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Abstract
Object detection is an essential component of many computer vision systems. The

increase in the amount of collected digital data and new applications of computer vision
have generated a demand for object detectors for many different types of scenes digitally
captured in diverse settings. The appearance of objects captured across these different
scenarios can vary significantly, causing readily available state-of-the-art object detectors
to perform poorly in many of the scenes. One solution is to annotate and collect labelled
data for each new scene and train a scene-specific object detector that is specialised to
perform well for that scene, but such a method is labour intensive and impractical.

In this thesis, we propose three novel contributions to learn scene-specific pedestrian
detectors for scenes with minimal human supervision effort. In the first and second contri-
butions, we formulate the problem as unsupervised domain adaptation in which a readily
available generic pedestrian detector is automatically adapted to specific scenes (without
any labelled data from the scenes). In the third contribution, we formulate it as a weakly

supervised learning algorithm requiring annotations of only pedestrian centres.
The first contribution is a detector adaptation algorithm using joint dataset feature

learning. We use state-of-the-art deep learning for the purpose of detector adaptation by
exploiting the assumption that the data lies on a low dimensional manifold. The algorithm
significantly outperforms a state-of-the-art approach that makes use of a similar manifold
assumption.

The second contribution presents an efficient detector adaptation algorithm that makes
effective use of cues (e.g. spatio-temporal constraints) available in video. We show that,
for videos, such cues can dramatically help with the detector adaptation. We extensively
compare our approach with state-of-the-art algorithms and show that our algorithm out-
performs the competing approaches despite being simpler to implement and apply.

In the third contribution, we approach the task of reducing manual annotation effort
by formulating the problem as a weakly supervised learning algorithm that requires anno-
tation of only approximate centres of pedestrians (instead of the usual precise bounding
boxes). Instead of assuming the availability of a generic detector and adapting it to new
scenes as in the first two contributions, we collect manual annotation for new scenes but
make the annotation task easier and faster. Our algorithm reduces the amount of manual
annotation effort by approximately four times while maintaining a similar detection per-
formance as the standard training methods. We evaluate each of the proposed algorithms
on two challenging publicly available video datasets.
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Notations

The following table is a list of important math notations in the thesis.

Domain and task
D A domain.
Ds A source domain.
Dt A target domain.
X A feature space.
Xs A source feature space.
Xt A target feature space.
T A task.
Ts A source task.
Tt A target task.
Y A label space.
Ys A source label space.
Yt A target label space.

Datasets
x A feature (column) vector (denoting a single data point). x ∈ Rk where k is

the length of the feature vector.
y Supervision (class) label associated with a training data point, e.g.

y ∈ {pedestrian,non-pedestrian}.
X A training dataset which is a set of feature vectors {x1,x2, . . .}. The symbol X

is for general usage and could denote a labelled or an unlabelled dataset
depending on the context. If the dataset is labelled, then X is associated with a
set of class labels.

Y A set of class labels corresponding to a labelled training dataset.
Y = {y1,y2, . . .}.

Xl
s Source labelled dataset. A set of feature vectors in the source domain and

each of the feature vectors is associated with a class label which is given by
the corresponding element of the set Ys.

Ys A set of class labels corresponding to Xl
s.

Xl
t Target labelled dataset. A set of feature vectors in the target domain and each

of the feature vectors is associated with a class label which is given by the
corresponding element of the set Yt .

Yt A set of class labels corresponding to Xl
t .
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Xu
t Target unlabelled dataset, i.e. a set of feature vectors in the target domain.

There is no label information associated with the feature vectors.
X+

t A set of feature vectors corresponding to the positive class (e.g. pedestrian
class) in the target domain.

X−t A set of feature vectors corresponding to the negative class (e.g.
non-pedestrian class) in the target domain.

Xu
s+t Combination of the source and the target datasets (i.e. the union of the sets of

feature vectors from the source and target domains). Labels from the source
dataset are not considered. The resulting dataset Xu

s+t is unlabelled and
therefore no label information is attached.

Xfg
t A set of feature vectors obtained from all (unknown) categories of foreground

objects in the target scene (i.e. video).
Xbg

t A set of feature vectors obtained from background structures in the target
scene (i.e. video).

Other Sets or Sequences
V A video, i.e. a sequence of images [I1, I2, . . . ].
P A set of (colour) image patches {p1, p2, . . .} where pi ∈ Rm×n×3.
B A set of bounding boxes {b1,b2, . . .} where bi holds both the bounding box

information (e.g. top-left corner, width and height of the bounding box) and
the frame number in the video where the bounding box is located.

W A set of multi-scale sliding windows within an image {w1,w2, . . .}.
Sweak Set of weak supervisions in the form of approximate centre locations of

objects {cc1,cc2, . . .}.
Sbbox Set of generated bounding box annotations {bb1,bb2, . . .} obtained from the

set of weak supervisions.

Functions
Cs Generic (i.e. source) classifier/detector; Cs : Rk→ R, where k is the length of

the input feature vector. The function takes as input a feature vector and
outputs a classification score. The classification score can be thresholded to
give a binary classification decision, i.e. the function can also be written as
Cs : Rk→{1,0}, where “1” refers to the positive class and “0” refers to the
negative class.
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Ct Scene-specific (i.e. target) classifier/detector; Ct : Rk→ R, where k is the
length of the input feature vector. The function takes as input a feature vector
and outputs a classification score. The classification score can be thresholded
to give a binary classification decision, i.e. the function can also be written as
Ct : Rk→{1,0}, where “1” refers to the positive class and “0” refers to the
negative class.

Cp An unsupervised object prior for a video/scene in the form of a classifier;
Cp : Rk→ [0,1], where k is the length of the input feature vector. It gives the
(prior) probability (within the range 0 and 1 inclusive) that a given data point
(in the form of a feature vector) is an object (of any class apart from the
background) in the scene.

H Function for feature extraction given raw pixel values to get “base features”;
H : Rm×n×3→ Rk, where m and n are the number of rows and columns of the
input colour image patch respectively and k is the length of the feature vector.
For example,H : a color image patch→ HOG feature vector.

A A deep autoencoder architecture represented as a function; A : Rk→ Rk,
where k is the length of the input feature vector. It first projects the input data
through nested non-linear functions and then decodes the encoded data
through nested non-linear functions in an attempt to reconstruct the original
data.

F Function to project a feature vector into manifold space (obtained by deep
learning); F : Rk→ Rk̂, where k is the length of the input feature vector and k̂

is the dimension of the manifold (i.e. the intrinsic dimension) and k̂� k.
σ Activation function of a neural network; σ : R→ R.
N Function that gives the likelihood of a bounding box window to be consistent

with the weak supervision; N : R4→ R.

Apart from the notations listed above, in general, the following rules are used:

• Bolded capital letters denote matrices. For instance, W represents a weight matrix
for affine projection.

• Bolded small letters (e.g. m) denote column vectors. A row vector is denoted by its
transpose, e.g. mT .

• Non-bolded small letters are for scalars, e.g. i, j and k.

• Capital whiteboard-style letters (such as V and S) are for sets or sequences.
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Chapter 1

Introduction

Computer vision is about automatic analysis and understanding of visual data (such as
images and videos) to extract useful information. There are many sub-areas within the
field of computer vision, one of which is object detection which forms the foundation of
many intelligent scene understanding systems. Due to its importance, object detection
has received a lot of attention in computer vision [3]. Pedestrian detection in particular
plays an important role in real world outdoor scenes especially in urban areas. In this
thesis, although the proposed algorithms could potentially be used for learning detectors
for any object category (such as pedestrians, cars, buses and bicycles), we focus on the
task of pedestrian detection since pedestrians are of most interest in many applications of
computer vision.

1.1 Challenges

Pedestrian detection in monocular images is a challenging task and a lot of progress has
been made in this area (see [27,29,41] for reviews and comparisons). Most state-of-the-art
pedestrian detectors require a supervised training stage based on a labelled dataset that is
obtained from manual annotation of pedestrians (e.g. delineation of pedestrians by bound-
ing boxes) and a sufficient number of non-pedestrian images [21, 27, 42]. The objective
of the labelled dataset is to provide the classifier (being learnt) with large intra-class vari-
ations of pedestrians and non-pedestrians so that the resulting classifier is generalisable

1



Chapter 1 2 Introduction

(a) INRIA dataset [21] (b) Daimler dataset [29] (c) Caltech dataset [26]

Figure 1.1: Random samples from some generic pedestrian datasets (only pedestrians, i.e.
positive examples, are shown).

to never-before-seen test data. This generalisation property is a sought-after property for
most machine learning classification and regression tasks. When training a pedestrian
detector, the goal is often: “Given any unseen test image, the detector should locate all
the pedestrians in the image”. In this thesis, we term such a detector as a generic (pedes-

trian) detector and the training data from which the detector was trained as a generic

(pedestrian) dataset.
For a generic dataset, collected positive and negative examples are not (deliberately)

limited to a particular scene and viewpoint and the aim of such a dataset is to collect
as many variations of pedestrians as possible to produce detectors which should ideally
perform well for any unseen test data. Examples of generic pedestrian datasets are INRIA
Person Dataset [21], Daimler Mono Pedestrian Detection Benchmark Dataset [29] and
Caltech Pedestrian Dataset [26]. The INRIA dataset consists of images of upright people
taken from a variety of personal image collections. Pedestrian training data of the Daimler
and the Caltech datasets are extracted from videos recorded with on-board cameras in
vehicles being driven around various places in urban traffic. All these datasets consist of
training data from a variety of scenes and places and as a result, the intra-class variations
of pedestrians in such datasets is large. Figure 1.1 illustrates this observation.
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Despite the large intra-class variations present in such generic datasets, each of these
datasets still has its own inherent bias. For example, since the INRIA dataset is taken from
mostly personal digital image collections, many of the people in the training dataset are
likely to be intentionally posing for cameras. This may be different from natural pedes-
trian poses and activities in real-life situations. For the Daimler and Caltech datasets, the
pedestrians in the training set are biased to view-points and angles that cameras on-board
vehicles could capture. Moreover, pedestrians from these datasets are taken from static
images that have been captured using cameras fixed near the same ground plane as the
captured pedestrians. This may be considerably different from situations where images
of pedestrians are captured by video cameras looking down on a scene (e.g. surveillance
videos).

This dataset bias has been recently studied by Torralba and Efros [105]. No dataset
can possibly cover a representative set of all the possible variations of pedestrians and
non-pedestrians the detector is likely to face at test time. As shown by [26,91], detectors
may fail to perform satisfactorily when applied to scenes that differ from the original
training data in many aspects such as:

• Pedestrian pose

• Image or video resolution

• View-point

• Lighting condition

• Image or video compression effects

• Presence of motion blur

Furthermore, apart from this dataset problem, even assuming that there is a perfect
generic dataset, it is non-trivial to learn a classifier that is “good” enough to capture all
these highly complex and multi-modal variations of the dataset whilst at the same time not
over-fit on the training data. In addition, for most of the pedestrian detectors, the speed of
the detector is an important criterion that has to be taken into consideration, particulary
since a classifier must be applied on many (typically hundreds of thousands of) multi-
scale sliding windows in each image. This rules out time-consuming feature extraction
mechanisms and complex classifiers.

It is, however, crucial to ask the question of whether, deployed pedestrian detectors
in real-life actually need to work well across any test data. The short answer is that for
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(a) CUHK Square dataset [110] (b) MIT Traffic dataset [111] (c) PETS 2009 dataset [35]

Figure 1.2: Random samples from scene-specific pedestrian datasets (only pedestrians,
i.e. positive examples, are shown).

most situations, they do not. Each deployed pedestrian detector needs to work well only
for the specific scene and conditions that it is applied to. Given a particular scene, the
intra-class variation of the pedestrians being captured by a fixed camera is limited com-
pared to general situations. For example, due to the fixed camera angle, the view-point is
fixed and the space of possible poses that a pedestrian can exhibit is a small subset of all
the possible pedestrian poses. Furthermore, the lighting variation is also smaller and the
image compression effects are similar for all the pedestrians captured by the same cam-
era. In addition, the environment, the background and the surroundings are fixed which
translate to less variation in non-pedestrian classes of data. Moreover, there are geograph-
ical, cultural and social constraints under a fixed location which, for example, may make
pedestrians more likely to conform to similar styles of clothing. Further, most state-of-
the-art detectors work by extracting features from a rectangular window and applying the
learnt classifier. This means that pixels that do not correspond to pedestrians (also known
as “scene context”) are also inside the window. For a particular scene, this scene context
can be captured effectively. Overall, the intra-class variation of pedestrians in a specific
scene is smaller than the intra-class variation of pedestrians across all possible scenarios
as shown in Figure 1.2.
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Therefore, it seems that the solution then is to collect labelled data for each new scene
specifically tailored for that scene. The resulting detector can be termed as a scene-specific

detector since the detector is tuned and specialised to work well in a particular type of
scene. The task is now clearly simpler: given any unseen test image in this scene, the
detector should locate all the pedestrians in the image. This is a simpler task than building
a generic detector.

There are two observations that can be made. Firstly, with the feature extraction mech-
anism and the classifier type held fixed, a scene-specific detector can be more accurate
than a generic detector. Secondly, with the detector accuracy held fixed, the feature ex-
traction mechanism and the classifier of the scene-specific detector can be simpler and
faster than a generic detector due to having to learn to perform classification for a sim-
pler task. This is clearly critical in real-time or embedded-processor applications. In this
thesis, we make use of the first observation.

Although training a scene-specific detector that is specialised to each new scene seems
like a good idea, in practice, it can be labour-intensive especially when considering the
number of different scenes and applications for which we need pedestrian detectors. In
this thesis, we address the problem by reducing the human supervision effort involved in
learning scene-specific pedestrian detectors.

We achieve this in two ways. Firstly, we utilise the fact that although generic pedes-
trian detectors may not work well for specific scenes, they contain information about
pedestrians in general and can be used as prior knowledge in the process to learn scene-
specific detectors. We therefore formulate the task of learning scene-specific detectors
as an unsupervised domain adaptation problem and contribute two novel algorithms that
start with a readily available generic image dataset and automatically adapt it to a target
video (of a particular scene) without requiring any annotation in the target scene, thereby
generating a scene-specific pedestrian detector. Secondly, we tackle the situation where a
generic dataset is not available. For this, we contribute a novel algorithm to reduce human
supervision effort by formulating the problem in a weakly supervised learning framework.

1.2 Research Questions

In this thesis, the following research questions are addressed.

1. What are the effective methods to adapt a generic pedestrian detector to specific
scenes?

2. Can we perform the domain adaptation for pedestrian detection by using only the
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manifold1 assumption of data? Is there any benefit in using state-of-the-art deep
learning to learn the manifold for the detector adaptation task for videos? How
does this compare to other state-of-the-art detector adaptation algorithms using a
similar manifold assumption?

3. For videos where spatio-temporal continuity information and other types of knowl-
edge can be exploited, can we forego the explicit manifold learning step and have
an efficient algorithm that makes use of these spatio-temporal cues and gives higher
adaptation performance?

4. Is there any other way of providing supervision that is easier and faster than bound-
ing box annotation for videos?

1.3 Thesis Contributions

To answer the aforementioned research questions, we make the following novel contribu-
tions:

1. We present a detector adaptation algorithm using joint-dataset feature learning that
exploits the manifold assumption of data. The algorithm does not require back-
ground subtraction or tracking and is applicable to either static images or videos.
For feature learning, state-of-the-art deep learning is utilised. In addition, due to
large class imbalance associated with random sampling of patches for unsuper-
vised feature learning, a simple biased sampling approach is proposed to minimise
the problem. An effective technique to automatically set the structure of the deep
network is also discussed. It is experimentally shown that the proposed contribution
outperforms a state-of-the-art technique that makes a similar manifold assumption
about data.

2. For videos, unlike in static images, many cues and knowledge can be automati-
cally learned due to the spatio-temporal consistency of video data. In particular,
this time, we exploit background subtraction and tracking to help with the detector
adaptation and propose a simple and effective non-iterative self-training algorithm.
Firstly, we introduce the idea of bounding box proposals and initial verification

for efficient generation of a large number of scene-specific pedestrian data with a
high probability of accuracy. Secondly, we propose the concept of spatio-temporal

1A manifold “is a topological space that is locally Euclidean” [92]. For example, circles and lines are
one-dimensional manifolds. See Section 4.3.3 for details.
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verification and expansion using short-term tracking. The proposed integrated sys-
tem of the aforementioned concepts outperforms several state-of-the-art detector
adaptation algorithms that adapt a generic pedestrian detector to videos captured
in specific scenes. Unlike most state-of-the-art algorithms, the proposed algorithm
does not require the presence of the generic data itself during detector adaptation;
just the generic detector alone is sufficient.

3. A weakly supervised learning algorithm is proposed for reducing human supervi-
sion effort for pedestrian detection in videos. The algorithm only requires weak
supervision in the form of approximate centre locations of pedestrians. The first
sub-contribution is learning a pedestrian prior in an unsupervised way for a given
video. The second sub-contribution is fusing the cues from the pedestrian prior
and the provided weak supervision in an optimization framework. The proposed
algorithm is efficient and can work with low resolution videos in which object part
modelling and discovery are not feasible.

1.4 Thesis Outline

In Chapter 2, background material is given that explains the important concepts in the the-
sis, including pedestrian detection, feature extraction and classifiers and most importantly,
an introduction to transfer learning, domain adaptation and weakly supervised learning.
Domain adaptation is also briefly compared and contrasted with the more well known
semi-supervised learning.

In Chapter 3, related works are discussed. We do not review literature on general
object or pedestrian detection. Only studies that are close to the research in this thesis
are included. The main attention is given to two areas: domain adaptation and weakly
supervised learning as applied in the field of computer vision. Related works are discussed
in detail, pointing out the strengths and the weaknesses of each approach where relevant.
Moreover, the relation between the most relevant works and the thesis contributions (i.e.
main algorithms proposed in this thesis) are also explained.

In each of Chapters 4, 5 and 6, we present a major contribution of the thesis, for a
total of three major contributions. Chapters 4 and 5 represent the domain adaptation part
of the thesis and Chapter 6 is about weakly supervised learning. In each of these chapters,
we also list the contributions for the chapter. In addition, in each of these chapters, we
present the methodology, experimental results, discussion on the results and a conclusion
specific to the chapter.
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In Chapter 7, the results corresponding to the proposed algorithms in Chapters 4, 5
and 6 are brought together and discussed. We then conclude the thesis by summarising
the thesis and discussing the limitations and the future work that builds on the thesis.
Furthermore, we also outline the answers to the research questions that are raised in Sec-
tion 1.2.



Chapter 2

Background

2.1 Introduction

In this chapter, we describe the key background materials and concepts that are exten-
sively used in and helpful to understand the rest of the thesis. Since we apply our domain
adaptation and weakly supervised learning algorithms on the task of pedestrian detection,
we first start with the explanation of what “pedestrian detection” is. Since the most com-
mon pipeline for pedestrian detection includes feature extraction and classification, we
briefly introduce the concept of feature extraction and regularized linear classifiers. Af-
ter this, we describe the main machine learning paradigms relevant to the thesis, namely
transfer learning, domain adaptation and weakly supervised learning.

2.2 Pedestrian Detection

Pedestrian detection can be defined as “locating” pedestrians (if there are any) in images.
The “location” goal is dependent upon the nature of the application and in this thesis,
“location” refers to obtaining the position and spatial extent of pedestrians in images in the
form of horizontally and vertically axis-aligned rectangles tightly fitting the pedestrians
as shown in Figure 2.1. These are commonly known as bounding boxes. In some other
applications (not addressed in this thesis), the “location” task could also refer to “pixel-
wise localisation”, i.e. getting a segmentation mask of pedestrians in images.

9
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Figure 2.1: An example of pedestrian detection in an image.

There are 2 stages to a typical pedestrian detection task:

1. Building (i.e. training) a pedestrian model with a training dataset.

2. Applying the pedestrian model to detect pedestrians at test time.

2.2.1 Building a Pedestrian Model

For most successful detection systems, the first stage uses a machine learning approach in
which some examples of pedestrians and non-pedestrians (which are known as training

examples or training dataset) are manually collected and presented to a learning system
that attempts to build a pedestrian model that generalises over the training examples. This
generalisation property is often the most important goal of most machine learning systems
since it allows the resulting model to correctly predict for unseen test data.

The training dataset, the learning system and the interplay between them are essential
for obtaining a successful pedestrian model. Figure 2.2 shows the overview of a general
system for training a pedestrian detector.
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Learning 
system 

Pedestrian model 
(Pedestrian 
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(Pixel values of pedestrians and 

non-pedestrians) 

Figure 2.2: A general system for training a pedestrian detector.

For most machine learning tasks in real life, it is often too complex to learn (i.e. gener-
alise) with the limited amount of labelled raw data to produce “good” models. Therefore,
most machine learning systems make use of an additional step (before learning) com-
monly known as feature extraction.

The goal of feature extraction is to convert raw data into more “useful” features that
are invariant to a certain set of transformations of the raw data. To be more precise,
feature extraction can be seen as a step to untangle the raw data to produce features that
are less dependent on each other and that are more robust to noisy changes in the raw
data.

For example, if we are using raw image pixel values as input to a learning system for
pedestrian detection, it is extremely difficult (if not outright impossible) to get a reason-
able pedestrian model because raw pixel values are highly dependent on one another and
raw pixel values of different pedestrians are only related to the pedestrian class (or the
non-pedestrian class) in a very highly non-linear fashion.

Feature extraction is an attempt towards minimising this problem and from one per-
spective, it can be seen as a way of incorporating expert (human) knowledge into the
learning process and from another perspective, it is putting a prior on the space of mod-
els.

Feature extraction can cover all the steps in the entire pipeline of converting the raw
pixel values into a set of features. This can include various image pre-processing opera-
tions (such as illumination normalisation), edge detection, calculating image statistics of
different orders and encoding relationships between different parts of the image.

In fact, the feature extraction step is arguably the most crucial step in building a useful
machine learning system and it is considered as a research area in its own right in different
computer vision tasks such as face detection, face recognition, pedestrian detection and
activity classification. The task of building a pedestrian model can now be modified to
explicitly include feature extraction as shown in Figure 2.3.

After feature extraction, a pedestrian model is learnt by optimising the parameters
of a suitable objective function with respect to the given training dataset. The resulting
pedestrian model is determined by the combination of the following factors:
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Learning 
system 
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Figure 2.3: A general system for training a pedestrian detector (with feature extraction
explicitly shown).

1. The quantity and quality of the raw training data.

2. The feature extraction algorithm.

3. The objective function for the optimisation (which defines the user-given family of
models).

4. The optimisation algorithm (which chooses the “best” model out of the given family
of models).

2.2.2 Detecting Pedestrians with the Learnt Model

After a pedestrian model has been learnt, pedestrian detection is the process of applying
the model on a (novel) test image to locate pedestrians (in the form of bounding boxes
around pedestrians). The exact process of how the model is applied is dependent upon
the corresponding training algorithm. Generally, however, the task of detection can be
divided into the following steps:

1. Hypothesis generation.

2. Testing (i.e. scoring) each hypothesis using the learnt pedestrian model (after any
necessary feature extraction).

3. Combining the scored hypotheses to get the locations of the pedestrians.

These three steps may be purely feedforward in that the earlier step is not affected
by the later step. In contrast, they can also be interdependent in the sense that hypothe-
sis generation depends on the scores of (other) hypotheses and vice-versa. This can be
used to speed up the process of hypothesis generation and scoring by pruning away some
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hypotheses given knowledge of some other hypotheses. This is especially useful in part-
based object detection (such as Deformable Part Models [33]) where the hypothesis space
is very large. In that case, dynamic programming can be used to efficiently search for
joint optimal placements of parts which fulfill both the part likelihoods and the likelihood
of inter-part location relationships. However, non-part-based (i.e. monolithic) detectors
have also be shown to benefit from exploiting this interdependency between hypothesis
generation and scoring [14,24,47,48]. In the following subsections (and in this thesis), we
shall focus on the former approach (i.e. feedforward) and on monolithic detectors where
pedestrians are not (explicitly) modelled as connected parts.

2.2.2.1 Hypothesis generation and scoring

There are many approaches to hypothesis generation and scoring. The simplest way is the
“exhaustive” approach. Despite its simplicity and being straightforward to implement,
this is a very effective approach and is in fact the dominant paradigm in state-of-the-art
object detection, commonly known as sliding window detection, where a fixed-sized rect-
angular window is scanned across the test image at finely sampled discrete locations on a
grid. To detect objects of varying sizes, this process is repeated on several rescaled ver-
sions of the test image. At each window position, features from the patch corresponding
to the window are extracted. This set of features serves as the input to the pedestrian
model and the model outputs a score for that window position indicating the confidence
of the model that the current patch being considered is a pedestrian.

Rather than an exhaustive search, hypothesis generation could also come from bottom-
up image segmentation cues [1,15,28,69,87,106]. In order to make sure that the hypothe-
ses generated in this way cover most of the pedestrians in an image, it is often necessary
to run multiple segmentation algorithms and hierarchical merging of segments and collect
the outputs of different segmentation algorithms at various levels of hierarchical merging
as hypotheses [106]. This whole process may also be repeated in different colour spaces
(such as RGB, greyscale, HSV and LAB) to achieve stability and robustness to changes
in illumination, with the aim of increasing the probability of hypotheses containing actual
objects. The number of hypotheses generated in this manner is expected to be an order
of magnitude less than sliding window search. This type of hypothesis generation has
the advantage that more complex and computationally expensive feature extraction and
classification algorithms can be used due to having fewer hypotheses to score. However,
the disadvantage is that hypothesis generation is dependent on the quality of the segmen-
tation(s) and therefore might not work well in many types of situation (such as for low
resolution images where segmentation is generally unreliable).



Chapter 2 14 Background

Sliding window hypothesis generation can also be limited to be within certain regions
of interest (ROIs) or scales within an image [29]. These ROIs can be obtained in many
ways. Firstly, they can be obtained by considering the prior information about a class
of objects with respect to a scene. For instance, the fact that pedestrians tend to occupy
only certain areas of the scene may be used as prior information and only these areas
could be treated as ROIs. Moreover, the range of widths and heights of pedestrians can
be specified a priori to decrease the number of hypotheses. Secondly, scene geometry and
ground plane(s) can be automatically estimated which can then be used to constrain the
hypothesis generation (e.g. [64]). Finally, motion estimation by optical flow or stereo vi-
sion [39,117] can be used to highlight regions likely to contain moving objects and those
regions can be treated as ROIs. Although the aforementioned techniques could help speed
up object detection and potentially reduce false positives, they are sometimes not fully au-
tomatic (e.g. in having to manually specify prior information for different scenes) and they
may require additional equipment and setup (such as stereo cameras) and expensive al-
gorithms (such as online 3D estimation). Moreover, these approaches are complementary
to traditional sliding window approaches (without using these ROIs) and improvement in
sliding window algorithms would most likely translate to better performance when using
the ROIs.

2.2.2.2 Combining the scored hypotheses

Multi-scale sliding-window approaches tend to produce overlapping scored hypotheses
in various locations and scales of the image. These multiple responses need to resolved,
merged where appropriate and spurious responses should be suppressed to produce a fi-
nal set of window locations (i.e. bounding boxes). This is commonly known as Non-

maxima Suppression (NMS). The two most popular approaches are using Meanshift clus-
tering [19] and a greedy pairwise overlapping suppression approach [33].

2.3 Feature Extraction

We now very briefly describe Histograms of Oriented Gradients (HOG) [21], which is
a mainstream feature extraction mechanism, as part of the sliding window detection ap-
proach. Given an image patch p, a simplified description of HOG is as follows:

1. The horizontal and vertical gradients, gx and gy respectively, of p are computed.
These are known as first order derivatives of p.

2. From gx and gy, the gradient magnitude gm and orientation go are calculated.
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(a) An image (b) HOG (c) Whitened HOG

(d) Mean of all images (e) Mean of HOGs (f) Mean of whitened HOGs

Figure 2.4: Visualization of HOG features. (a) shows an image containing a person in the
INRIA Person dataset. (b) illustrates the visualisation of HOG features of (a). (c) shows
the HOG features of (a) after applying whitening transform. (d) gives the mean color
image of all (positive) images in the INRIA dataset. (e) shows the visualisation of the
mean of HOG features of all the images. (f) is the visualisation of the mean of whitened
HOG features of all the images.
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3. The image patch p is divided into a grid of non-overlapping 8× 8 regions, called
cells.

4. For each cell, a histogram of gradient orientations is built in that region using the
corresponding values in go. Also when computing the histogram, the bins are
weighted according to gm in that region. This results in a histogram of orientations
where stronger gradients (i.e. gradients with higher magnitude) are given higher
weights than weaker gradients. The histogram is normalised by a suitable normali-
sation scheme such as dividing by the sum of the bin counts.

5. This process is repeated for all the cells in p. Then all these local histograms are
concatenated to form one single feature vector x.

As with HOG, most feature extraction mechanisms can be seen as a process of con-
verting an image patch p to a feature vector x. The HOG described above is a simplifica-
tion of HOG proposed by Dalal and Triggs [21]. In [21], there are additional steps such
as 4-way block normalisation (to increase illumination robustness) for each cell using the
histograms in the cells nearby (called a block), tri-linear interpolation when counting bins
of histograms and more sophisticated normalisation schemes. Figure 2.4 illustrates some
visualisations of HOG features. In the figure, whitening transform1 is used for better vi-
sualisation of HOG features. Given a 64× 128 image patch p, 8× 8 pixels sized cells,
9 orientation bins and 4-way block normalisation, the resulting feature vector x has the
following length:

x ∈ Rk where k =
64
8
× 128

8
×9×4 = 4608

2.4 Regularized Linear Classifiers

Regularized linear classifiers (RLCs) are a family of classifiers which includes many of
the state-of-the-art classifiers commonly used for efficient large-scale learning. RLCs in-
clude linear Support Vector Machines (SVMs) [20], regularized logistic regression [51],
Perceptron [36] and Winnow [67]. RLCs are becoming increasingly popular due to large

1Whitening transform is a process that removes linear correlations in the feature space. One of the ways
of achieving this is by learning PCA on the HOG feature vectors, projecting the vectors onto the PCA space
(to get PCA scores) and then dividing each dimension of the PCA scores with its standard deviation and
then projecting back to the original HOG space. This transforms the covariance of the HOG features to
the identity matrix and has the effect of removing the linear correlations and suppressing less interesting
structures and thus allowing more interesting structures to become visible in the visualisations.
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amounts of data that are available nowadays and fast sophisticated feature extraction al-
gorithms that generate very high dimensional data for which linear classifiers are often
sufficient and usually the only computationally feasible option [34,57]. Recently, explicit
(non-linear) feature projection methods (e.g. [62,85,86,108]) are also becoming popular,
further increasing the demand for RLCs.

Given training data {x1, . . . ,xN} where xi ∈ Rk is a feature vector and corresponding
labels {y1, . . . ,yN} where yi ∈ {1,0} is the supervision label associated with xi, most
RLCs have the following form of optimization objective function:

mtrained = arg min
m

N

∑
i=1

fL(m,xi,yi)+α fR(m) (2.1)

where mtrained ∈ Rk is the vector of linear weights for the trained classifier. Furthermore,
fL is the loss function, fR is the regularization function to penalize m of higher com-
plexity and α is the trade-off term between the regularization term and loss term. For
L2-regularization, we have fR = mT m which penalises large values of m and for L1-
regularization, fR = [1, . . . ,1]T m which encourages sparse solutions. For SVM,

fL(m,xi,yi) = max(0,1− yimT xi) (2.2)

and for logistic regression,

fL(m,xi,yi) = log(1+ exp(−yimT xi)) (2.3)

At test time, for SVM, the classifier score st of a test feature vector x is given by

st = (mtrained)
T x (2.4)

whereas for logistic regression, the score is given by

st =
1

1+ exp(−(mtrained)T x)
(2.5)

There are very efficient solutions for global optimization of equations of the form
given in Equation 2.1 even for extremely large amounts of data with high dimensions.
This makes training of RLCs efficient for large-scale learning [32]. Furthermore, as can
be seen in Equations 2.4 and 2.5, prediction at test time involves mostly a single dot
product using the learnt weights which can be performed very fast on modern machines.

Although the algorithms proposed in this thesis could be readily applied to most de-
tection paradigms, for simplicity, only the sliding window paradigm is demonstrated.
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Moreover, for simplicity and speed in feature extraction and learning, we use Histograms
of Oriented Gradients (HOGs) and linear SVMs respectively, although any feature mech-
anism and classifier could potentially be used.

2.5 Transfer Learning

In this section, we give an introduction to transfer learning. Stated informally, the concept
of transfer learning, in the field of machine learning, is mainly relevant when we have
related tasks, and knowledge about some of those tasks; having knowledge about some
tasks can be used to learn about other related tasks in an easier, faster or improved manner.
This is useful because, for many tasks in machine learning, we may have a large amount
of labelled data for a task A but may not have sufficient labelled data (or even no labelled
data) for a task B which is related to task A in some way. Using transfer learning, we
can transfer the knowledge that we have about task A to task B using some commonality
between task A and task B. This is illustrated in Figure 2.5.

Task B Learning 
Model for 

Task B 

(a) Without transfer learning

Transfer 
learning 

Task B 

Learning 

Learning 

Knowledge 
of Task A 

Model for 
Task B 

Task A 

(b) With transfer learning

Figure 2.5: Transfer learning between two tasks. Given two related tasks A and B, exploit-
ing and transferring the knowledge about task A to task B can help learn a better model
for task B.

Another useful benefit of transfer learning is when deploying trained models (e.g. clas-
sifiers) for prediction at test time in real-life systems. There is one assumption common
to most machine learning algorithms: the distribution and the feature space of the training
data are the same as those of the test data. Generally, if the feature space of the test data
is different from that of the training data, the current model cannot be applied to the test
data and a new model would have to be trained in the feature space that is the same as
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the test data. If the feature spaces of the training and the test data are the same but the
distributions of the training and the test data are different, the model that was trained on
the training data may perform poorly on the test data depending on the extent of the dif-
ference between the training and test data distributions. If this difference is large enough,
the model might not even give any meaningful predictions and a new model would then
need to be trained.

Having to train new models in this way can be computationally expensive and with tra-
ditional machine learning methods, this is usually necessary because for many deployed
machine learning systems, the test data distributions are different from those of the train-
ing data. Transfer learning can help here to a certain extent by considering the training
and test data as data for two related tasks.

We now discuss two commonly used terms in the transfer learning literature [80]: a
domain and a task. Furthermore, when discussing transfer learning below, we would do it
in the context of classification (since this thesis makes use of classifiers for pedestrian de-
tection) although transfer learning can also be used for regression and density estimation.

A domain D is defined by a feature space X and a probability distribution P(x) over
the data associated with D. A task T is specified by a label space Y and a distribution
over the label space P(y).

To give an example of a domain and a task, consider training a pedestrian classifier
using the INRIA dataset. To simplify the explanation, assume that we are given cropped
patches of pedestrians and non-pedestrians (also referred to as positive patches and nega-

tive patches respectively). For each patch, we extract features using any feature extraction
algorithm to obtain a feature vector. The feature extraction mechanism defines the feature
spaceX . For instance, if we are using the HOG feature extraction algorithm which results
in feature vectors of length 4608 and each dimension of a feature vector is a real number
within the range of [0,0.2], then X is a 4608-dimensional space for which the values of
each dimension has the range [0,0.2]. After extracting features from each patch, we now
have the training data X = {x1, . . . ,xN} where the N number of training data are sam-
ples from the underlying distribution P(x), i.e. X∼ P(x). For classification, each training
datum xi ∈ X is also associated with a label yi. There are N labels Y = {y1, . . . ,yN}
for the training data. For pedestrian classification, the label is either pedestrian or non-

pedestrian, i.e. yi ∈ {pedestrian,non-pedestrian}. The training data X together with the
labels Y is usually called a labelled (training) dataset. After obtaining the labelled dataset,
a classifier can be trained using a supervised machine learning algorithm which produces
a model that can be written as a function of x: it takes in a feature vector x as input and
produces a classification score as output. This can also be probabilistically interpreted
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(a) Samples from cat dataset (b) Samples from dog dataset

Figure 2.6: Some samples of cats and dogs from the PASCAL VOC dataset [31]. Locali-
sation of cats and dogs is shown with bounding boxes.

as P(y|x), i.e. the (posterior) probability of the class labels y given a feature vector x.
In summary, the domain and the task for this pedestrian classification setting is given by
D = {X ,P(x)} and T = {Y,P(y)} respectively.

Source Target
Domain Xs,P(xs) Xt ,P(xt)

Task Ys,P(ys) Yt ,P(yt)

Table 2.1: Annotation summary for transfer learning

The annotation summary for transfer learning is given in Table 2.1. Given a source

domain Ds = {Xs,P(xs)} and a source task Ts = {Ys,P(ys)}, the aim of transfer learning
is to transfer the “knowledge” in Ds and Ts to a target domain Dt = {Xt ,P(xt)} and a
target task Tt = {Yt ,P(yt)} so that the learning of P(yt |xt) is improved. Although multiple
sources and targets can be used for transfer learning, in this thesis we focus only on one
source and one target since this situation is prevalent in real-life situations.

As an example application of transfer learning, consider a scenario in which datasets
of cats and dogs are given (shown in Figure 2.6) and the source task is the detection of cats
and the target task is the detection of dogs. We would like to exploit the knowledge that
we have about cats (assuming the availability of a large amount of labelled data for cats)
and transfer it to the process of learning a dog classifier (assuming insufficient labelled
dog data) to help obtain a better dog classifier. This is possible because even though
detection of cats and detection of dogs are different tasks, they are related in that cats
and dogs share some similarities in appearance, shape and structure (as can be seen in
Figure 2.6). The feature spaces of cats and dogs, Xs and Xt respectively, may or may not



Chapter 2 21 Background

be the same, but P(xs) and P(xt) would be different. In addition, the label spaces of the
source and target tasks, Ys and Yt respectively, are also different since Ys = {cat,non-cat}
and Yt = {dog,non-dog} and Ys 6= Yt .

The example given above is a problem of supervised transfer learning because there is
some labelled data available from the target dataset. An alternative setting is unsupervised

transfer learning where there is no labelled data available from the target dataset.

2.6 Domain Adaptation

We now discuss a special case of transfer learning in which the source and target tasks are
the same (i.e. Ys = Yt and P(ys) = P(yt)) and the source and target domains are different.
Moreover, even though the domains are different, the feature spaces of the source and
target are the same (i.e. Xs =Xs and P(xs) 6= P(xt)). This is known as domain adaptation

which is actually a type of transductive transfer learning [80] and is simpler than the
general transfer learning setting.

The reason for highlighting this particular form of transfer learning is that it can effi-
ciently tackle the type of problem that we are interested in, which is adapting pedestrian
detectors trained on a generic dataset (e.g. INRIA pedestrian dataset) to a specific scene
(e.g. a surveillance video camera recording a traffic junction). This can be placed in a
domain adaptation framework by assuming that the source domain is the data from the
generic pedestrian dataset and the target domain is data that can be obtained from the spe-
cific scene. To show that this is a domain adaptation setting, the following observations
can be made:

1. Xs = Xt : The source feature space is the same as the target feature space. This is
because it is assumed that the same feature extraction mechanism is used for both
the generic dataset and the specific scene.

2. Ys =Yt : The source label space is the same as the target label space. This is because
for both the generic dataset and data from the specific scene, the label space is given
by {pedestrian,non-pedestrian}.

3. P(ys) = P(yt): The (prior) distributions on the labels for the generic dataset and
specific scene are assumed equal.

4. P(xs) 6= P(xt): The pedestrian distribution of the generic dataset is not the same as
that of the specific scene. This is due to differences in image resolutions, illumina-
tion, pedestrian poses, camera angles, motion blur, etc. Even though P(xs) 6= P(xt),
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there is still some relation between P(xs) and P(xt), and P(xt) can be considered as
an (unknown) transformation of P(xs).

As can be seen, this is exactly a domain adaptation setting where the tasks for the
source and target are the same and domains are different. Many computer vision problems
can be placed in this domain adaptation framework.

Another example scenario where domain adaptation may be helpful is when having
a face detector that is trained using a generic face dataset (such as the Faces in the Wild
dataset [52] which contains over ten thousand images of faces collected from the Inter-
net) and wanting to apply the detector to images taken in a more specific and controlled
environment (such as the Yale Face Database [63]). Random samples from these datasets
are shown in Figure 2.7. Although the face detector trained on the generic dataset may
work reasonably well on the target dataset, it is expected that adapting the detector to
specialise it to the target dataset (which may have much less intra-class variation of faces)
might improve the detection performance in the target dataset. This is a domain adap-
tation problem because the feature spaces of the source and target datasets are the same
since faces are represented by the same feature extraction mechanism (such as HOG or
Haar features). Moreover, the tasks are the same since the label spaces and the prior label
probabilisties are the same (both aims at face/non-face classification).

As with transfer learning, there are two main types of domain adaptation. In both
types, we assume that we have a sufficiently large number of labelled data for the source
dataset. The first type is unsupervised domain adaptation. In this type, we do not have
any labelled data in the target dataset. In the second type, we assume that we have some
labelled data in the target domain. This is known as supervised domain adaptation. In
this thesis, we are concerned with only unsupervised domain adaptation.

2.6.1 Domain Adaptation vs. Semi-supervised Learning

In this subsection, we digress to briefly compare domain adaptation with the more well-
known semi-supervised learning. Unlike domain adaptation, semi-supervised learning
does not have the notion of source and target datasets and assumes that the distributions
of training and test data are the same. In this sense, semi-supervised learning is equal to
standard supervised machine learning except that in semi-supervised learning, the major-
ity of training data are unlabelled. But both the labelled data and unlabelled data are still
assumed to come from the same distribution.

Formally, in semi-supervised learning, the dataset can be written as X = {x1, . . . ,xN}
and Y= {y1, . . . ,yN} and most of yi ∈Y are unknown and can be considered as latent vari-
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(a) Face samples from Faces in the Wild dataset [52] (b) Face samples from Yale Face Database [63]

Figure 2.7: Samples of faces from source and target domains. Note that for Yale dataset
(on the right), only greyscale images could be obtained. Therefore, both of these datasets
are shown in grayscale.
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ables. Despite the difference between domain adaptation and semi-supervised learning,
some semi-supervised learning techniques can be adopted for certain domain adaptation
problems. This can be done by treating the data for which labels are known as the source
dataset and the data with the latent labels as the target dataset. This however violates the
assumption made in semi-supervised learning that each data xi ∈X (regardless of whether
its label is known or latent) must come from the same distribution. However, for certain
situations such as where the difference between the source and target datasets is small,
formulating the domain adaptation in such a way might be acceptable.

2.7 Weakly Supervised Learning

Weakly supervised learning is a machine learning paradigm distinct from supervised or
semi-supervised learning. In weakly supervised learning, as the name suggests, the train-
ing data are only weakly annotated. For example, rather than being given exact patches of
objects, the algorithm may be given only weak indications of the presence of objects in
images.

The weakly supervised learning problem (for binary classification) can be formalised
as follows. Let the training dataset be made up of k groups (or bags):

{(X1,y1),(X2,y2), . . . ,(Xk,yk)}

where yi ∈ {1,0}. A bag Xi consists of several data instances, i.e. Xi = {xi1,xi2, . . .}
where xi j is a feature vector belonging to either the positive or negative class (for binary
classification). However, the labels of the instances are not observed (i.e. they are latent
variables). Instead, the entire bag is associated with a single bag label which can be either
a positive bag if yi = 1 or a negative bag if yi = 0. Each positive bag contains at least one
positive instance and each negative bag contains only negative instances.

In order to make it more general, although labels are not given for each instance, in
each positive bag, the probability distribution of the instances belonging to the positive
class may be given, i.e. in a positive bag, some instances may be more likely to be from
the positive class than others. If no such (prior) information is available, then a uniform
distribution is assumed, i.e. in a positive bag, all the instances are equally likely to be
from the positive class.

As an example of weakly supervised training, consider training an aeroplane detector.
Figure 2.8 illustrates a comparison between annotation requirements for standard super-
vision and weak supervision in the context of training the aeroplane detector. Instead of
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(a) Standard supervision (b) An example of weak supervision

Figure 2.8: An example of the comparison between standard supervision and weak super-
vision. Weak supervision requires less human effort than standard (“strong”) supervision.
Note that negative images (i.e. images that do not contain any aeroplanes) are not shown
because they are the same for both supervised and weakly-supervised learning cases and
they are relatively cheap to obtain.

being given patches corresponding to aeroplanes (i.e. bounding boxes of aeroplanes in the
training dataset), we may only be given images containing aeroplanes without any infor-
mation about the exact location and extent of aeroplanes in each image; the only cue that
is given is that each training image contains one or more aeroplanes. This is a weak label
as opposed to a strong label in the form of exact bounding boxes of aeroplanes.

In the context of the formalisation described previously, in this case, each training
image (regardless of whether the image contains an aeroplane or not) can be considered
as a bag and each image shown in Figure 2.8(a) can be considered a positive bag. Each
positive bag would then consist of a set of feature vectors corresponding to all the possible
patches (i.e. instances) at various locations and scales of the corresponding image. How-
ever, in a positive bag, only one of those patches would truly be the patch corresponding
to an aeroplane but this information is not known. As can be observed, without any prior
information about which patches are more likely to be positive instances in each bag, it
is very computationally expensive to jointly infer where an aeroplane is in each positive
training image from the space of all possible patches in all the training images.

Instead of weak supervision at the level of objects, we may also have weak supervision
at the level of object parts. An example of this is the Deformable Part Models [33].

It should be noted that weakly-supervised learning is different from semi-supervised
learning in that in semi-supervised learning, although we have a small number of labelled
data (and a lot of unlabelled data), for the labelled data that is available, the supervision
is not weak.
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Literature review

3.1 Introduction

Domain adaptation is a relatively new research area. Early works on domain adaptation
were published in the field of text and Natural Language Processing (NLP) [8,53,71,88].

Hwa [53] proposes an adaptation approach for grammar structure induction using
sparsely annotated training data (i.e. data with limited constituent information) to ob-
tain results that are almost as good as using a fully annotated textual corpus. Roark
and Bacchian [88] make use of a maximum a posterior framework to adapt probabilistic
context-free grammars to new domains. McClosky et al. [71] propose a parser adapta-
tion system using self-training and re-ranking. Blitzer et al. [8] propose an unsupervised
domain adaptation for part-of-speech tagging by projecting the source dataset to a real-
valued low-dimensional feature representation that is shared across the source and the tar-
get domains. This representation is learnt using structural correspondence learning which
works by firstly defining a set of pivot features. Pivot features are frequently-occurring
features that are invariant and discriminative across both domains. Secondly, correspon-
dences among features of source and target domains are learnt with the help of these pivot
features. Their proposed algorithm assumes that features from the domains are binary and
also requires defining pivot features, which is not trivial especially in applications other
than text.

In fact, most of the algorithms used for domain adaptation for NLP are not suitable for
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vision applications. Therefore, in this chapter, we will focus on prior work about domain
adaptation for computer vision rather than NLP.

Research for domain adaptation for vision is even more recent than NLP. There are
mainly two areas of research in domain adaptation for vision: image classification and
object detection. For image classification, the majority of the approaches for domain
adaptation turn out to be metric learning or feature projection approaches.

Object detection is a harder and a more general task than image classification. Simi-
larly, domain adaptation for object detection is generally a more challenging problem than
domain adaptation for image classification. Some of these challenges are:

1. Extreme class imbalance. Object detection involves having to model the positive
and negative class. The number of data in the negative class is much larger than that
of the positive class and the positive class can easily get swamped with the negative
class.

2. The adaptation algorithm not only has to deal with the intra-class variation of the
positive class but also the much larger “sea” of intra-class variation of the negative
class.

3. Due to object detection having different requirements as compared to image classi-
fication (such as needing to evaluate hundreds of thousands of candidate windows),
object detection systems usually use a different set of features (such as Histogram
of Oriented Gradients or Haar features) than image classification systems (which
tend to use features such as “Bag of Visual Words”). Object detectors typically use
very high dimensional and dense features whereas many image classification sys-
tems tend to use lower-dimensional and sparser features. This makes a difference
in the required domain adaptation techniques. For example, generative models may
be suitable for domain adaptation for image classification but ill-suited for domain
adaptation for object detection.

It is therefore not straightforward or trivial to apply existing domain adaptation meth-
ods for image classification to the task of object detection. Furthermore, domain adapta-
tion for object detection in videos brings with it a unique set of challenges and opportuni-
ties which is different from that of image classification or even object detection in static
images. Some of these opportunities include availability of spatio-temporal smoothness
and other types of information that can be learnt and exploited from videos. This means
that even if adopting existing domain adaptation techniques for image classification for
object detection is easy, it may be more desirable to research and develop algorithms that
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exploit these cues in the videos for improved performance. Moreover, for far-field videos,
which we tackle in this thesis, pedestrians are of small resolution which further increases
the challenge of domain adaptation. Therefore it is crucial to differentiate domain adap-
tation approaches for image classification from those for object detection (especially in
videos).

Due to its unique challenges and opportunities, it turns out that different variations of
self-training is the most popular approach for state-of-the-art domain adaptation for object
detection in videos. The popularity is due to the fact that the self-training framework is
flexible, can work with a variety of discriminative classifiers and can incorporate different
types of prior knowledge in a natural and easy way. For object detection, we will mainly
focus on domain adaptation of object detectors trained on image datasets to videos.

To motivate the structure of the literature review, we first recap the main contribu-
tions in this thesis. The first contribution is domain adaptation using state-of-the-art deep
feature learning, the second is about making domain adaptation easy by utilising cues in
videos, and the third is about weakly-supervised learning. Although all these three contri-
butions have the same underlying theme of reducing the manual annotation effort, the first
and second contributions are much more related to each other (since they are both about
domain adaptation); therefore we review the related work for these two contributions in
Section 3.2 and we review the work related to weakly supervised learning separately in
Section 3.3. Moreover, we put into context and relate the three contributions made in this
thesis to state-of-the-art research in Section 3.4.

3.2 Domain Adaptation

For the literature review on domain adaptation, we begin by discussing research related
to domain adaptation for image classification (Section 3.2.1). Then we review domain
adaptation for object detection for videos in Section 3.2.2. For the sake of completeness,
in Section 3.2.3, this is followed by reviewing two areas that are not directly relevant but
somewhat related to our thesis:

• Learning moving object detectors in videos (Section 3.2.3.1): In this section, we
discuss approaches that learn class-agnostic moving object detectors in videos.

• Semi-supervised learning for object detection in videos (Section 3.2.3.2): Here,
we review algorithms that learn object detectors in videos using semi-supervised
learning (given a small amount of labelled data in the target domain).
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Figure 3.1: The need for domain adaptation for image classification. Figure taken from
[94].

3.2.1 Domain Adaptation for Image Classification

The need for domain adaptation for image classification is illustrated in Figure 3.1. Most
of the research in this area is based on learning a common feature representation across
the source and target domains.

One of the earliest domain adaptation approaches for image classification is the work
by Saenko et al. [94]. They provide a supervised domain adaptation algorithm that learns
a regularised non-linear transformation that is invariant across the source and target do-
mains. Learning such a transformation allows modelling of changes resulting from the
difference in the source and target domains. They also introduce a multi-domain object
database (shown in Figure 3.2) to evaluate domain adaptation algorithms for image clas-
sification. Their method requires exact manual mapping of samples from the source and
target domains which can be very time-consuming.

An extension of [94] is proposed by Kulis et al. [60]. This time, instead of learning
a single transformation as in [94], the authors propose learning asymmetric linear trans-
forms, i.e. two linear transformations: one for the source domain and the other for the
target domain, to respectively project the source and target data to a common subspace.
In order to deal with non-linear asymmetric transformations, they kernalize the algorithm
(by running the algorithm in the kernel space instead of the original feature space). Their
approach however shares the same limitation as [94]: they require manual specification
of pairs of source and target data examples that are similar semantically (e.g. two very
similar cups (or even the same cup) taken from the source and target domains may form
such a pair).

Gopolan et al. [45] propose an unsupervised domain adaptation method that mod-
els the domain shift by gradual changes in the representation from the source to target
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Figure 3.2: Multi-domain object database to study and evaluate domain adaptation algo-
rithms for image classification proposed by [94]. The database contains 31 object cat-
egories and for each category, there are 3 domains: images taken from Amazon.com, a
high resolution digital SLR camera and a simple low resolution webcam. Figure taken
from [94].

domain. This is achieved by modelling the subspaces in the source and target domains
and then generating intermediate subspaces between them as sampled points along the
geodesic on the Grassmann manifold [72]. This is shown in Figure 3.3. Their approach
requires tuning of many parameters including determining the finite number of subspaces
to sample.

Gong et al. [44] present a system similar to [45]. They propose a method called
“geodesic flow kernel” (illustrated in Figure 3.4) which is an improvement on [45] in
that it eliminates the need to sample a finite number of subspaces and to tune as many
parameters as [45] by “kernalizing” the approach of [45] and considering an infinite
number of subspaces.

Mirrashed and Rastergari [74] approach unsupervised domain adaptation by learning
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Figure 3.3: Illustration of sampling points between the subspaces of the source and target
domains on the Grassmann manifold. In the figure, the Grassmann manifold is repre-
sented by GN,d which is basically the space of d-dimensional subspaces in RN and S1 and
S2 are two points on GN,d corresponding to the source and target domains respectively.
The ones in between S1 and S2 can be considered as intermediate subspaces (i.e. interme-
diate points on the Grassman manifold) going from the source point to the target point.
Figure taken from [45].

Figure 3.4: Geodesic flow kernel to model the gradual change from the source domain,
Φ(0), to the target domain, Φ(1). Φ(t) gives the subspace at any point, i.e. 0 ≤ t ≤ 1,
along the geodesic. Figure taken from [44].

a set of discriminative and invariant feature projections (into binary space) that models the
class structures across source and target domains. Each of these projections is essentially
a hyperplane in the feature space and a binary “attribute” is obtained by looking at which
side of the hyperplane the data falls on. Using this set of projections (i.e. hyperplanes), the
source dataset is projected into the binary space to get the binary attributes and the target
classifier is obtained by training a classifier using the projected data. There is however no
proper justification as to why the space should be binary in the first place and the proposed
optimization algorithm is prone to local optima.
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3.2.2 Domain Adaptation for Object Detection in Videos

Bose and Grimson [10] propose an unsupervised domain adaptation system for adapting
a (baseline) detector trained on a far-field video (or a set of far-field videos) towards a
different far-field video by a two-step self-training algorithm. In the first step, the baseline
detector is used to score and label the unlabelled data (i.e. all sliding windows of frames
in the video). A new classifier is then trained on the combination of the original data
(from which the baseline detector was trained) and the most confidently scored data of
the unlabelled data. In the second step, this newly trained detector is applied to the video
and scene-specific features (e.g. silhouette height obtained by background subtraction)
are extracted from the detections and a new classifier is trained with these features. There
are a few limitations with this domain adaptation approach:

1. There is a need to determine the threshold for the “most confident” detections.

2. It is not known for sure whether the classifier obtained at the end of the first step
is good enough. If it is not, then the second step will carry on the errors and may
even make it worse. In other words, the second step is completely dependent on the
outcome of the first step and has no chance of correcting any errors of the first step.

3. The final detector (at test time) is (still) dependent upon the results of background
subtraction (in order to extract the scene-specific features). This can be a problem
if the background subtraction is very noisy, especially for complex and cluttered
scenes.

In addition, in the paper, it is not clear whether the performance improvement comes
from the actual detector adaptation or from using a better (i.e. higher level) feature extrac-
tion mechanism.

A system that adapts a set of general part detectors to specific video scenes is proposed
by Wu and Nevatia [115]. This is achieved by using a self-training framework where
the “oracle”1 is the (global) combination of the part detections; the global shape model
given by the configuration of parts provides an additional and complementary source of
information compared to the (local) part detectors. The approach is limited to boosting-
type classifiers and to object detection systems that explicitly model objects with parts.

1The “oracle” is the verification process that selects which examples to include for each self-training
iteration. It is often the most important component of a self-training algorithm. In order to maximise the
efficiency and effectiveness of the self-training process and to minimise drifting, the oracle should be as
independent as possible from the original (i.e. source) dataset and should offer complementary information
to the information already contained in the source dataset.
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Figure 3.5: Detector adaptation approach of Kemhavi et al. [58] by combining the pre-
dictions of a fixed global detector and an online updated local detector. Figure taken
from [58].

A Multiple Kernel Learning based self-training algorithm is used by Kemhavi et

al. [58] to tune a generic vehicle detector to a traffic intersection. Their adapted de-
tector is a combination of two separate detectors: one is termed a “global detector” which
is the detector trained on the generic dataset and fixed (i.e. no updates are performed),
and the other is an online detector updated with a simple self-training approach: most
confident positive and negative examples scored by the global detector are added in each
round. This is shown in Figure 3.5. For adding negative examples, examples are added
that are both confident and have high positional entropy relative to the positions (in the
image plane) of the currently collected negative image patches. This is to prevent too
many negative patches from the same background position from being added. The pro-
cess of using the global detector as an oracle in this way may not be very effective because
the online classifier may never get better if the global detector (which is fixed) does not
perform very well in the first place and additionally, the global detector does not provide
any new complementary information to the online detector (since the online classifier is
obtained from the global detector). Moreover, their method only applies to a particular
type of classifier (i.e. Multiple Kernel Learning). Another potential problem is due to the
final classifier being the combination of the global detector and the online classifier: there
is a limit to the amount of adaptation the final classifier can undergo. For example, if the
generic detector has a lot of false positives, it would still influence the final classifier to a
large extent. And finally it is non-trivial to manually specify the best combination of the
global detector and the online detector.

Wang et al. [113] propose a self-training algorithm to adapt a generic pedestrian de-
tector to a specific scene. Their algorithm does not utilise background subtraction or (ex-
plicit) object tracking and it works as follows. Firstly the detector is applied on frames of
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Figure 3.6: System overview of the algorithm of Wang et al. [113]. Figure taken from
[113].

the video with a high recall and low precision setting. Then a hierarchical k-means tree is
constructed using the features of these detections. Thirdly, the most positive and negative
detections are identified and they are encoded using the learnt tree to obtain binary codes
and a classifier is trained on this binary feature space. This is the scene-specific detector
(illustrated in Figure 3.6). The performance is sensitive to setting and manual tuning of
many parameters such as choosing a suitable low precision and high recall setting, thresh-
olds for collecting confident positive and negative examples, the depth of the hierarchical
k-means clustering and parameters for similarity measure for the binary features. It is un-
certain whether the improvement of the scene-specific detector over the generic detector
comes from the adaptation stage or the non-linear feature encoding stage (two unrelated
steps). Furthermore, it is highly likely for the first step to fail to collect sufficient labelled
data (due to collecting only the most confident positive and negative examples) to train a
scene-specific detector that has good generalisation properties in the target domain.
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Another self-training method is proposed by Sharma et al. [99] to adapt a generic
detector to specific scenes for the task of pedestrian detection. The classifier used is
Real Adaboost [37] with Multiple Instance Learning [23] loss function. The self-training
approach works by applying the current detector to frames and then associating the detec-
tions into tracks. Then successfully tracked detections are added as new positive exam-
ples, and detections that do not belong to any of the tracks, are considered as new negative
examples. For each detection to be added as a positive example, instead of directly adding
the patch corresponding to the detection, the original patch and multiple patches surround-
ing the patch are treated as samples in a positive bag with the assumption that one of these
patches contain the correctly localised positive example (as in the standard Multiple In-
stance Learning framework) . This is used to reduce the patch alignment errors commonly
associated with collecting examples from detections. Their approach however is limited
to Real Adaboost classifiers and the datasets that they are evaluating their algorithms on
are high resolution datasets and only one type of moving object (i.e. pedestrian) is present
in the scene. The Multiple Instance Learning approach that they have adopted is not likely
to work well for low resolution videos such as the far-field surveillance scenes that are
used for the experiments presented in this thesis.

Tang et al. [59] adapts a detector trained on an image dataset to a video based on a vari-
ation of iterative self-training which they term “self-paced domain adaptation”. It works
by adding easiest examples to the dataset first followed by increasingly more challenging
ones. However, the self-paced domain adaptation technique is not much different from
the traditional self-training approaches which seek to iteratively add the most confident
detections in each round to slowly adapt the classifier to minimise the risk of drifting. For
selecting examples to add in each round, instead of scoring individual detections, they
score tracks in order to average out noise associated with individual detections. They
assume that negative examples are known in the scene which means that their approach
requires partial supervision.

To adapt a face detector in the form of a pre-trained cascade of classifiers to a new
domain, Jain and Farfade [54] use a supervised domain adaptation algorithm. Their ap-
proach is essentially a type of self-training method where the oracle is a generative ap-
pearance model. They tested their algorithm by adapting a generic frontal face detector
(such as the one available in the OpenCV library) to images containing baby faces. The
approach however is limited to classifier cascades, requires a few hundreds of labelled
annotation in the target domain and therefore is labour-intensive.

Sharma and Nevatia [100] present a self-training approach to adapt a pedestrian detec-
tor to video scenes. In order to collect samples for self-training, they apply the baseline
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detector and keep only the most confident detections. Then the detections are placed
into tracks using appearance, size and position cues. After the samples are collected,
the positive examples are divided into different subcategories by applying a pre-trained
pose classifier. Then they train a random fern classifier [78] for each positive subcate-
gory to increase the precision of the baseline detector. From the evaluation in [100], it
is not clear whether the detection improvement comes from the subcategory division and
training nonlinear random fern classifiers or the actual adaptation algorithm itself. More-
over, the method requires a pose classifier for pedestrians to be trained and also involves
non-trivial tuning of multiple parameters such as the thresholds for applying the detector
in “high precision setting” for collecting samples during the adaptation stage and “high
recall setting” at test time. Lastly, the adapted algorithm only reduces false positives and
does not increase recall.

A co-training approach is adopted by Mirrashed et al. [73] to adapt vehicle detectors
from multiple source domains to a target domain. Classifiers trained on different source
domains iteratively train and improve each other by teaching, in each iteration, the most
confident detections of one classifier to the other classifier(s). The algorithm makes use of
Transfer Component Analysis [79] in order to reduce the effects of domain shifts between
the datasets. As with other iterative self-training algorithms, the algorithm requires setting
the threshold for selecting confident detections. Moreover, the system requires the use of
multiple source domains which may not be feasible in many situations.

Shu et al. [101] propose a self-training approach to adapt a generic pedestrian to spe-
cific videos. Firstly, the generic detector is applied on frames and then the most confi-
dent detections are collected as positive examples. Negative examples are collected from
the scene background. Then super-pixels are extracted and patches corresponding to the
super-pixels are clustered to form a visual dictionary. This is used to encode the ex-
amples using a Bag of Words (BOW) approach. Then a classifier is trained using the
encoded examples. Next, the classifier is applied on frames and this process repeats un-
til convergence. The approach also requires setting of several sensitive hyper-parameters
such as the parameters of super-pixel generation, the number of clusters for building the
dictionary and the confidence threshold for positive sample collection. Since the nega-
tive examples come only from the scene background, the algorithm may not work well
for videos where there are multiple moving objects. The evaluation is performed only
on quite straightforward datasets where there are only pedestrians moving about. Fur-
thermore, the super-pixel extraction may not work well for videos where pedestrians are
medium or small-sized. Most importantly, it is again not clear whether the adaptation
performance actually comes from the adaptation algorithm or from using a better feature
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Figure 3.7: An iterative self-training technique of Wang and Wang [111]. In each itera-
tion, positive and negative examples are collected by filtering with a variety of cues, added
to the current dataset and a new classifier is trained. Figure taken from [111].

extraction mechanism than the baseline detector. This is important because if the base-
line classifier uses the same feature extraction mechanism (i.e. super-pixel generation and
BOW encoding) then it may be as good as the final classifier. If this is the case, then it
would imply that the major part of the novelty is not in detector adaptation but in feature
engineering.

The method proposed by Wang and Wang [111] iteratively improves a generic pedes-
trian detector by selecting new confident examples to add to the current dataset for re-
training at every iteration. In order to collect examples for each self-training iteration,
their oracle is a combination of vehicle and pedestrian paths, multiple different cues such
as bounding box locations and sizes, background subtraction, thresholds, filters and hier-
archical clustering. To obtain vehicle and pedestrian paths, they use the method of [112]
which discovers motion patterns in long-term videos using topic models such as Hier-
archical Dirichlet Processes [104]. The motion patterns are discovered in a bottom-up
manner by treating quantized optical flow velocity and position (in the image plane) as
low-level features, small video clips as documents and then co-clustering using the topic
models. The approach requires quite extensive parameter setting and tuning such as de-
ciding the length of a video segment (for topic modelling), setting the hyper-parameters



Chapter 3 38 Literature review

for optimizing the topic model and determining various parameters for different filtering
steps, clustering and background subtraction and thresholds for object sizes. There is
also a need to manually label the discovered paths and an assumption that pedestrians
and vehicle paths are not overlapped to a certain degree. Lastly, the number of itera-
tions for self-training is also required to be set and there is a possibility of drifting if too
many iterations are performed. The overview of their system is shown in Figure 3.7. The
method is extended in [110] by incorporating techniques such as reweighting the source
data, confidence propagation and using the confidence when retraining rather than hard
thresholding.

3.2.3 Areas Related to Domain Adaptation

We now describe two areas of study somewhat related to domain adaptation for object
detection in videos. Firstly, in Section 3.2.3.1, we highlight research on learning gen-
eral moving object detectors in video. Secondly, in Section 3.2.3.2, we discuss semi-
supervised learning of object detectors in video.

3.2.3.1 Learning moving object detectors

The most common way of detecting foreground objects in video is to use background sub-
traction followed by a grouping technique such as Connected Component Analysis [95].
For more information on different approaches to background subtraction, the reader is
referred to various surveys [13, 17, 83].

In this subsection, we focus on approaches based on training (i.e. learning) classi-

fiers to model and detect general foregrounds (i.e. significant objects) in the scene, often
improving the results of traditional background subtraction approaches by utilising the
generalising (and noise-reduction) power afforded by the classifier training stage. The
research problem tackled by these approaches is different from domain adaptation ex-
plored in this thesis. Moreover, their goal is to “blindly” detect any foreground object in
the scene as opposed to being aware of specific object classes and detecting them in the
scene. However, we review these papers for the sake of completeness since some of these
methods do use self-training-like algorithms.

Nair and Clark [75] propose an approach for online learning of a moving object de-
tector for an office corridor scene. An online Winndow classifier is trained on features
extracted from foreground blobs obtained by background subtraction if foreground blobs
have the correct aspect ratio and size corresponding to pedestrians. They evaluate their
approach only on indoor scenes (shown in Figure 3.8) where there is only one type of
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Figure 3.8: Office corridor scene used in [75]. Figure taken from [75].

Figure 3.9: Indoor scene for pedestrian detection in [46]. Figure taken from [46].

moving object (i.e. pedestrian) for which background subtraction already performs quite
well due to the restricted environment, where there are no major problems such as back-
ground clutter, multiple categories of objects, large illumination variation and large cast
shadows (which would change the aspect ratios and sizes of detected blobs) that would
be common in a lot of outdoor surveillance type scenarios. The (intra-class variation of)
background clutter of their indoor scene is quite small, making the dataset not particularly
challenging. A similar system using online Adaboost is proposed by Roth et al. [90].

Grabner et al. [46] propose a “grid-based” pedestrian detection2 system based on

2As will be explained later, their approach actually reduces to a foreground detection system in scenes
where there is more than one category of moving objects. This is why we discuss their approach here.
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training one classifier for each image location (in the form of a pedestrian-sized window)
and updating them independently online based on a simple update heuristic. The update
strategy works as follows: they fix the positive class (with a small number of pedestrian
examples) for all the classifiers without any update and always update the negatives with
the assumption that the probability of wrongly updating the negatives is very small. The
method assumes that the intra-class variation of the negative class (i.e. non-pedestrian
patches) at each image location is extremely small and takes advantage of this to simplify
the complexity of each classifier. While this may be the case for some scenes, it is not
true for many scenes especially those where there is more than one class of objects. In
those types of scenes, many image locations would still have to handle large intra-class
variations (given by the combination of intra-class variations of the background at that
image location and other object categories that may occupy the image location at any
time), rendering the original intention of simplifying the task of the classifier ineffective.
There are a number of additional potential problems associated with the approach:

1. The positive class is fixed and never updated, which means that the system may
never detect some pedestrians which are not well represented by the initial set of
pedestrian examples.

2. The negative class is always updated, which means that the negative class of each
classifier will be dominated by the background of the image location correspond-
ing to the classifier. This means that other (i.e. non-pedestrian) classes of objects
that occasionally move inside the image location would most likely be erroneously
classified as “pedestrian” since the classifier will be quite certain that it does not
belong to the negative class (dominated by the background).

3. If a pedestrian stays in a particular image location for a long time, all the pedes-
trian patches in this duration will be incorporated as “non-pedestrian” data and the
resulting classifier at that image location would then learn to classify pedestrians as
“non-pedestrians” with high probability (thereby decreasing the recall of the sys-
tem).

4. Even though training one classifier per image location simplifies the task of each
classifier, the combined complexity of all the classifiers is still much higher. And
due to the fact that negative data are not shared among the individual classifiers,
it can result in overfitting at the system level (even if there is no overfitting at the
individual classifier level).
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Because of these problems, the system may result in low recall and low precision
simultaneously, especially in complex surveillance-type scenes with multiple object cate-
gories. Coincidentally, they evaluate their method only on relatively simple indoor scenes
where there is only one class of moving objects as shown in Figure 3.9. In fact, rather
than “pedestrian detection”, the system is more similar to the traditional background sub-
traction and if applied to more complex scenes, it would not be much different than block-
based background subtraction approaches such as [49]. A similar system is also proposed
by Roth et al. [91].

Stalder et al. [102] extend [46] by updating both the positive and negative classes
in each image location (i.e. for each classifier) and proposing different update strategies
than [46]. The positive class for each image location is updated using the current patch
if it is verified by a fixed generic detector (which is a global detector independent from
the grid classifiers) or 3D context (e.g. assumption of a common ground plane). Negative
class for each image location is updated by background images at that location obtained
by a long-term generative (pixel-based) background subtraction algorithm. Although the
paper proposes more complex update heuristics than [46] for the classifiers, it also some-
what defeats the original purpose of having these grid-based classifiers, which is to make
the task of each classifier simple and robust to drifting (at least for the positive class) by
adopting fixed updating strategies. Compared to [46], their approach opens up the pos-
sibility of positive class drifting. Moreover, updating the negative class with the results
of background subtraction introduces errors associated with most pixel-based and gener-
ative background subtraction methods. This problem is minimised in [46] by avoiding
pixel-wise background modelling and instead, by modelling the large neighbourhood of
pixels in a discriminative fashion. Therefore, in [102], the need for grid-based classifiers
is no longer obvious. Furthermore, it also still shares a few limitations of [46]. And lastly,
it requires the assumption and estimation of a single ground plane and 3D context which
may not be readily available.

3.2.3.2 Semi-supervised learning for object detection

In this section, we briefly review work on semi-supervised learning of object detectors for
videos. However, as mentioned in Section 2.6.1, this work solves a different problem than
domain adaptation (i.e. semi-supervised learning setting assumes that there is no source
domain and some labelled data are always given in the target domain) but we include
these here for completeness.

Levin et al. [65] propose a co-training [9] approach for semi-supervised learning of
vehicle detectors in video. Given some labelled data in the target scene, firstly, a pair of
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Figure 3.10: An image is represented by a bag of multiple stable segments which is
obtained by collecting the outputs of different segmentation algorithms and various seg-
mentation parameters with the assumption that one of the segmentations in the bag would
correctly correspond to the aeroplane. Then by looking at multiple such bags correspond-
ing to training images where each image contains an aeroplane, the aeroplane category
can be inferred and segmented in each of the images. Figure taken from [38].

car detectors is trained; one of the pairs is trained on data for whose feature extraction is
performed on original images and for the other, background subtracted images instead of
the original images are used. Then these two classifiers are used to teach and improve each
other by “feeding” one the confident detections of the other and retraining the classifiers.
They tested their methods on videos of vehicles on a highway captured by a surveillance
camera. A similar co-training system is presented by Javed et al. [55] by using online
boosting.

Rosenberg et al. [89] use iterative self-training for semi-supervised learning of an eye
detector. For the “oracle” (i.e. for selecting which examples to include for each iteration
of self-training), instead of using the detector’s own confidence, the system uses nearest
neighbour scores of all examples in the current dataset to the detection, in an attempt to
make the oracle independent from the detection. However, the oracle is still not indepen-
dent because it is derived from the same dataset that the detector was trained from. Their
approach can also be seen a type of co-training where two classifiers have two different
classifier types (i.e. inductive biases) and one of the classifiers is fixed.

Ali et al. [2] propose an iterative self-training algorithm based on Adaboost for semi-
supervised learning of a pedestrian detector in a video, given sparsely annotated video (i.e.
a small subset of all the frames in the video are labelled). Examples to include for each
iteration of the self-training is determined by track smoothness. The method is however
limited to Adaboost and not applicable to other types of classifiers.
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Figure 3.11: On the left is an example of interest point detection on an image containing a
face. The right picture shows a set of distinctive parts discovered by clustering the patches
corresponding to interest points across multiple training images containing faces. Figure
taken from [114].

3.3 Weakly Supervised Learning For Object Detection

Galleguillos et al. [38] propose a weakly supervised approach to learn object detectors
given weakly labelled images. In their case, weakly labelled images are considered as
images containing the desired objects but the exact locations and spatial extent of those
objects are not specified. However, the method does require the objects to be spatially oc-
cupying the major portion of the images for their algorithm to work well. To our knowl-
edge, they are the first to use the idea of “multiple stable segmentations” and Multiple
Instance Learning (MIL) for the purpose of training object detectors using weakly la-
belled images. Multiple stable segmentations is an idea that in any image containing an
object of interest, an ensemble or bag of segmentations obtained by multiple segmenta-
tion algorithms and different segmentations parameters will most likely result in the object
being correctly segmented in at least one of these segmentations in the ensemble. Each
image containing an object can therefore be associated with a bag of segmentations from
which one of them corresponding to the desired object. This is a much better and useful
prior information than not having any information about the object in the image. Since an
image containing an object can be represented with a bag (of possible objects), MIL can
be used to learn the most consistent object category by optimizing across multiple such
images and corresponding bags. This is illustrated in Figure 3.10.

Weber et al. [114] propose another weakly supervised training approach to learn hu-
man face models and models of rear views of cars. Again, similar to [38], their method
assumes that each object occupies the major portion of the corresponding training image.
They represent an object as a constellation of parts where parts are detected by an interest
point detector. Distinctive parts are discovered by clustering the detected parts (repre-
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Figure 3.12: Overview of the weakly supervised learning approach by Prest et al. [84].
Figure taken from [84].

sented by features extracted from regions centred at the interest points) in the training
images. This is shown in Figure 3.11. Then object classes are learnt by searching for
parts and geometry of parts that are consistent across the training images. The method
requires high resolution images (for reliable part detection) and is dependent upon the
interest point detector to consistently and correctly fire on actual part-like locations in
images. Moreover, if the background clutter is high, the system may not correctly learn
the desired models.

Blaschko et al. [7] and Pandey and Lazebnik [81] propose latent-SVM-based weakly
supervised training algorithms where the bounding boxes of objects are treated as latent
variables to be inferred during training. The general problem, however, with these ap-
proaches is that the resulting optimization function is very prone to get stuck in bad local
optima unless there is a good initialisation. Although they propose some heuristics for
initialising such models, they are usually application and object-specific. Moreover, the
training algorithm can also be very computationally expensive.

Prest et al. [84] propose a weakly supervised learning of object detectors from short
YouTube video clips where each video clip is assumed to contain an object of interest
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moving about. A diagram illustrating the overview of their approach is shown in Fig-
ure 3.12. Their method first identifies candidate spatio-temporal tubes from which at least
one of them is very likely to contain a moving object of interest in each video clip. Then
from many sets of these candidate spatio-temporal cubes from multiple video clips, a
consistent class of spatio-temporal cubes is found by jointly considering all the spatio-
temporal candidate cubes across all the training video clips and minimising an objective
function. Similar to many other weakly learning approaches, their approach also has an
implicit assumption that objects of interest occupy the majority of the spatio-temporal vol-
ume in the video clips and the optimization algorithm can get stuck in bad local optima
without a suitable initialisation which is non-trivial.

3.4 Relation of this Thesis to Prior Research

In this section, we put into context the contributions made in this thesis and directly com-
pare them to the relevant papers that have been discussed in detail in Section 3.2 and Sec-
tion 3.3. Furthermore, where appropriate, we also identify the most relevant prior work
that we would quantitatively compare our proposed algorithms with, in the experimental
results sections of Chapters 4, 5 and 6.

3.4.1 First Thesis Contribution (Chapter 4)

Although we are dealing with object detection in videos, for this contribution, we refrain
from using spatio-temporal continuity and cues available from video (such as background
subtraction and tracking) and deal only with the manifold assumption of data. We do this
because it is of interest to know how well the manifold assumption alone can perform.
However, it is likely that better performance could be obtained by exploiting information
from those spatio-temporal cues (which is explored in the second contribution). To our
knowledge, our contribution is the first work in using manifold learning (by means of deep
feature learning) for domain adaptation of object detectors in the context of videos. There-
fore, we compare our proposed algorithm with state-of-the-art approaches that make use
of a similar manifold assumption and metric learning, and not with iterative self-training
algorithms (which will be compared with the second thesis contribution in Chapter 5).

The approaches proposed by Saenko et al. [94] and Kulis et al. [60] are not closely
related to our approach because their methods are about supervised domain adaptation
and in addition to that, their method requires mapping of pairs of examples from source
and target domains. In contrast, our approach is unsupervised domain adaptation and
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requires no such mapping. The system proposed by Mirrashed and Rastergari [74] is also
not directly relevant because they do not make use of a manifold assumption and learning.

One of the most relevant works to our research in this area is by Gopalan et al. [45]
who propose building intermediate representations between source and target domains
by using geodesic flows. However, their approach requires sampling a finite number of
subspaces and tuning many parameters such as the number of intermediate representa-
tions. Gong et al. [44] improves on [45] by giving a kernel version of [45]. We therefore
quantitatively compare our approach proposed in Chapter 4 with [44] (and therefore also
indirectly with [45]). However both [44, 45] are dealing only with domain adaptation for
image classification as opposed to our algorithm which works with domain adaptation
for object detection. Moreover, unlike our algorithm, their approaches do not learn deep
representations required for manifolds that are highly non-linear.

3.4.2 Second Thesis Contribution (Chapter 5)

As can be observed in Section 3.2.2, the overwhelming majority of the state-of-the-art
research for domain adaptation of object detectors in videos use self-training in one form
or another [10,54,58,59,73,99–101,110,111,113,115]. In order to adapt a generic pedes-
trian detector to a specific scene, a typical system would run the generic detector on some
frames in a video, then score each detection using some heuristics and afterwards, add
the most confident positive and negative detections to the original dataset for retraining.
This process is repeated over multiple iterations. Each of these approaches suffers from a
subset of the following problems:

1. The need to manually determine and set thresholds for “the most confident” detec-
tions, “the least confident” detections, low precision and high recall settings and so
on.

2. Many of them only work with specific types of classifier (such as Adaboost, cas-
caded classifiers and Multiple Instance Learning).

3. Most of them need setting of the number of iterations for the iterative self-training.

4. Many of them are prone to drifting since wrongly labelled examples in one iteration
could make the detector become progressively worse in the following iterations.

5. Most of them require the presence of the original dataset for retraining. This is
expensive especially for large datasets and many a time, we may only have a generic
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detector (which can be a classifier of any type) but not the generic dataset itself (due
to copyright reasons, etc.).

6. Most approaches have several sensitive parameters to set and tune. And these pa-
rameters change for different videos (or scenes), many of them cannot be set au-
tomatically (for unsupervised domain adaptation) and for some, it is non-trivial to
tune them automatically without extensive and very expensive cross validation.

7. Many of the approaches do not work well with low-resolution far-field surveillance
videos which we tackle in this thesis.

8. Some of them require labelled data (i.e. supervision) in the target domain, i.e. they
are supervised domain adaptation approaches.

Our second contribution in the thesis does not suffer from the problems listed above.
We now go through each of the related works discussed Section 3.2.2 and briefly relate it
to our proposed algorithm.

Bose and Grimson [10] evaluate their approach on far-field surveillance scenes which
is similar to the type of problem that is addressed in this thesis. However, most of the
improvement of their detector adaptation comes from using a different and better feature
extraction at test time. In contrast, in our algorithm, the majority of the benefit of domain
adaptation is derived from the systematic and effective collection of scene-specific posi-
tive and negative examples. Therefore, unlike [10], our approach can still improve perfor-
mance further by extracting new and better features specific to the scene after collecting
the scene-specific positive and negative data. The approach by Wu and Nevatia [115] only
works with part-based detectors, so it is not really suitable for the majority of holistic ob-
ject detectors that we focus on in this thesis. The Multiple Kernel Learning approach
of Kemhavi et al. [58] is expensive at test time as opposed to our algorithm which can
generate a linear classifier (or any type of classifier) for test time. Wang et al. [113] and
Sharma et al. [99] deal with domain adaptation for pedestrian detection, however their ap-
proach is not likely to work well for the low resolution videos tackled in this thesis. The
supervised domain adaptation approach of Jain and Farfade [54] using cascade classifiers
solves a different problem than ours which is about unsupervised domain adaptation. The
paper by Mirrashed et al. [73] is also not very relevant to us because it requires multiple
(i.e. at least two) source domains whereas in our thesis, we assume that only one source
domain is available. The approach of Shu et al. [101] may work poorly for videos with
small pedestrians.
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The two most relevant state-of-the-art methods to our contribution are the approaches
by Wang and Wang [111] and Wang et al. [110]. They deal with unsupervised domain
adaptation of pedestrian detectors trained on a generic image dataset to far-field videos
where pedestrians are small or medium-sized. Moreover, they provide two long far-field
video datasets for quantitative evaluation for domain adaptation of pedestrians detectors.
Therefore, we use these datasets in this thesis and also compare our algorithms with theirs.
Apart from quantitatively comparing our algorithm with [110,111], we also compare with
a variation of the approach of Nair and Clark [75]. Even though their method cannot be
considered as a domain adaptation approach, a modification of their approach provides a
convenient and useful baseline for domain adaptation using “naive” background subtrac-
tion.

3.4.3 Third Thesis Contribution (Chapter 6)

Compared to training object detectors using strong supervision, the literature concerning
weakly supervised training is limited. Furthermore, most of the literature on weakly
supervised learning in images solves a different problem than our proposed approach.
In the existing approaches, supervision is given in the form of image-level labels where
the exact location and spatial extent of objects of interest are considered unknown and
treated as latent variables to be inferred from data during training. One of the ways of
solving this problem is by formulating it as Multiple Instance Learning (MIL) [4, 23]
in which supervision labels are given at the bag level rather than at the instance level.
Each positive bag is assumed to contain at least one positive instance and each negative
bag is assumed to contain all negative instances. In order to generate positive bags and
because the space of all possible object locations and sizes is too large to be tractable
during training, many existing approaches use an ensemble of low-level segmentations
to generate numerous candidate regions with the assumption that at least one of them
contains the desired object [16, 38]. The output of such a system, however, depends
heavily on the results of segmentation. Our algorithm does not suffer from this problem.

Furthermore, most existing approaches work with datasets where an object occupies
a large central portion of each image in most of the training images [16, 18, 38, 77]. This
is in contrast to our approach which is dealing with far-field videos where there are often
multiple objects of varying sizes in each frame and each object occupies only a tiny por-
tion of a frame. Moreover, our approach can work with low-resolution objects that do not
allow sophisticated part-based modelling and discovery.

Deselaers et al. [22] propose an iterative algorithm to learn object classes from weakly
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supervised images using a conditional random field that progressively adapts to the new
classes. Chum and Zisserman [18] give an algorithm that locates image regions corre-
sponding to object classes of a set of training images by optimizing an objective function
that computes similarity between pairs of images. Considering classifier parameters and
subwindows of objects jointly as latent variables in an SVM classification objective func-
tion, Nguyen et al. [77] optimize the function to infer the variables. Weakly supervised
learning is tackled as a structured output learning framework in [7]. All of the aforemen-
tioned approaches deal only with images and do not make use of information that can be
exploited in surveillance-type videos.

Recently, Prest et al. [84] propose a weakly supervised learning approach for YouTube
video clips. Their approach, which is essentially an extension of [22] to video, solves a
fundamentally different problem from our contribution in that they assume that small
independent video clips are the training data and each video clip contains the desired
object class in a large proportion of the spatio-temporal volume, whereas we do not have
any such assumption and setting, and we are dealing with long videos captured by a static
uncalibrated camera overlooking a scene.



Chapter 4

Unsupervised Detector Adaptation by
Joint Dataset Feature Learning

4.1 Overview

In this chapter, we present the first major contribution in the thesis; a novel unsuper-
vised domain adaptation algorithm is proposed to automatically adapt a pedestrian detec-
tor trained on a generic image dataset to a video using joint dataset deep feature learning.
This is achieved by using state-of-the-art deep learning to learn the nonlinear manifold
jointly spanned by the source image dataset and the sampled data of the target video.
The intuition is that by learning a representation of this manifold and training a classifier
on data in this representation, the resulting detector would generalise well for the target
scene. This can then be used as a scene-specific detector. Our algorithm does not require
any background subtraction or tracking in the video and relies purely on the “power” of
manifold learning for domain adaptation. Experiments on two challenging video datasets
show that our algorithm is effective and outperforms the state-of-the-art approach.

50
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4.2 Contributions

For this chapter, we can summarise the novel contributions as follows:

1. An algorithm that adapts a pedestrian detector from a labelled generic image dataset
to an unlabelled video using only the manifold assumption.

2. An application of state-of-the-art unsupervised deep feature learning for the task of
domain adaptation of a pedestrian detector to videos and showing its effectiveness.
Furthermore, instead of starting with raw pixel values (as in standard deep learn-
ing), our approach takes as input, features such as Histogram of Oriented Gradients
(HOGs).

3. A simple biased sampling technique to minimise the problem of large class imbal-
ance between samples from the pedestrian class and those from the non-pedestrian
class in video. Without the proposed sampling algorithm, (naive) random sampling
of data in videos will result in almost all samples to be from the non-pedestrian
class.

4. An effective technique to automatically set the structure of the deep network with-
out hand tuning.

5. The integration of all of the above components into a system.

4.3 Proposed Approach

4.3.1 Overview

The overview of the algorithm is illustrated in Figure 4.1. We are given a generic pedes-
trian image dataset as the source dataset and a target video. The goal is to obtain a scene-
specific pedestrian detector that will perform better on the target video than a pedestrian
detector trained on the generic dataset. The algorithm is made up of two stages:

1. Unsupervised deep feature learning. The manifold spanned by the combination of
the source and the target dataset is learnt using deep learning. During this stage,
labels from the source dataset are not used.

2. Non-linear projection and classifier training. In this stage, only the source dataset
(and the labels) is used.
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Figure 4.1: Overview of the proposed algorithm. The inputs to the algorithm are a source
dataset (labels available) and a target video V (no labels) which we want the detector to
adapt to. The output of the algorithm is a scene-specific detector (SSD) which is tuned
to V. The SSD is made up of a function F which projects a given feature vector onto
the learnt non-linear manifold and a classifier Ct . Note that all extracted patches from the
generic dataset or the target video, shown in the figure, are actually represented as feature
vectors by applying a feature extraction function H. The function H is not explicitly
shown in the figure for clarity.

Firstly, letH be a function for feature extraction on Nr×Nc×3 colour image patches,
i.e. H : RNr×Nc×3 → RNbase , where Nr and Nc are the number of rows and columns of
a colour image patch respectively and Nbase is the number of dimensions of the feature
vector. Let the generic labelled pedestrian dataset (assuming features extracted) be

Xl
s = {x1,x2, . . .}

where xi ∈ RNbase . The dataset Xl
s is associated with a set of labels

Ys = {y1,y2, . . .}

where yi ∈ {1,0}. Let the target video V= [I1, I2, . . . ] be a sequence of frames.
Algorithm 4.1 describes the detector adaptation process. For learning a manifold that

is spanned by the source and the target datasets, firstly a joint unlabelled dataset, Xu
s+t ,
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is required. Combining the source and the target dataset is not trivial because the tar-
get dataset is a video that typically contains a very large number of possible unlabelled
patches that could be extracted, from which only a very small percentage correspond to
pedestrians.

Therefore, unlabelled target data, Xu
t , are sampled from V using the biased sampling

technique detailed in Algorithm 4.2. Then Xu
s+t is obtained by combining the source

dataset Xl
s with the sampled data Xu

t . Labels from Xl
s are ignored at this stage. Xu

s+t

serves as input to the manifold learning algorithm (using deep feature learning) described
in Algorithm 4.3.

The manifold learning algorithm produces, as output, a function F : RNbase → RNdeep

which takes in a base feature vector and produces a feature vector of much smaller dimen-
sion by projecting the base feature vector onto the learnt manifold. We then project Xl

s into
this space and together with Ys, train a classifier, Ct : RNdeep → {1,0}, on these projected
data. The algorithm can work with any type of base features and classifier combination.
For simplicity, we use HOGs and a linear Support Vector Machine (SVM) respectively.

Algorithm 4.1 Detector adaptation overview
Input: Xl

s, Ys, V,H
Output: Scene-specific detector = {F , Ct}

1: Xu
t ← BiasedSamplingDataFromVideo(V,Xl

s,Ys,H)
2: Xu

s+t ← Xl
s∪Xu

t
3: F = LearnManifold(Xu

s+t)
4: Ct = LearnClassifier(F(Xl

s),Ys)
5: return {F ,Ct}

4.3.2 Sampling Representative Unlabelled Data from Target Video

Algorithm 4.2 Biased sampling of unlabelled data from video
Input: V, Xl

s, Ys,H
Output: Sampled data, Xu

t
1: Cs = LearnSVM(Xl

s,Ys)
2: Random sample k frames from V
3: Run sliding-window detector with Cs on the k sampled frames
4: P← Random sample patches from the positive detections of detector
5: Xu

t ←H(P)
6: return Xu

t

For state-of-the-art domain adaptation approaches for image classification that in-
volve learning a common feature representation, sampling data from the target dataset is
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straightforward and just random sampling would suffice. However, since we are dealing
with a far-field video as the target dataset (and object detection), naive random sampling
of unlabelled patches Xu

t from V in the space of multi-scale sliding windows is not a good
idea because the probability of obtaining pedestrian patches, i.e.

P(label=pedestrian|random patch)

is extremely low and is given by:

Average number of pedestrians in a frame
Number of multi-scale sliding windows in a frame

(4.1)

Assuming that the average number of pedestrians is each frame is 10 and the number
of multi-scale sliding windows in each frame is 500,000, then the probability of randomly
sampling a correctly localised pedestrian is less than 0.00005.

Although the feature learning stage requires only unlabelled data, the samples should
still be representative of both non-pedestrian and pedestrian patches in V. Note that we
are not concerned with any supervision labels during this sampling stage; the objective is
simply to get an overall unknown mixture of pedestrian and non-pedestrian patches from
V without needing pedestrian/non-pedestrian labels for each sampled data.

Therefore, we use a biased sampling strategy as given in Algorithm 4.2. The patches
sampled with the algorithm would then be a mixture of pedestrians and non-pedestrians
(corresponding to false positives of the detector).

4.3.3 Learning the Manifold of the Joint Unlabelled Dataset

Algorithm 4.3 Manifold learning using deep feature learning
Input: Unlabelled joint dataset (base features), Xu

s+t
Output: Learnt non-linear projection function, F

1: Learn and apply PCA on Xu
s+t and keep 99% variance

2: Ndeep← estimate intrinsic dimension of Xu
s+t using [66]

3: A← SetUpAutoEncoder(Nbase,Ndeep)
4: A← Initialise A using [43]
5: A←Minimise LossFunc(A,Xu

s+t) using mini-batch L-BFGS
6: F ← Remove the decoder part of A
7: return F

After obtaining the joint unlabelled dataset Xu
s+t as described previously, we now

learn a common feature representation across the source and the target dataset, i.e. Xu
s+t .

Unlike most state-of-the-art techniques (described in Section 3.2.1) that propose various
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objective functions for learning common feature representations specialised for domain
adaptation, in our approach, a common feature representation is obtained by explicitly
making the manifold assumption and learning the manifold using a much more general
technique, namely, deep (feature) learning.

Deep learning is a subset of machine learning techniques utilised for learning hierar-
chies of features (i.e. representations) to obtain high-level abstractions of data. Although
deep learning is very general with many emerging applications, we find that deep learning,
applied as part of our proposed algorithm, outperforms state-of-the-art domain adaptation
techniques that learn common feature representations that are specially designed by re-
searchers for use with domain adaptation.

We now briefly describe manifold learning. Although visual data (i.e. observations)
are often represented as points in high-dimensional vector space, they exist in a much
lower-dimensional manifold and can therefore be represented much more compactly. This
lower-dimensional manifold is a direct consequence of the inherent structure that charac-
terise and that exists in the natural world, resulting in strong (typically non-linear) corre-
lations between data dimensions. Manifold assumption is the assumption that real-world
data lie approximately on a smooth low-dimensional manifold embedded into a high di-
mensional space. We can use this assumption and explicitly learn the manifold which
allows recovery of the underlying structure parameters that generated the given high-
dimensional observations.

By learning the underlying manifold and training a classifier on the labelled source
data (Xl

s,Ys) in this space, we hope to build a classifier that would perform well on the
target video.

In order to learn the manifold, we use a deep autoencoder [6] which is one of the most
popular deep learning methods. A deep autoencoder is a network of nested compositions
(i.e. layers) of non-linear functions. It takes an input data vector, encodes it by recursively
projecting it through some non-linear functions and then decodes by recursively project-
ing the encoded data through the rest of the non-linear functions to reconstruct the input
data.

The network is designed in such a way that the dimension of the encoded data de-
creases with each encoding layer until a bottleneck layer is reached which has the smallest
number of dimensions. Then the decoding layers increase in the number of dimensions
gradually. Due to the presence of the bottleneck layer, the autoencoder is forced to learn
a compact representation of the input data which can only be achieved by some sort of
generalisation on the input data.

The input data projected through such nested compositions of non-linear functions
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give “deep features” which can be considered as high-level abstract feature representa-
tions of the input data. Non-linear classifiers such as non-linear Support Vector Machines
(SVMs), Random Forests, Adaboost and 1-hidden-layer Multilayer Perceptrons also im-
plicitly learn non-linear functions in the internal representations of the classifiers. How-
ever,

1. They require all training data to have supervision labels. This means that we cannot
use them for our purpose since we do not have labels for the target video V, i.e. we
are working with Xu

s+t .

2. The non-linear functions that they learn are not deep. In terms of representational
power, they are only equivalent to 1-hidden-layer neural networks or less. For ex-
ample, for SVMs, the non-linearity learnt is not even as flexible as a 1-hidden-layer
neural network because the non-linear functions for an SVM are fixed to be data
from the training set and only the coefficients to combine the functions are learnt.

One way to avoid these two limitations is by using a deep autoencoder, which is an
unsupervised approach. A deep autoencoder is a generalisation of many dimensionality-
reduction and sparse-learning methods in machine learning. For instance, PCA can be
considered as a type of autoencoder with one hidden layer, linear activation functions and
Mean Squared Error (MSE) loss function.

Since a deep autoencoder allows learning of deep non-linear features of data without
requiring any labels during training, large amounts of data can be used, providing suffi-
cient data for estimation of a large number of unknown parameters. This, combined with
recent advances in better initialising deep neural networks [30,43,70,76], has made deep
learning effective and practical for various computer vision applications.

Despite the large amounts of unlabelled data available for training, deep networks
are still prone to poor1 local optima. One of the recent breakthroughs in training such
deep networks is by using a better weight initialisation scheme. This is accomplished by
layer-wise stacked pre-training where each layer of the deep network is greedily trained
by using the output of the previous layer as input for the current layer [30]. Then, these
weights are used as the initialisation for the joint training of all the layers.

However, even more recent research [70,76] has questioned the need for such a layer-
wise greedy pre-training, arguing that one of the main problems with deep networks is
“pathological curvature” which looks like local optima to first-order optimization tech-
niques such as gradient descent, but not to second-order optimization methods. Another

1In deep learning, the goal is not to find the global optimum but just a “good enough” local optimum [30].
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advantage of second-order optimization methods is that they do not require setting or tun-
ing of the learning rate. However, despite these obvious advantages, they are not widely
used because they share one common problem: they are not suitable for moderate to large
amounts of data because they require computing and storing of the Hessian matrix during
the optimization.

We overcome the aforementioned problems in a novel combination of the following
techniques:

1. The optimization is done by the limited-memory version of Broyden Fletcher Gold-
farb Shanno (L-BFGS) algorithm [68] which is an approximated second-order method.
Due to it being a second order optimization algorithm, the need for layer-wise pre-
training is eliminated, the probability of getting stuck in poor local optima is min-
imised and there is no need to tune the learning rate.

2. We use a mini-batch training technique. Mini-batch training is the compromise be-
tween (full) batch training and online training. In each iteration, rather than present-
ing the optimization algorithm with the entire training data (as in batch training) or
with a single training data point (as in online training), we present it with a random
portion of the training data. This has two advantages:

(a) The data fits into the memory and the optimization is fast.

(b) It has been shown in recent literature (e.g. [11, 96]) that the stochastic noise

imparted by mini-batch training could help avoid some sensitive local optima
by essentially “blurring” out those local optima.

3. We adopt the weight initialization proposed in [43]. This further increases the prob-
ability of obtaining a better local optimum.

Although the idea of using L-BFGS or training using mini-batch is not novel on its
own, to the best of our knowledge, bringing together and integrating these state-of-the-art
findings and the combination of the three methods outlined above (in addition to the more
significant fact that we are simply using deep learning as part of our domain adaptation
algorithm) is novel.

Manifold learning using deep learning is formalised in Algorithm 4.3 and is explained
in more detail below.

4.3.3.1 Data normalisation

As is common in the feature learning literature, we first perform Principal Component
Analysis (PCA) and keep 99% of the total variance (which retains almost all of the in-
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formation) to normalise and condition the data for faster convergence during subsequent
optimization. All data is projected onto the Principal Component space before being fed
to the autoencoder. We however omit the PCA projection step in all the figures and de-
scriptions for the sake of clarity.

4.3.3.2 Setting up the deep autoencoder architecture

Nbase 

Nbase/2  

Nbase/(2x2)  

Ndeep 

Nbase/(2x2)  

Nbase/2  

Nbase 

Bottleneck layer: 
Manifold space 

Input layer: 

Output layer: 

Decoder 
(tied 
weights) 

Encoder 

)( 11 bxW 

)( 22 bxW 

)( LL bxW 

)( 223  L

T bxW

)( 122  L

T bxW

L

T

21 bxW 

Figure 4.2: The deep autoencoder architecture. See text in Section 4.3.3.2 for the expla-
nation of the notation and the architecture.

The first step for deep learning is to set up the deep autoencoder architecture and this
involves setting the number of layers, the size of each layer and the activation function
in each neuron of each layer. The architecture is one of the most crucial aspects of deep
learning because it determines the space and the complexity of the family of functions
that are to be learnt.

If the layer sizes (i.e. the number of neurons in the layers which determine the breadth
of the network) are too small, then the space of functions will be limited and there will be
too many poor local optima resulting in limited generalisation power [61]. The number
of layers determines the depth of the autoencoder and generally, increased depth allows
learning of non-linear functions in a more efficient way (since deep compositions of non-
linear functions results in higher non-linearity with fewer parameters). However, too
many layers can give problems in the optimization due to issues with the gradient signal
getting lost in the layers in the back-propagation algorithm (commonly called the “van-
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ishing gradient problem” [50]), although the L-BFGS and mini-batch training which we
use can mitigate against this.

There is a commonly used heuristic in the deep learning literature for setting up a
deep autoencoder and that is to decrease the layer sizes from the input layer (which is
equal to the number of dimensions of the input data) to the bottleneck layer. These are
the encoding layers. Then the layer sizes are mirrored (and therefore made symmetric)
and they increase until the output layer is reached (whose size is equal to the size of
the input layer). These are the decoding layers. Another widely used heuristic is to tie
the weights (but not the biases) of the encoding layers to the weights of corresponding
(symmetric) decoding layers. This is reasonable (since decoding can be interpreted as
the exact inverse of encoding) and greatly reduces the number of parameters to be learnt
during optimization. We adopt both of these heuristics in our work.

However, setting the exact sizes of the individual layers (including the size of the
bottleneck layer) and the number of layers is still arbitrary in the literature. Here, we
propose a more principled algorithm:

1. Firstly, we estimate the intrinsic dimensionality of the data Xu
s+t using [66]. Let this

be Ndeep.

2. For encoding layers, starting with the size of the input layer (which is known), each
hidden layer has half of the number of hidden neurons as its previous layer and this
is repeated until a layer of size equal to or less than Ndeep is achieved. If less than
Ndeep, the layer size is set to Ndeep. This is the size of the bottleneck layer. Now we
have set the layer sizes of all the encoding layers.

3. For decoding layers, the layer sizes mirror those of the encoding layers.

This is shown Figure 4.2. The network structure is obtained automatically and sys-
tematically and we do not manually tune it. There are a total of L hidden nonlinear layers
in the encoder (which produces a total of 2L layers feed-forward deep network).

The last design decision to be made as part of the architecture setting is the neuron
activation function (which is also known as the transfer function). We set all the neurons
in all the layers to have the same activation function and the activation function is made
to be non-linear because we want the autoencoder to learn (nested) non-linear functions.
The non-linear activation function used is the hyperbolic tangent function (represented in
Figure 4.2 with the function σ ). This is one of the most common activation functions for
neural networks and has been shown to work well in the literature (especially for deep
autoencoders). The function is given in Equation 4.2 and shown in Figure 4.3.
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σ(z) =
sinhz
coshz

=
e(z)− e(−z)

e(z)+ e(−z)

=
e(2z)−1
e(2z)+1

(4.2)
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Figure 4.3: Hyperbolic tangent activation function to impart non-linearity in the deep
network. The input signal z is “squashed” (i.e. non-linearized) such that the output σ(z)
is within the range [−1,1]. Note that the function acts on each dimension of the input
vector independently.

4.3.3.3 Initialising the deep autoencoder architecture

After the network has been set up, we randomly initialise it using the method of Glorot
and Bengio [43], which has been shown to perform well for deep networks. Biases are
initialised to zero and weights W for a layer are initialised by uniformly sampling as
follows:

W∼ U

[
−

√
6

√
n j +n j+1

,

√
6

√
n j +n j+1

]
(4.3)
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where n j is the size of current network layer and n j+1 is the size of next layer. Equation 4.3
is obtained in [43] by studying and analysing the saturation of hidden neurons and by
observing the flow of gradient signals across network layers as the activation functions
and network initialisation are varied.

4.3.3.4 Network optimization

In order to train the autoencoder, the network in Figure 4.2 can be mathematically written
as a smooth differentiable multivariate loss function which should be minimised.

This is given in Equation 4.5; m refers to the number of data points in each mini-batch,
W j is the affine projection matrix for layer j, xi is a column vector of data point i, and b j

is a vector of biases for layer j. The function A is defined in Equation 4.4; it projects a
given input data point x to any layer j in the deep network with the given network weights
W1, . . . ,WL,b1, . . . ,b2L. A is a function that will recursively call itself and project x from
the input layer up to layer j.

During each iteration of the optimization algorithm, given the training data, the net-
work and the current weights (being optimized), the following information is required:

1. The loss function value. This is obtained analytically.

2. The gradient vector obtained by the first-order derivative of the loss function. This
can also be obtained analytically.

3. The second-order derivative of the loss function. This is a matrix approximated by
L-BFGS.

The loss function involves first encoding the data by feed-forward projection of data
through L encoding layers until the bottleneck layer is reached. After that, the decoding
stage attempts to reconstruct the original data. Then the Mean Squared Error gives the
loss function value. To obtain the loss function gradient vector during optimization, we
need to find the (first-order) derivative of the loss function. Since the loss function consists
of deeply nested composites of non-linear functions, the chain-rule is used. This can be
efficiently obtained by the back-propagation algorithm [93] which is a type of dynamic
programming technique.
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A(W1, . . . ,WL,b1, . . . ,b2L,x, j)

=



σ(W1x+b1) j = 1

σ(W jA(W1, . . . ,WL,b1, . . . ,b2L,x, j−1)+b j) 1 < j ≤ L

σ(WT
2L− j+1A(W1, . . . ,WL,b1, . . . ,b2L,x, j−1)+b j) L < j < 2L

WT
1A(W1, . . . ,WL,b1, . . . ,b2L,x, j−1)+b2L j = 2L

(4.4)

arg min
W1,...,WL,
b1,...,b2L

1
2m

m

∑
i=1

{∥∥∥∥A(W1, . . . ,WL,b1, . . . ,b2L,xi,2L)−xi

∥∥∥∥2

2

}
(4.5)

4.3.3.5 Removing the decoding part
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Figure 4.4: Training the scene-specific detector. The deep autoencoder has the decoder
part removed. The source dataset Xl

s is projected to the manifold space and then a linear
SVM is trained on the projected data and the corresponding class labels Ys.

After training the deep network, the decoder part is no longer needed and can thus be
removed (i.e. only the first L network layers is retained). We now have a deep non-linear
projection function F as given in Equation 4.6.

F(x) =A(W1, . . . ,WL,b1, . . . ,b2L,x,L) (4.6)
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where L is the number of projection layers (up to the bottleneck layer) and x is an input
feature vector (i.e. base features) and W1, . . . ,WL,b1, . . . ,b2L are the learnt (i.e. opti-
mized) network weights.

4.3.4 Training the Scene-specific Detector

We use the learnt encoder, F , to project the generic dataset Xl
s and train a linear SVM2

on these features and the corresponding source dataset labels Ys. This is illustrated in
Figure 4.4.

4.4 Experimental Results

4.4.1 Datasets

INRIA pedestrian dataset [21] is used as the source dataset. We apply our algorithm
and evaluate on two target video datasets: CUHK Square dataset [110] and MIT Traffic
dataset [111]. Each of these videos were recorded by a static camera overlooking a far-
field scene. Samples of frames from each video are shown in Figure 4.5 and details
on the videos are given in Table 4.1. These datasets are challenging in that they vary
significantly from the INRIA dataset in terms of resolution, camera angle, object poses
and illumination conditions. Furthermore, they contain multiple categories of objects, and
pedestrians in these datasets range from medium to low resolution.

Detail CUHK Square MIT Traffic
Frame size (w×h) 720×576 720×480

Approximate video length (mins) 60 90
Frame rate (fps) 25 30

Number of frames 90,425 165,880

Table 4.1: Video dataset details

Each video dataset is divided into two halves:

• The 1st half is used for unsupervised detector adaptation. No manual annotations
are used.

2. . . although any type of classifier can be trained. However, since the features are already highly non-
linear, a further non-linear classifier is unlikely to be necessary and therefore a linear classifier is the best
and the cheapest option.
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Figure 4.5: Frame samples from the CUHK video (left) and from the MIT video (right).
All frames are resized to the same aspect ratio for visualisation.
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• The 2nd half for quantitative evaluation. For evaluation, the groundtruth that comes
with the datasets [110, 111] are used. The groundtruth consists of manually anno-
tated bounding boxes of pedestrians in the 100 uniformly sampled frames.

4.4.2 Base Features

For base feature extraction, all patches are resized to 64× 128 (the same size as used
in [21]). Each patch is partitioned to 8×8 cells, gradient histograms (9-orientations) are
extracted in the cells, histograms are four-way normalised using the neighbouring cells
(as in [21]) and all the histograms are concatenated to form a feature vector. This means
that the (original) dimensionality of the dataset (i.e. base features) is:

Nbase = 16×8×9×4 = 4608

4.4.3 Unlabelled Patches Sampled for Deep Learning

We set the number of patches sampled (using Algorithm 4.2) to 10,000 for all experi-
ments. We do not sample any more than this due to memory and computational issues.
We have tried fewer samples, but have found that our method is not really sensitive to this
as shown in Figure 4.6.

Figure 4.7 gives a qualitative comparison between proposed biased sampling and ran-
dom sampling; using the biased sampling greatly increases the chances of pedestrians
being included in the samples for subsequent deep learning.

4.4.4 Deep Learning Parameters

The design parameters of the deep learning architecture that have been automatically
computed for the CUHK Square and MIT Traffic datasets are summarised in Table 4.2.
For training, mini-batch size is fixed at 1000 for both CUHK and MIT datasets.

The decrease in the optimization (loss/error) function value as the iterations increase
is shown in Figure 4.8.

The entire adaptation system takes around 5 hours to run, with the majority of the time
taken up by feature learning.

4.4.5 Implementation Details

The algorithms (including building the deep neural network architecture and training it)
are mostly written and implemented using the MATLAB programming language, except
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Figure 4.6: Effect of changing the number of samples from the target video on the (final)
scene-specific detector performance. These graphs show that for both CUHK and MIT
datasets, the domain adaptation algorithm is not sensitive to the number of target samples
within the range tested (8,500-10,000). We have not tested fewer number of samples than
8,500 but it is to be expected that performance would start to decrease at some point (as the
number of samples is reduced). Characterisation of this point is interesting in its own right
and would require further study. Another observation that can be made from these graphs
is that our algorithms is robust to the effect of different deep network initialisations.

CUHK Square MIT Traffic
Input dimensions (Nbase). This is equal to the
length of the input HOG feature vectors.

4608 4608

Bottleneck layer (i.e. manifold) dimensions
(Ndeep). This is automatically found using the
method in [66].

35 23

Number of encoding hidden layers. Computed
using the method proposed in Section 4.3.3.2.

5 6

Table 4.2: Deep learning architecture parameters

for some parts that are written in C/C++ and interfaced to MATLAB for speed. For train-
ing linear SVMs, LIBLINEAR [32] C++ library (with an interface to MATLAB) is used.
For L-BFGS optimization, we use the minFunc Matlab function of Mark Schmidt [97].
The algorithms are implemented on a Intel Core i7 CPU (4 physical cores resulting in 8
logical cores) with 2.93 GHz processing power and 16 GB of RAM.

4.4.6 Evaluation & Discussion

We use recall-FPPI curves in order to compare the performance. Recall-FPPI curves
have been commonly used and recommended in state-of-the-art literature to measure and
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compare the performance of object detectors in images or videos [26, 110].
Detections (i.e. detected bounding boxes) are scored according to PASCAL 50% over-

lap criterion [31]. The overlap, αo, is defined by:

αo =
area(bg∩bd)

area(bg∪bd)
(4.7)

where bg is the groundtruth bounding box and bd is the detected bounding box. The
overlap, αo, gives the proportion of overlap between bg and bd . A detection is deemed to
be correct if αo > 0.5.

For each target dataset, we compare with three alternative methods as described be-
low:

1. Generic: The detector (HOG+SVM) trained on the INRIA dataset. This is the
baseline detector without any domain adaptation.

2. PCA: A simple detector adaptation method by applying Principal Component Anal-
ysis (PCA) on the combination of the source and target dataset. This experiment is
done as a control to find out how well learning a simple linear subspace (using a
well-known dimensional reduction technique) rather than a (deep) non-linear man-
ifold (as proposed in this chapter) performs. The samples from the target video are
obtained using our proposed biased sampling algorithm (i.e. Algorithm 4.2).

3. Geodesic(CVPR12): The state-of-the-art approach proposed by Gong et al. [44].
However, since their method is only applicable for image classification, we extend
the code made available by them for object detection in videos by using our pro-
posed biased sampling algorithm.

4. Proposed: The detector obtained by our complete adaptation system.

We note that the goal of our proposed algorithm is not state-of-the-art (supervised)
pedestrian detection. Instead, it is about state-of-the-art detector adaptation, i.e. how
much the detector adaptation algorithm can improve over the baseline detector without
any additional supervised knowledge from the target scene. The recall-FPPI curves are
shown in Figure 4.9.

As can be seen, our algorithm (Proposed) significantly outperforms all three alterna-
tive methods, i.e. Generic, PCA and Geodesic, in both of the datasets.

For the CUHK square dataset, Proposed is much better than the baseline Generic,
whereas Geodesic does not improve over the baseline. It turns out that PCA in fact per-
forms worse than Generic.
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For the MIT traffic dataset, both Proposed and Geodesic performs better than Generic,
however Proposed has a significantly higher improvement than Geodesic. Here, PCA is
also better than Generic, but only slightly.

From these experiments, the following observations can be made:

• For one of the datasets, the state-of-the-art Geodesic does not improve over the
baseline whereas the proposed algorithm, due to unsupervised learning of deep non-
linear features and the resulting implicit manifold regularization, achieves much
better results in both of the datasets. This may also be the reason why Proposed

outperforms Generic on both datasets.

• PCA performs either worse (for the CUHK dataset) or only slightly better (for the
MIT dataset) than the generic detector, Generic. In contrast, Proposed signifi-
cantly and clearly outperforms Generic in both of the datasets. This shows the
advantages of learning a nonlinear manifold as proposed in this chapter.

• The state-of-the-art Geodesic is indeed better than PCA for both datasets. How-
ever, the difference between them is small. And it is interesting to note that both
Geodesic and PCA learns linear subspaces and this may be part of the reason why
their performances are quite close. It can also be observed that the state-of-the-art
algorithm Geodesic, although optimizing a mathematical formulation of a com-
mon feature representation that is specially designed for domain adaptation, is not
that much better than a simple and general PCA.

As mentioned in Section 4.3.4, due to the highly non-linear features (or manifold)
learnt by the deep learning stage, it is sufficient to train a linear classifier in the manifold
space. To verify that this is indeed the case, on the MIT Traffic dataset, we perform an
additional experiment in which a Random Forest [12] (which is currently one of the most
widely-used non-linear classifiers) is trained (instead of a linear SVM) in the manifold
space. The result is illustrated in Figure 4.10. It can be seen that training a linear clas-
sifier is sufficient in the manifold space; in fact, training a Random Forest reduces the
performance. This fits with the intuition that since the features projected onto the man-
ifold space (which has been learnt in an unsupervised way) is already highly-nonlinear,
attempting to make it even more non-linear with the limited amount of labelled data would
most likely over-fit on the training data (i.e. the generic dataset), resulting in decreased
performance (in the target dataset).
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Figure 4.7: The effectiveness of the proposed biased sampling. The figure on the left
shows a subset of patches sampled by the proposed biased sampling technique (Algo-
rithm 4.2). On the right is a subset of samples obtained by (naive) random sampling.
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4.5 Conclusion

In this chapter, we propose an algorithm to automatically generate a scene-specific pedes-
trian detector that is tuned to a particular (video) scene by unsupervised domain adaptation
of a generic dataset. Using state-of-the-art deep learning, our algorithm learns the under-
lying manifold where both the generic and the target dataset jointly reside and a detector
is trained in this space, implicitly regularized to perform well on the target scene. Quan-
titative evaluation on two publicly available video datasets show the effectiveness of our
approach.

Although the algorithm proposed in this chapter significantly outperforms baselines
and a state-of-the-art approach, there are further improvements that could be made:

1. A scene-specific detector is obtained by training in the manifold space that will
perform well on both the source and the target dataset. However, this will not only
expend its representational power in trying to do well on the target dataset, but also
on the source dataset. It is reasonable to expect that a higher performance will
result if the algorithm just focusses on doing well only on the target dataset without
concerning about the source dataset. In Chapter 5, we propose an algorithm that
generates a scene-specific detector that is tuned to perform well only on the target
dataset.

2. At test time, there is a need to do feature projection before classification. This is
time-consuming for object detection where hundreds of thousands of sliding win-
dows need to be evaluated. The algorithm proposed in Chapter 5 overcomes this by
not requiring any feature projection before classification.

3. The method in this chapter learns the manifold explicitly and therefore learns the
similarity between data but it does not use cues and spatio-temporal information
that are readily available in videos. These cues are effectively made use of by
the algorithm proposed in Chapter 5. In fact, we will show that, by exploiting
such powerful cues, we can forego the expensive manifold learning and feature
projection steps and have a simple and efficient system that outperforms the method
in this chapter.



Chapter 5

Efficient Non-iterative Domain
Adaptation of Pedestrian Detectors

5.1 Overview

In this chapter, we present the second major contribution of the thesis; we propose a novel
algorithm that makes effective and efficient use of cues available in video to automatically
adapt and tune a generic pedestrian detector to a video that may possess different data
distributions than the generic dataset from which the detector was trained. Most state-of-
the-art approaches (in the related research area) can be inefficient, require manual setting
of the number of iterations to converge and some form of human intervention. Our al-
gorithm is a step towards overcoming these problems and although simple to implement,
exceeds state-of-the-art performance.

5.2 Introduction

The high level view of this chapter is shown in Figure 5.1. We have a source dataset with
supervision given in the form of pedestrian annotations and a target video dataset where
supervision information is not available. The pedestrians in the target video have a dif-
ferent data distribution than the ones in the source dataset due to factors such as different
poses, image resolution, camera angle and illumination conditions. The source dataset

74
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(a) (b)

(c) (d)

Figure 5.1: The high level view of this chapter. (a) shows the aim of this chapter. We
have a generic detector trained on a generic dataset (c) available. The proposed algorithm
automatically adapts it to different target scenes given only videos of those scenes with-
out any label information attached with the videos. (b) & (d) show the improvement of
the automatically adapted scene-specific detector over the generic detector for two target
scenes. For (b) & (d), the left figure shows the detection results for the generic detector
and the right for the adapted detector. For visualisation, all detection results shown are
thresholded at around 1 False Positive Per Image (FPPI).

is a generic pedestrian dataset which is publicly available. The aim is to automatically

generate a scene-specific detector which is tuned to the target video and would therefore
perform better than the generic detector.

This domain adaptation problem may seem like an infeasible task since no supervision
from the target video is available. However, this is not usually the case because there are
certain assumptions we can make about the structure of the underlying distribution of
the source data and target data [56]. In fact, in Chapter 4, we explicitly made use of the
structure of the underlying distributions by learning the manifold jointly spanned by the
source and target dataset. The algorithm proposed in that chapter could be applied to
static images as well as videos. In this chapter, however, we develop an algorithm that is
designed to work only with videos.

For videos, apart from the structural assumption about the data distributions, there
is knowledge that can be exploited and is unique to videos such as the ability to model
long-term scene background information from which to infer foreground objects and the
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knowledge that objects move in a smooth and spatially and temporally coherent manner
(which, for example, allows object tracking). In this chapter, instead of attempting to
explicitly learn or model the manifold structures, our proposed algorithm makes effective
use of this rich spatio-temporal “scene” knowledge and we show that it can render the
task of detector adaptation for videos much simpler.

The rest of the chapter is organised as follows. In Section 5.3, we list the contributions
of the chapter. In Section 5.4, we describe the overview and the details of the proposed
algorithm. Section 5.5 discusses the experiments and the results. Finally, Section 5.6
gives the conclusion for the chapter.

5.3 Contributions

The contribution of this chapter is four-fold.

• Firstly, we introduce the idea of bounding box proposals and initial verification for
efficient generation of a large number of scene-specific pedestrian data points with
high probability of accuracy.

• Secondly, we use short-term tracking for spatio-temporal verification and data ex-

pansion (i.e. collection of hard pedestrian data).

• Thirdly, we show that this combination of bounding box proposal and initial ver-
ification, spatio-temporal verification and expansion does not need iterative self-
training, effectively making it a non-iterative algorithm. Despite that, our algorithm
can compete or outperform state-of-the-art iterative self-training algorithms.

• Fourthly, unlike most state-of-the-art algorithms (and the algorithm proposed in
Chapter 4), the algorithm proposed in this chapter does not require the generic
dataset for detector adaptation: just the generic detector alone is sufficient. This is
useful in many situations. For example, the generic dataset may not be available for
many reasons such as copyright issues. Or the generic dataset may be very large,
making it difficult or costly to store and transmit for the purpose of domain adap-
tation, especially when there are many different target scenes for which detector
adaptation needs to be performed.
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5.4 Our Approach

5.4.1 Overview

The overview of our algorithm is illustrated in Figure 5.2. We describe the algorithm
briefly below and the details of the algorithm are explained in the following sections.

The inputs to the algorithm are a generic (i.e. source) detector Cs and a target video
V = [I1, I2, . . . , IN ] of N frames to adapt Cs to. The desired output is a scene-specific
detector Ct that is tuned to the target video.

The first step involves bottom-up generation of bounding box proposals of pedestrians
for V. Then these bounding box proposals are verified using Cs (initial verification). The
result is a set of verified proposals. Each of these verified proposals is tracked for a
short period (e.g. for 3 seconds). Then each track is verified using Cs and majority voting
(spatio-temporal verification). For each verified track, the first data in the track and all
the data that give negative labels (i.e. hard positives) are collected. The hard positives in a
verified track can be considered as the expansion of the verified proposal that started the
track.

All these expanded data are pooled across all the verified tracks to form the positive
data for the scene-specific detector. Negative data for the scene-specific detector are sam-
pled from the regions in V that Cs classifies as negative and that do not overlap with any
areas of the bounding box proposals.

After the scene-specific positive and negative data have been obtained, the scene-
specific detector Ct is trained on this data. The approach is formalised in Algorithm 5.1.

5.4.2 Generating Bounding Box Proposals

The first step of the algorithm is to propose bounding boxes of pedestrian candidates in
a bottom up fashion. We do this by performing a background subtraction algorithm on
V and Connected Component Analysis on the resulting foreground pixels and get tight
bounding boxes around the connected components. These bounding box proposals across
all the frames are pooled and stored in a set B.

5.4.3 Initial Verification

We go through each bounding box proposal bi ∈ B, get the image patch underlying bi,
resize the patch and extract the features using the given feature extraction function, H :
RNr×Nc×3→ RNbase where Nr and Nc are the number of rows and columns of the resized
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Algorithm 5.1 Non-iterative detector adaptation using spatio-temporal cues
Input: {Cs,V}
Output: Ct

% Generate bounding box proposals %
Bounding box proposals, B←∅
Let Ω be an initial estimate of the scene background.
for Ii ∈ V do

Ω← UpdateBGModel(Ii,Ω)
Ifgmask← Background subtraction using {Ii,Ω}
connected blobs← Connected Component Analysis on Ifgmask
B← B∪{bounding boxes of the connected blobs}

end for
% Initial verification %

Verified proposals, Bv←∅
LetH be the function for feature extraction
for bi ∈ B do

if Cs(H(bi)) = 1 then
Bv← Bv∪{bi}

end if
end for
% Spatio-temporal verification & expansion %

Scene-specific positive data, X+
t ←∅

for vi ∈ Bv do
Set of tracked bounding boxes, Be← ShortTermTrack(vi)
Set of classification labels, S←∅
for e j ∈ Be do
S← S∪{Cs(H(e j))}

end for
if mode(S) = 1 then

for e j ∈ Be do
if j = 1 or Cs(H(e j)) = 0 then

X+
t ← X+

t ∪{H(e j)}
end if

end for
end if

end for
% Collect scene-specific negative data %

X−t ←∅
for Ii ∈ V do

Let W be the set of sliding windows on Ii
W←{w ∈W : (Cs(H(w)) = 0)∧ (w∩B=∅)}
X−t ← X−t ∪H(W)

end for
% Train scene-specific detector %
(Xl

t ,Yt)←{X+
t ,X−t }

Ct ← LearnClassifier(Xl
t ,Yt)

return Ct
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Figure 5.2: Overview of our proposed approach.

image patch and Nbase is the length of the feature vector. These feature vectors are then
passed to the generic detector, Cs : RNbase → {1,0}, for labelling. If the label is 1 (i.e. the
prediction is a pedestrian), bi is considered a verified proposal and is stored in a set Bv.

The combination of the background proposal and initial verification stages efficiently
samples a high number of pedestrian patches with high probability. Random samples
from sets B and Bv are shown in Figure 5.3. We can observe that Bv barely contains
any mistakes. This is because the errors introduced by bounding box proposal and initial
verification are mostly uncorrelated. In addition, Bv consists of very accurately localised
pedestrians (i.e. very few patch alignment errors, etc.) which are suitable for training a
detector.

5.4.4 Spatio-temporal Verification & Expansion

Although the set Bv is large and contains pedestrians with high probability, one might ar-
gue that Bv may be biased towards pedestrians that the generic detector is already “good”
at and it might also contain some errors that the combination of the proposal generation
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(a) (b)

(c) (d)

Figure 5.3: (a) & (b) correspond to the MIT Traffic dataset and (c) & (d) to the CUHK
Square dataset. (a) & (c) show 200 random samples from set B and (b) & (d) show 200
random samples from set Bv (see Section 5.4 for notation).

and initial verification stages could not eliminate.
Therefore, we spatio-temporally verify and expand the set Bv by short-term tracking

each verified proposal vi ∈ Bv producing a tracklet Be. The short-term tracking is done
independently for each vi. We do not use Cs to help with the tracking; instead we use an
online-learnt appearance model. Not using the Cs during tracking allows us to decouple

the errors made by Cs and the tracker. Spatio-temporal verification is done by applying
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Cs on each patch corresponding to a tracked bounding box e j ∈ Be in the track and taking
the majority vote of the classification labels S.

If the majority vote is positive, then we consider the tracklet Be as verified and add the
data in the tracklet to the collection of scene-specific positive data X+

t . In order to avoid
the number of data from getting too large, instead of adding every patch in a verified
tracklet as new positive data, we add only the hard positives, i.e. patches in the track that
have classification labels equal to 0. Figure 5.4 illustrates the idea.

A verified 
proposal 

A verified 
proposal 

tracklet A: majority voting  verified tracklet B: majority voting  discarded 

Figure 5.4: Visualization of two example tracklets obtained from tracking two verified
proposals respectively. In each tracklet, we show the patches corresponding to the tracked
bounding boxes. Since each tracklet is about 3-seconds long (76-frames), there are 76
patches in a tracklet (with the first patch being the verified proposal). For tracklet A, the
blue rectangles indicate patches that the generic detector Cs classifies as non-pedestrians,
i.e. they are false negatives. However, spatio-temporal verification (by majority voting in
the track) successfully verifies the track as a pedestrian track. The patches with blue rect-
angles are therefore “hard” positives and are collected, along with the verified proposal,
as scene-specific positive data X+

t . The patches with the blue rectangles can be termed as
the expansion of the verified proposal. On the other hand, spatio-temporal verification on
tracklet B correctly discards the track. Even though the first patch (the verified proposal)
and other patches with the blue rectangles are erroneously classified by Cs as pedestrians
(when in fact, each has 2 pedestrians in it), majority voting successfully discards the entire
track along with the verified proposal.
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5.4.4.1 Details on short-term tracking

The short-term tracking is performed by learning a discriminative model (i.e. classifier) of
the appearance of the object being tracked against the surrounding patches (including the
scene background and other objects). Different combinations of features and classifiers
have been tried and the best one was found to be a combination of raw colour pixel values
as features and Partial Least Squares (PLS) regression [40] as the classifier.

PLS regression combines the benefits of PCA and multiple regression. Given input
and output matrices, A and B respectively, PLS simulteneously decomposes A and B
into latent structures (to be more specific, linear subspaces) and these latent structures are
jointly optimized such that the latent structure of A best explains the covariance between
A and B.

In fact, by qualitative evaluation (i.e. visual inspection of tracking outputs), we found
this combination (i.e. raw pixel values and PLS regression) to outperform several other
trackers including:

• A tracker using online PCA on pixel values to learn and update an appearance
model.

• Discriminative trackers using various types of features (such as HOGs and pixel
intensity values) and SVM.

• Different types of classifiers for the discriminative tracker including online Percep-
tron and online logistic regression.

Since tracking is just a tool used as part of the domain adaptation algorithm and not
in itself a novel contribution for this chapter, we do not present any further details on this.

5.4.5 Collecting Negative Examples

Scene-specific negative data, X−t , are randomly sampled from all possible multi-scale
sliding window bounding box regions that neither overlap with the bounding box propos-
als nor with pedestrian detections in the frames of the video. This way, negative data with
high confidence can be obtained.

5.4.6 Training the Scene-specific Detector

Now that we have collected positive and negative scene-specific data (X+
t and X−t respec-

tively), we obtain a scene-specific detector Ct by training a classifier on the labelled target
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dataset (Xl
t ,Yt) which is the combination of X+

t and X−t . It should be noted that Xl
t is

entirely made up of data from the target scene only and by doing this, we are effectively
setting the weights for the source dataset to zero. We show the effectiveness of throwing
away the source dataset in Section 5.5.

One of the strengths of our method is apparent here: we can use any classifier to train
on (Xl

t ,Yt). Thus, our approach is general and not limited to a particular type of classifier
for the detector adaptation.

5.4.7 Analysis on Bounding Box Proposal & Verification

As discussed previously, the combination of bounding box proposal generation and initial
verification are the first and second steps of our algorithm respectively. We now focus on
this combination and compare it to state-of-the-art research [75, 110, 111] that uses back-
ground subtraction (as one of the steps) in the verification of detections of the generic
detector Cs. Their methods are different from our approach because we do not use back-
ground subtraction as a verifier; instead we use it the other way round: Cs is the verifier
of background subtraction proposals.

Although this is a simple modification, it makes a significant difference in perfor-
mance as experimentally shown in Section 5.5. There are several reasons on why our
approach is preferable:

• We are not using Cs as a sliding window “detector”, but we are making its task
easier by using it as a classifier on the verified proposals. This minimises possi-
ble errors introduced by a sliding window detector (such as sliding window space
discretization error and Non-maximum Suppression error).

• The intuition is to let the bottom-up process (i.e. bounding box proposal generation)
“exert effort” and speak for itself as much as possible. Once it has fully “expressed”
itself by going all the way to proposing bounding boxes, we then simply verify these
proposals using Cs. This eliminates requirement of any thresholds.

• Furthermore, if we use a real-time state-of-the-art background subtraction algo-
rithm for bounding box proposal generation, we can very quickly and efficiently
obtain a large number of verified proposals.

• Our approach is highly robust to errors in background subtraction and can work with
videos and scenes where there are multiple categories of objects. This is because
the peculiarities introduced by the combined process of background subtraction
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(including shadow suppression) and Connected Component Analysis are mostly
independent from the peculiarities of Cs. Even assuming noisy background subtrac-
tion and Connected Component Analysis results, there will always be thousands
of instances (out of hundreds of thousands of noisy instances) where the combined
background subtraction and Connected Component Analysis will successfully yield
correctly localised pedestrians. The generic detector Cs would correctly identify
them with high probability and correctly reject others also with high probability.

It should be also noted that this is not the same as the approach taken in hierarchical
segmentation-based selective search strategy to speed up object detection (e.g. [107]).
The difference is that their goal is improving the detector per-se whereas our goal is
domain adaptation and not to detect every single pedestrian (i.e. high recall with high
precision) during the adaptation stage (instead, part of our goal during the adaptation
stage is just to collect a reasonable amount of confident pedestrians). Furthermore, they
are working on static images and hierarchical segmentation based on colour and texture
cues whereas in our algorithm, we are directly using cues from the video without any
hierarchical segmentation. Lastly, we do not apply any background subtraction or any
other kinds of segmentation during test time after the detector adaptation.

5.4.8 Analysis on Spatio-temporal Verification & Expansion

There are methods in related work that use tracking-by-detection type of approach to
improve detectors. This is typically done by applying the detector on every frame and then
associating the detections into tracks. This can be considered as a process of temporal
smoothing of detections to reduce noise. The problem, however, with this approach is
that detection and tracking are dependent on each other and detection errors would be
carried on to tracking and vice-versa. This can result in either drifting or the detector
not improving. Therefore this type of tracking-by-detection is not a good oracle (i.e.
verifier for self-training) because one of the requirements of the verification process is to
be as independent from the detection as possible, while at the same time, offering useful
(complementary) information.

Our method is different in that unlike (traditional) tracking-by-detection methods, our
tracking is completely independent from detections of the generic detector since we do
not associate frame-wise detections (from the generic detector) into tracks. Instead of
relying on the detections (except for the initial detection that starts the track), our tracker
makes use of the appearance (and shape) of the object being tracked to track the object.
Only after completing the tracking, the detector is applied on instances (i.e. patches) in
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the track and a majority vote is taken to verify the track. This allows the algorithm to
decouple the errors of the detector and the tracker.

5.5 Experimental Results

5.5.1 Classifier & Features

For feature extraction and classification, we use Histogram of Oriented Gradients (HOGs) [21]
and linear SVM respectively. This is done for simplicity and our algorithm can in princi-
pal be used with other feature extraction techniques and classifiers.

5.5.2 Datasets

As in Chapter 4, we use the INRIA Person dataset [21] as the source dataset, and MIT
Traffic dataset [111] and CUHK Square dataset [110] as target datasets. Also similar to
Chapter 4, we divide each video into two roughly equal parts:

1. 1st half (adaptation stage): Used for (unsupervised) training. This is where all
the detector adaptation takes place. No manual annotation is used for any detector
adaptation.

2. 2nd half (testing stage): After the detector adaptation is performed in the first
half, the second half is used for testing. 100 frames are uniformly sampled and
groundtruth is annotated for evaluation. It should be noted that in this stage, back-
ground subtraction, tracking or other cues are not used. Only pure (sliding window)
detection performance is evaluated. The detector is applied independently on each
frame being evaluated.

5.5.3 Descriptions of Experiments

Evaluation is performed in terms of recall-FPPI (False Positives Per Image) curves. The
justification for using recall-FPPI curves for evaluation is that, in addition to the reasons
given in Section 4.4.6 (of Chapter 4), recall-FPPI curves (especially recall at 1 FPPI) are
used by the authors of the state-of-the-art algorithms that are being compared against our
approach.

The PASCAL 50% overlap criterion [31] is used to score the detection bounding
boxes. Six different types of experiments are performed:
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1. Proposed: Our proposed algorithm (in this chapter).

2. Baseline(Generic): The detector trained on the generic dataset. This is the base-
line for our comparison.

3. Nair (CVPR 04): This is an iterative self-training algorithm for detector adapta-
tion using background subtraction. This can be considered as a variation of the
approach of Nair and Clark [75].

4. Wang (CVPR 11): A state-of-the-art detector adaptation algorithm that uses itera-
tive self-training with multiple cues in the video [111].

5. Wang (CVPR 12): Another state-of-the-art algorithm presented in [110] and is an
extension of [111].

6. Human supervision(X): Fully-supervised scene-specific detector obtained by
manually annotation on X number of sampled frames in the 1st half of video. Dif-
ferent values of X are used.

7. Proposed + source dataset (INRIA): A modification of our proposed algo-
rithm (Proposed). Instead of training the scene-specific detector only on the col-
lected scene-specific data, we also include the source (i.e. generic) dataset for train-
ing.
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Figure 5.5: Detection performance curves (all on testing datasets). 1st column shows
results for CUHK Square dataset. 2nd column shows results for MIT Traffic dataset. 1st

row gives comparison of our proposed algorithm with state-of-the-art approaches. The
2nd row compares with manual annotation and the 3rd row shows the effect of throwing
away the source dataset.



Chapter 5 88 Efficient Non-iterative Adaptation

5.5.4 Evaluation

Performance curves are shown in Figure 5.5 with their plot legends referring to the types
of experiments described previously. We discuss the plots below.

5.5.4.1 Comparison with generic detector

We see that our proposed method Proposed has a much higher performance than the
generic detector Baseline(Generic) in all the experiments in both datasets. For CUHK
Square dataset, at 1 FPPI, the recall of Proposed is about three times that of the generic
detector, which is a significant improvement. For MIT traffic, the recall of Proposed is
about 3.5 times higher than the recall of Baseline(Generic) at 1 FPPI. This shows that
it is worthwhile to run the detector adaptation algorithm whenever we have a new scene
and we want to automatically generate a much better detector than the generic detector.

5.5.4.2 Comparison with state-of-the-art

This is shown is Figure 5.5 (a) & (b) for CUHK and MIT datasets respectively. For CUHK
dataset, our non-iterative algorithm Proposed clearly outperforms all the state-of-the-art
iterative self-training approaches, Wang(CVPR12), Wang(CVPR11) and Nair(CVPR04),
which require a manually set number of iterations to reach their peak performance given
in the graphs.

For the MIT Traffic dataset, Proposed competes well with Wang(CVPR12) and is
better than both Wang(CVPR11) and Nair(CVPR04). Unlike in CUHK dataset, one of the
reasons for Proposed not (clearly) outperforming Wang(CVPR12) may be that the MIT
Traffic scene has more clearly defined and distinct paths for vehicles and pedestrians and
since Wang(CVPR12) uses this information during the adaptation stage, their performance
in this dataset is relatively better than their performance in the CUHK dataset. What is
more interesting, however, is that even though our approach does not require and make
use of this assumption (i.e. hand-labelling of pedestrian and vehicle paths), it can compete
well with their approach which uses a lot of more cues and heuristics and has many more
parameters to tune.

In both datasets, Proposed is significantly better than Nair(CVPR04) showing that
our algorithm, despite using background subtraction in a major way, has a much higher
performance due to it being a novel combination of bounding box proposal, initial verifi-
cation, spatio-temporal verification and expansion by tracking.
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5.5.4.3 Comparison with human supervision

The performance curves for detectors trained with varying amounts of human supervi-
sion is shown in Figure 5.5 (c) & (d). For CUHK, Proposed outperforms all the detec-
tors trained with manual human supervision including the one that was trained with 350
frames worth of manual annotation. For MIT, similar observations can be made. How-
ever, as the number of frames that are manual annotated increases to a sufficient number,
it is expected that Human supervision(X) may reach or exceed the performance of
Proposed.

5.5.4.4 Effect of throwing away the source dataset

Our algorithm does not require the source dataset when training the scene-specific detec-
tor. The effect of including the source data is shown in Figure 5.5 (e) & (f). It can be
observed that for both datasets, not incorporating the source dataset does not have any
negative effect on the performance; in fact it even slightly improves the performance as
compared to when incorporating the source dataset. This observation is consistent with
the intuition that adding the source dataset is akin to trying to do well on both the generic
dataset and target scene, with the net result that the scene-specific detector is less well
tuned to the target scene.

5.5.4.5 Effect of training with another type of classifier

To show that our algorithm can naturally incorporate any type of classifier, we conduct
an experiment in which the proposed domain adaptation algorithm is performed but this
time, rather than training a linear SVM near the end of the domain adaptation, a Random
Forest [12] is used. We demonstrate the result on the MIT Traffic dataset and is shown
in Figure 5.6. It can be observed that the performance is worse when a Random Forest
is used as the classifier. This may be because HOG features have a very high number
of dimensions (and sparse) and Random Forests have been shown (e.g. in [98, 103]) to
overfit for this type of data.

5.5.5 Analysis of Failure Modes

As discussed in Section 5.5.4.1, the scene-specific detector generated by our proposed
domain adaptation algorithm significantly outperforms the generic detector and this shows
the effectiveness of our proposed algorithm. Moreover, as discussed in Section 5.5.4.3,
our domain adaptation algorithm even outperforms manual supervision with hundreds of
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Figure 5.6: Effect of training with a Random Forest.

frames worth of manual supervision and Figures 5.5 (c) & (d) show that the performance
of the manually supervised scene-specific detector as the number of manually supervised
frames increases seems to be saturating.

These observations strongly suggest that with the proposed algorithm in this chapter,
we have probably reached a point close to what is maximally achievable with the “power”
of domain adaptation (i.e. the highest performance of what can be achieved with just
domain adaptation given the same feature extraction and classifier type) because a scene-
specific detector obtained by manual supervision gives the upper bound performance of
the detector (whereas the generic detector gives the lower bound of what is achievable).

Furthermore, as has been noted a few times (including in Section 4.4.6), the scope
of the thesis is domain adaptation (i.e. relative improvement of the adapted detector over
the (original) generic detector given the same feature extraction mechanism and classifier
type), not on absolute detection performance.

Therefore, it is then evident that any further shortcomings of the resulting scene-
specific detectors (whether they are the outputs of our domain adaptation algorithms or
they are trained with manual supervision in the target dataset) are mostly due to the inher-
ent weaknesses associated with the combination of the feature extraction algorithm and
the classifier type. And investigating this (i.e. pure pedestrian detection) is beyond the
scope of this thesis.

However, to illustrate some representative detection failure cases (perhaps to serve as
a motivation for researchers working in the field of pedestrian detection), we randomly
sample some false positives and false negatives of the scene-specific detector and extract
the patches corresponding to them and visualise them using HOGgles [109]. These are
shown in Figures 5.7 and 5.8. As can be seen, most of the false positives actually do



Chapter 5 91 Efficient Non-iterative Adaptation

look like pedestrians in the HOG feature space and false negatives often do not resemble
pedestrians in the HOG space.

The development of more powerful feature extraction algorithms and classifiers in
the future will give rise to better pedestrian detectors; one of the advantages of our pro-
posed domain adaptation algorithm is that it can naturally incorporate any combination
of feature extraction and classifier type. And it can be expected that the proposed domain
adaptation can then boost the performance of these more powerful generic pedestrian de-
tectors to result in even better scene-specific pedestrian detectors. This is an open area of
research.

Another open area of research is the domain adaptation of pedestrian detectors to
scenes that are very crowded (such as shopping malls that are very busy). The domain
adaptation algorithm presented in this chapter would not work well in this kind of scenario
due to the overwhelming majority of the background proposals coming from wrongly
connected foreground blobs and also because of short-term tracking errors in such highly
crowded scenes. In addition, the proposed algorithm can also be sensitive to large camera
movements.
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(a) False positives (b) False negatives

Figure 5.7: Samples of false positives and false negatives in the CUHK Square dataset.
Among the three columns, the first column represents the patch associated with the de-
tection, the second column is the visualisation using HOGgles [109] and the third column
shows the visualisation of HOGs.
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(a) False positives (b) False negatives

Figure 5.8: Samples of false positives and false negatives in the MIT Traffic dataset.
Among the three columns, the first column represents the patch associated with the de-
tection, the second column is the visualisation using HOGgles [109] and the third column
shows the visualisation of HOGs.
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5.6 Conclusion

In this chapter, we propose an efficient and automatic non-iterative algorithm that adapts
a generic detector to a specific scene given only the unlabelled video of the scene. The
algorithm outputs a scene-specific detector that performs much better than the generic
detector and performs as well as fully supervised detectors trained on hundreds of frames
of manual annotations. Moreover, experimental results show that the algorithm outper-
forms state-of-the-art approaches on two challenging datasets. The scene-specific detec-
tor generated by our algorithm could be used as a building block for high level scene
understanding or to improve tracking-by-detection applications.



Chapter 6

Weakly Supervised Detector Training
by Unsupervised Prior Learning and
Cue Fusion

6.1 Overview

The growth in the amount of collected video data in the past decade necessitates auto-
mated video analysis for which pedestrian detection plays a key role. Training pedestrian
detectors using supervised machine learning techniques requires tedious manual annota-
tion of pedestrians in the form of precise bounding boxes.

In the previous two chapters, we have investigated and proposed methods that adapt
generic pedestrian detectors to specific videos. This has benefits in obtaining scene-
specific pedestrian detectors with minimal human supervision by exploiting readily avail-
able generic datasets. In this chapter, we approach reducing human supervision from a
different angle: we ask the question of reducing manual annotation effort when there are
no such generic datasets to exploit.

We tackle this by proposing a novel weakly supervised algorithm to train pedestrian
detectors for videos that requires annotations of only estimates of centres of pedestrian
profiles (as shown in Figure 6.1) instead of the standard bounding box annotation used in
most state-of-the-art research [5, 24, 25, 27, 29, 33, 42, 82]. This allows for an easier and

95
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faster annotation compared to bounding box annotation.
Our algorithm makes use of a pedestrian prior learnt in an unsupervised way from the

video and this prior is fused with the given weak supervision information in a principled
manner.

We show on publicly available datasets that, despite the weak supervision, our al-
gorithm performs comparably with bounding box supervision (termed in this chapter as
strong supervision) despite having a much lower cost (measured in terms of the time it
takes to complete the annotation). To be more precise, our weakly supervised algorithm
reduces the cost of manual annotation by over four times while achieving similar perfor-
mance as pedestrian detectors trained with bounding box annotations.

Figure 6.1: Strong versus weak annotation (best viewed in colour). On the left is the
standard way of annotating pedestrians for training a pedestrian detector. On the right is
the weak supervision (only approximate centres of pedestrians) required by our proposed
algorithm. Note that pedestrians are of different sizes in the video due to projective distor-
tion and hence our algorithm has to cope with both noisy locations and unknown scales.
Weak supervision on the right is much faster and easier for a human annotator than the
strong supervision on the left.
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6.2 Contributions

We summarise the key contributions for this chapter as follows:

1. A weakly supervised training algorithm that makes use of approximate centre loca-
tion annotation for training pedestrian detectors for videos.

2. Unsupervised learning of a pedestrian prior for a given video.

3. Combining cues from the unsupervised learnt prior and weak supervision in an
optimization framework.

4. The algorithm works with low resolution videos that do not allow accurate part-
based modelling and discovery, and that have multiple objects of varying sizes in
each frame.

5. The algorithm is not sensitive to low-level segmentation unlike many state-of-the-
art weak-supervision approaches using Multiple Instance Learning.

6. The approach is efficient since it does not require jointly solving all the weak su-
pervisions.

6.3 Our Approach

An overview of the algorithm is illustrated in Figure 6.2. Let V= [I1, I2, . . . , IN ] be a given
video of N frames. Let Sweak = {cc1,cc2, . . . ,ccM} be a set of M given weak supervisions,
where a weak supervision, cci = [ccx

i ,ccy
i ,ccn

i ], is a three element vector where ccn
i gives

the frame number in V associated with cci, and ccx
i and ccy

i give the x-coordinate and y-
coordinate (in image-plane) respectively corresponding to the approximate centre location
of a pedestrian in frame ccn

i of V.
The goal is to obtain a pedestrian detector given only Sweak without being provided

any bounding box annotations (which the traditional supervised training requires). Our
algorithm is made up of three stages.

In the first stage, we learn a pedestrian prior in an unsupervised way using knowl-
edge that can be automatically extracted from V. In particular, for any video captured
with a static uncalibrated camera, the dynamic background of the scene can be effectively
modelled and foreground objects can be detected and extracted. Although these extracted
foregrounds are usually very noisy, by letting the system observe a sufficiently long du-
ration of V, considering all the extracted foregrounds jointly and generalising over them
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Figure 6.2: (A) shows the standard way of training pedestrian detectors. In comparison,
(B) illustrates the overview of our proposed algorithm.

(in an offline process), the system can get a general idea and automatically learn about
interesting objects in the scene associated with V without even attempting to explicitly
distinguish between different object categories. This gives us a scene-specific general ob-

ject classifier which could also be from another perspective be interpreted as a pedestrian

prior.
More specifically, the pedestrian prior can be represented as P(pedestrian|patch), i.e.

given any patch in V, the pedestrian prior gives the prior probability1 that the given patch
depicts a pedestrian.

Due to noise and inaccuracies in the background modelling and subtraction process
and due to the fact that this prior has been learnt using all classes of foreground objects in
the scene, the pedestrian prior is error prone and would give high probabilities not only for
pedestrians but also other object categories such as vehicles. However, we do not make
any hard decisions at this stage and any errors and uncertainties in the pedestrian prior are
resolved in the next stage using Sweak.

1It is the probability or belief before seeing any (weak) supervision.
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The second stage involves an optimization framework with an objective function that
is a mixture of two terms:

1. The score of the pedestrian prior obtained in the first stage.

2. The agreement with the centres Sweak.

We perform the optimization independently for each centre cci ∈ Sweak. Formulating
in this way is very efficient compared to having to solve them jointly. After optimizing
each weak supervision annotation (described in Section 6.3.2), we automatically obtain a
bounding box annotation corresponding to the weak supervision.

Therefore, the second stage is in essence automatically converting the set of weak
centre annotations Sweak to a set of bounding box annotations which are represented by
Sbbox = {bb1,bb2, . . . ,bbM}where bbi = [bbx1

i ,bby1
i ,bbx2

i ,bby2
i ,bbn

i ] is a 5-element vector
with bbn

i denoting the frame number in V associated with bbi, bbx1
i and bby1

i giving the x
and y coordinates (in image-plane) respectively of the upper left corner of the rectangle
corresponding to the bounding box annotation and bbx2

i and bby2
i representing the x and y

coordinates of the bottom right corner of the bounding box.
After obtaining Sbbox, we can now use any supervised learning algorithm to train a

pedestrian detector. This is the third stage.
We formalise our approach in Algorithm 6.1 and explain it in detail in the coming

sections.

6.3.1 Unsupervised Pedestrian Prior Learning

For a given video V, a pedestrian prior, Cp :RNbase→ [0,1], is learnt in an unsupervised
way, where Nbase is the length of the feature vector input to the pedestrian prior and Cp

outputs the (prior) probability that the given feature vector is a pedestrian. Let a feature
extraction function be H : RNr×Nc×3 → RNbase where Nr and Nc are the number of rows
and columns of an image patch and Nbase is the length of the resulting feature vector.

The method for learning Cp is outlined in Algorithm 6.2 and we describe the steps of
the algorithm below.

Firstly, background subtraction is performed for each frame Ii ∈ V, followed by Con-
nected Component Analysis (CCA). CCA gives a set of the bounding boxes correspond-
ing to the connected components which are stored in a set B.

Although any background subtraction technique could be used, since the unsupervised
prior learning stage is offline and does not need real-time processing, a highly accurate and
robust yet reasonably fast background subtraction algorithm (such as [116]) is practical.
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Algorithm 6.1 Overview of the weakly supervised training
Input: Video V and weak supervision Sweak
Output: Scene-specific pedestrian detector, Ct

Cp← LearnPrior(V), where LearnPrior is the function to learn unsupervised pedestrian
prior. Described in Algorithm 6.2.

Sbbox ← FuseOptimize(V,Sweak,Cp), where FuseOptimize is the function to convert
weak centre supervision Sweak to bounding box annotations Sbbox. Detailed in Algo-
rithm 6.3.

X+
t ←H(patches corresponding to Sbbox)

X−t ←∅
for Ii ∈ V do

Let W be the set of sliding windows on Ii
X−t ← X−t ∪H({w ∈W : w∩Sbbox =∅})

end for

(Xl
t ,Yt)←{X+

t ,X−t }

Ct ← LearnClassifier(Xl
t ,Yt)

return Ct



Chapter 6 101 Weakly Supervised Training

Algorithm 6.2 Unsupervised pedestrian prior learning
Input: Video V
Output: Unsupervised pedestrian prior Cp

Xfg
t ←∅

Xbg
t ←∅

Let Ω be an initial estimate of the scene background.

for Ii ∈ V do

Ω← UpdateBGModel(Ii,Ω)
Ifgmask← Background subtraction using {Ii,Ω}
Connected Component Analysis on Ifgmask
B←{bounding boxes of the connected blobs}

for bi ∈ B do
Xfg

t ← Xfg
t ∪{H(bi)}

end for

Let W be the set of sliding windows on Ii
W←{w ∈W : w∩B=∅}
Xbg

t ← Xbg
t ∪H(W)

end for

(X̂l
t , Ŷl

t)←{X
fg
t ,Xbg

t }
Cp← LearnClassifier(X̂l

t , Ŷl
t)

Cp← Calibrate Cp to produce valid probabilities.

return Cp

For each image patch corresponding to a bounding box bi ∈ B, we compute features
by applying the functionH (after appropriate resizing of the patch). These feature vectors
form a set Xfg

t . The feature extraction function is general and any suitable method can be
used. We use Histograms of Oriented Gradients (HOGs) features [21].

Random samples of patches from which Xfg
t is obtained are shown in Figures 6.3 and

6.4 for the CUHK Square and MIT Traffic datasets respectively.
Now, we take all the multi-scale sliding windows in each frame Ii ∈ V that do not

overlap with any bi ∈ B, resize and extract features using H, giving the set of feature
vectors Xbg

t .



Chapter 6 102 Weakly Supervised Training

Finally, since we have collected both Xfg
t and Xbg

t , we train a binary classifier Cp using
Xfg

t as the positive class and Xbg
t as the negative class. This classifier (i.e. function) Cp

is the pedestrian prior. The aim of Cp is simply to capture some information about the
pedestrian class. Cp implicitly captures the multi-modal distribution about objects in the
scene and obtaining Cp therefore does not require clustering and explictly discovering
foreground object categories. Cp could be any type of classifier and in our case, a linear
SVM is used.

If Cp does not output valid probabilities (such as when using an SVM), Cp should be
calibrated to produce (proper) probabilities. One such way to calibrate it by using Platt
scaling. It is essentially fitting a logistic regression on the classifier scores:

Cp(x)←
1

1+ e−(β0+β1Cp(x))
(6.1)

where β0 and β1 are scalar parameters associated with the logistic regression and can be
learnt from data and x is the feature vector of a data point that is input to the Cp.

6.3.2 Cue Fusion and Optimization

The goal here is to fuse the unsupervised pedestrian prior Cp obtained (as described in
the previous section) with the provided weak supervisions Sweak and optimize the com-
bination of these two sources of information to generate bounding box annotations Sbbox.
The technique is formally given in Algorithm 6.3 and explained below.

The set of generated bounding box annotations Sbbox is initialised to an empty set ∅.
There are M weak supervisions (i.e. |Sweak|= M) and each weak supervision cci ∈ Sweak

is optimized independently. Therefore, below, we detail the process of converting a single
weak supervision cci ∈ Sweak to a single bounding box annotation bbi ∈ Sbbox.

Firstly, we compute a large rectangular region Φ surrounding and centred at the weak
supervision [ccx

i ,ccy
i ]. This can be computed by setting for the whole video, estimates of

the widths and heights of the smallest and largest possible pedestrian in the scene. These
do not need to be accurate, can be easily determined by a human and need to be set only
once at the beginning of the algorithm.

Then, a set of K multi-scale sliding windows W= {w1, . . . ,wK} are generated within
Φ (and only windows whose widths and heights are larger than the smallest width and
height set previously are retained). Each w j ∈W is a bounding box and is defined by a
vector w j = [wx1

j ,w
y1
j ,w

x2
j ,w

y2
j ].

After generating W, we are now ready to fuse the unsupervised pedestrian prior Cp

with the weak supervision to obtain a bounding box annotation. This is done in an opti-
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Algorithm 6.3 Cue Fusion and Optimization
Input: Video V, weak supervision Sweak and unsupervised pedestrian prior Cp
Output: Bounding box annotations Sbbox

Sbbox←∅

Let {wmin,wmax,hmin,hmax} be estimates of minimum and maximum possible widths
and heights of pedestrians in V.

for i = 1 to M do

% Get info from the current weak supervision cci ∈ Sweak %
cci = [ccx

i ,ccy
i ,ccn

i ]

% Get a large enough rectangular region surrounding current weak supervision %
Φ← [ccx

i −wmax/2,ccy
i −hmax/2,ccx

i +wmax/2,ccy
i +hmax/2]

W← get multiscale sliding windows, larger than wmin and hmin, in the region Φ. W is
a set of K bounding boxes specified by {w1, . . . ,wK} where w j = [wx1

j ,w
y1
j ,w

x2
j ,w

y2
j ]

is a vector denoting the x and y coordinates of the top-left (wx1
j and wy1

j ) and the
bottom-right (wx2

j and wy2
j ) corners of the bounding box w j.

Let N (w) be a function, N : R4 → R, given by: N (w) =
1

(2π)n/2|Σ|
1
2

exp
(
−1

2 (G(w)−µ)T
Σ−1 (G(w)−µ)

)
where µ = [ccx

i ,ccy
i ], Σ =

[
3 0
0 3

]
and G(w) =

[
wx1+wx2

2 , wy1+wy2
2

]
.

ŵ = arg max
w∈W

Cp(H(w))

∑
w∈W
Cp(H(w))

+
N (w)

∑
w∈W
N (w)

bbi← [ŵx1, ŵy1, ŵx2, ŵy2,ccn
i ] where bbi ∈ Sbbox

end for

return Sbbox
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mization framework for which the objective function is essentially a combination of two
terms:

1. The appearance term provided by the pedestrian prior Cp: for a candidate window
w ∈W, the appearance term determines how likely the image patch corresponding
to w is a pedestrian.

2. The spatial-scoring term provided by the weak supervision: for a candidate win-
dow w ∈W, the spatial term gives the closeness of the centre of w to the weak
supervision centre [ccx

i ,ccy
i ].

We seek the best window ŵ ∈W such that ŵ is scored highest by the combination of
these terms in the objective function as given below:

ŵ = arg max
w∈W

Cp(H(w))

∑
w∈W
Cp(H(w))

+
N (w)

∑
w∈W
N (w)

(6.2)

The function N : R4→ R, gives the likelihood of a window w to be consistent with
the weak supervision and is defined as:

N (w) =
1

(2π)n/2 |Σ|
1
2

exp
(
−1

2
(G(w)−µ)T

Σ
−1 (G(w)−µ)

)
(6.3)

where µ = [ccx
i ,ccy

i ], Σ =
[

3 0
0 3

]
and G(w) =

[
wx1+wx2

2 , wy1+wy2
2

]
. G is a function, G : R4→

R2, to get the centre coordinates of a bounding box w.
The terms in the denominator of the optimization function are normalisation terms to

make sure the relative weighing of the two terms in the objective function are equal.
Informally, the optimization objective prefers w ∈W that is scored highly by Cp but

is penalised the further the w is from the weak supervision centre [ccx
i ,ccx

i ].
The function N is actually a bivariate Gaussian distribution with the mean µ at the

weak supervision centre and the covariance Σ is fixed a priori. The function allows for
uncertainty and noise in the weak supervision annotation process. If the values in the
covariance matrix Σ are too large, then the Gaussian weighing function would be too flat
and it would fail to penalise bounding boxes that are far from [ccx

i ,ccy
i ]. In contrast, if

the values are too small, then only the bounding boxes who centres are almost exactly the
same as the centre supervision would be allowed. This would then result in suboptimal
results when the centre supervision is noisy. The Σ is fixed to:

Σ =

[
3 0
0 3

]
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before starting any experiments since it seems to be a set of reasonable values. The
Gaussian function should penalise the same in any direction which is why a spherical
covariance is used. We have not changed or manually tuned these values for any of
the experiments, yet it turns out that this simple spherical covariance gives good results.
Visualisation of this spatial penalty term is illustrated in Figures 6.5 and 6.6.

6.3.3 Training the Scene-specific Detector

At the end of the cue fusion and optimization discussed in Section 6.3.2, a set of bounding
box annotations, Sbbox, for the target video, V, is obtained.

In order to get the scene-specific positive data X+
t , the patches corresponding to Sbbox

are cropped out and feature extraction function is run on each of the patches (after appro-
priate resizing). These feature vectors make up X+

t .
The scene-specific negative data X−t are obtained in a similar fashion except that

patches are cropped out from regions that do not intersect with Sbbox.
A scene-specific pedestrian detector Ct can now be trained using X+

t and X−t . Any
type of classifier can be used. We (again) use linear SVM for simplicity. Not only the
classifier type but the feature extraction function is also general and it does not have to be
the same as the one used during the unsupervised prior learning.
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Figure 6.3: CUHK Square dataset: Random samples of patches corresponding to fore-
ground objects which form Xfg

t (after feature extraction). Generalising (i.e. learning) over
these examples serves as a pedestrian prior for the CUHK Square scene.
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Figure 6.4: MIT Traffic dataset: Random samples of patches corresponding to foreground
objects which form Xfg

t . Generalising (i.e. learning) over these examples serves as a
pedestrian prior for the MIT traffic scene.
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Figure 6.6: Visualisation of 100 samples from the bivariate normal distribution with mean
µ at the weak supervision centre and diagonal covariance matrix Σ =

[
3 0
0 3

]
overlapped on

some snippets of frames (a-f).
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6.4 Experimental Results

We have used the challenging CUHK Square [110] and MIT Traffic [111] video datasets
described in Chapters 4 and 5. However, this chapter, unlike Chapters 4 and 5, is tackling
the problem of weakly supervised learning and not domain adaptation and hence there is
no notion of “source dataset” and therefore the INRIA dataset is not involved in any of
the experiments.

For each video dataset, we split it to two equal halves. During weakly-supervised
training (including unsupervised prior learning), we only use the first half. The second
half is kept purely for evaluating the resulting pedestrian detectors and the same protocol
is used for evaluation as in Chapter 4 and Chapter 5, that is:

• 100 uniformly sampled frames annotated with groundtruth bounding boxes are used
for evaluation.

• Recall-FPPI (False Positives Per Image) curves are used for performance compari-
son.

• PASCAL 50% overlap criterion [31] is used to decide whether the detected bound-
ing boxes are correct with respect to the groundtruth bounding boxes.

We perform three different types of experiments on each dataset:

1. The pedestrian detector obtained by our weakly supervised algorithm.

2. The detector obtained by strong supervision (manual bounding box annotation).

3. The detector corresponding to the unsupervised prior (as described in Algorithm 6.2).

These experiments are respectively named Weak supervision, Strong supervision and
Unsupervised prior in the curves shown in Figure 6.7. In addition, the cost comparison
between the weak and strong supervisions is shown in Figure 6.8.

As illustrated, the detection performance of the proposed algorithm closely matches
that of the strong supervision. Yet, the time it took to manually annotate training data
for the proposed algorithm was less than one quarter of the time taken for the strong
supervision.

This means that our algorithm reduces the manual human annotation effort by over
4 times to get the same performance as the standard strongly supervised training in lit-
erature. We also evaluated unsupervised prior in order to show the effectiveness of our
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fusion and optimization framework. The unsupervised prior alone performs poorly; how-
ever, when fused with the weak supervision, the resulting detector has a much higher
performance than the unsupervised prior.

The reason for the proposed algorithm performing very slightly lower than the strong
supervision may be because of some minor inaccuracies in the generated bounding boxes
(the output of the cue fusion and optimization), which result in very small bounding
box misalignments (to the actual pedestrians) compared to strong supervision (where the
bounding boxes are manually given by humans resulting in less such alignment errors).

There are a number of weaknesses associated with the proposed method in this chap-
ter. Firstly, although the optimization algorithm automatically infers pedestrian scales as
part of the optimization, there is still some implicit assumption that the range of these
scales should not be too large. This can be improved by making the covariance of the
spatial penalty term to depend on the (unknown) scale of the pedestrian. Secondly, the
proposed may not work very well in highly crowded scenes where pedestrians occlude
each other to a large degree. Moreover, it is important to note that although we have
shown that the proposed weakly supervised method can reduce the manual annotation ef-
fort by over four times, a more rigorous study would be required to give a more reliable
estimation of the expected cost saving.
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Figure 6.7: Detection performance curves for CUHK (left) and MIT (right)
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6.5 Conclusion

We have proposed a novel weakly supervised learning algorithm for training pedestrian
detectors for videos. The algorithm consists of learning an unsupervised prior using un-
labelled data in the video and then fusing the prior with the weak supervision in an op-
timization framework to generate bounding box annotations. We have shown that the
weakly supervised algorithm can reduce the amount of human annotation effort by over
four times without sacrificing the accuracy of the resulting detector.
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Conclusion and Future Work

7.1 Overall Discussion

In Chapters 4, 5 and 6, we have proposed three different algorithms with the goal of min-
imising human effort in obtaining scene-specific pedestrian detectors. In each of these
chapters, we have shown the effectiveness of the proposed algorithms by comparing with
various relevant baselines and state-of-the-art methods. We now compare the contribu-
tions across these chapters and discuss the connections and relative performances among
them.

Figure 7.1 shows the comparisons. From the performance curves, the following ob-
servations could be made.

Comparing between the two domain adaptation methods (i.e. Contrib 1 and Contrib
2), Contrib 2, which is the simple and efficient algorithm that makes effective use of
cues in videos, performs much better than the one (i.e. Contrib 1) that explicitly models
and learns the manifold.

The unsupervised domain adaptation method Contrib 2 also outperforms the weakly
supervised learning approach (Contrib 3) in both of the datasets. This shows that the
domain adaptation algorithm Contrib 2 is highly effective considering that it does not

require any type of supervision (either weak or strong) in the target scene.

114



Chapter 7 115 Conclusion and Future Work

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positives Per Image

R
e
c
a
ll 

R
a
te

CUHK dataset. Comparison between contributions

 

 

Contrib 1 (Deep Feature Learn)

Contrib 2 (Efficient Cues)

Contrib 3 (Weakly Supervised)

(a)

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positives Per Image

R
e
c
a
ll 

R
a
te

MIT dataset. Comparison between contributions

 

 

Contrib 1 (Deep Feature Learn)

Contrib 2 (Efficient Cues)

Contrib 3 (Weakly Supervised)

(b)

Figure 7.1: Comparison of the main novel contributions in the thesis. (a) is for the CUHK
Square dataset and (b) is for the MIT Traffic dataset. Contrib 1 corresponds to the
contribution in the Chapter 4 of the thesis, Contrib 2 is the contribution in Chapter 5
and Contrib 3 is for Chapter 6.
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The weakly supervised learning approach Contrib 3 however outperforms Contrib
1 on both datasets. Overall, the weakly supervised learning algorithm (Contrib 3) per-
forms quite well in both of the datasets. This is useful in situations where a generic dataset
(or detector) is not available.

7.2 Summary of Strengths and Weaknesses, and Recom-
mendations

The summary of the strengths and the weaknesses of the methods presented in Chap-
ters 4, 5 and 6 is shown in Table 7.1. Based on these strengths and weaknesses, we now
make some recommendations on the best way to choose the proposed methods in practical
situations.

If the target dataset (i.e. domain) is a video captured with a static camera, it is best to
use the non-iterative self-training algorithm proposed in Chapter 5 because it makes max-
imum use of cues available in video, resulting in the highest domain adaptation accuracy.
Moreover, not only it is efficient and fast during training (i.e. during domain adaptation),
it is also very fast at test time since there is no need to perform expensive feature projec-
tion (as required by the domain adaptation algorithm using deep learning in Chapter 4).
In addition to this, if there is a generic detector but if the corresponding generic dataset
is not available, the non-iterative self-training method (proposed in Chapter 5) should be
used since the algorithm in Chapter 4 requires the generic dataset to be present.

If smooth spatio-temporal constraints cannot be reliably exploited in the target domain
(either due to the video camera recording at very low frame rates, due to the presence of
sufficiently large camera movements or due to the fact that the target domain is a set
of static image collections with no temporal connections), we would recommend using
proposed domain adaptation using deep learning. However, with this approach, if faster
pedestrian detection is desired, we would recommend that during test time, rather than
exhaustive sliding window detection, some other methods (such as 3D or ground plane
information) should be used to limit the the number of sliding windows that need to be
evaluated.

Finally, in a situation where neither the generic dataset nor the generic detector is
present, the weakly-supervised learning approach presented in Chapter 6 should be used.
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Chap Strengths Weaknesses
4 • Does not require background sub-

traction or tracking. So it is not
affected by the errors in these pro-
cesses.

• Can work for static images as the
target domain; does not require it to
be a (continuous) video.

• Requires feature projection at test
time. This can be expensive for a
the sliding window detector where
the feature projection and the clas-
sifier need to be evaluated on hun-
dreds of thousands or even millions
of sliding windows for each frame
in the video.

• Slow domain adaptation (i.e. slow
training); most of the time is taken
by feature/manifold learning. Al-
though the speed can be improved
by implementing the deep learning
on GPUs, this is not trivial and this
does not work across all types of
GPUs.

• The resulting scene-specific detec-
tor attempts to do well on both
the generic dataset and the target
dataset. Intuitively, better domain
adaptation performance could be
achieved by focussing to do well
only on the target dataset.

5 • Highest domain adaptation perfor-
mance (i.e. higher than the algo-
rithm in Chapter 4 and state-of-the-
art works).

• Does not require feature projection
at test time. Therefore, very fast at
test time.

• Fast and efficient during domain
adaptation. Can be parallelized
non-trivially.

• Does not require the generic dataset
during adaptation; just the generic
detector is sufficient. This is ad-
vantageous in situations where the
generic dataset is large and there-
fore costly to transmit to various
sites for domain adaptation.

• May not work well for very
crowded scenes such as in densely-
populated shopping malls due to
too large a number of background
proposals coming from wrongly
connected foreground blobs and
short-term tracking errors.

• May be sensitive to large camera
movements.

6 • Does not require the generic dataset
or the generic detector to generate a
scene-specific pedestrian detector.
Only requires the target scene. This
is advantageous in situations where
the generic dataset/detector is not
available for some reason.

• Requires (weak) supervision in the
target scene in contrast to the
domain adaptation approaches (in
Chapters 4 and 5) that do not re-
quire any supervision in the target
scene.

• Although the optimization algo-
rithm automatically infers pedes-
trian scales as part of the optimiza-
tion, there is still some implicit as-
sumption that the range of these
scales should not be too large.

Table 7.1: Summary of the strengths and weaknesses of the proposed methods in Chap-
ters 4, 5 and 6.
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7.3 Conclusion

In this thesis, three main novel algorithms have been proposed to generate scene-specific
pedestrian detectors for video scenes. These three contributions encompass two machine
learning paradigms: domain adaptation and weakly supervised learning.

The first and second contributions are unsupervised domain adaptation methods which
tune a generic pedestrian detector trained on a (high-resolution) image dataset to specific
(low-resolution) video scenes. These two domain adaptation algorithms utilise the knowl-
edge available in a generic dataset and do not require any labelled data in the target scene.
We showed that the proposed algorithms outperform baselines and state-of-the-art algo-
rithms.

The third contribution is a weakly supervised learning algorithm that requires su-
pervision in the target dataset albeit a “weaker” and easier form of supervision, namely
approximate centre locations of objects. This method is beneficial when a generic dataset
is not readily available. Despite requiring much less supervision labour, the method per-
forms almost on par with traditional strong supervision in the form of precise bounding
box annotation.

All the proposed algorithms have been evaluated on two very challenging video datasets
that consist of multiple classes of small objects including pedestrians and vehicles. We
have also compared the proposed algorithms with each other and discussed the results.

7.4 Summarised Answers to Research Questions

In this section, we set out to summarise the answers to the research questions that were
initially posed in Section 1.2.

We have shown that detector adaptation for pedestrian detection can be performed by
using only the manifold assumption of data. Using the algorithm proposed in Chapter 4,
deep learning can be effectively used for detector adaptation for videos. Our proposed al-
gorithm outperforms a baseline and a state-of-the-art algorithm that make use of a similar
manifold assumption.

In Chapter 5, we have shown that by using spatio-temporal cues and making effective
use of information available from videos, we can simplify the job of domain adaptation
and have a simple and efficient system that gives superior performance over pure manifold
learning approaches that do not use such cues.

We have shown in Chapter 5 that if a generic dataset is not available and domain
adaptation cannot be performed and therefore supervision has to be given in the target
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scene, one of the faster ways is to annotate only approximate centres of objects rather
than the standard bounding boxes. We have shown that for videos, we can learn useful
priors from the scene and use them in an efficient optimization framework to convert
the given weak supervision to strong supervision. This results in detectors that performs
nearly as well as traditional strong supervision, yet the proposed weak supervision is over
four times faster than traditional supervision.

7.5 Limitations

There are a few limitations associated with the proposed methods.

• The algorithms proposed in Chapters 5 and 6 only work with videos recorded using
static cameras. Although this covers a very large range of scenarios in real life,
it would be interesting to explore domain adaptation methods for scenes requiring
dynamic cameras such as networks of moving surveillance cameras.

• For biased sampling algorithm in Chapter 4, there may be too much bias towards the
false positives of the detector and this may be undesirable. The sampling process
would accordingly miss other types of patches that the detector can correctly reject
as non-pedestrian.

• In Chapter 4, the layer size of the deep network architecture decreases by a factor of
two until the bottleneck layer is reached. Although this is a reasonable assumption,
there is no evidence that this rate of decrease is optimal.

• In Chapter 6, the covariance of the bivariate normal distribution used to penalise
sliding windows that are far from the weak supervision centres is fixed regardless of
the scale of the windows. However, it may make more sense to vary the covariance
depending on the scale of the windows and doing so might give better results.
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7.6 Future Work

In the future, it would be interesting to extend the current work in several directions as
outlined below.

Firstly, it would be interesting to investigate the effects of domain adaptation for dif-
ferent views of the same scene. For example, for a traffic intersection with videos recorded
from different cameras that are capturing different views and angles of the same place, it
would be interesting to characterise how much domain adaptation is required between
these different recordings, as compared to totally different scenes and places.

Currently, our weakly supervised learning makes use of an unsupervised prior that
gives some partial information about pedestrians in the scene. It would interesting to re-
place this unsupervised prior with a small amount of labelled data and compare the results.
Moreover, by doing this, we can lift the restriction about requiring the camera to be static.
Furthermore, gradually reducing supervision for a machine learning task is interesting in
its own right: firstly start with a very small amount of very strong supervision, then use
that as a prior to help learn with a larger amount of moderately strong supervision, then
use that as a prior for gradually weaker and weaker forms of supervision with larger and
larger amounts of data.

It would be of benefit to test our current domain adaptation algorithms using differ-
ent lengths of video during the adaptation stage and to see how the results change with
differing availability of video lengths. Moreover, it may be of interest to characterise the
minimal amount of offline video required for a successful domain adaptation.

For the algorithm proposed in Chapter 5, instead of using background subtraction and
Connected Component Analysis for bounding box proposal generation, there is a possibil-
ity to develop more sophisticated methods based on joint spatio-temporal segmentation.

In learning an unsupervised prior for weakly supervised training of a pedestrian de-
tector in Chapter 6, it would be interesting to investigate the effects of using various
non-linear classifiers instead of a linear classifier. It would be interesting to see if this
would give a better unsupervised prior and if so, to observe how much improvement in
the final detector this better prior would make. Moreover, outlier detection may also be
useful for the unsupervised prior learning to filter out “bad” foreground objects.

Finally, it would be interesting to see the results of applying the algorithms proposed
in this thesis to object categories other than pedestrians.
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7.7 Publications

The following papers have been published in refereed conference proceedings:

1. Kyaw Kyaw Htike and David Hogg, “Efficient non-iterative domain adaptation of
pedestrian detectors to video scenes”, International Conference on Pattern Recog-

nition, ICPR, 2014.

2. Kyaw Kyaw Htike and David Hogg, “Weakly supervised pedestrian detector train-
ing by unsupervised prior learning and cue fusion in videos”, International Confer-

ence on Image Processing, ICIP, 2014.

3. Kyaw Kyaw Htike and David Hogg, “Unsupervised detector adaptation by joint
dataset feature learning”, International Conference on Computer Vision and Graph-

ics, ICCVG, 2014.
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