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Abstract 

The lack of suitable models for prediction of the vertebral body (VB) 

failure load for a variety of pathologies hampers the development of 

indications for surgical and pharmaceutical interventions and the 

assessment of novel treatments. Similar models would also be of benefit in a 

laboratory environment in which predictions of failure load could aid 

experimental design when using cadaveric tissue.  Finite element modelling 

shows great potential but the expertise required to effectively deploy this 

technology in a clinical environment precludes its routine use at the present 

time. Its deployment within the laboratory environment is also time 

consuming. An alternative approach may be the use of composite beam 

theory structural analysis that takes into account both vertebral geometry 

and the bone mineral density (BMD) distribution and they are utilised to 

predict the loads at which vertebrae will fail. 

As a part of this work, vertebrae suffering from three distinct pathologies 

(osteoporosis, multiple myeloma (MM) and metastases) were tested in a 

wedge compression loading protocol (WCF) as a determinant for 

vertebroplasty treatment. MM bone was first tested for changes at the bone 

tissue level by means of depth-sensing micro-indentation testing. In the 

second part more than one hundred VBs were subjected to a destructive in-

vitro WCF experiment, while CT images were used for in-silico structural and 

morphological assessment. In the last part, two vertebroplasty cements, 

calcium phosphate and PMMA, were tested. 

At the tissue level MM bone shows rather moderate changes which are 

of such small magnitude that alone would not be sufficient to change the 

overall vertebral strength. Relatively good predictions of VB strength were 

obtained when using image-based fracture prediction suggesting that bone 

distribution and pathological alterations to its structure make a significant 

contribution to overall VB strength.The results of VB reinforcement using 

either of the cements show increased strength while stiffness was restored 

only when PMMA cement was injected in lower porosity samples. 
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Preface 

Spinal metastases are an increasingly challenging pathology faced by 

clinicians as patient survivorship improves.  A number of these metastases 

are osteolytic in nature and the subsequent fracture is associated with 

significant morbidity. Improved methods of fracture risk and prediction are 

urgently required to aid clinical planning and assessment of the treatment 

outcomes.  

Vertebral compression fractures are currently being treated 

conservatively by a combination of bed rest, braces, pain killers and 

pharmacologic therapy [1]. Minimally invasive treatment such as 

percutaneous vertebroplasty (PVP) shows promising results in terms of pain 

management with considerably lower risk than open surgery. Although PVP 

has been shown to be safe, its biomechanical character is still not well 

understood which may lead to a cascade of alterations in load distribution 

amongst adjacent levels. Moreover, due to heterogeneous changes in bone 

structure such those caused by cancer infiltration, the percutaneous 

vertebroplasty may be different from the one prescribed for osteoporosis. 

For instance, a vertebral body with a lesion-creating cavity may need to be 

treated differently than homogenously deteriorated osteoporotic vertebrae.  

Further, the fact that lesions themselves are more readily identifiable using 

modern imaging techniques and that it may be possible to identify vertebrae 

in the spine at risk of failure brings to the fore the possibility of prophylactic 

treatments. 

There are two essential everyday questions posed in clinical 

environments for treatment of cancer patients: “what to use” and “when to 

use it”. In-silico modelling provides a possible way to provide answers if 

used in appropriate way. Also, models to assess bone quality prior to the 

collapse of the vertebral body would be beneficial both in a laboratory and 

clinical environments.  

For both pre-clinical and clinical applications, there is a strong need for 

an effective experimental design to deploy treatment optimisation studies. 

This design comprises an appropriate and tested laboratory methodology as 
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well as a tool to predict the structural properties of every sample prior to 

testing. Such methods could also be deployed in laboratories providing 

better approaches to experimental design. Previous investigations have 

shown potential for the use of image-derived bone mineral density 

distribution assessment as a deployment of Finite Element modelling but this 

procedure would be time-consuming. Previous research has indicated a 

strong link between bone structure as the disease progresses and the 

fracture [2, 3]. Nonetheless, very little is known about the material laws of a 

bone infiltrated by cancer. In order to help computational models predict 

failures more reliably, an investigation of the affected tissue is required.  

This thesis aims to challenge the lack of basic understanding of 

structure-strength relationship in the biomechanics of spinal metastases. 

Throughout the thesis, its aim and objectives follow the introductory section 

and are followed by a literature review to gather known information from the 

most recent relevant scientific sources. The literature review is followed by 

three chapters to encompass the objectives of this work, each comprising 

Introduction, Methods, and Results sections followed by a Discussion. The 

last chapter of the thesis presents the conclusion reached by this work while 

proposing a future perspective.   
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  Chapter 1

Introduction 

1.1 Clinical drivers – defining the problem 

Vertebral fractures are a significant cause of debilitating back pain, 

particularly in females suffering from brittle-bone disease or osteoporosis. 

One in three women will be affected by osteoporosis and there is a lifetime 

risk that 50% of women and 20% of men will sustain a vertebral fracture by 

the age of 50 [4]. Based on demographic changes, the expenditure 

dedicated to osteoporosis treatments is expected to rise from 30 billion € per 

year in the EU at present to almost 77 billion € per year in 2050 [5].  

Whilst osteoporotic vertebral compression fractures (VCFs) have been 

widely studied both clinically and biomechanically, the fractures arising from 

metastatic infiltration in the spine are relatively poorly understood. Significant 

issues arise from weakening of the bone due to metastatic invasion of the 

vertebral bone causing it to become weak and prone to fracture under loads 

such as those experienced in everyday activities.  

The incidence of vertebral fractures in cancer patients increases as the 

treatment of primary cancers improves due to on-going exposure to the 

progression of the disease. Unlike the vertebral fracture observed in 

osteoporosis, metastatic VCFs are particularly problematic as they have a 

high incidence of spinal cord compression (25% of cases), causing paralysis 

and loss of bowel and/or bladder function, as well as the associated pain [6]. 

Such late stage secondary events are often associated with terminal illness 

in which life expectancy is reduced to perhaps no more than 12 months [7]. 

Thus clinicians and patients have to consider issues concerning quality of 

life as the disease may become debilitating when VCFs occur [8, 9]. 

Current conservative treatment of vertebral compression fractures uses 

a combination of bed rest, braces, pain killers and pharmacologic therapy 

[1]. In osteoporotic patients the therapy primarily consists of drugs promoting 

bone growth such as bisphosphonates, vitamins and mineral nutrients [10].  

However, in cancer patients for whom palliative care is a key issue, pain 

relief is paramount in seeking to provide adequate quality of life for the 

remainder of the patient’s lifetime.  Whilst use of bone-enhancing drugs may 

be beneficial in the medium term, interventions which improve quality of life 

in the short term are paramount,  comprising in the first instance a 
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prescription of analgesics to provide the desired pain relief.  An alternative 

intervention may be required where this treatment is unsatisfactory.  Major 

surgery, in which recuperation would impact severely on the patient’s 

remaining quality of life, is often contraindicated because of both patient 

fragility and poor bone quality arising from the metastatic infiltration itself.  

Minimally invasive approaches which have shown benefit are vertebroplasty 

and kyphoplasty, as they have demonstrated sufficient stabilisation and pain 

relief coupled with little post-procedure pain and/or rehabilitation particularly 

in the osteoporotic cohort [11, 12]. The technique of injecting bone cement 

through a hollow needle without need of open surgery seems to provide the 

desired structural reinforcement with significant and, most importantly, 

immediate pain relief within 24 hours after the surgical intervention. The 

same techniques are currently being utilised on a small scale for the 

treatment of patients with metastatic disease cohort [11-14]. 

Recent studies on the effectiveness of vertebroplasty in the osteoporotic 

cohort [15, 16] initially introduced a controversy to the technique but later 

studies [17], in which more relevant control groups were utilised, have 

shown improvements in the patient outcomes compared to conservative 

cohorts.  Treatment of osteoporotic fractures brings typically excellent results 

with most patients describing the loss of pain as complete or near complete 

within two days with further gradual improvement in the first 6 months [18]. 

Initial results reported for vertebroplasty in cancer sufferers shows similar 

levels of satisfactory outcomes when compared to osteoporotic patients [8, 

19], although the requirements of each patient group are not the same and 

the goals of utilising the technique may not be comparable.  The rate of 

postoperative complications such as leakage of the cement and/or adjacent 

accelerated vertebral fracture may be different in patients treated for 

metastatic fractures due to differences in the systemic and local effects of 

the disease on the bone structure. Osteoporotic degeneration appears as a 

fairly uniform bone loss, although there is an increase in the inter-vertebral 

variability of porosity with age reflecting a reduction in homogeneity [20-22]. 

This is in contrast to vertebral bone loss in metastatic disease in which focal 

lesions are the cause of the structural deterioration of the VB. These 

differences may affect the rates at which complications and treatment 

interventions may occur. 

Key-hole surgery in cancer patients brings the promise of pain 

management with considerably lower risk than open surgery but it has yet to 

be optimised for cement augmentation in which the goals of surgery may be 
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different from that prescribed for osteoporosis. For instance, a VB with a 

lesion that breaches the cortical wall and hence increases the risk of cement 

leakage may have to be treated differently than osteoporotic vertebrae. 

Further, the fact that lesions themselves are more readily identifiable using 

modern imaging techniques and that it may be possible to identify vertebrae 

in the spine at risk of failure brings to the fore the possibility of prophylactic 

treatments. The challenge here is to identify those vertebrae most at risk, 

such that unnecessary procedures are avoided. 

In developing the augmentation procedures in terms of both the cement 

and the delivery process, preclinical studies have an important role to play.  

A number of biomechanical studies have already addressed a number of 

issues arising from use of augmentation utilising both experimental 

investigations [3, 23] and computational modelling, principally using the finite 

element method [24-26]. The volume [27-29] and type of cement [30] as well 

as the method of delivering the cement [28, 31, 32] have been common 

subjects of investigation within osteoporotic models. Here, the use of 

cadaveric material for the in-vitro assessment of this procedure has been a 

key element of these investigations both directly and in the validation of 

computational models. However, little work has been undertaken on 

metastatic bone disease and this has hampered the development of both (1) 

the augmentation techniques for these pathologies and, importantly, (2) 

models with which to predict fracture in a prophylactic setting and their use 

as a measure of outcome.  

Biomechanical in-vitro assessment of these structurally compromised 

specimens is an important method for gaining an understanding of the 

mechanics of structural behaviour under load. Finite element modelling has 

demonstrated great potential but is dependent on a detailed knowledge 

about the properties of bone at a tissue level as well as a solid validation 

methodology in order to be able to demonstrate its full potential. Hence a 

well-established experimental methodology is needed to support a 

development of the computational model and its validation. Secondly, 

despite numerous studies on human bone mechanical properties at a tissue 

level [33-37], very little is known about material laws of bone infiltrated by 

cancer. In order to help computational models predicting failures more 

reliably an investigation of affected tissue is required. 

Currently, biomechanical investigations of vertebroplasty for use in 

cancer patients are few in number and are limited to preliminary studies [38, 
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39]. However the usage of cadaveric tissues arising from these diseases 

within in-vitro experiments is technically very difficult and arises from: 

i. The limited availability of these tissues 

ii. The heterogeneric nature of the infiltration. 

 Therefore an effective experimental design is crucial for such studies. 

This design comprises an appropriate and tested laboratory methodology as 

well as a tool to predict structural properties of every sample prior to testing. 

This tool is essential especially when investigating prophylactic treatment. 

Previous investigations have showed potential of the use of image-derived 

bone mineral density distribution assessment as the deployment of FE-

modelling would be time consuming.  

 From a clinical point of view the essential questions arising from 

challenging metastatic vertebral fracture treatment for treatment of cancer 

patients are “what to use” and “when to use them”. Models underpinning the 

basic science of fracture and the most important parameters that may help 

to restore the compromised vertebral strength would significantly benefit the 

clinical environment. Also, models to assess bone quality prior to the 

collapse of the vertebral body would benefit from both a laboratory and 

clinical environment.  

 In the following sections the anatomy and biomechanics of the spine 

that are pertinent to the problem outlined above are described together with 

their modification following the onset of a diseased state where the focus is 

on the fracture of the infiltrated vertebrae.  Previous models, both cadaveric 

and computational, for understanding and predicting fracture are discussed 

in addition to the use of micro-indentation on elucidating the properties of 

bone at a tissue level derived from these tissues. Finally, vertebroplasty, the 

technique for overcoming both pain and the structural instability arising from 

these fractures, will be discussed. In light of these discussions the aim and 

objectives of the project will be defined in the following section. 

1.2 Aims and objectives of the study 

The overall aim of this project is to investigate the biomechanical imprint 

of bone deterioration due to the presence of structure-changing pathologies, 

explore possible structural biomarkers of weakened vertebrae and 

investigate minimally invasive treatment modalities in such bone where the 

disease weakens the bone and ultimately leads to vertebral fracture.   
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The goals follow the principle stated by WHO: “add life to years, not just 

years to life” and focus on treatments which aid pain-free mobility and 

increase the quality of life for people with bone disease, cancer patients in 

particular.  Following the findings from the literature review, the research 

project focuses on three interrelated areas for which there is limited 

knowledge and understanding (Figure 1). Objectives have been postulated 

as follows: 

i. The development of a model of fracture prediction that can be 

utilised within the scope of data produced through CT imaging 

which will be validated against in-vitro experimental data of 

vertebrae containing osteoporotic and metastatic lesions.  

ii. To perform an assessment of the structural and mechanical 

properties of trabecular bone utilising microCT assessment and 

micro-indentation. 

iii. To investigate the use of vertebroplasty in the augmentation of 

osteoporotic and metastatic lesions. 

 

Figure 1 The aim of this work is to combine knowledge of mechanical 

properties of vertebral bone and experimental testing on both 

tissue and organ level on pathology specific samples for use in 

vertebroplasty. 
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  Chapter 2

Literature Review 

2.1 Anatomy 

 Spine 2.1.1

The spine is a multi-segmental complex mechanical structure which 

forms part of the musculoskeletal unit of the trunk together with the rib-cage 

and the pelvis.  Its functions are to [40]: 

i. Protect the spinal cord  

ii. Provide stability to the upper torso whilst allowing the transfer of 

load  

iii. Aid motion of the upper torso 

iv. Aid motion of the upper and lower limbs.   

The human spine constitutes of 24 non-fused pre-sacral vertebrae.  

They are, as shown in Figure 2, divided into seven cervical, twelve thoracic 

and five lumbar vertebrae together with nine vertebrae fused within the 

sacrum and coccyx.  Each single vertebra is separated from the adjacent 

ones by an intervertebral disc anteriorly and two facet joints posteriorly.  

These joints allow movement between vertebrae and, hence, of the upper 

body, and the discs in particular aid the transfer of load from one vertebra to 

the next downwards to the pelvis [41].  These joints also provide stability 

particularly towards the end of the range of motion and/or where motion may 

be considered detrimental to the surrounding organs or vessels. 

Whilst vertebral pairs in the cervical spine demonstrate the largest range 

of motion for many, if not all, the degrees of freedom, the thoracic spine on 

the other hand is connected to the 24 ribs and has significantly decreased 

mobility [42]. The lumbar spine consists of visually larger vertebrae capable 

of bearing greater loads and moments as well as increased mobility 

compared to the thoracic spine but significantly less mobility than the 

cervical spine. 

Laterally, a non-pathological spine has four main curvatures, two 

kyphotic ones on the thoracic and sacral regions and two lordotic curvatures 

in the lumbar and cervical regions.  In the coronal plane no such curves are 
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noted beyond those as further curvature is generally minor and clinically 

insignificant. 

 

Figure 2 Figure depicting human spine with detail to lumbar and 
thoracic vertebrae. (A- Vertebral Body, B- Vertebral foramen, C- 
Transverse process, D- Lamina, E- Spinous process, F- Pedicle) 

2.1.1.1 Biomechanics of the spine 

The primary function of the spine is to protect the vulnerable spinal cord 

whilst allowing both movement and stability at any given position including 

the upfront position [43]. The spinal cord is protected by the bony structures 

of posterior vertebral elements, including the pedicles and laminar, and 

anteriorly by the vertebral bodies. Between vertebrae the nerve roots 

emanate from the cord through the intervertebral foramen. Any reduction in 

this space through trauma, vertebral fracture and/or degenerative disc 
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disease leads to nerve compression and related pain and/or loss of function 

[44]. From a biomechanical point of view, the spine has to sustain large 

loads as the centre of gravity is shifted from its main longitudinal axis leading 

to forces that are significantly greater than would arise from the weight of the 

upper torso alone [42].  Exercise performed during daily life strongly 

influences loads which vertebrae have to transmit. According to in-vivo 

measurement the lumbar disc pressure measured during bed rest is one 

quarter of that measured  when standing upright [45, 46], suggesting that a 

simple task can significantly increase compressive loads in the spine which 

has to be considered when designing a treatment tool for patients who are 

expected to be discharged from medical care. 

 Vertebra 2.1.2

Vertebrae are the relatively large bony units from which the spine is 

comprised.  A typical vertebra consists of an anteriorly placed vertebral body 

and posterior elements - the vertebral arch enclosing the vertebral foramen 

and processes. The vertebral body is a kidney-shaped structure comprising 

an inner trabecular bone and outer vertebral shell which allows it to transmit 

the majority of the compressive load within the spine [43]. The size of the 

vertebral body varies with level, the largest cross-sectional area being in the 

lumbo-sacral region. The size of the vertebral body is determined by the load 

bearing demands of the upper body above the index vertebra [42]. As noted 

above, the neural arch protects the spinal cord which resides in the spinal 

canal whereas the spinous and transverse processes, which are attached to 

the arch, anchor muscles and ligaments of the spinal musculo-ligamentous 

complex.  

The vertebral body has a thin vertebral shell and an internal structure 

containing cancellous bone which harbours a significant quantity of bone 

marrow.  In keeping with these large amounts of bone marrow the vertebral 

body is well vascularised and this may be a reason why the spine is the third 

most common site for metastatic disease after the liver and lungs.  The 

posterior elements consist mostly of cortical bone and are much less 

vascularised.  As this work focuses strictly on fractures in the thoraco-lumbar 

region only those two regions will be discussed in the following sections. 

2.1.2.1 Thoracic vertebrae 

Between the cervical and lumbar spine, there are 12 thoracic vertebrae 

which are attached to the rib-cage. The T1 vertebra, the closest to the 

cranium, is the smallest and the size of the vertebrae gradually increases 
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down the spine in the caudal direction. The rib-cage is attached by a series 

of articular facet joints (costal facets) and in combination with the associated 

ligamentous structures restricts range of movement; furthermore its larger 

moment of area, arising from the rib-cage which is shifted away from the 

axis of rotation, also contributes to the enhanced stiffness of this region. In 

combination both factors provide increased stability to the whole thoracic 

structure to protect the vital organs inside the rib-cage. 

2.1.2.2 Lumbar vertebrae 

The lower non-fused five vertebrae between the thoracic spine and 

sacral region form the lumbar spine. As loads here are significantly larger 

than those found in the thoracic and cervical regions, these vertebrae are 

correspondingly bigger. The different morphology of facet joints depicts a 

different biomechanical environment with larger ranges of motion in certain 

degrees of freedom but more limited ranges in others e.g. in the axial 

rotation and the translational forward motion.   

 Bone  2.1.3

Bone is a solid living organ. Being constantly modelled and remodelled, 

the bones, to some extent, reflect the needs of the body's biomechanical 

environment. Hard bone tissue forms two microscopically distinct types of 

bone: the cortical (compact) and trabecular (spongy) bone which can be 

differentiated according to their relative density [47]. Micro-composition of 

the bone is depicted in Figure 3. The cortical bone forms the hard dense 

exterior shell around the sponge-like trabecular bone, where spaces 

between the trabeculae are filled with bone marrow and interwoven by a 

vascular system [48]. The remodelling aids bone adaption in response to 

external loads but with age and various pathologies the ability to sustain this 

process is reduced and the equilibrium between absorption and replacement 

of bone decreases along with the quality of the bone structure.  

Apart from mechanical support, bones have several other functions such 

as synthetic (blood production) or metabolic (mineral storage, fat storage, 

acid base balance, storing heavy metals and helping to maintain balance in 

the mineral and hormone levels of the blood). However this study will focus 

only on the mechanical functions of the bone. 
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Figure 3 Schematic figure of a bone structure at different scales – 

organ-, meso- and micro-scale (A- Osteon of cortical bone, B-

Haversian canal, C- Volkmann’s canal, D- Vessels and nerves, E- 

Lamellae, F- Canaliculi, G- Osteon of trabecular bone, H- 

Osteoblasts, I- Osteoclast, J- Osteocytes) 

2.1.3.1 Cortical bone 

The shell surrounding the internal part of the bone and forming its outer 

shape is composed of thin but dense cortical (compact) bone. Regarding 

composition, the cortical bone consists of secondary osteons embedded in 

interstitial tissue made of primary and older secondary osteons (Figure 4). 

An osteon - the fundamental functional unit - is a concentrically layered 

structure where each layer (lamella) is 1-5µm thick [49]. Between some 

lamellae, osteocytes reside within lacunae (10-50µm), and the centrally 

placed canals are called Haversian canals [49]. As published, the density 

and size of the lacunae in human vertebra are similar in both cortical and 

trabecular bone (CS-area 55µm2 in average, density 156/mm2). Counts of 

osteocyte lacunae correspond to the remodelling activity and have been 

shown to be higher in osteoporotic patients [50]. 
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Figure 4 Microscopic image of cortical shell and trabecular bone 

interface depicting difference between cortical shell (left top) and 

notably more porous trabecular bone (right bottom). Cortical bone 

is characteristic of osteons forming around the Haversian canal 

where older osteons are overlaid by new ones. On the contrary 

trabecular bone is characterised by layers of bone where the 

central canal is not present. This is understood to be a reason for 

deterioration of bone emerging from outer layers towards the 

centre (such as thinned trabeculae in osteoporotic patients) 

Modelling (addition or removal of bone to alter shape) and remodelling 

(removal and replacement of bone in a systematic fashion within bone 

multicellular units) are both extremely important parts of the bone life cycle 

which allow responses to changes in mechanical environment or bone 

micro-damage.  The turnover in cortical bone is significantly lower than in the 

trabecular one (3% turnover rate of cortical bone compared to 26% in 

trabecular bone [49]). The cortical bone is remodelled from the bone surface 

through tunnelling resorption by osteoclasts. This cavity is then filled by 

osteoblasts forming a new bone in a lamellar pattern. Every new osteon is 
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enclosed and separated from an old bone by a cement line (0.5-1µm). 

Mineralisation of a new bone is gradual and by the time of formation its 

mineral density is around 70%. In less than six months, the mineral density 

of the newly formed bone increases to 90 to 95% [49]. Studies using 

indentation techniques and ultrasonic experiments on mechanical properties 

of bone at a tissue level have confirmed that trabecular bone is almost 20% 

softer than the cortical material [34, 37, 51, 52], which may arise from the 

greater mineralisation and reduced number of lacunae in cortical bone.  

2.1.3.2 Trabecular bone 

The porous sponge-like structure within the cortical bone is referred to 

as trabecular bone. Similarly to cortical bone, healthy trabecular bone 

remodels to create a well-organized structure which provides an enhanced 

strength-to-weight ratio with space available for other components such as 

bone marrow [53]. The trabeculae are remodelled in a very short timescale 

compared to cortical bone, adapting quickly to changes in a mechanical 

environment.  

The trabecular bone has a very high porosity and comprises 

approximately 20% of the total bone mass. A typical trabecular thickness 

varies between ten and several hundred µm [49]. Usually trabecular bone 

does not contain whole osteons (Figure 5), but rather portions of bone where 

remodelling has occurred in the form of pits rather than tunnels.  

Exceptionally a whole osteon can be seen if the thickness is higher than 

approximately 350µm [49]. This exception aside, trabeculae are either 

cylindrical (rod-like) or plate-like structures which have concentric layers 

(lamellae) around their principal axis without a central canal.  
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Figure 5 Microscopic image of trabecular bone, single trabecula in 

detail: trabecular bone is a very porous structure where each 

trabecula is formed around its main axis composed of layers 

which form externally 

 Morphology and mineral density of human vertebrae 2.1.4

While the external shape of the bone is mainly driven by its kinematic 

purpose and it can be modified in response to external loads, the cancellous 

bone is more readily modified due to a higher rate of bone turnover.  This 

can be seen in the pattern of the trabecular bone accommodating the 

principal directions of stress [53]. 

Histological, and later microCT, assessment of bone has uncovered the 

trabecular micro-structure which is formed from rod-like structures and/or 

plate-like structures. The main structural property indices that are commonly 

used in the description of bone (Figure 6) are denoted by: 

i. Trabecular spacing (Tb.Sp) 

ii. Thickness (Tb.Th) 

iii. Number of trabeculae (Tb.N) 
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iv. Volume fraction (BV/TV) 

v. Connectivity (Conn.D) 

vi. Level of isotropy (Mean intercept of length (MIL)). 

All these variables are modified by the gradual morphological changes 

that occur during ageing. Particularly, a decrease in volume fraction and 

connectivity of the trabeculae and a corresponding increase in spacing are 

observed as a person’s bone becomes osteopenic and then osteoporotic 

[54].  In addition, comparative studies have shown a gradual corresponding 

change from plate-like to a predominantly rod-like structure with increasing 

age [54]. These changes make trabecula more inclined to bend and buckle 

which leads to lower structural stiffness and strength. 

 

Figure 6 Morphometrical indices to qualitatively assess bone structure 

in-situ. Trabecular spacing (Tb.Sp), thickness (Tb.Th), number of 

trabeculae (Tb.N), connectivity density (Conn.D) or level of 

isotropy (MIL) 

Increasing spatial resolution of modern 3D imaging tools allows 

assessing the bone in-situ and non-invasively. Segmenting these images 

can provide morphometrical indices for qualitative assessment. Bone volume 

fraction has been shown to be a better predictor of compressive strength of 

cored trabecular bone when compared to BMD [22, 55]. Investigations of 
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trabecular thickness, number and separation have their roots in histological 

sections [56] but later, in the case of 3D imaging tools, a direct measurement 

method had to be adopted [57]. In theory, the algorithm uses the fitting of 

spheres to or between segmented bone structure using a distance 

transform, which is used to determine the three-dimensional distance 

between each structure. These modern algorithms can minimise the effects 

of partial volumes using a mid-axis transformation method to identify 

trabecular elements. Studies have shown that a single trabecula has a 

thickness (Tb.Th) in the order of 100-200µm leaving the trabecular spacing 

(Tb.Sp) one order higher depending on the anatomical location of the bone.  

The connectivity of bone is defined as the number of struts which have 

to be separated to isolate two nodes of a bone [57]. While the connectivity is 

hard to express as a specific volume, a connectivity density (Conn.D) as a 

value normalised to the volume of interest is widely used. Average 

connectivity density for human bone varies between 2-5mm-3 [54, 58] and 

strongly decreases with age by approximately 15% per decade [54]. 

However cadaveric studies done by Kabel et al. [59] showed that Conn.D 

provides very limited information on material properties of the bone 

structure. 

The remodelling of bone according to Wolff's law causes anisotropy in 

the bone’s structure, particularly of the trabeculae [53].  One way of defining 

anisotropy is through some alignment of the principal axis to the reference 

frame. The most commonly used method is the Mean Intercept of Length 

(MIL).  The principle of this method is based on a count of intersections 

between a linear grid and a segmented material as a function of the grid's 

orientation. The MIL is then the ratio between the total line length and 

number of intersections. Visually, the results can be expressed as an ellipse 

where the major axis (a) corresponds to the principal axis of the bone, the 

minor axis (b) to its perpendicular axis, and the angle from the reference 

frame axis to the principal fabric direction is denoted θ [60] as depicted in 

Figure 6. Even though the trabecular bone cannot be described as an 

isotropic material, recent indentation studies show that the main difference is 

only between the principal trabecular axis and its perpendicular axis, yet the 

difference in helical winding around the main axis remains the same, thus 

one can assume the trabecular bone is transverse isotropic [36, 61]. The 

MIL defining the magnitude of transverse isotropy is then in the order of 1.5 

towards the principal axis [61]. 
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An assessment of trabecular bone quality can be obtained using bone 

densitometry although the increasing sophistication of other tools is reducing 

its dominance as a clinical tool.  In current state-of-art radiography a 

localised bone reduction of an area larger than 1cm2 with a bone loss 

greater than 50% is required for any reasonable surety in identifying 

significant changes in BMD.  Further, the technique is reported to give false-

negative screenings resulting in up to 34% of undetected vertebral 

fractures [62] and up to 40% of undetected metastatic lesions [63].  The use 

of Dual-energy X-ray Absorptiometry (DXA) provides a quantitative means of 

assessing BMD but lacks the resolution to discern non-uniformly distributed 

changes within bone or geometrical aspects that impact on the bone’s ability 

to sustain a load. Whilst biomechanical studies have shown that bone 

mineral content is a good single predictor of trabecular strength, the recent 

consensus is that BMD alone contributes no more than 50% of the vertebral 

strength [55]. It was widely recognised that predictive power can be 

increased by linking assessments of BMD with geometric measurements. 

Initially, these led to investigations of utilising the product of BMD and 

endplate area [3, 64], or BMD and minimal cross-section area [65, 66]. This 

method shows reasonably good predictions when compared to in-vitro 

experiments but requires volumetric CT measurements.  

Several studies suggest that not only BMD but many other bone 

properties have a significant impact on the quality of the bone [2, 55, 58, 64, 

67-70]. These include the architecture of the structure itself, the degree of 

mineralisation, micro-structure damage and accumulation including micro-

cracks within the struts.  However, each of these would rely on techniques 

that are unlikely to be assessable in-vivo within the foreseeable future.  The 

tools that have the greatest potential for use in-vivo are those that 

demonstrate high spatial resolution such as micro computed tomography 

(microCT) which has demonstrated its potential in ex-vivo studies or the 

corresponding, peripheral in-vivo studies which utilise high-resolution 

quantitative computed tomography (HR-pqCT).  

2.2 Pathology 

 Osteoporosis 2.2.1

Osteoporosis is one of the most widespread diseases in the world 

affecting bone tissue in the elderly. Early osteoporosis is asymptomatic and 

results in the reduction of bone mineral density (BMD) which leads to 

increased bone fractures. These fractures are thus called osteoporotic 
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fractures and their treatment imposes an increasing economic burden on the 

health system.  

2.2.1.1 Definition, screening and occurrence of osteoporosis 

Osteoporosis is characterised by the thinning of trabecular elements due 

to bone mass loss (Figure 7). This is related to an imbalanced resorption of 

bone without appropriate bone adaptation. Thinned trabeculae result in 

increased bone fragility which weakens generally strong bone architecture 

and subsequently leads to osteoporotic fractures when the natural load 

exceeds the bone strength. The most common sites of these fractures are 

hip, spine, forearm and humerus [71]. The incidence and mortality of 

vertebral compression fractures (VCF) is not well documented [72] as it is 

believed that only from one fifth to one third of all VCFs are actually 

symptomatic and recognised [73, 74] which accounted for a rough estimate 

of 1.4 million VCF worldwide in the year 2000 [71]. 

 

Figure 7 Comparison of “healthy” high-mineral-density bone (left) and 

low-mineral-density osteoporotic bone (right). Lose of trabecular 

struts in OP bone is predominantly in horizontal direction [21] as 

indicated by red arrow. Structural integrity in osteoporotic bone 

while compromised has been well documented and is believed to 

be related to a simple loss of supporting material, however the 

cancer-bearing bone is yet to be thoroughly investigated  

Clinically the most important goal is to prevent osteoporosis and bone 

fractures, which emphasises the importance of appropriate screening.  

According to guidelines provided by WHO (The World Health Organization), 

osteoporosis is defined as the probability of fracture due to bone quality 
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compared to averaged values obtained from a population. The probability of 

fracture and hence the progress of osteoporosis is measured according to a 

T- and Z-score, where the T-score is a count of standard deviations below 

an average young person at the peak of bone mineral quality while Z-score 

compares the number of standard deviations to an average person of the 

same age. The average density measurements are based on large studies 

conducted worldwide. WHO defines four groups: Normal group (T score<1), 

Osteopenia (1<T score<2.5), Osteoporosis (T score >2.5) and severe 

osteoporosis (when bone contains non-traumatic fractures). Even though 

this method of bone quality estimation is widely spread, WHO currently 

provides data only for Caucasian US North American females. Several 

studies show a variation between different groups, thus a good comparison 

is essential to use the T-score bone quality assessment.  

The average bone mineral density (BMD), which is currently the most 

widely used  predictor of bone quality, is measured either using ultrasound 

with limited usability in the most commonly affected areas such as hip and 

spine or using absorptiometric techniques such as Dual Energy X-ray 

Absorptiometry (DXA) or computed tomography (CT). DXA is the most 

commonly used tool in osteoporosis screening as it provides a cheap, fast 

and robust quantitative measure for clinicians to estimate the potential risk of 

fracture at low radiation dosage (approximately 10µS for spine) [20]. 

However DXA measurements reflect BMD alone, which is only one of many 

contributions to vertebral strength [70] and is insensitive to geometrical 

changes which can lead to up to 70% of fractures remaining undetected 

when only BMD is being assessed [76]. Furthermore, conventional 

standalone DXA shows a significant insensitivity in the screening of a wider 

population [77] and in fact can lead to significant misdiagnosis in cancer 

patients [78] where up to 75% of cancer patients are wrongly diagnosed as 

non-osteoporotic. 

Clinical computer tomography (qCT) shows great potential to provide 

more accurate diagnoses of osteoporosis and fracture risk estimations 

(discussed in the section: 2.6), however its higher radiation dosage (30-

100µS for the spine [20]) is a significant factor to be considered before 

replacing DXA in osteoporosis screening. 

2.2.1.2 Osteoporotic fractures and their systematic clinical impact  

In symptomatic osteoporosis the clinical goals are the prevention of the 

gradual loss of bone quality and treatment of fractures if they occur. The 

spine is one of the most common sites of osteoporotic fractures and 2.35 
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million new VCFs were estimated to have arisen in 2010 in the EU [72], the 

number of which is expected to rise by about 16% by 2020 across most 

western countries [79-81]. Postmenopausal women are more likely to 

develop osteoporosis (increased incidence by 60%), however the age-

standardised mortality and health consequences appear to be higher in 

men [4, 82]. 

Osteoporotic fractures represent a long-life debilitating event which can 

lead to further disability and early mortality, hence efficient prevention of the 

fractures is the stated aim of many biomechanical and clinical studies.  

2.2.1.3 Treatment of osteoporosis 

Treatment of osteoporosis is based on medication to sustain or increase 

the bone mass and hence, restore its natural strength. Maintaining a good 

lifestyle and changing to a healthier one may be recommended.  As the 

patient becomes older, medical treatment to induce and/or maintain bone 

quality may be prescribed such as the use of bisphosphonates.  

 Metastases to bone 2.2.2

Metastases are so-called secondary tumours as they are related to 

another neoplastic disease located elsewhere. They are usually 

asymptomatic until the structure of the surrounding bone is affected, which 

may lead to functional changes and fracture. Changes in bony structure are 

very rarely accompanied by adequate structural adaptation and an elevated 

risk of failure of the bone is often noted [83]. 

2.2.2.1 Metastasis: Definition and occurrence 

The growth of secondary tumours is a malignant process involving 

cancerous cells spreading from their original site [84]. The exact incidence is 

unknown due to difficulties in screening but it is believed to comprise about 

300,000 cases annually in the USA [19, 85]. 

Due to a high vascularisation of the trabecular bone there is a higher 

chance for the cancer cell to infiltrate the vertebral body. Incidence increases 

with age with the highest peak at 50 years but is very rare in children [86]. 

The most common primary tumours to metastasise to bone are breast, 

prostate, lung and thyroid [87]. Spinal metastases occur in more than 30% of 

all cases where the patient died from neoplastic disease, and in almost 80% 

of patients with breast or prostate cancer [9, 85, 88, 89]. The spine is 

affected in more than 50% of patients suffering from prostate, breast or lung 
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cancer. In general, the spine is the 3rd most common site of bone 

metastases.  

Bone metastases can result in three types according to an increased 

(osteoblastic) or decreased (osteoclastic) growth of the native tissue or a 

mixture of these two (Table 1). Bone as a living organ is closely related to 

the remodelling process by exhibiting activity where osteoclasts resorb the 

bone tissue and osteoblasts form new tissue at the same site. However, the 

presence of the cancer tissue creates a hostile environment resulting in the 

uncontrolled behaviour of tissue remodelling. The initial management of the 

tumour has not yet been clearly described, but it is believed that the change 

in the bone tissue is related to a hormonal reaction unbalancing the 

remodelling process in the vicinity of the lesion [84]. This results in most 

cases in osteolytic lesions (~70% of incidences of bone metastases). Purely 

osteoblastic lesions are rather rare (~10%) and mostly develop in breast and 

prostate cancer patients [86] but however dense this new tissue is the 

vertebral strength is unlikely to be increased.  

Cancer type Incidence of Bone 

Metastases 

Nature of Bone Metastases 

Myeloma 70-95%  

Renal 20-25% 

Melanoma 14-45% 

Bladder 40% 

Thyroid 60% 

Lung 30-40% 

Breast 65-75% 

Prostate 65-75% 

Table 1 Incidence of metastases and bone reaction due to presence of 

cancer, ratio between osteoblastic/osteoclastic bone formation [3] 

Multiple myeloma (MM) is a rare type of cancer accounting for about 1% 

of newly diagnosed cancer cases with a very low full recovery rate. The 

survival time is five years in about 15-20% of cases and less than one year 

Osteosclerotic (forming 

lesions osteoblastic in nature) 

 

Osteolysis (forming lesions 

osteolytic in nature) 
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when MM bone lesions are present and untreated [9]. The average age of 

patients with diagnosed MM is 50 years and 2/3 of affected patients are 

men [90-92]. Myeloma is a malignant cancer of plasma cells resulting in 

widespread osteolytic bone deterioration where bone is replaced by a dark 

red gelatinous cancer tissue [93, 94] and the prognosis in developing 

metastases is between 95-100% [9]. Osteolytic effects are caused by an 

osteoclastic/blastic imbalance in the remodelling process where osteoclasts 

are stimulated by cytokines released by plasma cells and resorption 

becomes dominant in the remodelling process. Despite the ubiquitous nature 

of the disease, the osteolytic reaction tends to be confined resulting in 

localised lesions [95]. The structural changes in myeloma patients are in 

general not accompanied by osteosclerotic bone growth but in most cases 

are associated with a generalised osteoporosis. Healing of the bone can be 

observed only in patients who are in complete remission from the 

disease [96]. MM lesions are characterised as irregular in shape and lacking 

a periosteal re-healing effect on the interface between lesion and 

surrounding bone, which results in a reduction of bone structural 

properties [95]. 

2.2.2.2 Clinical and patient related impact due to metastatic infiltration 

– scoring systems 

Structural weakening of the vertebral body can have catastrophic 

consequences on patients’ quality of life. Excluding osteoporosis, the most 

common cause of pathological fractures of a bone is a metastatic disease. 

Up to two-thirds of patients where metastases are already formed will 

experience debilitating skeletal related events (SREs) and related disability 

and severe bone pain [8]. As the occurrence of fractures is higher in patients 

with metastases in general [6] and the risk of fracture is even elevated in 

patients with MM cancer [83], a reliable scoring system and fracture 

prediction tool to assess weakened structure is needed.  

Apart from differentiation based on the nature of bone metastases, more 

complex classifications use information based on the compartmental state of 

the vertebra, whether the cortical wall was breached and the general 

performance of the patient (depicted in Table 2). These scoring systems 

indicate recommended surgical treatments and predicted survival periods 

specific to the patient. The scoring system proposed by Tomita [30] is based 

on three prognostic factors:  

i. grade of malignancy (slow growth, 1 point; moderate growth, 2 

points; rapid growth, 4 points) 
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ii. visceral [internal organs] metastases (no metastasis, 0 points; 

treatable, 2 points: untreatable, 4 points) 

iii. bone metastases (solitary or isolated, 1 point; multiple, 2 points).  

Summation of the score points indicates the life period prognosis (2-3 

points indicates 18-84 months, whereas 6-7 points decreases the prognosis 

to 5-33 months [30]); this demonstrates that for example only a single 

occurrence of multiple metastases decreases the lifetime prognosis by half. 

Surgical recommendation for score groups 2-3 is marginal excision, and for 

groups with 4 to 5 points, intra-lesional or marginal excision is 

recommended. Immediate spinal stabilisation is recommended for patients 

with a prognostic score of 6 to 7 points for short term palliation, whereas 

patients with a higher prognosis score are generally not recommended for 

surgical intervention [30]. 

 

 

Table 2 Classification of the metastatic infiltration (red arrow) to spine 

according to Tomita et al. [30] 

An even more complex scoring system by Takahashi et al. [97, 98]was 

adopted and generally accepted as the current gold standard for both 

medical and scientific purposes when scoring the patient’s survivability. 

Takahashi’s classification combines the previous system with the general 
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performance of the patient, the location, origin and character of the 

metastases, whether the cortical wall has been breached, and most 

importantly how accessible and removable the lesions are. The aim of this 

system is to quantify and classify a survival prognosis and suggest a 

treatment procedure for the patient.  

2.2.2.3 Treatment of secondary tumour to bone - state of the art 

Once the metastasis is present the disease is very rarely treatable to 

complete remission and the focus is often palliative. Apart from the radio-

therapeutic and radio-pharmaceutic palliation for localised metastatic bone 

pain, there is no class of approved drugs for prevention or delay of bone 

metastases and to achieve a complete remission of the metastasis two 

possible options remain: removing the metastases surgically or preventing 

SREs by restoring the natural strength of the bone. Currently the cancer-

related bone complications are reduced through the use of a class of drug 

called bisphosphonates [8, 10, 99]. Subsequent pain management is 

however necessary for the patient with the help of controlled analgesic 

treatment, psychosocial therapy, functional therapy (physiomedical 

rehabilitation or physiotherapy), nerve blockage or epidural therapy.  

However bisphosphonates are not always recommended as a drug as they 

may induce growth of neoplastic tissue [100] and appear to be successful 

only in mid-term treatment [101]. 

Surgical intervention is a solution to be considered when bone pain is no 

longer manageable, to restore stability or to perform decompression of the 

nerves or the spinal cord [102].  The optimal treatment solution is often case-

specific and dependent on the neurosurgeon’s experience and abilities. A 

general approach is hardly to be recommended due to the non-uniform 

nature of the disease. However in younger patients, the tendency to remove 

the tumour completely remains even with a higher risk of complication. This 

can be achieved with en-bloc resection which prevents any possible spread 

of cancerous cells from the tumour site. Stabilisation metalwork tools require 

strong bone to anchor the screws and often cannot be used independently of 

other tools in older patients where the disease is combined with 

osteoporosis with increased bone fragility. In general open surgery is not 

recommended if it is not absolutely necessary due to the potentially 

chronically poor health condition of the patient and an increased risk of 

surgical complications [6, 12, 86, 103, 104]. 

Percutaneous vertebroplasty (PVP) [3, 12-14] and Kyphoplasty 

(PKP) [11, 12] appear to be alternative options in older patients where 



- 24 - 

complete remission of the cancer is unlikely. Vertebroplasty in metastatic 

patients uses synthetic acrylate (PMMA) which results in an ideal curing time 

and additionally its thermo-reaction while curing takes place, next to the 

stabilisation of the fracture, is also often believed to be an additional source 

of good pain relief results. Secondly, the injection of the cement provides a 

tool which non-destructively moves the cancer tumour from the structurally 

weakened site very often without corrupting the integrity of the lesion [12]. A 

further option is to combine the removal of the secondary tumour with 

subsequent augmentation. Biomechanical studies showed lower injection 

pressure is needed after removal with decreased complications due to 

extravasation in laser assisted removal-ablation [105] as well as in 

radiofrequency assisted removal – coblation [38, 104].  Despite its simplicity 

and efficiency, vertebroplasty in SREs related to cancer are still only 

possible with significant resultant complications [13] which are in most cases 

related to leakage [106, 107]. 

All of this, however, produces relatively poor results and leads to a 

significant burden being placed on medical care expenditure. It has been 

estimated that the palliative treatment of bone metastases exceeded almost 

$12.6 billion in the US in 2005, which comprised 17% of the total direct 

medical expenses for oncology [108]. One of the reasons is that up to 75% 

are misdiagnosed in fracture risk predictions based on BMD [78]. Hence an 

improvement in preventing and providing sufficient treatment SREs in 

patients suffering from the metastatic infiltration to bone would bring a great 

benefit on a large scale.  

2.3 Vertebral fractures 

 Definition, occurrence and classification of vertebral 2.3.1

fractures 

The vertebral compression fracture progresses through loads exceeding 

the strength of the vertebra. Such a fracture occurs when the bone structure 

is either weakened by the demineralisation process (general bone loss-

lowered BMD) or the presence of a secondary tumour (localised structural 

changes). The natural strength of the vertebrae is disrupted when the bone 

is replaced by tissue which comes with neoplastic pathology and replaces 

the natural bone. Even though very little is known about the mechanical 

properties of metastases, all types of metastases show a significant 

decrease in strength. Osteoblastic lesions which are defined by the 
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production of a form of compact bone do not appear to increase the strength 

of the bone [95].  

Vertebral fractures are classified according to their gross morphological 

shape change from a radiography examination. The classification comprises 

the severity of collapse and the anterior/posterior location of the compressed 

bone and has a defined height reduction of 20% or more [109]. Classification 

of fractures can be found in Table 3 however more than two thirds are 

asymptomatic and are never detected [74].  

 

 

Table 3 Vertebral Compression Fracture (VCF) classification according 

to Genant et al. [76] 

 Biomechanics of vertebral fractures 2.3.2

Vertebral fractures occur when loading exceeds vertebral strength. A 

typical fracture is a wedge fracture where the anterior wall fails to support 

the load and collapses. The overloading of vertebrae occurs due to either 

exceeding normal physiological conditions or when the bone structural 

properties are weakened due to pathological changes such as generalised 

osteoporosis or cancer infiltration. 

Due to marginal variation in mineral composition of the naturally 

occurring bone [49], the bone structural properties together with bone 

mineral density are believed to be by far the most contributing factor to 

vertebral strength [20, 22, 54, 59, 64, 68-70, 110-112]. Osteoporosis 

appears to have no or very limited effect on the mechanical properties of the 
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bone at the tissue level [21, 36]. This implies that the alteration arises from 

the reduction in bone mass. However it is still debated whether this also 

applies for metastatic tissue [67, 68]. At organ level this type of fracture can 

be reproduced ex-vivo with a combination of compression and bending 

testing. 

 Treatment of vertebral compression fractures - state of the 2.3.3

art 

Treatment of VCF arising from both spinal metastases and osteoporosis 

was traditionally recommended to comprise bed rest, immobilisation and/or 

use of analgesics for pain management. However with increasing life 

expectancy, treatments with an emphasis on an improved quality of life for 

severe osteoporosis or cancer suffering patients have become less 

important and are increasingly supplemented with minimally invasive 

treatment techniques.  

The aim of VCF treatment mirrors the need to protect the patient from 

pain. The secondary aim is to restore stability of movement whilst protecting 

the spinal cord. Principally, management can be classified by three major 

possible solutions: conservative treatment, immediate decompression or the 

stabilisation of the spine. Classic pedicle screws or spinal fusion show good 

results in younger patients, however according to Gebhard [113], in patients 

with generalised and severe osteoporosis, use of cement-augmented screws 

is recommended as the weakened structure can no longer support the 

inserts and becomes susceptible to loosening of the screws.  

In general, open surgery is not recommended in patients with cancer as 

their general condition and lowered immunity increases mortality. On that 

account palliative treatment accompanied by a combination of spinal 

function restoration with minimally invasive surgery would be a great 

advantage. Vertebroplasty (PVP) is increasingly used as such a technique. 

During this key-hole surgery technique a small amount of polyacrilate or 

mineral based cement is injected through an inserted needle directly into the 

vertebral body under fluoroscopic guidance.  
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2.4 Vertebroplasty in VCF treatment 

 PVP in osteoporotic fractures 2.4.1

Indication for treatment of vertebral fractures comes from a detailed 

examination of the patient including identification of localised tenderness or 

severe back pain (localised or in some cases intractable), confirmed by a 

radiographic and/or MRI examination. After careful examination the patient is 

prepared for the operation lying face down either under a full or local 

anaesthesia. Trocar (a cannula with inserted hollow needle) is pierced 

through the skin at such an angle so as to be pointing to the anterior part of 

the affected vertebral body through pedicles. When the trocar is introduced 

through a pedicle under fluoroscopy guidance, the hollow needle is retracted 

and vertebral body is filled through the cannula with slow retraction to 

introduce a sufficient volume of cement without extravasation. Once the 

vertebral body is sufficiently filled, the needle is retracted leaving only small 

signs of the intervention.  

Introducing the cement through both pedicles (bi-pedicularly) compared 

to a single pedicle approach results in higher strength [32], preventing 

collapsing of the vertebra to non-augmented side [31, 32], however as stated 

by Tohmeh et al. [32] even the uni-pedicular approach provides sufficient 

restoration of both strength and stiffness. Injected trans-pedicularly, vertebral 

stiffness is higher compared to the extra-pedicular approach [114] whereas 

no difference was found in restoration of strength.  Although biomechanically 

the aim of the procedure is to prevent further the collapse of the vertebra by 

the injection of a sizable quantity of cement, it has been observed that even 

small quantities of the injected agent may be sufficient for pain relief in the 

near- and medium-term.   

Clinically between 1-6mL (~10-30%) [115] is being injected or the 

endpoint of injection is limited to avoiding possible extravasation [116], 

supported by cadaveric studies suggesting that even small cement volumes 

can restore the vertebral strength depending on vertebral size [28, 29, 117]. 

A study by Molloy [27] suggested 30% vertebral body fill to restore the 

stiffness which is in agreement with a recent clinical study by Nieuwenhuijse 

et al. [118] where 24% vertebral body fill was proven the most beneficial in 

terms of pain relief. Higher volumes are questionable due to an increased 

risk of extravasation [106, 116, 119] without any effect on biomechanical 

enhancement as stiffness and strength were found to be only weakly 

correlated with the volume fill [28, 117, 120]. 
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As the PMMA cement sets in less than thirty minutes the patient can be 

discharged home after a short period of post-operative nursing care when 

the anaesthetic has worn off, usually the same day with rapid pain reduction 

reported within a few days of intervention [121, 122]. For CaP cements the 

length of recuperation may be longer due to the slower setting of this 

cement. 

The exact mechanism of the pain relief is still not adequately reported 

but is believed to be attributed to exothermic reaction (>70ºC) during curing 

of the PMMA, the toxic effect of the monomer on tumour cells and/or 

prevention of micro-fractures in the bone [123]. Both the thermoreaction and 

the toxic effect however only partially explain the pain relief, while non-

thermoreactive, non-toxic calcium phosphate (CaP) cements have also been 

reported to provide satisfactory pain relief [124, 125].  More generally, it is 

believed that the pain relief comes from the stabilisation mechanics where 

the fractured bone (and micro-fractures) are supported and constrained 

against any micro-motion. 

 Vertebroplasty in metastatic bone 2.4.2

Conservative non-operative treatment in cancer patients with bone 

metastases includes drug and hormone treatment as well as extensive 

chemo and/or radiotherapy [126]. However, these modalities usually have a 

slow effect on pain relief (the radiotherapy has a delayed effect of 2 weeks to 

effective pain relief and 12-20 weeks for maximal benefit of pain 

reduction [127]). Open surgery management is often contraindicated by poor 

life prognosis where several guidelines do not recommend operating under 

an estimated life expectancy of three months [104]. Even though comorbidity 

in treatment of spinal metastases is generally accepted, the use of a 

minimally invasive pain reduction tool such as PVP [128] might be advisable 

to improve quality of life in late stages of the disease.  As spinal metastases 

most frequently involve the anterior elements [129], vertebroplasty shows 

very promising results in osteoporotic patients and currently the use of the 

technique is expanding to cover treatment of spinal VCF due to neoplastic 

infiltration. Neoplastic tumours can either be removed using specialised 

approaches [105, 130] or carefully displaced by injecting cement in proximity 

of the lesion, which may however increase the injection pressure compared 

to PVP in osteoporotic bone alone and lead to uncontrolled 

extravasation [106]. 

Studies here listed showed the impressive potential of PVP in providing 

fast and efficient pain reduction treatment with a much lower complication 
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rate when compared to open surgery [104]. However more long-term follow-

ups and randomised controlled trials need to be conducted.  

 Complications and controversy surrounding vertebroplasty 2.4.3

As a relatively young technique (first used by Galibert et al. [131]), 

aspects of the PVP approach are still evolving and the need for randomised 

controlled trials (RCTs) have been sought to ascertain the most effective use 

of this technique. This section though focuses on the possible complications 

and controversies that have arisen from subsequent RCTs.  

2.4.3.1 Controversy of PVP 

Studies by Buchbinder et al. and Kallmes et al. [15, 16] questioned the 

beneficial effect in a sham study comparing PVP and placebo and reported 

no difference between the groups. Buchbinder et al. compared, in a 

multicentre single-blinded, randomised trial, thirty-five patients given PVP 

and thirty-six patients with a sham injection. No benefit was observed 

amongst either group at a 6-month follow-up. Kallmes in a similar study 

compared 68 to 63 patients provided with PVP and sham treatment, 

respectively.  Similarly no beneficial effect was found during the follow-up. 

Even though both studies were very well conducted their results raised 

questions, and yet were at odds with clinical experience from different 

medical centres elsewhere. Both studies were criticised to have imposed a 

number of limitations e.g. exclusion criteria (>50% of patients in Kallmes 

group,>70% of patients in Buchbinder’s), suboptimal treatment (injected 

cement fills <10% VB) and misdiagnosis (MRI not used to confirm acute 

fractures). Further, the sham group was not an approach that could be 

utilised in clinical practice and hence did not allow the surgeon any 

alternative therapy. 

Contrary to studies by Buchbinder et al. and Kallmes et al. [15, 16] 

numerous clinical studies report significant and rapid pain relief in patients 

with osteoporotic (e.g. [17, 18, 89, 115, 118, 123, 132-135]) and/or 

neoplastic disease (e.g. [13, 107, 128, 136])  

However, inconsistency in the beneficial effect shows that more studies 

are required to underpin all aspects of vertebroplasty in its clinical use. 

Biomechanical studies are needed to determine the effect of parameters 

such as volume fill and/or the use of prophylactic augmentation, as well to 

develop and tailor the vertebroplasty materials to provide pathology-targeted 

treatments. 
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2.4.3.2 Complications  

Vertebroplasty currently has three main indications for use in treatment 

of vertebral fractures. These comprise of fractures due to 1) high impact 

load, 2) osteoporotic bone loss and 3) presence of spinal metastases. Each 

indication has, however, a substantial risk of complications. In general, the 

most significant potential complication is damage to neural tissue in 

proximity of the vertebra. PVP in metastatic spine is related with increased 

rate of complications [13] the majority of which are due to leakage [106]. 

The material used can also contribute to an increased occurrence of 

complications. Using PMMA cement can lead to catastrophic effects of 

thermal [137] and mechanical damage [107] to the spinal cord, and is 

believed to be the cause of increased occurrence of fractures in levels 

adjacent to those augmented [119, 122]. The true reason for the adjacent 

fractures is however still unknown as they may also arise from a related 

change in spinal shape after the fracture occurs as well as from the natural 

progression of the osteoporosis.   

Alternative biodegradable bone cements however lack biomechanical 

support with which to augment the weakened structure [138] and are 

currently recommended for fractures of little instability or where stabilisation 

is provided by instrumentation, say, as in a burst fracture.  However, CaP 

cements are of great interest due to their predicted long term outcomes with 

bone remodelling [124].  

The biomechanically related complications arise, in part, from the lack of 

basic science in PVP and several key factors remain to be solved [139]. 

These comprise investigating the importance of cement distribution [28, 

120], biocompatibility/biodegradability [30] of the material used and tailoring 

its mechanical properties [23, 25, 128]. More clinically-focused questions 

include the timing of treatment [3, 140] and long-term outcomes, especially 

those due to the occurrence of an adjacent fracture [122, 141, 142].  

2.5 VCF cadaveric studies 

The biomechanics of osteoporotic vertebral fractures at the organ level 

has been widely studied both clinically and biomechanically [21, 22, 50, 52, 

66, 143], however fractures arising from metastatic infiltration in the spine 

are relatively poorly understood [83, 95, 144, 145]. This section focuses on 

the most essential aspects of designing a study investigating the 
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biomechanics of wedge compression fractures in bone with metastatic 

infiltration. 

 Biomechanics in cadaveric studies 2.5.1

Vertebral fracture occurs when the loading exceeds vertebral strength 

due to either a much higher than normal impact loading in physiological 

conditions [39] or compromised bone quality [1, 75, 87, 146]. Loading occurs 

in the form of compression, rotation, shear or distraction forces or a 

combination of these and can be simulated in-vitro by introducing specific 

boundary conditions applied to the specimen. Here, as the scope of the 

study is to investigate the wedge compression fracture (WCF), the aim is to 

replicate fractures falling into the category of anterior severe fractures 

according to Genant et al. [109] as categorised in Table 3. 

Conditions with which to induce a wedge fracture on a single vertebra 

have been proposed by a number of authors. The generally accepted 

conditions are those in which the specimen is subjected to combined 

compression and anterior bending by means of eccentric loading. In studies 

by Tschirhart et al. [39], Whealan et al. [2] or Windhagen et al. [147], the 

authors used a set of hydraulic actuators to simulate such conditions, 

whereas other authors [3, 29, 38, 65, 66, 144] proposed using a ball joint to 

simulate similar conditions at lower cost where fixed single axis loading is 

desired. 

In all the works mentioned, the preloading cycle (e.g. [64, 66] is followed 

by compression of the specimen to failure [39] or to a predefined reduction 

of the vertebral height [3, 64]. This is usually driven either by subjected 

load [64, 146] or displacement of the cross-head through which the load is 

applied [3, 65, 66] with subsequent unloading.  

Typically the load-displacement curve from such loading consists of a 

non-linear toe-region, followed by a linear elastic region until the specimen 

begins to yield reaching the first peak (zero-slope) fracture load.  This is 

typically followed by post-fracture softening which can be explained by 

broken trabeculae of the cancellous bone sliding along each other, with a 

subsequent secondary increase in resilience due to pore-closure and 

densification of the compressed structure. There are however several 

techniques for ascertaining the stiffness: by using a linear fit within the most 

linear region [3, 29, 65], by qualitatively estimating where the slope appears 

to be at maximum, or as a combination of both where the slope is taken from 

the linear fit of a region with highest slope. Although a discussion around 
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appropriate techniques still persists, it seems that the most reproducible and 

robust is the one based on using a strain window [148, 149]. Such technique 

is discussed in more detail by Buckley [150], who states that despite the use 

of the linear fit within a manually selected region being generally accepted, 

using a 1% strain window approach provides better repeatability and a more 

user-independent tool to estimate the stiffness.   

The composition of testing specimens – i.e. number of levels tested - is 

still being debated from using single vertebra [3, 26, 29, 65, 66, 95, 144], two 

functional spinal units (FSU) [64] or multi-segment spinal specimens [2, 39, 

147]. The single vertebra studies show good consistency in simulating the 

wedge fractures, whereas a multi-segment study provides a more realistic 

loading scheme. In the latter, the adjacent intervertebral disks distribute the 

load more in a manner that is more akin to an in-vivo situation. However in 

this case the control of loading is limited.  

Compared to multi-level segments, a single vertebra embedded into 

PMMA guarantees control of the distribution of the load along the endplate. 

A recent finite element study by Maquer et al. [151] showed a good 

correlation between fracture loads determined when VBs were loaded 

through the vertebral disks and when embedded in PMMA. However, the 

study pointed out a distinct difference in damage concentration compared to 

loading a multi-segment. 

A special type of the single vertebra study with boundaries that are even 

more accurately defined is when both the cortical endplates are fully 

removed in order to create two perfectly parallel surfaces [152]. This was 

later improved to give an accurate description of the boundary states by 

using three differential transformers (LVDTs) attached to the top loading 

plate [66]. Such information was later used in developing more accurate FE 

models with the data providing validation [153].  

 Biomechanical assessment in vertebroplasty 2.5.2

The beneficial effect of PVP has been widely presented in clinical 

studies where pain is substantially reduced usually within days of the 

procedure and key studies thereof were presented earlier in the work. This 

keyhole surgical operation is a cheap and efficient way to reduce pain in 

patients treated for vertebral fractures caused by the presence of 

osteoporosis and collapsing vertebrae when cancer metastases are present 

within the spine. However, very little is known about biomechanical aspects 

of the treatment. 
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 Types of augmentation cement 2.5.3

The decision of which cement to administer to a patient is fraught with 

difficulty and currently often relies on surgeon preference, including selection 

from the numerous new formulations that are put forward by commercial 

companies. 

Ceramic cements show satisfying long term results as they remodel and 

are replaced by the surrounding bone, but are often more difficult to handle 

and have specific uses limited to stable fractures due to their lower strength 

which hence cannot provide the initial supportive effect within days after the 

operation. Hence these CaP cements benefit younger patients with good 

bone quality but would be contraindicated for patients with neoplastic 

disease due to concerns regarding the support of metastatic growth. 

The second type of cement, alternative to the ceramic one, is a much 

stronger acrylic material which is however almost five times stronger than 

natural bone and forms a stiff pillar compromising an unnatural distribution of 

loads with the index and adjacent vertebrae. Hence, a lower-modulus 

cement may help in reducing adjacent vertebral fracture.  Nonetheless these 

polymeric cements treat the condition, but sit unaltered in the bone and 

remain as a foreign body. 

 Prophylactic augmentation 2.5.4

Prophylactic augmentation is a way to reinforce the weakened structure 

before the fracture occurs and saves the patient from experiencing 

debilitating fractures. This intervention has so far provided good 

biomechanical results as it can maintain vertebral stiffness while supporting 

the vertebra to reach higher failure loads (e.g. [3, 154]), but it needs 

thorough investigation as most studies lack multi-segment testing which 

would truly reflect the biomechanics of adjacent levels. Moreover, the 

general tendency in clinical practice is not to use this approach as the state-

of-art prediction approaches lack a robust method in defining the weakened 

vertebrae.   

2.6 Predictions of vertebral compression fractures 

 Clinical models to identify vertebrae prone to fracture and 2.6.1

use of numerical models in clinical practice 

Despite increasingly successful treatment modalities such as 

vertebroplasty, a significant number of patients with osteoporosis or 
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metastatic infiltrations are not treated [155]. One of the main contributing 

factors to missing the opportunity for treatment lies in the failure to identify 

the risk factors for fracture.   

Assessing weakened vertebra or progression of osteoporosis is 

challenging and in clinical application it is currently based on empirical 

modelling such as using DXA based t/z-scores [5], a FRAX prediction 

tool [156], Fracture Risk Index (FRI) [157] or Trabecular Bone Score 

(TBS) [158]. All of the models compare the single subject to a large 

population of epidemiologic statistical models.  However, these models do 

not provide patient-specific pathological assessment such as determination 

of fracture risk in metastatic patients or in general in patients with variance in 

distribution of bone tissue, for example those with large deformities or 

osteophytes. 

 Engineering principles in fracture prediction 2.6.2

As published in 2003 by Bouxsein et al. summarising one decade of 

intensive collaboration of the biomechanical community on vertebral 

morphology-strength assessment: “Despite these new insights, important 

issues remained unresolved” [70], furthermore the same author describes a 

necessity to link clinical models with engineering principals to characterise a 

bone’s ability to resist fracture.  

Here, one of the first models was proposed [64], a simple engineering 

principle taken from a strength assessment gained when subjecting structure 

to compressive loading. The author used the product of the volumetric BMD 

(representing characteristic of the material) and the endplate area. Later the 

model was altered to match engineering structural principles of the weakest 

slice and the product of BMD and minimal cross-section area was 

used [148]. Both methods, using the endplate or minimal cross-sectional 

area, showed good correlation when predicting the vertebral strength 

(˜R2=0.6 for endplate area[64] and ˜R2=0.7 for minCSA [66]). Despite a high 

correlation between predicted and tested vertebral strength, from an 

engineering point of view, this approach is successful only when subjected 

to pure compression with a lack of flexural moment. It is due to this missing 

component of accounting for bending forces that they fail to predict anterior 

compression fractures where eccentric forces are implied. Moreover, despite 

its relatively good results in correlation to in-vitro experiment strength values, 

the method also fails to assess the vertebral weakness qualitatively. 
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The Finite Element (FEA) approach has in the last decade been shown 

to be a useful tool in assessing the behaviour of the bone when subjected to 

extensive load (e.g. [26, 28, 65, 66, 151, 159]). Such models are effective 

tools in underpinning the basic science and have worked well in helping to 

design an appropriate experimental setup prior to cadaver testing. FE 

models have also shown potential in accurate prediction of fractures [66], 

even in samples such as those with metastatic infiltration [160, 161].  

A summary of the different approaches used for predicting 

biomechanics of vertebral bone in Table 4 indicates a widespread range of 

success. Here, beside a more conventional indicator of correlation 

(coefficient of determination (R2)), published data were also reanalysed to 

provide the mean difference and limits of agreements (± 1.96 standard 

deviation) as a measure of the statistical metric of agreement between 

measured and predicted datasets as proposed by Bland-Altman [162]. Each 

dataset was obtained from published predicted-measured plots using plot 

digitising software [163].   

Comparison shows that more sophisticated methods have relatively 

good prediction power (between 0.78 and 0.96) but similarly to other 

methods often do not agree with experimental data also with respect to the 

1-1 line. This is in the majority of cases due to a limited number of samples 

counterbalanced by repeating optimisation of the sample-specific model.  

Even though the FE approach shows promise once the model is 

properly calibrated, it faces challenges such as the fact that it often requires 

(i) well defined boundary conditions; (ii) complex geometry which comes with 

demanding high computational requirements; and (iii) demanding resources 

in terms of high resolution input images. Even though high resolution images 

for voxel based models (e.g. [112, 164]) can be obtained ex-vivo using 

techniques such as XtremeCT (side of an isotropic voxel down to 0.082mm) 

or microCT (down to 0.004mm), in-vivo modelling is limited to homogenised 

FE models [65, 165] from qCT images (2-0.5mm depending on allowed 

radiation exposure). Moreover, due to the challenging computational 

complexity the computational models often have their number of elements 

reduced in order to minimise the computation time required [166]. This 

however results in an influential partial voxel effect where for illustration a 

single trabecula (thickness ˜0.1mm) can fit the voxel in cross-section ten 

times and the cortical shell (thickness ˜0.3mm) almost three times. Despite 

these challenges the FE approach shows promising results even in post-

yield characteristics [153] with accurate input data and boundary conditions. 
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Authors No. of 
samples 
(donors) 

Demog
raphics 

Age of 
donors 

In-silico to experiment strength prediction 

In-silico 
approach 

R
2
 Mean 

[kN] 

LoA 

[kN] 

Boundary 
conditions 

Dall’ara et 
al. [167] 

N=37(10) OP 44-82 analytical: 
minCSA*BMD 

0.70 N/A
‡
 ±1.81 EPs, PEs 

Removed 

Crawford et 
al. [65] 

N=13(13) OP 37–87 analytical: 
minCSA*BMD 

0.65 N/A
†
 ±2.64 EPs Fixed,  

PEs Removed 

Zainali et 
al. [168] 

N=9(3) OP 42
‡
 analytical:  

axial rigidity 
(σuBV/TVmin) 

0.85 -0.85 ±0.68 EPs Fixed,  

PEs Removed 

Buckley et 
al. [148] 

N=27(30) OP 80-97 analytical:  

axial rigidity 
(EAmin) 

0.80 N/A
†
 ±1.28 EPs Fixed,  

PEs Removed 

Windhagen 
et al. [147] 

N=30(30) mixed* 48-99 analytical:  

axial rigidity 
(EAmin) 

0.85 N/A
†
 ±1.18 3 levels 

segment 

Whelean  

et al. [2] 

N=18(34) mixed* 37-102 analytical:  

beam theory 

0.69 -0.43 ±1.24 3 levels 
segment 

Crawford  

et al. [65] 

N=13(13) OP 37–87 linear elastic FE:  

voxel-based 

0.85 -1.3 ±1.86 EPs Fixed,  

PEs Removed 

Dall’ara  

et al. [167] 

N=37(10) OP 44-82 non-linear FE: 
homogenised 

0.78 1.28 ±2.10 EPs, PEs 
Removed 

Pahr  

et al. [169] 

N=37(10) OP 44-82 non-linear FE: 
homogenised 
calibrated 

0.92 0.1 ±0.96 EPs, PEs 
Removed 

Zainali  

et al. [168] 

N=9(3) OP 42
‡
 linear elastic FE:  

voxel-based 

0.82 -0.04 ±0.84 EPs Fixed,  

PE Removed 

Zainali  

et al. [168] 

N=9(3) OP 42
‡
 linear elastic-

linearly plastic 
FE: voxel-based 

0.92 0.86 ±0.53 EPs Fixed,  

PE Removed 

Buckley  

et al. [170] 

N=75(44) OP 54-97 linear el.-perf. 
plastic FE: 
voxel-based FE 

0.80 -0.38 ±1.32 
EPs Fixed,  

PE Removed 

… table continued on following page… 
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Authors No. of 
samples 
(donors) 

Demog
raphics 

Age of 
donors 

In-silico to experiment strength prediction 

In-silico 
approach 

In-
silic
o 
appr
oac
h 

In-
silico 
appro
ach 

In-
silico 
appro
ach 

In-silico 
approach 

Imai  

et al. [171] 

N=12(4) mixed** 31-83 linear el.-perf. 
plastic FE: 
homogenised 

0.90 -0.05 ±0.57 EPs Fixed,  

PE Removed 

Imai  

et al. [171] 

N=12(4) mixed** 31-83 linear elastic-
linearly plastic 
FE: 

homogenised 

0.96 0.25 ±0.51 EPs Fixed,  

PE Removed 

Chevalier  

et al. [172] 

N=12(4) OP 47-83 fabric non-linear 
FE:  

voxel-based 

0.76 1.94 ±2.03 EPs Fixed,  

PE Removed 

Chevalier  

et al. [172] 

N=12(4) OP 47-83 fabric non-linear: 
homogenised 

0.89 1.75 ±1.55 EPs Fixed,  

PE Removed 

Legend: “Mean” - mean of difference between experiment and predicted strength, “LoA” – limits of agreement;  
Demographics: “OP” - healthy or osteoporotic, “mixed*” - simulated lesions, “mixed**” –author’s note gives a list of 
deaths including one from bladder cancer (not distinguished in statistics); Age of donors: “42

‡
” average donor age 

(range not listed); Mean: “N/A
†
” data pooled from retrospective linear fit; Boundary conditions: “EP fixed” - both 

endplates were embedded in parallel PMMA end-caps, “PE removed” - posterior elements were cut/trimmed at 
vertebral body, “Bot EP fixed” - bottom endplate embedded in PMMA whilst PMMA “impression” positioned on top 
endplate, “NU intact” - neural arch was kept intact whilst processes were trimmed 

Table 4 Comparison of assorted in-silico approaches used in vertebral 

body fracture prediction models  

A compromise to the complex FE modelling method is the use of 

engineering principles known as composite beam theory which is then 

applied to the bone structure. Such an approach was for example used by 

Snyder et al. [145] and on whole vertebral bodies by Nazarian et al. [68] 

where cored metastatic samples were subjected to stepwise loading. Here, 

the density information obtained from the tomographic examination is 

converted to a modulus map and the weakest slice is identified as a slice 

with minimal strength. Compared to the complex FE modelling, the limitation 

of this approach is that apart from identifying the weakest slice it lacks a 

qualitative aspect of evaluation. However, the method has been shown to be 

superior in providing better correlation to experimental strength then BMD 

standalone or BMD X minCSA. The full potential of this technique still needs 

to be explored including within the clinical setting.  
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2.7 Morphology and material properties of the bone 

 Material properties of human bone 2.7.1

Bone as a hierarchical material can be investigated on different levels of 

its composite structure. Pooled from literature [55, 173-175], the trabecular 

bone has hierarchical mechanical properties at the following levels: 

i. Macroscale: “At the whole organ” (in order of cm, stiffness ˜1.5kN/mm) 

ii. Mesoscale: At the trabecular bone (in order of mm, Young’s modulus(E)= 

˜0.5 GPa) 

iii. Microscale: Bone structural unit (single trabecula) (order or 100s µm, E= 

˜15GPa) 

iv. Sub-microscale: Single lamella level (2-7 µm, E= ˜30GPa) 

v. Nanoscale: Mineralised collagen fibrils and Hydroxyapatite crystals (order 

of 100s nm, E=˜1GPa and 100sGPa respectively) 

Only limited work has been done to assess the material properties at the 

nano-scale, the undertaking of which remains technologically challenging. 

Experimental challenges were however bypassed using the computational 

approach of multiscale modelling [177-179]. 

At the sub-microscale, the single lamella can again be investigated by 

computational modelling as a composite of a matrix embedded network of 

preferentially oriented fibrils reinforced by apatite crystals [175, 176, 180, 

181] or by means of diamond tip indentation tests adopted to such a small 

scale (nano-indentation) [174, 182].  

Stepping up to mesoscale, the single trabecula can be measured by 

means of micro-indentation; here the hardness and stiffness can be derived 

from indenting the bone tissue with a tip substantially larger than the 

trabecular lamellae. Results show that both the hardness and stiffness were 

independent of age, gender or progress of osteoporosis [36, 183, 184] and 

this was confirmed even at the lamellar level [185, 186]. Even though the 

bone tends to act as an anisotropic material, studies by Wolfram et al., Rho 

et al. [36, 51]describe it as transversally isotropic with a ratio of 

longitudinal/axial anisotropy ranging only from 1.1 to 1.3 (at its largest in 

cranio-caudal bone orientation direction).   

To this point there is only one study in the literature where metastatic 

bone has been assessed. Here, Nazarian et al. [68]reported that both the 

hardness and stiffness measured by means of nano-indentation are half of 
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the values when compared to osteoporotic and healthy patients. However, 

the reported values of the elastic tissue modulus of healthy bone (0.47 GPa) 

are almost two orders of magnitude lower than the ones reported in the 

literature (~10-20 GPa depending on the sample conditions and anatomical 

sites e.g. [184, 187]) This indicates possible problems in their experimental 

procedures or a large effect of damage on the bone indentation 

properties [35] which is typical for bone subjected to yield. This is also later 

contradicted in the same publication when cored samples from the same 

donors were subjected to compression at mesoscale (results comparable 

with those published elsewhere [30, 188, 189]) and it was concluded that 

metastatic trabecular bone biopsies showed similar mechanical properties 

(elastic modulus and yield strength) compared to osteoporotic bone once 

bone density was accounted for [68]. 

 Bone material models for fracture prediction 2.7.2

Bone mechanical behaviour modelling and fracture prediction are for 

obvious reasons strongly dependent on the specified material properties 

(e.g. [190]). The bone material model determines the properties of the 

element and if not set correctly will result in a poor agreement between the 

simulation and the modelled physical situation. By using modern imaging 

tools such as CT, the aspect of variance in porosity can be accounted for; 

nevertheless the bone material model derived from density-based imaging 

tools has still not been adequately investigated. 

This section discusses experimentally obtained material models with a 

focus on using the models from CT-data and the mathematical relation 

between the modulus of elasticity (E) and measured tissue density (ρ). 

Through a series of experiments Kayak et al. [191] reported that hydrated 

tissue mass correlates to the mass of bone tissue when burned to an ash 

and similarly to its density, measured by means of tomography assessment 

with high correlations between all steps reported (ρdry->ρash r=0.996 and   

ρwet->ρash r=0.99, ρash->ρct r=0.98). Although the correlation in the reported 

study was not presented alongside indications of the agreement, the study 

strongly indicates that the non-mineral component of the bone remains 

consistent and therefore the density-based imaging tools, even though 

predicting only the mineral component of the bone, can be used to predict 

material properties of tissue in-situ. To clearly summarise, the definitions of 

the densities used in literature and within this study are defined in Table 5. 
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Nomenclature Abbreviation Units Details 

Apparent 
density 

ρapp 
𝑔

𝑐𝑚3
 

ℎ𝑦𝑑𝑟𝑎𝑡𝑒𝑑 𝑡𝑖𝑠𝑠𝑢𝑒 𝑚𝑎𝑠𝑠

𝑢𝑛𝑖𝑡 𝑣𝑜𝑙𝑢𝑚𝑒
, as derived from 

experimental measurement 

Apparent dry 
density 

ρdry 𝑔

𝑐𝑚3
 

𝑑𝑟𝑦 𝑡𝑖𝑠𝑠𝑢𝑒 𝑚𝑎𝑠𝑠

𝑢𝑛𝑖𝑡 𝑣𝑜𝑙𝑢𝑚𝑒
, as derived from experimental 

measurement 

Ash density ρash 𝑔

𝑐𝑚3
 

𝑎𝑠ℎ 𝑐𝑜𝑛𝑡𝑒𝑛𝑡

𝑢𝑛𝑖𝑡 𝑣𝑜𝑙𝑢𝑚𝑒
, as derived from experimental 

measurement 

CT density ρct HU derived from attenuation coefficient (mineral 
component only), calibrated against 
phantom with known density 

Bone mineral 
density 

BMD(vBMD) 
or ρBMD 

𝑚𝑔𝐻𝐴

𝑐𝑚3
 

 

𝑚𝑖𝑛𝑒𝑟𝑎𝑙 𝑐𝑜𝑛𝑡𝑒𝑛𝑡

𝑢𝑛𝑖𝑡 𝑣𝑜𝑙𝑢𝑚𝑒
, units based on calibration 

phantom used 

radiographic 
BMD 

BMD(aBMD) 𝑔

𝑐𝑚2
 

𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑒𝑑 𝑚𝑖𝑛𝑒𝑟𝑎𝑙 𝑐𝑜𝑛𝑡𝑒𝑛𝑡

𝑎𝑟𝑒𝑎
 

Bone volume 
fraction 

BV/TV 1 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑒𝑑 𝑏𝑜𝑛𝑒 𝑣𝑜𝑙𝑢𝑚𝑒

𝑢𝑛𝑖𝑡 𝑣𝑜𝑙𝑢𝑚𝑒
, strongly dependent on 

BMD-to-BV/TV conversion or segmentation 
method used 

Porosity - 1 1 − 𝐵𝑉/𝑇𝑉 

Table 5 Technical annotation of different densities and density-based 

morphological indices 

In order to postulate a relationship between the density and stiffness of 

the bone, experimental testing needs to be performed. This approach for 

assessing the material properties usually comprises platen testing [111, 188, 

191-198], 3 point bending [199, 200] and the use of end-caps [196, 201, 

202].  In the platen test, samples are compressed between two plates and 

the stiffness is derived from the load-deformation curve recorded by the load 

cell. The end-cap method tries to avoid detrimental consequences (artefacts) 

due to structural and frictional end-effects at the interface between the 

sample and platen by casting the bone’s end into a PMMA disk [196]. The 

three-point bending test is predominantly used for long bones but was used 

also by Snyder at al. to investigate stiffness of the cortical bone [200]. 

Supported by the authors listed above the mathematical relation 

between density and modulus can be expressed thusly as a power law (eq. 

(1.1)): 

 𝐸 = 𝑎 + 𝑏𝜌𝐶  (1.1)  
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From the literature, for human trabecular bone “a” generally does not 

notably differ from 0, “b” varies from 0 to a few 10s, and the density powered 

by “c” varies from 0 to ˜3 (an average of 1.76 for pooled literature data). 

The predominant nomenclature has not been agreed on within the 

literature, and the nature of the density used in publication models varies 

from ρapp [149, 165, 194, 195, 197, 199, 200, 202-205], ρdry [188, 193], 

ρash [191, 192, 198], ρBMD [201] to BV/TV [33, 111], with each presenting a 

notably different material model. Any comparison of different models should 

be hence undertaken with appropriate normalisation. For example a 

publication by Helgason et al. [189]provided a comparison of models for 

human bone using known conversions between densities to normalise the 

input variable all to ρapp and normalise strain rates [206]. Such a 

normalisation however still showed a notable discrepancy between the 

results from different publications even for the same anatomical site and 

type of bone. 

The same authors conclude that although normalised, the dataset 

“cannot be assumed equally valid and cannot be pooled together 

statistically, to derive an average elasticity–density relationship”. They 

propose a retrospective numerical material model tuning using a training set 

to extrapolate a representative material model for a specific model. 
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  Chapter 3

Development of a fracture prediction tool 

The first objective of this thesis was to develop a fracture prediction tool 

for laboratory use which would allow improved assessment of vertebrae for 

use in designing experimental studies and potentially as a prophylactic 

augmentation tool where the weakened vertebra is targeted before the 

fracture occurs. This chapter hence focuses on developing such a tool while 

presenting verification and validation studies using cadaver samples 

representing structurally compromised vertebrae. The sections of this 

chapter comprise three distinct subchapters: 

i. Section 3.1 introduces the theoretical approach required to 

underpin the image processing based fracture prediction followed 

by detailed development steps of the composite beam theory 

fracture prediction tool. Moreover this section comprises initial 

validation using historical data. 

ii. Section 3.2 introduces the experimental protocol for testing a 

single vertebra used for structural assessment. This section also 

provides a full list of samples used for the purpose of this study, 

highlights methods of cadaveric testing and scanning and 

includes the initial fracture assessment of pathological samples 

diagnosed as osteoporotic (OP) and multiple myeloma cancer 

bone (MM) as well as samples from spines infiltrated with 

metastases (mets).  

iii. In the final section of this chapter (section 3.3) the proposed 

fracture prediction tool is deployed in order to predict the strength 

of weakened vertebrae in comparison to an actual experiment. 

Furthermore, the fracture prediction tool is tested to observe 

whether the time required for assessment is reduced, followed by 

a calibration of the material-law used. 

Each chapter comprises of an Introduction subsection, putting literature 

findings to appropriate context followed by the methods used, the results of 

the study and a discussion thereof. The entire chapter is then briefly 

summarised in the last section. 
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3.1 Development of an in-silico fracture prediction tool 

 Introduction to vertebral bone fracture prediction 3.1.1

Based on engineering principles, the structural properties and related 

fracture behaviour of a bone are attributes of a geometrical pattern 

combined with material quality. The geometrical disposition reflects the state 

of a bone which is prone to failure due to unnatural morphological 

changes [207] and is often undervalued by studies which present this only in 

the examination of healthy or heterogeneously affected tissue such as 

osteoporotic tissue. The  quality of underlying material properties results 

from the biochemical equilibrium in the microenvironment of the bone [49] 

and is represented by the spatial stiffness and yield potential. When 

combined, these attributes represent the structural rigidity of the organ and 

also, if being analysed quantitatively, contain information about whether 

bone is prone to fracture. 

Although the collagen component of a bone composite cannot be 

assessed using computed tomography (CT) a high correlation between the 

apparent and mineral density has been reported in literature [198]. Human 

bone tissue mineral composition appears in tomography images as a 

attenuation magnitude approximately equivalent to 1.5 gHA/cm3 [49]. Here, 

every prismatic reconstructed image unit (voxel) represents a ratio of mineral 

components within a particular volume which can vary from negative values 

(due to calibration where air appears at approximately -0.1 gHA/cm3) to the 

total maximum density of the bone. Hence, if the scanning resolution allows 

and the voxel is situated entirely inside the bone, a coarsening of the 

resolution will result in a variation between those two values, the so-called 

partial volume effect. This is important to understand in order to distinguish 

between prediction models based on a segmented (BV/TV) image and 

density based modelling. To some extent, the partial volume effect can be 

used as a measure of the porosity of the trabecular bone on a sub-voxel 

scale. This approach avoids a common issue in which the bone is 

segmented in an insufficient resolution but with an appropriate material 

model to represent a conversion between the partial content of the bone and 

the related modulus of elasticity.  

3.1.1.1 Finite Element modelling in WCF  

Mainly due to the recent availability of high performance computers, 

several studies also investigated the use of a finite element approach for 

assessing the material properties of the bone. Such an approach shows 
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substantial potential, particularly due to the convincing physical background 

of the method. This assures robustness and allows for the possibility of 

extending the same principles to different loading conditions. Also, 

compared to more simplistic analytic theories it can help to underline 

damage or fracture localisation and can be also deployed to investigate 

post-yield behaviour of the fractured bone [153]. However, there are many 

limitations to using this sophisticated approach such as well-defined 

boundary and loading conditions or computational time and costs [166]. As 

an example, one study [172] documented the time dependency of 72 

simulations of surface-based models and 12 simulations of voxel model as 

long as 60 days of cumulated processing time. 

3.1.1.2 Fast and simplistic engineering principle models 

This section compares data drawn from literature to find a relatively fast, 

yet reliable, straightforward method which could be used as a fracture 

prediction tool.  

Brinckmann et al. [64] proposed a prediction based on the product of the 

endplate area and BMD, giving agreement between the experimental and 

predicted strengths of R2=0.66 which was later improved by a more 

meaningful model representing the mechanic of solids in which the endplate 

area was replaced by a minimal cross-sectional area of the sample. Using 

this model, various authors [65, 167] observed correlations ranging between 

R2=0.65 and R2=0.70. When accounting for varying densities regardless of 

distribution, different studies [147, 168, 170] obtained even more reliable 

predictions ranging from R2=0.8 to R2=0.85. All three authors, despite using 

different notations, employed the axial rigidity of the weakest slice as the 

measure of the organ’s strength when subjected to compression. Similar to 

the model investigated in this study, Whealan et al. [2] have further shown 

that by adding a parameter accounting for flexural rigidity and incorporating 

both the variations in density together with spatial distribution, the prediction 

correlates much closer with experimental data when the sample is also 

subjected to combined loading. Here, according to physical principles, the 

authors used the engineering composite theory combining axial and flexural 

rigidities using a slender beam approximation, which resulted in a more 

robust structural assessment which is applicable to different test sets and 

loading conditions compared to pure compression models. 

Here, the composite beam theory has already been proven [65] to be 

competitive to computationally demanding finite element (FE) modelling 

where the requirement for high precision scanning as a precursor to FE 



- 45 - 

modelling still hampers clinical usability. This engineering beam theory has 

also been suggested to be superior to those methods based on BMD of the 

bone used in clinical practice [2]. However, this methodology has never been 

robustly validated against a wider range of neoplastic pathologies. This 

section aims to encompass a solid theoretical background for the proposed 

fracture prediction tool. It describes the development of the tool and presents 

subsequent verification and validation on historical data. Later this method 

will be used in a cadaveric study comprising three morphologically distinct 

pathologies. 

 Methods used in development of the fracture prediction tool  3.1.2

3.1.2.1 Composite theory approach 

The theoretical approach for determining strength comes from a coarse 

simplification based on the assumption that the whole spinal structure is a 

single unit. Based on the Euler-Bernoulli beam equation, the stresses in 

such a construct can be analytically assessed to determine its strength. A 

long thin unit under combined loading such as compression and bending can 

be simplified to a single slender beam. Then the stress is linearly distributed 

from the neutral axis to the most distant point on the beam’s surface. In the 

region of linear stress-strain curve, where the simplified Hooke’s law is still 

valid, the stress (σ) is proportional to the product of strain (ε) and elastic 

modulus (E):  

 𝜎 = 𝜀𝐸 (1.2)  

In the case of combined compression and bending, the strain (ε) at a 

particular distance from the bending (neutral) axis becomes: 

 𝜀 =
𝐹𝑍

𝐸𝐴
±

𝑀𝑦𝑐

𝐸𝐼𝑦
±

𝑀𝑥𝑑

𝐸𝐼𝑥
 (1.3)  

Here Fz corresponds to the compression loading whereas EA and EI 

represent the axial and bending rigidity and My is a measure of loading 

corresponding to moment loading. The maximal strain occurs at the most 

distant point from the neutral axis. Here, the theoretical assumption 

determines that the point of the highest strain will be positioned directly on 

the axis of symmetry which intersects with the load axis. This results in the 

assumption that “c” represents the distance between the point of highest 

strain and the neutral axis, whereas “d” is to be substantially lower allowing 

the contribution of the moment Mx to be disregarded (more on bi-axial 

eccentric loading and asymmetric beam theory can be found in Appendix G: 

Bi-axial eccentric loading) 
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Hence for a known strain at which the fracture starts to propagate 

(component ε) and at a given geometrical distribution (components “c”, “A” 

and “Iy”) with known material properties (E), a maximum load at this strain 

can be established. Furthermore, a strong relation between the measured 

mineral density and its material properties suggests that the spatial elastic 

modulus (E(x,y)) at every element of the tissue can be related to density from 

tomography images following a power law material model (eq. (1.4)): 

 𝐸(𝑥,𝑦) = 𝑎 + 𝑏𝜌(𝑥,𝑦)
𝐶  (1.4)  

Subsequently, the bending stiffness component can be assessed 

according to equation (1.5): 

 𝐸𝐼𝑦 = ∑ 𝐸(𝑥,𝑦) 𝑥𝑖
2 𝑑𝑎 −  𝐸𝐴𝑥𝐸𝑐𝑒𝑛𝑡𝑟

2

𝐴

𝑖=1

 (1.5)  

Here the second term translates as the second moment of area 

weighted by the spatial elastic modulus from the spatial coordinate system 

axis into the neutral axis. As the neutral axis is assumed to be identical to 

the modulus weighted centroid, its position is defined by: 

 𝑦𝐸𝑐𝑒𝑛𝑡𝑟 =
∑ 𝐸(𝑥,𝑦)𝑦𝑖 𝑑𝑎

𝐸𝐴
 (1.6)  

 𝑥𝐸𝑐𝑒𝑛𝑡𝑟 =
∑ 𝐸(𝑥,𝑦)𝑥𝑖 𝑑𝑎

𝐸𝐴
 (1.7)  

Together, this represents an analytical approach which can be adapted 

to any structure where material properties and geometrical distributions 

under certain loads are known (Figure 8). 

 

 

Figure 8: Engineering beam theory principles used in predicting 

vertebral strength during the wedge compressing fracture 
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3.1.2.2 Implementation of the composite beam theory into a 

comprehensive computational package 

Structural analysis used in this approach combines CT images with 

minimal user interference estimates of the vertebral body strength. Firstly 

data taken from scans is loaded and converted into bone density. Secondly 

the vertebral body is masked from the surrounding areas. Finally a structural 

assessment, where the estimated bending and axial stiffnesses are 

combined using the beam theory, is used to estimate the minimal load 

required to induce fracture to the sample under given conditions. The 

detailed flowchart presented in Figure 9 illustrates blocks of operations 

delivered, from acquiring the CT images to reporting the predicted vertebral 

body strength.   

A number of theoretical assumptions have been implemented as 

described in the previous section. Each axial image is considered as a 

cross-sectional cut of a slender beam with a modulus map defined directly 

by its local density distribution. In summary, the approach combines the 

bone strain (ε), axial rigidity (EA), bending rigidity (EI), geometrical distances 

between the neutral axis and load axis (a) and the most distant anterior point 

(c) and the body mask described in detail in section 3.1.2.3. The loading axis 

position and mid-sagittal plane orientation are derived from the experimental 

setup once defined by the user.  

The bone strain (ε) corresponding to the fracture was set to 1% 

according to Keaveny et al. [195]. EA is estimated as a sum of all the 

density-based elastic moduli over the cross-section of the vertebral body, 

whereas EI is based on the moment of inertia which is obtained from a 

relationship of the voxel’s normal distance to the axis perpendicular to a mid-

sagittal plane intersecting the modulus weighted centroid squared.  

To minimise an error due to misalignment, the script was adapted to any 

possible position of the image and hence the neutral axis does not have to 

align to the image matrix and is defined according to the anatomical plane of 

the measured specimen in general. The predicted fracture force is 

equivalent to the uniaxial force needed to induce the fracture at the same 

loading point as in the experimental setup. Here, the weakest slice is 

identified by analysing axial slices one by one, giving the estimated load, 

hence the one with the lowest Fz is the predicted fracture load of the sample.  
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Figure 9 The fracture prediction tool developed in this work comprises 

steps in which VB cross-sectional boundaries are obtained by a 

series of morphological operations, then each voxel within this 

mask is converted to an elastic modulus with which to create a 

series of modulus maps of the axial slices. Vertebral strength is 

taken as yield load of the weakest slice 
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The output of the tool is presented as the predicted fracture load, 

bending rigidity and axial rigidity and represents the area of the weakest 

cross-sectional slice. A Graphical User Interface (GUI) has also been 

developed (depicted in Figure 10). The output results are saved to a 

separate file together with a modulus map of the weakest slice highlighting 

the position of the modulus weighted centroid, the load axis and the most 

anterior and posterior points of each particular slice.  

 

Figure 10 Graphical User Interface (GUI) designed for purposes of the 

fracture prediction tool 

3.1.2.3 Vertebral body image segmentation (masking) 

A series of binary image processing morphological operations has 

shown to provide a good compromise in terms of defining sufficiently 

accurate border detection (volume estimation) in a sufficiently short time, 

even when using a standard desktop PC. This approach was hence adopted 

in order to allow the tool to detect the vertebral body to minimise the length 

of calculations and to establish the most distant point in the vertebral cross-

section. This approach was tested on different pathologies to assess its 

versatility and was validated experimentally against volume estimation. The 

following section details the particular background of such an approach.  

A CT image can be represented as a three-dimensional array of 

attenuation coefficients expressed in grey-scale values. The spatial unit of 

the image-voxel (a three-dimensional pixel) comprises isotropic single value 
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information of a specific dimension depending on the scanning parameters 

and the resolution. Volumetric measurements are derived from the known 

voxel volume. Secondly, using the simple isometric voxel edge size, the 

distances and area measurements can be similarly derived.  

To define the VB mask (i.e. to define a cross-sectional area slice-by-

slice) and to automatically identify the most distant point of the vertebra, a 

semiautomatic subroutine was compiled in a computational environment 

using MATLAB [208]. The cross-section of a VB was established using two 

distinct sub-programs with additional subroutines. In the first program, the 

image in every slice was binarised based on a histogram cut and then 

filtered to remove disconnected elements with sequential flood fill 

morphological operations such as extrusion and dilation. All variables here 

listed are first predefined by the user according to the scanning resolution 

used and the quality of the bone, where for resolution of 70.8μm voxel edge 

size typical values may vary from 400-700mgHA/cm3 and 10-50 voxels for 

flood fill operations and increasing with increased resolution (due to lower 

partial volume effect). This step was repeated until the surrounding noise 

was removed providing clear and smooth boundaries of the vertebral body, 

as seen in the example in Figure 11 which shows the development and 

validation of the approach using porcine samples. Consecutively, this was 

repeated for every slice from the top to the bottom vertebrae with minimal 

intervention from the user.   

However, as the tool is dependent on the difference between the degree 

of density inside the bone and the background, the automatic boundary 

estimation can be hampered for samples with a very low bone density or 

large lesions. The degree of rectitude is automatically assessed by 

comparing an area in the current slice to the area of the previous slice and if 

the criterion falls out of the tolerance area specified by the user, the border 

line is replaced by the one from the previous slice. This approach was 

shown to be sufficiently expedient and useful in non-uniform pathological 

samples and especially in samples with a high degree of lytic infiltration. In 

some cases the boundaries needed to be corrected manually. The manual 

correction (Figure 13) combined with the previously described self-correcting 

routine (Figure 12) have been proved to be suitable in all cases where the 

automatic tool failed to provide the boundaries independently. This 

subroutine significantly minimises pre-processing time with minimal effect on 

the final modulus map differences and needed to be deployed only on the 

more morphologically altered vertebrae.  
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Figure 11: Vertebral body boundary estimation: a microCT image is 

first taken and binarised according to a pre-set histogram 

threshold value, this is followed by a number of morphological 

operations such as filling the gaps and removing disjointed 

particles before the final mask is obtained (A). As shown in the 

GUI snapshot (B) this method can account even for more 

challenging low density human cadaver samples 

B.) 

A.) 
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When the fracture prediction tool is used, the defined boundaries are 

displayed for every slice indicating the proposed edge as a thin white line 

superimposed on the original image (such as depicted in Figure 11 and 

Figure 13 (C)).  The user can then determine if the boundaries have been 

estimated correctly, apply the self-correction subroutine, change the 

parameters for both subroutines and either re-run the analysis or perform a 

manual correction. However, it was found that the manual correction was 

needed only for analysis of the historical data where samples had been 

scanned in air without removing the air-bubbles. Since then, the self-

correction subroutine was shown to be a sufficient tool for capturing 

incorrectly proposed boundaries.  

 

Figure 12 Manual correction of the VB boundaries combined with area-
based filtering algorithm. The area-based filtering algorithm 
identifies slices where the pixel count of the masked area 
suddenly changes with respect to the previous slice. If such a 
step change occurs, the border is replaced with the previous one 
until the slice where the border area falls back into a user-
specified difference between calculated cross-sectional areas is 
reached  
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Figure 13 Manual correction of boundary outlines. In case of a 
“morphologically challenging” sample (e.g. very low trabecular 
bone density or metastasis), manual correction is required. Such a 
problem can occur due to a low density gradient between the bone 
and the background (A). In such cases manual correction (B) 
allows the user to correct the boundaries to include the whole 
vertebral body (C) 

3.1.2.4 Analytical verification and surrogate model validation 

In order to verify the tool, a comparison to a simplified scenario was 

conducted. Verification consisted of comparing estimated strength, axial and 

bending stiffnesses. In-silico and analytical values were compared firstly on 

samples of a simple homogeneous shape and later against a simple shape 

consisting of a non-homogeneous sample of up to six different material 

stiffnesses (Figure 14).  

The results of the comparison are reported in Table 6 and show only a 

small difference found in EIy and Fz. This was attributed to an error 

introduced by a user-based definition of the most anterior and most posterior 

points. This was further verified by setting the points as precise coordinates, 

which resulted in diminished difference between both values. The results 

presented here match the output values from the script, hence the script can 

be considered to be verified.  

A.) B.) 

C.) 
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Figure 14: Analytical verification of the fracture prediction script. A 

false image of a sample consisting of composite layers of varying 

stiffnesses was imported as a simulated CT image. Points defining 

the AP-axis were imported manually (green markers at the margin 

of the composite) and load axis was defined at 25% of the AP axis 

(green “o” marker) 

The script has been further validated using a set of surrogate models 

manufactured to represent infiltrated metastatic vertebra in which the 

strength was compromised due to location of the lesion (Figure 15). Tested 

plastic models were manufactured using two different prototyping methods, 

Stereo-lithography (SLA) and Selective Laser Sintering (SLS) prototyping 

methods in which the position of lytic infiltration has been altered according 

to a range of lesion locations. The gross vertebral body measures were 

taken from literature [209] and as further depicted in Figure 15 the lesion 

was represented as an empty void located anteriorly, anterio-laterally and 

posterio-laterally. The last model represented a non-infiltrated vertebral body 

without any lesion. 

As a result, the predicted values strongly correlated with the 

experimental data (also depicted in Figure 15) for the whole range of 

experimentally obtained strength values (from 1.6 to 18.4kN). The strain at 

yield had to be adjusted to that prescribed for the Nylon 12 material (=22%) 

according to technical specification. However, no uniaxial tests to establish 

this value independently were carried out. For adjusted strain the mean 

difference was found to be -2.92kN with limits of agreement of ±2.39kN. 

Despite the lack of accurately measured material properties, this study 

showed two important findings: (1) despite the notable offset of the predicted 
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values, most probably due to incorrect yield strain for the particular 

polymeric material, it has been shown that the in-silico tool accounts for 

macroscopic imprint due to the presence of metastases with a strong 

correlation and (2) in agreement with other authors [210, 211], the position at 

which the lesion occurs leads to a significant effect in terms of the strength, 

which is implied by a strong correlation between predicted and experimental 

strength distributed from strongest (no lesion) to weakest (anteriorly-located 

lesion).  

The experimental part of the work has been carried out by 3rd year 

project student, Eveline Sleiman [212]. The results have been implemented 

into the script and reanalysed by the author of this work. Here the 

experimental model has been compared to the in-silico approach in which 

the weakest slice, fracture load [kN], axial rigidity [kNm2] and bending rigidity 

[kN] were estimated.  

 In-silico Paper 

calculated 

EA [kN] 2.7106 x105 2.7106 x105 

EIy [kNm2] 2.2430 x102 2.2534 x102 

Fz [kN] 7.4963 x102 7.5139 x102 

Table 6: Analytical verification of the mathematical solution which was 

used in the fracture prediction tool. Results show very negligible 

difference even when manual definition of AP points has been 

conducted (when defined numerically with pixel precision, the 

results were identical) 
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Figure 15 Validation study of the fracture prediction tool using 
surrogate plastic models representing different scenarios of 
metastatic infiltration. The blue arrow indicates metastatic 
infiltration in the human vertebral body modelled as a void in a 
simplified vertebral body. Models are listed from left to right 
according to their strength (anteriorly positioned vertebrae 
resulted in the highest strength compromise compared to healthy 
vertebrae on the right) 

Here, finding (2) suggests that the anterior lesions have the greatest 

effect on vertebral strength in all investigated scenarios whereas posterior 

lesions have minimal or no effect on vertebral strength compromised for the 

investigated loading condition. These results are in accordance with the 

occurrence of vertebral collapse observed in-vivo [211]. Here both findings 

suggest that accounting for bending rigidity in the beam theory principle has 

a strong potential in vertebrae with an osteolytic reaction. 
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3.1.2.5 Fracture prediction tool validation using historical data 

Initially, the developed fracture prediction tool was tested on samples of 

subjects with varying BMD distribution. This was done in order to verify the 

usability of the approach on oncological samples. This subsection describes 

data collection and retrospective use of the tool on historical data.  

Fracture data and microCT images were pooled from previous studies 

where single vertebrae were experimentally tested to induce fracture. The 

collection criteria were defined thusly:  

i. A single vertebra compression wedge fracture conducted on 

human samples 

ii. Use of the same scanning protocol  

iii. Use of the same compression testing procedure with 

comparable output in terms of strength estimation 

 More specifically, samples were collected from studies in which all 

specimens underwent testing based on a single vertebra model used by 

Oakland, Furtado et al. [3, 38]. In this protocol, samples were disarticulated 

and freed of soft tissue through sequential trimming of the processes but 

preserving the integrity of the spinal canal by keeping the neural arch intact. 

All samples underwent initial microCT scanning and were subsequently 

fractured. 

 Collected historical samples used for validation 3.1.2.5.1

Pooled samples consisted of three morphologically distinct pathologies: 

osteoporosis, bladder cancer and multiple myeloma cancer. All specimens 

used for this retrospective assessment were rendered anonymous and 

checked for eligibility for use in this study in terms of the ethical 

considerations (ethical approvals 09/H1306/1, 10/H1306/60 

and 10/H1306/83).  

The final dataset consisted specifically of forty-one osteoporotic samples 

(OP) from a total of eleven spines, twelve samples from one spine from a 

donor diagnosed with bladder cancer with metastases to spine (mets) and 

finally of forty-four samples from three spines diagnosed with multiple 

myeloma (MM). 

 Historical data - Scanning procedure 3.1.2.5.2

All collected samples underwent scanning in microCT (uCT80, Scanco 

Medical AG, Bassersdorf, CH). The osteoporotic and bladder cancer 

samples underwent the assessment at a resolution of 148x148x148 µm3 
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voxel size and scanned in air, whereas the multiple myeloma samples were 

scanned with a final voxel size of 70.8x70.8x70.8 µm3 and scanned while 

submerged in water without applying vacuum prior to the scan. Furthermore, 

in all three cases the scanning parameters remained unaltered: 250 

projections were used (70kV, 114mA, and 300ms) and reconstruction took 

place with the use of an in-build 200mgHA/cm3 beam hardening correction 

provided by the manufacturer (Scanco Medical AG, Bassersdorf, CH). All 

images were then converted to ρBMD using Hydroxyapatite phantom.   

 Historical data - Wedge compression fracture 3.1.2.5.3

 The first and second datasets (OP, mets) were fractured in a custom-

built testing rig and subjected to compression in a single axis compression 

machine (AGS-10kNG, Shimadzu Corp.). The third dataset (MM) was tested 

using the enhanced rig developed as a part of this work as per testing 

protocol described in subsection: 3.2.2.4: “Single vertebra Wedge 

Compression Fracture rig”. In all cases the vertebral strength was taken from 

the first peak on the load-displacement curve (zero-slope). 

 Predicting historical data - beam theory and BMD-based 3.1.2.5.4

method 

All collected microCT images were assessed using the beam theory 

fracture prediction tool discussed previously. Where necessary, given the 

complex nature of the deterioration, a manual correction of the detected 

boundary was undertaken, in which case every fifth slice was corrected.  

For the purpose of developing the model, multiple material laws 

suggested in relevant studies [200, 204, 213] have been initially tested for 

comparison with the model proposed by Kaneko et al. [198, 214], obtained 

based on metastatic and osteoporotic cored samples. The initial test was 

performed on a smaller number of samples (training dataset) and extended 

to the full population once the model with the closest agreement had been 

chosen. 

In addition, the metastatic samples were reanalysed afterwards 

excluding the extra-vertebral body formations from the fracture prediction 

modulus map. Figure 16 depicts one of the samples containing such 

formations, comparing the morphological imprint of the lytic and blastic 

tumours. To exclude these formations, a similar tool to the one used to 

manually define vertebral body outlines was used to define the body without 

the external lesions.  
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The theoretical background of this assessment is that the structure is 

firmly attached to the vertebral body, hence is assumed to contribute to 

vertebral strength. According to engineering principles the osteo-sclerotic 

nature of the structure and its anterior position suggest that the structure will 

be expected to support the loads. This assumption is supported by the fact 

that, if the yield of the healthy and osteo-sclerotic tissue remains the same, 

than the bending stiffness - a significant contributor to the strength of the 

vertebra (subsection “Composite theory approach”, eq. (1.3)) - is in fact a 

product of Young’s modulus (density dependent variable) and distance from 

the neutral axis squared (eq. (1.5)). However, in tools such as those using 

standalone BMD without accounting for density distribution, this sclerotised 

tissue would not be considered, hence the strength predictions would be 

hampered. 

Moreover, excluding (masking) of the mineralised tissue from the 

modulus map will decrease both the axial and bending stiffness in the 

fracture prediction equation. The comparison before and after the masking of 

the tissue from the prediction with sequential comparison to the 

experimentally obtained value can be then used to investigate whether the 

tissue is more likely to be mechanically supporting the vertebra and hence 

enhancing the vertebral strength.  

The results of predicted strength prior to and after alteration of the 

masks were compared to those obtained experimentally and will be 

discussed in the results subsection. 
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Figure 16: Example of microCT vertebral body assessment depicting 

severe metastatic infiltration.  An axial slice obtained from 

microCT (above) shows a notable influence on the internal 

structure when mixed lesions are present. Beneath is a 3d 

representation of the infiltrated vertebra 
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 Results in predicting historical data 3.1.3

3.1.3.1 Historical data – Collected osteoporotic samples 

In total forty-one scans and experimental data of osteoporotic samples 

matching the criteria were collected for this retrospective analysis. Data from 

microCT scans were used to estimate fracture load based on a product of 

BMD and cross-sectional area and using a beam theory approach. The 

results of both methods were then compared to experimental compression 

test output. A typical output of the fracture prediction tool is shown in Figure 

31, where the first slices clearly overestimate the strength due to the 

presence of the cortical wall. However, as the analysis takes into account 

only the weakest slice, an overemphasis on the strength of the bony 

endplates is irrelevant.  

The dataset also consisted of 6 samples which showed unexpected 

strength (exceeding 3.9kN and up to 6.4kN). These samples were each 

treated in the same way in order not to bias the fracture prediction tool 

validation study.  

With regards to the structural analysis compared to experimental data, 

the mean difference was -0.25kN, the limit of agreement was ±0.91kN 

(depicted in Figure 17) and the coefficient of determination R2 was 0.93 

(p<0.001). In terms of accuracy, the mean difference was found to be 

sufficiently close to zero. The reason for discrepancy in the stronger samples 

originates in the nature of the location of high density bone, where the 

weight of each voxel of every pixel contributing to flexural rigidity is a product 

of density and distance from the bending axis squared. Sensitivity to any 

impairments of the density-to-modulus relationship or misalignment with 

bending rigidity is then overwhelmed by these osteophytes.   

The results of the analysis based on the product of BMD and cross-

sectional area proposed by Brinckmann [64] with the same apparatus show 

the adjusted linear interpolation coefficients (a=0.32 and b=0.00308; 

conducted by a former researcher from the University of Leeds using the 

same methodology and apparatuses [95]) to be significantly poorer in terms 

of both agreement and association (mean diff -0.7kN; limits of agreement  ± 

2.78kN; coefficient of determination R2 of 0.16 (p=0.011). The comparison of 

both methods in Figure 18 displays data from which a number of 

observations can be made.   
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Figure 17 Bland-Altman analysis of predicted and experimentally 

obtained fracture loads for collected osteoporotic samples. The 

difference between both datasets indicates modest limits of 

agreement lower than ± 1kN  

Firstly, despite the high correlation in the structural analysis, the model 

tends to overestimate the failure load for small loads; nevertheless this is 

reversed for larger ones.  The analysis based on Brickmann/Oakland’s 

prediction [64, 95] tends to overestimate the failure loads for all samples 

except those where osteophytes are present. 

In an attempt to discern the reasons for the discrepancy between the 

two models, the presence of osteophytes was investigated. First, three 

samples with clearly enlarged osteophytes (strength exceeding 5kN) were 

excluded, which altered coefficients of determination from R2=0.93 to 

R2=0.83 for the beam theory based method and from R2=0.16 to R2=0.27 for 

the BMD based method. Bland-Altman’s mean difference and limits of 

agreement were found to be -0.31 ± 0.81 kN and -1.02 ± 1.7 kN for the beam 

theory and the BMD based method respectively.  
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Excluding additional stronger vertebrae (smaller osteophytes) altered 

the correlation, mean difference and limits of agreement to R2=0.75; -0.39 

and ± 0.6 kN for the beam theory and R2=0.4; -1.2 and ± 1.14 for the BMD 

based method. It is interesting to note that despite the reduction in R2, the 

limits of agreement became narrower, which highlights that the use of R2 

alone is an inappropriate measure of accuracy and/or precision. 

 

Figure 18 Plot of the predicted versus experimentally determined 

failure load. Beam-theory method (red “o” marker) shows good 

agreement and correlation in comparison to the formerly used 

product of BMD and cross-sectional area (blue “Δ” marker), with 

the example in the bottom right corner depicting a sample 

reaching 6.03kN strength most probably due to the presence of  

extra-vertebral body formations. In fact, all samples in the red-

dashed area contained similar osteophytes 

3.1.3.2 Historical data - Collected metastatic samples 

This section introduces a retrospective assessment of twelve samples 

from one donor with diagnosed bladder cancer. A study in which the set of 
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samples was used [95] identified a notable compromise in the strength of the 

vertebral body, however has not adequately underpinned a relation between 

this and the internal structure prior to the testing and the experimental data.  

The qualitative assessment of microCT images confirmed the presence 

of mixed lesions of severely infiltrated metastases, the majority of which 

appeared as an osteolytic cavity. In many cases the bone was malformed by 

the presence of enlarged extra-vertebral body formations such as those 

depicted in Figure 19. In four out of twelve specimens, notably enlarged 

lesions were present, in all cases in an anterior part of the vertebral body. In 

four other cases the osteoblastic reaction was smaller, but again present in 

the anterior part. In fact, the spine was affected by metastatic infiltration at all 

spinal levels (vertebrae) but three.  

Quantitatively, the bone quality in terms of the Bone Mineral Density 

ranged from 78.1 to 136.1 (an average of 98.6 ± 18.1) mgHA/cm3. The 

vertebral body strength was unexpectedly high considering the eccentric 

loading and the bone quality and in terms of the zero-slope yield ranged 

from 1.4 to 4.2 kN (an average of 2.2 ± 0.8kN) where the stiffness was 

assessed ranging from 1.0 to 2.9 kN/mm (an average of 1.9 ± 0.6kN). The 

BMD as a standalone predictor failed to correlate with the fracture load 

(R2=0.09, p=0.349). In addition, although the product of BMD and minCSA 

increased the prediction power, it still remained far below the correlation 

level (R2=0.16, p=0.197). 
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Figure 19 Example of a severely infiltrated sample containing multiple 

osteoclastic lesions together with extra-vertebral body formation 

in the anterior part of the vertebral body 

Initial fracture predictions using the beam theory on average not only 

strongly overestimated the experimental data but also failed to correlate with 

the actual values. Assessment using the Bland-Altman method estimated 

the mean difference at -1.2kN with the limits of agreement at ± 2.7kN, 

together with R2=0.18 (p=0.167). This peculiar overestimation was in fact 

consistently present in specimens with a significantly enlarged extra-

vertebral body formation. This was however not unexpected due to the 

relatively good results obtained for osteophyte formations discussed in the 

previous section. 

A further analysis was undertaken to exclude the extra-vertebral lesions 

from the modulus maps which resulted in an improvement in the results. As 

depicted in Figure 20 the coefficient of determination improved from R2=0.18 

to R2=0.64 (p=0.02), together with statistical results narrowing the limits of 

agreements to ±0.96 and resulting in a smaller mean difference of -0.41 kN. 



- 66 - 

 

Figure 20 Twelve samples infiltrated by bladder cancer were subjected 

to an experimental compression test following a microCT 

assessment. The initial fracture prediction (red) failed to correlate 

with experimental values; however the correlation improved after 

removing the extra-VB formation (blue) from assessment 

3.1.3.3 Historical data - Collected multiple myeloma samples 

Analysis of the microCT assessment provided a quantitative measure of 

the bone quality BMD which ranged from 63.1 to 252.6 mgHA/cm3 (an 

average of 127.0 ± 54.7 mgHA/cm3).  

When fractured, the zero-slope yield ranged from 0.3 to 7.1 kN (an 

average of 2.5 ± 2.1 kN), coupled with corresponding stiffness from 0.4 to 

7.3 kN/mm (an average of 2.6 ± 1.9 kN). As a standalone predictor, both the 

BMD (R2=0.07, p=0.088) and the product of BMD and minCSA failed to 

show any correlation to the experimental data. As a matter of fact the 

minCSA together with the BMD even lowered the coefficient of determination 

down to R2=0.03 (p=0.277). 

As depicted in Figure 21 the fracture prediction based on the beam 

theory shows a significant discrepancy between the spines and fails to 
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predict fracture with a sufficiently high correlation. In fact, the coefficient of 

determination for all samples altogether was R2 = 0.6 (p<0.001) with Bland-

Altman’s mean difference and limits of agreement of -1.05 and ±2.61 kN 

respectively. 

 

 

Figure 21 Experimental and predicted values of vertebral strength 

based on beam theory prediction. Contrasting colours indicate 

different spines which highlights a possible peculiarity of Spine 2 

MM which has been notably and consistently overestimated 

Detailed qualitative assessments of all images uncovered morphological 

changes in the bone structure of one outlying sample which was notably 

similar to the pre-existing fracture. This particular sample (Spine MM 2 - L5, 

indicated by the blue arrow in Figure 21) showed almost double the 

predicted strength at the “weakest slice” (the site at which the fracture was 

predicted) when comparing to experimental data (Figure 22 (a.)).  

Following manual exclusion of the fractured part of the vertebral body 

depicted in Figure 22, fracture load decreased by 20% to 6.3 kN moving 
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towards the experimental data and the linear regression line of the whole 

dataset (increase of R2 to 0.62, mean diff -1.01, lim. of agreements ± 2.52), 

which underpins the necessity to carefully check samples for possible pre-

existing fractures.   

  

Figure 22 Initial scan of sample “Spine 2 MM L5” and modulus map 

masking. (a.) Possible pre-existing (not cured) fracture resulting in 

a disconnected piece of bone. (b.) In-silico masking of the 

disconnected element (indicated by the red arrow) enabling an 

assessment of the contribution to the strength of the sample 

 Initial validation using historical data - Discussion 3.1.4

3.1.4.1 BMD based prediction used on historical data 

In agreement with data presented by other authors [170, 215], the 

preliminary data presented in this work indicated that using simplistic 

principles of the mechanics of solids such as those proposed by Brinckmann 

et al. [64] is not sufficient for any investigated loading scenario which 

introduces large bending moments. The prediction of vertebral strength 

based on a sample of averaged trabecular bone mineral and endplate area 

represents, from an engineering viewpoint, a model that is more adequate 

for an accurate assessment of the compression strength because it does not 

account for flexural stiffness. Unlike similar data reported while exhibiting a 

minimal cross-sectional area [65, 167], data presented here did not correlate 

with experimental data, which can again be explained by the fact that the 

experimental setup substantially contributed to bending. Moreover, since 

bone quality declines preferentially in the central region of the bone [216], 

the fact that the relative thickening of the cortical bone was not accounted for 

in this simplistic model hampers predictions in subjects with (1) higher bone 

(a.) (b.) 



- 69 - 

mass [217-219], (2) osteophytes as presented in this study, and (3) i non-

uniformly distributed bone deterioration such as oncological patients.  

3.1.4.2 Image processing and density-to-modulus material model 

The structural assessment tool proposed in this work consisted of a 

series of steps which have been previously discussed. Prior to the strength 

assessment, each slice was masked to determine the boundaries of the 

vertebral body. Here, a series of documented morphological operations 

which processed the binary image have shown to provide a good 

compromise in terms of boundary detection which is sufficiently accurate in a 

sufficiently short time in terms of volume estimation, even when using a 

standard desktop PC (detailed flowchart can be found in Appendix H: Image 

processing: vertebral body boundary estimation). 

Compared to other possible solutions using masking such as edge 

detection, gradient based masking or shape recognition [220-222], the 

approach used in this work has been found to be computationally 

straightforward with a relatively low time dependency. In fact, the time 

required in order to provide an estimation of the vertebral body boundary 

used in this work has been optimised and reduced to less than 2 minutes per 

sample, and additionally validated for accuracy and precision in a buoyancy 

experiment. Nonetheless, as presented here, the user here needs to rely 

purely on a GUI providing a slice by slice assessment to show whether the 

cross-section of the vertebral body has been estimated correctly or whether 

the secondary filtering based on a step-change in the cross-sectional area is 

accurate. Furthermore, this work has presented a manual correction which 

has been demonstrated to be particularly useful in morphologically deformed 

samples where the lesion has breached the cortical wall. Despite provision 

of this alternative, the use of a GUI and secondary filtering seemed to be 

sufficient for the majority of the close to two hundred samples presented in 

this study. 

Throughout this work it has been hypothesised that the bone quality 

remains unambiguous throughout the organ and hence the density-to-

modulus material model does not need to be adjusted. As presented by 

Wolfram et al. [36], who experimentally investigated osteoporotic bone by 

means of micro-indentation, the micro-properties of the bone correlate 

weakly in respect of their position within the vertebra as well as between 

different vertebral levels. The unambiguousness of cancer bone however 

remains unknown and will be verified later in Chapter 4 independently of the 

development of this fracture prediction tool.  
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3.1.4.3 Validation of the fracture prediction tool on historical samples 

The model presented in this study was used throughout the initial 

testing and structural assessment of human vertebrae with three different 

pathologies sampled from other investigators (not published). Here, the 

assessment of the complete dataset has shown that the strength of the 

vertebral body can be predicted with a relatively high correlation and 

sufficiently narrow limits of agreement. A structural compromise (strength) 

was predicted in axial slices obtained from a tomography assessment. 

Similarly to previous investigators [2] it has been hypothesised that fracture 

would occur when the bone yields under compression by more than 1%, as 

has been measured by Keaveny et al. [195] and that this would occur at the 

structurally weakest slice, determined by the stress distribution exhibited 

under the effects of the Euler–Bernoulli beam theory. To the author’s 

knowledge, this is the first work to adopt the use of a composite engineering 

principle on isolated vertebrae with a wide variety of experimental datasets 

and exhibiting different types of cancer.  

For osteoporotic samples the image-derived prediction was able to 

account for as high a variation as 93% in results in which predicted strength 

was the independent variable, which is in a range comparable to 

sophisticated FE models [168, 169]. The prediction in metastatic samples 

was initially hampered by the presence of both osteolytic and osteoblastic 

lesions which has been overcome by removing the osteoblastic lesions from 

the modulus maps. These improved results have shown that the developed 

tool can account for 64% of the variability of fractures in samples with severe 

metastatic infiltration due to bladder cancer. Despite the need to predict the 

wide range of possible causes of failure, the model has proved to 

demonstrate a good precision in terms of the limits of agreement which have 

been maintained for both pathologies under ± 1kN, which is in range of 

many sophisticated models (see Table 4, literature review section 2.6.2). 

The range of R2 is understandable given the range of experimental strength 

and is below presented elsewhere. The state of deterioration however 

hampers the possibility of comparing the results as such samples have, to 

the author’s knowledge, never been predicted for fracture using FE or any 

other engineering model.  

An assessment of historical samples from patients with diagnosed 

multiple myeloma cancer proved to be far less successful compared to an 

assessment of osteoporotic samples. Here, the dataset which consisted of 

three spines showed that the strength of the regression of the predicted 
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forces contributed to a moderate 62% in the variability of the results, and 

despite strong inter-patient variability the data remained within the limits 

agreement of ± 2.5kN which is lower than most of the compared models 

(Table 4 in literature review section 2.6.2), but in the same range as the very 

sophisticated FE model [172] and the minCSAxBMD model proposed by 

Crawford et al. [65]. An over-predicted spine denoted as Spine 2 MM did not 

in fact show any peculiar morphology and its increased BMD, appearing as a 

notable thickening of the trabeculae, could not be considered sufficient 

reason to exclude the spine from analysis. Here only one sample could be 

justified to be reanalysed with caution and manually improved for accounted 

boundaries due to the discovery of a pre-existing fracture. The possibility to 

thoroughly investigate the nature of the discrepancy was hindered due to the 

retrospective nature of the dataset and the fact that they had been scanned 

with a lower number of projections.  

In terms of accuracy, the predicted strength in all three pathologies 

was found to be in relatively good agreement with experimental testing. In 

particular, the osteoporotic and metastatic datasets were found to have been 

predicted with mean differences of -0.25 and -0.45kN respectively. The most 

notable difference in mean has been found in the multiple myeloma dataset, 

again due to the presence of Spine 2 MM.  

Based on these initial results three assumptions have been made: (1) 

the material model proposed by Kaneko was adopted and thereafter used in 

all three studies with a sufficiently good outcome in terms of prediction, 

suggesting that it can be also used further; (2) the use of microCT 

assessment of 0.148mm edge voxel size and lower produced sufficiently 

accurate predictions when accounting for both geometry and the BMD; and 

(3) the dataset should not contain samples with pre-existing fractures. 

3.2 Commissioning of cadaveric Wedge Compression 

Fracture testing rig 

 Introduction to cadaveric testing of human samples 3.2.1

This section describes an in-vitro approach to induce a vertebral fracture 

similar to fractures found in-vivo (illustrated in Figure 24 (A)). Wedge 

compression fractures are categorised as anteriorly collapsed vertebral 

bodies [109] and are characterised by a decreased vertebral height in the 

anterior region of the vertebral body. Using imaging tools such as CT, X-ray 

or DXA, the fracture is also visible as a densified region of bone where 
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trabeculae have compacted, locally increasing the volume fraction (Figure 

23).  

To reproduce the fracture, the vertebral body needs to be compressed 

by applying an eccentric axial load (Figure 24). This can be achieved using a 

single axis compression device with a ball-joint loading plate compressing, 

eccentrically, one of the endplates at a constant low speed displacement 

(quasi-static testing).  

 

 

Figure 23 Wedge compression fracture in-vivo and in-vitro simulated 
WCF. All fractured vertebrae found in spines had a 
characteristically deformed vertebral body towards the anterior 
side (example in A). This type of fracture (WCF) is typical for 
osteoporotic/metastatic bone 
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Figure 24: WCF type of fracture can be obtained experimentally where 

an intact bone is compressed eccentrically. This figure illustrates 

a sagittal slice of vertebra scanned in microCT image before and 

after inducing the fracture 

 

 Wedge compression testing - Methods 3.2.2

3.2.2.1 Cadaveric sample selection and preparation  

Samples used in this study comprise of three distinct pathologies. The 

first comprised samples without any signs of neoplastic pathology 

(considered by the GIFT bank as osteoporotic), the second comprised those 

diagnosed with multiple myeloma cancer and the last came from patients 

with cancer with a high probability of osteolytic infiltration to the spine. In 

total, one hundred and ten samples were used in this study, all of which 

were acquired from a non-transplant tissue bank (GIFT, Leeds General 

Infirmary, UK and Science Care®, AZ, USA) following ethics committee 

approval (NRES, UK). More specifically, thirty-two samples from three 

osteoporotic spines were collected for PVP-CaP study (Ethical approval: 

10/H1306/83), and twenty-five samples from five osteoporotic spines and 

twenty-four metastatic samples were collected for PMMA study (Ethical 

approval: 11/YH/0002). An additional ten samples from metastatic spines 

were harvested and used for morphology and fracture prediction 

assessment (Ethical approval: 10/H1306/83); and finally, nineteen samples 

from four spines with diagnosed multiple myeloma cancer were collected 

and used for morphology and fracture prediction assessment (Ethical 

approval: 10/H1306/60). The two metastatic spines were collected from 
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donors with (j) metastatic inflammatory carcinoma (breast cancer) and (ii) 

metastatic lung cancer. In total four single vertebrae samples needed to be 

excluded, more specifically one due to loss of measurement data during the 

experiment, two due to pre-existing fractures sustained after harvesting and 

one due to technical difficulties experienced during the re-fracture 

experiment. To clarify, a list of all studies and number of specimens used is 

included in Table 7 while Table 8 presents the list of all used spines together 

with their properties.  

Study Pathol

ogy 

Number 

of 

spines 

Number 

of 

samples 

collected 

Number 

of 

samples 

excluded 

Number 

of 

samples 

used in 

fracture 

prediction 

Number of 

samples 

used in PVP 

PVP-CaP OP 3 32 3 29 29 

PVP-PMMA OP 5 25 1 25 24 

 mets 2 34 0 34 24 

Fracture 

prediction 

MM 4 19 0 19 0 

Table 7 Cadaveric samples collected and used for wedge compression 

fracture testing 
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  Spine gift 

bank name 

Levels used Age Gender  Weight Height  

SpineBS 1 Gift 29/11 T7, T8, T9, T10, T11, 

L1, L2, L3, L4 

88 F 54 kg  170 cm  

SpineBS 2 Gift 13/11 T8, T9, T10, T11, T12, 

L1, L2, L3, L4, L5 

82 F 51 kg 160 cm 

SpineBS 3 Gift 32/11 T6, T7, T10, T11, T12, 

L1, L2, L3, L4, L5 

72 F 51 kg 168 cm 

SpineGo 1 S091157 T7, T8, T9, T10, T11, 

T12 

66 F 36 kg 157 cm 

SpineGo 2 C100098 T7, T8, T9, T10, T11 93 F 68 kg 168 cm 

SpineGo 4 S091223 T7, T8, T9, T10, T11 102 F 61 kg 168 cm 

SpineGo 5 GIFT 20/11 T7, T8, T9, T10, T11 74 F 108 kg 170 cm 

SpineGo 6 GIFT 23/12 T7, T8, T9, T10, T11 77 F 38 kg  171 cm  

Spine 1 mets C121608 T1, T2, T3, T4, T5, T6, 

T7, T8, T9, 10, T11, 

T12, L1, L2, L3, L4, L5 

41 F 73 kg 170 cm 

Spine 2 mets C121562 T1, T2, T3, T4, T5, T6, 

T7, T8, T9, 10, T11, 

T12, L1, L2, L3, L4, L5 

85 M 43 kg 168 cm 

Spine 4 MM C101540 T5, T7, T8, T9, T10, 

L2, L5 

68 M 68 kg  170 cm 

Spine 5 MM S101357 T8, T10, L2, L5 82 M 77 kg  178 cm 

Spine 6 MM S110132 T5, T7, T8, T9, T10, 

L2, L5 

90 M 67 kg  170 cm 

Spine 7 MM S110807 L5 60 M 113 kg  175 cm 

Table 8 List of all spines used for wedge compression fracture testing 

3.2.2.2 Tissue collection, dissection and storage 

Work done by Panjabi et al. [223] showed little or no influence of 

freezing on the change in quality of the cadaver tissue, hence all samples 

were kept frozen before dissection, after dissection and during every longer 

period between treatments. Human cadaver samples were either collected 

from the local GIFT bank, frozen and stored at -80C or in the case of an 



- 76 - 

overseas donor tissue bank (ScienceCare, USA), samples were collected 

from a sealed parcel covered in dried ice. For long term storage, the 

samples were kept deep frozen at -80C, while for imminent use the 

samples were placed in a freezer at -20C and later defrosted overnight for 

either dissection or testing. For storage, every sample was fully wrapped in a 

purified water-soaked paper tissue to retain moisture and was sealed in a 

labelled plastic bag before being returned to the freezer. Samples were 

harvested from thawed spines where every sample was carefully 

disarticulated (Figure 25) using standard dissection and operation tools. The 

samples were then initially measured with Vernier callipers (part no. 50590, 

Draper, UK) and prepared for scanning.  

 

Figure 25: Harvesting of vertebral samples. The figure depicts 

disarticulation of levels T10, T11, T12 (from left to right) with 

enlarged bridging osteophytes (“Spine 2 mets”) 

3.2.2.3 Cadaveric sample scanning 

 Prior to scanning every sample was separately placed in an 

appropriate scanning container fully submerged in purified water under 

vacuum for 5 minutes to remove any possible air-bubbles trapped in the 

bone marrow (CCL-31 vacuum pump [Javac, UK]). Using the vacuum pump 

prior to scanning and increasing the scanning resolution compared to 

previous studies was necessary in order to increase the spatial information 

obtained from the scanner especially for the morphology assessment and 

also as it was found that air bubbles trapped in the vertebral body strongly 

hamper accurate BMD measurements.  Where necessary, the facets were 
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removed to allow the sample to remain anatomically horizontal during the 

scanning, but the neural arch remained intact.  

 All samples in this section underwent scanning in the most up-to-date 

microCT apparatus (microCT100, Scanco Medical AG, Bassersdorf, CH) at 

medium resolution of 70.8x70.8x70.8 µm3 voxel size with 500 projections(at 

70kV, 114mA, and 300ms), with subsequent 1200mgHA/cm3 beam 

hardening correction provided by the manufacturer (Scanco Medical AG, 

Bassersdorf, CH). All images were then converted to ρBMD using 

Hydroxyapatite phantom ranging from -200 to 800mgHA/cm3. 

3.2.2.4 Single vertebra Wedge Compression Fracture rig 

The wedge compression testing rig was designed to produce fractures 

similar to the methods of previous investigators [3, 28, 29, 38, 66].  In 

addition displacement transducers were added based on the SpineFX 

collaborating partner TUVienna [66]. The rig was designed to fit the Instron 

uniaxial compression testing machine (model 3366, Instron, MA, USA), 

which was firmly attached to the frame to allow the maintenance of a fixed 

loading axis during testing. This design enabled more accurate positioning 

and a repeatable and stable mounting protocol.  Further, the design allowed 

a quantitative measure of the boundary conditions through the attachment of 

three linear variable differential transformers (LVDT).  According to Dall’Ara 

et al. [66]the more accurately known boundary conditions are of a great 

value when combining experimental data with numerical approaches such 

as FEA. Nevertheless in this study, the LVDTs were used only to verify 

whether the inclinations of the sample remained within the safe limits for the 

duration of the testing procedure.  

The enhanced rig comprises of a base mounted to the testing machine, 

three LVDTs (ACT1000A, RDP Electronics Ltd, UK), a recess where the 

sample is positioned and a steel loading plate compressed by a ball-joint 

attached to the cross-head of the machine (depicted in Figure 26 (A)). The 

axial load was measured using a 10kN load-cell (Part no. 2530-443, Instron, 

MA, USA) fitted between the ball-joint and the cross-head of the 

compression machine. 

The loading scenario combined an axial compression with bending by 

introducing an eccentric loading. Therefore, the bottom of the vertebra was 

firmly embedded whereas the top endplate was covered by a PMMA 

impression to compress the sample without inducing tension on the back of 

the vertebral body (depicted in Figure 26 (B)). 
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After the sample preparation described previously each specimen was 

prepared for testing by partial embedding to increase the reproducibility of 

the experimental setup. In order to position and embed the sample a 

custom-built rig was designed (Figure 27 (A)). This rig allows the positioning 

of the loading axis of the compression device with a point on the top 

endplate of the vertebral body representing 25% of the anterio-posterior 

vertebral depth without the offset. Adjustable screws were used to restrain 

the sample in an aligned position (Figure 27 (B)) and it was later placed into 

a DELRIN ring and using a dental plaster (Suprastone, Kerr, CA, USA), 

embedded to the level of the plastic ring corresponding to submerging the 

samples 5mm into the plaster (Figure 27 (C)). When cured, the sample was 

turned and dipped into semi-cured PMMA (WHW Plastics, Hull, UK) to make 

a loose impression for the top contact (Figure 27 (D)). 

The embedded sample was positioned into the compression rig (model 

3366, Instron, MA, USA) and the crossbar with fitted pointer was lowered to 

verify the correct position of the loading. Later the pointer was replaced with 

a ball-joint and the vertebra was covered by the PMMA impression with the 

top loading plate placed over the top. In order to allow unrestricted 

movement of the two surfaces over each other, a thin layer of grease was 

inserted between the PMMA and the steel plate. Figure 28 illustrates the full 

experimental setup during the compression testing. 

The testing machine was controlled using software provided by 

Instron [224].The protocol consisted of preloading the sample by 50N for 5 

minutes with subsequent compression at a 1mm per minute stroke to 75% of 

the average height of the original sample. When reaching the pre-set 

deformation, the sample was released at 1mm per minute stroke until 

reaching 50N again and held in that position for an additional 10 minutes 

before the test was finished. Once removed from the compression rig, the 

plaster base was removed with subsequent measurement of the VB 

dimensions taken before freezing.  
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Figure 26: The enhanced single vertebra compression rig, an 

illustration of a CAD model (A). The rig consists of a base fitted 

into the frame of the Intron testing machine  and 3 precisely 

positioned LVDTs to capture the change in inclination of the top 

loading plate, compressed by the ball joint driven by the cross-

head. The bottom figure (B) illustrates schematically the 

positioning of the sample. The sample is aligned in the recess 

using a Delrin fitting and dental plaster embedding. The top PMMA 

imprint allows loading of the sample without introducing tension 

on the posterior part of the vertebral body 

A.) 

B.) 
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Figure 27: Single vertebra mounting rig. The top illustration (A) 

represents a CAD model of the mounting rig designed to position 

and embed the sample prior to testing. Subsequent images 

represent positioning which allows aligning with the loading axis 

(B), embedding of the bottom endplate (C) and making an 

impression of the top endplate (D) 

C.) D.) 

A.) 

B.) 
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Figure 28 Testing rig mounted to uniaxial compression machine 

(Instron). Sample wrapped in a purified-water-soaked tissue is 

compressed between the top loading plate and the bottom part of 

the rig. While the bottom of the sample is partially embedded and 

the coupling between the cross-head and the loading plate is 

performed by a ball joint, the loading axis remains at the same 

position while the loading plate is allowed to tilt around this axis 
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Vertebral stiffness was defined as the maximum slope within the elastic 

region of the load-displacement curve from the experimental data post-

processed in a custom-compiled MATLAB code [208]. The slope was 

defined using a 1% strain window approach based on the previously 

validated method proposed by Buckley et al. [148], whereas the vertebral 

strength was ascertained using a proof-load approach at 1% of the total 

strain.   

 Fracturing of cadaver samples - Results 3.2.3

Following the microCT assessment all samples from the previous 

section underwent experimental testing to induce WCF. This section aims to 

present the cadaveric experiment in detail for each of the three pathologies 

tested. 

3.2.3.1 WCF in osteoporotic samples  

The average specimen height was 22.9 (±4.9), 25 (±3.8), 23.5 (±4.2), 

and 23.1 (±3.7) mm at anterior, posterior, right and left margin of the 

endplate respectively, while the average width was measured as 39.1 (±8.2), 

34 (±6.3) and 42.1 (±8.6) mm at superior, middle and inferior levels 

respectively. The anterior-posterior length of the endplates was 31.5 (±3.8) 

for superior and 32.1 (±3.2) for inferior. Lastly the offset (overhang) was on 

average 3.1 (±1.7) mm.  

A typical single vertebra wedge compression fracture experiment lasted 

1 hour for embedding followed by an imminent compression experiment 

lasting on average 20 minutes during which the specimen was kept 

moistened by paper soaked in purified water resulting in a typical 

experimental output as depicted in Figure 29.  

To induce the wedge fracture by compressing each vertebra by 25% of 

its average height, the specimens were compressed on average by 5.9 (±1) 

mm. The average strength was measured as 1.35 (±0.91) kN and  ranged 

from 0.34 to 3.55 kN. The average stiffness was 2.2 (±1.0) kN/mm and 

ranged from 0.7 to 5.3 kN/mm.  
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Figure 29 A typical vertebral compression test data readout as a 

function of time (a.) later compiled in a form of load-displacement 

curve (b.). The curve is characterised by an initial ramp-up 

sequence reaching a load of 50N which is maintained for 5 

minutes to simulate preloading conditions and allow the specimen 

to settle in the mould. When loaded at constant rate, the sample 

typically remains in the elastic region until yielding to the plastic 

region where fracture is followed by a short softening. The end-

point of the experiment was at 25% strain followed by a 10 minute 

relaxation period at 50N (initial fracture, sample Spine BS 3–T10) 
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As verified by post fracture measurement, the reduction of the height 

remained over 20% even after the relaxation period, which resulted in an 

increase of the angle between superior and inferior endplates from 3˚ to 11˚ 

(note that the anterior height was in most cases smaller compared to 

posterior height, which is typical for osteoporotic samples).   

For samples SpineBS 3 - T09 and T08 the initial scan identified possible 

pre-existing fractures. Both specimens were hence dissected, cleaned and 

measured following the same protocol as for the other samples. As shown in 

Table 9, the anterior height of the fractured T09 was notably lower than other 

specimens from the same spine (namely specimens from levels T06, T07, 

T10, T11, T12, L1, L2, L3, L4 and L5), however the second sample with a 

possible pre-existing fracture (T08) had been fractured to such an extent that 

no vertebral body could be used for measurement as both endplates 

separated immediately after dissection.  

 Height 

anterior 

Height 

posterior 

Height 

left 

Height 

right 

Width 

superior 

Width  

middle 

Width 

inferior 

Ant-Pos 

superior 

SpineBS 3 

- T09 

8 20 17 13 37 32 41 30 

Spine BS 3 

average 

T6-L5 

22.7 

(±4.3) 

24.8 

(±2.8) 

22.8 

(±2.9) 

22.8 

(±3.1) 

42.9 

(±10.2) 

39.5 

(±8.3) 

46.8 

(±9.3) 

33.3 

(±5.1) 

Table 9 Cadaveric VB outer morphology measurement – sample with 

pre-existing vertebral body fracture 

3.2.3.2 WCF in multiple myeloma samples 

 Eighteen samples from four spines with diagnosed multiple myeloma 

cancer were disarticulated and underwent compressive testing in the same 

conditions as the other pathologies. Here, the average strength was 

2.73 (±1.17) kN, ranging from 1.31 to 5.47 kN. The average stiffness was 

3.46 (±0.96) kN/mm and in range from 2.13 to 5.06 kN/mm.  

3.2.3.3 WCF in metastatic specimens 

 Metastatic samples in this study consisted of 2 spines and were 

disarticulated into a total of thirty-four single vertebrae. The average 

specimen height was 22.8 (±5.2), 23.2 (±4.2), 22.3 (±4.3) and 22.8 (±4.5) 

mm in the anterior, posterior, right and left sides of the endplate respectively, 
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while average width was measured as 36.2 (±10.0), 32.4 (±7.4) and 38.5 

(±10.7) mm at superior, middle and inferior levels respectively. The anterior-

posterior length of the endplates was 29.6 (±7.6) mm for superior and 30.5 

(±7.5) mm for inferior. Lastly the offset (overhang) was on average 4.1 (±2.8) 

mm.  

To induce the wedge fracture by compressing each vertebra by 25% of 

its average height, the specimens were compressed by an average of 

5.7 (± 1.1) mm. Following the strength and stiffness assessment, the 

average strength was measured as 2.86 (± 1.33) kN and ranged from 1.02 

to 5.57 kN. The average stiffness was 3.57 (± 1.40) kN/mm and ranged from 

1.24 to 6.60 kN/mm, as shown for the example of Spine mets 1 in Figure 30 

describing strength and stiffness for each corresponding level (other tested 

spines in Appendix E: Cadaveric testing: Strength/stiffness per level).  

 

Figure 30 Spine 2 mets: Initial strength and stiffness for corresponding 

spinal level 
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 Initial fracture of tested samples - Discussion 3.2.4

3.2.4.1 WCF testing protocol  

The eccentric loading used in this work may also have introduced out-of-

axis parasitic loads and moments which might have impaired the measured 

uniaxial load used to estimate the fracture load, although a uniaxial load cell 

is a reliable means of measuring load. For future experiments it is highly 

recommended to use a six-channel load cell which is to be attached from 

underneath the testing base to capture and quantify these loads.  

Uniplanar motion which is expected during the wedge compression 

failure has been incorporated by a strongly eccentric anteriorly-located 

loading axis, ensuring that the axis of the minimum principal moment of 

inertia is closely aligned in the sagittal plane. In addition LVDTs were used to 

record any extensive tilting which did not occur in any of the 107 samples 

tested. Moreover, the anterior fracture was visually confirmed after 

completion of the test and the deflection of the endplate towards the anterior 

cortex was measured by the change of height of the anterior part of vertebral 

body by callipers. Contrary to the FE analysis, this is a necessary 

requirement for the beam theory principle as the most distant fibre is 

theoretically expected to be most subjected to yield. For example, as noted 

by Dall'Ara et al. [167]from their samples: only “most of the vertebrae 

underwent an anterior wedge-shape fracture” which could lead to a 

decrease in the prediction power of the beam theory, however it remains 

relatively easy to capture using the FE model presented in the study. This 

limitation can be avoided when considering bi-axial eccentric loading and 

asymmetric beam theory (discussed in Appendix G: Bi-axial eccentric 

loading)  

3.2.4.2 Limitations of the sample population and treatment history of 

the donors 

In the study presented here, the test population consisted of an 

osteoporotic group of relatively elderly patients (median 79.5±12), where all 

eight spines were from female donors, contrary to the multiple myeloma test 

group where all four relatively elderly donors (median 75±13) were male. In 

fact, the metastatic group consisted of only two donors, a relatively young 

female (aged 41) and an 85 year-old male. Although this is a relatively 

narrow demographic, osteoporosis predominantly affects women. Selecting 

a wider demographic in oncological pathologies is a challenge shared by 
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many other oncological studies [2, 67, 147, 198, 225] due to the limited 

availability of samples.  

Concerning the level selection, the samples were harvested only from the 

thoraco-lumbar region due to clinical evidence proving that vertebral 

fractures typically occur between T6 and L3 [1, 226]. In fact, the samples 

discarded from this study due to the presence of pre-existing fractures 

(Spine BS 3: T8, T9) can confirm findings presented in a previous study [1] 

which reported that T8 and T9 are the most common levels on which 

fractures can develop. This study consisted of one hundred and seven 

vertebral bodies from which nearly 80% were between the range of T6 and 

T10, which is in fact more than in many other studies [167, 169, 170, 172]. 

The major limitation of the dataset population presented here is the 

limited information available about treatment history prior to the death of the 

donor. Each GIFT bank provided samples together with a tissue transfer 

agreement containing basic information such as primary cause of death and 

basic information of the most important treatment modalities used. The 

current standard of collecting the data however does not cover the 

requirement of recording all drugs administered prior to tissue collection, 

including drugs promoting bone growth such as bisphosphonates (list of 

available information for this study is provided in full in Appendix C: Donors’ 

medical records available for this study). This limitation including a link to 

bisphosphonates will be later discussed in the micro-indentation study 

(section 4.2.4). 

3.3 Fracture prediction tested on large sample population: 

three pathologies 

 In-silico vs. experiment strength comparison 3.3.1

This section presents the results of the composite beam theory fracture 

predictions and compares these in-silico predictions to the results of the 

cadaveric testing discussed in section 3.1.  

The intention of this study was to investigate the vertebral strength in 

terms of the comparison between predicted and real experimental data. 

Although beam theory has already been used in previous studies, it has 

never been tested on a large data population comprising different 

pathologies. In this section the vertebral strength of each sample has been 

predicted in a reduced range of vertebral body height (80%) with a material 

model identical to one which is used in historical data assessment. MicroCT 
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scanned images (described in section: 3.2.2.3) were processed individually 

providing the predicted strength. This value was then compared to the 

experimental strength obtained per protocol described in 3.2.  

3.3.1.1 Reducing fracture prediction range to a single slice  

Although the principle of the beam theory is based on selecting the slice 

with a minimum predicted fracture load (weakest slice), the preliminary 

results discussed previously (section 3.1) have shown a notable pattern in 

the location of the weakest slice in a majority of cases (as shown in the 

illustrative Figure 31 in which different assessment ranges are defined). 

Structural weakening, which was observed as a fall in predicted strength, 

was appearing consistently in the middle section between cranial and caudal 

endplate. This in fact can be explained by the presence of increased bone 

density around posterior elements and closer to both endplates.  

 

Figure 31 A characteristic slice-by-slice fracture load prediction 

identifying the weakest slice where each step on the y-axis 

represents analysis of one axial CT slice. It should be noted that 

the weakest slice appears predominantly in the mid cranio-caudal 

section of the vertebral body which allows minimising of the range 

of analysis excluding bony endplates. The typical prediction curve 

is characterised by the low degree of variability of predicted 

strength within the vertebral body. Mid-slice analysis could then 

provide sufficient illustration of degree of vertebral strength 

compromise with minimal time and scanning effort 
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This section aims to investigate the possibility whether one-slice 

analysis could predict vertebral strength with relative success under an 

assumption that deterioration of bone is heterogeneously distributed. 

Whether the degree of decreased prediction success falls in a reasonable 

range remains dependent upon a specific use, but could be highly beneficial 

in cases where exposure of the sample should be minimised from the whole 

vertebral body scan to a single slice. This preliminary investigation can be 

potentially useful in clinical application due to radiation safety requirements. 

Moreover, the mid-slice is relatively easy to identify with a relatively high 

repeatability in a very short time.  

3.3.1.2 Density-to-modulus model calibration 

The material model of the relationship between microCT derived density 

(ρBMD [mgHA/cm3]) and elasticity modulus (E [GPa]) is an important factor in 

the calculation of both the axial and the flexural rigidity and hence the 

predicted fracture load. Correlation has been proved in numerous 

publications and was thoroughly discussed in the literature review, however 

as noted for example in literature review by Helgalson et al. [189], finding an 

appropriate material model from literature data remains challenging as 

authors state: “The proposed relationships are substantially different one 

from the other”. The preliminary stage of this work was conducted on five 

different material models from literature [149, 198, 200, 204, 205, 213] 

comparing the difference in agreement to the respective dates of the 

literature. The best agreement for converting CT density to Young’s modulus 

was found by far to be the use of the model in the form described by Kaneko 

et al. [198] to eq. (1.8) and eq. (1.9). This model in fact seemed to be 

appropriate as the same author compared osteoporotic and metastatic 

tissue to find no significant difference between the two pathologies.  

 ρ𝑎𝑠ℎ = 69.8 + 839 ∗ ρ𝐶𝑇 [g/cm3] (1.8)  

 E = 10.88 ∗ ρ𝑎𝑠ℎ
1.61 [GPa] (1.9)  

Nonetheless, this section aims to expose this model to a sensitivity 

study in order to calibrate the density-to-modulus in terms of agreement 

between predicted and experimentally obtained data. Such a procedure is a 

common tool to deploy and show full potential of a proposed model [169, 

189, 227].  

In summary, the density-to-modulus model (in form of eq. (1.4)) 

described in subsection: 3.1.2.1 was tested on the full sample population 

used in the main framework of this work while varying the linear coefficient 
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“b” and power-law coefficient “c” from 1-11 and 1-3, respectively. Over one 

thousand models have been tested in one-slice-analysis discussed later (in 

total over one hundred thousand single vertebra fracture predictions) and 

compared to the experimental data. Each dataset has been tested in respect 

of coefficient of determination, mean difference and limits of agreement. The 

proposed model was considered as the one which fits the criteria of 

exhibiting the lowest mean difference and limits of agreement with respect to 

“c” in a range not extensively varying between the three tested pathologies.  

 Comparison between predicted and experimental data – 3.3.2

Results for three pathologies 

3.3.2.1 Predicted osteoporotic samples  

 Weakest slice selected from 80% of vertebral body height - OP 3.3.2.1.1

For the in-silico analysis, no sample exhibited notable difficulties in 

automatically recognising vertebral body boundaries as is made clear by the 

example in Figure 32 depicting the initial scan of the weakest slice coupled 

with the modulus map. Despite a two-fold increase in resolution (74µm voxel 

edge size) compared to the historical osteoporotic dataset (148µm voxel 

edge size), all samples were processed in a relatively short time (~5 minutes 

per sample using a personal laptop computer).  

 

 

Figure 32 Structural assessment of the osteoporotic sample. On the left 

is a microCT image of the weakest slice identified by the fracture 

prediction tool. On the right is the corresponding modulus map 
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The predicted values were in the expected range between 1.24 

to 8.85 kN (mean 3.28 ± 1.62 kN). With respect to experimental data as 

shown in Figure 33 and Figure 34, the mean difference between the 

predicted values and actual yield strength was -1.93 kN, with limits of 

agreement ± 2.02 kN and coefficient of determination R2=0.66. Flexural and 

standalone compressional rigidity were found to only weakly correlate with 

the strength (R2=0.4 and R2=0.38 respectively). All evident outliers from 

Figure 33 and those confirmed from the Bland-Altman plot (Figure 34) 

consisted of samples from SpineGo 4.  

 

Figure 33 Fracture prediction - osteoporotic samples: Eight spines 

(fifty-four samples) were experimentally tested and compared to 

the predicted vertebral strength 

Here, in an attempt to discern the causes of poor correlations, each 

spine and all coefficients of determination for Fz, EI and EA were examined 

separately. A statistical analysis of SpineGo 4 by itself showed a relatively 

high coefficient of determination (R2= 0.75, p= 0.057), but with a substantial 

mean difference of -4.59 (limits of agreement ± 2.31 kN) compared to the 
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rest of the spines (on average -1.61 and ± 0.89 for mean difference and 

limits of agreement respectively).  

By removing SpineGO 4 from the overall analysis, the R2 increased to 

0.75, and the mean difference improved to -1.66 together with decreasing 

the limits of agreement back to the expected ± 0.97 kN. 

 

 

Figure 34 Fracture prediction - osteoporotic samples: Bland-Altman 

plot indicating a large discrepancy due to outliers belonging to a 

single donor (SpineGo 4). Peculiarity of SpineGo 4 could not be 

assessed but was believed to come from presence of healing 

woven bone which appears high in mineral component but lacks 

the structural integrity of fully healed bone (typical for early stage 

of healing) 

 Single slice analysis tested on osteoporotic samples - OP 3.3.2.1.2

In the second step, the range of slices used to determine the vertebral 

strength was reduced to a single slice in the middle section of the vertebra. 

The merit of this step was to reduce the time required as well as the need for 

computational power, which has resulted in less than 1 minute per sample 
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as only one set of two-dimensional image data was processed at one point. 

Compared to the “weakest slice” approach, the coefficient of determination 

was reduced by 12% (R2= 0.58 (p<0.001)) with a moderate shift in mean 

difference by 25% remotely from a 1-1 agreement, along with widening the 

limits of agreement to ±2.97 kN. This again was improved by removing 

SpineGo 4 from the assessment (R2=0.64, mean difference: -2.07, limits of 

agreement: ± 1.47).  

 Material model calibration in osteoporotic population 3.3.2.1.3

When the whole dataset has been reanalysed to identify the pathology 

specific material model the R2 ranged between 0.59 and 0.67 and the mean 

difference between -4.7 and 1.1kN while limits of agreement was limited to 

between ±1.0 and ±4.2kN. The calibrated model has been selected as 

b=3.5, c=1.25 to meet agreement criteria with the same “c” coefficient. This 

resulted in R2=0.66 with a mean difference of -0.14 kN and limits of 

agreement at ±1.03kN.  

3.3.2.2 Predicted multiple myeloma samples 

 Weakest slice selected from 80% of vertebral body height - 3.3.2.2.1

MM 

A qualitative assessment of the microCT images uncovered a wide 

range of localised trabecular bone deterioration from smaller confined 

lesions (Figure 35) to a complex corrosion of the internal structure (Figure 

36). Despite the compromised bone quality, the automatic vertebral body 

assessment was in most of the cases suitably efficient in estimating the 

outer boundaries which helped to process the images in a much shorter time 

(~7 minutes per sample).   

Despite the compromised quality of the bone, the predicted values were 

notably higher in comparison to osteoporotic samples and ranged between 

1.86 to 8.56 kN (mean=4.57 ± 1.93 kN). With respect to the experimental 

data, the mean difference between the predicted values and actual yield 

strength was -1.84, with limits of agreement ±1.94 kN and coefficient of 

determination R2=0.83. Flexural and standalone compressional rigidity were 

found to correlate with strength, with coefficients of determination R2=0.62 

and R2=0.73 respectively. As depicted in Figure 37 the data were equally 

spread along the range without any obvious outliers however suggesting a 

systemic error in the agreement between predicted and experimental 

strength.  
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Figure 35 Structural assessment of a multiple myeloma sample. On the 

left is a microCT image of the weakest slice identified by the 

fracture prediction tool. On the right is the corresponding 

modulus map. The arrows indicate widespread multiple myeloma 

lytic lesions. Here the lesions filled with material with low mineral 

density result in a low modulus (E=f(ρ)) hence negligibly 

contributing to the wedge compression strength 

 

 
 

Figure 36 Structural assessment of multiple myeloma bone with severe 

infiltration causing disintegration of the natural structure of the 

trabecular bone  
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 Single slice analysis - MM 3.3.2.2.2

Markedly, the reduction of the analysed range of slices to a single slice 

assessment did not impair the R2 (single slice R2=0.82), and despite altering 

the mean difference by 21% to -2.24 kN, it altered the limits of agreement 

only moderately to ±2.18 kN. 

 

Figure 37 Predicted strength compared to experimental data in multiple 

myeloma sample set 

 Material model calibration - MM 3.3.2.2.3

This retrospective material model sensitivity study selected b=2.5, 

c=1.25 which resulted into to R2=0.83, with a mean difference of -0.09 kN 

and limits of agreement at ±0.96kN.  
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3.3.2.3 Predicting fractures in metastatic specimens   

 Weakest slice selected from 80% of vertebral body height - 3.3.2.3.1

mets 

In the last pathology dataset, 2 spines were assessed and their 

predicted strength was compared to the experimental data. The qualitative 

assessment uncovered a significant imprint in the bone tissue (Figure 36), 

however only 3 samples exhibited signs of notable infiltration, whereas the 

remaining tissue appeared to be unaffected by the presence of the disease 

in terms of lesion presence (Figure 40).  

 

  

Figure 38 Structural assessment of a sample with osteolytic infiltration 

to the vertebral body. The lesion (indicated by a blue arrow on the 

left) replaces the natural trabecular bone with a highly 

vascularised but low density tissue which results in an almost 

negligible contribution to the strength (the red arrow on the 

corresponding modulus map with automatically detected VB 

boundaries). Despite the confirmed metastatic infiltration, only 

three samples exhibited a morphological alteration due to the 

presence of cancer 

In respect to fracture prediction, the strength was estimated to range 

between 1.45 and 7.36 (mean=3.54 ± 1.63 kN). A later comparison showed 

moderate correlation with the experimental data (coefficient of determination 

R2=0.77, Figure 39), a low mean difference (-0.69 kN) and the narrowest 

limits of agreement (±1.55) of all the three pathologies. Flexural and 

compressional rigidity alone were found to correlate with strength, with 

coefficients of determination R2=0.8 and R2=0.75 respectively.  
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Figure 39 Fracture prediction of metastatic samples. This diagram 

presents in-silico predicted fracture loads compared to those 

derived from the cadaver testing 

  

Figure 40 Structural assessment of a sample from a spine with 

metastatic infiltration but without presence of a lesion in the 

vertebra 
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 Single slice analysis - mets 3.3.2.3.2

Similarly to the previous examples, the reduction of range of slices to 

one representative slice did not substantially reduce the prediction success, 

but instead impaired the correlation by 20% (single slice R2=0.62), together 

with worsening the mean difference by 36% and limits of agreement by 38% 

to -0.94 and 2.14 respectively. 

 

Figure 41 Bland-Altman plot indicating relatively good agreement 

between predicted and experimental strength in an assessment of 

the metastatic samples 

 Material model calibration – mets  3.3.2.3.3

For the last pathology material model tuning ranged in terms of the R2 

from 0.44 to 0.70,the mean difference ranged from -3.6 to 2.7kN while limits 

of agreement were limited to between 1.4 and 3.8kN. The calibrated model 

resulted in b=6, c=1.25, meeting the criteria of a fixed “c” coefficient. Results 

for this particular model were R2=0.67, with a mean difference of 0.13 kN 

and limits of agreement at ± 1.52 kN.  
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 Fracture prediction tool used in three distinct pathologies - 3.3.3

Discussion 

The structural analysis conducted in the second stage using samples 

from this study proved to demonstrate a relatively strong association 

between the predicted and experimental results, particularly in oncological 

pathologies where strengths have been predicted in both datasets with 

results varying by more than 77% without undertaking any additional 

corrections to the samples. The prediction of a particular osteoporotic 

dataset however appeared to be more challenging, resulting in a modest 

R2=0.66. The possible reason for this discrepancy between the OP and 

other two datasets is that the OP dataset has clearly been affected by inter-

spinal variability, in that by removing SpineGO 4 from the overall analysis, 

the R2 increased to 0.75. The reason for the discrepancy could not be tested 

however is believed to be related to the presence of woven bone which 

despite its high mineral composition remains significantly weaker compared 

to mature lamellar bone. Woven bone is formed by fast activation of 

osteoblasts as a process of bone healing following a fracture. This is 

characterised by a lower degree of alignment of collagen fibres and the bone 

tends to be mechanically weak until replaced by lamellar bone [228]. In 

healthy tissue this would be a natural process of healing, which is however 

unlikely to happen in all tested samples in a single donor. An alternative 

explanation would be the presence of asymptomatic Paget’s disease [229] 

which is characterised by enlarged bone structures with limited strength of 

the structure due to presence of woven bone. This however has not been 

confirmed in patient history details, unless it remained undiagnosed. As 

provided (listed in full in Appendix C: Donors’ medical records available for 

this study), donor’s history details state only mild scoliosis which is not likely 

to be linked to weakening of bone as observed here. Interestingly the 

morphology assessment of the particular spine (in “Appendix D.1: 

Osteoporosis”) highlights increased bone mineral density together with 

notably high connectivity density (almost twofold the average of other 

spines). Neither trabecular spacing and thickness nor the number of 

trabeculae were found to be notably different. 

Despite unexplained over-prediction in one spine, fracture prediction 

has shown a sufficient success rate when compared to experimental data.  
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3.3.3.1 Single slice analysis 

In the subsequent step the hypothesis was that a single 

representative slice would reflect a weakening of the whole organ. Similar to 

the findings of previous investigators [147, 151], who also tested a reduced 

number of analysed slices, this has significantly reduced the time 

dependency of the complete analysis, in case of this study from one hundred 

slices to a single slice, progressing from a matter of minutes to seconds per 

sample. Such an approach is comparable to that presented by Windhagen et 

al. [147], where the representative slice was however selected intuitively and 

where a simulated lesion removed most of the original bone structure. 

Contrary to Windhagen’s analysis, in this study the slice has always been 

selected from the central region between both endplates which is easy to 

identify from the anatomical reference scan (scout view). The correctness of 

this approach is of course only valid if the weakening is homogenous in 

nature, such as in OP and MM where the lesions do not seem to follow any 

particular pattern.  

A notable impairment of correlations between the range of slices and 

one-slice analysis was however observed in the metastatic dataset. Here, 

the most affected sample was tested whether the size and position of the 

lesion with respect to mirror symmetry could hamper the use of the simplified 

beam theory. Asymmetric beam theory has been deployed resulting in 

marginal difference between the two methods. (more in Appendix G: Bi-axial 

eccentric loading). This hence suggests that the structural compromise has 

been located remotely from mid-slice along the cranio-caudal direction. 

Therefore either wider slice range assessment or combination with pre-

screening lesion-detection should be considered once the vertebra is 

severely infiltrated.  

Despite the issues in the metastatic dataset, the structural 

assessment showed promising results in terms of correlation; however the 

same results showed complications in terms of the agreement of the 

predicted and experimental strengths. Despite a relatively high correlation 

within all three pathologies, the model showed much lower precision and 

accuracy than was initially expected, based on the preliminary experiment. 

The discrepancy which was identified did in fact correlate with experimental 

strength leading to a notable over-estimation of the specimen’s structural 

properties which was not observed in the assessment of historical data 

(section: 3.1.3). One possible explanation was a use of new scanning 

apparatus (microCT100 in this study compared to microCT80 in the previous 
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study). Unfortunately for this study, the transition from the use of microCT to 

assess the historical data and the use of microCT in the more recent study 

could not be accomplished using a proper scientific method due to a sudden 

breakdown of the previously employed machine. It is however believed that 

the inbuilt non-adjustable beam hardening (BH) correction algorithm could 

have contributed to this discrepancy. While the initial datasets were treated 

with a BH correction of 200mgHA/cm3, the more recent scans were treated 

with a BH correction six times higher for samples of similar size.  A similar 

effect has been reported by Fajardo et al. [230] who identified not only the 

BH, but also the size and density distribution of the samples as notable 

contributors to the discrepancy in measurements. In fact, the mechanism of 

BH phenomena is in agreement with reported discrepancies, as it biases 

predicted densities in favour of the margins of the sample [230, 231]. Due to 

the fact that a moment of inertia accounts for the square of the distance from 

the neutral axis to each voxel, the difference in density with respect to the 

distance from the centre of each sample increases the weight of the 

spatially-dependent density-to-modulus bending rigidity. This in fact leads to 

an increase in the predicted strength of the sample as presented above.  

Nonetheless, the two sets of sufficiently close correlations mentioned 

here suggest that the discrepancy between the scanners does not affect the 

correlation between data, and hence the relative comparison of strength is 

not impaired. This leads to the conclusion that the discrepancy, and hence 

the resulting accuracy and precision of the prediction, can be adjusted by 

choosing an appropriate material model.  

3.3.3.2 Retrospective density-to-modulus model fit 

Using a complete dataset calibration of the material model, which is a 

common approach for finite element methods used in previous studies [169], 

a notable improvement in the predictions of one slice analyses was 

demonstrated. Although the main criteria for the density-to-modulus power-

law model were to adjust the results in terms of agreement with the 

experimental strength, the R2 in the osteoporotic and metastatic samples 

improved by 14% and 8% respectively, together with maintaining a similarly 

superior R2 in the multiple myeloma dataset. In terms of accuracy as defined 

by Bland and Altman [162], the models were calibrated so that even the 

lowest mean difference in the osteoporotic samples was found to be lower 

than 0.15kN. The largest scatter in terms of the limits of agreement has been 

observed to reach 1.52kN in the metastatic dataset.  
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The optimal material models were found to differ between datasets and 

although the power coefficient (“c”) could remain fixed between pathologies, 

the linear coefficient (“b”) required adjustment. Only a marginal difference 

between optimal models was found, which confirmed the findings from a 

recent micro-indentation study presented in this study. In the case of 

osteoporotic and multiple myeloma bone, the difference between the “b” 

coefficients of the tested power-law was found to be marginal, indicating only 

trivial differences in the properties of the micro-material. In contrast to these 

two datasets, the same linear coefficient of the material power-law for the 

metastatic bone has been found to be twofold that of the osteoporotic bone. 

This can be either explained as a result of the weakest slice contributing 

significantly more to raised levels of strength - hence the middle slice 

analysis could not account for structural changes in metastatic samples - or 

due to underlying differences at the tissue level. 

Observed differences in the metastatic bone are rather surprising as this 

conflicts with studies by Kaneko et al. [198] and von Stechow [67], where 

both studies reported that the presence of metastases does not impair the 

estimation of the stiffness modulus gained from the density of the mineral 

component.  

In fact, another study [225] disagrees with all of these findings, reporting 

that both lytic and blastic lesions are significantly less stiff than normal 

tissue. Hipp et al. [225] in their study also noted that although the apparent 

wet density of osteoblastic lesions in cancer specimens is greater than their 

ash density, they are less stiff than normal bone. The study thus concluded 

that fracture prediction tools based on a density-to-modulus model should be 

adjusted to take into account the effects of the metastases.  

While all three contradicting studies [67, 198, 225] were conducted on 

cored trabecular samples, those conducted by Kaneko and Hipp were 

limited by the low number of samples available (three and two metastatic 

subjects in each of the studies respectively), while the study by von Stechow 

was conducted on ten subjects, without however distinguishing the primary 

cancer or the nature of the lesions. To the author’s knowledge, there is only 

one study which has been conducted where the cancer-affected (metastatic) 

bone was evaluated at the bone tissue level [68]. However, in that study 

authors reported values of an elastic tissue modulus of the healthy bone 

derived from nano-indentation (0.47 GPa) which were almost two orders of 

magnitude lower than the ones reported in the literature (~10-20 GPa) [36], 

indicating a possibly significant disparity in their experimental procedures or 
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a considerable detrimental effect of damage on the bone indentation 

properties [35]. Despite the systematic difference to values reported by other 

investigators, Nazarian et al. [68] reported the elastic modulus and hardness 

of the metastatic cancer bone as more than twofold lower than that of non-

oncological tissue. Normal and osteoporotic indentations were not found to 

exhibit significant differences. Yet the actual potential variance between 

osteoclastic and osteoblastic lesions remains unclear as the researchers 

reported only primary cancer diagnoses and reported neither the presence 

of the lesion, nor the specific location of the indents.  

Nonetheless, the inconsistencies between all the aforementioned 

studies, including this more recent one, raises concerns that the material 

properties of bone may be different with respect to the cancer type. Hence, 

to produce reliable data a calibration material model study should be 

conducted when testing different cancer samples. 

3.3.3.3 Structural assessment in predicting OP, MM and mets – 

comparison to sophisticated FEA models 

In contrast to the most recently developed finite element models used to 

provide an assessment of vertebral strength, the simplistic one-slice-analysis 

model has proved superior in terms of both accuracy and precision [65, 148, 

167, 169-172]. In fact, only three studies [168, 169, 171] have been superior 

both in correlation and in agreement with measured data. Zeinali et al. [168] 

and Imai et al. [171] both tested models were modelled as linear elastic as 

well as improved linear elastic-linear plastic constitutive models, which were 

tested in homogenised and voxel-based models consisting of limits of 

agreement lower than 0.85kN, however both studies were limited in the 

number of samples tested which may have impaired the results which were 

obtained (N=9 and N=12 respectively).  Pahr et al. [169] on the other hand, 

reused 37 samples earlier processed by Dall’Ara et al. [167] and reported 

that by calibration of the model on the same dataset, both accuracy and 

precision can be improved to an impressive mean difference of nearly zero, 

with ± 1kN limits of agreement together with an impressive correlation of 

R2=0.92. These in fact are quite comparable data in terms of agreement 

when comparing to the calibrated one-slice analysis, however R2 is more 

difficult to compare as the range of experimentally obtained strengths was 

up to twofold larger in the finite element study mentioned (6.9kN in favour for 

FE [167] versus experimental ranges in this study: 3.2, 4.16 and 4.55 kN for 

OP, MM and mets respectively). 
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When considering the time dependency of the model used, literature 

very often lacks any indication of length of processing time which is however 

a significant factor in both the experimental and clinical environment. 

Although it is generally known that FEA is often limited by requirements 

consisting of preparation of the modelled sample prior to analysis, resulting 

in a lengthy modelling procedure and a reduced number of samples being 

able to proceed to testing. Considering the computational time alone, the 

models presented here could in theory be compared to coarsen 

homogenised models [167, 171] where the lower computational time and 

cost are counter-balanced by the lengthy effort required for the material 

mapping, segmentation and meshing, which all need to be adjusted 

separately for each sample. Even here, the one-slice-analysis is hardly 

comparable due to the fact that the time required performing an image-to-

strength assessment, including data handling and preparation of the image, 

has been reduced to less than one minute. There is a strong potential in 

automatised fabric homogenisation which has been recently used to 

minimise the computational time required to approximately 30 minutes [169], 

but still requires well-defined boundary conditions and has been tested only 

in a pre-clinical environment.   

3.3.3.4 Comparison of fracture prediction tool to other analytical 

models 

In contrast to the work presented in this thesis, Whealan et al. [2] and 

Windhagen et al. [147] tested multiple segments, an analysis which probably 

represents the in-vivo state more accurately, but which hampers a 

methodological approach to understanding the load management within an 

isolated organ. In fact, the sample was tested in forward flexion, where the 

presence of intervertebral disc and posterior ligaments causes the load to be 

distributed more uniformly across both vertebral endplates towards 

compressional loading and is strongly dependent upon the pathological state 

of the soft tissue.  Moreover, both studies have in reality covered predictions 

for particularly cancerous samples by pooling samples from donors without 

any oncological pathology and creating spherical cavities to simulate lesions. 

This however leads to an artificially distributed prediction across the range of 

experimental strengths and may have facilitated the acquisition of 

correlations of R2=0.69 and R2=0.85 respectively. The higher correlation in 

Windhagen’s study can be explained by placing the simulated lesion always 

within the central region of the vertebral body, hence minimising the need for 

a flexural rigidity component.  
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3.3.3.5 Limitations of fracture prediction used in this study 

The major limitation of this approach is that the outcome lacks any 

indication of fracture propagation or even of the relative position of the 

fracture. Although the slice-by-slice analysis can be used to predict the 

weakest slice, i.e. the site which is most prone to fracture, it lacks the ability 

to derive the relative stress distribution. Moreover, the linear elastic model 

which is the basis of the model proposed in this study cannot be used to 

quantify post-yield behaviour in any way. On the other hand, results 

suggested by Hong et al. [232] suggest that the model could easily be 

adjusted also for torsional loading, improving its versatility.  

At last, it must be noted that the final results were calibrated using the 

entire dataset. Such simplification may offer a distorted interpretation of the 

performance of the developed model and lacks an engineering approach as 

data have not been delivered experimentally. Finally it is not guaranteed that 

this material model would work on different subsets.  

Despite these limitations, the results are similar to those presented by 

Whealan [2], Windhagen [147] and many finite element approaches 

(e.g. [65, 167] and more). Even without adjusting the material model, it 

provides accurate information about the relative strength of the bone 

compared to other samples tested with the same model (Table 4, literature 

review section 2.6.2), which ensures a fast and robust benchmarking tool for 

use in a laboratory environment.  

3.4 Commissioning of the fracture prediction tool – Summary 

The fracture prediction tool adopted for purpose of this thesis and 

discussed in this chapter was initially tested using a dataset of osteoporotic, 

metastatic and multiple myeloma samples which matched testing and 

scanning criteria for the single vertebra study. 

At first, the model was validated for use using historical data which 

showed promising results in terms of predicting the fracture based on the 

assessment of mineral component distribution using microCT images. In 

short, a relatively good agreement in terms of mean difference and limits of 

agreement was found (-0.25 ± 0.91 kN, -0.41 ± 0.96 kN and -1.01 ± 2.52 kN 

for OP, metastases and MM respectively), together with an indication of 

good correlations (up to R2=0.93, 0.64 and 0.62 for OP, mets and MM 

respectively). This initial analysis underpinned two important findings: first, a 

strong necessity to identify any pre-existing fractures and also the existence 
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of possible differences in bone material properties; second, multiple 

myeloma bone predictions show large discrepancies in terms of both 

accuracy and precision, probably due to changes not only on a structural but 

also material level which should be further investigated. 

Recent analysis of samples tested for the purpose of this thesis 

comprised altogether more than a hundred samples which have been 

collected, dissected and scanned before being subjected to an eccentric 

wedge compression fracture test. Here, samples were tested separately 

according to the nature of the bone disease (OP, MM and metastases). The 

results presented here underpin the overall stiffness and strength 

assessment used for the validation of the image-based fracture prediction 

tool in the following sections.  OP bone was found to be both the weakest 

(1.35 ± 0.91 kN) and the least stiff (2.2 ± 1.0 kN/mm) from the investigated 

groups. From the other two tested pathologies, MM and metastases were 

found to be relatively comparable in terms of both the strength (2.73 ± 1.17 

kN and 2.86 ± 1.33 kN respectively) and stiffness (3.46 ± 0.96 kN/mm and 

3.57 ± 1.40 kN/mm respectively). 

The results of the fracture prediction presented for each of the three 

pathologies were with relatively good correlation (R2=0.66, 0.83 and 0.77 for 

OP, metastases and MM respectively) with however a wider range of 

agreement and considerable change in agreement compared to the initial 

study. The mean difference was found to be relatively poor when no 

samples were excluded from the study (-1.93, -1.84 and 0.69 kN 

respectively) with relatively wide limits of agreement (±2.02, ±1.94 and ±1.55 

kN respectively). Calibrated one-slice-analysis ranged in terms of multiplier 

of the material model from 3.5, 2.5 and 6 with limits of agreement ±1.03, 

±0.96 and 1.52kN (for OP, MM and mets respectively). The mean difference 

for all three pathologies was <0.15kN.  
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  Chapter 4

Determination of the mechanical properties of trabecular 

bone utilising microCT assessment and micro-indentation 

The second objective of this thesis was postulated regarding the limited 

understanding of underlying material properties of the cancerous bone. The 

necessity to underpin the alteration due to the presence of neoplastic 

pathology encompasses whether the deterioration of bone relates to 

changes at the meso- or micro-scale of trabecular tissue.  

Section 4.1 focuses on the investigation of changes at the meso-scale 

level by means of image-derived assessment which was carried out by 

comparing morphology indices compared to the biomechanical metrics of 

each sample.  The latter - the investigation at the micro-scale- was 

investigated in the following section 4.2 by means of micro-indentation 

assessing bone quality change in patients with diagnosed multiple myeloma 

cancer.     

4.1 Pathology specific morphology 

 Introduction to assessment of micro-properties of the bone 4.1.1

The use of areal-BMD consistently fails to diagnose osteoporosis in the 

wider population (e.g. [62, 83, 226]). This could be explained by the fact that 

areal-BMD is based on accumulative planar X-rays and hence is dependent 

on the general size of the vertebra and mineral mass in the direction of the 

scan. Nevertheless, the size of the subject is not taken into account and 

hence can result in a systemic under-classification of osteoporosis. Despite 

its increasing general acceptance, the volumetric BMD used in this study is 

still considered more as a pre-clinical measure of bone quality due to the 

necessity of CT scanning and issues arising from relatively high radiation 

dosages, which increase with resolution together with the lack of proof, to be 

deployed purely as a measure of the weakening of the vertebral bone.  

The objective of this study was to conduct a pre-clinical experiment 

that would provide a better understanding of the morphological nature of the 

tissue in combination with biomechanical testing that would assist in the 

development and optimisation of a treatment technique in pain management 

and techniques to prevent debilitating vertebral fractures. Volumetric BMD, 

as a mineral content per volume, provides measures which are corrected for 
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the volume of mass, however it lacks the large statistical data required to 

establish a precise threshold in clinical practice. 

In this study the relative contributions of bone mass and trabecular 

microarchitecture to biomechanical metrics have been determined in a more 

complex loading scheme. The relationships between bone mass indices and 

trabecular morphometry on one hand and strength and stiffness on the other 

have been investigated. Pathologically unique samples have been examined 

by means of microCT assessment and later statistically compared to the 

complete organ wedge compression testing. This is in fact more clinically 

relevant [76, 233] than a similar assessment done on samples compressed 

axially [69, 234]. The consequences for the stiffness and strength of the 

organ have been presented earlier in this work in the fracture prediction tool 

development.  

 Methods used in morphology assessment 4.1.2

4.1.2.1 Sample population 

Samples used for the morphological assessment study undertaken in 

this section comprised of the same samples used in the development of the 

fracture prediction tool, section 3.3. This more specifically comprised of fifty-

four osteoporotic samples, thirty-four metastatic samples and nineteen 

samples from donors diagnosed with multiple myeloma. Details of the 

sample population together with basic donor information are listed in section 

3.2.2.1. The same CT images as those used for beam theory-based 

predictions were treated in this analysis allowing a direct comparison with 

the previous data.   

4.1.2.2 Morphology image processing 

Scans were first carefully checked manually for scanning artefacts which 

would hamper the assessment and checked if all the slices have been 

reconstructed properly. The volume of interest (VOI) was chosen according 

to the SOP suggested by previous investigators [38]. In this protocol, 

trabecular BMD is evaluated safely within the inside volume of the bone as a 

specimen-specific cylinder with  its cross-sectional base centred on the 

sagittal plane with a diameter of 60% of the anterio-posterior vertebral body 

length and 80% of vertebral body height, defined by the first appearance of 

the cortical endplate on the axial slices (VOI depicted in Figure 42). The VOI 

(file extension GOBJ) was defined in the scanner evaluation program for 

later use within Image Processing Language [235]. 
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Figure 42: Protocol defining the VOI within the trabecular structure.  

An overview of the steps taken to perform this basic morphometrical 

analysis is depicted in Figure 43. Prior to segmentation a measurement 

noise was partially suppressed within the VOI using a 3D Gaussian filter 

(filter width 1.2, filter support 2) followed by binarisation to differentiate 

between bone and the background. This method is often performed 

manually by selecting the threshold according to the researcher’s best 

estimate. However, this technique, when tested on sensitivity to different 

microCT users, showed insufficient consistency between researchers. As an 

alternative method an iterative selection method proposed by Ridler et 

al. [236] was adopted. The method for selection of the threshold is based on 

an iteration to the weighted equilibrium of a density histogram as shown as 

“X” in Figure 44. To do so, the scanning density data (file extension ISQ) 

together with the volume of interest defined in the microCT scanner (file 

extension GOBJ) were simultaneously loaded and processed by a custom-

build code [208] prior to derive the single threshold value (GUI depicted in 

Figure 45). 
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Figure 43: Single step flowchart of the Morphological assessment. (ISQ 

- microCT scanning file; GOBJ - microCT file defining ISQ specific 

volume of interest mask; SEG_CYL – 3d binarised image stack of 

representative trabecular bone region; BMD,BV/TV, Tb.Sp, Tb.Th, 

Tb.N and Conn.D represent morphological indices discussed in 

the text) 
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Figure 44: Principle of iterative selection thresholding technique 

proposed by Ridler and Calvard [236] and adopted to microCT 

measurements performed in this study 

 

 

 

 

Figure 45: Graphical User Interface (GUI) of a custom-compiled script 

used to view the ISQ scanning files, to estimate the BMD, BV/TV 

and optimal threshold within the desired VOI (based on GOBJ). 

Subfigure (A) shows an example of vertebra scanned in 

microCT100, a program which allows a slice by slice list, is able to 

adjust brightness and highlights segmented bone according to the 

estimated threshold detailed in subfigure (B) 

A.) B.) 
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The binarised stack was later filtered using a ranking filtering approach 

which identifies and removes significantly minor disjointed elements. 

Subsequently, a morphological assessment was performed using a distance 

transform algorithm to deliver direct measurements of trabecular spacing 

(Tb.Sp), thickness (Th.Th) and number of trabeculae (Tb.N). Connectivity 

was performed using a ranking method whereas density was normalised to 

the size of the VOI. All these morphological indices were obtained using 

Image Processing Language [235]. 

4.1.2.3 Comparing the morphology to cadaveric testing 

The trabecular microarchitecture indices were furthermore combined 

with measures obtained from the fracture prediction tool described 

previously in subsection 3.3: ”Fracture prediction tested on large sample 

population: three pathologies” and compared to experimental data obtained 

from mechanical testing described in section 3.2: “Commissioning of 

cadaveric Wedge Compression Fracture testing”. 

Statistical analysis was performed using the computing environment 

R [237]. Morphological indices were compared to experimental data in terms 

of coefficient of determination (R2) based on linear fit and multivariate 

regression between the selected variables. 

 Morphology of human bone - Results 4.1.3

4.1.3.1 Morphology assessment 

 Morphology of osteoporotic bone 4.1.3.1.1

 With regards to the most commonly used bone quality indicators, the 

Bone Mineral Density (BMD) in this dataset was found to vary from 56.7 to 

204.7 mgHA/cm3 (mean 124.6 ± 39.9 mgHA/cm3), whereas the bone volume 

fraction (BV/TV) varied from 0.1 to 0.23 (mean 0.17 ± 0.04). The trabecular 

structure indices Tb.Sp, Tb.Th, Tb.N and Conn.D varied from 0.9 to 2.07 mm 

(mean 1.31 ± 0.3), 0.26 to 0.42 mm (mean 0.3 ± 0.03), 0.97 to 2.07 per mm 

(mean 1.36 ± 0.28) and 0.29 to 1.62 per mm3 (mean 0.81 ± 0.4) respectively.  

 Morphology of multiple myeloma bone 4.1.3.1.2

 An assessment of the multiple myeloma samples revealed that the 

Bone Mineral Density (BMD) varied from 100.4 to 194.3 mgHA/cm3 (mean 

124.1 ± 28.3), whereas the bone volume fraction (BV/TV) varied from 0.1 to 

0.22 (mean 0.15 ± 0.04). The trabecular structure indices Tb.Sp, Tb.Th, 

Tb.N and Conn.D varied from 0.95 to 3.84 mm (mean 1.68 ± 0.82), 0.27 
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to 0.53 mm (mean 0.32 ± 0.06), 1.05 to 3.76 per mm (mean 1.75 ± 0.8) and 

0.22 to 1.13 per mm3 (mean 0.67 ± 0.29) respectively.  

 Morphology of metastatic bone 4.1.3.1.3

Morphology alone in metastatic samples provided an assessment of 

Bone Mineral Density (BMD) varying from 109.3 to 239.9 mgHA/cm3 (mean 

152.3 ± 34.2), whereas the bone volume fraction (BV/TV) varied from 0.18 

to 0.34 (mean 0.27 ± 0.05),The trabecular structure indices Tb.Sp, Tb.Th, 

Tb.N and Conn.D varied from 0.69 to 1.15 mm (mean 0.8 ±0.11), 0.28 to 

0.37 mm (mean 0.31 ± 0.02), 0.8 to 1.2 per mm (mean 0.9 ± 0.09) and 0.77 

to 2.88 per mm3 (mean 1.91 ± 0.68), respectively.  

4.1.3.2 Morphology as a fracture prediction and comparison to 

composite beam theory fracture prediction tool 

Generally speaking, fracture prediction using the beam theory has 

provided promising results when assessing the weakening of the vertebra. 

This section aims to establish the relative links between the vertebral 

biomechanical behaviour of the bone-mass coupled with an assessment of 

the trabecular micro-architecture in comparison to image-based beam theory 

fracture prediction.  

Multivariate correlation was possible due to combining the previously 

presented morphological indices, beam theory fracture predictions and 

experimental data. Table 10 details results from a number of observations 

which have been made. Stand-alone morphology indices were found to 

weakly correlate with the experimental data, here only BMD and BV/TV were 

found to correlate with the vertebral strength but only with moderate success 

given their different pathologies. Tb.Sp and Tb.N were found to correlate 

weakly or not at all with strength and stiffness. The beam theory was found 

to strongly correlate with the biomechanical testing in both cases, using the 

representative range of images and also in the case where only one slice 

(Fz.OneSlice, EI.OneSlice and EA.OneSlice) has been used. 
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Multivariate regression - part correlation 

Composite Beam Theory 

Dependent variable Strength 

Independent variable Fz.ran
ge 

EI.rang
e 

EA.ran
ge 

Fz.OneSli
ce 

EI.OneSli
ce 

EA.OneSli
ce 

P
a

th
o

lo
g

y
 

Osteoporosis 0.81 0.61 0.63 0.76 0.7 0.67 

MM 0.91 0.79 0.86 0.91 0.88 0.86 

Metastases to 
spine 

0.88 0.87 0.90 0.79 0.78 0.86 

All 0.77 0.63 0.69 0.68 0.64 0.64 

Dependent variable Stiffness 

Independent variable Fz.ran
ge 

EI.rang
e 

EA.ran
ge 

Fz.OneSli
ce 

EI.OneSli
ce 

EA.OneSli
ce 

P
a

th
o

lo
g

y
 

Osteoporosis 0.73 0.78 0.82 0.67 0.67 0.63 

MM 0.64 0.49 0.57 0.63 0.62 0.65 

Metastases to 
spine 

0.73 0.78 0.82 0.66 0.67 0.74 

All 0.65 0.58 0.63 0.58 0.57 0.57 

Morphology indices 

Dependent variable Strength 

Independent variable BMD BV/TV Tb.Sp Tb.Th Tb.N Conn.D 

P
a

th
o

lo
g

y
 

Osteoporosis 0.55 0.73 -0.68 -0.06 -0.68 0.81 

MM 0.79 0.30 0.16 0.53 0.15 0.02 

Metastases to 
spine 

-0.23 0.21 0.04 0.62 0.09 -0.16 

All 0.36 0.51 -0.22 0.30 -0.20 0.38 

Dependent variable Stiffness 

Independent variable BMD BV/TV Tb.Sp Tb.Th Tb.N Conn.D 

P
a

th
o

lo
g

y
 

Osteoporosis -0.38 0.08 0.16 0.53 0.22 -0.25 

MM 0.44 0.05 0.37 0.50 0.36 -0.22 

Metastases to 
spine 

-0.38 0.08 0.16 0.53 0.22 -0.25 

All 0.27 0.44 -0.17 0.26 -0.15 0.30 

Table 10 Pearson’s Correlations (r) between the biomechanical 

experiment and the image-based analysis 

 When combined together, the correlation with biomechanical 

assessment significantly improved for all pathologies, in terms of both the 

strength and the stiffness (Table 11). This suggests that despite their weak 

correlation as standalone predictors, all parameters in some measure 

contribute to the organ’s mechanical resilience. However, statistically only 

trivial contributions to the correlation were found in the spacing index (Tb.Sp) 
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and number of trabeculae (Tb.N) for all three pathologies. By excluding the 

two indices from the multivariate regression, the correlation coefficient 

decreased only marginally (by 4.1, 1.2 and 0.9% for strength in OP, MM and 

mets respectively and by 2, 13.7 and 5.8% for stiffness in OP, MM and mets 

respectively).  

Multivariate regression - final correlation 

Dependent variable Strength 

Independent variable Morphology indices 

combined 

Morphology + 

Beam theory 

P
a
th

o
lo

g
y
 

Osteoporosis 0.84 0.90 

MM 0.88 0.98 

Metastases to 

spine 

0.76 0.97 

All 0.66 0.92 

Dependent variable Stiffness 

Independent variable Morphology indices 

combined 

Morphology + 

Beam theory 

P
a
th

o
lo

g
y
 

Osteoporosis 0.74 0.80 

MM 0.81 0.96 

Metastases to 

spine 

0.70 0.89 

All 0.61 0.83 

Table 11 Pearson’s correlation coefficients (r) as the result of the 

multivariate regression analysis 

The multivariate regression performed discerned that the best 

association between the whole organ’s mechanical properties and microCT 

images can be obtained by combining bone mass parameters (BMD,BV/TV) 

and microstructure properties (Tb.Th, and Conn.D), together with 

parameters concerning the modulus distribution (EA, EI and Fz). One must 

however consider that to achieve such a good correlation, at least 80% of 

the vertebral body had to undergo a detailed microCT assessment in 

comparison to an assessment with only one slice which was able to 

correlate with considerable success. Namely, compared to the complex 
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assessment of all contributors, the one slice assessment (Fz.OneSlice) 

showed correlations lower only by 25.2, 12.0 and 10.9 % in terms of strength 

prediction for OP, MM and mets respectively and 21.6, 32 and 17% in terms 

of stiffness prediction for OP, MM and mets respectively. Overall, one slice 

analysis correlated by 30.4% less in terms of strength of all samples, and by 

31.1% less in terms of stiffness of all samples. 

 Morphology assessment in bone with cancer and OP - 4.1.4

Discussion 

The BMD values presented in this work are in agreement with 

literature in the case of osteoporotic bone [238], although the BMD of both 

oncological pathologies was expected to be much lower [95]. The reported 

values for single vertebra were however as low as 8mgHA/cm3, suggesting 

that the area in which authors measured the BMD was extremely 

deteriorated in terms of content of the calcified bone, in fact often suggesting 

that no bone remained at all. A notably increased BMD and BV/TV in 

metastatic bone was caused by the relatively good condition of the bone 

which had been harvested from the two patients and by a lack of osteolytic 

lesions. The assumption that the bone from these patients was relatively 

healthy is supported by other morphological indices reinforcing the quality of 

the structure of the bone. In fact, a superiority of connectivity and a 

decreased number of trabeculae and separation thereof both suggest a 

much higher quality of bone when compared to the other two investigated 

pathologies. The bone volume fraction (BV/TV) presented here is in 

agreement with several studies [239-241] although values in literature do 

vary from 0.08 to 0.39. Disagreement was found towards both ends of the 

range. Ladd et al. [242] and Follet et al. [243] reported bone fractures within 

the lowest limits of the range in contrast to Ouyang et al. [244]who reported 

values twofold higher than the values which have been presented in this 

work. The osteoporotic and multiple myeloma datasets are in agreement 

with observations of oncological tissue presented by Nazarian et al. [68] who 

failed to show a significant difference between the datasets belonging to 

their two pathologies. The trabecular morphometry indices have been found 

to lie within a similar range to those reported elsewhere [239, 243] but this 

has also been opposed by several other studies [240, 243, 244]. 

The large discrepancy which exists within the literature examined is 

explained by the lack of a “gold standard” for assessing bone structure using 

the CT. Examples in which this lack existed include the geometrical 

calibration, the range of the employed density calibration phantom, the 



- 117 - 

resolution [239], scanning parameters, beam hardening correction [231], the 

position of the vertebra with respect to the scanner [230] etc. In addition, one 

needs to pay attention when comparing in-vivo and cadaver samples due to 

the influence of the surrounding tissue on the resulting densities [34].  

Although a biomechanical assessment with the objective of identifying 

key components in a structural assessment has been well documented for 

compression testing [69, 217, 234]  (and includes references within a review 

article by Bouxsein et al. [70]), it had yet to be validated for wedge 

compression loading. This study has however presented a correlation with 

the bone strength in a limited number of cases and a very weak or no 

correlation with its stiffness.  

This is in contrast to findings which have been presented for strictly 

compressional loading where bone mass such as BMD and BV/TV explains 

the largest measure of variation by far in both stiffness and strength [69]. For 

more complex loading it has been reported that BMD and BV/TV correlated 

only moderately with the bone strength for osteoporotic samples only, and 

only BMD correlated with strength in multiple myeloma samples. This 

indicates two possible explanations: 1) literature-based data agrees in the 

investigation of osteoporotic bone where data are not comparable to other 

pathologies; and 2) findings from compressional loading cannot be directly 

translated to loading with an excessive bending component. The first 

possible explanation was again confirmed by assessing the density of 

connectivity, which was believed by many authors to be a link explaining the 

remaining unknown variation of results when correlating bone mass with 

strength [59]. Despite high correlations for osteoporosis, this failed to be 

repeated in experiments performed with the other two pathologies. 

In fact, the second possible explanation is similar to findings 

presented by Crawford et al. [245] who suggested that an additional metric 

to account for bending rigidity is needed. In their validated FE simulation, the 

authors proposed that even the multiplication of the axial stiffness 

(effectively a product of BMD and the cross-sectional area) by the square of 

the anterio-posterior vertebral body depth gives a significantly higher 

correlation to the bone strength. Multivariate regression analysis presented 

in this study has shown that the number of trabeculae together with the 

trabecular spacing indices do not strongly improve correlation with vertebral 

strength, however this is believed to be due to the fact that they share the 

same derivation algorithm with trabecular thickness, hence are not 

independent. To account for the bending component, it has been further 
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investigated that a combination of beam theory and the morphological 

indices did account for a variation of results with correlation to strength 

ranging between 81% and 96%, and to stiffness ranging from a modest 64% 

up to 92%. 

The results presented in this study suggest that although a 

morphology assessment can help to underpin the structural properties of 

vertebral bone, the benefits of using morphology as a precursor of fracture 

may be overwhelmed by the need for a large volume of images to be 

scanned with high accuracy. Moreover, the general understanding of the 

relationship between bone structure and biomechanical performance, and 

the ways in which they correlate, may be inflated by a comparison with 

simplistic uni-modal loading and the transition to a more complex scenario 

remains unaccounted for.  

4.2 Micro-indentation of multiple myeloma bone 

 Introduction to micro properties of multiple myeloma bone 4.2.1

Multiple myeloma is a bone marrow cancer derived from aberrant 

plasma cells and is often associated with a myeloma bone disease. The 

lesions of myeloma bone disease are frequently widespread resulting from a 

tumour-induced osteoclast/osteoblast imbalance in the remodelling process 

where the bone resorption becomes dominant. Myeloma bone disease 

results in a deficiency of the load bearing capacity, resulting in significant 

morbidity and utilisation of healthcare resources. However, the nature of the 

weakening has not been adequately assessed. In particular, it remains 

unclear whether besides bone loss, the material properties of the 

neighbouring tissue also become degraded.  

Previous studies have shown that age has little or no influence on the 

mechanical properties at the tissue level [36, 184], which remains an 

important encounter in supporting the theory that a reduction in bone 

stiffness in osteoporotic patients is primarily due to changes in BV/TV and 

not in the material properties of the bone per se. However, this has not been 

proven in cancer patients who are known to be affected by an increased risk 

of fractures occurring compared to an osteoporotic population [83]. A 

comparison to a non-affected population has clearly shown the structural 

changes in patients suffering from this neo-plastic disease [91, 92], however 

there exists only limited knowledge concerning whether the multiple 

myeloma affects the bone mechanical properties at the tissue level.  
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Due to a direct link between bone density and its stiffness moduli used 

in various fracture prediction tools, an investigation of the unambiguousness 

of underlying material properties of bone is also required to prevent 

misleading predictions. A comprehensive assessment of the mechanical 

properties of vertebrae at the tissue level affected by multiple myeloma, as 

yet unreported in literature, is needed to extend the usage of tools 

developed to predict vertebral strength, such as those employing finite 

element methods. Such a methodology needs as its input a number of 

reliable mechanical properties which might be different from the normal or 

osteoporotic aspects, such as elastic modulus at the tissue level. Moreover, 

the deterioration of the bone tissue in function of its distance to the lesion 

can be modelled, if necessary. Hence the aim of this study was to 

investigate the mechanical properties of bone tissue, measured by means of 

micro-indentation in patients with myeloma bone disease, and compare the 

findings with non-affected patients.  

Therefore, the hypotheses for this study are listed as follows: 

i. Vertebral tissue indentation properties of MM bone are influenced 

by the presence of a lesion with progression of the lytic 

infiltration. 

ii. Vertebral tissue indentation properties of MM bone are different 

when compared to indentations in healthy bone tissue. 

 Methods of bone micro-properties assessment 4.2.2

4.2.2.1 Multiple myeloma bone indentation - sample selection 

Spines with a diagnosis of MM were acquired from a non-transplant 

tissue bank (GIFT, Leeds General Infirmary, UK and Science Care®, AZ, 

USA) following ethics committee approval (Ethical approval: 10/H1306/60). 

Two vertebrae (L4 and T6) were extracted from the thoracolumbar spine of 

six subjects. Specimens were divided into two groups according to a 

microCT assessment of each vertebra (voxel size 70.8x70.8x70.8 µm3, 

microCT100 [Scanco Medical, Bassersdorf]): samples without any visible 

lesion (group MM.N, example depicted in Figure 46 (A)) and specimens with 

myeloma bone disease (MBD) infiltration to the bone (groups MM.L, two 

examples depicted in Figure 46 (B) and (C)). After removing posterior 

elements, the samples were partially embedded in PMMA to allow precise 

cutting. In addition reference grooves were made in the cortical shell.  
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Figure 46: Vertebral body section cut along a plane perpendicular to 

the vertebral axis in the middle of the multiple myeloma bone 

without any visible lesion (A), moderately infiltrated sample (B) 

and sample severely affected by MBD (C) 

4.2.2.2 Nearby lesion localisation 

Repeated microCT scans with the same parameters provided 

quantitative information about the position and size of any lytic infiltration 

with respect to the reference grooves. To automatically locate the lesions, a 

distance transform algorithm was used [235]. This method is, as illustrated in 

Figure 47, based on fitting spheres of different sizes into the background of a 

segmented 3D image of the bone [57], where the segmentation threshold 

value was obtained using an iterative selection method [236] in a custom 

compiled image processing script [208].  

    

Figure 47: Visualised distance transform algorithm to estimate the 

trabecular spacings and thicknesses which highlights 

morphological changes due to lytic infiltration to bone. 

Segmented image (A.), Tb.Sp (B.) to identify a cancer lesion 

(multiple myeloma cancer) 

A.) B.) 
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4.2.2.3 Sample preparation prior to indentation testing 

According to the position of the lesions, from each sample, two to three 

5 mm thick slices were cut using a high precision diamond band 

saw [EXACT 310, Exakt Apparatebau, Norderstedt, Germany] perpendicular 

to the cranio-caudal axis. From each of these slices, one to four 15x15 mm 

samples were prepared. In particular, samples from groups infiltrated by 

cancer were cut through the lesion (MM.L) and are later depicted in Figure 

48. Moreover, a control sample was extracted from each vertebra in a region 

without any visible cancer infiltration to the bone, according to the microCT 

images (MM.L.C). In one case there was not enough trabecular bone to take 

a control sample as most of the trabecular structure was affected by the lytic 

lesions. Samples from the group without any visible lesions (MM.NL) were 

taken from the middle region of the vertebral body. Therefore, samples were 

divided into three groups as reported in Table 12, whereas the number of 

samples tested is reported in Table 13. 

 

Figure 48 Micro-indentation sample preparation: Lesion has been 

identified based on segmented microCT images superimposed by 

lesion map highlighting bone separations >3.5mm. Reference 

grooves made prior to scanning were used as a reference 

guideline for latter cutting. Figure depicts an example of a single 

coupon containing a lesion cut with respect to the cutting grooves 
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Study groups 

Group 
name 

Infiltration to the 
bone 

Details 

MM.L Myeloma bone 
disease (MBD) 

Four patients with lytic invasion to the 
vertebral bone, samples taken from 
proximity of the lesion 

MM.L.C MBD (Control) Samples from the same vertebrae of MM.L 
group but taken from the non-affected site 

MM.N MM without visible 
lesions 

Two patients with diagnosed MM cancer 
without visible lesions 

Non-MM No MM cancer Samples from thirty-two donors without 
diagnosed MM cancer (data collected 
from [36]) 

Table 12 Base group sample allocation comprising twelve samples 

from six donors with diagnosed MM cancer compared to a non-

affected population 

 MM.L MM.L.C MM.N non-MM 

Transversally-cut 
trabeculae 

1079 311 293 243 

Axially-cut trabeculae 408 76 100 243 

Number of samples N=31 N=8 N=9 N=27 

Number of vertebrae 8 7 4 27 

Number of donors 4 2 27 

Vertebral levels 2xT6, 2xL4 T6, L4 T1-L3 

Age range, gender 
(Male/Female) 

60(M), 70(F), 68(M), 
82(M) 

87(F), 
90(M) 

21-94 
(Median 
65) 

Table 13 Number of indentations and samples for each of the base 

groups, together with non-MM group acquired by Wolfram et. 

al. [36] 

To remove the bone marrow, each sample was submerged in soapy 

water for 12 hours at 37ºC following 7 minutes in an ultrasonic bath at 40kHz 

(U1250 Ultrasonic bath [Ultrawave Ltd.]). Where necessary, the residual 
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bone marrow was removed using a dental pick water lavage (oralB, 

professional dental care [Brown]) submerged in a warm bath so as not to 

damage the trabeculae. In some cases the cancerous tissue had to be 

carefully removed manually. The procedure was repeated until the samples 

were cleaned and free of any soft tissue.  

Afterwards, samples were left to dry for 6 hours at room temperature 

and then fully embedded in epoxy resin (EpoFix [Struers A/S, Ballerup, 

Denmark]) with a vacuum applied for 5 minutes to remove air bubbles (CCL-

31 vacuum pump [Javac, UK]).  

Embedded samples were glued to a microscopic glass and polished 

using Ethylene glycol as a lubricant. The final polished surface was achieved 

by using a range of progressively smoother silicon carbide papers (P500, 

P1000, P2400, P4000 [Struers A/S, Ballerup, Denmark]) and finished with 3 

μm and 1 μm diamond grain suspension on polishing cloth. Between every 

polishing step, the residual grinding particles were cleaned from each 

sample with water following an ultrasound bath in distilled water for 7 

minutes at 35 kHz. Summary of the sample preparation from lesion 

localisation to labelling the lesion prior to micro-indentation testing is 

illustrated in Figure 49. 

 

Figure 49: MicroCT assessment followed by sample cutting according 

to a suggested cutting path. Bone is represented as segmented 

tissue (red) whereas fitted spheres of different colours according 

to their size represent the lesion (>3.5mm), thus predicting the 

lesion position (left). A cleaned and embedded sample with rough 

demarcation of the lesion borders is annotated with a permanent 

marker (right) 
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The use of a validated experimental methodology [184, 246, 247] and 

the same apparatuses allowed comparison with previously published 

data [36]. In particular, comparisons were made between the present study 

and that study on indents performed along the cranio-caudal direction and 

located in the inner region of axial and transverse sections of trabeculae. In 

that study, 27 human vertebral samples were harvested from patients where 

medical history did not indicate any neoplastic disease. 

4.2.2.4 Indentation procedure 

Micro-indentation was performed during a secondment placement in the 

Vienna University of Technology, Institute of Lightweight Design and 

Structural Biomechanics. Indentations were performed under dry conditions 

by using a Berkovich diamond tip mounted on a CSM micro-indenter (NHT, 

CSM, Switzerland). Indents were load driven with a monotonic ramp at 

120mN/min until reaching a set depth of 2.5µm following a hold time for 30s 

with sequential monotonic unloading again at 120mN/min. Indentation 

modulus (Ei) was computed according to the procedure suggested by Oliver 

and Pharr [248].  Indentation moduli (Ei), hardness (H), elastic energy (We) 

and plastic energy (Wp) were computed for each indentation. Ductility was 

estimated as a ratio of plastic indentation energy to total indentation energy 

(Wp/(We+Wp).  

Prior to the indentation, after mounting the sample to the base of the 

indenter, the borders of each lesion were recorded using an in-build optical 

microscope(as exampled in Figure 50). Indents were placed in either axially- 

or transversally-sectioned trabeculae. Each indent was labelled as axial or 

transversal according to the nature of the cut. In both cases only the central 

region of the section was indented.  

Every sample was indented with at least 40 indents. The load-

displacement curve of each indent was carefully examined and, in case of 

observed indenter contact problems, the corresponding indent was excluded 

from the study. Temperature (τ) and humidity (κ) were constantly measured 

during the test (τ =21.62 ±0.73ºC, κ= 50.33 ±4.9%). The indentation data 

representing a non-affected population, pooled from the previous study [36], 

were adjusted to the same reference temperature and humidity by 

performing a bi-linear least square fit. The affine adjustment function 

(eq.(1.11)) and the coefficients for each of the indentation variables (Ei, H, 

Wel and Wp (eq. (1.12), (1.13), (1.14) and (1.15)respectively)) are listed in 

Appendix F.2: Humidity and temperature adjustment.  
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Figure 50 Micro-indentation: the border of the lesion has been 

quantified as the closest trabecula-intersecting indentation plane. 

In case of multiple occurrences, lesions have been labelled 

independently (as in the example), together with a record of the 

position of at least two reference markers for orientation and 

indent position/bone overlap   

4.2.2.5 Statistical analysis used in micro-indentation study 

Each hypothesis was statistically tested using repeated measures 

analysis which was performed using the computing environment R [237].  

Datasets have been freed of the outliers below the 0.5th and above the 

99.5th percentile, as such outliers are likely caused by the inconsistent slope 

of the load-displacement curve due to unforeseen micro-fracture, slippage of 

the sample or an accidently indented underlying cavity. Variances were 

tested using ANOVA with a significance level of p=0.05 and groups were 

compared using Tukey’s post-hoc method [249]. The difference between 

compared subgroups is presented as mean ± standard deviation. 

 Micro-properties of multiple myeloma and comparison to 4.2.3

non-affected population - Results 

In total 2753 indents were used in the statistics, where 2267 indents 

from MM samples were pooled together with 486 indents of non-affected 

bone. A repeated measures analysis was performed on 149 samples (47 
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MM axial, 48 MM transverse, 27 non-MM axial and 27 non-MM transverse). 

The groups’ normalities were checked using the Shapiro-Wilk test (for all 

groups p>>0.05). The average indentation modulus of the tested samples 

ranged between 10.2 and 18.4 GPa. The micro-hardness varied between 

316.1 and 572.3 MPa. The elastic indentation energy varied between 7868 

and 20147 pJ whereas the dissipated indentation energy was between 

40853 and 71170 pJ. 

4.2.3.1 Indentation properties - comparison between MM groups 

Between groups MM.L (bone in proximity of a lesion), MM.L.C (taken 

distantly from a lesion) and MM.NL (without visible lesions) the indentation 

modulus (Ei) varied between 15.51 and 16.72 GPa in the axial and 13.9 and 

14.16 GPa in the transversal direction. Indentation direction 

(axial/transverse) failed to show any significance in elastic energy (We, 

p=0.78) but was otherwise found to be significant for all other tested 

parameters (Ei/H/Wp, p>>0.01). Furthermore, no significant difference was 

found between all three multiple myeloma groups for axial or transverse 

direction (all p>>0.5, lowest significance level p=0.13 in Ei in axial direction). 

A detailed comparison of all tested indentation variables is listed in Table 14 

and the Whisker plot in Figure 51 combines all groups together with 

comparison to non-affected population.  
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Base MM groups 

 Axial
(*)

 

Indentation 
modulus Ei 
[GPa]  

Hardness H 
[MPa]  

Elastic 
energy We 
[µJ]  

Plastic 
energy Wp 
[µJ] 

Ductility 
measure 
[1] 

mean ± stdev mean ± stdev mean ± stdev mean ± stdev mean 
± stdev 

MM.L 15.51 ± 1.62 444.26 ± 45.06 14.51 ± 1.62 55.27 ± 4.38 0.79 ± 0.01 

MM.L.C 16.72 ± 1.39 469.9 ± 29.41 14.92 ± 0.76 58.15 ± 5.26 0.79 ± 0.02 

MM.NL 15.52 ± 0.93 446.55 ± 35.23 14.54 ± 1.27 55.94 ± 3.53 0.79 ± 0.01 

 Transverse
(*)

 

Indentation 
modulus Ei 
[GPa]  

Hardness H 
[MPa]  

Elastic 
energy We 
[µJ]  

Plastic 
energy Wp 
[µJ] 

Ductility 
measure 
[1] 

mean ± stdev mean ± stdev mean ±stdev mean ±stdev mean 
±stdev 

MM.L 13.93 ± 0.96 414.79 ± 33.87 14.38 ± 1.52 50.81 ± 3.18 0.78 ± 0.01 

MM.L.C 14.16 ± 0.89 424.42 ± 38.68 14.70 ± 1.87 51.65 ± 2.76 0.78 ± 0.02 

MM.NL 13.9 ± 0.98 420.64 ± 20.93 14.69 ± 0.76 51.76 ± 1.89 0.78 ± 0.01 

Table 14 Indentation moduli, hardness and indentation energies for MM 

groups for axial and transverse indents (a significant difference 

(labelled (*)) was found only between axial and transverse 

directions) 

4.2.3.2 Indentation properties - comparison between MM and non-MM 

samples 

Given the lack of statistical differences, the multiple myeloma samples 

were combined into one group (groups prefixed MM) and compared to 

samples without a neoplastic pathology (non-MM group) taken from the 

study by Wolfram. The findings were dissimilar in axial and transverse 

direction (Table 15 (in graphical form in Appendix F.3: Results – graphical 

form)). In axial direction, the bone samples from the affected population did 

not seem to be significantly divergent in terms of stiffness (Ei, p=0.06), 

hardness (H, p=0.90) or plastic energy (Wp, p=0.43), but elastic energy (We) 

was found to be higher by 24.2% in MM bone (p<0.001), which is related to 

a 4% decrease in ductility (p<0.001).  
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Multiple myeloma bone and non-cancerous bone 

Axial 

 Indentation 

modulus Ei 

[GPa]  

Hardness H 

[MPa]  

Elastic 

energy We 

[μJ]  

Plastic 

energy Wp 

[μJ] 

Ductility 

measure [1] 

  mean 

±stdev 

mean 

±stdev 

mean 

±stdev 

mean 

±stdev 

mean 

± stdev 

Myel

oma 

15.69 

± 1.52 

448.52 

± 41.66 

14.58 

± 1.44(*) 

55.83 

± 4.39 

0.79 

± 0.01(*) 

non-

MM 

14.97 

± 1.56 

449.81 

± 41.73 

11.73 

± 1.49(*) 

56.81 

± 6.11 

0.83 

± 0.02(*) 

Transverse 

  Indentation 

modulus Ei 

[GPa]  

Hardness H 

[MPa]  

Elastic 

energy We 

[μJ]  

Plastic 

energy Wp 

[μJ] 

Ductility 

measure [1] 

  mean 

±stdev 

mean 

±stdev 

mean 

±stdev 

mean 

±stdev 

mean 

±stdev 

Myel

oma 

13.97 

± 0.94(*) 

417.49 

± 32.32(*) 

14.49 

± 1.45(*) 

51.13 

± 2.90(*) 

0.78 

± 0.01(*) 

non-

MM 

11.87 

± 0.93(*) 

373.68 

± 30.5(*) 

10.96 

± 1.41(*) 

47.19 

± 4.37(*) 

0.81 

± 0.01(*) 

Table 15 Comparison between MM infiltrated samples and samples 

without MM infiltration (significant difference p<0.05, labelled (*)) 

In the transverse direction, all mechanical properties were found to differ 

(p<0.001); in particular MM was found to be higher by 17.6%, 11.7%, 32.2% 

and 8% for Ei, H, We and Wp respectively. This resulted in an 

axial/transverse anisotropy stiffness ratio of 1.2 which is 10.9% lower than 

the non-affected population in this study. Moreover, the MM was found to be 
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less ductile by 4.4% in the axial and 4.1% in the transverse direction, where 

the ductility of the axial/transverse ratio was found to be the same among 

the affected and non-affected populations. 

 

Figure 51 Micro-indentation of multiple myeloma bone: Indentation 
properties in form of whiskers plot. No significant difference was 
found between samples with different progression of multiple 
myeloma infiltration. Only marginal difference was found between 
myeloma-affected and unaffected population 
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4.2.3.3 Bone material properties in proximity of lesion 

In order to investigate the influence of the distance from the closest 

lesion on the material properties a total of 1482 indentations were analysed. 

The indentation modulus was expressed as a function of the shortest 

distance between the point of indentation and the border of the lesion 

(Figure 52). In both cases - axial and transversal cuts – the results showed a 

small but significant trend in modulus change from the lesion towards the 

surrounding bone. Axially cut trabeculae showed a higher trend (adjusted 

R2=0.049, p<0.001 in Figure 53 a.)). The transversally cut trabeculae 

showed a smaller, but still significant trend (R2=0.008, p=0.002 in Figure 53 

b)). In fact, only elastic energy failed to show any significant trend. In general 

the investigated correlations were found to be weak (Table 16). 

 

Figure 52 Multiple myeloma bone sample. Indent positions with respect 

to the border of the lesion are superimposed over a picture of the 

indented bone. Each indent is represented as a blue star marker, 

whereas the border coordinates are represented by a solid blue 

line 
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Axial indentation direction 

 

Transverse indentation direction 

Figure 53 Change of indentation moduli depending on the distance 

from a lesion  
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Indentation variable Adjusted R
2
 p-value 

Axial Ei  0.049 p<0.001 

H  0.015 p=0.008 

We  -0.002 p=0.584 

Wp  0.020 p=0.002 

Transverse Ei  0.008 p=0.002 

H 0.014 p<0.001 

We 0.005 p=0.013 

Wp 0.013 p<0.001 

Table 16 Coefficient of determination (adjusted R2) and its significance 

in the vicinity of the lesion 

 Underlying material properties of multiple myeloma bone - 4.2.4

Discussion 

Firstly, bone samples from patients diagnosed with MM but without 

any metastatic infiltration were compared to bone samples from patients with 

developed myeloma bone disease (MBD). According to the results 

presented here, the material properties of the bone were not found to be 

significantly altered. Furthermore the results suggest only a subtle and 

insignificant increase in the stiffness of the bone at the extremities in cases 

where the sample was taken from a non-affected site.  

When compared to a non-affected population, bone tissue from 

patients with diagnosed multiple myeloma cancer tended to be slightly but 

insignificantly stiffer in the axial direction. In the transverse direction, MM 

bone was shown to be ~17.6% stiffer and 11.4% harder, but was also found 

to be about 4% less ductile in both directions. The remainder of the tested 

indentation variables were found not to exhibit significant differences. 

Furthermore, findings from the indentation of the bone tissue in the 

vicinity of the lesion showed only a very small decrease in stiffness in terms 

of the interaction between bone and lesion, despite its measured 

significance. This could indicate an increased remodelling of the bone at the 

periphery of the lytic defects that is associated with a reduced degree of 
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mineralisation and therefore indentation stiffness. This however contradicts 

the general understanding that MM inhibits the formation of new bone and 

that the time required for a lytic lesion to develop is faster than a complete 

remodelling cycle [250]. This rather small change in indentation variables 

towards the lesion is also in the same order of magnitude of the 

measurement error of the indentation technique hence should only be 

considered as fractional. 

However, despite the indication that the bone generally tends to be 

stiffer in multiple myeloma cancer patients and considering that the increase 

in stiffness in the vicinity of a lesion is almost negligible, the relative change 

in mechanical properties at the tissue level remains consistent within the 

whole organ and is independent of how the disease propagates. A minor 

alteration in the material properties of bone tissue in multiple myeloma 

patients could be explained by increased mineralisation due to the frequent 

and prolonged use of bisphosphonates which reduces the natural bone 

turnover [251] and which then leads to increased bone mineralisation [252] 

and hence can result in an increase of the indentation properties [182]. 

Results in this study hence suggest that changes in multiple myeloma 

cancer bone, however insignificant, originate from a reduced turnover due to 

treatment methods rather than from the presence of the cancer directly.   

The values presented in this study should be re-used with care when 

comparing them to actual physiological conditions as the study was 

performed under dried conditions. However, this study has aimed to detect 

differences in the mechanical properties of bone tissue through progressing 

pathology rather than to quantify accurate values under physiological 

conditions. Secondly, the study was limited due to the low number of 

patients available and the lack of detailed patient treatment histories, which 

could have added a significant variable to the material changes in patients’ 

vertebral bone tissue. Lastly, for the following studies it is highly 

recommended to undertake additional compositional analyses such as 

mineralisation and collagen cross-linking assessments to help develop a 

better understanding of compositional changes occurring due to neoplastic 

pathology.  

Following discussion in the fracture prediction section it remains 

unclear whether this behaviour observed in this study can be translated to 

any oncological pathologies.   
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To conclude, apart from very small changes in the vicinity of the 

lesion, it appears that the alterations of mechanical properties at the bone 

tissue level are rather ubiquitous in nature. Furthermore, it can be assumed 

that these small changes in material properties alone would not be sufficient 

to modify the overall vertebral strength. This leads to the hypothesis that the 

material law used in density image-based methods should remain unaltered 

in the case of multiple myeloma when compared to normal and osteoporotic 

bone.  

4.3 Trabecular bone micro-properties assessment - Summary 

Chapter 4 presented a comparative analysis of multiple contributors to 

biomechanical properties of weakened vertebral bone while focusing on the 

underlying micro-properties. The results presented here emphasise the 

benefit of using bone density distribution alongside bone deterioration 

measurements. Thereafter, results of the beam theory approach were 

compared to a morphological assessment and one-slice analysis. As has 

been noted, a full morphological analysis together with a composite 

assessment explains up to 84% of variations in strength for all samples 

(more specifically up to 81, 96 and 94% for OP, MM and mets respectively) 

and 69% of variations in stiffness (80, 96 and 79% for OP, MM and mets 

respectively). The single slice analysis was however proved to be a good 

indicator considering the dependency on time and exposure to scanning, 

with a reduction of only one-third in the coefficient of determination 

compared to multiple variable regression using beam theory and all 

morphology parameters. 

The second section of this chapter presented the experimental testing of 

bone material properties by means of micro-indentation which was 

necessary to define more clearly the underlying properties of cancer bone. 

The aim of this section was to illustrate differences between multiple 

myeloma bone with and without lesions and to compare the material 

properties to a non-affected population. 

As shown in this part of the thesis, no significant differences in 

indentation properties were found between bone taken from proximity to the 

lesion compared to bone taken more remotely (p>0.05). Moreover, no 

differences were observed between bone taken from both of the MBD 

groups and bone taken from MM patients without the presence of lesions 

(p>0.05). Compared to the non-affected population, the MM samples were 

non-significantly stiffer in the axial direction (p=0.06) and by 18% stiffer 
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(p<0.001) in the transverse direction. Hardness was found to be higher in 

MM samples only in the transverse direction by 12% (p<0.001).  

The results presented here suggest that the weakening of the myelomic 

bone is predominantly due to structural changes which will be presented in 

the following sections. This however cannot be generalised to include all 

oncological samples due to notable differences in the metabolic 

management of different lesions depending on the identification of the 

primary cancer (such as indicated also by assessment of the bladder cancer 

samples in the preliminary study conducted in section 3.1.3.2: “Historical 

data - Collected metastatic samples”). 
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  Chapter 5

Investigation into the use of vertebroplasty for the 

augmentation of osteoporotic and metastatic lesions 

This last experimental section of the thesis focuses on optimising the 

vertebroplasty technique with subsections focusing on newly developed 

ceramic materials (section 5.1: CaP vertebroplasty: effect of filling ratio on 

biomechanics in a single vertebra study”) and a tailored PMMA bone filling 

material (section 5.2: “Low modulus PMMA vertebroplasty”). Each type of 

cement and details regarding their use have been discussed in the literature 

review (sections: 2.4 and 2.5). While CaP cement provides lower structural 

support, its main advantage comes from its biodegradable nature supporting 

newly formed bone, however the challenge lies in optimising the augmented 

volume of the cement with respect to altered biomechanical properties. 

Contrary to CaP, the PMMA cement provides fast and efficient short term 

support to the weakened vertebral bone but appears controversial due to an 

altered biomechanical imprint affecting the adjacent levels. This is believed 

to be due to its unnaturally high stiffness which will be investigated in the 

latter section of this chapter.  

5.1 CaP vertebroplasty: effect of filling ratio on biomechanics 

in a single vertebra study 

 Introduction to ceramic cement PVP 5.1.1

Since introduction of the vertebroplasty in 1984 [131], the PMMA 

augmentation has become a relatively established technique for fracture 

treatment. There are however a number of reservations associated with 

using these acrylic cements in terms of intraoperative and long-term 

complications. The exothermic reaction during polymerisation exceeds the 

biological threshold of 40 degrees Celsius and can reach as high as 

100˚C [253-255], potentially damaging the surrounding tissue including the 

spinal cord and nerve roots [254-256]. This can be exacerbated due to the 

high injection pressure, often causing extravasation and/or pulmonary 

embolization [257]. Once delivered and integrated into the bone structure, 

acrylic cement irreversibly becomes a permanent foreign body due to the 

lack of osteo-conductivity and may interfere with natural bioactivity.  
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Considering the limitations of acrylic cements, recent attempts have 

aimed to develop a bone cement that would meet the biomechanical needs 

of stabilising the fracture [258] but which would eventually be reabsorbed 

and replaced by the natural bone [259]. In this matter the calcium 

phosphates have shown good potential in comparison to the PMMA, which 

is not osteo-conductive or resorbable. Turner et al. [260] compared PMMA 

with calcium phosphate cement in an in-vivo canine model and reported that 

in the framework of 6 months, bone augmented with CaP was found to be 

stronger than bone augmented with PMMA, which in fact became marginally 

weaker. Moreover, as reported in an animal study by Urrutia et al. [261], 

acrylic cements have been found to cause osteonecrosis in almost every 

second case tested. In contrast, a new bone formed around CaP cement 

was found to have developed as soon as two weeks after the operation [262] 

and was confirmed by Ikenaga et al. [263] and Knaack et al. [264], who 

reported the development of the same or even a superior quality of bone 

within as little as 12 weeks from its administration. This said, the 

biodegradable osteo-conductive materials provide a promising alternative to 

the current state-of-the-art standard PMMA cement particularly for younger 

patients who are not treated for malignant pathologies.  

Nevertheless, the extent of any immediate biomechanical effect prior 

to the healing of the bone remains unknown. The restoration of the vertebral 

stability remains likely if both the strength and stiffness recover to the pre-

fracture state of the bone [258], but avoids an excessive increase in stiffness 

which is typical for PMMA cements [265] and is one of the factors believed 

to increase stress in adjacent levels of the bone [266].  Although recent 

studies have provided important information on the biomechanical behaviour 

of the CaP after the augmentation, only limited information is available 

relating to the mechanical effects of the volume of injected cement. Whether 

CaP cements lack volume-strength and -stiffness correlation similar to that 

reported for PMMA [29] remains unknown.     

 The study presented here aims to quantify the material properties of a 

particular biodegradable material. Three groups augmented with different 

volume-to-fill ratios have been compared in a cadaveric destructive 

experiment. The samples collected were osteoporotic only and showed no 

sign of malignant pathologies, of which in total thirty samples were allocated 

to three groups according to their structural properties. To tackle the well-

known difficulties in benchmarking the samples prior to testing, a newly 

proposed method of sample allocation has been conducted with the use of 
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non-invasive CT-based fracture prediction. Currently all studies face a 

problem in the selection of appropriate samples, using either BMD (e.g. [29, 

267, 268]) or random selection (e.g. [265, 269]). Using the non-invasive 

fracture prediction method formerly described in this work allows for the 

choice of appropriate samples for testing, such as the collection of purely 

weaker samples prone to fracture. The benchmarking proposed here is 

based on Latin rectangle design [270]. The VBs were assigned to three 

groups, each of which contained the same number of specimens from each 

donor, allocated equally according to their predicted strength relative to the 

donor. When tested, the appropriateness of the distribution was confirmed 

against initial fracture data, with an equal distribution of actual vertebral 

strength and stiffness in each of the groups.  

 Methods used in CaP PVP  5.1.2

5.1.2.1 CaP study design 

This study was designed in collaboration with SpineFX partner 

BONESUPPORT (BONESUPPORT AB, Lund, Sweden). In this study 

biocompatible alpha-tri-calcium cement developed by the company has been 

biomechanically tested. This study provides evaluation prior to the healing 

process with focus on optimisation of cement volume as described further 

and in the flowchart presented in Figure 54. 
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Figure 54: Alpha-TCP cement study flowchart. Three groups of 

different vertebral volume fill were separately tested and 

compared for difference in observed vertebral strength 
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5.1.2.2 Sample population and group allocation prior to CaP 

augmentation 

This study comprised twenty nine thoraco-lumbar vertebral samples in 

total (3 spines denote as “SpineBS” in Table 8: subsection “Cadaveric 

sample selection and preparation”). The microCT assessment discussed in 

previous sections has in addition been used to estimate vertebral body 

volume using previously employed methods in order to remain consistent. 

For comparison the mean error between the semiautomatic method used a 

vertebral body boundary segmentation and this method was found below to 

be an accepted experimental error (mean error -1.21cm3 (RMS=3.37), tested 

on 28 osteoporotic human vertebral bodies). This method was tested to 

estimate the vertebral volume calculated from the inferior, superior and 

middle vertebral body cross-sections and the vertebral height following 

equation (1.10), where VVB denotes vertebral volume, and h1 and h2 denote 

the height between slices. CSA was estimated in three subsequent slices 

and averaged to minimise the measurement error.  

 𝑉𝑉𝐵 =
(𝐶𝑆𝐴𝑖𝑛𝑓𝑒𝑟𝑖𝑜𝑟 + 𝐶𝑆𝐴𝑚𝑖𝑑𝑑𝑙𝑒 )

2
∗ ℎ1 +

(𝐶𝑆𝐴𝑠𝑢𝑝𝑒𝑟𝑖𝑜𝑟 + 𝐶𝑆𝐴𝑚𝑖𝑑𝑑𝑙𝑒 )

2
∗ ℎ2 (1.10)  

Samples were benchmarked and allocated to three equal groups (A, B, 

C) entirely based on predicted vertebral strength (discussed in section 3.3), 

while the t-test statistical analysis on initial strength and stiffness was later 

used to verify equal distribution between tested groups. Every group 

represented a different volume of augmentation fill of 10, 20 and 30% of 

vertebral body fill for groups A, B and C respectively. 

5.1.2.3 CaP PVP and repeated fracture testing  

Prior to injection all specimens were submerged in Sodium Azide 

solution (0.03 wt% concentration) and kept in a temperature regulated oven 

(37C) for 1 hour. Injection needles (gauge 11) were positioned towards the 

anterior wall of the vertebral body (Figure 55 (A)) and if needed were slightly 

retracted to allow the cement to smoothly fill the vertebral body. The cement 

was prepared following appropriate training provided by the collaborating 

company representative and immediately after mixing the cement was 

redistributed to 1mL syringes. Each fractured specimen was augmented bi-

pedicularly until reaching the desired fill according to group allocation. When 

augmented the sample was again submerged in Sodium Azide solution 

(0.03 wt% concentration) and kept in a temperature regulated oven at 37C 

for an additional 72 hours to simulate physiological conditions and allow 

adequate time for cement curing. The Sodium Azide solution was renewed 
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on the second day of curing. The importance of the curing lies in the on-

going conversion from α−TCP to calcium deficient hydroxyapatite (CDHA), 

which results in a strength enhancement. Here, both the time of curing as 

well as the temperature is important as both contribute to an enhancement 

of the quality of the crystallinity of the forming apatite.  

After 72 hours samples were taken out of the oven, rinsed in soapy 

water followed by thorough rinsing in purified water, wrapped in moist tissue 

and left frozen at -20˚C until scanning. The freezing of specimens prior to 

scanning permitted a prolongation of the handling time and the processing of 

all samples under considerably consistent protocols. Although curing at low 

temperatures is detrimental for CaP cements [259], it has been shown that 

freezing to temperatures of -80˚C together with cement retarding additives 

are actually needed to prevent the beginning of the setting reaction [271]. 

Every sample underwent microCT scanning to verify correct placement of 

the injected cement. As depicted in Figure 55 (B), example samples were 

later processed in data visualisation software [272] for presentation 

purposes to illustrate the positioning of the cement bolus within the vertebral 

body. 

  

Figure 55: -TCP cement augmentation: Needle is inserted via pedicles 

(A) similarly to clinical application. When positioned to anterior 

middle region of VB, cannula is inserted to inject an appropriate 

volume of cement in order to create two symmetrically placed 

boluses (represented in the rendered bone/cement model depicted 

in B, red representing cement, yellow representing bone)  

Repeated mechanical testing was conducted as per protocol for wedge 

compression fracture following the thawing period overnight. The outcome of 

the mechanical testing was processed in a custom-build program (discussed 

in subsection “Single vertebra Wedge Compression Fracture rig”) to 

determine strength and stiffness during the testing.  

A.) B.) 
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Data were analysed in statistical computing language R [237]. The 

augmentation effects prior and after augmentation were tested using a 

paired t-test with significance level p=0.05.  

 Volume optimisation in CaP vertebroplasty - Results 5.1.3

The allocation of samples to groups has been statistically tested and it 

has been established that the vertebrae were distributed sufficiently without 

significant difference in mean strength and stiffness among the groups 

(ANOVA, student’s t-test for strength G1 vs G2: p>0.9, G1 vs G3: p>0.37 

and G2 vs G3: p>0.31, and for stiffness G1 vs G2: p>0.91, G1 vs G3: p>0.52 

and G2 vs G3: p>0.49). 

The group’s annotated G1 (10% VB fill), G2 (20% VB fill) and G3 (30% 

VB fill) were injected according to the measured VB volumes which 

corresponded to 2.1 ±0.7, 4.3 ±1.2 and 6.4 ±2.0 mL of the cement 

respectively. Here, the gross measurement before and after the injection did 

not show any restoration of the vertebral height. 

Later, all the samples underwent a re-fracture compression test resulting 

in a typical augmentation-amended load/displacement profile (Figure 56). 

Compared to the initial compression test of non-augmented vertebrae, the 

reinforced vertebrae showed a typical behaviour of continuous fracturing of 

trabecular bone which remained unaugmented. Later however, once the 

weaker bone is fractured, the stiffness of the cement becomes apparent, 

rapidly increasing the resilience. Such reinforced material results in a 

relatively linear load-displacement curve until fracture, which is typically 

followed by a drop in force. Under these circumstances the ratio between 

strength and stiffness becomes the most informative. 

Comparing the samples pre- and post-augmentation has shown that the 

augmentation more than doubled the vertebral strength (Figure 57); only 

group 1 failed to reach the significance level of 0.05 (G1: p=0.053, G2: 

p=0.023 and G3: p=0.007). As shown in Figure 58 the stiffness was 

significantly lower than its initial value, specifically less than half of the initial 

stiffness in all three tested groups (p=0.005, p=0.02 and p=0.004 for G1, G2 

and G3 respectively). Specifically, vertebral strength has increased 

compared to its initial values by 99.52%, 166.91% and 111.3% for groups 

G1, G2 and G3 respectively. The stiffness was restored by the augmentation 

only to 43.99%, 31.98% and 44.92% for groups G1, G2 and G3 respectively. 

Both the strength and stiffness improvements are listed in Table 17. 
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Figure 56  A representative experimental read-out of augmented 

vertebra during the re-fracture experiment. Here raw testing data 

(in (A)) represent displacement data (dashed red) coupled by 

readout frequency with the load read-out data (green). The re-

fracture experiment follows the same protocol as for the initial 

fracture (Figure 29). The augmented vertebra is represented by 

increased resilience where cement enhances the load-bearing 

capabilities of the vertebra (load displacement curve in B) 

Furthermore, there no influence was shown by the different filling ratios 

of 10%, 20% and 30% (denoted groups G1,G2 and G3 respectively) as both 

post augmentation strength and stiffness failed to show any difference 

(p>>0.05) 
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When compared with a statistical population of 29 samples, the CaP 

cement augmentation has been shown to increase the strength compared to 

the intact sample by 121% and restore the stiffness to 41% of the state 

before the fracture. 

 

Figure 57 Vertebral strength after augmentation was found to be 

significantly higher in 20 and 30% VB fill (significance level p<0.05 

indicated by *) 

 Strength (kN) Stiffness (kN/mm) 

VB fill of 10% (G1) 1.1(p=0.053) 0.94(p=0.005) 

VB fill of 20% (G2) 1.4(p=0.023) 0.58(p=0.021) 

VB fill of 30% (G3) 1.2(p=0.007) 0.93(p=0.004) 

Table 17 Vertebral strength and stiffness enhancement after VB 
augmentation (mean difference pre- and post-augmentation), 
significance level of p=0.05 shows that a statistical difference was 
found in vertebral strength pre- and post-augmentation fracture in 
the group filled with 10% of vertebral body volume 
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Figure 58 Vertebral stiffness of augmented vertebrae where no 

difference was found in osteoporotic samples p>0.05, but the 

stiffness has decreased in both oncological groups (p<0.05) Short 

term biomechanical effect when using CaP PVP - Discussion 

In order to obtain a structural assessment of wedge compression 

fracture treatment, a clinical calcium phosphate vertebroplasty has been 

simulated under laboratory conditions. It consisted of the controlled 

administration of cement with a subsequent compression test. This study 

performed on human cadaver vertebrae evaluated the mechanical effect of 

newly developed calcium cement. Contrary to PMMA, the calcium 

phosphate cement is designed to support the natural growth and hence 

recovery of the fractured bone. Here, the introduced cement is primarily an 

agent to trigger the natural healing process [124], which should support the 

bone only up to point at which it is healed.  The optimal amount of material 

which needs to be injected however remains unknown and the exact amount 

required may cause considerable issues during the surgical planning.  

This study demonstrated that increasing the volume of the injected 

calcium phosphate cement from 10% to 30% of VB fill only showed a limited 

impact in terms of the vertebral biomechanical properties. Although the 
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volume fill has not statistically been found to be an impacting factor, the 

biomechanical properties of all tested samples have been found to 

significantly change following the vertebroplasty. In particular, the ceramic 

cement almost doubled the strength of the cadaveric vertebrae, while 

stiffness was almost halved when compared to pre-augmentation values. 

This indicates that while the strength has been fully restored to its initial 

value, the stiffness remained below its initial values.  

Regarding the effects of different volumes of cement, this study 

concludes that even smaller volumes (~2mL, 10% of vertebral body volume) 

may be sufficient to stabilise the fracture, suggesting that the volume of 

introduced cement is not crucial in terms of biomechanical improvement. 

Although some degree of recovery of the stiffness is needed to prevent 

extensive micro-motion, it remains unknown whether a full restoration would 

in fact be beneficial for the healing process. The complexity of the healing 

process has long been studied by, among others, Claes et al. [273]who 

showed in an in-vivo ovine experiment that in fact, a substantial amount of 

micro-motion is required in order to trigger it. Whether human osteoporotic 

bone reacts in a similar pattern remains an open question and whether this 

then links to the use of low stiffness cements would need a thorough clinical 

investigation. 

Nonetheless, these findings imply that volumes below 30% of VB fill 

are not a crucial factor in enhancing vertebral strength and stiffness. Hence, 

there results could be used if the volume of augmented cement needs to be 

adjusted instead according to the bioactive character of the cement to 

achieve the optimal conditions for healing of the bone without affecting the 

resultant mechanical properties of the augmented vertebra. 

A similar trend to the results here has been shown by previous 

investigators [29, 30, 258, 267], i.e. that calcium phosphate cements have 

also been shown to restore or even increase the initial strength without 

restoring the initial stiffness, which was also presented for PMMA cements 

such as one used in clinical application with positive outcomes [274]  

Conversely, Bai et al. [265]and Heini et al. [268]reported that both the 

strength and stiffness had been increased. In Bai’s study, stiffness was 

restored to its initial values prior to the fracture (increasing from 0.08kN/mm 

to 0.1kN/mm), while Heini reported a greater than twofold increase in the 

initial stiffness after the augmentation (2kN/mm to 4.4kN/mm). A discrepancy 

in the measured stiffnesses is believed to occur due to different loading 

protocols. Here, Bai used the wedge compression fracture approach 
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although the pivot point was positioned posteriorly to laminas, contrary to 

Heini’s pure compression where both endplates were firmly embedded and 

compressed to failure.  

Moreover, the increased stiffness observed by Heini’s contradictory 

study could be explained by a significantly higher augmentation ratio 

obtained when a fixed amount of cement has been augmented in vertebrae 

of different bone quality. Graphs from the author’s paper also suggest a 

possible increase of strength above >40% fill but did not present data for 

stiffness, causing it to remain in doubt whether a similar effect would occur. 

The study presented here is limited to an assessment of biomechanical 

behaviour in a relatively short time after the operation. The cadaver-based 

nature of the study hence limits any conclusions to the immediate behaviour 

of cement after three days of curing, and although temperature and humidity 

have been controlled, the cement has been left to cure without any natural 

preloading which could also potentially affect the setting and creeping of the 

material.  

Clearly, a biomechanical evaluation during the later phases of the 

CaP/bone reabsorption needs to be conducted in order to confirm the 

findings from the pre-clinical animal studies [261, 263, 264]. 

Although some minor issues have been noticed due to the granulation 

effect of the mixture, only manual injection has been used which was 

considered to be much easier when compared to administration of a 

standard PMMA. The cases reported here were carefully examined with the 

intention of preventing the filter-pressing phenomena such as those reported 

by other investigators working with phosphate cements [275, 276], and in all 

cases was determined to be a typical clogging reaction of the calcium 

phosphate cement as reported by e.g. Montufar et al. [277]. A bias in the 

results due to filter-pressing phenomena has always been avoided by 

injecting the entire contents of the syringe and in case of observed 

granulation the batch was immediately discarded and the test repeated. 

Despite demonstrating only partial extravasation and no case of spinal canal 

extravasation, fluoroscopy guidance is strongly recommended due to the low 

viscosity of the cement. 

The major limitation of this study proved to be the storage of samples 

which, although fully reported and monitored, needed to include freezing 

after the three day period of curing. The freezing of samples has however 

remained consistent within the study and allowed systematic logistical 
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handling without any unnecessary decay of the samples. Additionally, by 

freezing the cement the setting reaction is merely slowed down [259] and as 

Grover et al. [278] reported further, temperatures in excess of -80˚C and 

over a month of storage would be required to significantly degrade the 

compression strength of the cement. 

Yet it has been reported here that these fill volumes appear to have no 

effect on the restoration of stiffness before the commencement of the 

healing process. Although the resulting changes in strength and stiffness 

due to augmentation with the α-TCP cement presented here are similar to 

the conclusions obtained using a commercially available PMMA 

cement [258] which has been used clinically for many years, a clinical trial 

will need to be conducted to confirm this. 

5.2 Low modulus PMMA vertebroplasty 

 Introduction to acrylic cement augmentation in OP and 5.2.1

metastatic bone 

Numerous studies have shown promising results in vertebral body 

fracture treatment using acrylic cements. Such treatment is recommended in 

many studies where conservative treatment is no longer effective. Despite 

large numbers of PVP operations worldwide, very little is known about the 

biomechanical contribution of the cement used.  

One of the controversies of PVP comes from recent findings which 

show that administering this very hard cement (compressive strength 

˜0.1 GPa, elastic modulus ˜2-4 GPa [279, 280]) might be linked to an 

increased occurrence of fractures in adjacent levels [281, 282]. When cured, 

such material exhibits stiffness exceeding up to one order of magnitude with 

strength exceeding up to two orders of magnitude [279, 280] compared to 

the bone embedded within [189, 202]. 

Although the cause of adjacent vertebral fractures is not clear, the 

material properties of the cement used are considered to be one of the 

possible causes alongside other factors such as the endplate-to-endplate 

pillaring effect [122, 282], extravasation [266], the natural progress of the 

primary disease [283, 284] or a secondary effect of the disease 

treatment [285]. Another explanation however arises from a biomechanical 

viewpoint, such as dramatic changes in boundary conditions and the 

possible displacement of the primary loading vector due to the presence of 

the fracture.  
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Historically, acrylic cement has been used to stabilise fractures and 

reinforce vertebral bone in a very short time, however recent concerns report 

an increase in adjacent vertebral fractures, which questions the material 

properties of the used cements. 

Computational modelling has suggested that the reduced strength 

can be explained by the “pillaring” effect of the cement bolus between both 

endplates [159, 266, 286, 287]. While clinical studies report, without any 

explanation, the increased occurrence of adjacent fractures (e.g. [122, 282, 

288, 289]), they agree on the fact that PMMA acts as a foreign body inside 

the vertebra thus causing these problems, which now needs further 

investigation. 

The studies mentioned above greatly succeeded in pinpointing the 

possible causes and basic science biomechanics of adjacent fractures, 

however they lack experimental confirmation and/or clinical evidence of 

suggested solutions. The studies mutually concluded that future 

investigation into the issue of reduced strength in adjacent levels should be 

conducted 1) using osteo-conductive (biodegradable) cement; 2) using low 

modulus cement. Where (1), in terms of pillaring effect investigations, 

requires long term follow-up studies exceeding cadaveric testing capabilities, 

the latter is presented here in a quasi-static biomechanical comparison of a 

standard off-the-shelf and low modulus PMMA cement. 

 Methods used in assessing low-modulus PMMA cement 5.2.2

5.2.2.1 PMMA PVP - Study design  

This study was designed in collaboration with the University of Uppsala. 

The intention of this work was to investigate the mechanical properties of an 

enhanced cement formula which was tailored to address the increased 

occurrence of fractures due to the high stiffness of the injected cement in 

adjacent levels to those in which vertebroplasty is performed.  

The enhanced cement which is from less stiff material was tested 

against the base PMMA commercially available cement  and each cement 

was also tested in each of two pathologies to investigate use of the cement 

in (1) osteoporotic patients, (2) patients suffering from a cancer with 

metastatic infiltration. A schematic overall flowchart of the study is depicted 

in Figure 59. 
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Figure 59: Study flowcharts for two scenarios, osteoporotic (a) and 

metastatic (b) vertebral augmentation studies comparing two 

cements: non-modified cement (G1) and one with enhanced 

formula (G2) 
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5.2.2.2 Sample population and group allocation prior to augmentation 

This study comprised twenty-four osteoporotic thoraco-lumbar samples 

(samples denoted as “SpineGO” in Table 8: subsection “Cadaveric sample 

selection and preparation”) together with twenty-four metastatic thoraco-

lumbar samples (samples denoted as “Spine mets” in Table 8: subsection 

“Cadaveric sample selection and preparation”, levels T6-L5). Injection 

volumes were calculated based on the microCT assessment using equation 

(1.10). Initial fracture data together with fracture prediction data remain 

identical to those discussed in section 3.2: Commissioning of cadaveric 

Wedge Compression Fracture testing. 

Based on the predicted strength each of the samples were 

benchmarked and allocated to one of two equal groups (G1 and G2). Here 

the group G1 represented base cement (non-modified Osteopal) whereas 

the group G2 represented modified cement (Osteopal 1.5%).  

5.2.2.3 PMMA PVP and refracturing experiment 

Prior to the injection all needles (gauge 11) were inserted under a 

fluoroscopic guidance by a trained surgeon (Vishal Borse). Needles were 

positioned through both pedicles facing the anterior part of the vertebral 

body. The insertion depth was recorded for later repositioning prior to the 

augmentation.  

In addition all specimens were submerged in Sodium Azide solution 

(0.03 wt% concentration) and kept in a temperature regulated oven (37C) 

for 1 hour. The injection needles (gauge 11) were re-inserted to their 

appropriate position and if needed were slightly retracted to allow the 

cement to smoothly fill the vertebral body. The cement was prepared by a 

skilled material scientist (Alejandro Lopez, University of Uppsala). The 

cement was mixed and distributed to 5mL syringes used for augmentation. 

Each fractured specimen was augmented bi-pedicularly until reaching a fill of 

30% of its vertebral volume fill with cement according to the group allocation. 

Augmentation was performed without the fluoroscopy guidance due to (1) 

the requirement of mixing the cement in a ventilated fume cupboard, and (2) 

the preheating protocol required to minimise the time spent by each sample 

outside of a temperature-regulated environment. Then the augmented 

sample was again submerged in Sodium Azide solution (0.03 wt% 

concentration) and kept in a temperature regulated oven (37C) for an 

additional 24 hours to simulate physiological conditions and allow adequate 

time for cement curing.  
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After a curing period of 24 hours, the samples were taken out of the 

oven, rinsed in soapy water followed by thorough rinsing in purified water, 

wrapped in moist tissue and left to freeze until scanning. Every sample 

underwent microCT scanning to verify correct placement of the injected 

cement (microCT100, [Scanco Medical AG, Bassersdorf, CH], voxel size 

70.8x70.8x70.8 µm3, 500 projections). 

Repeated mechanical testing was conducted as per protocol following 

the thawing period overnight. The recorded load-displacement outcome of 

the mechanical testing was processed in a custom-build program to 

determine strength and stiffness during the testing.  

Data were analysed in statistical computing language R [237].To 

compare the reinforcement effect between groups A and B, the groups were 

compared using a pair t-test with significance level p=0.05 [249].  

 Augmentation results when using PMMA in augmenting OP 5.2.3

and metastatic bone 

The allocation of samples used has been statistically tested and it has 

been proved to be equally distributed in terms of the strength and stiffness 

(for osteoporotic samples G1 vs G2: p>0.4 and p>0.3 for strength and 

stiffness respectively, for metastatic samples G1 vs. G2: p>0.3 and p>0.3 for 

strength and stiffness respectively).  

Comparing the samples pre- and post-augmentation has shown that 

augmentation significantly increased vertebral strength for both pathologies 

(Figure 60), whereas stiffness (Figure 61) was restored in osteoporotic 

samples to initial values (p>0.06), however in oncological samples it was 

restored on average to 2.30 ± 0.97 kN/mm and 2.12 ± 0.35 kN/mm for 

cement 1 and cement 2 respectively. 

Tested differences showed that in osteoporotic samples, cement 1 

increased strength by 255.75% compared to an increase of 96.22% when 

cement 2 was used. In oncological samples the increase was similar for both 

cements (by 43.86% for cement 1 and 48.31% for cement 2). Whereas the 

stiffness was increased in osteoporotic samples by 17.35% in those 

instances where cement 1 was used, it decreased by 15.94% in the case of 

cement 2. In metastatic samples, it was found that stiffness was restored 

only to 45.33% and 48.26% of the pre-augmentation state for cements 1 and 

2 respectively. Improvement values are listed in Table 18. 
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Figure 60 Vertebral strength after augmentation was found to be 

significantly higher in all tested groups (p<0.05) 

 

Figure 61 Vertebral stiffness of augmented vertebrae: no difference 

was found in osteoporotic samples, but it has decreased in both 

oncological groups 
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 Osteoporosis Oncological samples 

 Strength 

(kN) 

Stiffness 

(kN/mm) 

Strength 

(kN) 

Stiffness 

(kN/mm) 

Cement 1 

(G1) 

4.69(p<0.01) 0.44(p=0.08) 1.54(p=0.04) 1.91(p<0.01) 

Cement 2 

(G2) 

1.71(p<0.01) 0.38(p=0.06) 1.65(p=0.02) 1.98(p<0.01) 

Table 18 Vertebral strength and stiffness improvement after VB 

augmentation (mean difference pre- and post-augmentation), 

significance level of p=0.05 shows that a statistical difference was 

not found in change of stiffness before or after augmentation in 

OP samples, but differences were found in all other instances 

Moreover, the results in Table 19 show that cement 1 increased the 

strength of the osteoporotic sample by 3kN more than cement 2, but also 

caused an increase in stiffness by 1kN/mm compared to cement 2. This was 

not proved in metastatic samples where in fact any significant difference 

between cements 1 and 2 has not been found. 

 Osteoporosis Oncological samples 

 Strength (kN) Stiffness 

(kN/mm) 

Strength (kN) Stiffness 

(kN/mm) 

Cement 1 vs. 

Cement 2 

3.03(p<0.01) 0.96(p<0.01) 0.004(p=0.48) 0.02(p=0.30) 

Table 19 Comparison of the effect of the augmentation between the two 

tested cements showed a significant difference in cemented 

vertebrae in oncological samples, but failed to be significantly 

disparate for neoplastic pathology 

 Biomechanical effect due to varied PMMA cement stiffness- 5.2.4

Discussion 

One osteo-conductive material has been previously presented in this 

work. The aim of the study presented here was to investigate differences 

between the two acrylic (non-biodegradable) cements in two morphologically 
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different pathologies, where in fact in metastases only non-biodegradable 

material is recommended. Two cements of different compression stiffness 

derived from the same base product were thus investigated in a 

biomechanical cadaveric study, one of which is currently utilised clinically 

and the other of which is an off-the-shelf PMMA cement tailored to lower the 

stiffness. Secondly, while one of the investigated pathologies was found to 

be related to a loss of general bone quality, the other represented a rather 

dense tissue with regional bone loss in the area where the lesion was 

present. The metastatic sample in this study comprised samples with large 

confined osteolytic lesions, which were however present only in three out of 

twenty-four specimens. Moreover, due to their relative position within the 

vertebral body in addition to a thickened cortical bone in the anterior section, 

these lesions had a relatively low impact on the wedge compression strength 

of the organ per se. These factors combined eventually resulted in a 

relatively high strength and stiffness among the tested samples, even before 

the cement was administered.  

Both groups thus substantially differed in their morphology. The first 

set of samples (metastases) was found to have inferior bone quality with 

regards to BMD (148.7 ± 35.6 mgHA/cm3), trabecular thickness (0.32± 0.02 

mm) and spacing (0.81 ± 0.12 mm) and was found to have substantially 

higher bone connectivity (Conn.D = 1.82 ± 0.7 mm-3). However, the second 

set of samples demonstrated substantially lower bone quality in terms of 

lower BMD (136.7 ± 40.5 mgHA/cm3) and marginally thinner trabeculae 

(0.30 ± 0.03 mm) together with significantly increased separation of the bone 

(1.18± 0.26 mm) and notably disconnected trabeculae (Conn.D = 1.05 

± 0.43 mm-3).  

To target the clinical relevance of using the low-modulus PMMA 

cement in non-prophylactic applications, a wedge compression fracture was 

induced to single vertebra samples followed by cement augmentation with a 

fixed relative volume fill.  This was performed for two cements (low-

modulus/non-modified) within two morphologically distinct groups of samples 

(OP/metastases). The results showed that both cements had substantially 

increased strength in both groups. While in osteoporotic samples the choice 

of cement showed a strong impact in terms of an increase in strength (the 

initial strength was increased more than threefold after augmentation with 

standard cement, and only twofold using the low modulus cement), in the 

oncological samples the choice of cement did not show a significant 

difference. Although no significant change was found between initial and re-
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fracture stiffness, the OP samples augmented by the standard cement were 

almost 1kN stiffer compared to low-modulus cement. This was however not 

found in the oncological samples where both cements failed to restore the 

initial stiffness and strength, and the stiffness was not found to be different in 

any of the investigated cements.  

 Findings in the oncological samples are therefore in agreement with 

studies conducted by Boger et al. [23] and Kinzl et al. [24] who also reported 

on osteoporotic samples that standard and low-modulus PMMA cement 

restored both the strength and stiffness to their initial values before the 

fracture. On the other hand, it is rather interesting to note that the strength of 

the osteoporotic samples in this study was found to be more receptive to the 

augmentation material used. This is in agreement with a study conducted by 

Heini et al. [268] who also reported that cement augmentation is in fact more 

effective with bone demonstrating a higher degree of deterioration which is 

represented by lower BMD values. Moreover, a similar phenomenon was 

observed in experimental studies conducted on cored samples showing that 

the material properties of bone/cement structured material are much closer 

to the cement properties [24, 290, 291]. In fact, the augmented bone exhibits 

strong composite-like mechanical properties which are determined by the 

bonding of cement and bone, where in theory the bone, particularly in case 

of the vertical trabeculae, represents a more elastic structured material [292, 

293] surrounded by a matrix of stiff and strong cement. Here, the material 

properties of low modulus cements such as the one used in this study and 

reported previously [291, 294] can be tailored in order to reinforce the 

damaged vertebra without radical changes in the stress profile transmitted to 

adjacent vertebrae [23].  

Despite a relatively high number of samples used in this work, the study 

was limited by the availability of cancer donors. Moreover, the availability of 

oncological spines was complicated by the fact that the spines were 

acquired from overseas and despite a clinically confirmed metastatic 

infiltration to the vertebral bone, the severity of the morphological imprint 

was very low. Furthermore, the limited number of donors led to it becoming 

necessary to extend the harvesting of samples additionally to those from the 

lower lumbar region in order to retain the same dataset. Here, the wider 

selection of levels in the metastatic dataset might have influenced the overall 

results, however only if results could be examined together to obtain an 

overall comparison. This limitation has however been overcome by an only 
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relative comparison of pre- and post-augmentation mechanical properties 

and also by statistical evidence in equally distributed groups. 

In conclusion, results presented in this study confirm that PMMA 

vertebroplasty can be used as a satisfactory biomechanical stabiliser of 

fractured vertebral bone. Both cements showed an increase in strength after 

reinforcement of the bone regardless of the cement used. Interestingly, a 

difference has been found in the type of cement used with relation to the 

morphological character of both groups. The metastatic group, here 

characterised by a higher bone volume fraction (BV/TV), was not as strongly 

influenced by the type of cement used resulting in less marked differences in 

both strength and stiffness.  In contrast to this finding, the second group 

(OP), characterised by lower BV/TV, exhibited a more apparent influence of 

the use of cement. Considering similarities in bone/cement contribution 

observed in core samples previously discussed, this study also suggests a 

valuable correspondence at the organ level (whole VB). Moreover, the 

results suggest that tailored low-modulus cements can decrease the 

likelihood of an unnecessary increase in stiffness, which is believed to be a 

considerable factor in the increased occurrence of adjacent fractures.  

5.3 Biomechanics of augmentation using CaP and PMMA 

cement - Summary 

Two different cement types were biomechanically tested in two 

experimental studies. Both studies used the fracture prediction tool 

developed previously as a non-invasive precursor to benchmark specimens 

for effective group comparison (p>0.05 between all groups in terms of 

strength and stiffness). Later both studies followed the same cadaveric 

testing protocol to investigate a biomechanical effect of (i) bio-degradable 

cement in the early stages following treatment and (ii) two acrylic cements of 

different stiffnesses.   

First, cement based on a calcium phosphate formula has been tested in 

29 osteoporotic samples divided into three groups with varying volumes of 

injected cement. The volume of injected cement (10, 20 and 30% of VB 

volume) has failed to show a significant influence on either improvement of 

strength (p>>0.05) or stiffness (p>>0.05). Overall, CaP cement has 

increased the strength by 121% whereas the stiffness was restored only to 

41% of that prior to the fracture. 
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The second part of this section has provided results of testing acrylic 

cement (PMMA) with a tailored formula to reduce the baseline stiffness of 

the cement. This cement has been tested against off-the-shelf cement for a 

comparative study in osteoporotic and metastatic samples. All samples 

underwent fracturing followed by injection with 30% VB volume fill.  

Compared to the initial state, augmented vertebrae exhibited an increase in 

strength and decrease in stiffness regardless of the pathology and cement 

type used. In terms of biomechanical evaluation, non-modified cement (G1) 

has shown a substantial increase in strength but, accompanied by an 

increase in stiffness, was proved in samples with lower bone mass (OP 

samples). Tailored cement (G2) has shown an increase in strength in both 

cases but has not increased stiffness in either of the morphologically 

disparate groups.  
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  Chapter 6

Conclusion and Future perspective 

This section provides the conclusions reached by the work undertaken 

as a part of this thesis compared to works presented elsewhere. The chapter 

is segmented into two main bodies: “Non-invasive predictors of fracture in 

patients with different pathologies” and “PVP use in treatment of vertebral 

compression fractures” where each section highlights a summary of this 

work, the original contribution and a future perspective.  

6.1 Non-invasive predictors of fracture in patients with 

different pathologies 

 Summary of findings in structural assessment of metastatic 6.1.1

and non-metastatic bone 

From the framework of validation and verification of image-based 

fracture prediction it has been concluded that the structural analyses based 

on composite beam theory show a relatively close association with vertebral 

compression strength in osteoporosis, multiple myeloma and metastatic 

bone. In fact, it was also shown that this “CT-to-strength” approach is 

comparatively fast and easy to use, and also provides an adequate vertebral 

strength benchmarking tool when performing experiments using wedge 

compression fracture models.  

The first objective of this thesis was met as the developed model was 

tested on more than one hundred samples retrospectively by analysing 

tomographic images of historical data comparing the in-silico predictions with 

fracture data provided by previous investigators. Here, historical data 

comprised also a scarce amount of rare samples in which extra-vertebral 

lesions have developed prior to donation of the tissue. A numerical 

assessment of these samples concluded that this tissue may or may not 

contribute to the overall resilience of the whole organ depending on whether 

it suffered from osteoporotic osteophytes or osteoblastic lesions 

respectively.  

For the latter part of the validation and for conduction of a cadaveric 

study, an enhanced fracture rig was developed on which more than one 

hundred samples of three pathologies were fractured. From this study 

relatively good predictions of vertebral body strength were obtained when 
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using this model and more interestingly, even when reducing the tested 

range to a single slice analysis. This said, it has been concluded that the 

beam theory method can be used as a precursor to a biomechanical 

assessment of selected specimens in a laboratory environment, particularly 

to allow superior experimental groupings in WCF conditions over those 

usually based on BMD or vertebral level alone.  

In a framework of investigation of the biomechanical properties of 

cancer bone tissue the second objective was met by performing a detailed 

micro-indentation study. This study was the first of its kind and highlighted 

that the tissue level deterioration in multiple myeloma results in only a limited 

impact on the underlying material properties. This hence concluded that the 

weakening process in multiple myeloma most probably results primarily due 

to structural changes occurring on the meso-scale.  

Any conclusions made based on the pathological nature of the 

infiltration are however hampered by the fact that there is a lack of 

diagnostic methods to identify combined pathologies. For example cancer 

patients tend to be older in age and are thus more likely to develop 

osteopenia or osteoporosis besides developing bone lesions. Current 

DXA/CT based testing is not suitable for the diagnosis of underlying 

osteoporotic changes and hence does not provide a clear cohort of the 

tissue donated. This study however suggests that a density image-based 

fracture prediction tool accounts for the structural deterioration of bone 

where the material model used for density-to-modulus does not need to be 

adjusted, due to the presence of the osteolytic lesion at least in multiple 

myeloma bone. This nonetheless needs to be confirmed on other neoplastic 

pathologies such as breast, lung, bladder or thyroid cancers which are 

known for increased occurrence of developed osteoblastic lesions. 

 Original contribution 6.1.2

This study has aimed to provide an assessment of oncological bone, 

particularly in order to target compression fractures caused by structural 

changes within the bone. Preliminary studies within this work highlighted the 

necessity to account for structural changes and bone distribution. For this 

purpose this work proposes to build on an approach similar to that previously 

used by Whealan et al. [2]which was shown to provide fracture predictions 

with a greater association with the experimental results, even in the case of 

samples where lytic lesions were simulated by altering the vertebral body 

integration. In this study this model was adopted for use in vertebroplasty 

and contributed to the progress of current studies by confirming that a similar 
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model can provide high levels of agreement with vertebral body strength in 

single vertebra wedge compression fracture methods. This has been 

demonstrated on a large number of samples which, pooled together with the 

retrospective analysis of historical data, exceeded two hundred samples. All 

of the samples used in this study were processed in the same university 

laboratory using the same apparatuses for the initial and post-fracture 

scanning as well as for conduction of the destructive testing. Samples were 

scanned and tested in close collaboration with Daniel Skrzypiec, particularly 

for multiple myeloma samples which were later used in another 

vertebroplasty study (results as yet unpublished). This was possible due to 

the use of the same scanning and fracturing protocol up to the initial 

destructive testing. Osteoporotic study samples (annotated as “SpineGO”) 

underwent experimental testing in close collaboration with Alejandro Lopez, 

a visiting researcher from the University of Uppsala.  

The micro-indentation study produced original results in the indentation 

testing of oncological samples which had not been tested in literature to this 

point. This study was designed in collaboration with the Initial Training 

Network (ITN), particularly with partners from the Vienna University of 

Technology and the University of Bern. Samples were collected, scanned 

and embedded in a laboratory in Leeds whilst the indentation testing was 

conducted by the author of this work in a laboratory in the University of 

Vienna as a laboratory secondment. The results obtained from bone testing 

of multiple myeloma were found to be original and were later compared to 

results conducted on osteoporotic bone in a study which was carried out by 

Uwe Wolfram [184]. 

 Future perspective in structural assessment of metastatic 6.1.3

bone 

Compared to any study previously published, the results presented 

here also show that potentially only a single vertebral slice analysis is 

needed in order to permit correlation with the strength of the organ. Despite 

reducing the amount of information gathered about whole vertebrae, it has 

proven to demonstrate at least the same level of accuracy and precision as 

alternative methods presented elsewhere. Such a discovery highlights the 

potential of reducing the X-ray exposure of the patient during the 

radiography screening to a necessary minimum. This study has deliberately 

employed representative slices which are easy to identify from a fast and low 

pre-scan exposure (scout view). In fact, such a scout view is used in clinical 

CTs to select a range of axial slices, and although it does so imperfectly, 
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contains all the necessary information to preliminarily identify the weakest 

slice in relation to the rest of the vertebral body, whereas the single slice 

scan could be targeted for example at a site with strong lytic infiltration. This 

assumption is based on the principle that the scout view, similarly to DXA, 

provides a sum of densities perpendicular to each pixel of the scanning 

plane. Such a technique is however purely a theoretical assumption which 

would need to be tested and would possibly require that two scout-views 

were performed to identify any heterogeneous density violations such as 

lytic lesions.  

Proposed by findings from the preliminary study and confirmed 

elsewhere, such a technique would also be sensitive to over-mineralised but 

less stiff osteoblastic lesions that commonly occur together with lytic lesions. 

In particular, the analysis of historical samples has been complicated by the 

presence of extra-vertebral bone formations in which the contribution to the 

fracture load may be minimal, unlike the formation of osteophytes in 

osteoporosis reported in previous results which appears to significantly resist 

compressive load.  This is supported by a previous finding in which it has 

been demonstrated that the extra-vertebral lesions arising from the 

metastatic bone formation are akin to relatively immature woven bone which 

provides relatively little structural support.  This was however not confirmed 

in the main work of this thesis due to a limited availability of cancer samples 

with osteoblastic lesions. Nonetheless, this rather interesting discovery 

should be noted for future studies which aim to investigate the contribution of 

these lesions which are known to impair any attempt to perform density 

predictions in radiography screening.   

Based on this validation study, this stand-alone fracture prediction tool 

can be used as a fast and robust benchmarking tool for the relative strength 

distribution of cancer pathology. To confirm the agreement obtained by 

calibrating the material model and to improve the statistical variability of the 

cancer population, more samples should be tested in destructive 

experiments to fully prove its potential for clinical use.  

Lastly, this model is limited to a loading scheme which is however 

challenging to relate to a physiological situation in-vivo. This question is best 

addressed by multibody simulations where the loading conditions to which 

the organ is subjected can be predicted based on inverse kinematics 

measured non-invasively. A combination of the two approaches, by applying 

patient-specific loading conditions to CT-image-based predictions, could 
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allow the prevention of vertebral failures to take place during a routine 

patient screening instead of in finding them late at the ambulance services.  

6.2 PVP use in treatment of vertebral compression fractures  

 Osteo-conductive cement augmentation  6.2.1

Calcium phosphate vertebroplasty augmentation previously showed 

great potential as it enables a natural recovery of the weakened bone. The 

results of this cadaveric study show that this particular ceramic cement 

almost doubled the strength of the cadaveric vertebrae, while the stiffness 

was almost halved when compared to the stiffness of an intact vertebral 

body. On the other hand the lack of correlation between injected volume and 

strength suggests limited possibilities to improve strength to higher limits if 

necessary. 

Regarding the effect of employing a different volume of cement, the 

results reported that even smaller volumes (~2mL, 10% of the vertebral body 

volume) may be sufficient to stabilise the fracture, suggesting that the 

volume of introduced cement is not a decisive factor in terms of 

biomechanical improvement if the provisional restoration here presented is 

sufficient prior to the bone recovery. While it has been suggested that the 

volume of PMMA cements used should be kept as low as possible, osteo-

conductive cements can direct natural bone growth. Therefore the volume 

can be adjusted according to the bioactive character of the cement and 

therefore to achieve the optimal conditions for healing of the bone.  

 Low-modulus PMMA cement augmentation 6.2.2

Based on the results herein presented, this work concludes that  

undertaking vertebroplasty using PMMA cements results in an increase of 

stiffness and strength in fractured vertebrae regardless of how such 

deterioration might have occurred. The results presented in fact show a 

stabilising effect in all of the tested groups. Nonetheless, the metastatic bone 

and osteoporotic bone reacted differently to augmentation. In metastatic 

bone the effect of vertebroplasty was similar, regardless of the cement used. 

In contrast, the effect on osteoporotic samples has demonstrated that there 

is a significant difference between the two cements. Although both cements 

were proved to restore the stiffness to its initial values, low-cement was 

found to restore the stiffness closer to the values obtained prior to the 

fracture, whereas the standard cement resulted in a marginally increased 

stiffness. This in fact suggests that low modulus cement demonstrates 
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improved properties which could potentially address the worrying issue of 

adjacent fractures. 

Furthermore, it is believed that the difference in contribution is most 

likely due to a variation in morphology between the tested pathologies. This 

observation has been made based on the discovery that the contribution of 

cements’ material properties to bone strength and stiffness was more 

apparent in high-porosity osteoporotic samples, compared to less porous 

bone obtained from two metastatic patients. This said, there are a number of 

conclusions to be made: 

i. Vertebroplasty using both PMMA cements results in an increase in 

bone stiffness and strength; 

ii. The effect of vertebroplasty is related to the morphology of the bone 

prior to its augmentation; 

iii. The effect of vertebroplasty is possibly driven by a combination of 

both the cement material used and the micro-mechanical properties 

of the bone tissue embedded within the bone. 

The latter conclusion is also based on the discussion in the previous 

chapter in which the composite behaviour of augmented bone observed 

elsewhere has been emphasised. Here, based on the results obtained from 

the micro-indentation study, it is also possible to conclude that conducting 

vertebroplasty using PMMA cement would have a similar effect also on 

multiple myeloma bone, as its micromechanical properties are similar to 

osteoporotic bone. 

 Original contribution  6.2.3

Results from both studies have made an innovative contribution to the 

field of vertebroplasty. The first study encompasses the unknown 

relationship between the injected volume of cement and its biomechanical 

output when augmented into osteoporotic tissue. This work is in fact the first 

to present an augmentation of three different volumes in a laboratory 

experiment with a subsequent re-fracture experiment. These results can be 

addressed in future studies tailoring the material and biomechanical 

properties of absorbable materials. The use of fracture prediction as a 

benchmarking tool also contributes to the uniqueness of these two studies 

due to the improved Latin-square strength-based group allocation used prior 

to conducting the fracturing part of the experiment. 

PMMA augmentation was in fact conducted in two different pathologies 

of which one was related to the treatment of patients with infiltration of 
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cancer to their spine. The study was innovative in comparison to all others 

published to date in conducting a study on cement which was manufactured 

in a relatively easy process by tailoring the existing properties of currently 

available cement. Although different studies were conducted in order to 

reinforce the biomechanical effect of low-modulus cements, this study was 

conducted on a comparatively larger volume of samples comparing 

pathologies with different morphologies.  

The CaP study was conducted in collaboration with the Initial Training 

Network (ITN) partner BONESUPPORT AB. Nonetheless, the biomechanical 

experiment was conducted entirely by the author of this work in teamwork 

with ITN colleague Nicola Brandolini. The results presented in this work were 

analysed independently of any collaborating partner. 

The PMMA study was conducted in collaboration with another university, 

while the initial fracturing, scanning, fracture prediction and preparation of 

samples for augmentation were conducted by the author of this work alone 

or in collaboration with Alejandro Lopez – a visiting researcher from the 

University of Uppsala. The augmentation was performed by the surgeon 

Vishal Borse in a joint experimental session. The results were analysed 

separately in shared discussions.  

 Future perspective in CaP and PMMA augmentation 6.2.4

In agreement with other studies, the results presented here suggest that 

PMMA and CaP vertebroplasty are safe in terms of improving the 

biomechanical properties of a vertebral bone after fracture. These results 

should however be interpreted with care and only in the context of a 

biomechanical cadaveric study conducted with the intention of answering 

very specific questions. Further pre-clinical and clinical validations need to 

be conducted prior to its general use. Based on the PMMA study presented 

here it has been concluded that using normal cement compared to a low-

modulus cement risks an unnecessary increase in stiffness, which is 

believed to be a considerable factor in the increased occurrence of adjacent 

fractures. This conclusion however requires confirmation in dynamic testing 

to assess the fatigue properties of the materials used in addition to the 

quasi-static experiments presented in this work. Also, as this study was 

limited to relatively constrained loading conditions, a clearer understanding 

of boundary conditions and directional load changes is required to reinforce 

these conclusions. 
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Secondly, the most significant limitation of the calcium phosphate study 

is without any doubt the cadaveric nature of the experiment. These 

preliminary results however suggest that this material is safe in terms of 

biomechanical stiffness and strength for a short time following the 

procedure, although animal or clinical studies would need to be conducted in 

order to provide valuable information regarding bone recovery. Moreover, 

with potential bone recovery, the current cement could be also deployed in 

the burst fracture typically used in the case of younger patients. This 

however requires testing under conditions which would have a much higher 

short-term impact, possibly using a weight drop testing machine.   

The results in this work also suggest that very little is known about the 

relationship between morphology and the resulting effect of the 

augmentation. The experiment presented here should hence be conducted 

to address a larger sample population of different bone morphologies in 

order to fully deploy the potential of the augmentation treatment. 

Alternatively or alongside this, reproducing the experiment to assess the flow 

of cement would volunteer more information regarding material distribution 

and could further respond to the elementary questions which have arisen 

from this work. 

Finally, throughout this thesis a number of potential applications of the 

fracture prediction tool were shown, in particular its use in the identification 

of weakened vertebrae with sufficient accuracy and power of prediction. This 

demonstrates a strong potential for the reproduction of similarly satisfying 

outcomes for use in investigation of prophylactic augmentation.  
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List of Abbreviations 

aBMD  Areal BMD (radiographic BMD) [mg/cm2] 

ANOVA  - Analysis of variance (statistics) 

BMD or 
vBMD 

- Bone mineral density [mgHA/cm3] 

BV/TV - Bone volume fraction [1] or [%] 

CaP  - Calcium phosphate 

CDHA - Calcium deficient hydroxyapatite  

Conn.D - Bone connectivity density [mm-3] 

CS - Cross-section  

CSA - Cross-sectional area [mm2] 

CT - Computed tomography 

DXA - Dual Energy X-ray Absorbtiometry  

E - Modulus of elasticity [GPa] 

EA - Axial stiffness [N] 

EI - Bending (Flexural) stiffness [Nm2] 

Ei - Indentation modulus [GPa] 

FE - Finite element  

FRI - Fracture Risk Index 

Fz  - Theoretical strength [kN] 

GOBJ - MicroCT (Scanco) VOI 

GUI - Graphical User Interface 

H - Micro-hardness [MPa] 

HA - Hydroxyl-apatite  

ISQ - MicroCT (Scanco) reconstructed data file 

LVDT - Linear variable differential transformers  

MBD - Myeloma bone disease  

mets - Metastases from primary cancer (in this context 
any other than MM cancer) 

microCT - Pre-clinical micro-computed tomography 

MIL - Bone mean intercept of length (degree of isotropy) 

minCSA - Minimum cross-section area [mm2] 

MM - Multiple myeloma cancer 

MM.L - Micro-indentation sample group: samples with 
invasion to the vertebral bone, samples taken from 
proximity of the lesion 

MM.L.C - Micro-indentation sample group: samples with 
invasion to the vertebral bone, samples taken distantly 
from the lesion 

MM.N - Micro-indentation sample group: donors diagnosed 
with MM cancer without visible lesions 

 
Non-MM - Micro-indentation sample group: donors without 

diagnosed MM cancer 
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OP - Osteoporosis  

PKP - Percutaneous Kyphoplasty 

PMMA - Poly(methyl_methacrylate) 

p-qCT - Pre-clinical qualitative computed tomography 

PVP  - Percutaneous vertebroplasty 

qCT 
 

- Qualitative computed tomography 

R2 - Coefficient of determination (statistics)  

RCT - Randomised controlled trials 

RMS - Root mean square (statistics) 

RSQ - MicroCT (Scanco) raw data file 

SEG_CYL  - Segmented trabecular bone binary stack within the 
representative VOI  

SLA - Stereo-lithography (SLA)  

SLS - Selective Laser Sintering (SLS)  

SRE - Skeletal related event  

Tb.N - Number of trabeculae [1/mm] 

Tb.Sp - Trabecular separation 
(spacing) 

[mm] 

Tb.Th - Trabecular thickness [mm] 

TBS - Trabecular Bone Score 

VB - Vertebral body  

VCF - Vertebral compression fractures 

VOI - Volume of Interest 

VVB - Vertebral body volume 

WCF - Wedge compression fracture 

We - Elastic energy [pJ] 

WHO - World Health Organisation 

Wp - Plastic energy [pJ] 

wt% - % by weight  

α−TCP  - Alpha-tri-calcium phosphate 

ε - Bone strain [%] 

ρ - Tissue density  [mg/cm3] 

ρapp - Apparent density [mg/cm3] 

ρash - Ash density [mg/cm3] 

ρBMD - Bone mineral density [mgHA/cm3] 

ρct - CT density [HU] 

ρdry - Apparent dry density [mg/cm3] 

κ - Humidity [%] 

τ - Temperature [˚C] 

3D - 3-dimensional (volumetric) 
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Appendix A: Historical data assessment 

  Quantitative assessment Experimental 
data 

Fracture 
prediction Fz [kN] 

Specimen Extra-vertebral body 
lesion 

BMD  
[mgHA/cm

3
] 

Stiffness 
[kN/mm] 

F(zero-
slope) 
[kN] 

Entire 
VB CSA  

Extra-VB 
formations 
masked 

Bladder 
mets - T6 

enlarged 
osteoblastic lesion 

115.6 2.47 1.88 2.45 2.24 

Bladder 
mets - T7 

enlarged 
osteoblastic lesion 

95.7 2.11 1.81 2.69 2.07 

Bladder 
mets - T8 

small osteoblastic 
lesion 

78.1 1.46 1.45 2.21 2.14 

Bladder 
mets - T9 

small osteoblastic 
lesion 

93.5 2.13 1.91 4.03 2.70 

Bladder 
mets - T10 

enlarged 
osteoblastic lesion 

78.3 2.04 2.08 5.47 2.17 

Bladder 
mets - T11 

enlarged 
osteoblastic lesion 

136.1 1.16 2.00 4.87 2.19 

Bladder 
mets - T12 

no osteoblastic 
lesion 

92.7 1.43 1.52 2.09 1.81 

Bladder 
mets - L1 

small osteoblastic 
lesion 

94.0 2.92 2.59 2.81 2.78 

Bladder 
mets - L2 

no osteoblastic 
lesion 

88.4 1.04 1.73 3.47 3.35 

Bladder 
mets - L3 

very small 80.5 1.87 2.71 3.03 2.99 

Bladder 
mets - L4 

No lesion but 
fractured 

115.4 1.52 2.63 3.13 2.22 

Bladder 
mets - L5 

no osteoblastic 
lesion 

114.5 2.73 4.20 4.86 4.71 

Table 20 Historical data: Experimental, BMD and fracture prediction 

data of metastatic samples from a donor with bladder cancer 
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Figure 62 Initial fracture prediction assessment (without masking the 

CSA) 

 

Figure 63 Additional fracture prediction assessment (masking the 

Osteoblastic lesions) 
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Appendix B: Validation of vertebral body segmentation 

To validate the approach in terms of both accuracy and precision, the 

calculated volume was confirmed against measured volume.  In this study, 

volumetric measurements based on the sum of all cross-sectional areas 

obtained from the microCT measurements were directly compared to those 

experimentally obtained using a buoyancy principle.  

For this validation study seventeen porcine vertebral bodies of different 

sizes were harvested, the posterior elements were fully removed and the 

remaining vertebral body was separated from any soft tissue. Here the 

volumes were measured using the Archimedes principle [295]. In summary, 

the vertebral body was submerged into a solution and hence was subjected 

to an upwards force due to buoyancy where the force is equal to amount of 

water displaced. This force was then expressed as the change in weight of 

water before and after submerging the VB (Figure 64). 

The volumetric measurements were compared in terms of the 

percentage difference between methods, where the buoyancy method was 

taken as the reference [162]. The initial comparison of these two methods 

(blue dataset on Figure 65) uncovered a substantial but consistent difference 

in microCT measurement data (average ΔV=9.55%, RMS=9.6%). This was 

further investigated and in fact, through the application of this study, 

uncovered a faulty calibration of the microCT machine introduced by the 

manufacturer two years before this study. The manufacturer later proposed 

a re-calibration tool which was used to adjust all scans for the correct voxel 

size and were used on all scans following this final calibration.  

The corrected dataset improved in terms of volumetric bias to ΔV=-

1.59% (-0.19cm3) with precision of RMS=2.25% (0.34cm3). The remaining 

difference can be explained by residual soft tissue on the VB which is not 

visible under microCT assessment. Hence the vertebral body image 

segmentation tool has proved to be sufficiently precise and accurate in 

estimating the boundary based on microCT images.  
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Figure 64: The buoyancy principle has been used to measure the 

volume of a vertebral body. First (depicted in (A)) the experimental 

setup and the principle have been tested on a metal ball-bearing 

with known volume (ΔV<0.2%) and later used on porcine vertebral 

bone samples (in (B)). Compared to the traditional Archimedes 

principle, here the volume is not required to be measured in terms 

of displacement but can be calculated based on change of weight 

(with precision of 0.01g=0.01cm3) 

A.) 

B.) 
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Figure 65: Validation of vertebral body image segmentation script. The 

numerical approach was validated by means of compared 

volumes obtained experimentally and using the microCT 

approach. Initial results (in the graph as blue diamond markers) 

have later highlighted a discrepancy in measurements and led to 

uncovering faulty calibration of the microCT by the manufacturer. 

Corrected data (depicted as red squares) were found to possess 

volumetric differences of -1.59% (-0.19cm3) (RMS 2.25% (0.34cm3)) 
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Appendix C: Donors’ medical records available for this study 

  Primary (1) and 
secondary (2) cause 
of death 

History of (H/O) Drugs known to 
be administered 
within the last 6 
months prior to 
TOD 

SpineBS 1 1 Chronic Cardial 
Failure  

2 Peripheral Vascular 
Disease, Liver Abscess 

Arthrisis, Liver disease, Brest Cancer 
(treated) 

Information not 
available 

SpineBS 2 1 Carcinomatosis, 1b 
Gastric 
adenocarcinoma 

Information not available Information not 
available 

SpineBS 3 1 Bronchopneumonia,  

2 Adenocarcinoma of 
lung and emphysema 

Hypertensive and ischemic heart 
disease 

Information not 
available 

SpineGo 1 1 Respiratory failure 

2 Dialated 
cardiomyopathy 

Osteoporosis, mild severity 

CHF diag ~5yrs prior TOD 

Hysterectomy ~30yrs prior TOD 

Emphysema & COPD diag ~30yrs prior 
TOD 

Smoker (3 per day ~40yrs) 

Xanax, morphine, 
antibiotic, 
Antibiotics prior to 
TOD 

SpineGo 2 1 Debility with likely 
pneumonia, ESRF 

2 Persistent Cdif, R hip 
fx from fall 

Fell and Fx R femur 2mos prior TOD 
(plate input) 

Mild arthritis in knees, shoulder, hip- 
taking Celebrex; mild osteoporosis- Rx-
actonel and vit D 

Melanoma removed 20yrs-neck 

HTN 

Interstititial lung disease, resting 
capacity 92%, 

Renal failure recent 

OU Cataract Sx 15yrs ago 

UTI-amplicitin, CDIF 2 weeks ago on 
ABX and curred 

2 wks prior flu-like symptoms, ABX for 
UTI and CDIF-2 wks prior 

Social drinker(2x/week), no tabacco 

Blood transfusion 2 mths prior TOD - 3 
units after Femur Sx, 2 units a few days 
after 

 

 

 

 

Protonix, 
Oxycontin, 
Benicar, Actonel, 
Vit D, Lovonox, Fe, 
Multi-Vit,Miralax, 
Sonata, Lidoderm, 
Metanex, Sena 

… table continued on following page… 
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  Primary (1) and 
secondary (2) cause 
of death 

History of (H/O) Drugs known to 
be administered 
within the last 6 
months prior to 
TOD 

SpineGo 4 1 Aspirating pneumonia Mild arthritis in rt shoulder dx 10 prior to 
TOD, mild osteo of spine dx 10 yrs prior 
to TOD, memory loss 1yr prior to TOD, 
pneumonia 3 times w/in 4yrs prior to 
TOD, aspiration pneumonia COD, 
hearing aid 4yrs prior to TOD, UTI 
2009- abx use 1wk prior to TOD, 
Cataract sx both eyes 10-20 yrs prior to 
TOD 

Full hysterectomy 30yrs prior to TOD, 
left hip replacement 1994/1995, left 
knee sx 1996, pneumonia 3x w/in 4yrs 
prior to TOD 

Diovanm 
benzonate, abx, 
tylenol PM, iron, 
Spiriva, flu shot, 
blood transfusion  

SpineGo 5 1 Haemopericardium,  

2 Ventricular 
perforation, 1c 
Myocardial 

Infarction Information not 
available 

SpineGo 6 1 Metastatic 
oesophageal 
carcinoma 

Hysterectomy 1980’s, appendectomy 
when young, COPD, no Chemo in last 
6 months 

Information not 
available 

Spine 1 
mets 

1 Respiratory failure, 
Metastatic 
inflammatory 
carcinoma 

2 left inflammatory 
breast carcinoma, lft. 
Breast CA 

Breast CA dx 7yrs prior to TOD, 
chemotherapy and radiation for tx, 

Mets: upper spine, R hip, liver 

Hysterectomy 

No bedsores  

Bilat mastectomy 10yrs ago, lap flap 
6yrs ago, Thoracic sx 5yrs prior TOD, 
partial hysterectomy 4yrs ago, ovaries 
removed, chemo port placed 6yrs prior 
TOD  

 

Spine 2 
mets 

1 Metastatic lung 
cancer 

Ca w mets to spine, liver, ribs, no other 
bone disease 

Cancer: dx cancer 5mos prior TOD left 
lung, liver, ribs, spine, melanoma dx 
3yrs prior TOD 

CHF and irregular heartbeat, refused 
pacemaker 

Open bedsore on tailbone not sure of 
exact size (bedsores 3,4) 

Memory loss (began 10mos prior TOD) 

Traumas: fell walking down stairs at his 
home (not reported), one week prior 
getting out of bed fell- hospice 
examined after that fall no inj 

Smoker: 1ppd >20yrs 

Appendectomy 50yrs prior, hernia sx 
over 20yrs prior, endartectomy neck sx 
bilat 10yrs prior TOD 

Information not 
available 

… table continued on following page… 
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  Primary (1) and 
secondary (2) cause 
of death 

History of (H/O) Drugs known to 
be administered 
within the last 6 
months prior to 
TOD 

Spine 1 
MM 

1 Pulmonary Oedema  

2 Renal Failure and 
malignant myeloma 

87 yr old Female  

Unsure on height and weight 

Myeloma and nothing else significant, 
information from Solicitor as this lady’s 
wishes had been expressed in her will 
and we did not receive a copy of the 
GP questionnaire. Findings at autopsy 
did not find anything significant or 
intimate that the donor had had any 
other surgeries or suffered any other 
medical conditions 

 

Information not 
available 

Spine 3 
MM 

1 Mupltiple myeloma  (Material Transfer Agreement not 
available) 

 

Information not 
available 

Spine 4 
MM 

1 Multiple myeloma Myeloma, diagnosed: 05/2010, mets to 
shoulder and head 

Hypertension 

Hx of kidney stones 20y prior death 

Diabetes type II 

Hearing loss in both ears, no aids 

Smoker (15y) 

Alcohol – minimal 

Morphine, Ativan, 
(bisphosphonates 
not mentioned) 

Spine 5 
MM 

1 Cardiorespiratory 
failure 

Multiple myeloma diagnosed 08/2009 

Cirrhosis due to alcohol abuse (dx 6y 
prior) 

Cataract sx 1y prior, side unk 

Heavy alcohol use 

Smoker (15y, 1ppd) 

Morphine 
(bisphosphonates 
not mentioned) 

Spine 6 
MM 

 

1 Immunoglobulin G 
Kaapa multiple 
myeloma stage 3 

Multiple Myeloma w/o remission, unk of 
Tx if any, unk dxd 

Hernia Sx, unk location on body, 
approx. 60 years prior 

 

 

None specified 

… table continued on following page… 
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 Primary (1) and 
secondary (2) cause 
of death 

History of (H/O) Drugs known to 
be administered 
within the last 6 
months prior to 
TOD 

Spine 7 
MM 

1 Terminal multiple 
myeloma 

Fall at his home a few times and 
threshold 2 months ago 

Arthritis in knees, pain in back was 
thought to be from arthritis, pain scale 
5, self-medication (OTC Tylenol 
arthritis). No formal DX on arthritis  

Multiple Myeloma diagnosed 3y prior to 
death. Oral chemotherapy, bone 
strengthening infusions every month, 
off chemo and in remission for a year 

Quintuple bypass surgery 10y prior to 
death, veins in both legs stripped 10 y 
prior to death 

Depression 5y prior to death.  

Allergies: Seasonal, fish, NSAIDS, 
Cephalosporin 

6-8y prior to death last TB testing: 
negative 

Dialysis for the last 17y (diagnosed 17y 
prior to death) 

Acid reflux 

Loss of hearing in his left ear, dxd 10y 
prior to death 

Simvastatin 40mg 
1poqd, 
Omeprazole 20mg 
po bid, Rocatrol 
.25mcg 1poqd, 
Dexamethasone 
40mg 10tabs per 
week, Primidone 
50mg 1 pot id, 
Setraline HCL 
50mg 1poqd, 
Fludrocortisone 
Acatate .1mg po 
bid, Vitamin D 
50,000 UI 1 po 
month, Full 
spectrum B w/ Vit 
C OTC, Tylenol 
Artitis pain, 
Critical, 
Loperamide HCL 
2mg (dosage not 
known) 

Table 21 Medical history details as acquired from GIFT banks.  
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Appendix D: Morphology assessment 

Appendix D.1: Osteoporosis 

Morph.Index bmd 
[mgHA/cm

3
] 

BV/TV 
[1] 

Tb.Sp 
[mm] 

Tb.Th 
[mm] 

Tb.N 
[1/mm] 

Conn.D 
[1] 

Spine 1 BS 147.7  

(±22.8) 

0.17 

(±0.03) 

1.34  

(±0.16) 

0.32  

(±0.03) 

1.41  

(±0.14) 

0.62  

(±0.12) 

Spine 2 BS 124.9  

(±7.9) 

0.19  

(±0.02) 

1.14  

(±0.13) 

0.3  

(±0.03) 

1.21  

(±0.11) 

0.88  

(±0.09) 

Spine 3 BS 69.5  

(±9.2) 

0.11  

(±0.01) 

1.74 
(±0.17) 

0.3  

(±0.01) 

1.77  

(±0.16) 

0.37  

(±0.08) 

SpineGO 1  122.9  

(±11.2) 

0.15  

(±0.02) 

1.33 
(±0.15) 

0.3  

(±0) 

1.38  

(±0.14) 

0.69  

(±0.11) 

SpineGO 2 124.3  

(±11.5) 

0.2  

(±0.01) 

0.94 
(±0.04) 

0.27  

(±0.01) 

1.01  

(±0.04) 

1.47  

(±0.12) 

SpineGO 4 194.6 (±7.9) 0.22 (±0) 1.02 
(±0.09) 

0.31 
(±0.02) 

1.09 
(±0.07) 

1.51 
(±0.08) 

SpineGO 5 137.3 (±5.7) 0.17 
(±0.01) 

1.16 
(±0.1) 

0.3 (±0) 1.23 
(±0.09) 

0.83 
(±0.12) 

SpineGO 6 111.9 (±63.6) 0.16 
(±0.05) 

1.48 
(±0.33) 

0.33 
(±0.08) 

1.48 
(±0.32) 

0.61 
(±0.41) 

Table 22 Morphology assessment: Osteoporosis (mean ± stdev) 

 

 

 

 

 

 

 

 

 

 

 



- 197 - 

Appendix D.2: Metastases 

Morph.Index bmd 
[mgHA/cm

3
] 

BV/TV 
[1] 

Tb.Sp 
[mm] 

Tb.Th 
[mm] 

Tb.N 
[1/mm] 

Conn.D 
[1] 

Spine 1 mets 178.8  

(±26.6) 

0.31  

(±0.02) 

0.72  

(±0.03) 

0.3  

(±0.02) 

0.84  

(±0.02) 

2.53  

(±0.2) 

Spine 2 mets 125.8  

(±14.5) 

0.23  

(±0.03) 

0.89  

(±0.09) 

0.32  

(±0.03) 

0.97  

(±0.09) 

1.29  

(±0.31) 

Table 23 Morphology assessment: Metastases to spine (mean ± stdev) 

Appendix D.3: Multiple myeloma 

Morph.Index BMD 
[mgHA/cm

3
] 

BV/TV 
[1] 

Tb.Sp 
[mm] 

Tb.Th 
[mm] 

Tb.N 
[1/mm] 

Conn.D 
[1] 

Spine MM 4 111.4  

(±12.5) 

0.11  

(±0.01) 

2.56  

(±0.74) 

0.36  

(±0.08) 

2.61  

(±0.71) 

0.33  

(±0.08) 

Spine MM 5 166.8  

(±24.1) 

0.2  

(±0.01) 

1.04  

(±0.06) 

0.32  

(±0.01) 

1.13  

(±0.05) 

0.99  

(±0.1) 

Spine MM 6 107.5  

(±5.2) 

0.16  

(±0.01) 

1.18  

(±0.03) 

0.28 

(±0.01) 

1.26  

(±0.03) 

0.84  

(±0.07) 

Spine MM 7 159  0.17  1.54  0.35  1.68  0.64  

Table 24 Morphology assessment: multiple myeloma (mean ± stdev) 
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Appendix E: Cadaveric testing: Strength/stiffness per level 

Appendix E.1: Osteoporosis 

 

Figure 66 Strength and stiffness data for osteoporotic study for each 
spine and vertebral level used in the study - Spine BS 1 
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Figure 67 Strength and stiffness data for osteoporotic study for each 
spine and vertebral level used in the study - Spine BS 2 

 

Figure 68 Strength and stiffness data for osteoporotic study for each 
spine and vertebral level used in the study - Spine 3 BS 
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Figure 69 Strength and stiffness data for osteoporotic study for each 
spine and vertebral level used in the study - SpineGo 1 

 

Figure 70 Strength and stiffness data for osteoporotic study for each 
spine and vertebral level used in the study - SpineGo 2 
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Figure 71 Strength and stiffness data for osteoporotic study for each 
spine and vertebral level used in the study – SpineGo 4 

 

Figure 72 Strength and stiffness data for osteoporotic study for each 
spine and vertebral level used in the study – SpineGo 5 
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Figure 73 Strength and stiffness data for osteoporotic study for each 

spine and vertebral level used in the study – SpineGo 6 
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Appendix E.2: Multiple myeloma 

 

Figure 74 Multiple myeloma samples: Initial strength and stiffness for 

corresponding donor and spine level 
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Appendix E.3: Metastases 

 

Figure 75 Spine 1 mets: Initial strength and stiffness for corresponding 

spinal level 
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Appendix F: Micro-indentation 

Appendix F.1: Post-hoc statistical analysis 

  Indentation modulus [GPa] 

  Axial Transverse 

  diff lwr upr p-value diff lwr upr p-value 

MM.L.C-MM.L 1.2 -0.3 2.7 0.136 0.2 -0.7 1.1 0.818 

MM.NL-MM.L 0.0 -1.4 1.4 0.999 0.0 -0.9 0.8 0.996 

MM.NL-MM.L.C 1.2 -3.0 0.6 0.254 -0.3 -1.4 0.9 0.840 

  Hardness [MPa] 

  Axial Transverse 

  diff lwr upr p-value diff lwr upr p-value 

MM.L.C-MM.L 25.6 -16.6 67.8 0.313 9.6 -21.9 41.2 0.740 

MM.NL-MM.L 2.3 -35.9 40.5 0.989 5.8 -24.2 35.9 0.885 

MM.NL-MM.L.C -23.3 -74.1 27.5 0.510 -3.8 -42.4 34.8 0.969 

  Elastic Energy [pJ] 

  Axial Transverse 

  diff lwr upr p-value diff lwr upr p-value 

MM.L.C-MM.L 412 -1078 1902 0.782 328 -1091 1747 0.841 

MM.NL-MM.L 28 -1320 1376 0.999 312 -1042 1667 0.842 

MM.NL-MM.L.C -384 -2178 1410 0.862 -16 -1755 1722 0.999 

  Plastic Energy [pJ] 

  Axial Transverse 

  diff lwr upr p-value diff lwr upr p-value 

MM.L.C-MM.L 2871 -1566 7308 0.269 837 -1975 3650 0.752 

MM.NL-MM.L 667 -3346 4683 0.914 946 -1739 3631 0.672 

MM.NL-MM.L.C -2202 -7545 3141 0.581 108 -3337 3554 0.997 

  Ductility measure (Wp/(We+Wp) [1] 

  Axial Transverse 

  diff lwr upr p-value diff lwr upr p-value 

MM.L.C-MM.L 0.0 0.0 0.0 0.870 0.0 0.0 0.0 0.977 

MM.NL-MM.L 0.0 0.0 0.0 0.880 0.0 0.0 0.0 0.989 

MM.NL-MM.L.C 0.0 0.0 0.0 0.998 0.0 0.0 0.0 0.998 

Table 25 Post-hoc statistical analysis for multiple myeloma bone 

material properties 
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Appendix F.2: Humidity and temperature adjustment 

Adjustment to the same humidity (κ) and temperature (τ) was performed 

by using a least square fit of the indentation moduli (Ei), micro-hardness (H) 

and both indentation energies (We, Wp) to a bilinear, affine function (eq. 

(1.11) with confidents according to (1.12), (1.13), (1.14) and (1.15): 

 𝐸𝑖 , 𝐻, 𝑊𝑒𝑙𝑎𝑠𝑡 , 𝑊𝑝𝑙𝑎𝑠𝑡 = 𝑎1𝜏 + 𝑎2𝜅 +  𝑎3𝜏𝜅 +  𝑎4 (1.11)  

whereas coefficients for each adjustment were: 

 Ei: [a1, a2, a3, a4] = [-1.33, -1, 0.04, 46.92] GPa (1.12)  

 H: [a1, a2, a3, a4] = [71.9, 38.3, -1.7, -1116.8] MPa (1.13)  

 We: [a1, a2, a3, a4] = [5141, 3069, -131, -103004] pJ (1.14)  

 Wp: [a1, a2, a3, a4] = [3591, 1772, -85, -16035] pJ (1.15)  

Parameters of the fit have been provided for the purpose of this thesis 

by the author of the micro-indentation study comprising a non-affected 

population, Uwe Wolfram [36]. All four indentation variables were 

subsequently adjusted to the average humidity κref =50.33% and 

temperature τref = 21.62ºC. 
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Appendix F.3: Results – graphical form 

 

Figure 76 Graphical interpretation of means (± stdev) of micro-
indentation properties of multiple myeloma bone 
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Appendix G: Bi-axial eccentric loading  

Appendix G.1: Introduction to asymmetric beam theory 

A number of approximations has been done in this work. In one, a single 

vertebra body is taken into account as a part of long thin beam (spine) and 

hence considered as a slandered beam in which the stress distribution is 

solved using Euler-Bernoulli beam theory. In another, the bone mineral 

component, measured by means of radiation tomography, is assumed to 

stand for material properties such as Young’s modulus (E, [GPa]) and yield 

strength (ɛ, [%]).  

This section focuses on approximation that the natural vertebral body 

loading results in bending towards merely anterior direction and that the 

loading axis is located closely to the mirror neutral axis.  Such assumption 

allows neglecting the contribution of the eccentric loading with respect to the 

mirror (anterio-posterior) axis and allows considering point of the highest 

stress to be located merely anteriorly from the loading axis. This is however 

valid only when the ratio of eccentricity (moment My/Mx stress contribution) 

remains substantial with respect to primary bending moment (My). While this 

approach has been applied by number of other authors [145, 232, 296], this 

section aims to justify this approximation by providing extension of the Euler-

Bernoulli model when accounting for eccentric loading with respect to both, 

the primary (bending) and the secondary (mirror) neutral axes. This 

extension will be tested on highly asymmetric vertebral body profiles with 

simulated metastatic infiltration (from subsection 3.1.2.4) and on a human 

cadaver sample with a substantial degree of metastatic VB invasion 

(subsection 3.3.2.3), where all reanalysed data have been compared to 

those predicted as a part of the main body of this thesis and to those 

obtained experimentally.  

Appendix G.2: Theoretical consideration for asymmetric 

beam profile 

Appendix G.2.1: Bi-axial eccentric loading in asymmetric profile: 

definition  

The problem of eccentric loading arises when the load is offset from the 

modulus weighted centroid of the kern with respect to both neutral axes. 
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Such eccentric loading notably alters the stress distribution along the axial 

stress with bending introduced by a moment F*e1. This can be illustrated by 

looking at each of the stress-profiles separately. Here, the stress contribution 

due to compressional (normal) loading and additional moment can be super-

positioned to obtain the full stress profile (depicted as uni-axial eccentric 

loading in Figure 77 ). A secondary moment Mx can result in offsetting the 

modulus weighted centroid in y direction introducing additional moment due 

to significant mirror non-symmetry along the x axis.  Similarly to the situation 

depicted previously, a stress resulting from such moment is to be super-

positioned for the full stress-distribution profile.

 

 

Figure 77 stress profile due to eccentric loading considered as super-
positioned stress induced by (i) compression loading (left) and (ii) 
bending moment (right) 

This said, the strain at each point resulting from such stress profile can 

be obtained by combining contribution of each of the components in a 

general form presented in eq. (1.16). Here Mx= F*e1, My=F*e2 are the 

eccentric loading moments due to load offsets e1 and e2 with respect to the 

neutral axes; and notation of each component remains dependent on 

whether causing compression or tension. 

 ɛ(𝑥,𝑦) =
𝐹

𝐸𝐴
±

𝑀𝑦 ∗ 𝑥

𝐸𝐼𝑦
±

𝑀𝑥 ∗ 𝑦

𝐸𝐼𝑥
 (1.16)  

Appendix G.2.2: Moment notation 

While compression stress is conventionally noted as negative, this work 

aims to investigate compressional fracture load and hence compressional 

stress will be noted as positive. Whether a moment is causing positive or 

negative stress has been decided on four possible cases due to eccentricity. 

A case where the eccentricity “e1” is positioned posteriorly to the neutral axis 

is highly unlikely and will not be considered. Furthermore, as the nature of 

the loading was purely compressional (free loading plate using a ball-joint 

discussed in subsection 3.2.2.4) the tension stress due to introduced 

eccentricity becomes nil and only positive moments should be accounted for.  
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Whether a moment contributes to the compressional stress or not is 

hence depicted in Figure 78 listed for two possible cases whether the 

loading axis is located on left or right from the mirror neutral axis.  

 

 

 

 

Figure 78 Moment notation with respect to modulus weighted centroid 
(Green) in asymmetrical vertebrae where the cross-sectional 
profile has been altered due to presence of a lesion (pale blue)  

Appendix G.3: Application of asymmetric beam theory 

In total eight “fail” images of the plastic models have been reanalysed 

accounting for bi-axial eccentricity. In addition a sample with the highest 

degree of infiltration has been included in the analysis. Here, the plastic 

models represented a range of samples with a considerable VB shape 

alteration whereas the latter cadaver sample was selected due to its high 

asymmetric vertebral body cross-section profile as a result of a severe 

metastatic infiltration.  

In summary, the numerical prediction has been altered to account for:  

i. EIy next to stand-alone EIx;  
ii. Parametric form of all axes used to allow fast solution of their geometrical 

relations; 
iii. Both eccentricity moments: Mx, My; 
iv. Stress-distribution in each voxel within the vertebral body mask; 
v. Estimation of the minimal fracture load;  

vi. Visualisation of point of failure at which the threshold of 1% strain will be 
likely to breach. 

Appendix G.4:  Fracture prediction when accounting for bi-

axial eccentric loading: Results 

Values of the theoretical strength at which the VB fails (Table 26) were 

predicted in very close range to values in the main body of the thesis (y = 

0.997*x - 0.4829 [kN], R² = 0.99). Besides, the predicted values were closely 
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associated with the experimental values giving satisfying R² > 0.94 for plastic 

models (Figure 79), where the Bland-Altman agreement testing failed to 

indicate notable differences between error of prediction with respect to the 

position of the simulated lesion (difference between predicted and tested 

values does not highlight any outliers with respect to the VB strength 

depicted in Figure 80). As for the human sample, the results (also in Table 

26) indicate close agreement with previously presented prediction as well to 

the strength obtained experimentally.  

Sample 
type 

Lesion type Single 
moment/fixed 
point of highest 
strain [kN] 

Accounting for 
eccentric 
loading [kN] 

Experimental 
fracture 
load [kN] 

P
la

s
ti
c
 (

S
L

A
) No lesion 14.52 14.43 12.83 

Anterior lesion 4.62 4.22 3.28 

lateral lesion 7.26 7.02 4.06 

Latero-posterior 
lesion 

11.88 10.80 10.46 

P
la

s
ti
c
  
(S

L
S

) No lesion 19.58 19.60 17.63 

Anterior lesion 6.38 5.81 2.5 

lateral lesion 9.90 9.53 5.67 

Latero-posterior 
lesion 

16.06 14.65 15.73 

H
u

m
a
n

 

s
a

m
p

le
 Spine 2 mets – T8 

(Severely infiltrated 
cadaver sample) 

3.07 2.91 3.11 

Table 26 Predicted and experimental values in in-silico assessment of 
vertebral strength in simulated metastatic infiltration and a real 
sample 

As a novelty compared to the previous method used, a point of highest 

stress concentration has been identified. Here, in cases of high degree of 

asymmetry or absence of most anterior point located directly on the mid-

sagittal axis this point has been identified and although not validated 

experimentally appears to be estimated in an understandable location. This 

point has been located without user intervention as a point of highest stress 

based on point-by-point assessment (Figure 81). 
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Figure 79 Predicted strength was highly associated with values 
experimentally obtained in both cases where only uni-axial (left) or 
bi-axial eccentricity (right) has been considered 

 

 

Figure 80 No notable difference in prediction error with respect to 
overall vertebral strength has been found between the two 
methods used (left: uni-axial eccentricity used in the main body of 
the thesis, right: extension to bi-axial eccentricity) 
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Figure 81 Accounting for spatially varying point of the highest stress 
allowed to identify where is the vertebra likely to fail (yellow 
marker). Figure depicts four tested simulated lesions along a real 
metastatic sample, in all illustrating position of loading axis (green 
round marker) located on the mid-sagittal axis (red-dashed line), 
neutral axes (red-solid lines) intersecting the modulus weighted 
centroid (square green marker) 
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Appendix G.5: Conclusion when comparing uni and bi- axis 

eccentric loading with respect to fracture prediction 

Reanalysing the data while accounting for the bi-axial eccentricity 

provided enhanced robustness of the tool for analysing where the bone is 

prone to be fractured. While the approach used in the main body of the 

thesis fails to identify site of the highest stress, accounting for both 

components can point out which part of the bone is likely to fracture. On the 

other hand, qualitative results in terms of predicting the fracture strength did 

not show notable difference for the particular loading scenario. In fact, the 

correlation between predicted and experimental fracture load slightly 

decreased while remaining results in a very similar range. This was shown 

even on samples where asymmetry has been modelled to an exaggerated 

degree. In real samples, the difference between accounting for uni-axial or 

bi-axial eccentricity in the wedge compression fracture (WCF) was 5.3%. In 

all cases, these differences are at a limit generally accepted as the 

experimental error in biomechanical experimental studies. 

The section concludes that not accounting for the secondary moment in 

this thesis has not hampered validity of the values predicted due to 

predominant contribution of the primary eccentricity moment but could be 

highly beneficial for qualitative assessment of stress distribution throughout 

the entire kernel in highly degenerated bone. Furthermore the approach here 

presented should be used when adapting for complex loading scenario. 
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Appendix H: Image processing: vertebral body boundary 

estimation  

 

Figure 82 Boundaries of the vertebral body have been estimated using 
a custom-compiled script. Here, ct-images have been treated on 

slice-by-slice basis while storing the original image along the 
binary mask. Binarisation comprised of replacing any negative 
density values with background (marrow) density, followed by 

tresholding with subsequent void filling subroutine 


