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Abstract  

Lean duplex stainless steels are becoming attractive for applications in oilfield 

and marine environments due to their economic advantages, very good mechanical 

properties and relatively good corrosion resistance. One such application is in the 

production of the carcass of flexible pipes. However, materials selection for such 

oilfield applications becomes more complex as a result of the interactions between 

corrosion and erosion.  Much effort has been directed towards the study of erosion-

corrosion behaviour of carbon steels and other passive alloys. However, the subject 

of erosion-corrosion of lean duplex stainless steels is still rarely reported. Moreover, 

data available in the literature on the localized corrosion resistance of the lean duplex 

stainless steels are limited to alkaline environments.  

Efforts have been made in this thesis to add to the existing data and to the 

understanding of the subject of localized corrosion and erosion-corrosion resistance 

of lean duplex stainless steels UNS S32101, UNS S32304 and UNS S82441 in 

oilfield environments.  The lean duplex alloy UNS S32101 has been studied in detail 

because of its combination of high strength and good corrosion resistance. This 

research also compared the corrosion and erosion-corrosion resistance of lean duplex 

stainless steels with standard austenitic stainless steels UNS S30403 and UNS 

S31603 as well as duplex stainless steel alloy UNS S32205. Aerated 3.5% NaCl and 

synthesized CO2-saturated oilfield brines were considered as the corrosion media. 

Extreme erosion-corrosion conditions were simulated to design for severe 

environments often encountered in sand-containing oilfield pipeline systems. 

Breakdown potentials, under static conditions, were found to be more positive in 

the aerated 3.5% NaCl than the CO2-saturated oilfield brine solution. Also, lean 

duplex stainless steels and standard austenitic stainless steels exhibited similar 

resistance in both environments. X-ray Photoelectron Spectroscopy (XPS) analysis 

of the passive film indicated higher chloride incorporation in the CO2-saturated 

oilfield brine. This, in addition to lower pH of the CO2-saturated oilfield brine 
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appeared to be the reason why the breakdown potential was more negative in this 

environment.  

Erosion-corrosion results showed that lean duplex stainless steels, UNS S32101 

and UNS S32304, have higher resistance to pure-erosion damage than UNS S30403 

and UNS S32205; better erosion-corrosion resistance than UNS S30403 austenitic 

stainless steel; and equivalent erosion-corrosion resistance to UNS S32205 standard 

duplex stainless steel. There was also a correlation between the erosion-corrosion 

resistance of the alloys and the sub-surface crystallography, microstructure and phase 

transformation. This, together with repassivation kinetics of the passive film, may be 

used to explain the erosion-corrosion behaviour of UNS S32101 and UNS S30403 in 

the oilfield slurry. 

 

 

 

 

 



vii 
 

 

 

Contents 

Papers contributing to this thesis ………………………………………………….iii 

Acknowledgements……………………………………………………………….. iv 

Abstract …………………………………………………………………………..v-vi 

Chapter 1. Introduction .................................................................................... 1 

1.1 Introduction and Background of the Research .......................................... 1 

1.2 Objectives of the Research ........................................................................ 7 

1.3 Outline of the Thesis ................................................................................. 8 

Chapter 2. Fundamental Theories and Literature Review ......................... 11 

2.1 Fundamentals of Aqueous Corrosion ...................................................... 11 

2.1.1 The Corrosion Cell ......................................................................... 13 

2.1.2 Thermodynamics of Electrochemical Reactions ............................ 14 

2.1.3 The Pourbaix (E-pH) Diagram ....................................................... 16 

2.1.4 Kinetics of Electrochemical Reactions .......................................... 17 

2.2 Classifications of Corrosion .................................................................... 25 

2.2.1 Pitting Corrosion ............................................................................ 26 

2.2.2 Crevice corrosion ........................................................................... 29 

2.3 Corrosivity and Passivity ........................................................................ 29 

2.4 Polarization Curves for Passive Alloys ................................................... 31 

2.5 Repassivation of Passive Film Damaged by Mechanical Disruption 

in a Corrosive Environment .................................................................... 32 

2.5.1 Mott-Cabrera Model....................................................................... 34 

2.5.2 Sato and Cohen Model ................................................................... 35 

2.5.3 Fehner and Mott Model .................................................................. 35 

2.6 Film-Free Surface and Repassivation ..................................................... 36 

2.7 Corrosion in CO2-Saturated Oilfield Environments ............................... 38 

2.8 Marine Corrosion .................................................................................... 42 

2.8.1 Materials Used in Marine Environments ....................................... 43 

2.8.2 Microbial Influence on Marine Corrosion ..................................... 44 

2.9 Erosion .................................................................................................... 44 

2.9.1 Factors that Affect Erosion ............................................................ 45 



viii 
 

 

 

2.9.2 Erosion Models .............................................................................. 47 

2.9.3 API Guidelines for Erosion in the Oilfield .................................... 51 

2.10 Erosion-Corrosion ................................................................................... 53 

2.10.1 Factors Affecting Erosion-Corrosion .................................... 54 

2.10.2 Hydrodynamic Aspects of Erosion-Corrosion ...................... 56 

2.10.3 Material Loss in Erosion-Corrosion ...................................... 59 

2.11 The Submerged Impinging Jet Rig ......................................................... 62 

Chapter 3. Literature Review II – Duplex Stainless Steels.......................... 63 

3.1 Duplex Stainless Steels ........................................................................... 63 

3.1.1 Metallurgy of Duplex Stainless Steels ........................................... 64 

3.1.2 Standard Duplex and Super Duplex Stainless Steels ..................... 65 

3.1.3 Lean Duplex Stainless Steels ......................................................... 66 

3.1.4 Materials Used in CO2 Corrosion and Erosion-Corrosion 

Conditions ...................................................................................... 69 

3.2 Corrosion Properties of Duplex Stainless Steels ..................................... 73 

3.3 Erosion-Corrosion of Duplex Stainless Steels ........................................ 75 

3.4 Corrosion and Erosion-Corrosion Resistance of Lean Duplex 

Stainless Steels ........................................................................................ 78 

3.5 Repassivation Kinetics of the Passive Film Formed on Lean Duplex 

Stainless Steel ......................................................................................... 80 

3.6 Passive Film Chemistry and their Breakdown ........................................ 83 

3.7 Relationships between Subsurface Morphology and Erosion-

Corrosion ................................................................................................. 85 

3.8 Summary of Literature Review ............................................................... 88 

Chapter 4. Methodology ................................................................................. 91 

4.1 Introduction and Chapter Overview ........................................................ 91 

4.2 Stainless Steel Alloys Used for this Study .............................................. 92 

4.3 Brine Used for the Research ................................................................... 93 

4.4 Experimental Methods for Static Corrosion ........................................... 93 

4.4.1 Breakdown Potential Determination .............................................. 93 

4.4.2 Open Circuit Potential (OCP) and Passive Film Chemistry .......... 95 

4.5 Experimental Methods for Flow-Induced Corrosion .............................. 96 

4.5.1 Pure Erosion and Erosion-Corrosion Determination ..................... 96 



ix 
 

 

 

4.5.2 Repassivation Kinetics of the Passive Film Formed on UNS 

S32101 and UNS S30403 in a CO2-Saturated Oilfield after 

Erosion-Corrosion ........................................................................ 100 

4.6 Calibration of the Submerged Impinging Jet Rig ................................. 102 

4.6.1 Velocity Calibration ..................................................................... 102 

4.6.2 Sand Concentration Calibration ................................................... 103 

4.6.3 Calculation of Sand Flux and Impact Frequency at 50 Hz .......... 103 

4.7 Surface Analysis Equipment Used in this Research ............................. 104 

4.7.1 Scanning Electron Microscope (SEM)......................................... 104 

4.7.2 Focused Ion Beam (FIB) .............................................................. 105 

4.7.3 Transmission Electron Microscopy (TEM) ................................. 106 

4.7.4 Selected Area Electron Diffraction (SAED) Method................... 106 

4.7.5 X-ray Photoelectron Spectroscopy (XPS) .................................... 107 

4.7.6 X-ray Diffraction (XRD).............................................................. 108 

Chapter 5. Results of Static Corrosion Evaluation .................................... 111 

5.1 Introduction and Chapter Overview ...................................................... 111 

5.2 Breakdown Potential Evaluation ........................................................... 112 

5.3 Open Circuit Potential Behaviour of Lean Duplex Stainless Steels 

UNS S32101 and UNS S32304 ............................................................ 115 

5.4 Localised Corrosion .............................................................................. 116 

5.5 X-ray Photoelectron Spectroscopy (XPS) ............................................. 119 

5.6 Summary of Chapter 5 .......................................................................... 123 

Chapter 6. Results of Flow-Induced Corrosion (Erosion-Corrosion) ...... 125 

6.1 Introduction and Chapter Overview ...................................................... 125 

6.2 Results of Pure Erosion and Erosion-Corrosion ................................... 126 

6.2.1 Weight Loss Measurement in Aerated 3.5% NaCl Solution........ 126 

6.2.2 Corrosion Current under Impinging Conditions .......................... 128 

6.2.3 Synergy between Corrosion and Erosion ..................................... 131 

6.3 Results of Erosion-Corrosion in a CO2-Saturated Oilfield 

Environment at 15 m/s and 500 mg/L Sand Loading ........................... 135 

6.3.1 Weight Loss Measurement in a CO2-Saturated Oilfield 

Environment ................................................................................. 135 

6.3.2 Anodic Polarisation of the Alloys under Sand Impingement in 

a CO2-Saturated Oilfield Environment ........................................ 136 



x 
 

 

 

6.4 Pure Erosion and Erosion-Corrosion of UNS S32101 and UNS 

S30403 at 24 m/s and 500 mg/L Sand Loading in CO2-Saturated 

Oilfield Brine ........................................................................................ 137 

6.4.1 In-situ Corrosion Current and the Synergy between Corrosion 

and Erosion under High Impingement Condition ........................ 138 

6.5 Summary of Chapter 6 .......................................................................... 142 

Chapter 7. Sub-Surface Properties of UNS S32101 and UNS S30403 

after Erosion-Corrosion .............................................................................. 143 

7.1 Introduction and Chapter Overview ...................................................... 143 

7.2 Hardness Profile and the SEM Images of the Damaged Surface .......... 145 

7.3 X-ray Diffraction (XRD) Pattern of the Damaged Surface .................. 149 

7.4 Focused Ion Beam (FIB) and SEM Images of UNS S30403 after 

Erosion-Corrosion ................................................................................. 150 

7.5 Focused Ion Beam (FIB) and SEM Images of UNS S32101 after 

Erosion-Corrosion ................................................................................. 153 

7.6 Bright Field TEM Images of UNS S30403 ........................................... 155 

7.6.1 Phase Transformation from Austenite (FCC) to Martensite 

(BCT) ........................................................................................... 157 

7.7 Bright Field TEM Images of UNS S32101 ........................................... 158 

7.8 Summary of Chapter 7 .......................................................................... 159 

Chapter 8. Repassivation Kinetics of the Passive Film Formed on 

UNS S32101 and UNS S30403 in a CO2-Saturated Oilfield 

Environment Containing Sand ................................................................... 161 

8.1 Introduction and Chapter Overview: ..................................................... 161 

8.2 Theory behind the Repassivation Kinetic Method Used in this 

Research ................................................................................................ 162 

8.3 Assumptions, Particle Flux and Particle Frequency ............................. 163 

8.4 Current Noise during Erosion-Corrosion .............................................. 165 

8.5 Repassivation Index Determination ...................................................... 171 

8.6 Summary of Chapter 8 .......................................................................... 177 

Chapter 9. Discussion .................................................................................... 179 

9.1 Behaviour of the Alloys in Static Corrosion Conditions ...................... 179 

9.1.1 Aerated and CO2-Saturated Environments................................... 179 

9.1.2 Mode of Pit Propagation in Aerated and CO2-Saturated 

Oilfield Environments .................................................................. 183 

9.1.3 Effect of Manganese on Passive Film Breakdown ...................... 184 



xi 
 

 

 

9.1.4 Pitting Resistance Equivalent Number (PREN) and the 

Breakdown Potentials................................................................... 185 

9.2 Influence of the Subsurface Crystallography and Microstructure on 

Erosion-Corrosion Behaviour of UNS S32101 and UNS S30403 in 

CO2-Saturated Oilfield Environment .................................................... 187 

9.2.1 Synergy between Erosion and Corrosion ..................................... 190 

9.3 Erosion-Corrosion Behaviour of the Duplex Stainless Steels and 

Partitioning of Cr and Mo into the Ferrite Phase .................................. 192 

9.4 Influence of the Passive Film Behaviour on Erosion-Corrosion 

Behaviour of UNS S32101 and UNS S30403 in CO2-Saturated 

Oilfield Brine ........................................................................................ 194 

9.5 In-situ Corrosion Current under the Impinging Conditions. ................. 195 

9.6 Proposed Damage Mechanism under Severe Erosion-Corrosion 

Conditions ............................................................................................. 197 

Chapter 10. Conclusions and Future Work .................................................. 201 

10.1 Conclusions ........................................................................................... 201 

10.1.1 Static Corrosion ................................................................... 201 

10.1.2 Erosion-Corrosion ............................................................... 202 

10.2 Future Work .......................................................................................... 204 



xii 
 

 

 

Figures 

Figure 1.1: Offshore production system showing flexible pipes (risers and 

flowlines) (20) ................................................................................................... 3 

Figure 1.2: Flexible pipe cross-section showing inner carcass layer (21)............. 3 

Figure 1.3:  Failure of carcass of flexible pipes by mechanical collapse (23, 

24) ...................................................................................................................... 4 

Figure 1.4: Failure of carcass of flexible pipes by erosion (24) ............................. 5 

Figure 2.1: Simple corrosion cell (41) .................................................................... 13 

Figure 2.2: Electric double layer adapted from (41) ............................................ 15 

Figure 2.3: The E-pH diagram of iron in water (46) ........................................... 17 

Figure 2.4:  Energy profile adapted from (47) ..................................................... 18 

Figure 2.5: Electrochemical nature of the corrosion process .............................. 19 

Figure 2.6: Current versus overpotential polarisation plot of ferric/ferrous 

ion reaction on palladium showing both anodic and cathodic 

branches of the resultant current behaviour (48) ....................................... 21 

Figure 2.7: Total current-potential curve of acidic corrosion with 

formation of a mixed potential, Ecorr (49) .................................................... 23 

Figure 2.8: Mixed potential theory showing Tafel extrapolation, corrosion 

current and corrosion potential, adapted from (50) ................................... 24 

Figure 2.9: Types of corrosion (53) ........................................................................ 25 

Figure 2.10: A typical corrosion pits showing the hydrolysed bottom with 

depleted oxygen (55) ...................................................................................... 26 

Figure 2.11: Relationship between corrosion resistance of stainless steels 

and passive film properties (59) .................................................................... 28 

Figure 2.12: Schematics of crevice corrosion of steel in NaCl environment...... 29 

Figure 2.13: Inner and outer layers of a passive film adapted from Hakiki 

et al. (63) .......................................................................................................... 30 

Figure 2.14: Polarisation scan, no reverse scan (41) ............................................ 31 

Figure 2.15: Schematic polarisation curves of a passive alloy with a 

reverse scan (41) ............................................................................................. 31 

Figure 2.16: Scratch electrode method of studying repassivation kinetics 

(69) ................................................................................................................... 36 

Figure 2.17: A typical example of a log current versus log time for UNS 

S30403 in 0.9 M NO3- solution after a scratch test (72) .............................. 37 

Figure 2.18: Effect of flow on CO2 corrosion (78) ................................................ 39 



xiii 
 

 

 

Figure 2.19: Effect of CO2 partial pressure and temperature on CO2 

corrosion (73) .................................................................................................. 40 

Figure 2.20: Schematic diagram showing the influence of alloying elements 

on  CO2 corrosion rate (78) ........................................................................... 40 

Figure 2.21: Relationship between erosion rate and impact angles for 

ductile and brittle materials (84) .................................................................. 46 

Figure 2.22: Structure of the hydrodynamic boundary layer (107) ................... 57 

Figure 2.23: The jet impingement flow profile (107) ........................................... 58 

Figure 3.1: Optical micrograph of a typical duplex stainless steel in  

longitudinal section  (121) ............................................................................. 65 

Figure 3.2: Materials used in different corrosion regimes (128) ........................ 70 

Figure 3.3: Breakdown of total weight loss under erosion-corrosion at 

50
o
C (27) .......................................................................................................... 76 

Figure 3.4: Effect of alloying on erosion-corrosion (138) .................................... 77 

Figure 3.5 : SEM images representatives of crack propagations in (a) UNS 

S32101and (b) UNS S32205 after stress corrosion cracking tests in 

45% MgCl2, 150
o
C for 24 hours (139) .......................................................... 79 

Figure 3.6: Effects of alloying elements on repassivation kinetics of 

austenitic stainless steels (a) chromium (b) molybdenum (70) .................. 82 

Figure 3.7: FIB cross-section of UNS S31603 stainless steel after erosion-

corrosion for 1 hour in 3.5 % NaCl showing micro and nano-cracks 

beneath the impacted lip (35) ........................................................................ 85 

Figure 3.8: A low carbon CoCrMo disc rubbed  by a pin with a load of 5N 

for 30 hours (a) top layer (less than 1µm) showing nano crystalline 

structure (b) stacking fault and martensite needles about 30 µm 

below the worn surface (166) ........................................................................ 86 

Figure 3.9: Selected Area Electron Diffraction (SAED) of austenitic 

stainless steel showing the transformation from FCC to BCT crystal 

structure (a) erosion-corrosion at 7 m/s in a 3.5% NaCl slurry (35) 

(b) tribo-corrosion (pin-on-ring) in sulfuric acid (171) .............................. 88 

Figure 4.1: 3-electrode cell used for electrochemical measurement ................... 94 

Figure 4.2: Schematic diagram of how the breakdown potential was 

determined ...................................................................................................... 95 

Figure 4.3: Exit nozzle diameter and the stand-off distance ............................... 96 

Figure 4.4: The submerged impinging jet (SIJ) rig ............................................. 97 

Figure 4.5: SEM images of HST60 silica sand particles used in the jet 

impingement ................................................................................................... 99 

Figure 4.6: Sand particle distribution of the silica sand used in the jet 

impingement tests ........................................................................................... 99 



xiv 
 

 

 

Figure 4.7: Schematic diagram of the fluid jet direction and the entrained 

particles ......................................................................................................... 101 

Figure 4.8: (a) Evo MA Series Scanning Electron Microscope (Carl Zeiss 

Microscopy GmbH, Jena, Germany) available at the University of 

Leeds (185) (b) Schematic image of a typical SEM ................................... 104 

Figure 4.9: FEI Nova 200 Nano Lab (FEI Company, Hillsbrow Oregon, 

USA) available at the University of Leeds (185)(b) Schematic 

diagram of the mode of operation of FIB (186) ......................................... 105 

Figure 4.10: (a) X-ray Photoelectron Spectroscopy (XPS), VG Escalab 

250N  (Thermo VG Scientific, Wattham, MA, USA) available at the 

University of Leeds (185) (b) Basic principle of XPS ................................ 108 

Figure 4.11: Bragg's law of reflection. The diffracted X-rays exhibit 

constructive interference when the distance between paths ABC and 

A'B'C' differs by an integer number of wavelengths (λ)(189) ................. 109 

Figure 5.1: Roadmap for the experimental study .............................................. 111 

Figure 5.2: Cyclic polarization curves for UNS S32101 in aerated 3.5% 

NaCl and CO2-saturated oilfield environments at 20
o
C showing how 

the breakdown potential (Eb) is determined .............................................. 113 

Figure 5.3: Breakdown potentials of lean duplex, standard duplex and 

austenitic stainless steels in aerated 3.5% NaCl and CO2-saturated 

oilfield environment (Error bar is the spread of 3 data points) .............. 114 

Figure 5.4: Open circuit potentials for UNS S32101 and UNS S32304 in 

3.5% NaCl and CO2-saturated oilfield environment ................................ 115 

Figure 5.5: SEM images of the alloys showing lacy cover (circled) formed 

in aerated ...................................................................................................... 117 

Figure 5.6: SEM images of the alloys showing open pits (circled) formed in 

CO2 saturated oilfield environment (Scale bar = 200 µm) ....................... 118 

Figure 5.7: General XPS spectra surveys for the oxide layer formed on 

UNS S32304 stainless steel in aerated 3.5% NaCl and CO2-saturated 

oilfield brine .................................................................................................. 119 

Figure 5.8: General XPS spectra surveys for the oxide layer formed on 

UNS2101 stainless steel in aerated 3.5% NaCl and CO2-saturated 

oilfield brine .................................................................................................. 120 

Figure 5.9: Resolution of the Cl 2p spectra for UNS S32101 stainless steel 

in aerated and CO2 environment as well as the native oxide film ........... 120 

Figure 5.10: Chloride incorporated into the passive film formed on UNS 

S32101 ........................................................................................................... 121 

Figure 5.11: Chloride incorporated into the passive film formed on UNS 

S32304 ........................................................................................................... 121 



xv 
 

 

 

Figure 5.12: Resolution of the Mn 2p spectra obtained for UNS32101 

stainless steel in aerated and CO2 environments’ as well as the native 

oxide film ....................................................................................................... 122 

Figure 6.1. Roadmap for the experimental study............................................... 125 

Figure 6.2. Pure erosion (in nitrogen purged water) and total weight loss 

(in aerated 3.5% NaCl) of the alloys at 50
o
C, 15 m/s and 500 mg/L 

sand loading (Error bar is the spread of 3 data points) ........................... 127 

Figure 6.3: Pure erosion damage at 20
o
C and 50

o
C, 15 m/s and 500 mg/L 

sand loading in nitrogen purged water (Error bar is the spread of 3 

data points) ................................................................................................... 128 

Figure 6.4: Tafel plot for UNS S32101 used to determine current density 

under erosion-corrosion conditions of 15 m/s and 500 mg/L sand 

loading in aerated 3.5% NaCl; a, b, c are points 150 mV, 100 mV and 

50 mV respectively above OCP; d, e, f are points 50 mV, 100 mV and 

150 mV respectively below OCP ................................................................. 129 

Figure 6.5 Tafel plot for UNS S32205 used to determine current density 

under erosion-corrosion conditions of 15 m/s and 500 mg/L sand 

loading in aerated 3.5% NaCl; a, b, c are points 150 mV, 100 mV and 

50 mV respectively above OCP; d, e, f are points 50 mV, 100 mV and 

150 mV respectively below OCP ................................................................. 129 

Figure 6.6: Tafel plot for UNS S32304 used to determine current density 

under erosion-corrosion conditions of 15 m/s and 500 mg/L sand 

loading in aerated 3.5% NaCl; a, b, c are points 150 mV, 100 mV and 

50 mV respectively above OCP; d, e, f are points 50 mV, 100 mV and 

150 mV respectively below OCP ................................................................. 130 

Figure 6.7: Tafel plot for UNS S30403 used to determine current density 

under erosion-corrosion conditions of 15 m/s and 500 mg/L sand 

loading in aerated 3.5% NaCl; a, b, c are points 150 mV, 100 mV and 

50 mV respectively above OCP; d, e, f are points 50 mV, 100 mV and 

150 mV respectively below OCP ................................................................. 130 

Figure 6.8: In-situ corrosion current density for the alloys in aerated 3.5% 

NaCl at 15 m/s and 500 mg/L sand loading (Error bar is the spread 

of 3 data points) ............................................................................................ 131 

Figure 6.9: Components of the total weight loss for the alloys at 15 m/s and 

500 mg/L sand loading and temperature of 50
o
C (Erosion-corrosion 

in 3.5% NaCl; Pure erosion in nitrogen purged water) - (Error bar is 

the spread of 3 data points) ......................................................................... 133 

Figure 6.10: Percentage contribution of each component in erosion-

corrosion conditions at 15 m/s and 500 mg/L sand loading in aerated 

3.5% NaCl (Erosion-corrosion in 3.5% NaCl; Pure erosion in 

nitrogen purged water)- (Error bar is the spread of 3 data points) ........ 134 



xvi 
 

 

 

Figure 6.11: Weight loss measurement in a CO2-saturated oilfield 

environment at 15 m/s and 500 mg/L sand loading (Error bar is the 

spread of 3 data points) ............................................................................... 135 

Figure 6.12: Anodic polarisation for the alloys at 15 m/s and 500 mg/L 

sand loading in a CO2-saturated oilfield environment (Error bar is 

the spread of 3 data points) ......................................................................... 137 

Figure 6.13: Material loss after 4 hours at 15 m/s and 24 m/s with 500 

mg/L sand loading in CO2 environment (Error bar is the spread of 3 

data points) ................................................................................................... 138 

Figure 6.14: Tafel plot for UNS 32101 at 24 m/s and 500 mg/l sand loading 

in a CO2-saturated oilfield; a, b, c are points 150 mV, 100 mV and 50 

mV respectively above OCP; d, e, f are points 50 mV, 100 mV and 

150 mV respectively below OCP ................................................................. 139 

Figure 6.15: Tafel plot for UNS S30403 at 24 m/s and 500 mg/l sand 

loading in a CO2-saturated oilfield; a, b, c are points 150 mV, 100 

mV and 50 mV respectively above OCP; d, e, f are points 50 mV, 100 

mV and 150 mV respectively below OCP .................................................. 139 

Figure 6.16: In-situ corrosion-current density for UNS S30403 and UNS 

S32101 at 24 m/s and 500 mg/L sand loading in a CO2-saturated 

oilfield environment at 50
o
C (Error bar is the spread of 3 data 

points) ............................................................................................................ 140 

Figure 6.17: Components of the TWL for the alloys at 24 m/s and 500 

mg/L sand loading in CO2-saturated environment (Error bar is the 

spread of 3 data points) ............................................................................... 141 

Figure 6.18: Percentage contribution of each component of the total 

weight loss at 24 m/s and 500 mg/L sand loading in CO2-saturated 

environment .................................................................................................. 141 

Figure 7.1: Schematic diagram of the proposed model diagram of the near 

surface of a work-hardenable alloy under solid particle impact ............. 144 

Figure 7.2: Micro-hardness profile of the cross-section (A-A) of alloys 

after erosion-corrosion by sand in a CO2-saturated oilfield 

environment at 24 m/s and 500 mg/L sand loading (Error bar is the 

spread of 3 data points) ............................................................................... 146 

Figure 7.3: SEM images of UNS S32101 after erosion-corrosion at 24 m/s 

and 500 mg/L sand loading (1, stagnation zone, 2 transition zone, 3, 

wall jet zone) (Scale bar = 10 µm) .............................................................. 147 

Figure 7.4: SEM images of UNS S30403 after erosion-corrosion at 24 m/s 

a500 mg/L sand loading. (1, stagnation zone, 2 transition zone, 3, wall 

jet zone) (Scale bar = 10 µm) ....................................................................... 148 

Figure 7.5: XRD pattern of UNS S30403 before and after erosion-

corrosion at 24 m/s and 500 mg/L sand loading ........................................ 149 



xvii 
 

 

 

Figure 7.6: XRD pattern of UNS S32101 before and after erosion-

corrosion corrosion at 24 m/s and 500 mg/L sand loading ....................... 150 

Figure 7.7: FIB images of UNS S30403 taken from a point near the 

stagnation zone of the coupon subjected to 500 mg/L sand at 24 m/s 

in a CO2-saturated oilfield environment .................................................... 151 

Figure 7.8:  FIB images of UNS S30403 taken from the edge of the coupon 

(near the wall jet zone) subjected to 500 mg/L sand at 24 m/s in a 

CO2-saturated oilfield environment ........................................................... 152 

Figure 7.9: FIB images of UNS S32101 from the stagnation zone of the 

coupon subjected to 500 mg/L sand at 24 m/s in a CO2-saturated 

oilfield environment ..................................................................................... 153 

Figure 7.10: FIB images of UNS S32101 from the edge (near the wall jet 

zone) of the coupon subjected to 500 mg/L sand at 24 m/s in a CO2-

saturated oilfield environment .................................................................... 154 

Figure: 7.11: TEM bright field images of UNS S30403 taken from the 

stagnation zone of the alloy subjected to 500 mg/L sand at 24 m/s in a 

CO2-saturated oilfield environment ........................................................... 155 

Figure 7.12: TEM bright field images of UNS S30403 taken from the edge 

of the coupon of the alloy subjected to 500 mg/L sand at 24 m/s in a 

CO2-saturated oilfield environment ........................................................... 156 

Figure 7.13: Selected area electron diffraction (SAED) pattern of point A 

taken from the stagnation zone of UNS S30403 after erosion-

corrosion at 24 m/s and 500 mg/L sand loading showing the BCT 

rings confirming the transformation from FCC to BCT ......................... 157 

Figure 7.14: TEM bright field images of UNS S32101 taken from the 

stagnation zone of the alloy subjected to 500 mg/L sand at 24 m/s in a 

CO2-saturated oilfield environment ........................................................... 158 

Figure 7.15: TEM bright field images of UNS S32101 taken from the edge 

of the coupon subjected to 500 mg/L sand at 24 m/s in a CO2-

saturated oilfield environment .................................................................... 159 

Figure 8.1: Numerical simulation of passivation transients obtained by 

combining lateral growth (LG) and uniform growth (UG) models. 

The bold line is the combined model (66) .................................................. 163 

Figure 8.2:  Current-time variation at constant potential (-0.2 VAg/AgCl) for 

2.5 hours with 1 hour of sand impingement at 20
o
C in a CO2-

saturated oilfield environment at 24 m/s and 500 mg/L sand loading .... 165 

Figure 8.3: Current-time variation at constant potential (-0.2 VAg/AgCl) for 

2.5 hours with 1 hour of sand impingement at 50
o
C in a CO2-

saturated oilfield environment at 24 m/s and 500 mg/L sand loading .... 166 

Figure 8.4: Average maximum current density (in-situ corrosion current 

density) for both alloys at 20
o
C in a CO2-saturated oilfield 

environment at 24 m/s and 500 mg/L sand loading. ................................. 167 



xviii 
 

 

 

Figure 8.5: Average maximum current density (in-situ corrosion current 

density) for both alloys at 50
o
C in a CO2-saturated oilfield 

environment at 24 m/s and 500 mg/L sand loading .................................. 168 

Figure 8.6: Current decay for 120 seconds during repassivation after 1 

hour of sand impingement at 24 m/s, 500 mg/L sand loading and 

temperature of 20
o
C ..................................................................................... 169 

Figure 8.7: Current decay for 120 seconds during repassivation after 1 

hour of sand impingement at 24 m/s, 500 mg/L sand loading and 

temperature of 50
o
C. .................................................................................... 169 

Figure 8.8 : Current decay for 1 hour during repassivation after sand 

impingement at 24 m/s, 500 mg/L sand loading and temperature of 

20
o
C ............................................................................................................... 170 

Figure 8.9: Current decay for 1 hour during repassivation after sand 

impingement at 24 m/s, 500 mg/L sand loading and temperature of 

50
o
C ............................................................................................................... 170 

Figure 8.10: Fitted power plot on the current decay for UNS S32101 after 

sand impingement at 24 m/s, 500 mg/L sand loading and 

temperature of 20
o
C. Current decay taken for the first 120 seconds 

after the impingement stopped ................................................................... 172 

Figure 8.11: Fitted power plot on the current decay for UNS S32101 after 

sand impingement at 24 m/s, 500 mg/L sand loading and 

temperature of 50
o
C. Current decay taken for the first 120 seconds 

after the impingement stopped ................................................................... 172 

Figure 8.12: Fitted power plot on the current decay for UNS S30403 after 

sand impingement at 24 m/s, 500 mg/L sand loading and 

temperature of 20
o
C. Current decay taken for the first 120 seconds 

after the impingement stopped ................................................................... 173 

Figure 8.13: Fitted power plot on the current decay for UNS S30403 after 

sand impingement at 24 m/s, 500 mg/L sand loading and 

temperature of 50
o
C. Current decay taken for the first 120 seconds 

after the impingement stopped ................................................................... 173 

Figure 8.14: Log-log plot for the current decay during the repassivation of 

UNS S30403 at 20
o
C (Repassivation index determined from the 

straight part when growth is controlled by the high field conduction) ... 174 

Figure 8.15: Log-log plot for the current decay during the repassivation of 

UNS S30403 at 50
o
C (Repassivation index determined from the 

straight part when growth is controlled by the high field conduction) ... 174 

Figure 8.16: Log-log plot for the current decay during the repassivation of 

UNS S32101 at 20
o
C (Repassivation index determined from the 

straight part when growth is controlled by the high field conduction) ... 175 



xix 
 

 

 

Figure 8.17:Log-log plot for the current decay during the repassivation of 

UNS S32101 at 50
o
C (Repassivation index determined from the 

straight part when growth is controlled by the high field conduction) ... 175 

Figure 9.1: Model of the dissolution and film formation on (a) UNS S30403 

and (b) UNS S32101 showing enrichment of Ni at the metal-oxide 

interface of UNS S30403, adapted from Elsener et al.(190) ..................... 182 

Figure 9.2: Lacy cover formation reported by Ernst and Newman (a. 

cover;  b. interior) (221, 222); c. lacy cover formed on UNS S30403 in 

aerated 3.5 % NaCl (Figure 5.5, section 5.4) ............................................. 183 

Figure 9.3: Relationship between breakdown potentials and PREN at 20
o
C 

(Error bar is the spread of 3 data points) .................................................. 186 

Figure 9.4: Relationship between breakdown potentials and PREN at 50
o
C 

(Error bar is the spread of 3 data points) .................................................. 186 

Figure 9.5: Anodic dissolution caused by rupturing of passive film as a 

result of dislocation (69) .............................................................................. 188 

Figure 9.6: FIB images showing subsurface cracks after erosion-corrosion 

in (a) UNS S30403 used in this research and (b) UNS S31603 

reported by Rajahram et al. (35) ................................................................ 189 

Figure 9.7: Schematic diagram of sand and oxide embedded within the 

subsurface of an alloy under sand impingement ....................................... 191 

Figure 9.8: Cross section of a super duplex stainless steel UNS S32760 

after being eroded for 4 hours- Dark phase (ferrite) more eroded 

than the white phase (austenite) (205) ........................................................ 193 

Figure 9.9: Repassivation rate of stainless steels in CO2-saturated 

oilfield,(a) effect of temperature, (b) effect of alloying (8) ....................... 195 

Figure 9.10: Maximum corrosion current density recorded for the alloys 

at 24 m/s and 500 mg/L sand loading in a CO2-saturated oilfield 

(Error bar is the spread of 3 data points) .................................................. 196 

Figure 9.11: (a) A half model of the jet impingement showing the motion 

path of solid particles and fluid streamline. {(Region 1 near 

stagnation zone; high impact angle); region 2, transition zone; high 

to low impact angle;  region 3, wall jet zone; low impact angle 

Adapted from Gnanavelu (232) (b) Worn coupon showing the three 

regions ........................................................................................................... 198 

Figure 9.12: Schematic diagram of the plate and sand particle before and 

after impact at high impact angle shown the dissipation of kinetic 

energy to plastic and elastic wave ( modified from Hutchings, (231)) .... 199 

Figure 9.13: Proposed model of the cross-section of the alloy under high 

frequency impacts and at high angle of impact (region 1 and 2, 

Figure 9.11) ................................................................................................... 199 



xx 
 

 

 

Figure 9.14: Proposed model of the cross-section of the alloy under alloy 

under high frequency impacts at low angle of impact (region 3, 

Figure 9.11) ................................................................................................... 199 

 



xxi 
 

 

 

Tables 

Table 3-1: Some standard and super duplex stainless steel grades .................... 66 

Table 3-2: Types of lean duplex stainless steels (118) .......................................... 68 

Table 4-1: Properties of alloys used for the research (Data sheet from 

Outokumpu Research Foundation, Avesta, Sweden) ................................. 92 

Table 4-2: Oilfield brine adopted for the research (TDS 34,418 ppm) .............. 93 

Table 8-1:  Data from the SIJ calibration ........................................................... 164 

Table 8-2: Values of n taken over two different experiments ........................... 177 

Table 9-1: Synergy between CO2 and chloride in CO2-saturated seawater 

at 25
o
C (163) ................................................................................................. 180 

Table 9-2: Proposed mechanism of erosion and erosion-corrosion synergy 

at the different regions on the coupon under severe impact conditions . 200 



1 
 

 

 

Chapter 1.  Introduction 

1.1 Introduction and Background of the Research 

Material degradation in the form of corrosion and erosion-corrosion in offshore 

oil and gas field environments is of economic and safety importance to the operators. 

Damage of facilities by corrosion increases the operation expenditure and the 

potential costs run into millions of pounds/dollars each year. Recent studies (1) 

showed that corrosion costs in the United States rose above $1 trillion in 2012. This 

is said to account for almost 6.2% Gross Domestic Product (GDP) (1). Corrosion has 

also been reported to account for about 25% asset failures in the oil and gas sector 

(2). In Europe, research has shown that between 1980 and 2006, nearly 50% of 

hazards due to plant failure could be attributed to corrosion, erosion and fatigue (3).  

Proper material selection is, therefore, important to control the huge economic 

losses caused by corrosion. Nonetheless, alongside satisfactory performance, cost 

considerations are another criteria used in selecting materials for pipeline 

applications in the oilfield environment (4-6). The choice of pipeline materials with 

the best combination of good properties and at the best cost is always a challenge to 

corrosion and materials engineers. It is noteworthy, however, that carbon steels 

remain the most selected alloys for pipeline applications because of cost 

considerations. Inhibitors are applied to prolong the life of such steels while relying 

on corrosion models to predict the corrosion rate. However, most models developed 

for such aggressive environments have their limitations. Sometimes the injection of 
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inhibitor could be difficult and the aggressiveness of the deep-water well 

environments has become too adverse for the carbon steel materials even with the 

best inhibitions (7-9). 

Stainless steels have been selected for most oilfield applications where the 

aggressiveness of the field is too adverse for carbon steels. Duplex stainless steels are 

particularly selected because of their combination of high mechanical strength as 

well as their good corrosion resistance. However, the major limitation to the 

selection of these alloys has been their cost implications on the capital expenditure 

(CAPEX). The majority of such alloys have been found out to be 10 -15 times more 

expensive than carbon steels (9). However, the long term benefits from the selection 

of stainless steels include the lower corrosion rate, reduced inspection of pipelines, 

lower downtime period, lower risk of failure and the confidence that the operators 

display with the use of such alloys (9). 

Duplex stainless steels are specifically designed for applications in aggressive 

oilfield and marine environments where both corrosion resistance and mechanical 

properties of 300 series austenitic stainless steels would perhaps be limited (10). The 

lean duplex stainless steels with much lower nickel and molybdenum contents have 

been developed as economic alternatives to the standard duplex and highly alloyed 

stainless steels (11-13).
 
These lean duplex alloys have better mechanical properties 

than standard austenitic stainless steels UNS S30403 and UNS S31603 (14-18). They 

are less expensive and have corrosion resistance that is comparable to these alloys 

(14-18). The duplex phase in the lean duplex alloy is maintained by replacing part of 

the nickel content by manganese and nitrogen. The idea is to retain the duplex 

microstructure and retain reasonable quality of the steel while reducing the 
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production cost as much as possible (19). The austenite phase in such alloys has been 

maintained by adding more manganese and nitrogen.  

Lean duplex stainless steels are becoming increasingly popular in the oilfield 

environments as a result of their attractive cost, good mechanical properties and 

relatively good corrosion resistance. One such application is in the production of 

carcasses of flexible pipes, Figure 1.1-1.2. 

 

Figure 1.1: Offshore production system showing flexible pipes (risers and 

flowlines) (20)  

Figure 1.2: Flexible pipe cross-section showing inner carcass layer (21) 

 

 

1. Stainless steel carcass (lean duplex now 

replacing UNS S32205,UNS S30403 and 

UNS S31603)  

2. Polymer fluid barriers 

3. Carbon steel pressure armour  

4. Anti wear/friction tapes, 

5. Carbon steel tensile armour 

6. Polymer external sheath 
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Lean duplex stainless steels also find applications in the oilfield for the production of 

umbilical tubing, heat exchangers, separation units, cable trays and transportation 

vehicles (12, 13, 21, 22). Flexible pipes in deep water are exposed to hydrostatic 

pressure that might lead to failure of the carcass material by mechanical collapse (23, 

24) Figure 1.3.  For such flexible flow lines, the carcass material is always designed 

to withstand the aggressive produced fluids and sand mixtures as well as the external 

pressure exerted by seawater. Materials for such applications are, therefore, required 

to be corrosion resistant, erosion-corrosion resistant as well as having good fatigue 

and collapse resistance (23).  

  

Figure 1.3:  Failure of carcass of flexible pipes by mechanical collapse (23, 24) 

 

Moreover, the failure modes of flexible pipes that lead to burst and leakage have 

been recently itemised to include sand erosion (24) (Figure 1.4), corrosion and 

mechanical collapse of the flexible pipe carcass amongst several other factors. One 

reason for considering the lean duplex stainless steels for such applications is their 

high yield strength which could help in resisting collapse from external hydrostatic 

pressure of the sea water. 
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Figure 1.4: Failure of carcass of flexible pipes by erosion (24) 

 

Nevertheless, material degradation becomes more complex when wear and 

corrosion interact. The interactions between corrosion and erosion have been a 

subject of debate among scientists and engineers for several decades (25-31). The 

total material degradation when the two actions interact is often shown to be more 

than the individual processes acting separately. While much effort has been directed 

towards the study of corrosion behaviour of the lean duplex steels, oilfield 

environments have not yet been considered for evaluation. Also, there is still limited 

literature on the pitting behaviour of lean duplex stainless steels in CO2-saturated 

oilfield environments. Moreover, the erosion-corrosion behaviour of these lean 

duplex alloys is still rarely reported. Furthermore, there is also limited literature on 

the properties of passive oxide films formed on the lean duplex stainless steels in 

aerated seawater and CO2-saturated oil and gas environments. It is known that the 
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passive film stability is important to the pitting behaviour as well as the erosion-

corrosion resistance of stainless steels (32-34). It is, therefore, necessary to study the 

repassivation kinetics of the damaged passive film of lean duplex stainless steels and 

compare these with standard austenitic stainless steels. The influence of the high 

manganese austenite phase on the passive film chemistry, repassivation rates, 

erosion-corrosion as well as the sub-surface crystallography orientation is an area of 

research interest.  

It is of note that despite the abundant models available for the prediction of 

erosion-corrosion, there is still an incomplete understanding of the physical erosion-

corrosion mechanism and synergy (interaction between erosion and corrosion). This 

has hindered the accurate prediction of material degradation by erosion and erosion-

corrosion. For instance, the subject of erosion-corrosion synergism and antagonism 

has not been fully extended to the evolution of modified subsurface crystallography 

and microstructure (35, 36). For a metastable phase such as austenite, this becomes 

even more important as this phase could transform to a more stable strain-induced 

martensitic phase if it is heavily strained under sand impact (35, 36).  Apart from 

this, alloys under such heavy impact could develop fatigue cracks, work-hardened 

layers, high dislocation density and grain refinement within the sub-surface (35-37). 

All these factors would modify both the corrosion and erosion resistance properties 

of the affected regions and subsequently this could affect the synergy between 

corrosion and erosion. To the best of the author’s knowledge, the influence of strain-

induced martensite and the other subsurface properties on erosion-corrosion has not 

been extended to duplex stainless steels and especially the lean duplex stainless 

steels.    
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1.2 Objectives of the Research 

The main objective of this research is to improve the scientific and engineering 

understanding of lean duplex stainless steels in CO2-saturated oilfield and aerated 

seawater environments. This is to help in facilitating material selection for oilfield 

applications under both quiescent and flowing conditions (erosion-corrosion). This 

research will achieve this by considering the following: 

 The tendency for corrosion pits to initiate on the lean duplex steels in 

CO2-saturated oilfield brine solution and aerated 3.5% NaCl 

environments. Behaviour of the lean duplex stainless steels will be 

compared with the austenitic stainless steels and the standard duplex 

stainless steels. 

 Using X-ray Photoelectron Spectroscopy (XPS) to study the passive film 

properties formed on the lean duplex stainless steels in both aerated 3.5% 

NaCl and CO2-saturated oilfield. 

 The erosion-corrosion behaviour of the lean duplex stainless steels in both 

aerated 3.5% NaCl and CO2-saturated oilfield environments. The lean 

duplex stainless steels will be compared with standard austenitic and 

standard duplex stainless steels. 

This research will also relate the erosion-corrosion resistance of a lean duplex 

stainless steel, UNS S32101 and a standard austenitic stainless steel, UNS S30403 to 

their sub-surface crystallography and microstructure modifications during impact. 

The erosion-corrosion behaviour of these alloys will also be related to the 

repassivation rates of their surface passive film. This will be achieved by: 
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 Using X-ray Diffraction (XRD), Focused Ion Beam (FIB), Scanning Electron 

Microscope (SEM), Transmission Electron Microscope (TEM) and Selected 

Area Electron Diffraction (SAED) to study the influence of the sub-surface 

transformation on erosion-corrosion damage.  

 Adopting the submerged impinging jet rig to study repassivation kinetics of 

damaged passive film under multiple sand impacts. The repassivation rate 

will then be used to explain the response of UNS S30403 and UNS S32101 to 

erosion-corrosion.  

1.3 Outline of the Thesis 

This thesis is presented in 10 chapters.  

Chapter 2 presents the basic theory and literature review on the subject of 

corrosion, erosion and erosion-corrosion. The chapter discusses the general review of 

literature on the subject corrosion of passive alloys with emphasis on CO2-corrosion 

and erosion-corrosion. General review of properties of alloys used in the CO2-

corrosion and erosion-corrosion environments is also discussed in this chapter.  

Chapter 3 presents different types of stainless steels with emphasis on duplex and 

lean duplex stainless steel alloys.  Literature review on the subject of corrosion and 

erosion-corrosion of duplex stainless steels with emphasis on lean duplex stainless 

steels is also presented in this chapter. Literature review on the repassivation 

behaviour of the passive film formed on duplex stainless steels is also presented. The 

chapter goes on to discuss the evolution of microstructure and crystallography of the 

subsurface of stainless steels subjected to either erosion or erosion-corrosion. 
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Chapter 4 presents the experimental techniques describing the sample preparation 

techniques, experimental rigs, methods and procedures used in this study. Procedures 

for the post-test examination are also explained in this chapter. 

Chapter 5 presents the results obtained in static corrosion conditions in both 

aerated and CO2-saturated conditions. Breakdown potential and surface analysis of 

the samples are presented in both environments. 

Chapter 6 presents the experimental results obtained under pure-erosion and 

erosion-corrosion conditions for the alloys in both aerated and CO2-satured 

environments.  

Chapter 7 presents sub-surface changes with the use of X-ray Diffractometer 

(XRD), Focused Ion Beam (FIB) and Transmission Electron Microscope (TEM). 

Surface wear is also shown with Scanning Electron Microscope (SEM) while the 

hardness profile was determined by a micro-hardness tester. The relationships 

between the corrosion-wear and the subsurface morphology are explained in this 

chapter. 

Chapter 8 presents the repassivation kinetics of the passive film formed on UNS 

S32101 and UNS S30403 in a CO2-saturated oilfield. The repassivation index is 

determined from the log i- log t plots and the values related to the repassivation rates 

of the passive film. The repasivation index is also related to the resistance of the 

alloys to erosion-corrosion. 

Chapter 9 presents a detailed discussion of the experimental results, comparing 

the work in this thesis with other reports in the literature and establishing the 

differences and contributions of this study.  
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Chapter 10 presents the conclusions drawn from this research and also explains 

the contribution of this research to the existing knowledge. The later part of this 

chapter suggests some work for further study. 
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Chapter 2. Fundamental Theories and Literature Review  

2.1 Fundamentals of Aqueous Corrosion 

Corrosion is said to be the gradual degradation of materials especially metals and 

alloys as they interact with their environments (38). Corrosion occurs at atomic /ionic 

scale within the alloy-environment interface. Several steps are involved with 

different reaction kinetics. However, the slowest of all the kinetics is the one that 

determines the reaction rate (38). Corrosion can also be classified as either dry or 

wet. Dry corrosion occurs at high temperature in the absence of liquid while wet 

corrosion which is also referred to as aqueous corrosion occurs in the presence of 

liquid. Most industrial corrosion falls under wet corrosion which is electrochemical 

in nature (39). Industrial/wet corrosion can, therefore,  be defined as the chemical or 

electrochemical deterioration of an alloy in an aggressive environment (40, 41). The 

corrosion of alloys in aqueous solution is most times related to iron/steels and water. 

This is essentially due to abundance of water and its universal usage in most 

industries (39). 

Electrochemical corrosion involves the movement of metallic atoms from their 

lattice. The atoms are oxidized into ions which enter into the environment. The 

oxidation and reduction reactions occur at the anode and cathode respectively. The 

reaction that occurs at the cathode is referred to as cathodic reaction while the 

reaction that takes place at the anode is referred to as anodic reaction (42). Equation 
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2-1 shows the dissolution of iron in aqueous solution. This is a typical corrosion 

reaction. 

                                 (anodic reaction)                              2-1 

                                (cathodic reaction)                                      2-2 

While equation 2-1 (anodic reaction) which is the oxidation reaction occurs at the 

anode, the reduction (equation 2-2) reaction occurs simultaneously at the cathode and 

referred to as the cathodic reaction. 

The combination of equation 2-1 and 2-2 gives the overall reaction represented 

by equation 2-3.  

                                                        2-3  

However, it should be noted that the cathodic reaction which determines the 

reaction rate often depends on the condition of the aqueous environment. In a de-

aerated environment, the cathodic reaction in equation (2-2) above determines the 

reaction rate. However, in an aerated environment, oxygen-reduction becomes the 

rate determining reaction. In this instance, at the cathode, the following reactions 

take place 

                                     
(acidic medium)  

 

                                                             2-4 

                            
(alkaline or neutral medium) 

                                                             2-5 

 

Combining equations 2-1 and 2-5 gives: 
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                                                                                         2-6 

(ferrous hydroxide)-green colour pH of about 9.5) 

Ferrous hydroxide can also be present in form of ferrous oxide (FeO.nH2O). 

Water, oxygen, carbon dioxide (dissolved in water), inorganic acids, hydrogen 

sulphide and strong organic acids are generally referred to as Electrochemically 

Active Species (EAS) because they produce ions or molecules that can be reduced by 

electrons. Most of these EAS are encountered in oil and gas environments (42). 

2.1.1 The Corrosion Cell 

Corrosion takes place through the action of electrochemical cell (Figure 2.1). An 

electrochemical cell comprises of four components. The corroding component is the 

anode while the cathode is the site where the environment reacts. The electrolyte 

(containing the electrochemical active species) provides the path for ionic conduction 

while the electrical connection provides path through which electrons flow from one 

electrode to another.  

 

Figure 2.1: Simple corrosion cell (41) 
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The anodic and the cathodic sites in a corrosion cell may be physically separated 

from each other or adjacent to each other depending on the circumstance (39). 

However, most often in practice, they are not physically separated as shown in 

Figure 2.1. 

2.1.2 Thermodynamics of Electrochemical Reactions 

Metals in their natural state are ores which are chemical compounds with the 

metals combining with other elements and molecules. The separation of ore to its 

components requires the application of thermal energy. This applied energy increases 

the energy content of the metals as compared to the ores from which they are formed 

and make them unstable (38, 43). The tendency for these metals /alloys to revert 

back to their natural (lower energy state) is what leads to corrosion. According to 

basic thermodynamics, for these metals to revert back to their natural state, they must 

possess a negative free energy (-∆G). Moreover, in electrochemical reaction, the 

driving force is the measure of potential difference and electric current. For corrosion 

reaction to proceed spontaneously, the thermodynamics of the system must be 

favourable. To determine if a reaction is thermodynamically favourable, Gibbs free 

energy equation: 
 

             
         

          
          2-7  

is considered. 

Where,  G is the Gibb’s free energy in KJ/mole,  G
o
 is the standard free energy 

of the cell in KJ/mole, R is the ideal gas constant (8.314 Jmol
-1

K
-1

), T is the absolute 

temperature in Kelvin (K), [Product] and [Reactant] are the concentrations of the 

product and the reactant in moles. 
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 If  G > 0, energy will be required to drive the reaction. However, if  G < 0, the 

reaction occurs spontaneously. Having said this, it should also be noted that the 

entropy and the enthalpy of the reaction are also to be considered. The energy 

associated with the separation of charges between the metal surface and the solution 

is also important. The electric double layer (Figure 2.2) separates the metal surface 

and the test solution. This layer behaves like a capacitor and as such there is a rise in 

potential across the interface between the metal and the test solution. 

 

Figure 2.2: Electric double layer adapted from (41) 

 

Potential across the EDL is represented as : 

               2-8 

Where G is the Gibbs free energy in kJ/mole, n is the number of electrons 

exchanged in the reaction and F is Faraday constant (96,496 Coulombs/mole) and E 

is the potential difference between the two half cells (Volts) 
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Under an equilibrium condition, both the electrical and chemical energy are said 

to be equal. They can thus be represented by the Nernst equation:  

       
  

   
   

         

          
                           2-9 

Where E is the potential difference between two half cells in Volts, E
o
 is the 

standard potential difference between a cell in Volts, R is the ideal gas constant 

(8.314 Jmol
-1

K
-1

), T is the absolute temperature in Kelvin (K), [Product], [Reactant] 

are the concentrations of the product and the reactant in moles and n is the number of 

electrons exchanged in the reaction. 

2.1.3 The Pourbaix (E-pH) Diagram 

The major factor in corrosion is the environment within which the alloy/metal is 

reacting (39). Potential-pH diagrams represent a summary of the thermodynamics of 

a metal/alloy and the associated species in the said environment. Potential-pH 

diagrams do not define the kinetics of the corrosion reaction but the thermodynamics 

prediction of corrosion reaction can be drawn from such diagrams as a function of 

potentials and pH (39, 44). Iron can be found in the states of immunity, passivity and 

corrosion in water depending on the pH and applied potential. The immunity state 

represents the state where corrosion is impossible.  Metal deterioration is possible at 

the state of corrosion but this occurs at a particular rate (44, 45).  The passive state 

represents the region where the corrosion products are insoluble in the environment. 

This corrosion products thus form a protective barrier on the alloy surface and 

thereby prevent the electrochemical interaction between the environment and the 

alloy (44, 45). 
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Figure 2.3: The E-pH diagram of iron in water (46) 

 

2.1.4 Kinetics of Electrochemical Reactions 

Thermodynamics describe the tendency of a system to corrode but do not give 

any information about the speed of the corrosion reaction. Consideration of the 

kinetics of a reaction on the other hand enable the rate at which such reactions will 

occur to be calculated (39).  

2.1.4.1 Free energy and free activation energy  

When two substances are involved in a chemical process, the general equation 

can be expressed as  

A+B (reactants)                     C+D (Products)    2-10 

An activation barrier (activated complex) that is created during the reaction 

process is to be overcome before the products are formed. From the thermodynamic 
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point of view, the activation complex is at a higher energy level than the reactants. 

Figure 2.4 illustrates the activation complex. An energy difference (activation energy 

ΔG
#
) exists between the initial position and the activation complex. 

 

Figure 2.4:  Energy profile adapted from (47) 

 

The activation energy partly determines the rate of a chemical reaction. For a 

corrosion reaction, the corrosion rate   is defined thus: 

                                                                                                                 2-11 

Where c is the concentration (moles) of the reactants.   is the constant of reaction 

derived from the Arrhenius equation (47). 

                 
   

                                                                                                  2-12 
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  is the rate constant, A is the pre-exponential factor,     is the activation 

energy (Joules), R and T have been previously defined. 

The rate of reaction partly depends on the activation energy. Lower activation 

energy increases reaction rate and vice-versa. 

2.1.4.2 Exchange current density 

The current flowing during any corrosion reaction is related to the corroding area 

and it is referred to as the corrosion current density. The net current at equilibrium is 

zero as illustrated by equation 2-13 (39). By convention, the anodic current, Ia, is 

taken to be positive and the cathodic current, Ic, as negative.   

                   2-13  

However, if the two complementary processes (as illustrated by Figure 2.5) 

occurring over the surface of a metallic material are considered, the potentials of 

such material is no longer at equilibrium. This deviation from equilibrium is termed 

polarisation. The difference between the equilibrium potential (ϕ
eq

) and the resultant 

potential (ϕ) is the term referred to as overpotential, η. Overpotential is thus defined 

by the equation (2-14). 

 

Figure 2.5: Electrochemical nature of the corrosion process 
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                                                            2-14 

η comprises of three components of the overall polarization across the 

electrochemical cell.  

                                                                          2-15 

ηact, the activation polarisation, describes the charge transfer kinetics. It is the 

controlling factor during corrosion in strong acids or at small polarization currents or 

voltages. Ƞconc, the concentration polarization, is the potential change due to 

transportation inhibition caused by concentration differences. Concentration 

polarization becomes very importance when there is low concentration of the active 

species. Examples of this is dilute acids or in aerated water. Concentration 

polarisation is also said to be at play when there is a large polarization current or 

voltage. Transportation of active species is governed by diffusion, migration and 

convection. When the environment is stagnant, the convection force becomes 

negligible. Fick’s Law describes the flux of the active species when the mass 

transport is purely diffusion controlled. 

The Ohmic drop (iR) describes the polarization in the electrolyte or at interfaces 

as a result of the applied current. This is described by Ohm’s law.  

2.1.4.3 Activation Polarisation 

When the rate of electron or charge flow is the determining step in a corrosion 

reaction, the reaction is said to be activation- or charge-transfer controlled. Under 

such conditions the electrochemical reaction is typically represented by two 

polarisation branches as illustrated in Figure 2.6. 
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Figure 2.6: Current versus overpotential polarisation plot of ferric/ferrous ion 

reaction on palladium showing both anodic and cathodic branches of the 

resultant current behaviour (48) 

 

    The anodic and cathodic sides of the reaction can be studied using polarisation 

methods. The Butler-Volmer equation is used as a representation of such polarised 

surface. 

    {[    
  

  
 ]     [      

  

  
 ]}                          2-16 

i is the anodic or cathodic current, α is the charge transfer barrier for the anodic 

or cathodic reaction (approximately 0.5), Ƞ is overpotential  (E applied-Eeq  ), Volts, n is 

the number of participating electrons, R is the ideal gas constant (8.314 Jmol
-1

K
-1

), T 

is the absolute temperature (K) and F is 96, 485C/mole. 

If the over potential becomes very high (positive/anodic), the second term in the 

equation becomes very negligible and ia is given by the following expression: 

             
  

  
   ]                             2-17 
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 Where 

           
  

  
                               2-18                                                           

The Tafel coefficient βa is the slope of the plot of ƞ against log i 

β
nF

RT
a


303.2                                                                                         2-19 

 When the overpotential is cathodic, the first term in the Butler-Volmer equation 

can be ignored. This gives rise to  

                 [       
  

  
  ]                            2-20 

            
  

  
         2-21 

                
  

   
                   2-22 

2.1.4.4 Mixed Potential and Determination of Corrosion Current Density 

The case described in Figure 2.6 is for a single equilibrium reaction involving 

Ferric/Ferrous reaction. Corrosion, however, occurs with two or more 

electrochemical processes happening on a metal surface.  If we consider the acid 

corrosion for metal, M, as shown below, 

          
 

 
                2-23 

Each of these reactions can be at equilibrium with individual equilibrium ƞM and 

      The total current-potential curve is then constructed from the four partial 

reactions (1-4) that superimpose one another with four individual partial current 

densities as shown in Figures 2.7 and 2.8.  

1. Anodic metal dissolution 
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2. Cathodic metal plating 

With equation      
    

        2-24 

3. Cathodic hydrogen evolution 

4. Anodic hydrogen ionisation 

With equation        
    

            2-25 

The partial current densities can be expressed analogue to the Butler-Volmer 

equation. The total current-potential curve will then be a combination of both 

equations (2-24 and 2-25):  

          =   
    

     
    

      2-26 

The potential where iM and iH are equal (despite their different signs) is called the 

mixed potential or the corrosion potential (Ecorr) Figure 2.7. The corresponding 

current is what is referred to as the corrosion current density (icorr) Figure 2.7. This is 

also illustrated by the Tafel extrapolation in Figure 2.8. 

 

Figure 2.7: Total current-potential curve of acidic corrosion with formation of a 

mixed potential, Ecorr (49) 
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Figure 2.8: Mixed potential theory showing Tafel extrapolation, corrosion current 

and corrosion potential, adapted from (50) 

2.1.4.5 Polarisation Resistance Measurement 

The linear polarisation resistance method developed by Stern and Geary (1957) 

(51) can be used to measure corrosion rate under steady state conditions. Linear 

polarisation technique assumes that in activation controlled systems, the exponential 

anodic and cathodic polarisation curves are approximate to a straight line close to the 

free corrosion potential. A small external DC potential signal of ±10 to 20 mV is 

applied to the system, and the current flowing in the external circuit is measured. The 

polarisation resistance (Rp) is the ratio between the applied potential and the 

measured current.  

   
  

  
             2-27 

  ΔE = applied voltage change with respect to the free corrosion potential       

   Δi = measured current density 

The corrosion current density can then be determined thus: 

log i
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          2-28 

Where, B is the Stern-Geary constant which is dependent on the corrosion 

system. 

  
    

          
            2-29 

Knowledge of polarization resistance Rp and the Tafel constants (βa, βc) can be used 

to determine the corrosion rate (52). 

2.2 Classifications of Corrosion 

Corrosion may be classified into general/uniform corrosion and localized 

corrosion. General corrosion occurs over the entire material’s surface and it is very 

easy to predict. Localised corrosion on the other hand is not easy to predict or control 

because it is often associated with occluded area of the material. Types of localised 

corrosion (Figure 2.9) include: crevice corrosion, pitting corrosion, selective 

dissolution of active metal (dezincification, graphitization), co-joint action of 

corrosion and mechanical factors (erosion-corrosion, fretting, hydrogen cracking, 

stress corrosion cracking and cavitation damage (43). 

 

Figure 2.9: Types of corrosion (53) 
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2.2.1 Pitting Corrosion  

Corrosion resistant alloys (CRAs) are resistant to general corrosion due to the 

passive film formed on their surface from reaction between them and the corroding 

environments like oxygen and water (17). The breakdown of passive film formed on 

corrosion resistance alloys leads to a localised material degradation (54).  Figure 2.10 

shows a typical breakdown of passive film that led to corrosion pit.   It is also of 

importance to say that pitting occurs at preferred sites where there is secondary phase 

especially MnS. Near the precipitate site is a zone that is deficient of chromium and 

hence the passive film is weak. The breaking down of the passive film occurs at a 

particular temperature referred to as Critical Pitting Temperature (CPT). Critical 

Pitting Temperature (CPT) is the lowest temperature below which pitting will not 

occur under a specific test condition.  

 

Figure 2.10: A typical corrosion pits showing the hydrolysed bottom with depleted 

oxygen (55) 
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The major drawback to CRAs is localized corrosion in form of pits and crevices. 

Pitting corrosion of stainless steels is dependent on the composition of the alloy 

represented by Pitting Resistance Equivalent Number (PREN), passive film 

characteristics, temperature, bulk solution composition (pH and anion contents) and 

geometry of the joint (crevices) (56, 57). Pitting resistance equivalent number is 

often represented by the amount of the corrosion resistant alloying elements in a 

given alloy (%Cr +3.3%Mo +16%N). The major alloying elements that contribute to 

this number are: Chromium, Molybdenum and Nitrogen (58). The ability of a CRA 

to resist corrosion, especially localized corrosion, is also a function of the resistance 

of the passive film formed on its surface. The passive film’s stability is dependent on 

its composition, thickness and structure, Figure 2.11 (59). The passive film on 

stainless steels has its own composition different from the composition of the 

substrate alloy. Such composition is, however, dependent on the substrate’s 

composition as well as the corrosion environment (60). It is well reported in the 

literature that the ultrathin passive film is highly enriched in chromium (60, 61). The 

ratio between the chromium contents of the substrate and the oxide (chromium 

enrichment factor) is defined as a parameter. Molybdenum helps in increasing the 

chromium content of the oxide while nickel has been reported to be either absent or 

have very negligibly presence in the oxide film. However, it is said that the nickel is 

enriched just below the oxide film (59, 61). 

Interestingly, the chromium content of the passive film increases with passivating 

potentials (59, 61). The pitting behaviour of stainless steels is reported (59, 61) to be 

dependent on the chloride ion concentration  of the environment as well as the PREN 
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of the alloy. It also reported (57) that the passive film breakdown usually occurs on a 

localised site commonly an inclusion of manganese sulphide. The pit is also believed 

to first initiate and then propagate. The mechanism of pit initiation and propagation 

is said to be different from each other. Initiation of pits is said to be by 

absorption/migration of aggressive ions on the passive film.  Some schools of 

thought also believe it could be by mechanical disruption of the passive film. Pit 

propagation on the other hand is believed to be by metal dissolution, salt layer 

formation or it could be by mass transfer. 

 

Figure 2.11: Relationship between corrosion resistance of stainless steels and passive 

film properties (59) 
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2.2.2 Crevice corrosion 

Crevice corrosion (Figure 2.12) is geometry dependent and it is associated with 

stagnant solution at micro environment level. This makes it different from pitting 

which is not dependent on the material geometry. Crevice corrosion occurs in 

shielded or occluded area such as gasket, washers, fastener heads etc. The crevice is 

oxygen deficient and thus an electrochemical cell is set up between it and the surface 

closer to the bulk solution environment. Because of the low oxygen level of the 

crevice it thus acts as the anode while the external surface acts as the cathode.  

Because of the large difference between the cathodic and the anodic areas, the anodic 

dissolution rate is thus very high. 

 

Figure 2.12: Schematics of crevice corrosion of steel in NaCl environment 

2.3 Corrosivity and Passivity 

Passive films protect the surface of a passive alloy when they react with their 

environment. They have limited ionic and electronic conductivities (62) and hence 

slow down the rate of reaction between the metal and its environment. The formation 
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of passive film happens spontaneously. Passive film has been studied to comprise of 

an outer layer of the n-type and an inner layer of p-type semiconductors (62). The 

outer and the inner layers have also been reported to comprise of iron 

oxide/hydroxide and chromium oxide respectively (Figure 2.13). For a passive film 

to be stable, a layer of hydroxide should be on the inner oxide layer. It is not also 

uncommon to see the oxides of molybdenum in association with the chromium 

oxide. Despite the fact that the passive film is resistant to general corrosion, it can be 

susceptible to localized corrosion in form of crevices and pitting. It should be stated 

that, despite the abundant literature on the subject of passivity breakdown, there is 

yet no agreement on their formation, composition and the breakdown mechanism. 

 

Figure 2.13: Inner and outer layers of a passive film adapted from Hakiki et al. (63) 

 

One method used to study the electrochemical corrosion behaviour of passive 

alloy is the polarisation curves. An alloy that corrodes normally in an environment 

may exhibit passivation in the same environment at higher potentials when passive 

film/oxide is generated on its surface. This is mostly common for the corrosion 

resistant alloys. However, if the potential is raised to a certain limit the passive oxide 

may breakdown leading to a severe localized corrosion. 
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2.4 Polarization Curves for Passive Alloys 

Typical polarization curves to study the behaviour of passive alloys are shown in 

Figures 2.14 and 2.15. Figure 2.14 is a typical potentiodynamic curve (no reverse 

scan) while Figure 2.15 is a typical cyclic polarisation curve (41). 

 

Figure 2.14: Polarisation scan, no reverse scan (41) 

 

Figure 2.15: Schematic polarisation curves of a passive alloy with a reverse scan (41) 
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The corrosion potential at open circuit is represented by Ecorr.  At this point, the 

sum of the cathodic and anodic reaction rates on the working electrode is zero. As a 

result the current density measured is approximately zero. When the potential is 

scanned in the positive direction, the dissolution rate increases up to the primary 

passivation potential point (Epp) and then begin to decrease until the passivation 

potential (Epa) is attained. Once the passivation potential (Epa) is attained, increase in 

potential has little or no effect on the current density. 

The current density at the primary passivation potential is referred to as the 

critical current density (ic). Critical current density is the active current density at the 

passivation potential. Current density at the passivation potential Epa is the passive 

current density ip. This current is constant over a range of potential until the 

breakdown potential (Eb) where the current density suddenly increases as a result of 

localised breakdown of passivity, oxygen evolution or transpassive dissolution of the 

passive film. An aggressive ion such as chloride if present in the electrolyte helps in 

the dissolution of the passive film and hence brings down the breakdown potentials. 

On the reverse scan, the potential at which the backward loop crosses the forward 

loop is the protection potential (Eprot). If this potential falls below the corrosion 

potential, pit will propagate but if it is above the corrosion potential the alloy is 

immune against pit propagation in such environment (64). 

2.5 Repassivation of Passive Film Damaged by Mechanical 

Disruption in a Corrosive Environment 

The corrosion resistance of alloys with passive film protection can be negatively 

affected by the solid particle impact (34). However, if the passive film can regenerate 
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fast, the alloy will remain corrosion resistant. The total amount of material loss by 

the impact of erodent and that of corrosive medium is a function of the behaviour of 

the passive film. As  a matter of fact, the generation rate of fresh metal surface and 

the repassivation rate of the alloy are two important factors that determine the 

erosion-corrosion resistant of such alloys (32, 65). The oxide is assumed to first 

nucleate and initially grow according to the surface coverage model (66). According 

to this model, passivating film covering a unit area is entirely removed (by the 

erodent/tip of the tribometer). Furthermore, metal oxidation on such area is assumed 

to occur exclusively on the bare metal/alloy surface leading to lateral growth of an 

oxide.  After the entire area has been covered by the passivating film, growth of the 

film then follows the growth model (66). Film growth model assumes that an anodic 

oxide grows uniformly on the initial oxide formed. The growth rate in this case is 

determined by the high field conduction. 

The film growth mechanism has been found by experiments to follow either the 

logarithm or inverse logarithm law represented by equations 2-30 and 2-31 

respectively. 

tBAL ln         2-30 

tDC
L

ln
1

         2-31 

L is the film thickness 

  (s) is the time taken for the film to grow to thickness L (mm) 

A, B, C, and D are constants. 
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It has also been argued that repassivation and the initial growth of damaged film 

is controlled by ion migration in a high electric field obeying inverse logarithm law 

at the passive potential (67).  In order to explain both logarithm and inverse 

logarithm laws, several models have been developed over the years. Some of the 

models are given in the next section. 

2.5.1 Mott-Cabrera Model 

Mott and Cabrera proposed a model in 1948 based on the initial work of Mott a 

year earlier. These authors assumed the following: 

1. That the film growth is as a result of the movement of metal cation from the 

bulk alloy to the film/solution interface. 

2. That the penetration of the metal cation into the film oxide is assisted by a 

high electric field strength that exists within the film. 

3. That the field strength is constant throughout the film thickness. 

4. That the reaction rate for film formation is controlled by the rate of emission 

of the cation into the film at the metal/film interface.  

From these assumptions a rate law with the following expression in equation 2-

32 was proposed for passive film growth 

]/)
2

exp[( kT
L

qa
WVN

dt
dL f

       2-32 

Where,  

N  is the number of mobile ions per unit surface area 

Ω is the molecular volume per cation (cm
3
/mol) 
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V is the vibration frequency (Hz) 

W is the activation energy for the rate determining step (J) 

q is the charge on the cation (Coulomb) 

a is the jump distance (mm) 

kT is the thermal energy (J) 

Solution to this equation using integration by part gives an inverse logarithm rate 

law (68). 

2.5.2 Sato and Cohen Model 

Sato and Cohen related the external current to the applied potentials and the 

charge accumulated in the film oxide by the equation (2-33) 

n
Tapp QmVki  exp('        2-33 

i is the external current (Ampere) 

Vapp is the applied potential (Volts) 

QT/n is the charge accumulated in the film (Coulumb) 

K, m, and n are parameters 

Sato and Notoya later proposed that under potentiostatic conditions the 

integration of equation 2-33 will result in a logarithm law (68). 

2.5.3 Fehner and Mott Model 

Ferner and Mott modifield the Mott-Cabrera model by making the following 

assumptions: 
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1. That anion diffusion is responsible for film growth. 

2.  That the rate of reaction is determined by the emission of anion from the 

environment into the film at the film/environment interface. 

3. That the field strength in the film is independent on the film thickness.  

4. That the activation energy of the reaction increases linearly with the film 

thickness. 

These  assumptions  also yielded another logarithm law (68). 

2.6 Film-Free Surface and Repassivation  

Depassivation and repassivation of a passive surface can be studied by several 

methods of which erosion-corrosion is one. A typical scratch electrode method for 

studying the repassivation mechanism of a passive oxide is shown in Figure 2.16.  

 

Figure 2.16: Scratch electrode method of studying repassivation kinetics (69)  

 

One method that is adopted to study the repassivation behaviour of passive film 

is the use of current transients. A model of the form           is often adopted 

(65, 70, 71).  Where
  

i(t) is the anodic current density consumed in rebuilding of 
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passive film on a film-free surface  at time, t. A is a constant and n is the 

repassivation index.        

The plot of logarithm of current density against the logarithm of time based on 

the relation:
 

                                         
                                         2-34 

will give a relationship of the form shown in Figure 2.17. The slope of the linear 

portion of the graph is determined as the repassivation index, n. The repassivation 

index, n, is an indirect measure of the rate of formation of the passive film on the 

film-free metal surface. The higher the value of n the faster the repassivation process 

and vice-versa (65, 70).  

 

Figure 2.17: A typical example of a log current versus log time for UNS S30403 in 

0.9 M NO3- solution after a scratch test (72) 

 

The flat part in Figure 2.17 represents the portion where the depassivated surface is 

still under a lateral growth as explained under the coverage model. Within this 
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portion, it is assumed that the depassivated surface is still not completely covered 

(under coverage mechanism) (66) or that the rate of repassivation and that of metal 

dissolution are still at equilibrium (71).  

2.7 Corrosion in CO2-Saturated Oilfield Environments  

Corrosion of carbon steel in CO2-containing environment is a very complex 

phenomenon and still requires further clarification (73). At different segments of the 

oil well, CO2 corrosion follows different mechanisms because of changing conditions 

(74). However, there are two common features of the CO2 corrosion mechanism:  

(a)  intense cathodic evolution of H2 gas and (b) formation of carbonate film at the 

anode. CO2 corrosion occurs in stages and may be described thus:  

1. Dissolution of CO2 in the liquid phase 

2. The diffusion of the electrochemical active species to the metal surface 

3. Reduction of the species at the metal surface 

4. The transportation of the reaction products back into the bulk solution (75).  

                                                                                                                2-35 

The cathodic reaction is thus represented 

                    
           2-36 

       
              

   2-37   

                2-38 

At the anode  
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 2-39 

Overall 

                                      2-40   

  CO2 corrosion is one of the most encountered material degradation problems in an 

oil and gas installation. This is because CO2 is often encountered in the production 

fluid as a result of exploitation of deeper wells and also due to the injection of CO2 

for secondary oil recovery (75). However, for CO2 to be corrosive it would be 

dissolved in an aqueous phase. The corrosiveness of CO2 is also of no significance 

especially at low temperatures (73). However, it becomes a problem when it 

dissolves (CO2 is very soluble in this liquid) in a aqueous phase such as brine, water 

and even hydrocarbons (76). The association of CO2 in the aqueous phase give 

carbonic acid which further dissociates to form bicarbonate and carbonate ions (77).  

 

Figure 2.18: Effect of flow on CO2 corrosion (78) 

 

As earlier explained, CO2 corrosion  thrives in the presence of a liquid phase and 

it is also affected by the fluid flow (73). Also, it is generally believed that the high 
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flow rate enhances the CO2 corrosion by helping in the removal of more Fe
2+

 ion 

thereby increasing corrosion rate (78). Equally, the near wall turbulent flow for 

instance either prevents the formation of the protective scale or removes it when it 

has been formed (73).  

The major influencing factors that affect CO2 corrosion are: its partial pressure 

(Figure 2.19), temperature and the pH of the bulk electrolyte, fluid flow (Figure 2.18) 

and the materials composition and microstructure (Figure 2.20)(79).      

 

Figure 2.19: Effect of CO2 partial pressure and temperature on CO2 corrosion (73)  

 

Figure 2.20: Schematic diagram showing the influence of alloying elements on  CO2 

corrosion rate (78) 
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Furthermore, CO2 corrosion behaviour of carbon steels can be classified into 

general corrosion that occurs below 60
o
C, deep pitting and ring worm that occurs at 

about 100
o
C and corrosion resistance as a result of formation of FeCO3 film that 

occurs above 150
o
C. At about 100

o
C, carbon steels and low alloy steels have the 

highest susceptibility to CO2 corrosion. The corrosion behaviour of steels greatly 

depends on the behaviour and characteristics of the FeCO3 film which is the 

corrosion product of the environment (80). In addition, FeCO3 film precipitation and 

stability is also dependent on temperature (80). At temperature below 70
o
C the film 

is unstable and dissolves into the bulk solution but as the temperature increases the 

solubility decreases and reaches optimum at about 150
o
C. Lower temperature 

stability of the oxide film is only possible when the pH is increased (Alkaline). 

Additionally, It is also reported that the protectiveness of the oxide film is a function 

of the substrate’s microstructures (80). In carbon steels, it is reported that a ferrite –

pearlite microstructure has better adherence than a bainitic or a martensitic 

microstructure (78). 

Moreover, as reported by Schmitt and Hörstemeier (78), the rate of CO2 

corrosion is said to increase with increase in CO2 partial pressure. Also, the rate of 

CO2 corrosion of carbon steel depends on the alloying elements of the substrate. Of 

all the alloying elements, chromium seems to be the most influential alloying 

element on corrosion of the materials. Generally, the higher the chromium content of 

the substrate the lower the CO2 corrosion rate of the low alloyed carbon steels (78). 

Also, as being mentioned above, the only condition where the FeCO3 film can be 

protective at lower temperature is when the pH of the solution is high. This means 

that higher pH reduces CO2 corrosion rate by influencing the formation of FeCO3 
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precipitate. The rate of CO2 corrosion is also dependent on the bulk solution 

composition in that the higher the concentration of the ions (such as Na
+
,Ca

2+
, Mg

2+
 

and other cations) the greater the saturation of the solution and the higher the 

propensity for precipitation of the oxide film. Also, when more precipitates are 

formed the corrosion rate is reduced. Furthermore, other parameters that affect CO2 

corrosion include O2 and H2S concentrations. 

Higher oxygen concentration enhances CO2 corrosion rate by forming iron oxide 

which is not protective. The effect of H2S is somehow complex in that it helps in 

formation of film with better adherence but also assists in anodic dissolution by the 

adsorption of sulphur on the substrate. Also, higher H2S concentration implies lower 

pH and hence higher corrosion rate (78). The presence of acetic acid can also help in 

promoting CO2 corrosion. It is also reported that acetic acid produces hydrogen ion 

for cathodic reduction and can as well be reduced directly at the cathode thereby 

increasing cathodic current and hence the overall corrosion rate. The major types of 

damage associated with CO2 corrosion are pitting, mesa attack and flow induced 

localised corrosion (73). 

2.8 Marine Corrosion 

Marine environments, especially seawater, are corrosive due to the high chloride 

content and the activities of microbial organisms (81, 82). The marine water is very 

useful for many industrial processes such as desalination and oilfield water injection. 

However, the major limitation to its usage is its corrosiveness. Seawater is a solution 

comprising so many solids/ solutes among which are chlorides. The major 

constituents of seawater are: Na
+
,K

+
,Mg

2+
,Ca

2+
,Sr

2+
,Cl

-
,Br

-
,F

-
,HCO3

-
,SO4

2-
,B(OH)3. 
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The properties of seawater is remarkable and quite often the properties vary with 

locations (16). Seawater is unique in such that some basic properties are common to 

it regardless of the location. Such properties include: high chloride concentration, 

high electrical conductivity, high pH (above 8.0), and presence of bio fouling. 

Seawater is also specified in terms of salinity which is the number of solute (g) in 

one kg of the seawater. Salinity is closely related to chloride ion concentration and 

also to the seawater conductivity. The conductivity of seawater is generally between 

32 Siemen/meter and 35 Siemen/metre which is also a measure of its salinity (16). 

It is noteworthy that chlorinated seawater is more corrosive than a natural sea 

because of the increase in potential experienced in such environment. Also, bio 

fouling activities in natural seawater is detrimental to the passivity of stainless steels 

because of the cathodic reaction involving oxygen reduction (81). 

2.8.1 Materials Used in Marine Environments 

Materials selection for marine applications is based on the performance as well as 

the cost of the materials. The initial cost of procurement and the maintenance costs 

are usually considered alongside the properties of such material (39). 

 Materials commonly used ranges from cast iron, mild steel, aluminium bronze, 

stainless steels, nickel and copper based materials. The other major limitation to the 

choice of these materials is the flow rate of seawater. Materials for marine 

applications must be able to withstand relatively high flow rate as such can enhance 

material degradation. Cast iron, mild steels and copper based alloys for instance are 

not resistant to erosion-corrosion. Nickel based alloys and high alloy stainless steels 

can combat high flow rate but are limited by economy (39). 
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2.8.2 Microbial Influence on Marine Corrosion 

Microorganisms are abound in natural seawater and they greatly influence the 

rate of material degradation (83). Their metabolic activities can change both physical 

and chemical behaviour of a locality along a pipeline (83). Sulfur reducing bacteria 

(SRB) are believed to accelerate corrosion by consuming the cathodic hydrogen and 

also help in formation of ferrous sulphides (83). The corrosion behaviour of steels in 

natural seawater is greatly modified by the activities of microbiological lives which 

help in accelerating cathodic reactions (81). 

2.9 Erosion  

The subject of erosion-corrosion is best explained by first looking at pure erosion 

mechanism. Erosion has been defined as the mechanical removal of materials from a 

target by the cutting action of particles moving at a high velocity (84). Erosion is 

considered to be different from corrosion which is the chemical and/or 

electrochemical removal of materials from the material surface. Erosion is mostly 

encountered in oil and gas industries, coal turbine; hydraulic turbines, coal 

hydrogenation industries and rocket engines (84-86). Most erosion problems found in 

oil and gas industries are as a result of produced sand moving with the hydrocarbons 

at high velocity and drilling mud that enters and flow through the pipe wall at high 

pressure as a result of leakages or cracks and loose connections.  

Transportation of hydrocarbons through flow lines involves the flow of liquid, 

gas and sand. The kind of flow that emanates from such multiphase process  lead to 

erosion-corrosion (87). The solid phase and the liquid-gaseous phase hit the wall of 
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the pipe repeatedly; this results in the erosion of such walls. If such materials are 

ductile, erosion occurs by displacement and cutting causing detachment of materials 

of such surfaces. Brittle materials on the other hand erode by interaction and 

propagation of cracks (84).  Ian Finnie (88), proposed the first erosion model for 

ductile materials. His model is the basis for which subsequent models were 

developed.  

The Finnie model (88) accurately predicted ductile material erosion at low impact 

angles. It however, failed to predict erosion at high impact angles. Bitter’s model (89, 

90) on the other hand proposed both deformation wear and cutting wear. He was able 

to predict high impact angle erosion.  The Finnie and Bitter mechanisms of erosion 

damage are the basis for other models that were later developed to predict erosion 

rate. 

2.9.1 Factors that Affect Erosion  

Three fundamental areas to be considered when discussing erosion include the 

role of solid particles (erodent); the role of the target material and the nature of the 

fluid carrying the erodent. Erodent characteristics include its size, shape, mass and 

concentration. Materials target properties to be considered include the hardness, 

fracture toughness, ductility, surface roughness and microstructure. Fluid 

characteristics mostly considered are viscosity, temperature and density. Flow 

characteristics which include the velocity of flow, impact angle of the erodent, flow 

trajectory and particle interaction are also fundamental to the study of erosion. 

The major causes of erosion are cavitation, liquid impingement and solid particle 

impingement. Cavitation and impingement (solid and liquid) result in fatigue and 
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abrasion that eventually lead to material loss from the target. This material loss is a 

function of many variables that can be classified into the slurry variable and the 

target materials variables (30). Jordan (91), streamlines these variables into materials 

properties (ductility and brittleness), angle of impact and velocity of the particles. A 

ductile material behaves differently under the action of erosion to a brittle material. 

The mode of material removal in ductile materials by scraping or cutting of the target 

wall during impact while brittle materials first crack and then chip off the target (91). 

In addition, for ductile materials, higher erosion rate is recorded at lower impact 

angle (usually getting to the peak between 15
 o

 and 40
o
) as compared to brittle 

materials where the erosion reaches the peak at 90
o 

impact angle as shown in Figure 

2.21.  Wood (30), reported that the failure of ductile surface is related to accumulated 

plastic strain which is induced by cyclic plastic deformation from successive impact. 

For a brittle material, the particle is removed by intersection of cracks which radiates 

from the point of impact of eroding particle.   

 

 

Figure 2.21: Relationship between erosion rate and impact angles for ductile and 

brittle materials (84) 
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It has, however, been reported that the hardness of the target material is of little 

significance when considering the erosion rate of metallic materials (91). It was also 

reported that as the particle size increases erosion rate increases up to a maximum 

limit. The relationship between the particle hardness and the erosion rate for steel 

material is such that erosion rate increases with particle hardness. 

2.9.2 Erosion Models 

Several models have been developed to predict erosion. The earliest of such 

models was developed by Finnie (84, 88). One limitation to most of the erosion 

models is that full documentation, assumptions and limitations are not often stated 

(92). 

2.9.2.1 Finnie’s Erosion Model 

The mechanistic model developed by Finnie (84) states that wear by erodent is 

dependent on the motion by the entrained particles as well as the interaction between 

the particle and the target material. Finnie’s model assumed that the entrained 

particle obeys the law of motion. The volume of material removed from the target 

during wear is also said to be dependent on the swept area by the erodent. The simple 

models described in equations 2-41 and 2-42 were able to predict erosion at low 

angle of impact but failed to predict materials removal at high angle especially 90
o
. 
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Vr is the volume of materials removed (m
3
), m is the mass of the erodent (g), v is 

the velocity of the erodent (m/s) , K is the ratio of the vertical force component on 

the particle face to the horizontal force component, p is the plastic flow stress (Pa) ,ψ 

is the ratio of the depth of contact to the depth of cut, α is the angle of impact (
o
). 

2.9.2.2 Bitter’s Erosion Model 

Unlike Finnie, Bitter (89, 90) proposed two types of wear mechanism. The 

cutting mechanism in which the erodent cuts the target during its motion. The second 

mechanism is the deformation mechanism that occurs by impingement. The 

impingement is said to cause materials to be broken away from the target material. 

Bitter model also considered the properties of both the target and the erodent. Energy 

balance is used to describe how the energy is distributed during collision between the 

erodent and the target material (equation 2-43). Cutting wear mechanism is 

represented by equation 2-44 and 2-45. While Finnie related material strength to the 

energy absorbed during cutting, Bitter’s model correlated energy absorbed to the 

integrated product of the stress-strain curve. 
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WD  is the total deformation wear (cm
3
) 

C1 is a constant that depends on density and elastic load unit 
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Wc1  is the cutting wear unit when 0v  (cm
3
) 

Wc2 is the cutting wear unit loss when v=0  (cm
3
) 

α is the impact angle (
o
) 

ρ is the energy needed to scratch out a unit volume from the surface (gf cm/cm
3
) 

Up  is the maximum particle velocity at which collision is purely elastic  (cm/s) 

γ is the deformation wear factor (gf cm/cm
3
) 

k1 is a constant based on mechanical properties 

2.9.2.3 Hutchings’ Erosion Model 

The Hutchings (93) model takes into account both low and high angles of impact. 

The model assumed that the indentation caused by the erodent forms a rim of 

plastically deformed region around the indentation. The region becomes work-

hardened after several cycles of indentation and thereby detached as wear debris. 

Work done by the erodent as it comes to rest on the target material is said to be equal 

its initial kinetic energy. Hutchings expressed the velocity exponent as 2 and the 

impact angle as ϴ. Material removal from the target is said to occur after the 

accumulated plastic strain has attained a certain value or attain a certain cycle of 

fatigue. Hutchings also introduced a critical strain to failure factor (2-47). Equation 

2-46 presents a low angle wear model where cutting action is predominant. Equation 

2-47 and 2-48 present higher impact angles. While equation 2-47 expresses wear as a 

result of accumulated plastic strain equation 2-48 sees wear as a form of low cycle 

fatigue. 
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Hs  is the hardness of the target materials (GPa) 

K1 and K2  are the fraction of materials displaced from the indentation as debris  

ρm is the density of the target material (g/m
3
) 

ρs is the density of the spherical erodent (g/cm
3
) 

α is the mean plastic strain rate (S
-1

) 

rp is the radius of the spherical erodent (m) 

Em is the ratio of mass of the material removed over the mass of erodent striking 

the surface. 

2.9.2.4 Hashish’s Erosion Model  

The deficiencies in Finnie erosion model were addressed by Hashish (94). Higher 

velocities exponent of values greater than 2, erodent shape and density were taken 

into consideration. The Hashish model introduced a constant value Ck to take account 

for the materials flow stress, particle density and shape factor. He also incorporated 

wear deformation from Bitter’s model (94) . 









cot

sin14
5.2










 


k

c

p

m

C

vv
E                  2-49 



51 
 

 

 

2.1

5
3

3

f

k

p

fs

k
R

VR
C 




                   2-50 

E is the ratio of mass of material removed to the mass (g) of abrasive particle 

Ck is the modified characteristic velocity that combines the characteristics of both 

the erodent and the target materials. 

2.9.3 API Guidelines for Erosion in the Oilfield 

Erosion problems become a serious issue as a result of the ageing oilfield assets.  

In such situations, operators are not often disposed to using sand screen so as not to 

reduce production rate (95, 96). To avoid the reduction in production, operators tend 

to manage sand production by redesigning the facilities. 

Since most erosion models are applicable in specific erosive conditions (97) and 

most often the erosion models might not predict the rate accurately, operators of 

oilfield are subject to guidelines. One of such guidelines is the American Petroleum 

Institute Recommendation Practice 14E (API-RP-14E). 

 According to API-RP-14E, the highest velocity that is allowed for the prevention 

of erosion in pipelines is given by the expression 

      
 

√ 
                          2-51 

   = maximum allowable erosion velocity in ft/secs   ρ = density (Ib/cuft) 

C= an empirical constant (C factor) 

However, this equation is not generally ideal for situations where corrosion and 

erosion are involved because it assumed sand and corrosion free situation for the C 
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factor (98).  However, much other research work has been carried out to factor in the 

effects of sand and corrosion so that a close to ideal equation of erosion velocity can 

be attained. According to Salama (98), for a fluid that is free of sand and not 

corrosive provided there is no pressure drop. 

         
   

√  
                                                                 2-52 

Where V is the maximum fluid velocity in ft/sec,  m is the density of the fluid at 

the flowing temperature and pressure. For fluid where erosion due to sand is 

prevalent; 

         
 √  

  √ 
                                                           2-53 

Where W is the sand flow rate in kg/day, and D is the internal diameter of the 

pipe.  

For multiphase flow Salama (98), added the term that accounts for mixture 

density and velocity as well as a geometry dependent constant. 

    
 

  

   
   

    
               2-54 

where ER is erosion penetration rate, mm/yr; W is sand production rate, kg/day; 

Vm is  fluid mixture velocity, m/s; dp is sand size, micron; D is pipe diameter, mm; 

ρm is fluid mixture density, kg/m
3
 and Sm is geometry-dependent constant. Shiraz et 

al. (99) also develop a model to be used for a wider range of operations conditions 

where geometry type, materials, fluid properties, sand properties (size, shape and 

density) are considered. The model is thus represented:  
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where h is penetration rate (m/s), FM is empirical constant that accounts for 

material hardness; FS is empirical sand sharpness factor; FP is penetration factor for 

steel (based on 1″ pipe diameter) m/kg; Fr/D is penetration factor for elbow radius; W 

is sand production rate, kg/s; VL is the characteristic particle impact velocity, m/s; D 

is pipe diameter (inch); D0 is reference of 1 inch pipe diameter.  

To account for the addition of inhibitors  Ramachandran et al. (100) added 

another factor, Fi and came up with the expression below. 
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2.10 Erosion-Corrosion  

Flow-induced corrosion occurs when alloys are exposed to flowing corrosive 

fluids. The rate of material degradation becomes aggravated by the motion of the 

flowing fluid (101). When solid particles are entrained within the flowing fluid, the 

rate of material loss becomes worse. Erosion-corrosion is the term used to describe 

the flow induced corrosion when solid particle are entrained within the flowing 

corrosive medium. Erosion-corrosion may also be described as corrosion that is 

enhanced by erosion and vice versa (101). It is the mechanism of erosion and 

corrosion taking place simultaneously. Erosion-corrosion is both mechanical and 

chemical process. It involves wear loss as a result of mechanical abrasion of the 

protective oxide film and loss due to corrosion action. The protective film is worn by 

the impacting shear stress of the moving fluid/solid (101). Furthermore, during 

erosion-corrosion the protective films can be swept away by moving water and solid 

particles exposing the metal to more corrosion (101). The impact of erosion-
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corrosion is mostly significant at sections of a pipe where there is a change in 

geometry (elbow, bend, orifices etc).  

Also, erosion-corrosion takes place when flow is turbulent (101, 102). The solid 

particles within the turbulent fluid often destroy films/oxide that is formed by 

corrosion mechanism to allow more corrosion to take place. This form of material 

loss is aggravated when there is solid suspension in the flowing liquid or gas (103). 

Such solids cause the erosion while the fluid will be responsible for the material loss 

by chemical reaction. The material loss by each process when treated separately is 

not as high as when the two work hand in hand (33). It is worth mentioning that 

carbon dioxide saturated brine is a common environment in the oil and gas 

production. For aged well where optimum oil recovery is a challenge, CO2 is pumped 

into the well to help in increasing oil and gas recovery (104). Added to this is the 

problem of sand entrainment that is also unavoidable in the produced fluid.  

Moreover, sand is produced from rocks as a result of shear or tensile failure during 

exploitation (105).When oil, gas, water, carbon dioxide and sand are altogether being 

transported through the pipeline system, and corrosion and erosion are two serious 

problems the oil and gas industries have to face.                                    

2.10.1 Factors Affecting Erosion-Corrosion 

2.10.1.1 Materials 

Factors that affect erosion-corrosion can be classified as material and 

environmental factors (101). According to Roberge (101), materials with different 

oxides formations behave differently under erosion-corrosion. For instance, oxides 

can either be thick and porous, thin and compact and thin and invisible. The type of 
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oxide formed is also a function of the alloying system of the material. Generally, it is 

reported that the higher the content of the alloying elements especially chromium, 

molybdenum and copper, the lower the materials loss due to erosion-corrosion (101). 

Also, apart from the composition of the alloy, other parameters to be considered are 

the grain boundary, crystal structure and surface conditions.  

2.10.1.2 Environmental 

The environmental influence on erosion-corrosion can be viewed from the pH, 

oxygen content, temperature of the environment and other erosivity factors of which 

the fluid flow and sand condition are part (101). If all other factors are assumed 

constant, the rate of erosion-corrosion is considered to be dependent on flow rate of 

the fluid and the solid particles. In liquid-solid flow, the erosion-corrosion rate can 

thus be written: 

                          
(106)                                                            2-57

 

Where, 

V = Flow velocity (m/s) 

The value of n ranges from 1 to 3 

When n is close to 1 corrosion is the rate controlling step and when n is close to 3 

erosion is the rate controlling step (106). 

Other factors that are subsets of the fluid flow are the surface shear stress, 

turbulence intensity and mass transfer coefficients. The impact of fluid flow exerts 

pressure on the film formed by corrosion activity. It is the measure of this pressure 
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that is referred to as the shear stress. For flow induced corrosion, the surface shear 

stress must exceed the force binding the oxide film to the base material (101). 

The effect of temperature on erosion-corrosion of materials can also be viewed 

from the fact that temperature influences the behaviour of oxidation and reaction 

processes. However,  in general, the effect of temperature on flow induced corrosion 

is such that it increases the rate of material loss up to a peak, about 135
o
C for carbon 

and low alloy steel, and then the rate begins to decline (101). 

2.10.2 Hydrodynamic Aspects of Erosion-Corrosion 

The study of erosion-corrosion involves fluid flow. Moreover, the effect of near 

wall turbulent flow on the corrosion of target material can be studied by looking at 

the mass transfer of the electrochemically active species to the corrosion site or the 

mass transfer of the corrosion product away from the corrosion site. Another very 

important parameter to be considered is the wall shear stress which according to 

Efird (107), is the force in the flowing fluid at the wall of the target materials. This 

force must be greater than the force binding the oxide film to the wall of the target 

for it to dislodge the film. Both the mass transfer and wall shear stress phenomenon 

occur within the diffusion boundary layer (Figure 2.22) of the hydrodynamic 

boundary layer (101, 107). Wall shear stress and mass transfer coefficient are related 

by the formula 

                     (
  

 
)                                         

                                 
2-58 

Where, 

 Kd is the mass transfer coefficient (m/s) 
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τw is the wall shear stress (N/m
2
) 

ρ is the fluid density (Kg/m
3
) 

Sc is the Schmidt number 

 

Figure 2.22: Structure of the hydrodynamic boundary layer (107) 

 

The diameter of a pipeline carrying the corrosive medium affects the velocity 

boundary layer and the diffusion boundary layer. For fluid flowing under the same 

velocity, the larger the pipe diameter, the thicker the velocity boundary layer . As a 

result of this the velocity gradient and the wall shear stress is lower for such pipes. 

Generally in stagnant medium, corrosion rate is low and decreases parabolically with 

time due to the formation and growth of corrosion protective film. At lower velocity 

the corrosion mechanism transits to flow accelerated mode. The film formed on the 

metal surface dissolves due to the action of the moving medium. When the flow 

velocity is increased to a certain critical level, the protective film is continuously 

damaged and removed.  At this critical velocity the material loss is predominantly by 

cavitation erosion and droplet impact (101). 
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Erosion-corrosion may be classified into impingement corrosion and turbulence 

corrosion. While impingement corrosion occurs in multiphase flow, turbulence 

corrosion occurs when there is a sudden change in geometry of a pipe leading to high 

turbulent flow. The motion of the corrosion medium in relation to the corroding 

metal has a great influence on the rate of corrosion metal. This occurs mostly when 

the rate is mass-transfer controlled or by impingement of entrained solid (108). 

Corrosion rate may be increased when the electrochemical active species are 

transported to the fluid/metal interface. Conversely, the rate of corrosion may be 

reduced when the aggressive ions are transported away or when inhibitor is 

transported to the fluid/metal interface (101). 

2.10.2.1 Impingement Jet Flow Profile  

Among the several methods of studying erosion-corrosion is the jet impingement 

method. The flow conditions under the impingement condition are easily defined. 

Such flow profile is shown in Figure 2.23.  

 

Figure 2.23: The jet impingement flow profile (107)  
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The flow regime can be characterised into three zones. Zone A is the centre of 

the stream which is near to the stagnation zone. Flow within this zone is laminar near 

the surface. Velocity of flow changes from axial to radial and become intense 

moving out of this zone. The increase in velocity thinned the laminar boundary layer 

as one moves into zone B.  Zone B is the region of high turbulence with high 

velocity gradient and therefore high shear stress. This is the area most affected by 

flow-induced corrosion when sand is not entrained within the flow (107, 108).  

2.10.3 Material Loss in Erosion-Corrosion 

The total mass loss in erosion-corrosion is represented by  

                      (109)                                2-59          

Where K is the total rate of weight loss, Kco is the corrosion rate in the absence of 

erosion, Keo is the erosion rate in the absence of corrosion and ∆Kc is change in 

corrosion rate in the presence of erosion and ∆Ke is the change in erosion rate in the 

presence of corrosion. 

Material loss by erosion and corrosion can be studied separately and the 

interaction between the two can also be evaluated (33). Watson et al. (33), when 

reporting an experimental result put the total material loss as a result of erosion-

corrosion as T [expressed in volume loss (mm
3
) per exposed area (mm

2
) per unit 

time (hour)], materials loss due to corrosion alone as Co (mm/yr), 
 
material loss due 

to wear as Wo [expressed in volume loss (mm
3
) per exposed area (mm

2
) per unit time 

(hour)] and  came up with an expression for the total weight loss due to erosion-

corrosion  thus: 
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                                                                             2-60          

   Material loss due to erosion without corrosion 

    
        

             
                              2-61                                

Subscript: Cath-means with cathodic protection; Wocath-means without cathodic 

protection 

∆M= mass loss (g) 

SA= surface area (cm
2
) 

D = density (g/cm
3
) 

∆h =time of exposure (hours) 

Time Factor (TF) = factor to convert time from hour to year (8.76x10
3
) 

The value of icorr from (2-62) can be used to convert the degradation due to 

corrosion into penetration rates (mm/yr) using equation (2-63)  

         
    

              
                             2-62  

         
              

 
                                 2-63 

Where βa and βc are the Tafel anodic and cathodic slopes, Rp is the polarisation 

resistance and      is the penetration rate (mm/yr). D is density (g/cm
3
), CRCF is the 

corrosion rate conversion factor when Faraday’s law is used to convert corrosion 

current to penetration rate (mm/yr) and also includes a time factor to convert from 

hour to year =  3.27x10
-3 

(
    

        
  (110). 
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      (equation 2-63) is expressed in µA/cm
2
 

EW= equivalent weight 

2.10.3.1 Synergism          

Synergy has been described as the interaction between erosion and corrosion. 

Wood and Speyer (111), when commenting on this phenomenon described it as a 

difficult parameter to determine. They, however, said that it can be calculated with 

the formula: 

                               2-64 

Where S is the synergy, T, the total material loss, E, the total material loss by 

erosion alone and C material loss by corrosion alone.  Stack et al. (109) in their 

submission believed that synergism of erosion-corrosion and additive of erosion-

corrosion can be distinguished from each other. According to their formula 

                                              2-65  

The effect becomes additive when the term ∆Ke in equation 2-59 is taken off. 

That is, the term erosion rate in the presence of corrosion is taken off the equation. 

Meng et al. (112) however described synergy as how corrosion assists erosion and 

additive as how erosion assists corrosion. They came up with the following formula: 

the total material loss                                                                 2-66   

Where S has two components   

                                  2-67 

Where s’ is the increase in erosion due to corrosion (synergy) and s’’ is the 

increase in corrosion due to erosion (additive). 
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   Hu and Neville (113) also described the total weight loss (TWL) as a result of 

erosion corrosion thus: 

                                       2-68  

 where E’ is the pure erosion component, C’is the corrosion rate under static 

condition, dEc is the change in erosion rate due to corrosion and dCe  the change in 

corrosion due to erosion. The authors went further to describe the term C’+     as 

being equal to C in Eq. 2-64, which is the total material loss by corrosion.  

2.11 The Submerged Impinging Jet Rig 

The submerged impinging jet (SIJ) rig is one of the various experimental rigs 

used to study erosion and erosion-corrosion in the laboratory

The SIJ is built with a reservoir of 50/70 litres where the electrolyte and the erodent 

are stored. The mixture of sand and electrolyte is passed through a two-nozzle 

arrangement and the jet impinges onto the samples from predetermined stand-off 

distance and at an angle. The advantage of the rig is that both the stand-off distance 

and the angle of impingement can varied. Electrochemical measurements can also be 

made by placing the reference and counter electrodes near the nozzles and 

connecting them to the working electrode. This rig and its mode of operation are 

further discussed in Chapter 4. 
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Chapter 3. Literature Review II – Duplex Stainless Steels 

3.1 Duplex Stainless Steels 

Stainless steels, a prominent member of ferrous alloys with great importance, 

evolved almost a century ago (115). Since its development, stainless steel has 

revolutionized the materials world. Their importance is due to the versatility and 

numerous applications they are used for (116). Duplex stainless steels, one special 

member of the larger stainless steel family developed about 25years ago, are usually 

used in many industrial environments. These alloys can be broadly classified into 

lean duplex, standard duplex and super duplex stainless steels (116). 

 According to Lo et al. (116) and Hussain and Hussain (117), duplex stainless 

steels are used in the oil and gas industries to withstand corrosion- a major problem 

that causes failure of pipelines. They are used in the down hole pipes and wellheads, 

flow lines, umbilical, process piping vessels, mechanical parts, high pressure system 

and heat exchangers (118). They also find applications in pulp and paper plants (58), 

chloride containing process fluids, ammonium carbonate solutions, mining and 

minerals processing industries, fertilizer plants and in numerous other chemical 

industries (119). Furthermore, duplex stainless steels combine the properties of both 

austenitic and ferritic classes of stainless steel because of the near balance of 

austenite and ferrite phases present in its microstructure (120). The properties they 

offer range from high corrosion resistance in corrosive environments containing 

chloride ions, very high pitting resistance, good sulphide stress corrosion, good 
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mechanical strength and ductility, abrasion resistance, erosion resistance and a very 

good weldability (117). 

3.1.1 Metallurgy of Duplex Stainless Steels  

During the solidification of duplex stainless steels, ferrite phase first nucleates 

and solidifies out of the liquid alloy before the diffusion of austenite out of the ferrite 

matrix. The temperature at which nucleation and growth of austenite from ferrite 

starts depend on the chemical composition of the duplex steel. Proper cooling rate 

must be selected to avoid the precipitation of the deleterious phases (sigma, chi, 

alpha prime) (15). These precipitate phases even at a very low percentage affect the 

toughness and corrosion properties of duplex steels considerably. Although these 

deleterious phases can be taken into solid solution by solution annealing and 

quenching. It is, however, difficult to fit large casting parts into most furnaces. 

Nevertheless the best microstructure of these alloys is achieved under solution 

treated conditions. 

 The solution annealing process is applied to duplex stainless steel after the hot 

forming operation. This operation is intended to dissolve the intermetallic phases 

present. The annealing temperature is also a function of the chemical composition of 

the alloy. However, it ranges from about 1000
o
C to 1100

 o
C from the lean type to the 

super duplex type. This is the treatment that can actually eliminate the third phases 

and also help in the balance between ferrite and austenite (120). A near balance of 

austenite/ferrite ratio gives duplex stainless steels the best combination of properties. 

The importance of the ferrite–austenite balance is that it helps the alloy to combine 

the properties of both phases fairly well. For instance, austenite has good weldability 
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and high toughness while ferrite is susceptible to welding failures but exhibit higher 

resistance to stress corrosion cracking. 

 

Figure 3.1: Optical micrograph of a typical duplex stainless steel in  longitudinal 

section  (121) 

 

3.1.2 Standard Duplex and Super Duplex Stainless Steels 

Of all the classes of duplex stainless steels, the most widely used and with 

highest production tonnage is the standard duplex (UNS S31803/S32205) also 

referred to as 2205 (115). This alloy started gaining recognitions for gas pipeline 

long ago. The standard duplex has chromium content of approximately 22%, nickel 

content of about 5% to 6%, 0.16% nitrogen and about 3% molybdenum. Nitrogen 

was introduced into the alloying system to increase the austenite reformation during 

welding thereby reducing higher ferrite and invariably lowers the formation of 

precipitates which reduces corrosion resistance. The alloy has strength double the 

conventional austenitic stainless (304 and 316) because of the high strength of ferrite 
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phase present. Its corrosion resistance is also higher than the conventional austenitic 

types. These alloys have a Pitting Resistance Equivalent Number (PREN) greater than 

30 but less than 40 which makes it resistant in chloride environments. One beauty of 

this alloy is its ability to retain is properties in the as welded condition (15). 

The super duplex types are generally known for their high Pitting Resistance 

Equivalent number (PREN) in the excess of 40. They are of 25% Chromium by 

weight with high molybdenum, reasonable tungsten and nitrogen additions of up to 

0.27%. They have better resistance to chloride environment than the standard duplex 

types but definitely more expensive. One problem with this class is the intergranular 

corrosion due to the carbide precipitate resulting from the high alloying system.  

Table 3-1: Some standard and super duplex stainless steel grades  

 

3.1.3 Lean Duplex Stainless Steels 

The lean duplex stainless steel has lower nickel and molybdenum and relatively 

lower chromium contents. The lower nickel and molybdenum contents makes it a 

less expensive alternative to the standard duplex (UNS S32205) and the super duplex 

(UNS S32570) while the lower chromium contents reduces its susceptibility to sigma 

formation-sigma phase is mostly formed by thermal ageing, radiation and during the 

 Grade UNS Cr Ni Mo Cu W N PREN 

Standard 

Duplex 

2205 S31803 22.5 5 3.2   0.17 36 

Ferralium 255 S32550 26 5.5 3 1.7  0.17 39 

Uranus 47N S32550 25 6.5 3   0.18 38 

Super 

Duplex 

SAF2507 S32750 25 7 4   0.27 43 

Zeron 100 S32760 25 7 3.5 0.5 0.6 0.25 42 
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slow cooling after welding (116, 122). This phase is characterised by high hardness 

and invariably reduces the toughness of the duplex stainless steel. It is basically a Fe-

Cr-Ni-Mo intermetallic compound that is greatly influenced by Cr and Mo diffusion 

(116, 122). Because this phase is rich in the basic elements that help in corrosion 

resistance, it deprives the neighbouring matrix of these elements and hence exposes 

the near neighbour matrix to corrosion. 

The low nickel content of lean duplex stainless steels is compensated for by the 

addition of manganese and nitrogen. Manganese not only acts as an austenitizer but 

also help to increase nitrogen solubility (19). Nitrogen itself is a very effective 

austenitizer and structural stabilizer (123, 124). Nitrogen also helps in phase 

reformation of austenite in the heat affected zone (HAZ) after welding, thereby 

reduces intergranular corrosion. It is unarguable that the corrosion resistance of this 

family is not comparable to the standard and super duplex types. Nevertheless, it 

competes favourably well and less expensive than the 300 series austenitic stainless 

steels and also serves as economic alternatives to the standard and super duplex types 

in some environments. The recent developments in duplex stainless steel involve 

reducing the alloying elements, especially nickel whose market price has been 

fluctuating and replace part of it with manganese with the steel still having good 

quality at reduced price (15). Reported studies (14, 16, 17) have shown that 

LDX2101 (a lean duplex alloy) has better corrosion resistance than 304L. According 

to Olson et al. (17) and Zhang et al. (14),  LDX2101 has an improved pitting and 

crevice corrosion resistance which is superior to that of 304L and similar to 316L. 

Most work on the lean duplex steel has not considered at the behaviour of these 

alloys in varying environments.  
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3.1.3.1 Types of Lean Duplex Stainless Steels 

Types of lean duplex stainless steels available are the LDX2101 (UNS S32101) 

or 1.4162, AL2003 (UNS S2003), Uranus 35N (UNS S32304) and more recently 

LDX2404 (UNS S82441). Of these types, LDX2101 has the highest manganese 

content of 5% and the lowest nickel content of 1.5%. The molybdenum content is 

also low (0.5%) but not as low as that of UNS S32304 with Mo content of 0.25%.  

S32003 with a fairly low Ni content of 3.5% has a relatively lower Mn of below 2% 

but with high Mo of 1.75%. UNS S32304 with the highest Ni content of 4.4% and 

Mn of the same range with 2003 has the lowest Mo content of 0.25%. LDX2404 is a 

new entrance into the lean duplex family. It has a PREN very close to UNS S32205 

but the nickel and molybdenum contents are lower than that of UNS S32205. This 

alloy has been developed as an economic alternative to UNS S32205. The lean 

duplex stainless steels can be distinguished from one another by the differences in 

their Ni, Mn and Mo contents. All members of this class contain Cr contents ranging 

from 21.5, 21.0, 23 and 24% for LDX2101, UN S32003, UN S2304 and LDX2404 

respectively. Table below describes the composition of these alloys (125).  

Table 3-2: Types of lean duplex stainless steels (118) 

 ASTM 

/UNS 

C Mn Si P S Cr Ni Mo Cu N PREN 

SAF 2304 S32304 0.03 ≤1.0 ≤1.0 ≤0.03 <0.002 23.0 4.4 0.25 0.25 0.11 25 

LDX2101 S32101 0.04 5.0 ≤1.0 ≤0.04 ≤0.03 21.5 1.5 0.5 0.5 0.22 26 

AL2003 S32003 0.03 ≤2.0 ≤1.0 ≤0.04 ≤0.02 21.0 3.5 1.75 - 0.17 30 

LDX2404 S82441 0.02 3.0 0.33 0.021 0.001 24.0 3.6 1.6 0.37 0.27 34 
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3.1.3.2 Mechanical Properties of Lean Duplex Stainless Steels 

All members of the lean duplex have similar mechanical properties. The yield 

strength for all exceeds 450 MPa and the ultimate tensile strength exceeds 620 MPa. 

They are all ductile with percentage elongation exceeding 25 % (118). The lean 

duplex steels are tougher than the ferritic and have better corrosion resistance than 

the austenitic types. Apart from their corrosion resistance, the strength of lean duplex 

stainless steels is another attractive property especially when compared to austenitic 

types. Thinner gauges are possible with the use of lean duplex stainless steels which 

reduce material usage and safe both weight and cost (7). 

3.1.4 Materials Used in CO2 Corrosion and Erosion-Corrosion 

Conditions 

Oil itself is not a corrosive material (except if it contains organic acid) but most 

substances that flow with it - chlorides; carbon dioxide, hydrogen sulphide and 

oxygen- are the corroding agents. The component of a well head fluid for instance 

comprises of chlorides, carbon dioxide, hydrogen sulphide, oxygen, bicarbonates, 

sulphates, and some elemental ions. Some of these contaminants find their ways into 

the system by the action of the operators. For instance, hydrochloric, formic and 

hydrofluoric acids are pumped in to improve formation permeability, concentrated 

brine is also used for formation pressure (126). From oil and gas production through 

the refinery to the downstream sector, many channels (flow lines and pipelines) are 

used to transport oil and gas with the corroding agents. The most used material for 

this channels is plane carbon steel (X65) (7, 8). This is because it expensive as 

compared to other alloy steels and stainless steels and can be used with varieties of 
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inhibitors (8). However, plain carbon steels have shortcomings due to their 

susceptibility to corrosion. Moreover, most aging oil wells and deep-water/offshore 

wells produce highly corrosive substances along with the crude oil and gases. These 

kinds of wells cannot afford to rely on the carbon steels as the pipeline materials. So, 

the current trend is to use either low alloy steels or stainless steels. Nevertheless, it 

must also be mentioned that the use of inhibitors with carbon steels is also a very 

common practice in most oil and gas production (127). However, in some 

circumstances, inhibitor addition may not be reliable. More so, inhibitors can also 

have some negative environmental impact. The initial cost of procuring stainless 

steels might seem too high for the operators of oil and gas field. However, looking at 

the long time effects and the capital expenditure (CAPEX) versus the operation 

expenditure (OPEX) balance, it might be reasonable to choose them especially for 

the more aggressive environments.  

 

Figure 3.2: Materials used in different corrosion regimes (128) 
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In sweet environments according to Fu et al. (127),  Ueda and Takabe (129), API 

L80 13%Cr (Martensitic) steel is the most widely used (Figure 3.2). This alloy is said 

to be of high corrosion resistance in sweet environments. However, due to the cost of 

procurement some oil and gas production companies still prefer to use the less 

expensive X65 with the help of inhibition especially for low production and for wells 

that will be operated for a short period (127). Others go for low chromium (less than 

2%Cr) steels because it is a better alternative to 13% Cr with regard to stress 

corrosion cracking and cost (129). Roche (7), reported that the majority of materials 

employed for pipelines are carbon steels but stainless steels especially duplex 

stainless UNS S31803 (UNS S32205), and 13% Cr martensitic steels are used for 

flow lines, short pipelines and for longer ones when inhibition is not effective (high 

velocity and temperature) or difficult to inject in far and deep offshore. Pendley 

(128), reported that for CO2 environments with low levels of H2S, carbon steel (with 

proper inhibition) and low alloy steel may be considered when the partial pressure of 

CO2 is low. 13% Cr martensitic stainless steel will be effective for CO2 environments 

when the temperature is not more than 150
o
C, 300 series austenitic stainless steels 

for environment with the combination of high level CO2 and chloride. However, for 

sweet environments with high CO2, high chloride and relatively high temperatures in 

the excess of 250
o
 C duplex stainless steels will be a better candidate. 

However, more often, sand and oil are mined together especially in mature oil 

wells, deep water wells and in sand-oil systems. It is essential to have materials 

which can withstand both the aggressive corrosion environments and the erosive 

damage by the sand particles. Jones and Llewellyn (130), reported that carbon steels 
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have the least resistance to erosion-corrosion; 316L stainless steels have better 

corrosion resistance than carbon steels but also show inferior erosion-corrosion when 

compared to the duplex stainless steels. However, most often the cost of the 22Cr 

duplex stainless steel make the oil and gas industries go for the less expensive but not 

very effective 13Cr (8). 

The most applied materials for CO2 erosion-corrosion resistance are carbon steels 

(with inhibition), 13Cr, super martensitic stainless steels and the duplex stainless 

steels. 

3.1.4.1 Application of Lean Duplex Stainless Steels in Oil and Gas Industries 

Lean duplex stainless steels are popular in construction and building industries 

for the fabrication of containers and vessels (118). The application in building 

construction is mainly due to its ease of fabrication, high strength and aesthetics. 

Applications of lean duplex stainless steels in the oilfield are due to their corrosion 

resistance capabilities, better yield strength and attractive economy as compared to 

the 304 and 316 family. Lean duplex stainless steels also became popular due to the 

high cost of standard and super duplex stainless steels, the  unreliability of 

martensitic stainless steels in slightly sour environments (129), and weak resistance 

of martensitic stainless steels to sea water (14). Presently, the lean duplex stainless 

steels find applications in flow lines that connect well heads with production units, 

flexible pipes (carcass), umbilical tubing, water injection lines, for construction of 

transport vehicles and topside oil and gas installations such as heat exchangers, 

separation units, cable trays etc (12). 
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3.2 Corrosion Properties of Duplex Stainless Steels 

The alloying elements in the duplex steel play important roles in their corrosion 

properties. Chromium, molybdenum, nickel and nitrogen are the principal elements 

that determine the corrosion resistance of these alloys. The carbon content also has to 

be extremely low to avoid carbide precipitation (131). These alloying elements can 

be classified as ferrite formers (Mo and Cr) and the austenite stabilizers (Ni and N). 

Chromium increases the general corrosion resistance of duplex steels while 

molybdenum enhances the resistance to pitting. These two elements are mainly taken 

into the ferrite phase while nickel and nitrogen are partitioned into the austenite 

phase. Nitrogen particularly is an essential member of these alloying elements 

because it performs so many functions such as: structural stability, pitting resistance, 

austenite former and reformer and inhibiting the formation of the precipitate phases – 

nickel is also a powerful austenite former (131). Chromium and molybdenum are 

helpful in passivation and repassivation while copper (58, 132) (when present) is an 

alloying element that raises the erosion-corrosion resistance of most duplex stainless 

steels. Sulphur is a deleterious element that combines with most oxide to form 

precipitates that eventually act as sites for pitting (15). 

The major parameter used to rank the localized corrosion behaviour of the duplex 

stainless steels is the Pitting Resistance Equivalent Number (PREN). This number is 

denoted by %Cr +3.3%Mo +16%N or sometimes %Cr +3.3%Mo +16%N+1.65%W.  

PREN indicates resistance to pitting and chloride induced corrosion and  can be used 

to classify the duplex family (15). The lean duplex stainless steels have PREN greater 

than 20 but lower than 30, standard duplex have PREN greater than 30 but lower than 
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40 while super duplex have PREN greater than 40. It invariably means that super 

duplex stainless steels have higher resistance to pitting and stress corrosion cracking 

as compared to the other two members (58). 

One major problem with the highly alloyed duplex stainless steels is the 

formation of the third phase (precipitate phase). This is essentially due to the high 

chromium, molybdenum and nitrogen. Moreover, molybdenum and chromium are 

generally comfortable to form carbide precipitate when the heat treatment is not 

properly done. These precipitates are richer in the said elements and thereby render 

the surrounding matrix deficient in chromium and molybdenum hence the matrix is 

exposed to corrosion (120). Formation of the precipitates is not high in the lean 

duplex (2101 and 2304) because of the lower alloying system essentially near zero 

molybdenum.  

Another major corrosion problem of duplex stainless steels is the Hydrogen 

Induced Stress Corrosion (HISC). This occurs mostly on the ferrite phase. So, duplex 

stainless steels perform better in environment of high CO2 partial pressure in the 

presence of chloride and relatively high temperature with a very low H2S partial 

pressure (128, 133). They are the perfect alloys for chloride environments because of 

their high resistance to pitting and SCC. The nitrogen enhanced duplex stainless 

steels are also very resistant to intergranular corrosion essentially due to the ability to 

reform austenite even after welding (131). Getting the proper corrosion resistance 

involves proper alloying during melting and making sure the alloy is properly heat 

treated and also ensuring proper welding procedure during fabrication. Annealing 

temperature can change the volume fraction of both ferrite and austenite. It can also 
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lead to precipitation of the deleterious phases which affect the corrosion behaviour of 

these alloys (134). 

Little attention has been given to CO2 corrosion of duplex stainless steels as that 

given to carbon steels, low alloy steels and martensitic stainless steels (135). The 

corrosion resistance of stainless steels rests on its ability to repassivate in the 

corroding medium. The major problem of high CO2 dissolution is local corrosion 

(mesa attack and pitting). Duplex stainless steels are selected for environments of 

high CO2 partial pressure in the excess of 0.02 MPa and temperature tending to 200-

250
o
C. This is because the plain carbon steels become ineffective at pressure higher 

than 0.02 MPa and temperature higher than 150
 o

C. Also, 13%Cr steels are limited to 

environments with extremely low H2S concentration and temperature lower than 

180
o
C with little or no chloride concentrations. Duplex stainless become the 

candidate where there is high CO2 partial pressure, relatively high temperature, high 

chloride and reasonable H2S partial pressure (16, 128). 

3.3 Erosion-Corrosion of Duplex Stainless Steels 

Duplex stainless steels are designed for applications in aggressive oilfield and 

marine environments where both corrosion resistance and mechanical properties of 

austenitic stainless steels would be inadequate (23). The standard duplex and super 

duplex has been reported to exhibit good wear-corrosion resistance due to the high 

hardness and the ability of the austenite phase to work-harden. In the same 

investigation, it was reported that the erosion-corrosion behaviour of the duplex 

stainless steels can be related to the volume fraction of the austenite phase and the 

flow rate of the slurry (128). Researchers in this field have also attributed the high 
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erosion-corrosion resistance of duplex stainless steels to their ability to repair the 

breakdown oxide after the liquid-solid impingement (27, 117, 130). 

The erosion-corrosion resistance of super duplex stainless steel UNS S32760 has 

been reported to be better than that of a superaustenitic stainless steel when tested 

under marine conditions (112).  Meng et al. (112) also reported that pure erosion 

contributed the highest damage to the total materials loss.  Bargmann et al. (136)  

also made the same observation when they studied the erosion-corrosion of a super 

austenitic stainless steel. It was reported that pure corrosion contributed only about 

1% of the total material loss while the highest damage was by erosion. Neville et 

al.(27) compared the erosion-corrosion resistance of UNS S32205, UNS S31603 and 

a carbon-manganese steel and found the duplex stainless to be the best among the 

three alloys. These authors also showed that the material removal is predominately 

by erosion when the passive film becomes ineffective under the highly erosive 

liquid-solid impingement (Figure 3.3).  

 

Figure 3.3: Breakdown of total weight loss under erosion-corrosion at 50
o
C (27) 
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In another development, it was reported that the extent to which the passivating 

film can assist in preventing erosion-corrosion is limited though it was agreed that it 

has the ability (117). Oh et al. (137) investigated the corrosion-wear behaviour of 

biomedical materials for implant in simulated human body fluid and reported that a 

high molybdenum and high nitrogen austenitic stainless steel could be a substitute to 

the conventional materials for implants in frictional environments. This, the authors 

reported, was because the material exhibited comparable erosion-corrosion resistance 

to the conventional materials due to its ability to passivate. Conventional austenitic 

stainless steel with high nickel content are believed to cause allergy in human bodies 

when used as implants (118). Generally, high manganese and low nickel duplex 

stainless steel are believed to possess better corrosive wear primarily because of the 

similarity of the austenitic phase with the Hadfield manganese steels (116). 

 

Figure 3.4: Effect of alloying on erosion-corrosion (138) 
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The effect of PREN on the erosion-corrosion of some stainless steels (martensitic 

(S42000), duplex (S31803) and superaustenic stainless steels (N08028) was 

investigated by Haberl et al. (138). The outcome of the investigation showed that at a 

low impact velocity, lower than 20m/s, in multiphase slurry, the erosion-corrosion 

resistance of the alloys depend on the PREN. However, at higher impacting velocity 

between 20 and 60m/s, the effect of PREN on the erosion-corrosion of the materials 

becomes insignificant. The results showed that the martensitic stainless (S42000) 

steel with PREN of 12.2 shows similar erosion-corrosion behaviour with the duplex 

stainless steel (S31803) with PREN 36 and the superaustenitic stainless steel 

(N08028) with PREN of 42 (Figure 3.4). It was reported that at higher impact 

velocity, the material loss is predominantly mechanical (independent of PREN) but 

that at the lower impact velocity, both corrosion and erosion interplay (138). 

3.4 Corrosion and Erosion-Corrosion Resistance of Lean Duplex 

Stainless Steels 

There is no doubt that much research have been carried out to study the corrosion 

resistance of lean duplex stainless steels. The pitting corrosion resistance and the 

critical pitting temperature have been found to be better than the standard austenitic 

types (18). Lean duplex stainless steel, UNS S32101 has been reported to have very 

good resistance to stress corrosion cracking (139). This alloy is said to have the best 

combination of strength and corrosion resistance among the lean duplex stainless 

steels (12). UNS S32101 has also been reported to be a good substitute for the 300 

series austenitic stainless steels for corrosion and structural applications (139).  
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Figure 3.5 : SEM images representatives of crack propagations in (a) UNS 

S32101and (b) UNS S32205 after stress corrosion cracking tests in 45% 

MgCl2, 150
o
C for 24 hours (139) 

 

Surprisingly, the Stress Corrosion Cracking (SCC) resistance of UNS S32101 

lean duplex stainless steel under constant strain loading has been reported to be 

similar to that of standard duplex stainless steels Figure, 3.5 (139). Localised 

corrosion resistance of UNS S32101 has also been reported to be better than UNS 

S30403 (140). The pitting behaviour of this alloy also compares favourably well with 

UNS S31603 (140). Wei et al.(14) studied the mechanical and corrosion properties 

of a lean duplex steel which has similar chemical composition to UNS S32101, in a 

chloride medium. These authors found the critical pitting temperature of the lean 

duplex stainless steel to be higher than that of UNS S30403 austenitic stainless steel. 

In another development, the suitability of UNS S32101 as a substitute alloy for UNS 

S31603 in the carcass of an unbounded flexible pipe was carried out (12). It was 

reported that the UNS S32101 with higher strength, better corrosion properties and 

lower cost is a favourite candidate for such application. However, despite the above 

literature on corrosion resistance of UNS S32101 and the abundant literatures (25-31, 

111, 112, 117, 130, 137, 141-143) on of erosion-corrosion of other passive alloys, 

a b 
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there is limited information (136) on the erosion-corrosion behaviour of lean duplex 

stainless steels.  

3.5 Repassivation Kinetics of the Passive Film Formed on Lean 

Duplex Stainless Steel 

Passive alloys are protected from corrosion by the thin layer of passive oxide 

formed on their surface. Under mechanical wear however, this passive oxide could 

be removed or thinned and this would increase the corrosion susceptibility of the 

alloy. The passive film removed, nevertheless tries to repassivate by the oxidation of 

the exposed bear metal/alloy. In the course of repassivation, an anodic current flows 

which can be measured in a potentiostatic experiment. The measured anodic current 

is usually used to study the repassivation kinetics of the passive film (144). Several 

authors have proposed different models to discuss passive film growth (68, 145, 

146). Burstein and Davenport (147),  Jemmely et al. (66) modelled current transients  

for tribological actions using film growth kinetics and ohmic resistance of the 

solution.  All the authors assumed that  

1. All the current measured is used in the film formation 

2. Film growth follows the high field conduction mechanism. 

The same mechanism in tribo-corrosion (scratch or rubbing method) is also 

applicable to solid particle impact.  During solid particle impact, the passive film is 

removed. However, if the passive film can regenerate fast, the alloy will remain 

corrosion resistant. The total amount of material loss by the impact of erodent and 

that of corrosive medium is a function of the behaviour of the passive film. The 
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generation rate of fresh metal surface and the repassivation rate of the alloy are two 

important factors that determine the erosion-corrosion resistance of such alloys. 

Erosion can also be detrimental to the pitting resistance of alloys especially if the 

repassivation rate is low. The erodent generates rough surfaces which easily trigger 

pitting. Therefore, an alloy with lower repassivation rate is likely to be more 

susceptible to pitting than alloys with a high repassivation rate. It then means that the 

study of the ability of passive film to regenerate after depassivation is very important 

(32, 65)  

Much work has been done on the study of the repassivation kinetics of damaged 

passive film on stainless steels. Several models have also been developed to describe 

passive film growth (66, 147, 148). One agreement by most authors in this field is 

that the passive film and their repassivation kinetics are functions of the alloy 

chemistry (Figure 3.6), applied potentials, pH and chloride ion concentration of the 

environment (70, 149, 150). According to Lee (70), an increase in chromium content 

increases the repassivation rate of an Fe-Cr alloy (Figure 3.6).  

According to this report, an addition of nitrogen and molybdenum also raises the 

repassivation rate (Figure 3.6). Hoshimoto et al.(151) and Lee (70) examined the 

repassivation kinetics of some stainless steels with molybdenum additions in a 

chloride-containing solution using abrading method. Silicon carbide (SiC) disc was 

used to abrade the working electrode while immersed in the electrolyte to acquire 

current transients. The conclusion of these authors is that molybdenum-containing 

alloy repassivates faster than the other alloy without molybdenum. 
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Figure 3.6: Effects of alloying elements on repassivation kinetics of austenitic 

stainless steels (a) chromium (b) molybdenum (70) 

 

Manganese is believed to have a detrimental effect on the general corrosion of 

stainless steels because of MnS inclusions. However, according to Toor et al. (152), 

the effect of Mn on pitting corrosion resistance of Fe-Cr-Mn alloys is still 

controversial. The effect of Mn on repassivation kinetics is still rarely studied. Toor 

et al. (152) while studying the repassivation behaviour of two nonstandard high 

manganese, low nickel stainless steel alloys and austenitic stainless steel 304 in 

deaerated 0.5M NaCl solution came up with the following conclusions: that 

repassivation kinetics of high Mn stainless steels are similar to the austenitic  and 

ferritic stainless steels but that repassivation rate decreases with increase in Mn 

content. Yamamoto et al. (153) studied the repassivation behaviour of three stainless 

steels (304, 316L and 312L ) in 0.9 M NaCl solution. These authors found out that 

indentation not only ruptured the passive film but also that the indentation might 

introduce stress, dislocation and probably a change in the microstructure. These 
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authors also align with the fact that the effect of plastic deformation caused by 

indentation on the pitting behaviour of the substrate alloy is complex. Data available 

in literature is very inconsistent. Some researchers believe that plastic deformation 

by cold rolling increases the pitting potential of stainless steels (154), while others 

argue that the pitting potential is shifted to a more active direction by plastic 

deformation (155). Yamamoto and co-workers (153) align with the former argument 

saying the pitting potential is not shifted in the cathodic direction because the stress 

is compressive.    

3.6 Passive Film Chemistry and their Breakdown 

There is no doubt that the composition of the passive film on stainless steels is 

influenced by alloy constituents (156, 157), composition of the environment, 

chemical stability of the passive film (156, 158) and diffusivity of the alloying 

elements through the film. It has been argued that pure Cr2O3 should give the best 

protection against breakdown of passive film (158, 159). However other impurities 

as well as lower valance ions often lead to point defects and thereby increase 

mobility of the deleterious species such as Cl
-
 ion through the passive film to the 

reactive substrate of the alloy. 

Many investigations have been carried out on the passive film characteristics of 

the standard and highly alloyed austenitic stainless steels (156, 157) and highly 

alloyed duplex stainless steels (157). However, there are few studies on the subject of 

passivity of lean duplex stainless steels (160). The lean duplex stainless steels UNS 

S32101 with 5wt% Mn is an alloy of interest due to the negative effect of Mn, in 

form of MnS inclusions. MnS inclusions have been shown to be present on the 
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surface of such alloys affecting the pitting behaviour (161). Mn is said to form the 

detrimental MnS in alloys with high sulphur content although modern metallurgy has 

made it possible to produce ultra-low sulphur steels. Mn is an active element like Fe 

and could also be dissolved from the passive film (162, 163) leaving the passive film 

porous. It should however be noted that Mn could contribute positively to the 

properties of stainless steels. For instance, Mn is said to enhance the solubility of 

nitrogen. This means that with addition of Mn into a low sulphur steel and with high 

solubility of N2, there will be low nitride formation during welding of such steels 

(160). 

Much research has been directed towards the study of passive films formed in 

seawater, HCl, HNO3 ,FeCl2 and artificial saliva (157, 158, 162). However, there is 

little information on the passive film formed in CO2-saturated environment and the 

nature of oxidation of Mn in the passive film formed on austenite and ferrite phases 

in duplex stainless steels. Recently, Frediksson et al. (160)
 
reported that Mn is 

present in the passive film of both 316L and UNS S32101 but that the Mn was 

enriched in 316L. Their argument was that Mn is likely to be preferentially oxidized 

and absorbed into the passive film formed on the austenite phase more than the dual 

(ferrite+austenite) phase of the lean duplex UNS S32101. Anselmo and co-worker 

(163) also reported that a synergy existed between CO2 and chloride ion on the 

breakdown of passive film formed on 13Cr stainless steel. The breakdown potential 

for the alloy was found to be more positive in aerated seawater than a CO2-saturated 

solution with the same chloride concentration and at higher chloride concentration. 

However, this reversed at lower chloride concentration. The nature of interaction 

between CO2 and chloride ion is still not well understood.  
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3.7 Relationships between Subsurface Morphology and Erosion-

Corrosion 

 It has been argued by many authors that current modelling approach has not 

been able to predict accurately the total material loss by the synergistic effect of both 

erosion and corrosion primarily because of the complexity of the interaction. Despite 

the abundant attempt to predict erosion-corrosion, few researchers have considered 

the effects of the sub-surface morphology and crystallography of the layer of the bulk 

alloy just below the passive film, Figure 3.7 (35, 36).  

It is on record that this thin layer of the modified part of the bulk alloy have 

received better attention under tribo-corrosion and tribo-bio-corrosion in form of 

sliding wear and micro abrasion-corrosion. Attempts have, however, been made in 

the past to modify the surface and sub-surface morphologies of alloys to increase 

their erosion-corrosion resistance (164, 165). 

 

Figure 3.7: FIB cross-section of UNS S31603 stainless steel after erosion-corrosion 

for 1 hour in 3.5 % NaCl showing micro and nano-cracks beneath the impacted 

lip (35) 

Micro 

crack 

Nano 

crack 
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One way such modification could be achieved is to increase surface/subsurface 

hardness by strain hardening.  If the strain is large enough, features below the 

impinged surface could undergo crystallographic and microstructural modifications 

as well as grain refinement.  Buscher and Fischer (166) reported a multilayer 

structure consisting of an outer nano-crystal layer, a stuctureless layer at the middle 

and a layer consisting of stacking fault and έ-martensite below the structureless layer 

on a CoCrMo after tribo-corrosion of all metal hip joint.  Bidiville et al. (167) also 

found the same nano-crystal structure on the  outer layer of a 316L stainless steel 

after tribo-corrosion in sulphuric acid. These authors also reported a strain-induced 

martensite layer below the surface of the nano-crystal.  

   

Figure 3.8: A low carbon CoCrMo disc rubbed  by a pin with a load of 5N for 30 

hours (a) top layer (less than 1µm) showing nano crystalline structure (b) 

stacking fault and martensite needles about 30 µm below the worn surface 

(166) 

 

Sub-surface modification by solid particle erosion was also studied by Ives and 

Ruff (168) and Edington and Wright (169, 170) confirming that solid particle erosion 

resulted in build-up of dislocation density and grain refinement below the surface of 

a b 
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alloys that have undergone solid particle erosion. Mohammed and Luo (28) recently 

studied the effects of cold work on erosion-corrosion of 304 austenitic stainless steel 

by cold rolling the alloy to specific sample thickness. They reported a decrease in the 

erosion-corrosion rate of the alloy with an increase in the cold working up to 5% 

thickness reduction. 

The use of SEM has been extensive in understanding the surface morphology of 

the deformed alloy under erosion-corrosion. However, as a result of the high 

resolution involved in understanding the structure and composition of the surface 

beneath the deformed surface of alloys, the use of SEM for such is limited (35). 

However, Electron Backscattered Diffraction (EBSD), Transmission Electron 

Microscope (TEM) and  Focused Ion Beam (FIB) are gaining popularity in the study 

of sub-surface morphology of deformed alloys in transverse sections (35, 36). 

Recently Rajahram and his co-workers (35, 36) used the FIB and TEM to 

characterise the sub-surface morphology of UNS S31603. They found that the 

evolution of crystallography and martensitic transformation (Figure 3.9) below the 

surface contributed to the erosion-corrosion synergy. This also corroborates the work 

of Lu and his co-workers (Figure 3.9b) (171) on the corrosive wear behaviour of 

stainless steels in sulphuric acid medium using a modified pin-on-ring tester. 

However, lean duplex stainless steel alloys have not been considered for 

evaluation by these authors. Additionally, none of the aforementioned tests was 

carried out in a simulated CO2-saturated oilfield environment and the use of the 

Submerged Impinging Jet (SIJ) to study the subsurface transformation of alloys 

under erosion-corrosion has not yet been considered. 
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Figure 3.9: Selected Area Electron Diffraction (SAED) of austenitic stainless steel 

showing the transformation from FCC to BCT crystal structure (a) erosion-

corrosion at 7 m/s in a 3.5% NaCl slurry (35) (b) tribo-corrosion (pin-on-ring) 

in sulfuric acid (171) 

 

3.8 Summary of Literature Review 

Lean duplex stainless steels are among the new alloys employed for pipeline 

applications in the oilfield environments. However, despite the abundant literature on 

the subject of erosion-corrosion of other passive alloys and the localized corrosion 

behaviour of these alloys, there is limited information on the erosion-corrosion 

behaviour of lean duplex stainless steels. Bargmann (55, 136) reported that lean 

duplex stainless steel (UNS S32101) performance under erosion-corrosion conditions 

is comparable with highly alloyed austenitic stainless UNS S31254.  

Efforts have been made in the past to study passive films formed on passive 

alloys in aerated seawater, HCl, HNO3 ,FeCl2 and artificial saliva (157, 158, 162, 

172). However, since stainless steels are also widely used in sweet oilfield 

environments, information on the passive film formed in CO2-saturated environment 

is of interest to the operators of the oilfield. Moreover, the nature of interaction 
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between CO2 and the chloride ion on the behaviour of the passive film is still not 

well understood.  

The influence of the sub-surface modifications on tribo-corrosion behaviour of 

stainless steels has received more attention under sliding wear and micro abrasion-

corrosion conditions. In the past, attention has always been on austenitic stainless 

steels and cobalt-chromium alloys for applications in bio-tribo-corrosion and acidic 

environments. Rajahram (35) reported a change in subsurface morphology and 

microstructure of UNS S31603 austenitic stainless steel after erosion-corrosion at 7 

m/s in aerated conditions. Neither of the aforementioned tests was carried out in a 

simulated CO2-satuarted oilfield environment nor did they consider the lean duplex 

stainless alloy. Surprisingly also, UNS S30403 with a better work-hardening 

characteristic than UNS S31603 was not considered for evaluation under the erosion-

corrosion conditions.  Additionally, the use of the Submerged Impingement Jet (SIJ) 

to study the subsurface transformation of alloys under erosion-corrosion has not yet 

been considered. 

Much work has been done on the study of the repassivation kinetics of damaged 

passive films on stainless steels. Previous methods that have been used extensively 

for the study of repassivation kinetics of passive films include: abrading electrode 

technique (70), scratching electrode technique (161, 173), cavitation technique (65) 

as well as micro and nano indentations (153, 174-177). Single impact by sand and 

glass beads has also been considered for austenitic stainless steels (31, 178). 

However, none of these previously-reported experiments have been carried out in a 

CO2-saturated oilfield environment. Additionally, the repassivation behaviour of lean 

duplex stainless steel UNS S32101 has not been considered for evaluation in CO2-



90 
 

 

 

saturated oilfield conditions. Finally, the use of the Submerged Impinging Jet (SIJ) 

for such investigation has not yet been considered. 
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Chapter 4. Methodology 

4.1 Introduction and Chapter Overview 

The focus of this research is to extend the knowledge on the subject of corrosion 

and erosion-corrosion behaviour of lean duplex stainless steels in static and flow-

induced (erosion-corrosion) oilfield environments. As a result, several methods have 

been adopted to achieve the objectives set out for this study. For the static corrosion 

conditions, the breakdown potentials of six alloys were determined. Passive film 

chemistry of two lean duplex alloys UNS S32101 and UNS S32304 was also 

determined after exposure to the environments at the open circuit potential for twenty 

four hours. These two lean duplex alloys were chosen because of the difference in 

their manganese additions as well as their close pitting resistance equivalent number 

(PREN). 

Under flow-induced corrosion conditions, four alloys were considered. Erosion-

corrosion behaviour of these alloys was studied in a submerged impinging jet (SIJ) 

rig in aerated and in CO2-saturated conditions at 15 m/s impinging velocity. Two of 

the alloys, UNS S32101 and UNS S30403 representing lean duplex and standard 

austenitic stainless steel families, were later selected for an in-depth study.  

Repassivation kinetics of the passive film formed on these alloys was studied in CO2-

saturated oilfield conditions. A higher velocity of 24 m/s was also used to study the 

erosion-corrosion behaviour of these alloys in a CO2-saturated oilfield brine.  
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4.2 Stainless Steel Alloys Used for this Study 

Six different stainless steel alloys were used for the static corrosion evaluation in 

the initial stages. These comprise standard austenitic stainless steels (UNS S30403, 

UNS S31603), lean duplex stainless steels (UNS S32101, UNS S32304 and UNS 

S82441) and a standard duplex stainless steel (UNS S32205).  The number of the 

alloys was later reduced to four (UNS S30403, UNS S32101, UNS S32304, UNS 

S32205) for erosion-corrosion conditions. The four alloys were chosen to have 

representations of each class of the alloys. Two grades of lean duplex stainless steels 

were chosen because of the interest of this research on such alloys. Passive film 

chemistry of the two lean duplex alloys (UNS S32101 and UNS S32304) was also 

studied in static corrosion conditions. In the later stage of this research, the alloys 

were eventually streamlined to two (UNS S30403, UNS S32101) as discussed in the 

later chapters. The properties of all the six stainless steel alloys are shown in Table 4-

1. 

Table 4-1: Properties of alloys used for the research (Data sheet from Outokumpu 

Research Foundation, Avesta, Sweden) 

*PREN (pitting resistance equivalent number) is calculated from the formula  

%Cr +3.3%Mo +16%N (18) 

ASTM/

UNS 

Type Cr Ni Mo Cu Mn N *PREN16 Tensile 

Strength 

(N/mm
2
) 

Yield 

Strength 

(N/mm
2
) 

Micro 

hardness 

(HV)500g 

S30403 Austenitic 

 

18.2 8.15 0.39 0.33 1.61 0.07 20.6 635 328 170 

S31603 Austenitic 16.82 10.49 2.52 0.33 1.7 0.043 25.8 651 351 192 

S32101 Lean 

duplex 

21.26 1.6 0.24 0.26 4.81 0.232 25.7 784 596 260 

S32304 Lean 

duplex 

23 4.8 0.3 0.25 1.0 0.10 25.5 745 450 257 

S82441 Lean 

duplex 

24.11 3.59 1.6 0.37 2.85 0.269 33.7 802 644 275 

S32205 Duplex 

 

22.43 5.73 3.15 0.24 1.4 0.18 35.7 841 657 278 
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4.3 Brine Used for the Research 

Two different brines were considered for this research. 3.5% NaCl solution in 

aerated conditions and synthetic oilfield brine (CO2-saturated) with the composition 

shown in Table 4-2. The oilfield brine is chosen because it has an equivalent total 

dissolved solid (TDS) with 3.5% NaCl. The oilfield brine is simulated from a 

produced fluid taken from an offshore facility in the North sea (179). 

Table 4-2: Oilfield brine adopted for the research (TDS 34,418 ppm) 

 

Salts 

 

mg/L 

 

NaCl (Sodium Chloride) 

 

24090 

 

KCl (Potassium Chloride) 

 

706 

 

CaCl2.2H2O (Calcium Chloride Di-hydrate) 

 

1387 

 

MgCl2 (Magnesium Chloride) 

 

4360 

 

BaCl2.2H2O (Barium Chloride Di-hydrate) 

 

16 

 

SrCl2.6H2O (Strontium Chloride Hexa-hydrate) 

 

33 

 

Na2SO4 (Sodium Sulphate) 

 

3522 

 

NaHCO3 (Sodium Bicarbonate) 

 

304 

4.4 Experimental Methods for Static Corrosion 

4.4.1 Breakdown Potential Determination 

All the stainless steel samples were cut from flat plates (3 mm thick) into square 

sections of 20 x 20 mm. An electrical wire was soldered to one face of each 

specimen and then mounted into epoxy resin. The specimens were then ground to a 

surface finish of 600 grit (P1200) using silicon carbide paper. They were then 
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polished with 15 μm diamond paste. All samples were degreased with acetone and 

then washed with distilled water before being dried in air.  After these steps, the 

interface between the sample and the resin was sealed with silicone rubber and left to 

cure overnight. Electrochemical tests were performed using EG&G, 263A 

potentiostat/galvanostat. Anodic polarisation tests were conducted for all the alloys 

in a three-electrode electrochemical set up using an Ag/AgCl reference electrode and 

a platinum counter electrode (Figure 4.1).  

 

Figure 4.1: 3-electrode cell used for electrochemical measurement 

 

The potential was scanned from the corrosion potential at a scan rate of 0.167 

mV/s up to a point when the current density reached 500 μA/cm
2
 and then reversed 

in accordance with ASTM G5 and G61. The oilfield brine was initially sparged with 

CO2 gas for 8 hours and stored in an air tight container. Before each experiment, the 

oilfield brine was also sparged for one hour resulting in a pH of approximately 5.0 
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and the oxygen level was reduced to less than 50 ppb. Moreover, CO2 was 

continuously fed into the solution throughout the duration of the experiment. The 

breakdown potential (potential at the point where current density is approximately 10 

μA/cm
2
 (140, 180)) was determined for all the alloys at temperatures of 20

o
C and 

50
o
C.  A schematic diagram of how the breakdown potential was determined is 

shown in Figure 4.2 

 

Figure 4.2: Schematic diagram of how the breakdown potential was determined 

 

4.4.2 Open Circuit Potential (OCP) and Passive Film Chemistry 

Lean duplex stainless steel alloys UNS S32101 and UNS S32304 were used for 

this investigation. The stainless steel samples were cut from flat plates (3 mm thick) 

into a square shape of 5 mm x 5 mm (to be able to fit into the XPS VG Escalab 

sample holder). An electrical wire was glued to one face of each specimen using a 

conductive epoxy and then mounted into epoxy resin. The specimens were then 

metallographically ground to a surface finish with 600 grit (P1200) SiC paper and 
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then polished with 15 μm diamond paste. All samples were degreased with acetone 

and then washed with distilled water before being dried in air. 

Cathodic polarisation tests were performed to strip the native oxide formed in air 

using an EG&G, 263A potentiostat/galvanostat and a three-electrode electrochemical 

set up consisting of an Ag/AgCl reference electrode and a platinum counter 

electrode. The potential was stepped to -0.85V relative to the reference electrode for 

30 minutes in order to strip the native oxide (60, 181).
 
 The sample was then allowed 

to repassivate in the absence of applied potential at 50
o
C for 24 hours. 

4.5 Experimental Methods for Flow-Induced Corrosion                

4.5.1 Pure Erosion and Erosion-Corrosion Determination 

A jet impingement rig with a re-circulating system is adopted. A mixture of sand 

and fluid is passed through a two-nozzle arrangement with a diameter of 4 mm. The 

jet impinges onto the samples from a 5 mm stand-off distance at an angle of 90
o 

(Figure 4.3-4.4). 

 

 

Figure 4.3: Exit nozzle diameter and the stand-off distance 
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Figure 4.4: The submerged impinging jet (SIJ) rig 

 

Electrochemical methods were used in conjunction with weight loss analysis to 

isolate the contribution due to corrosion and erosion. Anodic polarisation tests were 

conducted to measure the changes in corrosion rate under impingement conditions. 

Anodic and cathodic polarisation tests were performed on different coupons to avoid 

using a surface that has previously undergone cathodic polarisation.  The potential of 

the working electrode was shifted 10 mV negative to the open circuit potential and 

then polarised at 0.167 mV/s in positive direction for the anodic branch. For the 

cathodic branch the potential was shifted 10 mV positive to the open circuit potential 

and then polarised at 0.167 mV/s in the negative direction. The corrosion current 

density was determined from the Tafel plot as the intersection between the 

extrapolated anodic and cathodic branches of the potential scan (51).  Due to the 

nature of the polarisation curves (mixed reaction), the linear fits of the Tafel slope 
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was taken between 100 mV to 150 mV away from the open circuit potential. The 

corrosion current obtained from the Tafel extrapolation was used to calculate the 

corrosion rate.  

A check on these values (icorr obtained from the Tafel plot) was done using the 

linear polarisation method and Stern-Geary coefficient (B) of 26 mV. Linear 

polarisation scan was conducted for the alloys to obtain the polarisation resistance, 

Rp

. An external DC potential signal of ± 20 mV was applied to the alloys under 

impingement conditions and the current flowing in the external circuit was measured. 

The polarisation resistance (Rp) was calculated as the slope of the linear correlation 

between the applied potential and the measured current.  

   
  

  
       

The corrosion current density was then calculated thus: 

      
 

  
         

Tafel coefficient of 120 mV/decade was chosen for both βa and βc. This is because 

the actual value of the slope is difficult to obtain from the nature of the Tafel plots. 

Theories of both Tafel extrapolations of linear polarisation have been discussed in 

Chapter 2, Sections 2.1.5 and 2.1.6. 

In order to isolate the erosion component of the damage, the change in weight 

was measured in a nitrogen purged impinging jet. Water was sparged for 12 hours 

with nitrogen gas (N2) to de-aerate the environment. Nitrogen gas was also bubbled 

into the tap water throughout the duration of the experiment. A 3.5% NaCl in aerated 
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condition and a CO2-saturated oilfield environment were used to study the erosion-

corrosion and total weight loss. 500 mg/l silica sand with shape and size distribution 

shown in Figures 4.5-4.6 operating at 15 m/s and a temperature of 50
o
C was 

employed for impingement.  

 

Figure 4.5: SEM images of HST60 silica sand particles used in the jet 

impingement 

 

Figure 4.6: Sand particle distribution of the silica sand used in the jet 

impingement tests 
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Further tests were carried out for UNS S32101 and UNS S30403 at higher 

impinging velocity of 24 m/s in a CO2-saturated oilfield. Pure erosion was 

determined at 50
o
C as well as 20

o
C. The total weight loss tests were conducted for 4 

hours (adapted from  ASTM G75-95 and ASTM G76-06) and each test was 

conducted at least in triplicate. The specimens were weighed before and after the 

experiments to determine the weight loss. 

 

4.5.2 Repassivation Kinetics of the Passive Film Formed on UNS S32101 

and UNS S30403 in a CO2-Saturated Oilfield after Erosion-Corrosion 

In order to study the repassivation behaviour of passive film, the passive film is 

disrupted by sand particle impingement. A new oxide film then grows on the alloy by 

the oxidation of the bare metal surface.  Different methods have been used in the past 

to achieve this. Included in the methods are abrasion methods (70), scratching 

electrode methods (152), cavitation methods (65), indentation methods (174) and 

electrochemical reduction of the oxide film by cathodic polarisation (71). In this 

research, however, the passive film is removed by sand particle impingement using a 

submerged impinging jet in order to study the repassivation kinetics. 

A potentiostatic polarisation method was adopted to obtain current transients 

under the sand impingement (Figures 4.3, 4.4 and 4.7). 
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Figure 4.7: Schematic diagram of the fluid jet direction and the entrained 

particles 

 

Two alloys UNS S30403 and UNS S32101 were tested. Prior to the potentiostatic 

test, the OCP was allowed to settle for 1 hour. The potential was then stepped to -850 

mV Ag/AgCl for 30 minutes to strip the native oxide. This is done to ensure the same 

starting passive film formed on the alloys. A constant potential of -200 mV vs 

Ag/AgCl was then applied for 150 minutes. This potential was chosen as it lies 

within the passive region of both alloys. The passive film was allowed to passivate 

for the first 30 minutes and then the pump was switched ON for 1 hour. This was to 

allow the slurry to impinge on the sample surface thereby depassivating the passive 

film. The pump was switched OFF after 1 hour to allow the passive film to 

repassivate for another 1 hour.  A velocity of 24 m/s and sand loading of 500 mg/L 

was employed for the impingement. This condition was chosen to simulate severe 

erosion conditions in order to ensure that the passive film is damaged prior to its 

repassivation. The experiment was conducted at temperatures of 20 and 50
o
C. The 
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frequency of acquisition of data was 20 Hz and assuming all sand particles hit the 

sample surface, the frequency of sand impact was calculated to be 7.5 KHz.  

All the experiments were conducted in CO2-saturated oilfield brine with 

composition shown in Table 4-2. 

4.6 Calibration of the Submerged Impinging Jet Rig 

For any laboratory experiment to be acceptable, operating conditions of the 

experiment should be repeatable. However, this always poses challenges as the 

conditions are most often difficult to reproduce. To take account of the variance in 

the operating conditions, the equipment used in this study was regularly calibrated. 

For a submerged impinging (SIJ) rig, the pump frequency is calibrated to give the 

average velocity at which the fluid/ particle exit the nozzle. At the same time, when 

sand is involved, there could be non-uniform mixing of the sand in the reservoir; 

sand may also be entrapped within the pipe network. There is also the issue of inter-

particle collisions and sweeping action of the liquid jet that should be accounted for. 

It has been reported (182, 183) that not all the sand particles added to the reservoir 

impact the surface of the sample. 

4.6.1 Velocity Calibration 

The energy required to drive the impingement action is derived from a 

centrifugal pump. The pump in this case is driven by an electric motor that is 

controlled by its frequency. In order to determine the exit velocity of the fluid 

coming out of the nozzle, the flow data from the pump is used. If the frequency of 

the pump is known, the flow rate data of the nozzle exit (nozzle size is known) is 
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then calculated. This is done by collection a certain amount of fluid exiting the 

nozzle at a time interval. Various frequencies may be used from which the flow rates 

are measured. The flow rate is then converted to nozzle exit velocity using the cross 

sectional area of the nozzle exit.  

4.6.2 Sand Concentration Calibration 

Sand concentration is defined as the ratio of the weight of the sand particle to the 

weight of the fluid solution in the reservoir. However, the specific sand concentration 

exiting the nozzle is not always equal to the amount of sand in the reservoir as earlier 

explained. To estimate the specific sand concentration exiting the nozzle, a specific 

amount of slurry is taken through the nozzle exit. The sand particles within the fluid 

are then filtered, dried and weighed. This is used to determine the specific amount of 

sand exiting the nozzle. 

4.6.3 Calculation of Sand Flux and Impact Frequency at 50 Hz 

During the calibration of the pump, a flow rate of 0.0003 m
3
/s was estimated for 

a frequency of 50 Hz. This translated to an impinging velocity of 24 m/s using the 

cross-sectional area (diameter 4 mm, Figure 4.3) of the nozzle. A specific sand 

loading of 500 mg/L (500,000 mg/m
3
) was also estimated from the calibration at 50 

Hz. 

The sand particle flux   = flow rate (m
3
/s) X specific sand loading (mg/m

3
) 

                        = 0.0003 m
3
/s X 500,000 mg/m

3 

The sand particle flux at 50 Hz = 150 mg/s = 0.00015 kg/s
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Recall from Figure 4.6 that the average diameter of the HTS60 silica sand 

(assumed spherical) is 250 µm. Density of silica sand is 2650 kg/m
3
. 

Therefore, mass of one grain of sand = density (2650 kg/m
3
) X volume (8.18 

X10
-12

 m
3
) =  2 X 10

-8
 kg 

Impact frequency = 
               

  

 
 

                              
                         (184) 

                              =           
         

  

 
 

               
 

                            = 7500 impacts/ seconds = 7.5 kHz 

4.7 Surface Analysis Equipment Used in this Research 

4.7.1 Scanning Electron Microscope (SEM) 

Evo MA Series Scanning Electron Microscope from Carl Zeiss Microscopy LCC 

was used for the electron microscopy. The SEM available at the University of Leeds 

uses a variable pressure and a resolution ranging from 3-20 nm.  

 

Figure 4.8: (a) Evo MA Series Scanning Electron Microscope (Carl Zeiss 

Microscopy GmbH, Jena, Germany) available at the University of Leeds (185) (b) 

Schematic image of a typical SEM 
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The total magnification obtainable in the SEM is between < 7-1,000,000. The 

accelerating voltage used was 20 kV while the working distance used was between 9-

10 mm 

4.7.2 Focused Ion Beam (FIB) 

The Focused Ion Beam (FIB) was used to prepare the sample for Transmission 

Electron Microscopy. The Focused Ion Beam (FIB) images acquisition and the 

Transmission Electron Microscope (TEM) samples preparation were carried out 

using the FEI Nova 200 Nano Lab High Resolution Field Emission Gun Scanning 

Electron Microscope (FEGSEM) with precise Focused Ion Beam (FIB). This 

instrument which can etch and deposit materials precisely is available at the 

University of Leeds. FIB uses a focused beam of ions usually gallium (Ga+) unlike 

the SEM that uses a beam of electrons. When the ion beam hits the sample surface, it 

sputters a small amount of materials that leaves the surface as either secondary ions 

(i
+
 or i

-
) or neutral atoms (n

0
). The primary beam also produces secondary electrons 

(e
–
). As the primary beam rasters on the sample surface, the signal from the sputtered 

ions or secondary electrons is collected to form an image. 

  

Figure 4.9: FEI Nova 200 Nano Lab (FEI Company, Hillsbrow Oregon, USA) 

available at the University of Leeds (185)(b) Schematic diagram of the mode of 

operation of FIB (186) 
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 Before imaging the area of interest from the bulk, the sample is first coated with 

platinum to avoid ion implantation as well as damage to the surface. It is then tilted 

to an angle of 54
o
 in order to ensure a perpendicular alignment to the ion beam 

column. The location of interest is then milled out to a length of 20 µm and a breadth 

of 10 µm. For the TEM imaging and analysis, the milled lamella is attached to a 

surface; the signal from the sputtered ions or secondary electrons is collected to form 

an image pillar ominiprobe TEM grid where it is further thinned to the required 

dimension. 

4.7.3 Transmission Electron Microscopy (TEM) 

The Transmission Electron Microscope used is a FEI Tecnai TF FEGTEM Field 

Emission Gun TEM/STEM (FEI Company, Hillsbrow Oregon, USA). The 

instrument is fitted with HAADF detector and Oxford instrument INCA 350 EDX 

system and 80 mm X-max SDD detector and Gatan Orius SC600A CCD camera. 

Scanning transmission electron microscope operating at 30 kV and providing a 

resolution of 0.8 nm is adopted. Both dark field and bright field imaging techniques 

were employed to provide good contrasts. Selected Area Electron Diffraction 

(SAED) was employed to study the microstructure.               

4.7.4 Selected Area Electron Diffraction (SAED) Method  

A selected area electron diffraction (SAED) pattern is collected using parallel 

electron illumination. An aperture in the image plane is used to select the region of 

the specimen, giving site-selective diffraction analysis. SAED pattern of 

polycrystalline materials gives ring patterns which are made up of reflections from 

specific crystal plane with specific 2ϴ values but a range of angular values. If, 



107 
 

 

 

however, the crystal size exceed that of the SAED aperture, only a spot diffraction 

pattern from a single crystal will be observed.  

The diameter of the ring is measured using a calibrated digital image of the 

pattern in digital micrograph software (Gatan Inc). Measurements in the image are 

done in reciprocal space, and so the reciprocal of the value gives the real d-spacing 

value in nanometres. This value is then matched with the d-spacing in literature or 

predetermined value from the XRD.                                                                                       

4.7.5 X-ray Photoelectron Spectroscopy (XPS) 

X-ray Photoelectron Spectroscopy (XPS), VG Escalab 250 available at the 

University of Leeds was used to analyse the passive film chemistry. The XPS is 

equipped with a high intensity monochromatic Al Kα source which can be focussed 

to a spot 120-600 μm in diameter on the sample. A high resolution XPS with a high 

signal to noise ratio is thus possible. This Escalab can map sample to obtain a 25 μm 

resolution. The instrument also has a high intensity UV source for Ultraviolet 

Photoelectron Spectroscopy (UPS), and a FEGSEM for SEM imaging and Scanning 

Auger Microscopy. Depth profiling by etching is made possible by a focussed argon 

ion miller. X-ray photo electron spectroscopy uses UHV surface technique. The 

instrument is able to identify elemental composition of the near surface of a solid up 

to 10 nm.  

In this research, XPS analysis was conducted on the samples after passive film 

has been built on the surface for 24 hours. Sample was quickly transferred, after 24 

hours, to a vacuum desiccator from which it was transferred to the XPS chamber. 

XPS analysis was carried out using a high intensity monochromatic Al Kα x-ray 
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source. The spot size was 500 µm with a power of 150 W. Detailed spectra of 

individual peaks were taken at energy of 20 eV. Detailed spectra had a Shirley 

background fitted to them and peaks were deconvoluted using Gaussian-Lorentzian 

fits (using CASAXPS software) (181). The XPS spectra were corrected for charge 

shifts by normalizing binding energies to that of the adventitious carbon 1s peak at 

284.6 eV. A peak separation of 1.7 eV and an area ratio of 2:1 were used to fit the Cl 

2p3/2–2p1/2 spectra (187). The full width at half maximum (FWHM) for Cl 2p3/2  

and 2p1/2 were taken as 1.7 eV and 1.9 eV respectively (188). 

 

Figure 4.10: (a) X-ray Photoelectron Spectroscopy (XPS), VG Escalab 250N  

(Thermo VG Scientific, Wattham, MA, USA) available at the University of Leeds 

(185) (b) Basic principle of XPS 

 

4.7.6 X-ray Diffraction (XRD) 

An X-ray Diffractometer-Philip X’pert (Philips Analytical B.V., The Netherland) 

available at the University of Leeds was used to analyse the sub-surface properties of 

the alloys after erosion-corrosion. X-ray diffraction (XRD) uses X-rays to investigate 

and quantify the crystalline nature of materials by measuring the diffraction of X-

rays from the planes of atoms within the material. It is sensitive to both the type and 

relative position of atoms in the material as well as the length scale over which the 
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crystalline order persists. It can, therefore, be used to measure the crystalline content 

of materials; identify the crystalline phases present (including the quantification of 

mixtures in favourable cases); determine the spacing between lattice planes and the 

length scales over which they persist; and to study preferential ordering and epitaxial 

growth of crystallites.  In essence it probes length scales from approximately sub 

Angstroms to a few nm and is sensitive to ordering over tens of nanometres.  

The X-rays are generated by a cathode ray tube. The rays are filtered to produce 

monochromatic radiation. They are then directed towards the target/crystal. When 

the rays interact with the solid, a constructive interference//diffraction is produced as 

long as the conditions for the Bragg’s law is satisfied. Bragg’s law relates the 

wavelength of the electromagnetic radiation to the diffraction angle and the lattice 

spacing in a crystal by the formula: 

 sin2dn          4-1 

 

Figure 4.11: Bragg's law of reflection. The diffracted X-rays exhibit constructive 

interference when the distance between paths ABC and A'B'C' differs by an integer 

number of wavelengths (λ)(189)  

 

When the sample or target is scanned through a range of 2θ angles, all the 

diffraction directions of the lattice is attained due to the random orientation of the 

material. The diffraction peaks are then converted to the d-spacing which allow the 
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mineral/crystal to be identified. This is because each mineral/crystal has a unique d-

spacing. To achieve this, the d-spacing is generally compared with standard 

reference. 
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Chapter 5. Results of Static Corrosion Evaluation 

5.1 Introduction and Chapter Overview 

An overview of the tests conducted is presented in the flow chart shown in Figure 

5.1 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1: Roadmap for the experimental study 
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Efforts were made to evaluate the breakdown potential of six stainless steel 

alloys comprising of lean duplex stainless steels (UNS S32101, UNS S32304, and 

UNS S82441) standard austenitic stainless steels (UNS S30403, UNS S31603) and a 

standard duplex stainless steel (UNS S32205). Aerated 3.5% NaCl and CO2-

saturated oilfield environments were considered for the experiments. The chemistry 

of the passive film formed on two of the lean duplex alloys (UNS S32304 and UNS 

S32101) was later evaluated using X-ray Photoelectron Spectroscopy (XPS) method. 

Efforts were also made to relate the breakdown potentials with the amount of 

chloride ion intake into the passive film. 

5.2 Breakdown Potential Evaluation 

An example of the cyclic polarization curves for UNS S32101 in aerated 3.5% 

NaCl and a CO2-saturated oilfield environment is shown in Figure 5.2. The 

breakdown potential is determined as the potential where current density attained a 

value 10 μA/cm
2
 (140, 181). Breakdown potentials of all the alloys in both aerated 

3.5% NaCl and CO2 saturated brine at 20
o
C and 50

o
C are as shown in Figure 5.3.  It 

is shown that the breakdown potentials are more negative in the CO2-saturated 

environment compared to 3.5% NaCl for all the alloys tested.  

Also, the breakdown potential is clearly shown to be highly dependent on 

temperature as expected. The breakdown potentials of the austenitic stainless steel, 

UNS S30403 and the lean duplex stainless steel, UNS S32101 are comparable in 

aerated 3.5% NaCl at both 20
0
C and 50

0
C.  UNS S30403 and UNS S32101 at 20

o
C 

in the aerated condition have breakdown potentials of 438 and 459 mV vs (Ag/AgCl) 

respectively. At the same temperature and in the CO2-saturated oilfield environment, 
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UNS S30403 and UNS S32101 have breakdown potentials of 387 and 413 mV vs 

(Ag/Ag/Cl) respectively. Also, at 50
o
C and in the aerated condition UNS S30403 and 

UNS S32101 have breakdown potentials of 280 mV and 295 mV vs (Ag/AgCl) 

respectively.  

However, in the CO2-saturated oilfield environment at 50
0
C, UNS S30403 and 

UNS S32101 have breakdown potentials of 163 mV and 103 mV vs (Ag/AgCl) 

respectively. 

 

Figure 5.2: Cyclic polarization curves for UNS S32101 in aerated 3.5% NaCl and 

CO2-saturated oilfield environments at 20
o
C showing how the breakdown potential 

(Eb) is determined 

 

Figure 5.3 also shows that the austenitic stainless steel UNS S31603 and lean 

duplex UNS S32304 exhibit close breakdown potentials in both environments at both 

20
o
C and 50

o
C. UNS S31603 and UNS S32304 have breakdown potentials of 539 
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mV and 574 mV vs (Ag/AgCl) respectively in aerated 3.5% NaCl at 20
o
C. In the 

CO2-saturated oilfield, at the same temperature, the breakdown potentials of UNS 

S31603 and UNS S32304 are 393 and 435 mV (Ag/AgCl) respectively. UNS S31603 

and UNS S32304 have breakdown potentials of 335 mV, 215 mV and 335 mV, 229 

mV (Ag/AgCl) respectively in aerated and CO2-saturated oilfield and at 20 and 50
o
C 

respectively.  

 

Figure 5.3: Breakdown potentials of lean duplex, standard duplex and austenitic 

stainless steels in aerated 3.5% NaCl and CO2-saturated oilfield environment 

(Error bar is the spread of 3 data points) 

 

The breakdown potential of the lean duplex stainless steel, UNS S82441 is lower 

than that of standard duplex stainless steel, UNS S32205 at both 20
o
C and 50

o
C. 
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potentials are comparable with that of the standard duplex stainless steel UNS 

S32205. UNS S32205 recorded breakdown potentials of 1090 mV and 980 mV in 

aerated and CO2-saturated oilfield respectively at 20
o
C. 

5.3 Open Circuit Potential Behaviour of Lean Duplex Stainless 

Steels UNS S32101 and UNS S32304 

Figure 5.4 illustrates the trend in the open circuit potential of the alloys at 50
o
C in 

aerated 3.5% NaCl and CO2-saturated environments. The figure shows that the alloys 

ennobled from corrosion potentials of -368 mV to -24 mV and -303 mV to -68 mV 

for UNS S32101 and UNS S32304 respectively after 24 hours exposure in the 

aerated environment at 50
o
C.  

 

Figure 5.4: Open circuit potentials for UNS S32101 and UNS S32304 in 3.5% 

NaCl and CO2-saturated oilfield environment 
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The open circuit potentials in a CO2-saturated environment are -555 mV and -571 

mV for UNS S32101 and UNS S32304 respectively. This is more negative than the 

values obtained in the aerated environment due to the acidic nature of the CO2-

saturated environment. The potentials also ennobled in CO2-saturated environment 

stabilizing at approximately -179 mV and -131 mV (more negative than the aerated 

3.5% NaCl) for UNS S32101 and UNS S32304 respectively after 24 hours exposure.   

The following observations were also made: 

 The open circuit potential values of the two alloys ennobled asymptotically 

with exposure time (Figure 5.4). However, the initial OCP after activation at -

0.85 V is more positive in aerated 3.5% NaCl than CO2-saturated oilfield.  

 Also, the potentials of both alloys are more positive throughout in aerated 

3.5% NaCl than the CO2-saturated oilfield after 24 hours exposure. 

 In aerated 3.5% NaCl, UNS S32101 has an initially more negative OCP than 

UNS S32304 as expected. However after 24 hours exposure UNS S32101 is 

more ennobled anodically in the aerated environment. 

 In the CO2-saturated environment UNS S32101 has a more positive OCP up 

to 8 hours (Figure 5.4). However, after the first 8 hours, UNS S32304 became 

more ennobled. 

5.4 Localised Corrosion 

UNS S32101 and UNS S30403 suffer severe localised attack in aerated 3.5% 

NaCl. The severity of the attack is higher for these two alloys in aerated 3.5% NaCl 

compared to the CO2-saturated oilfield environment (Figures 5.5 and 5.6).  
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Figure 5.5: SEM images of the alloys showing lacy cover (circled) formed in aerated  

3.5%NaCl (Scale bar = 200 µm) 

 

     UNS S31603 and UNS S32304 also suffer greater pitting damage in aerated 3.5% 

NaCl than CO2-saturated oilfield environment. However, the severity of attack on 

these two alloys is mild compared to UNS S32101 and UNS S30403. 
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Figure 5.6: SEM images of the alloys showing open pits (circled) formed in CO2 

saturated oilfield environment (Scale bar = 200 µm) 

 

Figure 5.5 shows that the pitting mode in aerated 3.5% NaCl at 50
0
C is lacy in 

nature. At low magnification the standard duplex stainless steel UNS S32205 shows 

no feasible pits. UNS S82441 shows the highest resistance to pitting among the lean 

duplex stainless steels. The pitting mode in the CO2-saturated oilfield environment 
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seems to be different from that of aerated 3.5% NaCl. The pits formed in the CO2 

environment are not covered and the sizes are smaller compared to those formed in 

aerated 3.5% NaCl (Figure 5.6).  

5.5 X-ray Photoelectron Spectroscopy (XPS)  

XPS was utilised in order to investigate the exact chemical composition of the 

surface passive film layer. Figures 5.7 and 5.8 demonstrate the survey spectra 

obtained for UNS S32304 and UNS S32101 stainless steels after initial 10 seconds of 

etching (to eliminate carbon contamination) of the surface. Figures 5.7 and 5.8 

demonstrated a similar elemental presence in each case. It is interesting to note the 

presence of chloride
 
ion within the passive film layer for samples immersed in 

aerated and CO2-saturated oilfield environments. 

 

Figure 5.7: General XPS spectra surveys for the oxide layer formed on UNS S32304 

stainless steel in aerated 3.5% NaCl and CO2-saturated oilfield brine 
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Resolution of the Cl 2p spectra further showed the adsorption of chloride into the 

passive oxide layer (Figure 5.9). The chloride ion (Cl
-
) was seen to be present in both 

the oxide layers formed in aqueous environments.  

 

Figure 5.8: General XPS spectra surveys for the oxide layer formed on UNS2101 

stainless steel in aerated 3.5% NaCl and CO2-saturated oilfield brine 

 

Figure 5.9: Resolution of the Cl 2p spectra for UNS S32101 stainless steel in aerated 

and CO2 environment as well as the native oxide film 
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An increased amount of Cl
- 
was seen to be present in the oxide formed in the CO2-

environment compared to the aerated environment. Figures 5.10 and 5.11 show the 

quantification of atomic weight per cent of the chloride ion in the both aerated and 

the CO2-saturated environments. 

 

Figure 5.10: Chloride incorporated into the passive film formed on UNS S32101 

 

Figure 5.11: Chloride incorporated into the passive film formed on UNS S32304 

0.0

1.0

2.0

3.0

0 200 400 600 800 1000 1200

a
t.

 %
 (

C
l- )

Etching time (s)

3.5 % NaCl (aerated) CO₂-Saturated Oilfield Brine

0.0

1.0

2.0

3.0

4.0

5.0

0 200 400 600 800 1000 1200

a
t.

 %
  
(C

l- )

Etching time (s)

3.5% NaCl (aerated) CO₂-Saturated Oilfield Brine



122 
 

 

 

 

Trace amounts of Mn were observed within the native oxide film formed in 

aerated condition for UNS S32101 stainless steel. There seems to be insignificant 

amount of Mn in the oxide formed in CO2 environment. Figure 5.12 depicts the Mn 

2p spectra for passive films formed on UNS S32101 stainless steel as well as the 

native oxide film. Peaks were seen to occur at 638.77eV, and 641.05eV representing 

the presence of elemental Mn and MnO within the oxide layer. Lower Mn peaks in 

the CO2 environment compared to the aerated and native oxide is thought to be due 

to its acidic nature leading to higher dissolution of the active element (Mn) from the 

passive film into the solution. The same result was also reported for a nickel free 

manganese alloy in an alkaline medium (190).   

 

Figure 5.12: Resolution of the Mn 2p spectra obtained for UNS32101 stainless steel 

in aerated and CO2 environments’ as well as the native oxide film 
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5.6 Summary of Chapter 5 

The breakdown potentials of all the alloys have been evaluated to be more 

negative in the CO2-saturated oilfield than the aerated 3.5% NaCl.  

The higher amount of chloride absorbed into the passive film formed in the CO2-

saturated oilfield is thought to be one reason, in addition to the lower pH, why the 

passive film breaks down at lower potential in this environment. 

  It should be noted that the bulk solution in the aerated conditions has a 

higher chloride concentration of 21,000 mg/L compared to the 19,000 mg/L 

in the bulk solution of the CO2-saturated environment. This however does not 

translate to the amount of chloride in the passive film. 

  It is therefore thought that a synergy exists between the CO2 and the chloride 

in bulk solution that helps in enhancing the intake of the latter into the 

passive film.  

Another interesting result from this chapter is the fact that the Pitting Resistance 

Equivalent Number (PREN) does not seem to be a good parameter to rank the lean 

duplex and the austenitic stainless steels when they are considered together.  

 This is because UNS S32101, UNS S31603 and UNS S32304 all have 

approximately equal PREN but UNS S32101 does not have equal resistance to 

pitting (as evaluated by the breakdown potential) to the other two alloys. 

Also, UNS S30403 with a PREN much lower than that of UNS S32101 has 

very comparable breakdown potential (even higher breakdown potential in 

the CO2-saturated environment) with UNS S32101.  
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 A critical PREN of 35 is however proposed for higher temperature service 

(50
o
C and above) in CO2 and aerated environments used in this research. 

All of these are addressed in the discussion section. 
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Chapter 6. Results of Flow-Induced Corrosion (Erosion-Corrosion) 

6.1 Introduction and Chapter Overview 

An overview of the tests is presented in the flow chart shown in Figure 6.1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.1. Roadmap for the experimental study 
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Alloys considered for evaluation included: UNS S32101, UNS S32304, UNS 

S30403 and UNS S32205. These alloys were studied under pure-erosion conditions 

(in a N2 purged water) and erosion-corrosion conditions (aerated 3.5 % NaCl and 

CO2-saturated oilfield brine) at 15 m/s and 500 mg/l sand loading. Higher impinging 

velocity of 24 m/s was also employed to study the material degradation and 

repassivation behaviour of the passive film formed on UNS S30403 and UNS 

S32101. These two alloys were chosen because UNS S32101 is being considered as 

an alternative alloy to the standard austenitic stainless steels in the oilfield. Efforts 

were made to relate the material degradation of these two alloys to both repassivation 

of the passive film and the sub-surface structure evolution under the high impinging 

velocity. 

6.2  Results of Pure Erosion and Erosion-Corrosion 

6.2.1 Weight Loss Measurement in Aerated 3.5% NaCl Solution 

Material degradation in the form of mass loss for all the alloys tested is shown in 

Figures 6.2 and 6.3. Pure erosion loss (E) and the total weight loss are presented. 

Pure erosion after 4 hours of sand impingement at 20
o
C shows that UNS S30403 has 

the highest material loss of (4.95 mg) and UNS S32304 the least material loss of 

(3.01 mg). UNS S32101 and UNS S32205 have material losses of 3.78 mg and 4.33 

mg respectively.  Figure 6.3 shows that pure erosion damage is higher at higher 

temperature for all alloys tested except the austenitic alloy. The increase in the 

erosion damage at higher temperature is thought to be as a result of many factors 

among which is lower viscosity (25, 26, 191-193) of the liquid at higher temperature. 

The dynamic viscosity of water at 20
o
C (9.7720 X 10

-4
 kg/m.s) is almost double the 
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viscosity of water at 50
o
C (5.3185 X 10

-4
 kg/m.s).  At higher temperature, the drag 

force on the sand particle is thus reduced thereby resulting in higher impact. It is 

thought that this higher impact would result in better response of the austenite phase 

to strain-hardening and thus higher hardness. This could be the reason while the UNS 

S30403 is showing good erosion resistance at the higher temperature. The higher 

material loss at higher temperature for all the alloys is also possible due to corrosion 

activity occurring at the higher temperature. Bearing in mind that oxygen is not 

completely eliminated from the nitrogen purged solution. Total weight loss of the 

alloys under erosion-corrosion conditions at 50
o
C shows that UNS S32205 has the 

lowest material loss of 6.78 mg while UNS S30403 with 8.20 mg suffered the 

highest degradation. UNS S32101 and UNS S32304 have material losses of 6.80 mg 

and 6.95 mg respectively.  

 

Figure 6.2. Pure erosion (in nitrogen purged water) and total weight loss (in aerated 

3.5% NaCl) of the alloys at 50
o
C, 15 m/s and 500 mg/L sand loading (Error bar 

is the spread of 3 data points) 
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Figure 6.3: Pure erosion damage at 20
o
C and 50

o
C, 15 m/s and 500 mg/L sand 

loading in nitrogen purged water (Error bar is the spread of 3 data points) 

 

6.2.2  Corrosion Current under Impinging Conditions 

The in-situ current density derived from the Tafel plots (Figure 6.4-6.7) for all 

the alloys is shown in Figure 6.8.  This was determined from the polarisation curve 

under impinging 3.5% NaCl solution and 500 mg/L sand particles at a velocity of 15 

m/s. These values were checked by evaluating the polarisation resistance of the 

alloys and were found to correlate well.  As earlier explained in section 4.5.1, chapter 
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Figure 6.4: Tafel plot for UNS S32101 used to determine current density under 

erosion-corrosion conditions of 15 m/s and 500 mg/L sand loading in aerated 

3.5% NaCl; a, b, c are points 150 mV, 100 mV and 50 mV respectively above 

OCP; d, e, f are points 50 mV, 100 mV and 150 mV respectively below OCP 

 

Figure 6.5 Tafel plot for UNS S32205 used to determine current density under 

erosion-corrosion conditions of 15 m/s and 500 mg/L sand loading in aerated 

3.5% NaCl; a, b, c are points 150 mV, 100 mV and 50 mV respectively above 

OCP; d, e, f are points 50 mV, 100 mV and 150 mV respectively below OCP 
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Figure 6.6: Tafel plot for UNS S32304 used to determine current density under 

erosion-corrosion conditions of 15 m/s and 500 mg/L sand loading in aerated 

3.5% NaCl; a, b, c are points 150 mV, 100 mV and 50 mV respectively above 

OCP; d, e, f are points 50 mV, 100 mV and 150 mV respectively below OCP 

 

 

Figure 6.7: Tafel plot for UNS S30403 used to determine current density under 

erosion-corrosion conditions of 15 m/s and 500 mg/L sand loading in aerated 

3.5% NaCl; a, b, c are points 150 mV, 100 mV and 50 mV respectively above 

OCP; d, e, f are points 50 mV, 100 mV and 150 mV respectively below OCP 
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This in-situ corrosion current density was used to calculate the mass loss due to 

erosion-enhanced corrosion (assuming a negligible material loss under static 

corrosion conditions). All the duplex stainless steels exhibited similar current density 

under the slurry impact. In-situ corrosion current densities of approximately 14, 13 

and 12 µA/cm
2 

were recorded for UNS S32101, UNS S32304 and UNS S32205 

respectively. Austenitic stainless steel, UNS S30403 however recorded the highest 

corrosion current density of approximately 21 µA/cm
2
. 

 

 

Figure 6.8: In-situ corrosion current density for the alloys in aerated 3.5% NaCl at 15 

m/s and 500 mg/L sand loading (Error bar is the spread of 3 data points) 

 

6.2.3 Synergy between Corrosion and Erosion 

Material loss due to erosion-enhanced corrosion was derived from the in-situ 

corrosion according to the relationship: 
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      is the corrosion current density in A/cm
2
, W is the atomic weight in g/mol, 

A is the surface area of the specimen in cm
2
, T is time in seconds, n is the number of 

ions , F is Faraday’s constant, (96500 Coulombs/mole).  

It has been reported (25, 28) that the static corrosion component (Co) is negligible 

for passive alloys. It is therefore assumed that the total material degradation due to 

corrosion, in-situ                     n this study is equal to dCE (erosion-

enhanced corrosion).  Therefore the formula for the total weight loss (TWL) could be 

represented thus: 

EC dCdEETWL 
 

 Instead of 

ECO dCdECETWL                            

Where, TWL= total weight loss 

E= pure erosion component 

Co= static corrosion component (in this case negligible) 

dEC = corrosion-assisted erosion (synergy) 

dCE = erosion-assisted corrosion (additive) 

Figure 6.9 depicts the contribution of each component of the total weight loss. 

Corrosion-enhanced erosion is generally higher than erosion-enhanced corrosion (in-

situ corrosion). 
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Figure 6.9: Components of the total weight loss for the alloys at 15 m/s and 500 

mg/L sand loading and temperature of 50
o
C (Erosion-corrosion in 3.5% NaCl; 

Pure erosion in nitrogen purged water) - (Error bar is the spread of 3 data 

points) 

 

 

The mechanism of erosion-corrosion synergy is thoroughly explained and discussed 

in the discussion section in chapter 9. All the duplex stainless steels exhibit an 

equivalent material degradation due to erosion-enhanced corrosion (Figure 6.9). UNS 

S30403 seems to have the highest susceptibility to material degradation by erosion-

enhanced corrosion.  

The percentage contribution of each component of erosion-corrosion is shown in 

Figure 6.10. The contribution of corrosion-enhanced erosion is more than the 

contribution from erosion-enhanced corrosion. All the duplex stainless steels exhibit 

an equivalent percentage contribution due to erosion-enhanced corrosion (Figure 

6.10).  

0

1

2

3

4

5

6

UNS S30403 UNS S32304  UNS S32101 UNS S32205

C
o

m
p

o
n

en
ts

 o
f 

th
e 

T
W

L
 (

m
g

)

Erosion-enhanced corrosion Corrosion-enhanced erosion Pure erosion(dCE) (dEC) (E)



134 
 

 

 

 

Figure 6.10: Percentage contribution of each component in erosion-corrosion 

conditions at 15 m/s and 500 mg/L sand loading in aerated 3.5% NaCl 

(Erosion-corrosion in 3.5% NaCl; Pure erosion in nitrogen purged water)- 

(Error bar is the spread of 3 data points) 

 

The contribution due to erosion-enhanced corrosion is highest for UNS S30403. 

About 30% contribution due to the synergy between erosion and corrosion for the 

duplex stainless steel is lower than 39% contribution by same for the austenitic 

stainless steel. Material damage is predominantly by pure-erosion which contributed 

the highest percentage to the total damage. Also, despite the fact that the austenitic 

stainless steel UNS S30403 suffers higher materials loss due to pure-erosion and 

erosion-induced corrosion, the percentage contribution of erosion to the total damage 

for the alloy is lower than the duplex stainless steels. 
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6.3 Results of Erosion-Corrosion in a CO2-Saturated Oilfield 

Environment at 15 m/s and 500 mg/L Sand Loading  

6.3.1 Weight Loss Measurement in a CO2-Saturated Oilfield 

Environment 

Material degradation in the form of mass loss for UNS S30403, UNS S32101, 

UNS S32304 and UNS S32205 in a CO2-saturated oilfield brine is shown in Figure 

6.11. 

 

Figure 6.11: Weight loss measurement in a CO2-saturated oilfield environment at 15 

m/s and 500 mg/L sand loading (Error bar is the spread of 3 data points) 
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S30403, UNS S32304 and UNS S32205 respectively. These values are comparable 

to 6.95 mg, 8.20 mg, 6.80 mg and 6.78 mg for UNS S32101, UNS S30403, UNS 

S32304 and UNS S32205 respectively obtained in aerated conditions. There seems to 

be very close relationship between the material loss under aerated and CO2-saturated 

conditions. It seems the difference in the chemistry of the two corrosive media does 

not have significant influence on the material loss at the test conditions applied in 

this research. 

 

6.3.2 Anodic Polarisation of the Alloys under Sand Impingement in a 

CO2-Saturated Oilfield Environment 

Anodic polarisation curves in Figure 6.12 indicate the alloys exhibit a lower 

range of passive region (almost active for UNS S30403) compared to the curves 

under static conditions. The current values are also several orders of magnitude 

higher than what is obtained in static conditions. Initial active corrosion behaviour is 

noticed as the potential is shifted in anodic direction (Figure 6.12). This is more 

pronounced in UNS S30403. One other important observation from the anodic 

polarisation (Figure 6.12) is the higher anodic current density obtained for UNS 

S30403 as compared to the duplex stainless steels. The lean duplex stainless steels 

showed comparable passive current density with the standard duplex stainless steel, 

UNS S32205. This supports our earlier observation for the alloys in aerated 3.5% 

NaCl slurry where UNS S30403 showed higher current density compared with the 

duplex alloys. 
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Figure 6.12: Anodic polarisation for the alloys at 15 m/s and 500 mg/L sand loading 

in a CO2-saturated oilfield environment (Error bar is the spread of 3 data 

points) 

 

6.4 Pure Erosion and Erosion-Corrosion of UNS S32101 and UNS 

S30403 at 24 m/s and 500 mg/L Sand Loading in CO2-Saturated 

Oilfield Brine 

Material degradation in the form of mass loss for the two alloys tested at 24 m/s 

with 500 mg/L sand is shown in Figure 6.13. Pure erosion damage (E) and the total 

weight loss are presented. Pure erosion after sand impingement shows that UNS 

S30403 has the highest material loss of 16.8 mg and UNS S32101 has a value of 14.7 

mg.  Total material loss under erosion-corrosion shows that UNS S32101 has a value 

of 17.2 mg while UNS S30403 has a value of 19.2 mg. These values were compared 

with the material loss under 15 m/s impinging velocity presented in section 6.3.1. It 

-500

-400

-300

-200

-100

0

100

200

300

0 200 400 600 800 1000

P
o

te
n

ti
a

l 
(m

V
v

s 
A

g
/A

g
/C

l)

Current density (μA/cm2)

UNS S32101 UNS S30403 UNS S32205 UNS S32304

high anodic  current for UNS 
S30403



138 
 

 

 

was observed that the behaviour of the alloys still follow the same trend observed at 

15 m/s impinging velocity. UNS S30403 still suffered higher degradation as result of 

pure erosion, in-situ corrosion and corrosion-enhanced erosion. 

 

Figure 6.13: Material loss after 4 hours at 15 m/s and 24 m/s with 500 mg/L sand 

loading in CO2 environment (Error bar is the spread of 3 data points) 

 

 

6.4.1 In-situ Corrosion Current and the Synergy between Corrosion and 

Erosion under High Impingement Condition 

Tafel plots used to determine the corrosion current density are shown in Figures 

6-14-6.15.  Corrosion current density evaluated by the extrapolation of the Tafel 

slope is shown in Figure 6.16. These values were checked by evaluating the 

polarisation resistance of the alloys and were found to correlate well.  
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Figure 6.14: Tafel plot for UNS 32101 at 24 m/s and 500 mg/l sand loading in a 

CO2-saturated oilfield; a, b, c are points 150 mV, 100 mV and 50 mV 

respectively above OCP; d, e, f are points 50 mV, 100 mV and 150 mV 

respectively below OCP 

 

Figure 6.15: Tafel plot for UNS S30403 at 24 m/s and 500 mg/l sand loading in a 

CO2-saturated oilfield; a, b, c are points 150 mV, 100 mV and 50 mV 

respectively above OCP; d, e, f are points 50 mV, 100 mV and 150 mV 

respectively below OCP 
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UNS S30403 and UNS S32101 show average in-situ corrosion current density of 

50 µA/cm
2
 and 65 µA/cm

2
 respectively (Figure 6.16). Components of the total 

weight loss are shown in Figure 6.17. 

 

Figure 6.16: In-situ corrosion-current density for UNS S30403 and UNS S32101 at 

24 m/s and 500 mg/L sand loading in a CO2-saturated oilfield environment at 

50
o
C (Error bar is the spread of 3 data points) 

 

The percentage contribution of erosion-enhanced corrosion and corrosion 

enhanced erosion is shown in Figure 6.18. The percentage contribution by corrosion-

enhanced erosion is higher than the contribution by erosion-enhanced corrosion. The 

total contribution by both erosion-enhanced corrosion and corrosion enhanced 

erosion is less than 13%. This shows that at the high impinging condition pure 

erosion damage is more dominant contributing more than 86% of the total damage 
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Figure 6.17: Components of the TWL for the alloys at 24 m/s and 500 mg/L sand 

loading in CO2-saturated environment (Error bar is the spread of 3 data points)  

 

Figure 6.18: Percentage contribution of each component of the total weight loss at 24 

m/s and 500 mg/L sand loading in CO2-saturated environment 
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6.5 Summary of Chapter 6  

UNS S32101, UNS S32304, UNS S30403 and UNS S32205 have been tested 

under pure erosion and erosion-corrosion conditions.  Using sand particles of 500 

mg/L and an impinging velocity of 15 m/s in a nitrogen purged environment, the lean 

duplex stainless steels performed better than the austenitic as well as the standard 

duplex stainless steel. When a corrosive medium is considered lean duplex alloys 

still show good resistance considering their chemistry compared to the standard 

duplex alloy. The standard austenitic stainless steels showed an inferior performance 

to the lean duplex alloys in the sand laden oilfield and aerated environments. UNS 

S30403 and UNS S32101 were considered at higher impinging velocity of 24 m/s 

and the same 500 mg/L sand concentration. The lean duplex alloy also outperforms 

the standard austenitic stainless steel when pure erosion and erosion-corrosion were 

considered. 

The contribution of the synergy towards the total material degradation was found 

to be higher at 15 m/s velocity compared to the higher velocity of 24 m/s. Pure 

erosion seems to be the dominating material damage at the higher velocity 

contributing more than 86 % of the total degradation. Also, at 15 m/s and 24 m/s 

impinging velocities the lean duplex alloy, UNS S32101 showed a high resistance to 

erosion-enhanced corrosion and corrosion-enhanced erosion.  
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Chapter 7. Sub-Surface Properties of UNS S32101 and UNS S30403 

after Erosion-Corrosion 

7.1 Introduction and Chapter Overview 

The total material loss during erosion-corrosion by solid particle impact can be 

described by the formula (113):  

EoCo dCCdEETWL 
                              7-1 

TWL= total weight loss 

Eo= pure erosion component 

Co= static corrosion component (negligible for passive alloys) 

dEC = corrosion-enhanced erosion (synergy) 

dCE =  erosion-enhanced corrosion (additive) 

The terms corrosion-enhanced erosion (dEC) and erosion-enhanced corrosion 

(dCE) have been discussed to be dependent on several factors (35, 194, 195). Among 

these factors are the repassivation behaviour of the passive film (8, 143, 196, 197), 

the response of the work-hardened layer to both erosion and electrochemical 

dissolution (35-37, 141, 198), roughening of the surface by the erodent, galvanic 

coupling between the anodic (deformed layer) and the cathodic area (passive area) 

(143, 199, 200). It invariably means that the chemical and mechanical interaction 

within the surface of the alloy is at a scale which exceeds the thickness of the passive 

film layer. Despite the abundant models available for the prediction of erosion-

corrosion, there is still an incomplete understanding of the physical erosion-corrosion 
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mechanism. This has hindered the accurate prediction of material degradation by 

erosion and erosion-corrosion.  

The subject of erosion-corrosion synergism and antagonism has not been fully 

extended to the evolution of modified subsurface crystallography and microstructure 

(35, 36). The sub-surface and near-surface properties, which could be markedly 

different from the bulk alloy, have always been represented by the bulk properties.  

Figure 6.1 shows a simple schematic diagram describing the expected different 

layers in an alloy under entrained particle impacts.  It was suggested that if the 

physical changes within the near-surface of the bulk alloy (just below the passive 

film) are understood; it could help in explaining some of the fundamental 

contributions to the material loss during erosion-corrosion (35-37).  

 

Figure 7.1: Schematic diagram of the proposed model diagram of the near surface of 

a work-hardenable alloy under solid particle impact 

 

The first step towards the incorporation of the subsurface influence on the 

erosion-corrosion synergism was taken recently by Rajahram and his co-workers (35, 

36). These authors proposed that erosion-corrosion synergism not only depends on 
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the surface properties but also on the modified sub-surface of the alloy. For 

metastable phase such as austenite, this becomes even more important as this phase 

could transform to a more stable strain-induced martensitic phase if it is heavily 

strained. The austenite phase is known to have low stacking fault energy (171, 201, 

202) and it is prone to strain-induced martensitic transformation. Apart from this, 

alloys under such heavy solid particle impact could develop fatigue cracks, work-

hardened layers, high dislocation densities and grain refinement within the sub-

surface (194, 203, 204). All these factors would modify both the corrosion and 

erosion resistance properties of the affected region and subsequently this could affect 

the synergy between corrosion and erosion.  Moreover, when a dual phase alloy 

comprising ferrite and austenite, such as the duplex stainless steels, is considered, the 

erosion-corrosion behaviour becomes even more complex. This is because, ferrite is 

known to be strain rate sensitive and austenite is a metastable phase (121, 205).  

Therefore, each phase responds differently to the imposed stress under the impinging 

conditions. To the best of our knowledge, the influence of strain-induced martensite 

and the other subsurface properties on erosion-corrosion has not been extended to the 

duplex stainless steels especially the lean duplex stainless steels.    

7.2 Hardness Profile and the SEM Images of the Damaged 

Surface 

Figure 7.2 shows the micro-hardness profile of the cross-section of the alloys 

after erosion-corrosion. There is a general increase in hardness within the centre 

(near the stagnation zone) of the specimen. The increase in hardness is very 

pronounced in the austenitic stainless steel compared to the duplex alloys. This is 
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thought to be as a result of the better response of the fully austenitic phase in UNS 

S30403 to strain-hardening.  SEM images of the alloys taken at three different zones 

are also shown in Figures 7.3 and 7.4. Region 1 with heavy indentation corresponds 

to the region close to the stagnation zone where heavy impact resulted in indentation 

and a pronounced enhancement in hardness. Region 2 showing ploughing and cutting 

mechanism represents the region between the transition and the wall jet zones.  

Region 3 represents the region close to the wall jet zone. The wear mechanism 

around this region is cutting and ploughing as shown in Figures 7.3 and 7.4. 

 

Figure 7.2: Micro-hardness profile of the cross-section (A-A) of alloys after erosion-

corrosion by sand in a CO2-saturated oilfield environment at 24 m/s and 500 

mg/L sand loading (Error bar is the spread of 3 data points) 

 

The enhancement of hardness begins to flatten out at the edge of the stagnation 

zone. There is virtually no improvement in hardness within region 3 which is close to 

the wall jet zone. Heavy indentation leads to grain refinement and work-hardening 

within the stagnation zone. Decrease in grain size would lead to increase in grain 
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boundaries. These multiple grain boundaries become barriers to the movement of 

dislocations. The portion of the bulk alloy under this heavy impact is thus 

strengthened and the hardness increases compared to the other parts. 

 

 

 

Figure 7.3: SEM images of UNS S32101 after erosion-corrosion at 24 m/s and 500 

mg/L sand loading (1, stagnation zone, 2 transition zone, 3, wall jet zone) (Scale bar 

= 10 µm) 
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Figure 7.4: SEM images of UNS S30403 after erosion-corrosion at 24 m/s a500 

mg/L sand loading. (1, stagnation zone, 2 transition zone, 3, wall jet zone) 

(Scale bar = 10 µm) 
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7.3 X-ray Diffraction (XRD) Pattern of the Damaged Surface 

The XRD spectra for UNS S30403 and UNS S32101 are shown in Figures 7.5 

and 7.6. Large strain resulting from the impact was able to cause plastic deformation 

beneath the passive film. Phase transformation from the face centred cubic (FCC) to 

the body centred-tetragonal (BCT) martensite also occurred as a result of the 

repeated impacts. As shown in Figure 7.6, all the austenite peaks (A) in the polished 

samples of UNS S30403 have been drastically reduced and the few strain-induced 

martensite peaks (M) as a result of grinding and polishing have increased after the 

work-hardening. A new martensite peak can also be seen to have emerged at about 

2Ө= 65
o
.  

 

Figure 7.5: XRD pattern of UNS S30403 before and after erosion-corrosion at 24 m/s 

and 500 mg/L sand loading 

 

For the UNS S32101 lean duplex in Figure 7.6, assuming all the initial BCC 

peaks before the sand impact are for ferrite, it was expected that after work-
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hardening there will be a reduction in ferrite volume fraction as a result of the strain 

rate sensitivity of ferrite as compared to austenite. This can be seen from Figure 7.6 

as the volume fraction of martensite+ferrite seems to be very close to the initial 

ferrite peaks.  Addition of martensite to the volume fraction does not seem to match 

the rate at which ferrite is removed from the dual (martensite+ferrite) phase. There is 

however a general reduction in the austenite peaks confirming a transformation to 

strain-induced martensite in this alloy. 

 

Figure 7.6: XRD pattern of UNS S32101 before and after erosion-corrosion 

corrosion at 24 m/s and 500 mg/L sand loading 

 

7.4 Focused Ion Beam (FIB) and SEM Images of UNS S30403 

after Erosion-Corrosion   

Focused Ion Beam (FIB) was used to study the sub-surface wear morphology and 

crystallographic changes due to erosion-corrosion. After the materials have been 

subjected to a CO2-saturated environment with 500 mg/L sand and a velocity of 24 

m/s, samples were taken for FIB preparation. Two samples were prepared from each 
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coupon with one sample taken from the heavily deformed centre (stagnation zone) 

and the other taken from the edge (near the wall jet zone) of the sample. Figure 7.7A 

shows the SEM image of the heavily deformed stagnation zone. Figure 7.7B shows 

how the sample was milled out with the ion beam. The sample prepared for both FIB 

and TEM is shown in Figure 7.7C. Figure 7.7D shows the image with SEM prior to 

observation in the TEM.  

  

  

Figure 7.7: FIB images of UNS S30403 taken from a point near the stagnation zone 

of the coupon subjected to 500 mg/L sand at 24 m/s in a CO2-saturated oilfield 

environment 

 

Sub-surface micro cracks are observed near the surface of the deformed sample. 

A close look at the subsurface of the alloy shows two distinct regions. The near 

surface region within the top 4 µm shows grains with smaller sizes compared with 

the bulk. It is expected that with the high multiple impact from the sand, a nano-grain 
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layer (not seen here) will be formed at the topmost layer with the micro grains 

formed beneath this. Since the work-hardened layer would transmit most of the 

energy to the bulk grains; micro grains and deformation layer is expected below the 

topmost layer.  

Outside the heavily deformed area (Figure 7.8D), the extent of subsurface 

cracking is less compared to the observations made in Figure 7.7D.   

  

  

Figure 7.8:  FIB images of UNS S30403 taken from the edge of the coupon (near the 

wall jet zone) subjected to 500 mg/L sand at 24 m/s in a CO2-saturated oilfield 

environment 

 

Also, the changes in the grain sizes observed previously in the case of the stagnation 

zone are not really visible within this region. Probably, twin formation could be 
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possible here as a result of the shear pattern. However, this could not be resolved 

with the SEM. 

7.5 Focused Ion Beam (FIB) and SEM Images of UNS S32101 

after Erosion-Corrosion   

The same procedure in Figure 7.7A was repeated for UNS S32101. Figure 7.9A 

shows the SEM image of the heavily deformed stagnation zone. Figure 7.9B shows 

how the sample was milled out with the ion beam.  The milled sample has a 

thickness of approximately 80 nm and a length of about 2µm.  

Figure 7.9: FIB images of UNS S32101 from the stagnation zone of the coupon 

subjected to 500 mg/L sand at 24 m/s in a CO2-saturated oilfield environment 

 

  

 
 

Stagnation zone 

B 

D 

A 

Micro crack 

network 

C  



154 
 

 

 

The sample prepared for both FIB and TEM is shown in Figure 7.9 C. Figure 7.9 D 

shows the imaged sample with the FIB in the SEM mode.  

     Micro cracks were observed near the surface of the sample taken from the 

stagnation zone.  No evidence of subsurface cracking was seen from surface cross-

sections taken from the edge of the coupon (7.10D).  

  

 
 

Figure 7.10: FIB images of UNS S32101 from the edge (near the wall jet zone) of the 

coupon subjected to 500 mg/L sand at 24 m/s in a CO2-saturated oilfield 

environment 

 

This is quite different from the UNS S30403 where subsurface cracking coupling 

could be observed within this zone. There is also a visible change in grain sizes from 

the near surface to the bulk of the coupon especially for the coupon taken within the 

stagnation zone (Figure 7.9 D). This is not really visible in the cross-section taken 

from the edge of the sample (Figure 7.10D). As discussed earlier, the high multiple 
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impact from the sand has the potential to modify the crystallographic structure near 

the surface of an alloy via a strain induced mechanism. Energy would be transmitted 

from the work-hardened layer to the bulk leading to a preferential re-crystallisation 

of the alloy within a few micro-meters of the top surface. 

7.6 Bright Field TEM Images of UNS S30403 

Transmission Electron Microscopy (TEM) bright field images of the sample 

taken within the stagnation zone and the edge of the coupon are shown in Figure 7.11 

and 7.12 respectively.  

 

Figure: 7.11: TEM bright field images of UNS S30403 taken from the stagnation 

zone of the alloy subjected to 500 mg/L sand at 24 m/s in a CO2-saturated oilfield 

environment 

 

Fatigue-cracks could be seen below the extruded lips. Within the crack network 

and just below the deformed surface is a layer of nano-grains that extended up to 
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about 100 nm. Below this is the heavily deformed and disoriented micro grain as a 

result of the induced strain (Figure 7.11). This is very obvious within the stagnation 

zone. Fewer cracks were observed within the sample taken at the edge of the coupon 

(Figure 7.12).  

The heavily deformed grains are not observed at this region. However, there 

seems to be twin formation (Fig. 7.12) a few distances below the surface. This is 

probably due to the shearing of the grains resulting from the low angle shear impact 

near the wall jet zone. As we know that the impact within this region is at low angle 

which could lead to shear stresses. 

 

Figure 7.12: TEM bright field images of UNS S30403 taken from the edge of the 

coupon of the alloy subjected to 500 mg/L sand at 24 m/s in a CO2-saturated oilfield 

environment 

 

Crack formation is indicative of brittle behaviour which is possible in a ductile 

material as a result of work-hardening of the top layer.  The multiple sand impacts at 

a very high strain rate could increase the yield strength of the subsurface of the alloy. 

Twins Fatigue crack 

Fatigue crack 
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Higher yield strength increases the risk of fatigue crack. The crack could also be due 

to the localised stress built up by the impurity (sand and oxide) embedded as a result 

of the repeated folding of lips. 

 

7.6.1 Phase Transformation from Austenite (FCC) to Martensite (BCT) 

Figure 7.13 shows the Selected Area Electron Diffraction (SAED) pattern 

obtained in the deformed region. The continuous diffraction rings shows that the 

grains are nano-sized and have random crystallographic orientations (206). 

 

Figure 7.13: Selected area electron diffraction (SAED) pattern of point A taken from 

the stagnation zone of UNS S30403 after erosion-corrosion at 24 m/s and 500 

mg/L sand loading showing the BCT rings confirming the transformation from 

FCC to BCT 

 

These rings that could be indexed to Body Centre Tetragonal (BCT) crystal 

structure within the Face-Centred Cubic (FCC) austenitic phase. The BCT rings have 

indices (110), (200) and (211). This is transformation from the face centre cubic 

A 

A 
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austenite as a result of the large strain induced by the impact. Such impact has been 

reported (35, 36) to cause increase in dislocation density and eventually the strain-

induced transformation as observed in this case. The same martensitic transformation 

was reported in Figures 7.5 and 7.6 using the X-ray diffraction. Similar results have 

also been reported by Rajahram et al. (35, 36).      

7.7 Bright Field TEM Images of UNS S32101 

Transmission Electron Microscopy (TEM) bright field images of the sample 

taken within the stagnation zone and the edge of the coupon are shown in Figure 7.14 

and 7.15 respectively.  

 

Figure 7.14: TEM bright field images of UNS S32101 taken from the stagnation 

zone of the alloy subjected to 500 mg/L sand at 24 m/s in a CO2-saturated oilfield 

environment 

 

Crack propagation could also be seen below the extruded lips (Figure 7.14). The 

extent of these cracks is not as severe as what was seen in UNS S30403. No visible 

crack is noticed within the subsurface close to the edge of the coupon (Figure 7.15). 

Resistance to crack propagation  
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The heavily deformed grains noticed within the stagnation zone are not also observed 

at the edge of the coupon. 

 

Figure 7.15: TEM bright field images of UNS S32101 taken from the edge of the 

coupon subjected to 500 mg/L sand at 24 m/s in a CO2-saturated oilfield 

environment 

 

7.8 Summary of Chapter 7 

Micro-hardness results in Figure 7.2 show that hardness within the subsurface 

(within a few micro metres below the passive film) of the heavily deformed 

stagnation zone is increased. It was also observed, by the X-ray diffraction patterns 

in Figures 7.5 and 7.6 that the metastable FCC austenite transformed to a more stable 

strain-induced BCT martensite after erosion-corrosion. This was supported by the 

Selected Area Electron Diffraction obtained with the TEM. Transmission electron 

microscopy image showed fatigue cracks and grain refinement within the subsurface 

of the alloys after erosion-corrosion at 24 m/s and 500 mg/L sand loading. All of 

No visible crack  
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these results show that apart from surface wear and corrosion, sub-surface 

morphology and crystallography changes also occurred.  

Erosion-corrosion is a complex phenomenon with varying contributory factors.  

In this chapter effort has been made to elucidate the fact that microstructural and 

crystallographic changes occur near the surface (below the passive film layer) of 

workhardenable alloys. The contribution of such changes to erosion-corrosion will be 

discussed in chapter 9 of this thesis.  
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Chapter 8. Repassivation Kinetics of the Passive Film Formed on 

UNS S32101 and UNS S30403 in a CO2-Saturated Oilfield 

Environment Containing Sand 

8.1 Introduction and Chapter Overview: 

The generation rate of fresh metal surface and the repassivation rate of the alloy 

are two important factors that determine the erosion-corrosion resistance of such 

alloys (33, 207-209).  Erosion can also be detrimental to the pitting resistance of 

alloys especially if the repassivation rate is low (32, 34). The erodent generates rough 

surfaces which easily trigger pitting. Therefore, an alloy with lower repassivation 

rate is likely to be more susceptible to pitting than alloy with high repassivation rate. 

It then means that the study of the ability of passive film to regenerate after 

depassivation is very important to the study of erosion-corrosion and pitting of 

passive alloys (32, 65, 210) 

Previous methods that have been used extensively for the study of repassivation 

kinetics of passive films including: abrading electrode technique (70), scratching 

electrode technique (152, 173), cavitation technique (65) as well as micro and nano 

indentations (153, 174-177). Single impact by sand and glass beads has also been 

considered for austenitic stainless steels (31, 178). To the best of the author’s 

knowledge, however, none of the experiments has been carried out in a CO2-

saturated oilfield environment. Additionally, the repassivation behaviour of lean 

duplex stainless steel UNS S32101 has not been considered for evaluation, whether 
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in CO2-saturated oilfield or any other environment. It is also of interest to study the 

repassivation behaviour of fully austenitic stainless steel and compare this with the 

lean duplex stainless steel of similar corrosion resistance. Two alloys that have been 

in contention for application in the oilfield are the lean duplex stainless steel UNS 

S32101 and austenitic stainless steel UNS S30403 as both alloys exhibit similar 

corrosion resistance. 

8.2 Theory behind the Repassivation Kinetic Method Used in this 

Research 

When the passive film on an alloy is depassivated by abrasion, rubbing, 

scratching, cavitation, indentation or sand impact, the damaged passive layer tends to 

re-oxidize. The process of re-oxidizing leads to electron loss on the exposed bare 

metal and hence a charge transfer occurs. The charge transfer reaction could either 

result in dissolution of metal ion or formation of solid oxide. Reformation of the 

passive film thus requires an anodic charge which can be measured in 

electrochemical experiment (66).  

Models that describe repassivation kinetics are already discussed in Chapter 2, 

Section 2.5. Two general models described are surface coverage model and film 

growth model. These two models are based on the assumption that only solid oxide is 

formed during repassivation and that no metal dissolution occurs (66). In the 

coverage model current stays constant up to a time when a monolayer oxide is 

formed and then decreases sharply. This stage of the film growth is not well 

understood (66). The film growth model which is based on the high field conduction 

has been argued to describe well the film growth kinetics of the anodically polarized 
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metals (146). It has also been argued that the difference between using the combined 

model and the simpler growth model is insignificant (66). In view of this and based 

on the fact that there is high uncertainty in using only the lateral growth model, the 

combined model is considered for this research. Determination of the repassivation 

index is however based on the film growth model. Figure 8.1 shows a numerical 

simulation of passivation transients that combines both lateral growth and uniform 

growth models. 

 

Figure 8.1: Numerical simulation of passivation transients obtained by combining 

lateral growth (LG) and uniform growth (UG) models. The bold line is the combined 

model (66) 

8.3 Assumptions, Particle Flux and Particle Frequency 

This research adopted multiple sand impacts to study repassivation mechanisms, 

hence a need to estimate the particle flux/frequency. An estimate of a single impact 
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frequency will be based on assumptions that are not practically possible based on the 

high sand concentration/sand flux exiting the nozzle. Inter-particle collisions, post 

impact rebound/collisions are some of the possible effects that need to be considered 

(193, 211, 212). However, if it is assumed that the particles travel at the free stream 

velocity, using the average diameter of the silica sand (assumed spherical) as shown 

in Figure 4.5, Chapter 4 as 250 µm with density of 2650 kg/m
3
, then, the frequency 

of a single sand particle impact can be calculated assuming there are no inter-particle 

collisions as shown in Section 4.6.3, Chapter 4.  From the analysis a value of 7.5 

KHz was obtained (Table 8-1). High impact frequency has also been reported by 

other authors.  A value of 200 KHz has been reported (213) for a velocity of 7 m/s 

and 10,000 mg/L sand loading in a slurry pot. Liebhard and Levy (184) also reported 

a value up to 25 KHz for particles at impact speed of between 20 to 60 m/s. 

Summary of the calculation done in chapter 4 is shown in Table 8-1.  

Table 8-1:  Data from the SIJ calibration 

A Frequency of the pump 50 Hz 

B Impinging velocity at 50Hz     24 m/s 

C Flow rate of the fluid at 50Hz 0.0003 m
3
/s 

D Specific sand loading (exiting the nozzle) 500,000 mg/m
3
 

E  Particle flux (C X D) 150 mg/s (0.15 x 10
-3

 Kg/s) 

F Mass of one sand grain (density X volume) 2 X 10
-8

  Kg 

G Sand particle frequency (E/F)  

(no inter-particle collision) 

7.5 KHz 
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8.4 Current Noise during Erosion-Corrosion 

Figures 8.2 and 8.3 show the current-time response for UNS S30403 and UNS 

S32101 before, during and after the sand impingement at 20
o
C and 50

o
C 

respectively. Current-time response for the first 30 minutes after activation at -0.85 V 

shows the decay of current at the test potential (-0.2 VAg/AgCl) and temperatures of 20 

and 50
o
C. The test potential falls within the passive region of both alloys from the 

anodic polarisation results in Chapter 5.  

 

 

Figure 8.2:  Current-time variation at constant potential (-0.2 VAg/AgCl) for 2.5 hours 

with 1 hour of sand impingement at 20
o
C in a CO2-saturated oilfield environment at 

24 m/s and 500 mg/L sand loading  

 

At either temperature, UNS S32101 shows lower current density for the first 30 

minutes compared with UNS S30403. Impingement with 500 mg/L sand resulted in 
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an increase in current density as result of higher metal dissolution rate occurring 

during impingement (26) (Figures 8.2 and 8.3). Current density resulting from one 

hour impingement is on average 80 µA/cm
2
 and 60 µA/cm

2 
at 50

o
C for UNS S30403 

and UNS S32101 respectively (Figure 8.3). Average current densities of 50 µA/cm
2 

and 35 µA/cm
2 

were recorded at 20
o
C for UNS S30403 and UNS S32101 

respectively (Figure 8.2). 

 

Figure 8.3: Current-time variation at constant potential (-0.2 VAg/AgCl) for 2.5 hours 

with 1 hour of sand impingement at 50
o
C in a CO2-saturated oilfield 

environment at 24 m/s and 500 mg/L sand loading 

 

Higher current density recorded at higher temperature is a result of higher 

thermodynamic driving force which makes corrosion to occur at a higher rate during 

depassivation by sand impact (26). As the passive film is depassivated by the 

erodent, charge transfer occurs at a higher rate at elevated temperature. Another 

possibility for a higher current density at the elevated temperature as reported by Hu 
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and Neville (26) is the change in the fluid viscosity. Higher number of impacts and 

hence higher damage (as earlier discussed in chapter 6) to the passive film would 

result in higher charge transfer rate. 

The current rise during the impingement was maintained throughout the duration 

of the impingement. This is believed to be as a result of the multiple sand impacts 

and the higher sand flux/impact frequency employed in this research. The surface of 

the alloy (especially near the stagnation zone) is thus under active 

depassivation/dissolution (25) with few intervals of repassivation. Depassivation-

repassivation of the passive film is highly likely outside the stagnation zone (Figures 

8.4 and 8.5) (25).  

 

Figure 8.4: Average maximum current density (in-situ corrosion current density) 

for both alloys at 20
o
C in a CO2-saturated oilfield environment at 24 m/s and 500 

mg/L sand loading. 
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Figure 8.5: Average maximum current density (in-situ corrosion current density) 

for both alloys at 50
o
C in a CO2-saturated oilfield environment at 24 m/s and 500 

mg/L sand loading 

 

It is noticed that the current noise is more pronounced at higher temperature of 

50
o
C compared with 20

o
C (Figures 8.4 and 8.5). Average current fluctuation of 10 

µA/cm
2
 (Figure 8.4) and 15-20 µA/cm

2
 (Figure 8.5) are seen at 20

o
C and 50

o
C 

respectively. Reasons for this have been explained above to include higher 

thermodynamic force and lower viscosity of the fluid at the higher temperature. 

Typical current decay for 120 seconds after stopping the impingement at 20
o
C 

and 50
o
C respectively are shown in Figures 8.6 and 8.7.  
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Figure 8.6: Current decay for 120 seconds during repassivation after 1 hour of sand 

impingement at 24 m/s, 500 mg/L sand loading and temperature of 20
o
C 

 

Figure 8.7: Current decay for 120 seconds during repassivation after 1 hour of 

sand impingement at 24 m/s, 500 mg/L sand loading and temperature of 50
o
C. 
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Figure 8.8 : Current decay for 1 hour during repassivation after sand 

impingement at 24 m/s, 500 mg/L sand loading and temperature of 20
o
C 

 

 

Figure 8.9: Current decay for 1 hour during repassivation after sand impingement 

at 24 m/s, 500 mg/L sand loading and temperature of 50
o
C 
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The current decay at both temperatures show that UNS S32101 recorded a lower 

current density than UNS S30403. The nature of the current decay also shows that at 

both temperatures UNS S32101 is repassivating faster than UNS S30403. Figures 8.8 

and 8.9 show that a stable current density was maintained for 1 hour after the initial 

current decay. 

 

8.5 Repassivation Index Determination 

The repassivation kinetics can be described by the empirical formula,
       

      
(65, 70, 71, 214) explained in Chapter 2 Section 2.6. The anodic current 

density consumed during the repassivation of the damaged passive film is 

represented as      .  The repassivation index (n) has been found to be constant for a 

particular environment-alloy system. The parameter, n can be deduced from the slope 

of the linear portion of above equation in a logarithm scale: 

                          8-1 

Figures 8.10-8.13 show how the power plot was fitted to the plots in Figure 8.6-

8.7 to determine the values of (n). Figures 8.14 and 8.15 show samples of the plots in 

logarithm scale of current against time for the first 120 seconds after the 

impingement was stopped. It has been argued that the straight portion of the 

logarithm graph represents the portion of the graph where the passive film growth is 

by high field conduction (uniform growth) (66, 69). The breakdown of the values of 

repassivation index, n is show in Table 8.2. 
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Figure 8.10: Fitted power plot on the current decay for UNS S32101 after sand 

impingement at 24 m/s, 500 mg/L sand loading and temperature of 20
o
C. Current 

decay taken for the first 120 seconds after the impingement stopped  

 

Figure 8.11: Fitted power plot on the current decay for UNS S32101 after sand 

impingement at 24 m/s, 500 mg/L sand loading and temperature of 50
o
C. Current 

decay taken for the first 120 seconds after the impingement stopped  
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Figure 8.12: Fitted power plot on the current decay for UNS S30403 after sand 

impingement at 24 m/s, 500 mg/L sand loading and temperature of 20
o
C. Current 

decay taken for the first 120 seconds after the impingement stopped  

 

Figure 8.13: Fitted power plot on the current decay for UNS S30403 after sand 

impingement at 24 m/s, 500 mg/L sand loading and temperature of 50
o
C. Current 

decay taken for the first 120 seconds after the impingement stopped  
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Figure 8.14: Log-log plot for the current decay during the repassivation of UNS 

S30403 at 20
o
C (Repassivation index determined from the straight part when growth 

is controlled by the high field conduction) 

 

 

Figure 8.15: Log-log plot for the current decay during the repassivation of UNS 

S30403 at 50
o
C (Repassivation index determined from the straight part when 

growth is controlled by the high field conduction) 
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Figure 8.16: Log-log plot for the current decay during the repassivation of UNS 

S32101 at 20
o
C (Repassivation index determined from the straight part when growth 

is controlled by the high field conduction) 

 

Figure 8.17:Log-log plot for the current decay during the repassivation of UNS 

S32101 at 50
o
C (Repassivation index determined from the straight part when growth 

is controlled by the high field conduction) 
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It has also been argued that ‘n’ depends on the passive potential, temperature 

amongst other parameters. Also, when n=1, it indicates a very compact and highly 

protective film and when n=0.5, the film is said to be porous (71, 215)  Analysis in 

Table 8-2 shows the values of ‘n’ as 0.59 and 0.31 for UNS S32101 and UNS 

S30403 respectively at 50
o
C. This indicates that the passive film formed on UNS 

S32101 is more protective than the film formed on UNS S30403 after the prior 

impingement at 50
o
C. 

The values of ‘n’ increases with a decrease in temperature as expected. Values of 

0.68 and 0.45 were recorded for UNS S32101 and UNS S30403 respectively at 20
o
C. 

This shows that the rate of repassivation is higher at lower temperature. The values 

of ‘n’ are also generally lower for UNS S30403 compared to UNS S32101. This 

suggests that the passive film formed on UNS S32101 is more compact than the 

passive film formed on UNS S30403. Also, the passive film on UNS S32101 

repassivates faster than the passive film formed on UNS S30403. This could be one 

reason why UNS S32101 has a better erosion-corrosion resistance (lower in-situ-

corrosion) than UNS S30403. 

Deductions that can be made from Table 8-2 is that the passive film formed on 

UNS S2101 repassivates faster (after impingement) than the film formed on UNS 

S30403 at either 50
o
C or 20

o
C. It can therefore be concluded that UNS S32101 

would be more resistant to erosion-enhanced corrosion than UNS S30403. Also, it 

can be said that the response of the alloys to erosion-enhanced corrosion would be 

better at lower (20
o
C) than higher temperature (50

o
C) because repassivation rate is 

faster at the lower temperature.    
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Table 8-2: Values of n taken over two different experiments 

 UNS S32101 UNS S30403 

 1 2 Average 1 2 average 

50
o
C 0.608 0.568 0.588 0.346 0.279 0.312 

20
o
C 0.699 0.655 0.677 0.491 0.404 0.448 

8.6 Summary of Chapter 8 

Repassivation behaviour of UNS S32101 and UNS S30403 has been studied 

using a recirculating jet impingement rig. Higher values of repassivation index were 

recorded at lower temperature for both alloys. This suggests that the passive film is 

more compact and the rate of repassivation is faster at the lower temperature. Results 

from this chapter also show that the repassivation index is higher for UNS S32101 

than UNS S30403 at both higher and lower temperatures. This suggests that the 

passive film formed on UNS S32101 is more compact than the passive film formed 

on UNS S30403. Also, the passive film on UNS S32101 repassivates faster than the 

passive film formed on UNS S30403. 

Higher current density was observed at 50
o
C compared to 20

o
C for both alloys. 

Also, UNS S30403 also recorded higher current density at both 20 and 50
o
C. The 

higher current density recorded for UNS S30403 compared with UNS S32101 is 

most likely due to the less effective passive film as well as the evolution of less 

corrosion resistant sub-surface (martensite, high density dislocation, fatigue cracks) 

which are more pronounced in this alloy than UNS S32101. Also, current density of 

the repassivated surface after 1 hour erosion-corrosion at 50
o
C shows almost zero 

value for UNS S32101 and about 8 µA/cm
2
 for UNS S30403( Figure 8.9). This also 
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confirms that the passive film on UNS S32101 is more protective than the passive 

film formed on UNS S30403. 

The behaviour of passive film on both alloys could be related to their erosion-

corrosion behaviour reported in Chapter 6.  UNS S32101 with faster repassivation 

rate showed better erosion-corrosion resistance than UNS S30403 under the same 

conditions used in this chapter. 
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Chapter 9. Discussion 

9.1 Behaviour of the Alloys in Static Corrosion Conditions 

9.1.1 Aerated and CO2-Saturated Environments 

The main objective of this research, as stated in section 1.2, is to improve the 

understanding of the corrosion mechanisms and metallurgical aspects of lean duplex 

stainless steels. The lean duplex stainless steels were also compared with austenitic 

stainless steels and a standard duplex stainless steel. All the alloys were tested and 

compared under static conditions in aerated and CO2-saturated oilfield environments. 

The breakdown potential was used as a basis to determine the resistance of the alloys 

to localised corrosion. A more positive breakdown potential was observed in the 

aerated 3.5% NaCl compared with CO2-saturated environment. The same trend was 

also observed when UNS S32101 and UNS S32304 were left for 24 hours at the open 

circuit potential. A more positive potential was observed in the aerated 3.5% NaCl 

than CO2-saturated oilfield. The more positive breakdown potentials and OCP in 

aerated conditions is thought to be due to the higher oxygen available for the 

formation of a compact passive oxide. It is generally believed that the oxide film 

formed in CO2-saturated environment is thinner and weaker than that formed in an 

aerated environment because of the deficiency of oxygen in the environment (163). 

It appears that a relationship exists between CO2 and the amount of chloride ion 

adsorbed into the passive film of the alloys. XPS spectra surveys in Figures 5.7-5.8 

(section 5.5) established the adsorption /incorporation of Cl
-
 ion in the passive film 
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formed in both aerated and CO2-saturated environments. Possibility of chloride ion 

adsorption and incorporation in the passive film formed on passive alloys has also 

been reported (60, 216-218). It was also established (Figures 5.9-5.11) that a greater 

amounts of chloride ions are incorporated into the near surface of the passive film 

formed in CO2-saturated oilfield (despite the lower concentration of chloride in the 

bulk CO2-saturated environment compared to 3.5% NaCl). This could also be one of 

the reasons why the breakdown potential and the OCP are more negative in this 

environment compared to 3.5% NaCl solution. 

Moreover, Anselmo et al. (163) found the same synergistic effect between CO2 

and chloride concentration as shown in Table 9-1. A martensitic stainless steel was 

left at OCP in both environments for 4 hours. In each case the chloride concentration 

was varied from 20000 ppm to 80000 ppm. It was found that the OCP was nearly 

constant with increasing chloride concentration in the aerated environment. However 

a significant decrease in OCP was recorded in the CO2-saturated environment. 

Table 9-1: Synergy between CO2 and chloride in CO2-saturated seawater at 25
o
C 

(163) 

Chloride 

concentration(ppm) 

Eoc (mV) X SCE 

Aerated solution CO2-saturated solution 

20000 

40000 

80000 

-222 

-219 

-220 

-490 

-505 

-520 

 

The same authors also recorded a more negative pitting potential in CO2-

saturated environment compared with aerated environment at higher chloride 

concentration of 40000 ppm to 80000 ppm and the converse was the case at lower 
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chloride concentration of between 20000 ppm and 30000 ppm. It is thought that the 

findings from this research are in total agreement with these authors’ if we consider 

the OCP.  However, while these authors recorded lower pitting potentials in the CO2-

saturated oilfield brine at higher chloride concentrations (40000 ppm-8000 ppm),  

findings from this research shows that the same occurred at a much lower chloride 

concentration (19000 ppm for the CO2-saturated oilfield brine used in this research). 

It should also be emphasised that the chloride concentration in the CO2-saturated 

oilfield brine (19000 ppm) was lower than that of the aerated 3.5% NaCl (21000 

ppm). 

UNS S30403 and UNS S32101 showed comparable breakdown potentials in both 

environments. Although UNS S32101 and UNS S30403 have PREN of 25.7 and 20.6 

respectively, both alloys showed comparable pitting resistance. One reason that 

could be responsible for this is that higher nickel content of the bulk UNS S30403 

may result in a higher enrichment, of nickel (56, 190, 219) at the interface between 

the bulk alloy and the passive film.   

The lean duplex alloy UNS S32101 on the other hand has higher chromium but 

lower nickel addition in the bulk. This could make the layer below the passive film 

have less nickel enrichment though the passive film will be highly enriched in 

chromium compared to the UNS S30403. Both the chemistry of the near surface of 

the bulk alloy and that of the passive film are important to the resistance of alloys to 

pit formation (190).  Elsener et al. (190, 220) reported nickel enrichment at the 

interface between the bulk and the passive film formed on UNS S30400 and UNS 

S31803 after exposure to an alkaline medium for 24 hours. A modified model based 

on the work of these authors reported in (190) is shown in Figure 9.1. 
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Figure 9.1: Model of the dissolution and film formation on (a) UNS S30403 and (b) 

UNS S32101 showing enrichment of Ni at the metal-oxide interface of UNS 

S30403, adapted from Elsener et al.(190) 

 

It should, however, be noted that several factors determine the breakdown of 

passivity as well as the initiation of pits. Among these factors are the environment 

and the chemistry of the passive film as well as the chemistry of the layer of the bulk 

alloy just below the passive film (190). Lean duplex stainless steel UNS S32304 and 

austenitic stainless steel UNS S31603 have similar PREN of approximately 26 and 

both alloys have very low manganese alloying. This could be a justification for their 

close performance. However, it should be emphasized that UNS S31603 with 

approximately 2.5 % Mo and 11% Nickel is heavily alloyed compared to lean duplex 

UNS S32304. The lower breakdown potential of UNS S32101 (despite its high 

PREN) as compared to UNS S32304 and UNS S31603 could either be due to the 

nickel deficiency at the metal-oxide interface or dissolution of manganese from the 

passive film as explained earlier. 
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9.1.2 Mode of Pit Propagation in Aerated and CO2-Saturated Oilfield 

Environments 

The corrosion pits formed on the alloys in aerated environments have lacy covers 

(Figure 5.5, section 5.4) while those formed in CO2-saturated environments are open 

(Figure 5.6, section 5.4).  

   

 

Figure 9.2: Lacy cover formation reported by Ernst and Newman (a. cover;  b. 

interior) (221, 222); c. lacy cover formed on UNS S30403 in aerated 3.5 % NaCl 

(Figure 5.5, section 5.4) 

 

The lacy cover (222) is formed in stainless steels as a result of local 

concentration within the pit and repassivation near the edge of the pit. Repassivation 

is more likely near the edge of the pit in aerated environment compared with the 

CO2-environmenrt because of higher dissolved oxygen and lower Cl
-
 ion adsorbed as 

found in the research. Hence the lacy cover forms in such an environment. Pit 

severity was however, more pronounced in the aerated environment although the 

c 
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passive film did not breakdown easily compared with the CO2-environment. As soon 

as the stable pit was formed, local concentration within the pit led to active 

dissolution which eventually broke through the passive film (221). The passive film 

cover became cathodic with respect to the hydrolysed pit bottom, hence the severity 

of the pit in the aerated environment. 

However, for the CO2-saturated environment, an early distruption of the lacy 

cover seems to hinder the pit growth. It is reported (223) that when the pit cover is 

lost the anolyte in the pit is diluted, hence, the metal dissolution is retarded. This 

could be the reason that the severity of the damage in this environment is lower than 

what is observed in the aerated environment. 

9.1.3 Effect of Manganese on Passive Film Breakdown 

The behaviour of UNS S32101 with a relatively high manganese content 

compared to UNS S32304 and UNS S30403 in the CO2-saturated oilfield 

environment was also very interesting. CO2 dissolves in water to form carbonic acid. 

The environment becomes acidified and dissolves the active elements (163, 190), in 

this case, iron and manganese. Observations from the XPS analysis in section 5.5 

showed that greater manganese was dissolved into the acidic (CO2-saturated) 

environment. These reactions would make the oxide film that was formed in CO2 

environment less compact than the film formed in aerated environment. UNS S30403 

and UNS S32304 with lower manganese in the bulk alloy, and thus less Mn in the 

film, consequently behaved better than UNS S32101 in the CO2-saturated 

environment.  Also, observation from the OCP curves in Figure 5.4 (section 5.3) 

showed that after about 8 hours of exposure in the CO2 environment, UNS S32101 
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began to show a drop in the OCP compared with UNS S32304. This is most likely 

due to the fact that the CO2-saturated environment was acidic and led to the 

dissolution of Fe and Mn, in the passive film formed on UNS S32101. It is thought 

that the dissolution of Mn from the passive film became severe after the 8
th

 hour and 

thus the passive film became porous and hence the OCP became more negative 

compared with UNS S32304. 

9.1.4 Pitting Resistance Equivalent Number (PREN) and the Breakdown 

Potentials 

Plots of breakdown potentials against the Pitting Resistance Equivalent Number 

(PREN), as shown in Figures 9.3 and 9.4, display a general trend that the PREN being 

higher increases the breakdown potential at 20
o
C as expected. Adding more alloying 

elements of Cr, Mo and N should increase the metal resistance to localised 

breakdown of passive film. However, the trend was not followed when UNS S30403 

(PREN 20.6) was compared with UNS S32101 (PREN 26) as well as when UNS 

S32101 is compared with UNS S31603 and UNS S32304 (all having PREN 26). This 

deviation from the usual increase in breakdown potential with an increase in PREN 

was thought to be due to Mn enrichment in the passive oxide of UNS S32101 

compared to UNS S30403, UNS S31603 and UNS S32304 as earlier explained.  

The relationship between breakdown potential and PREN  was also interesting at 

50
o
C (Figure 9.4). For very large differences in PREN virtually no difference in the 

breakdown potential (Eb) was measured. It is only for the alloy with the highest 

PREN of 35 that a significant increase in Eb was measured. A critical PREN of 35 

seems to exist for higher temperature (50
o
C) service. It was also observed that an 
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alloy with a PREN of 20.6 has a more positive breakdown potential than an alloy 

with a PREN of 26 in the CO2-saturated oilfield environment. 

 

Figure 9.3: Relationship between breakdown potentials and PREN at 20
o
C (Error bar 

is the spread of 3 data points) 

 

Figure 9.4: Relationship between breakdown potentials and PREN at 50
o
C (Error bar 

is the spread of 3 data points) 
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9.2 Influence of the Subsurface Crystallography and 

Microstructure on Erosion-Corrosion Behaviour of UNS S32101 and 

UNS S30403 in CO2-Saturated Oilfield Environment 

The Lean duplex stainless steels exhibited reasonably high resistance to pure 

erosion and erosion-corrosion. These alloys showed better resistance to both erosion 

and erosion-corrosion when compared with the standard austenitic stainless steel, 

UNS S30403. Surprisingly, erosion and erosion-corrosion behaviour of the lean 

duplex alloys is high when their chemistry is compared to UNS S32205.  

Further tests were carried out to study the influence of the subsurface 

morphology of UNS S32101 and UNS S30403 on their erosion-corrosion behaviour. 

For instance, work-hardening of the layer of the bulk alloy just below the passive 

film has been reported to influence the synergy between erosion and corrosion.  It 

has been reported (141) that the work-hardened layer is weakened by exposure to the 

corrosive medium and thus enhances erosion under corrosion conditions. The sub-

surface of the UNS S30403 being more work-hardened than the duplex stainless 

steels is expected to be prone to erosion which is enhanced by corrosion (dissolution 

and weakening of the work-hardened layer). On the other hand, erosion-enhanced 

corrosion is dependent on the passive behaviour of the alloy as well as the phase 

transformation and changes in the crystallographic orientation as a result of the 

plastic deformation beneath the passive film. It has been argued that the plastic 

deformation could result in grain refinement which would help in reducing anodic 

dissolution.  However, other activities such as phase transformation, crack formation, 
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highly stressed grains, sand embedment favour a higher rate of anodic dissolution. 

Dislocations have also been reported to help in passive film rupture (69) that could 

lead to higher anodic dissolution. 

 

            

Figure 9.5: Anodic dissolution caused by rupturing of passive film as a result of 

dislocation (69) 

 

  The X-ray Diffraction (XRD) pattern and the Selected Area Electron Diffraction 

(SAED) pattern in chapter 7 showed strain-induced martensitic transformation within 

the subsurface of both UNS S32101 and UNS S30403. The austenitic stainless steel 

responded better to strain-induced transformation from the XRD and hardness 

results. The Focused Ion Beam and Transmission Electron Images showed crack 

propagations and heavily deformed grains within the stagnation region on the tested 

coupon. It is no doubt that these findings could contribute to the synergy between 

erosion and corrosion. UNS S30403 that showed a higher network of crack 

propagation (Figure 9.6a), supposedly higher volume fraction of strain-induced 

martensite within the subsurface suffered higher damage under erosion-corrosion 

conditions.  
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Figure 9.6: FIB images showing subsurface cracks after erosion-corrosion in (a) 

UNS S30403 used in this research and (b) UNS S31603 reported by Rajahram et al. 

(35) 

 

Body-centred tetragonal (BCT) martensite was highly stressed and hence would 

be more susceptible to anodic dissolution compared to the FCC (austenitic) phase.  

Wood et al. (37)  in their argument stated that such strain-induced martensitic site 

increases the chance of pit formation and becomes the site for preferential anodic 

dissolution. 

Also, micro cracks are stress risers that could enhance the susceptibility of an 

alloy to wear and corrosion loss. It is not surprising then that UNS S30403 is more 

susceptible to both erosion and erosion-corrosion. The mechanisms explained above 

are thought to have reasonable influence on erosion-corrosion damage apart from the 

depassivation-repassivation mechanism.  

Another possible factor responsible for higher material loss due to wear-

enhanced corrosion of UNS S30403 is thought to be that the austenite phase is softer 

than the duplex phase. There is a higher likelihood of sand embedment (169, 170) 

within the near surface of the austenite phase which could turn this area into a 

a b 
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composite (metal-sand-oxide) with high stress concentration and inferior corrosion 

and erosion resistance compared to the duplex phase.  Brown et al. (224) stated also 

that the subsurface embedded particles are able to accelerate void nucleation and thus 

provide paths of weakness for crack growth and platelet flaking. 

9.2.1 Synergy between Erosion and Corrosion 

9.2.1.1 Corrosion-enhanced Erosion (dEc) 

Corrosion is said to assist erosion by roughening the top layer of an alloy and 

exposing this layer to impact (141, 199). Many researchers (143, 199, 200) in the 

field have also discussed some mechanism of corrosion-enhanced erosion to include 

preferential corrosion in an alloy or composite which exposes the secondary phase to 

higher impact and hence higher material loss. The work-hardened layer is also 

thinned by dissolution (the passive layer is damaged by impact and hence the work-

hardened layer is exposed) and becomes weakened. Anodic dissolution has been 

reported to weaken the hardness of a material (225). The weak work hardened layer 

is thus prone to higher erosion. Corrosion-enhanced erosion could also be accelerated 

through the subsurface cracks when the corrosive medium increases the crack 

initiation sites (35, 195, 226). There could also be a propagation of micro-cracks by 

debonding at the crack tips (195). 

9.2.1.2 Erosion-enhanced Corrosion (dCe) 

Erosion-enhanced corrosion on the other hand has been widely reported on the 

passive behaviour of the alloys. However, contribution by the changes beneath the 

passive film (sub-surface of the bulk alloy) is also a possibility. Phase 

transformation, grain refinement, dislocation density and twin formation induced by 
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the impacting slurry on the near surface of the alloys could also contribute to the 

material loss by erosion-enhanced corrosion (194, 203). Figures 6.10 and 6.18 depict 

the percentage contribution of erosion-enhanced corrosion (in-situ corrosion) and 

corrosion-enhanced erosion. Deformation of the alloys by impacting slurry led to 

changes in the crystallographic orientation of the grains as well as phase 

transformation. The metastable austenite phase was transformed to strain-induced 

martensite (α-martensite), as shown by X-ray diffraction (XRD) in Figures 7.5 and 

7.6 as well as the SAED in Figure 7.13, sections 7.6.1. An increase in corrosion 

activities is, therefore, a possibility as a result of the higher stored strain energy(227) 

(227) and strain-induced martensite formation near the surface of the alloys. The 

martensite phase is highy stressed and this would lead to it being selectively 

dissolved (203, 204) in preference to the austenitic phase. This could be one reason 

why the fully austenitic stainless steel had greater material loss under erosion-

enhanced corrosion compared to the duplex stainless steels. 

 One other reason could be that because the austenite phase is softer than the 

duplex phase, there is a likelihood of higher sand embedment (35, 169, 170) within 

the near surface of the austenite phase which could turn this area into a composite 

(metal-sand-oxide) of inferior corrosion resistance compared to the duplex phase. 

 

Figure 9.7: Schematic diagram of sand and oxide embedded within the 

subsurface of an alloy under sand impingement 
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Another possibility is the repassivation behaviour (which depends on the near-

surface chemistry of the bulk alloy) of the passive film formed on the stainless steel 

in assisting in erosion- corrosion behaviour (8, 228). The rate of repassivation of the 

damaged passive film on the duplex stainless steel would be faster than the film 

formed on the austenitic stainless steel because of their higher chromium contents 

and the duplex structure. This could also assist in the lower material loss of the 

duplex stainless steels under erosion-corrosion conditions.  

9.3 Erosion-Corrosion Behaviour of the Duplex Stainless Steels 

and Partitioning of Cr and Mo into the Ferrite Phase 

All the duplex stainless steels have similar resistance to erosion-assisted 

corrosion (in-situ corrosion). In-situ corrosion current measured under aerated slurry 

(Figure 6.8, section 6.2.2) and the anodic current density measured in the CO2-

saturated oilfield (Figure 6.12, section 6.3.2) support this view.  It is, however,  

known that the standard duplex stainless steel UNS S32205 has a higher resistance to 

pitting corrosion (PREN 36) compared with the lean duplex stainless steels. UNS 

S32101 and UNS S32304 have PREN of approximately 26. However, in-situ 

corrosion recorded in aerated 3.5% NaCl and 500 mg/L sand shows that  UNS 

S32205, UNS S32101 and UNS S32304 have in-situ corrosion current density of 12, 

14, 13 µA/cm
2 

respectively.  

 In the CO2-saturated oilfield, similar anodic current densities are recorded for the 

lean duplex and the standard duplex stainless steel as seen from the anodic 

polarisation in Fig. 6.12. This behaviour could be attributed to the similarity in the 

ferrite phase of all the duplex stainless steels. Ferrite phase in both lean and standard 
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duplex alloys are sensitive to strain rate. Despite the higher Cr and Mo contents of 

UNS S32205, the erosion-corrosion and in-situ current density is very similar to 

UNS S32101 and UNS S32304. It is thought that at the high strain rate conditions, 

ferrite (Mo and Cr are partitioned into ferrite phase (131)) is highly eroded compared 

to the austenite phase- (Ni, Mn, N) are partitioned into the austenite phase). It has 

been reported (121, 205) that erosion propagate faster in ferrite phase and that ferrite 

is more susceptible to anodic dissolution (205). 

 

Figure 9.8: Cross section of a super duplex stainless steel UNS S32760 after 

being eroded for 4 hours- Dark phase (ferrite) more eroded than the white phase 

(austenite) (205) 

 

Recall that the major contributors to PREN are Cr and Mo (% Cr +3.3 % Mo 

+16% N).  Since these two alloying elements are partitioned into the ferrite phase, 

they are thus lost by mechanical erosion. Hence, higher pitting resistance equivalent 

number of the bulk alloy will not necessarily be a good indicator of higher resistance 

to erosion-enhanced corrosion for duplex stainless steels at the higher velocities used 

in this research. Effect of PREN on erosion-corrosion of stainless steels has also been 

reported to be insignificant at velocity above 20 m/s (138). 
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XRD pattern of the lean duplex stainless steel in Fig. 7.6 shows that the ferrite 

phase is highly eroded. Therefore, the duplex stainless steels are left with higher 

volume fraction of the retained and transformed austenite near the surface during 

erosion and erosion-corrosion conditions. It is thought that the retained and 

transformed austenite phases in both lean and standard duplex stainless steel alloys 

showed similar resistance to erosion-enhanced corrosion.  

9.4 Influence of the Passive Film Behaviour on Erosion-Corrosion 

Behaviour of UNS S32101 and UNS S30403 in CO2-Saturated 

Oilfield Brine 

The repassivation behaviour of the passive film has also been reported to have 

influence on the erosion-corrosion behaviour of passive alloys (8, 197, 228). The 

faster the rate of repassivation of the damaged passive film on the steel the better the 

erosion-corrosion resistance of such alloy. Results obtained for the repassivation 

index in chapter 8 support this submission. The lean duplex stainless steel, UNS 

S32101 has been established to have higher values of repassivation index than UNS 

S30403 austenitic stainless steel.  Higher repassivation index (value of ‘n’, in 

equation 8.1, Chapter 8) has been reported to be related to a higher rate of 

repassivation (71). Higher chromium in the bulk alloy of UNS S32101 (and 

invariably the passive film) is thought to assist in the repassivation kinetics of the 

passive film formed on UNS S32101. Since material loss due to erosion-corrosion 

has been earlier reported (8, 197, 228)  to depend on the rate at which the passive 

film can heal, we could thus relate the higher material loss of UNS S30403 to its 

lower repassivation rate. Lower repassivation rates were also recorded at the higher 
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temperatures. The same trends were observed by Rincon et al.(8) when studying the 

repassivation behaviour of 13Cr and 22Cr stainless steels by scratch electrode 

method in a CO2-saturated oilfield (Figure 9.9a). Higher repassivation rate is said to 

suggest higher corrosion component in erosion-corrosion (8). 

Comparisons were made among the three alloys (13Cr, Super-13Cr and 22Cr 

duplex). The duplex stainless steel with the highest rate of repassivation was found to 

exhibit the lowest erosion-corrosion damage (Figure 9.9b). This supports the findings 

from this research where UNS S32101 with a higher repassivation rate has a better 

erosion-corrosion resistance than UNS S30403 with lower repassivation rate.  

       

Figure 9.9: Repassivation rate of stainless steels in CO2-saturated oilfield,(a) 

effect of temperature, (b) effect of alloying (8) 

9.5 In-situ Corrosion Current under the Impinging Conditions. 

Higher current density recorded at higher temperature (Figure 9.10) has been 

argued to be as a result of higher thermodynamic driving force which makes 

corrosion to occur at a higher rate during depassivation by sand impact (26). As the 

passive film is depassivated by the erodent, charge transfer occurs at a higher rate at 

elevated temperature. Another possibility for a higher current density at the elevated 
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temperature as reported by Hu and Neville (26) is the change in the fluid viscosity 

and hence impacts at higher temperature.  

However the difference in the current evolution of UNS S30403 and UNS 

S32101 (Figure 9.10) under the impinging conditions at both 20
o
C and 50

o
C could be 

seen from two viewpoints. The higher current density for UNS S30403 compared 

with UNS S32101 is most likely due to the less effective passive film on UNS 

S30403. It has been reported (8, 197) that the repasivation behaviour of alloys assist 

in their erosion-corrosion resistance. It has also been found from this research that 

UNS S32101 repassivates faster than UNS S30403 from the results presented in 

Chapter 8.  

 

Figure 9.10: Maximum corrosion current density recorded for the alloys at 24 m/s 

and 500 mg/L sand loading in a CO2-saturated oilfield (Error bar is the spread 

of 3 data points) 

 

Another line of argument is the evolution of less corrosion resistant sub-surface 

morphology (strain-induced martensite, high dislocation density, fatigue cracks, 

galvanic coupling) which are more pronounced in UNS S30403 than UNS S32101. 
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Results from Chapter 7 of this thesis showed that these sub-surface changes are more 

pronounced in UNS S30403 compared with UNS S32101. Strain-induced martensite 

for instance has been reported to exhibit less corrosion resistance than the austenite 

phase (203, 204). Dislocation densities have also been reported to increase the 

activities of electrons and hence promotes higher corrosion rates (227, 229). 

9.6 Proposed Damage Mechanism under Severe Erosion-

Corrosion Conditions 

The jet impingement provides a mixed wear mechanism where both low and high 

angle impacts are obtainable (108, 193, 230) as shown Fig 9.11. Three regions 

(Figure 9.11) are typically identified within the surface of the coupon after 

impingement. Region 1 with high angle impact typically 90-40
o
 is the region closest 

to the stagnation zone. Near the stagnation zone, there is heavy indentation as a result 

of the erodent impact. This could lead to the passive film rupture as well as high 

stress and high strain rate of the layer of the bulk alloy just below the passive film. 

This high strain rate would lead to severe plastic deformation as reported by 

Hutchings (231), Figure 9.12. Grains are refined by this heavy impact which would 

lead to multiple grain boundaries and hence dislocations are hindered from moving. 

Higher dislocation densities have been reported by Yin et al. (229) to increase the 

activities of electrons and hence higher corrosion activities.  

There is also a change of microstructure from FCC austenite to the highly 

strained BCT martensitic phase especially for a metastable alloy such as the 

austenitic stainless steel. This markedly affects the resistance of the affected spots to 

corrosion. More so, the ruptured passive film within the deformed zone would find it 
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difficult to repassivate as a result of the frequency and energy of the impact. Also, 

within this region the change in the microstructure, high strain, dislocation density 

and twin formation would make it more anodic than the other part of the sample. 

These combined actions on the anodic behaviour would outweigh the positive effect 

of the fine grains and lower vacancies. Invariably, this zone becomes more prone to 

further damage by the action of the corrosive medium. The pure-erosion resistance 

within this zone is, however, enhanced due to the increase dislocation density and 

hence the work-hardening effects. 

 (a)        (b) 

 

Figure 9.11: (a) A half model of the jet impingement showing the motion path of 

solid particles and fluid streamline. {(Region 1 near stagnation zone; high 

impact angle); region 2, transition zone; high to low impact angle;  region 3, 

wall jet zone; low impact angle Adapted from Gnanavelu (232) (b) Worn 

coupon showing the three regions 

 

 Region 2 lies between the stagnation zone and the wall jet zone, a mix action of 

indentation and cutting/ploughing occurs at this region. The transition zone, as it is 

being referred to, experiences mixed activities combining some of the activities 

discussed above with the cutting mechanism. Both the subsurface and 

  Passive film 
    Steel plate 
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ploughing/cutting away of the passive film occur at this zone. Region 3 referred to as 

the wall jet zone experiences impact at very low angle (usually less than 15
o
) and the 

material removal is more of cutting action by the sand grain. Within this zone the 

passive film is ruptured and cut away. Ability of the bulk alloy to repassivate is thus 

very important to the material resistance to further degradation within this zone. 

                    

Figure 9.12: Schematic diagram of the plate and sand particle before and after impact 

at high impact angle shown the dissipation of kinetic energy to plastic and 

elastic wave ( modified from Hutchings, (231)) 

 

Figure 9.13: Proposed model of the cross-section of the alloy under high frequency 

impacts and at high angle of impact (region 1 and 2, Figure 9.11) 

 

Figure 9.14: Proposed model of the cross-section of the alloy under alloy under high 

frequency impacts at low angle of impact (region 3, Figure 9.11) 
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Table 9-2: Proposed mechanism of erosion and erosion-corrosion synergy at the 

different regions on the coupon under severe impact conditions 

 Pure-Erosion Erosion-enhanced 

corrosion 

Corrosion-enhanced erosion 

Region 1(the 

stagnation 

zone) 

Deformation 

wear mechanism 

(231) 

Anodic dissolution 

due to plastic 

deformation, high 

dislocation density, 

martensitic 

transformation, and 

fatigue cracks. 

High stored energy 

leads to high 

corrosion activities. 

(37, 194, 203, 204, 

227, 229). 

Repassivation does 

not occur at this 

zone 

Corrosion weakens the 

work-hardened layer and 

thus enhances erosion, 

Hardness is weakened by 

anodic dissolution of the 

work hardened layer, top 

layer is roughened by 

corrosion and thus helps 

erosion, and secondary 

phase (ferrite in duplex 

stainless steel) is 

preferentially corroded and 

thus exposed the other 

phase to erosion.  

Sub-surface 

cracks/debonding at crack 

tips enhances erosion (35, 

36, 141, 143, 195, 199, 200, 

225, 226) 

Region 2 

(transition 

zone) 

Deformation  

and cutting wear 

mechanism 

1. Anodic 

dissolution due to 

sub-surface 

microstructural 

modification 

2. Depassivation 

and repassivation 

of the passive film 

(8, 197) 

Same as obtained in region 

1. The effects is however 

milder in this region 

Region 3 

(wall jet 

zone) 

Cutting and 

ploughing wear 

mechanism 

Depassivation and 

repassivation of 

passive film 

Very negligible effect of 

corrosion on erosion at this 

zone 
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Chapter 10. Conclusions and Future Work 

10.1 Conclusions 

10.1.1 Static Corrosion 

The breakdown potential was used to rank the alloys in the static corrosion 

conditions. Results from the two corrosion media adopted for this research show that 

the passive film on the entire alloys breakdown at more negative potentials in the 

CO2-saturated environment. This behaviour is related to the higher amount of 

chloride ion adsorbed into the passive film formed in the acidic environment. Open 

circuit potentials of the lean duplex stainless steels also show that the alloys attained 

more positive potentials in the aerated environment after exposure for 24 hours. This 

is despite the higher chloride ion in the bulk solution of the aerated solution. 

It is also interesting to find out that lean duplex alloys UNS S32101 and UNS 

S32304 can be used as substitute alloys for UNS S30403 and UNS S31603 austenitic 

stainless steels respectively in the CO2-saturated and aerated conditions. This is 

because the data available from this research shows that UNS S32101 has a 

comparable corrosion resistance to UNS S30403 and that UNS S32304 also behaves 

similar to UNS S31603. Surprisingly also, the lean duplex stainless steel UNS 

S82441 could be an economic substitute to a standard duplex stainless steel, UNS 

S32205 at a low temperature in static conditions.  

Another interesting result from this chapter is the fact that the Pitting Resistance 

Equivalent Number (PREN) does not seem to be a good parameter to rank the lean 
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duplex and the austenitic stainless steels when they are considered together. This is 

because UNS S32101, UNS S31603 and UNS S32304 all have approximately equal 

PREN but UNS S32101 does not have equal resistance to pitting (as evaluated by the 

breakdown potential) to the other two alloys. Also, UNS S30403 with a PREN much 

lower than that of UNS S32101 has very comparable breakdown potential (even 

higher breakdown potential in the CO2-saturated environment) with UNS S32101. 

However, a critical PREN of 35 has been proposed for higher temperature service 

(50
o
C and above) in CO2 and aerated environments used in this research. 

10.1.2 Erosion-Corrosion 

Data available from this research shows that the lean duplex stainless steels UNS 

S32101 and UNS S32304 are promising alloys for erosion-corrosion applications. It 

is striking to see that UNS S32101 and UNS S32304 show equivalent resistance to 

UNS S32205 under both pure erosion and erosion-corrosion conditions. Both alloys 

exhibit better resistance than UNS S30403 under erosion and erosion-corrosion 

conditions.  

10.1.2.1 Erosion-Corrosion and Subsurface Changes 

Data from this thesis also show that hardness within the subsurface of an 

austenitic (UNS S30403) and a lean duplex alloy (UNS S32101) increases during 

erosion-corrosion degradation. This is established from the micro-hardness data. A 

change in the microstructure from austenite to strain-induced martensite as a result of 

the sand impact is also recorded. X-ray diffraction and selected area electron 

diffraction patterns support these conclusions. Fatigue cracks and grain refinement 

within the subsurface of the alloys after erosion-corrosion are also seen with the aid 
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of FIB and TEM. It seems that the sub-surface morphology, microstructure and 

crystallography changes contribute to the erosion-corrosion synergy. This is also 

inferred from the fact that UNS S30403 with a more inferior erosion-corrosion 

resistance suffered more subsurface cracks.   

10.1.2.2 Erosion-Corrosion and Repassivation Kinetics of the Passive Film 

The submerged impinging jet rig has been successfully adopted to study the 

repassivation kinetics of passive film under multiple sand impacts. Higher values of 

repassivation indices were recorded at lower temperature for both alloys. This 

suggests that the passive film is more compact and the rate of repassivation is faster 

at lower temperature. Higher repassivation index is recorded for UNS S32101 

compared to UNS S30403 at both higher and lower temperatures. This suggests that 

the passive film formed on UNS S32101 is more compact than the passive film 

formed on UNS S30403. Also, the passive film on UNS S32101 repassivates faster 

than the passive film formed on UNS S30403.  

Higher current density was observed at 50
o
C compared to 20

o
C for both alloys. 

Also, UNS S30403 also recorded higher current density at both 20 and 50
o
C. The 

higher current density recorded for UNS S30403 compared with UNS S32101 is 

most likely due to the less effective passive film as well as the evolution of less 

corrosion resistant sub-surface (martensite, high density dislocation, fatigue cracks) 

which are more pronounced in this alloy than UNS S32101. 

The behaviour of passive film on both alloys could thus be related to their 

erosion-corrosion behaviour. UNS S32101 with faster repassivation rate showed 
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better erosion-corrosion resistance than UNS S30403 under the same erosion-

corrosion conditions. 

 

10.2 Future Work 

 Repassivation kinetics of the passive film formed on lean duplex stainless 

steel in the oilfield environment using single impact method at much lower 

impinging velocities will be an interesting research area. A miniature 

submerged impinging jet rig with a smaller capacity, say, 10 litres, driven by 

a motor would be a good idea. A single impact using either glass bead would 

then be likelihood with such miniature rig. 

   The suggestion above could be supported with a nano-indentation or scratch 

electrode test method.  

  Passive film chemistry of lean duplex stainless steels in CO2-saturated 

oilfield environment is suggested to be studied in situ using X-ray 

Photoelectron Spectroscopy (XPS).  

 There is still an incomplete understanding of the evolution of subsurface 

crystallography under erosion-corrosion. A systematic approach to 

understand the subsurface of each region of the wear coupon under a 

submerged impinging jet profile is suggested. Ring electrodes representing 

the stagnation, transition, and wall jet zones should be used. This will ensure 

no interference from the region that is not under impingement. 
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 Suggestion above could also be used under multiple impacts to study the 

repassivation kinetics of the passive film. Current transients from each region 

can then be separated from each other. 
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