought of as an umbrella dis-

tribution (Cox, 2008). Similar work could consider the number of components in mixtures

and the components considered. There is considerable debate about mixture models, as to

whether few-but-complex (Villani et al., 2009) components are preferable to many simple

components, although it is not clear which approach is better suited to modelling health-

care costs. In the related field of modelling health-related quality of life, it is common to

use more than two components when applying mixture models (see inter alia Austin and
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Escobar, 2003 and Hernández Alava et al., 2012).

Finally, this thesis considers the specification of the functional form of the distribution

in regression methods, applied to a dataset with information from a small period of time

(2007/2008 financial year). There are numerous methodological strides possible if patients

are followed over time, and many interesting research questions that would follow with such

data. In addition, methods such as matching could be used in place of, or in conjunction

with, regression methods (Kreif et al., 2012). In this thesis, potential problems with

endogeneity, which are important in many applications, are not considered and research

is ongoing in this area too (Garrido et al., 2012). Often there are multiple interdependent

outcomes that need to be considered by policymakers, and future work is required in this

area. There are a whole host of econometric challenges that require future methodological

research.
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