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Abstract

Psoriasis is a common chronic inflammatory skin disease which can also affect the

joints. Its pathogenesis is still to be fully elucidated and involves a wide range of

inflammatory mediators, tissue and immune cells. At present, there is no treatment

available to cure psoriasis. Although biologics have considerably improved the

treatment of the most severe cases there is still a pressing clinical need to improve

therapy for specific disease subtypes (e.g. pustular psoriasis) and the vast majority of

patients suffering from psoriasis classified as mild to moderate. In particular,

efficient and well tolerated topical approaches are lacking.

This work has focused 1) on advancing our understanding of IL-36 cytokines which

are recognised for their significance in pustular psoriasis, 2) on identifying

endogenous disease limiting mediators such as IL-18 binding protein and how they

could be manipulated in a therapeutic approach and 3) on IL-17 neutralising RNA

aptamers as tools for topical therapy.

Main results include the identification of biologic activity of processed and non-

processed IL-36 members. N-terminal cleavage is required to increase activity of all

IL-36 members. The protease responsible for IL-36RA processing was elucidated.

Neutrophil proteases as well as kallikrein 7 can cleave pro-inflammatory IL-36

members. However, a second processing step seems necessary for full activation and

the potentially responsible aminopeptidase remains to be identified. Secondly, it was

found that human primary fibroblasts produce significant levels of IL-18BP, which

controls pro-inflammatory function of IL-18. Endogenous IL-18BP can be induced

by IL-27 which, when given in combination with hydrocortisone does not induce

pro-inflammatory responses. Thirdly, an IL-17 specific aptamer was verified to

block IL-17A activity in fibroblast and fibroblast Th17 co-cultures but not in

keratinocyte cultures. Significant uptake of the RNA aptamer by keratinocytes was

identified as potentially responsible for the lack of neutralising capacity.
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1.1 Introduction

Psoriasis is a chronic inflammatory disease which predominantly affects the skin but can

also involve the joints, leading to psoriatic arthritis. Recently co-morbidities such as

cardiovascular disease and psychological disorders have been linked to the disease.

Psoriasis is one of the most common chronic inflammatory skin diseases affecting

around 2-3% of the population [1]. It is often ineffectively treated and considering the

psychological burden and impact on the patient’s quality of life it is important that the

immunological basis of all disease subtype manifestations is more thoroughly

understood. This will then provide a more personalised, stratified approach to treatment.

It is well recognised that there are many cell types and inflammatory mediators involved

in psoriasis, including tumour necrosis factor α (TNFα), interleukin (IL)-1 and IL-17 

[2]. The disease initiation is not well understood but a genetic component with an

environmental trigger such as mechanical damage to the involved tissue (sometimes

termed the Koebner phenomenon), may be involved. However, infiltrating immune cells

reaching the skin as the result of chemokine gradients and other molecules released from

skin resident cells play a critical role in disease development and chronicity [3].

The chronicity of psoriasis means that the inflammation is difficult to treat and the co-

morbidities associated with this, such as psoriatic arthritis cause significant joint damage

[4]. Therefore, it seems important that the psoriatic inflammation is treated as quickly as

possible to prevent debilitating joint damage and other co-morbidities. At present the

treatment for moderate-severe psoriasis insufficiently controlled by topical treatment

relies on systemic immunosuppressant therapy (e.g. ciclosporin A, methotrexate) that

may produce toxicities and the risk of infections. For patients that fail these

conventional agents anti-cytokine biological therapies can be used. It is crucial that

further understanding of the pathogenesis of the disease is achieved in order to develop

novel therapeutics to induce sustained drug free remission or to define novel topical

therapy strategies which are generally less likely to produce significant side effects.

There is good evidence that chronic inflammation in psoriasis is related to a disturbed

balance between inflammatory cascade agonists and endogenous antagonists. This has
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been demonstrated in the identification of a loss-of-function mutation in the IL-36

receptor antagonist which causes generalised pustular psoriasis (GPP), a life-threatening

subtype of psoriasis [5]. The balance of these pro-inflammatory versus anti-

inflammatory mediators may be a key to understanding disease pathogenesis and

correcting this balance may be an achievable and effective therapeutic target. This has

already been utilised with regard to IL-1 which can be neutralised by Anakinra®, which

is a recombinant IL-1 receptor antagonist. Anakinra® is a highly effective treatment in a

number of auto-inflammatory psoriasiform disease phenotypes such as the deficiency of

IL-1 receptor antagonist (DIRA) syndrome [6, 7]. Understanding the complex immune

dysfunction in psoriasis is crucial to provide patients with more effective therapy with

fewer side effects.

1.2 Anatomy of the skin

The skin is divided into two distinct layers, the epidermis and the dermis separated by a

basement membrane. Both layers contain a complex variety of cell types (see Figure 1-

1). The epidermis is divided again into 4 layers, most inferiorly lies the stratum basale

then moving outwards is the stratum spinosum, stratum granulosum and the stratum

corneum. The outermost layer of the skin, stratum corneum consists of terminally

differentiated keratinocytes (corneocytes) which form a crucial part of the physical

barrier of the skin. Keratinocytes undergoing differentiation make up the majority of the

epidermis. Differentiation-associated proteins are expressed by keratinocytes

differentially throughout these layers. Keratins make up a large proportion of the

intermediate filament cytoskeleton in epithelial cells and differentiation state of the

keratinocytes can be ascertained by expression of certain keratins [8]. Apart from

keratinocytes the epidermal layers also contain cells related to the hair follicle (including

an epidermal stem cell compartment), Langerhans cells, pigment producing melanocytes

and merkel cells which are sensory in nature. The physical barrier formed by the

corneocytes and the acidic, hydrolipidic nature of the skin provide functional protection

from invading pathogens. However, changes in keratinocyte differentiation or

composition of the hydrolipidic layer undermine the barrier and play a substantial role in

the pathogenesis of many skin diseases.
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The dermal layer is composed of 2 layers, most inferiorly the stratum reticulare and

superiorly the stratum papillare. The dermis is anatomically more complex, as well as

resident immune cells there are fibroblasts and nerve related cells surrounded by a

structural framework of collagen fibres. The dermis also has an extensive blood supply

and lymphatic drainage which are crucial for migration of immune cells into the skin

compartment [9]. Some immune cells are resident in both the dermis and epidermis.

However, many more will migrate into the epidermis and dermis in an inflammatory

state when tissue resident cells produce chemokines, such as C-X-C motif chemokine 10

(CXCL10) and IL-8. The infiltrating immune cells are also depicted in Figure 1-1.
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Figure 1-1. Diagrammatic representation of the layers of the skin.

The diagram clearly shows the 4 distinct layers of keratinocytes within the epidermis. The red layer at the

base of the epidermis is the basement membrane. Resident immune cells are also depicted in the

epidermis. Specialist cells are shown in the dermis however it is also rich in extracellular matrix and

contains collagen, elastic fibres and reticular fibres [10]

1.3 Skin inflammation

The skin has a crucial function as a barrier, protecting the body from environmental

challenges such as ultraviolet light, mechanical or chemical stress. Forming one of the

largest organs in the body the skin is not just a traditional barrier but has roles as a

sensory-receptive organ, a biochemical barrier to maintain hydration and also for

synthesis of vitamins and hormones. The skin also plays an active role in mounting an
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immune response against invading pathogens with barrier function disruption being

associated with an increased risk of infection. The skin immune system is in a continued

state of readiness to fend off microbial and other potentially detrimental agents so a

dysregulated immune response may predispose to chronic, possibly auto-reactive,

inflammation [10].

1.3.1 Initiation of skin inflammation

The skin immune function was first described in 1983 by Streilein who devised the term

skin-associated lymphoid tissue (SALT) [11] which was later referred to as ‘The skin

immune system (SIS)’ [12]. Streilein recognised that the skin had more than just a

physical barrier function but was also important for local inflammatory response to

trauma or pathogens and for the trafficking of immune cells from circulating blood and

lymph to the skin. One of the important functions of the skin immune system in is

wound healing. Moments after damage to the skin a well-orchestrated immune response

occurs, this is the first step on the pathway to healing of the skin barrier.

The initiation of inflammation in the skin is importantly controlled by release of

cytokines from skin resident cells and both resident and infiltrating immune cells. The

specific cytokine profile indicates different physiological outcomes such as wound

repair or immune activation, these different processes will involve different cell types.

Keratinocytes are the cells that provide the ‘first line of defence’ against any invading

pathogens. In a similar manner to other epithelial cells in mucosal linings keratinocytes

can ‘distinguish’ between harmless resident organisms and harmful pathogens. The skin

microbiome is extensive (1012 resident bacteria/m2) and in normal conditions does not

present a threat [13]. Keratinocytes express receptors named pattern recognition

receptors (PRRs) that recognise evolutionary conserved microbial components proposed

by Janeway as pathogen-associated molecular patterns (PAMPs) such as flagellin,

nucleic acids and lipopolysaccharide (LPS) [14]. The most abundantly studied PRRs in

the skin are toll like receptors (TLRs) with keratinocytes expressing a substantial

number of these [15]. TLR 1, 2, 4, 5 and 6 recognise components of microbial cell wall

and membranes unique to pathogens and are present on the cell surface. Whereas, TLR

3, 7, 8 and 9 recognise single and double stranded RNA from RNA viruses and DNA.
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TLR 3, 7 and 9 are present in endosomes [16]. TLR activation leads to activation of

nuclear factor-kappa B (NF-κB), mitogen-activated protein kinases (MAPK) and 

interferon regulatory factor (IRF) [17]. All of which are involved in the amplification of

the immune response by increasing pro-inflammatory cytokines.

Keratinocytes also react to danger associated molecular patterns (DAMPs), which are

non-infectious molecules that can initiate an immune response. This term was coined by

Matzinger and revolutionised the way we explain recognition of danger by the immune

system [18]. DAMPs involve molecules such as irritants, toxins, ultraviolet (UV) light

and also cellular proteins or constituents that alert surrounding cells to danger following

cell necrosis or mechanical damage to cells i.e. scratching or physical trauma (which is

thought to be related to psoriatic lesion onset). It was more recently described that the

nucleotide-binding domain, leucine-rich repeat-containing (NOD) like receptors (NLR)

gene family can recognise both DAMPs and PAMPs and are highly expressed in the

skin. Activation of these receptors which consequently up-regulates pro-inflammatory

molecules is crucial in pathogen clearance and wound healing. LL-37 produced by

keratinocytes in combination with RNA or DNA following cell damage can activate

TLR7/8 on DCs which consequently causes release of cytokines such as IL-23. This is

important for polarisation of IL-17 producing T cells and aberrant activation of

pathways such as these lead to chronic inflammation such as psoriasis [19].

Pro-inflammatory cytokine release often occurs through activation of the inflammasome

following TLR activation [20]. The inflammasome (described in more detail later in

1.4.1) is a large multi-protein oligomer that is present in the cytoplasm of most cells.

Upon activation of the inflammasome, caspase-1 is activated from its pro-form. Active

caspase-1 cleaves pro-inflammatory inactive cytokines such as IL-1β and IL-18 into 

their active forms [21]. These pro-cytokines are stored inside the cell and released upon

activation of e.g. keratinocytes [22, 23]. The release of these IL-1 family cytokines, not

only plays a role in amplifying the immune response it also has effects on the

keratinocytes themselves inducing proliferation or differentiation therefore altering the

barrier function of the skin. This is relevant in diseases, such as atopic dermatitis, which

is linked to impaired barrier function [24]. The pro-inflammatory cytokines released
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following inflammasome activation are controlled by binding proteins and receptor

antagonists, such as IL-18 binding protein and IL-36 receptor antagonist. On the other

hand, up-regulation of inflammatory cytokines such as IL-1, interferon (IFN)γ and IL-17 

plays a vital role in removing invading pathogens by up-regulating antimicrobial

peptides (AMPs), such as LL-37 and defensins [25]. These molecules are cationic and

kill bacteria by creating holes in the anionic membranes of the bacteria or by removing

iron required for bacterial growth [26]. AMPs such as LL-37 also have chemotactic

roles, causing infiltration of immune cells into the skin.

There is evidence that points to the idea that activation of keratinocytes initiate

inflammation before infiltration of any immune cells [27]. Although we understand that

the skin resident cells play a crucial role in inflammation it is also known that without

immune cell infiltration inflammation cannot occur to its full extent (See Figure 1-2).

The skin contains several populations of dendritic cells (DCs) the best known of which

is Langerhans cells. These are resident in the epidermis so are one of the first subsets of

immune cells to come in to contact with any pathogen or insult to the skin. This subset

of cells is a specialist DC that after migrating to draining lymph nodes effectively

presents antigens to naïve T cells in order to cause clonal expansion of specific T helper

cell subsets [28]. In health the DCs are likely to be more tolerogenic, however in

pathogenic circumstances DCs may lose their tolerance and induce inflammation [29].

Depending on the type of antigen and the co-stimulatory signals presented by the

Langerhans cells, or dermal dendritic cells, gives rise to proliferation of a specific subset

of T helper cells. Following inflammation where a specific set of T helper cells have

been involved, some remain in the skin on resolution of inflammation. These are then

known as tissue-resident memory T cells and provide a faster immune response if

infected with the same pathogen again. Twice as many of these memory cells have been

suggested to be present in healthy skin compared to peripheral blood and 98% of these

are cutaneous lymphocyte associated-antigen (CLA) + [30].

It is known that within minutes of damage to the skin neutrophils are present, recruited

in to the skin by release of IL-8 from skin resident cells [31]. These cells play an

invaluable role in immediate response to invading pathogens by release of, among
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others, antimicrobial molecules, proteases and neutrophil extracellular traps (NETs) [32,

33]. Contrary to early research into the role of neutrophils as purely early inflammatory

response cells it is now understood that neutrophils have a diverse role in both innate

and adaptive immunity. Neutrophils express a wide range of receptors such as TLRs

[34], C-type lectin receptor Dectin-1 [35], retinoic acid-inducible gene (RIG)-1 and

melanoma differentiation-associated protein (MDA) 5 [36]. Therefore under specific

circumstances when they migrate into the skin they can respond to damage or pathogens

by release of a diverse range of cytokines [37].

Macrophages and DCs resident in the dermis are also crucial cells both for antigen

presentation and phagocytosis of pathogens and apoptotic cells. Monocytes are rapidly

recruited from the blood in response to keratinocytes chemokines such as monocyte

chemoattractant protein (MCP)-1 [38]. Both macrophages and neutrophils release

proteases and reactive oxygen species therefore providing potent antimicrobial

properties and further inflammatory cascade amplification [39].
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Figure 1-2. Diagrammatic representation of initiation of skin inflammation.

When skin is damaged or irritated both skin resident cells and infiltrating immune cells mount a well-

orchestrated response to maintain skin homeostasis. Keratinocytes sense damage or pathogenic invaders

and respond by secretion of chemokines and cytokines that attract infiltrating immune cells and activate

fibroblasts. Fibroblasts in turn will produce further cytokines. Langerhans cells and dermal dendritic cells

play a crucial role in antigen presentation of ‘new’ pathogens to naïve T cells which consequently

produces clonal expansion and skin homing T cells of the relevant subset. Macrophages and neutrophils
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also play a critical role in skin inflammation being recruited by chemokines produced predominantly by

keratinocytes [40].

The initiation of inflammation requires a concerted effort from all cell types involved to

deliver a well-orchestrated response to clear any pathogens or damage that may be

compromising the skin barrier (as depicted in Figure1-2).

1.3.2 Maintenance and resolution of skin inflammation

In health a tightly controlled immune response orchestrates inflammation until the

pathogen or damage has been cleared or repaired with subsequent resolution of

inflammation and restoration of normal skin homeostasis. However, a recent publication

has suggested that there is in fact a post-resolution phase which bridges the gap between

innate and adaptive immunity [41]. A state of ‘adaptive homeostasis’ in the tissue allows

for an appropriate response of repeat stimuli, of note this has been established in a

murine model [41]. The regulation of inflammation is controlled by a number of

mediators including cytokines, such as receptor antagonists and binding proteins as well

as transcription factors, many of these are involved in prevention of spontaneous

inflammation without microbial provocation or autoimmunity [42]. These molecules

form a coordinated response that not only prevents spontaneous inflammation but also

controls and aids resolution of acute inflammation [43].

Once the acute inflammatory ‘trigger’ has been resolved, leukocytes must be cleared

from the skin in order to maintain normal skin homeostasis. This process is not a passive

process as previously thought [44] but a metabolically active biochemical process.

Neutrophils also play a role in the resolution of inflammation. At the final stages of

acute inflammation when neutrophils undergo apoptosis a switch from production of

lipid mediators (such as eicosanoids) to specialised proresolving mediators (SPMs)

occurs [45]. The specialised SPMs include resolvins and lipoxins which prevent further

leukocyte infiltration and encourage clearance of debris and apoptotic cells by

macrophages in a non-phlogistic manner [46]. Soluble proresolving mediators reduce

leukocyte infiltration by down-regulation of integrins such as CD11b which prevents

diapedesis [47]. It has recently become evident that neutrophil production of lipid

mediators is dependent on the environment they are in and the cells they interact with.
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Other cell types in the skin such as fibroblasts can also produce SPMs on contact with

neutrophils, as well as macrophages in a specific cytokine micro milieu [48]. A novel

function of these SPMs has also been shown to regulate microRNAs that are involved in

resolution of inflammation [49]. Neutrophils are not only responsible for release of

SPMs but the increase of these mediators up-regulates receptors such as C-C chemokine

receptor type 5 (CCR5) by apoptotic neutrophils. These receptors act as decoy receptors

for chemokines that would otherwise attract further infiltration of leukocytes [50].

In a proresolving environment cytokines released by macrophages also act on

neutrophils to actively release IL-1 receptor antagonist (IL-1RA) which will reduce the

inflammatory actions of IL-1 [51]. Lipoxins also act upon epithelial cells to reduce IL-8

release in response to TNFα [52]. Of note, lipoxins also block CD3-specific antibody 

binding restricting NF-κB signalling in T cells, therefore reducing release of pro-

inflammatory cytokines [53]. SPMs also regulate macrophages. It is generally regarded

that M1 differentiated macrophages are more pro-inflammatory whereas M2 exert more

anti-inflammatory functions. The differentiation fate of macrophages is determined by

micro milieu of cells and cytokines [54, 55]. SPMs have been shown to cause

differentiation of macrophages into an M2 lineage, favouring a more anti-inflammatory

role [47, 56]. Macrophages are also crucial to resolution of inflammation, being the most

prevalent phagocytic cells, and on ingestion of dead and dying cells they release anti-

inflammatory molecules such as transforming growth factor (TGF)-β and IL-10 [57, 58]. 

However, this anti-inflammatory signature cytokine release only occurs on phagocytosis

of apoptotic cells and not necrotic cells.

As with initiation of inflammation in the skin, the resident cells are also important in

controlling inflammation. As discussed further in chapter 3 we have shown that on

following IL-27 stimulation skin fibroblasts and keratinocytes will initially respond by

releasing CXCL10, which initiates infiltration of IFNγ producing lymphocytes. In vitro,

after 24 hours pro-inflammatory mediators will no longer be released and a switch to

anti-inflammatory molecules such as binding proteins (BP) and receptor antagonists

(RA) is seen [59]. Up-regulation of RA can be detected along with its pro-inflammatory
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agonist and this seems to be an important control mechanism to prevent an uncontrolled

inflammation [60].

To maintain homeostasis the skin has many, not yet fully elucidated mechanisms by

which to control inflammation and resolve it in a timely manner. If these mechanisms

fail, chronic inflammation may occur.

1.3.3 Chronic inflammation

Chronic inflammation can occur for various reasons including the persistence of an

inflammatory trigger, genetically determined autoinflammation and lack of

inflammatory resolution. An example of chronic inflammation caused by persistence of

an inflammatory trigger is the presence of non-degradable particles of asbestos or silica

which consistently activate the inflammasome therefore causing aberrant release of pro-

inflammatory cytokines, such as IL-1β and IL-18 [61]. This is particular relevant in 

chronic inflammation of the lung epithelium on inhalation of particulates which often

leads to neoplastic disease [62] or in chronic joint inflammation seen in gout [63].

Chronic inflammation seen in atopic dermatitis (AD) involves breakdown of the barrier,

super infection and of course allergen exposure. Therefore, a persistent inflammatory

trigger is present. However, AD also has a strong genetic component and the most

widely replicated risk factor is a loss-of-function mutation in the gene encoding

filaggrin, which is involved in epidermal barrier maintenance [64, 65]. Chronic

inflammation in AD may be related to barrier function breakdown with persistent

antigen access and risk of lesional skin super infection [66].

Another cause underlying the development of chronic inflammation is the presence of

an abnormal, overactive inflammatory response related to a genetically determined

autoinflammation. In Crohn’s disease a subset of patients have a NOD2 mutation which

results in an aberrant response to inflammatory stimuli due to increased inflammasome

activity [67]. Neonatal-onset multisystem inflammatory disease (NOMID) is an example

of a disease where aberrant IL-1 release results in systemic inflammation including

significant skin pathologies [68]. This genetic disease is due to a gain-of-function
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mutation in the inflammasome complex which activates caspase-1 and consequently

activates IL-1β, leading to excessive IL-1β release.  

Chronic inflammation can also be related to lack of inflammatory resolution and

infiltrating immune cells remaining in the tissue, chronic inflammation has been

regarded as lymphocyte, macrophage and DC mediated until more recently [69].

Neutrophils, for example, have been shown to play a role in the resolution of

inflammation, however if excessive or prolonged neutrophil infiltration into the skin

occurs then this can lead to release of enzymatic granule contents during incomplete

phagocytosis [31]. This consequently leads to tissue damage which is prolonged beyond

clearance of the pathogen and may lead to a pattern of chronic inflammation [31].

Excessive or prolonged neutrophil infiltration is seen in chronic inflammatory skin

diseases such as psoriasis (discussed in detail in 1.3). However, more recently it has

been proposed that fibroblasts play an important role in transition from acute to chronic

inflammation. The cytokine micro milieu produced by skin resident cells defines the

inflammatory infiltrate, therefore if there is aberrant production of pro-inflammatory

mediators by fibroblasts this prevents resolution of inflammation [70].

1.4 Psoriasis and psoriatic arthritis

Psoriasis is a common inflammatory skin disease. It has, however, recently become

evident that psoriasis can no longer be considered as solely a skin disease but potentially

a systemic disease that can affect the joints and the cardiovascular system [71]. Psoriatic

disease of the skin is present in around 2-3% of the European and North American

population and affects more than 25 million people in Europe and North America [72].

Psoriasis can be divided into 3 main subtypes: vulgaris (which simply means common

psoriasis), guttate and pustular. Psoriasis vulgaris is most extensively researched due to

the fact that it affects approximately 85-90% of psoriasis sufferers [73]. It is

characterised by ‘scaly’ plaques that involve an increased capillary network in the upper

dermis, and inflammatory infiltrate including mononuclear cells, T cells and neutrophils

into both the dermal and epidermal compartment. The epidermis is greatly enlarged

(acanthosis) with keratinocytes moving through the epidermis every 4-5 days, a tenfold

acceleration compared to healthy skin. Parakeratosis (maintenance of nuclei into the
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cornified layer) and loss of stratum granulosum is present, with aberrant expression of

keratins in the epidermis namely cytokeratin 16 [19].

1.4.1 Clinical characterisation of psoriasis

Clinical severity of psoriasis is determined by using the psoriasis activity and severity

score (PASI) which assesses; erythema (redness), induration (thickness), and

desquamation (scale) of the plaques in different body sections, with 72 as the maximal

score [19].

Figure 1-3. Clinical characteristics of the psoriatic subtypes.

Clinical photos showing a typical phenotype for each psoriatic subtype. a – Erythrodermic psoriasis. b –

Psoriasis vulgaris. c – Guttate psoriasis. d - Acrodermatitis continua of Hallopeau (a pustular psoriasis

subtype). e – Psoriatic arthritis. f – Palmoplanter pustular psoriasis (a pustular psoriasis subtype). Photos

kindly provided by Dr Miriam Wittmann.
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1.4.1.1 Psoriasis vulgaris

Psoriasis vulgaris is characterised by demarcated dry, red plaques with silvery white

loosely adherent scales. A typical symptom is the Auspitz phenomenon where mild

disruption to the superficial layer of the lesion results in pin point bleeding. These

plaques characteristically form on the extensor region of the elbows and knees and

lumbosacral region and also commonly effect the scalp [3]. Moderate to severe psoriasis

effects 3-10% of psoriasis vulgaris patients and is termed as such if more than 10% of

the body is covered [19]. Moderate psoriasis effects 25% and mild psoriasis effects 65%

of patients. The development of psoriasis vulgaris is complex and is likely to be

different for different subgroups of patients. The Koebner phenomenon, which is

defined by mechanical stress causing development of a lesion, suggests that lesions

often occur after mechanical trauma to the skin.

1.4.1.2 Guttate psoriasis

Guttate psoriasis in contrast to psoriasis vulgaris is characterised by erythematous

forming small droplet (‘gutta’) shaped plaques about 1cm in diameter. Guttate psoriasis

often presents with an acute onset of the disease so all plaques are at the same

developmental stage. It is common in children and adolescents following a

Streptococcal infection or upper respiratory tract infection [74]. Unlike psoriasis

vulgaris the disease is often localised to the trunk. Guttate psoriasis is most often self-

limiting and will spontaneously resolve, however following an outbreak of guttate

psoriasis the risk of developing chronic psoriasis vulgaris is increased [75].

1.4.1.3 Pustular psoriasis

Pustular psoriasis can either be localised or generalised. Lesions are characteristically

tender sterile pustules which have underlying erythematous. Histologically diffuse

neutrophil infiltration is detectable in the dermis and epidermis [76]. Localised pustular

psoriasis can present as palmoplanter pustular psoriasis (PPP) or acrodermatitis continua

of Hallopeau (ACH). PPP is characterised by sterile pustules and hyperkeratosis of the

palmar and plantar surfaces and it is commonly associated with psoriatic nail

involvement [77]. ACH affects predominately the fingers and toes, however the pustules
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can become confluent and spread to the dorsal aspects of the hands and feet. Generalised

pustular psoriasis (GPP) is a rare subtype of psoriasis, however it is a severe form and

affected patients may need intensive care treatment. A subset of GPP has recently been

associated with a loss-of-function mutation in the IL-36 receptor antagonist (IL-36RA)

gene [5]. Treatment can be difficult but success has been described using conventional

drugs such as Acitretin or methotrexate but also biologics involving both TNF and IL-1

inhibitors [78].

1.4.1.4 Erythrodermic psoriasis

This sub type of psoriasis is characterised by widespread erythrema involving most of

the body surface, with some nail involvement. It is often due to poorly managed

psoriasis vulgaris or sudden halt of systemic medication. It can also be related to a drug

reaction, such as lithium, or systemic inflammation [79]. As for GPP, this subtype can

be life threatening if left untreated.

1.4.1.5 Psoriatic arthritis (PsA)

PsA is thought to affect 20-30% of people suffering from psoriasis vulgaris [80-82]. PsA

was originally described by Wright as having 5 clinical characteristics; distal

predominant pattern, oligoarticular asymmetrical, polyarticular rheumatoid arthritis-like,

spondylitis, and arthritis mutilans [82]. It has now been identified that PsA is often

associated with enthesitis [83], for which diagnosis has progressed with use of MRI

imaging [84]. It has been suggested that 20% of PsA patients will develop an aggressive

debilitating disease as seen in rheumatoid arthritis if not treated early and effectively

[85]. As a general rule patients with PsA have a more severe skin disease and are at a

higher risk of developing other co-morbidities associated with severe psoriasis [86].

1.4.2 Pathogenesis of psoriasis

It is widely accepted that psoriasis pathogenesis involves a complex interplay between

genetic and environmental factors. It has been described that genetic factors predispose

to an overreaction to environmental stimuli such as mechanical stress [10]. Plaque

initiation is thought to involve pDCs and myeloid DCs which respond to release of

DAMPs and self DNA by damaged keratinocytes [19]. This view is supported by a
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murine model where imiquimod (a TLR7 agonist) initiates a psoriasis-like plaque [87],

however this does fail to fully represent human psoriasis. Psoriasis is characterised by a

distinctive micro milieu of cytokines that interact in a network manner (see Figure 1-4).

It has been shown that in a co-culture of keratinocytes and activated CD4+ T cells large

amounts of IL-17 can be detected [88]. This response was firstly dependent on IL-1β 

and secondly on IL-23 [88]. It is known that IL-1β and IL-17 can induce each other 

which indicates a possible role for these cytokines in a positive loop mechanism within

psoriatic skin. IL-17 is predominantly produced by Th17 cells [89] and these cells are

regulated and polarised by IL-23, IL-1 and IL-6 [90] in humans. In psoriatic plaques it

has been described that the CCR6+ Th17 cells are attracted into the skin by a

chemokine, C-C motif ligand (CCL)20, which can be released from keratinocytes in

response to TNFα [91]. On binding of IL-17 to its receptor further induction of pro-

inflammatory cytokines, such as TNFα, IL-8 and IL-36 (see 1.4.3), occur which leads to 

neutrophil attraction [90]. These increased levels of neutrophils can be linked to

psoriasis due to the accumulation of neutrophils in the form of Munro’s micro-abscesses

[92], suggesting that IL-8 is important in the pathogenesis of psoriasis. IL-22 is also

released from activated Th17/Th22 cells and is recognised to cause the phenotypic

epidermal symptoms by primarily acting on keratinocytes [93]. As well as Th17 cells

Th1 cells are also present in lesional psoriatic skin and the inflammatory environment

contains Th1 related cytokines such as IFNγ [94]. IL-12 release from DCs is crucial for 

Th1 polarisation [19]. IL-12 and IL-23 are heterodimeric cytokines and share the p40

subunit, due to the known role of these cytokines in psoriatic pathogenesis this p40

subunit has been targeted for antibody therapy (Ustekinumab) [95]. Ustekinumab

prevent binding to of these cytokines to their receptors therefore preventing polarisation

of Th1 and Th17 cells and it has also been shown to inhibit activity of neutrophils and

monocytes [95]. This therapy shows good clinical outcome however more therapeutics

targeting small molecules within this pathway are also being developed such as those

targeting tyrosine kinase 2 and JAK1 which prevents IL-23 signalling [96].

Members of the IL-1 family have also been implicated in the pathogenesis of psoriasis.

IL-36γ has been shown to be increased in psoriatic plaques and is thought to increase 

expression of AMPs [97]. It has also been shown to be up-regulated at the RNA level in
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psoriatic keratinocytes compared to healthy keratinocytes upon stimulation with IL-17

[60] which points to an intrinsic difference in IL-36γ regulation in psoriasis. AMPs such 

as human beta defensin (HBD) 2 and 3, are known to be up-regulated in psoriatic skin

and are thought to be responsible for the low infection rate of psoriatic plaques. An

increase in copy number for HBD2 has also been described contributing to the genetic

background of the disease [98]. The mentioned mediators often have synergistic effects,

this has been shown for TNFα and IL-17 [2]. The combination of IL-1α with EGFR 

ligands such as TGFα induces much higher up-regulation of AMPs, such as HBD-2 and 

S100A7, than any of the mediators alone [97].

The innate immune system may play a more substantial role in psoriasis pathogenesis

than first thought [99]. Of interest, the recently identified type 3 innate lymphoid cells

(ILCs) have been identified as a significant source of IL-17 and IL-22 [100]. There have

been 3 subsets of ILCs identified in humans and these are grouped in relation to their

dependence on specific transcription factors and the cytokines released. The ILC subset

which produces IL-17 and IL-22 [101] is NKp44 + and has been shown to be enriched

in peripheral blood and skin from psoriasis patients [102, 103]. Following treatment

with biologics such as anti-TNFα this enrichment reduces back down to baseline [104]. 

This further implicates the role of not only the adaptive immune system but also innate

cells in the complex pathogenesis of psoriasis.
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Figure 1-4. Diagrammatic representation of psoriatic inflammation.

The immunological basis for initiation of psoriatic plaques is not fully understood and the many

information are derived from murine models. However, it is thought that in human disease DCs are

important in the initiation of disease following keratinocyte damage. Infiltrating immune cells and the

cytokines released by resident and infiltrating immune cells drive chronicity of the disease.

The pathogenesis of psoriasis is very complex. However, with further understanding of

both the pathogenesis and the genetic background for different subtypes of disease

treatment will be more effective following a more ‘personalised’ medicine approach.

1.4.3 Associated co-morbidities in psoriasis

There has been a long-standing appreciation for the fact that there were co-morbidities

present in connection with psoriasis. Nail dystrophy, psoriatic arthritis and depression
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are well known co-morbidities [3]. Recent studies have shown that psoriasis has a severe

psychological burden on patients [105] which may explain the links to depression and

other psychological co-morbidities such as smoking and alcoholism [86]. More recently

cardiovascular co-morbidities such as atherosclerosis [106] as well as obesity, diabetes

and metabolic syndrome have all been associated with psoriasis with a prevalence

ranging from 7-50% [80, 107, 108]. Taken together this reinforces the concept that

psoriasis is an extremely complex disease of the immune system not only in the skin but

also systemically which indicates need for multidisciplinary management and targeted

therapy of these patients.

1.4.4 Genetic implications in psoriasis

The notion that genetic changes play a role in the disease is supported by 70%

concordance rate in monozygotic twins and 20% in dizygotic twins [109]. There are

multiple genetic variants that contribute to a psoriatic phenotype. Psoriasis susceptibility

region 1 (PSORS1) is the strongest susceptibility locus located in the major

histocompatibility complex and human leukocyte antigen (HLA)-Cw6 is the suggested

primary allele. Patients who are heterogeneous for this mutation are more susceptible to

develop early onset psoriasis vulgaris or guttate psoriasis [110].

The increase in genome wide association studies (GWAS) has led to 36 single

nucleotide polymorphisms (SNPs) being identified in the European population [99].

Most of these SNPs are related to immune function or skin barrier function (see Table 1-

1). However, 2 mutations identified can cause disease independently, IL-36RN and

CARD14. The loss-of-function mutation of IL-36RA identified in 2011 [5, 111] leads to

un-controlled activity of the IL-36 cytokines which cause downstream activation of NF-

κB leading to a multitude of inflammatory mediator release (discussed in more detail in 

1.4.3.2). The CARD14 mutation is a gain-of-function mutation. CARD14 is involved in

activation of NF-κB and this mutation causes an increase in activity therefore again 

causing an increase in inflammatory mediators [112, 113]. These poignant mutations

give us insight into psoriatic disease pathogenesis due to the lack of regulation of

inflammatory mediators leading to this inflammatory disease.
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Known

susceptibility loci

Notable genes Amino-acid

substitution

Function

rs9988642 IL23R p.Arg381Gln (P) IL-23 signalling

rs27432 ERAP1 p.Gln730Glu Encodes for endoplasmic reticulum

aminopeptidase 1 – important in

immune function due to cleavage of

receptors and inflammatory

cytokines [114].

rs1295685 IL13 p.Arg144Gln Th2 cytokine

rs33980500 TRAF3IP2 p.Asp19Asn (S,P) A TNF associated receptor factor

that encodes Act1. Mediates NF-κB 

signalling [115].

rs2066819 STAT2 p.Met594Ile Transcription factor involved in

type 1 IFN signalling [116].

rs12445568 PRSS53 p.Pro406Ala Encodes polyserases, serine

proteases [117].

rs11652075 CARD14 p.Arg820Trp (S) Encodes a family of caspase

recruitment domain-containing

scaffold proteins (CARD) and

membrane associated guanylate

kinase-like domain-containing

protein (CARMA), mediates

recruitment and activation of NF-

κB [118]. 

rs34536443 TYK2 p.Pro110Ala (S,P) Encodes tyrosine kinase 2 and a

member of the Janus kinase family

and involved in downstream

signalling of many pro-

inflammatory cytokines [119].

rs12720356 TYK2 p.Ile684Ser (S,P)

rs4821124 YDJC p.Ala263Thr Function not well described,

however may play a role in

cleavage of cellobiose-phosphate

[120].
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Table 1-1. Potential causal SNPs following meta-analysis of Immunochip and GWAS data to

identify psoriasis susceptibility loci.

A summary table to show SNPs that have potential causal effects in development of psoriasis in relation

to a recent publication analysing 3 GWAS studies and 2 independent studies genotyped using an

Immunochip. The notable genes, the predicted amino-acid change and the function are also shown. High-

confidence damaging effect (amino-acid change), amino-acid substitution, predicted by SIFT (S) or

Polyphen (P). This meta-analysis was performed using 3 genome wide association studies (GWAS)

identified 15 new susceptibility loci and confirmed other SNPs that had been previously associated to

psoriasis [98].

Table 1-1 shows potentially causal SNPs for the disease and gives us an insight into the

importance of the innate immunity in psoriasis, it is worth noting that this is not all the

SNPs identified but those identified as potentially causal in a recent publication [99].

However it is well regarded that psoriasis is not simply a genetic disease but other

factors are involved for this disease to develop.

1.5 The IL-1 family

The IL-1 family of cytokines play an important role in immune regulation and can

control inflammation at both the receptor and nuclear level. These cytokines act on

nearly all cells and therefore all organs of the body and are the classical endogenous

pyrogens (fever inducing), which consequently leads to their role as pathogenic

mediators in many diseases [121]. IL-1 was identified when researchers were looking

for the cause of fever; it was observed in the 1940’s by Beeston and Menkin that

supernatant from rabbit neutrophils induced fever and the cause of this was shown to be

small proteins [122]. We now know these as IL-1α and IL-1β and these were identified 

in the 1970’s. These members along with IL-1 receptor antagonist (RA) and IL-18 were

identified following purification from cells, whereas other members were identified

using in silico methods from gene banks.

Some IL-1 family cytokines have potent pro-inflammatory effects which are tightly

regulated on the pre- and post-translational level which includes soluble receptors and

receptor antagonists. IL-1 family cytokines impact on all aspects of the immune

response, including polarisation and regulation of Th1, Th2 and Th17 lymphocytes as

well as mast cells, neutrophils and tissue resident cells. The pro-inflammatory IL-1
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cytokines are crucial to protect cells from infection by activation of systemic and local

responses. However if this tight regulation is disturbed at any level it can be detrimental,

as seen in septic shock [123].

There are 11 members of the IL-1 family and they were originally given the

nomenclature IL-1F1-11, however with elucidation of their functional properties, most

have been given individual IL designations [124] (See Table 1-2). All of these members

are located in a cluster on chromosome 2 suggesting they arose from a common

ancestral gene [125].
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Original

Name

Alternative

Name

Property Receptor N-terminal

cleavage

required for

activity

IL-1F1 IL-1α Agonist

Nuclear transcription

factor

IL-1RI,

IL-1RAcP

IL-1R11

No

IL-1F2 IL-1β Agonist IL-1RI,

IL-1RAcP

IL-1R11

Yes

IL-1F3 IL-1Ra Receptor antagonist IL-1RI No

IL-1F4 IL-18/IFN-γ 

inducing factor

Agonist IL-18Rα,  

IL-18Rβ

Yes

IL-1F5 IL-36Ra Receptor antagonist IL-1Rrp2/IL-36R Yes

IL-1F6 IL-36α Agonist IL-1Rrp2/IL-36R,

IL-1RAcP

Yes

IL-1F7 IL-37 Anti-inflammatory IL-18Rα ?

IL-1F8 IL-36β Agonist IL-1Rrp2/IL-36R,

IL-1RAcP

Yes

IL-1F9 IL-36γ Agonist IL-1Rrp2/IL-36R,

IL-1RAcP

Yes

IL-1F10 IL-38 Possible antagonist [126] IL-1Rrp2/IL-36R? ?

IL-1F11 IL-33 Agonist

Transcriptional repressor

ST2,

IL-1RAcP

No

Table 1-2. The IL-1 family nomenclature and associated receptors.

This includes newly designated names that relate to the functions of the cytokines [127] [128] [129] [122].

The IL-1 family can be categorised into functional sub groups based on the length of the

precursor and taking into account the members that have antagonistic properties on the
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others. One functional group includes IL-1α, IL-1β and the antagonist IL-1RA, another 

group includes IL-18 and its antagonist IL-18 binding protein (described in further detail

in 1.4.4). The third group includes IL-36α, IL-36β, IL-36γ and the antagonist IL-36RA. 

Apart from IL-1RA all of the IL-1 family members do not contain a signal peptide and

are primarily intracellular precursors. This means that release of these cytokines from

the cell has to be via a non-conventional pathway or following cell death. All IL-1

members have a conserved IL-1 domain that consists predominantly of beta strands

[118]. The receptor antagonists and binding proteins that block the activity of the pro-

inflammatory members of the IL-1 family represent potential therapeutic molecules for

diseases where dysregulation of IL-1 production occurs, such as in auto-inflammatory

disorders [119]. Unlike other cytokines, IL-1 members can control inflammation at both

the protein level and transcriptional level, both IL-1α and IL-33 have been described to 

relocate to the nucleus and act as transcription factors [122].

1.5.1 Activity and processing of the IL-1 family members

A common feature of some members of the IL-1 family is that cleavage at the N-

terminus is required in order to increase binding affinity to the receptor resulting in

increased activity (see Table 1-2).

The activation of pro-IL-1β and pro-IL-18 is dependent on cleavage by caspase-1 [129]. 

Caspase-1 is activated by the inflammasome, which is a macromolecular protein

complex present in the cytoplasm of most cells. The classical inflammasome is made up

of a cytosolic PRR which is often the NLR, the adapter molecule apoptosis-associated

speck-like protein containing a caspase activation and recruitment domain (CARD)

(ASC) domain, and caspase-1 [130]. These cytosolic PRRs that make up the

inflammasome can either be in the NLR family of receptors or pyrin and HIN domain

containing receptors [131]. There are three proposed mechanisms for activation of the

inflammasome. One is that extracellular adenosine 5'-triphosphate (ATP) stimulates the

purogenic P2X7 ATP-gated ion channel triggering a K+ efflux which is thought to cause

formation of pores by pannexin-1 delivering the specific ligand to the inflammasome

[132]. A second proposed mechanism is that DAMPs are engulfed by phagocytes which

can result in lysosomal damage and release of lysosomal enzymes, such as cathepsin B,
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which activate NOD like receptor protein 3 (NLRP3) [133]. The third mechanism is

that NLRP3 inflammasome ligands cause production of reactive oxygen species (ROS)

which will then activate the NLRP3 inflammasome [61]. The activation mechanism of

the inflammasome may differ depending on cell type as it has been shown that UV

initiates an increase in intracellular Ca2+ which activates the NLRP3 inflammasome in

keratinocytes [134].

At present four inflammasome complexes have been described that will assemble in the

presence of different stimuli which are given in brackets; NLRP1 (Anthrax lethal toxin),

NLRP3 (Cell stress), NLRC4 (Flagellin), AIM2 (double stranded DNA). The best

studied is the NLRP3 inflammasome which is known to be activated by various stimuli

including bacteria, bacterial RNA and danger associated molecular patterns (DAMPs)

[135]. It is well regarded that the processing of caspase-1 dependent IL-1 members is a

two-step process. Signal 1 is required to prime the cells and increase transcription of

pro-IL-18 or pro-IL-1β and NLRP3 expression via NF-κB, this is often due to microbial 

products such as LPS via TLR activation [136, 137]. The second signal is required to

initiate assembly of the inflammasome therefore leading to active caspase-1 and

consequently active IL-18 or IL-1β, this is often a stimulus such as ATP or a crystal 

(e.g. urate) [138, 139].

It is thought that caspase-1 may also play a role in release of mature IL-1β, either in a 

secretory lysosomal manner or by microvesicles, where the complex of mature IL-1β 

and caspase-1 causes formation of the microvesicles [140, 141]. It is thought that ATP

stimulation then results in release of the microvesicle contents [142]. This microvesicle

release has been proposed as a ‘protected’ form of release. IL-1β has a short half-life in 

plasma so when it is protected by a microvesicle it suggests it is destined for an area

away from the local inflammation [143]. IL-1β release has also been proposed to be via 

exosomes, which are small vesicles secreted from late endosomes. This is release

believed to be caspase-1 independent but dependent on NLRP3 activation [144]. Lastly,

both mature and proforms of IL-1 molecules will be released into the extracellular space

in the context of necrotic cell death. The NLRP3 inflammasome has been shown to be

present in human skin [145] as well as synovial fibroblasts [146], this suggests pro-IL-
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18 and pro-IL-1β can be activated in the areas affected by psoriatic inflammation. 

In contrast to IL-1β, which requires cleavage in order to be active IL-1α is active in its 

full length form. It is most widely accepted that IL-1α is an intracellular DAMP only 

released following necrotic cell death [147, 148]. Animal models have suggested that

both IL-1α and IL-1β are important in clearance of fungal infection [149] and the 

inflammatory response to nanoparticles [150]. This is of interest due to the fact that

these two models show both members to be important but both will activate the NLRP3

inflammasome. Recent studies have shown more clearly that activity or release of IL-1α 

may involve assembly of the inflammasome [151, 152]. Two papers in the late 1980’s

[153, 154] did suggest that IL-1α was cleaved by calpain to increase activity, and more 

recently granzyme B has been proposed [155]. Calpain has shown to be active only

during loss of plasma membrane integrity so this could be a trigger for necrotic release

of IL-1α [156]. However, the biological consequences of calpain cleavage are still 

unclear and no mechanisms of action have been confirmed. In contrast to IL-1β, IL-1α is 

present not only in the cytosol but also the nucleus. The proform of IL-1α contains a 

nuclear localisation sequence (NLS) which allows for binding of IL-1α to DNA, this 

pro-IL-1α shuttles rapidly between the cytosol and nucleus [121]. Release of pro-IL-1α 

has been shown to only occur during cell necrosis because during normal apoptosis IL-

1α remains tightly bound to chromatin [157]. Pro-IL-1α will remain in the cytosol when 

a signal such as hypoxia marks the cell for necrotic death [158]. However, it has also

been shown that even during necrotic cell death IL-1α remains in the nucleus in order to 

dampen down sterile inflammation [159]. The specific role of IL-1α in inflammation is 

still not clear, especially in human cells. This is due to the lack of information regarding

the release and activation of IL-1α. However, more recently caspase-1 has been 

implicated in this. It is well regarded that IL-1α is active in its full length form, however 

if IL-1α is cleaved by caspase-1 it may be released from the cell and this mature form 

may also be active, in a similar manner to the proposed mechanisms for release of IL-1β 

[160]. It has also been shown that caspase-1 may play a role in the secretion of various

leaderless proteins, IL-1α in its proform has been shown to be released in a caspase-1 

dependent manner [161]. Further studies will elucidate the specific role of IL-1α and its 

role as an extracellular cytokine as well as a nuclear transcription factor.



29

IL-33 has some similar properties to its family member IL-1α due to its possible 

indications as a transcription factor. However it is predominantly involved in type 2

immune responses due to its ability to activate mast cells and its capability to polarise

type 2 innate lymphocytes. It is a driver for allergic inflammatory disease such as

asthma [162], however it has also been implicated in non Th2 driven diseases such as

cardiovascular disease [163] and arthritis [164]. It has more recently been shown to

increase antimicrobial activities of the skin in Staphylococcus aureus infection [165]

and induce neutrophilic infiltration [166]. IL-33 is expressed by many stromal and

haematopoietic cell types and acts on leukocytes, in particular macrophages, mast cells

and keratinocytes [167], stromal and endothelial cells [121]. Similarly to IL-1α IL-33 is 

not cleaved into activation by caspase-1 and is active in its proform. More recently it has

been suggested that IL-33 is inactivated by caspase-1 [168]. As described with other IL-

1 members such as IL-1β, IL-33 has been shown to be cleaved into more active mature 

forms by extracellular proteases such as cathepsin G and elastase [169]. Interestingly the

IL-33 receptor, ST2 has been implicated as a plasma biomarker in the prediction of

treatment resistant graft-versus-host disease which has significant skin implications,

with increased levels indicating therapy resistance [170].

IL-37 and IL-38 are newly recognised members of the IL-1 family. IL-37 has five splice

variants, IL-37b being the most complete. An outstanding feature of IL-37 is its

structural similarity to IL-18 [171]. IL-37 has an instability sequence so the mRNA has

a limited half-life [172]. Many cell types can express IL-37, however it is highly

regulated at the transcriptional level due to the instability of its mRNA, so it requires a

signal such as TLR activation in order to induce expression [173]. It has been suggested

that caspase-1 is also involved in cleavage of IL-37 into its active form and allows for

more efficient nuclear translocation [174, 175]. Similar to IL-33 and IL-1α, IL-37 can be 

found in the nucleus where it is thought to have suppressive functions on cytokine

transcription [175]. This has been confirmed in keratinocyte cultures both with and

without a psoriatic inflammatory induced phenotype [176]. It has now emerged that IL-

37 like other IL-1 members may be a dual function cytokine with functions both at the

intracellular and extracellular level. It has been shown that IL-37 can suppress immune

response by reducing pro-inflammatory cytokine release. This is thought to be reduction



30

of DC activation on the cellular level and by interaction with kinases in inflammatory

signalling pathways on the molecular level [177]. Release of full length and mature IL-

37 has been detected in transfected human cells following activation with LPS

indicating a role for caspase-1 dependent and independent release [178]. Murine models

have suggested that IL-37 over-expression provides protection against inflammation

[179], which has indicated IL-37 as an inhibitor of adaptive immunity. Due to the

seemingly outstanding roles of IL-37 in calming inflammation, there is no doubt further

work is required to assess this cytokine as a possible therapeutic.

IL-38 is the least well defined member of the IL-1 family and was identified in silico.

Using immunohistochemistry IL-38 expression has been identified in the skin [121]. It

shares homology with IL-1RA and IL-36RA suggesting that it may have a receptor

antagonist role. As well as its homology to the receptor antagonists IL-38 also has been

shown to bind to IL-1R1, however the binding affinity is a lot lower than IL-1RA or IL-

1β. This has also been shown for the IL-36R, however the binding affinity is again a lot 

lower than IL-36RA or other IL-36 members [126]. At present these binding affinity

studies have only been shown with the full length form of the protein and in order to

increase binding affinity to the IL-36R N-terminal cleavage may be required as with

other IL-36 members (see 1.4.3 for further discussion). GWAS studies have linked IL-

38 polymorphisms to various inflammatory diseases such as ankylosing spondylitis

[180] and PsA [181], which may point to a role for IL-38 in the pathogenesis of these

diseases.

1.5.2 The IL-1 receptors and negative regulators

IL-1Rs belong to a phylogenetically conserved superfamily of proteins, which also

includes the TLR family that are involved in innate immunity and inflammation. The

majority of the IL-1 receptors are comprised of two Ig domains and a cytoplasmic

signalling domain. The conserved domain in this family is the cytoplasmic Toll/IL-1R

(TIR) domain [182], this is involved in the activation of protein kinases such as p38, c-

jun N terminal kinases (JNK), extracellular signal-related kinases (ERKs) and mitogen-

MAPKs. Downstream signalling of the cytosolic TIR domain also allows for

translocation of NF-κB into the nucleus [183]. Within this cytoplasmic TIR domain 
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there are different functional motifs, some more important than others for downstream

signalling [184]. The IL-1 receptor family contains receptors and accessory proteins

(AcP) as well as inhibitory receptors, such as SIGIRR (See Figure 1-5). The AcP

component of the IL-1 receptor is recruited on ligand binding (not RA binding), and this

is common to all IL-1 members apart from IL-18 which has its own AcP. When the

accessory protein is recruited this allows downstream signalling to occur [124, 185,

186]. IL-1R1 is widely expressed in tissues and signals through the NF-κB pathway. 

ST2 is expressed in a constitutive and inducible manner in many cell types including

stromal and haematopoietic cells. Signalling is MyD88-dependent and negative

regulation is via the soluble ST2 and soluble IL-1AcP, which forms a complex and

competes for IL-33 binding with the membrane bound signalling receptor complex

[121]. The receptors and accessory proteins and the ligands of the IL-1 family are

depicted in Figure 1-5.

Figure 1-5. A diagrammatic representation of the IL-1 receptor family.

This diagram identifies known IL-1 receptors and there known ligands as well as the proposed

downstream signalling pathways [121].
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The negative regulators within the IL-1 family are also crucially important. These

consist of the receptor antagonists, IL-1RA and IL-36RA (discussed further in 1.4.3),

which compete with IL-1α, IL-1β and IL-36α, IL-36β, IL-36γ (respectively) to bind to 

IL-1R1 and IL-36R (respectively). IL-1RA binds to IL-1R1 with greater affinity

compared to its agonists, however the IL-1RAcP is not recruited thereby preventing

downstream signalling. In addition to the soluble extracellular IL-1RA there are also

intracellular forms which are thought to be a reserve of IL-1RA which is released upon

cell death in order to dampen down the inflammatory response [121]. The IL-1 family

also has two decoy receptors, IL-1R2 and IL-18 binding protein (discussed in 1.4.4.2). A

negative regulatory receptor SIGIRR also exists as well other orphan receptors that are

thought to play a role in IL-1 signalling namely TIGIRR and IL-1RAPL2, however their

ligands and actions are still to be elucidated [187].

IL-1R2 was first described in 1999 [188] as a typical decoy receptor and more recently a

decoy receptor has been identified for IL-18 as well [189]. IL-1R2 lacks a signalling

domain (TIR) due to its small cytoplasmic domain, therefore on IL-1 binding no

downstream signalling occurs, therefore not only is it acting as a decoy receptor but also

as a ‘scavenger’ for excess IL-1. This decoy receptor is more than just a sequestering

tool for IL-1 it is an active regulator because it binds IL-1RA 100 times less than the

agonists and in a complex with IL-1RAcP it binds pro-IL-1β preventing cleavage into its 

active form [190]. However, caspase-1 will dissociate IL-1R2 from IL-1α therefore 

restoring the biological activity of IL-1α [191]. IL-1R2 is expressed on a relatively 

limited variety of cell types compared to IL-1R1, of note expression of IL-1R2 is high

on fibroblasts. Its expression is enhanced by anti-inflammatory signals such as IL-4 and

IL-13 [192]. It has been described that IL-1R2 can also be cleaved and released in a

soluble form by a disintegrin and metalloprotease 17 (ADAM17) [193], thereby acting

almost as a binding protein. It is thought that IL-1R2 may be a mechanism by which

steroids such as prednisone may be effective, patients treated orally with this showed

increased levels of IL-1R2 on monocytes and levels of IL-1R2 related to response to the

drug [194].
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SIGIRR, also known as TIR8, is unique in the IL-1R family due to its ability to inhibit

not only cytokine signals but also TLR signalling [195]. It is comprised of a single

extracellular Ig domain and a cytoplasmic TIR domain, which has two amino acid

substitutions compared to the other IL-1Rs. These structural differences in SIGIRR

suggest a potential differential signalling pathway [121]. SIGIRR is expressed in a

variety of tissues including the lung, liver, kidney, lymph tissues and digestive tract

[196], however due to the extensive expression of IL-1 this negative regulation may be

limited to these tissues that express SIGIRR. The negative regulatory role of this

receptor is due to its ability to inhibit NF-κB and JNK activation upon agonist binding to 

IL-1R or TLRs by interfering with the recruitment of TIR-containing adapter molecules

[195]. In murine models deficient in SIGIRR it has been shown that following infection

with Candida albicans or Aspergillus fumigatus mice are more prone to lung infection

and have increased mortality and fungal burden. These symptoms following fungal

infection are attributed to increased IL-1 and Th17 cytokine release [197]. The ligand

that binds to SIGIRR is a contentious issue as it is thought that the small extracellular Ig

domain prevents a ligand binding [198]. However, it has been shown that in glial cells

interaction of IL-36RA with SIGIRR attenuates the inflammatory role of IL-36 [199].

The importance of SIGIRR is demonstrated due to the fact that a deficiency is associated

with an increased risk of chronic inflammation, such as psoriasis, in murine models

[200]. This murine model indicates that SIGIRR dampens down IL-1 mediated Th17

differentiation and therefore reducing release of IL-17A [200]. SIGIRR has also been

proposed to play a role in Th2 mediated immunity, it has been shown that SIGIRR can

form a complex with ST2 upon IL-33 binding to inhibit downstream signalling [201]. It

is thought that the intracellular TIR domains of TIGIRR/IL-1RAPL are similar to that of

SIGIRR and do not induce NF-κB activation [202], suggesting they may play a similar 

negative regulatory role in inflammation.

1.5.3 IL-36, a subgroup of the IL-1 family

The IL-36 family has four members IL-36α, IL-36β, IL-36γ and IL-36RA which all bind 

to IL-36R (formerly known as IL-1Rrp2), and the accessory protein IL-1RAcP apart

from IL-36RA (see Figure 1-5) [203, 204]. IL-1RAcP is the signalling element of the
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receptor which when recruited by the IL-36R activates the NF-κB and MAPK pathways. 

This signalling element of the receptor is not recruited when the IL-36RA binds to the

IL-36R, despite its increased binding affinity, therefore no downstream signalling occurs

[185]. IL-36RA (which binds to IL-36R) acts in the same way as IL-1RA (which binds

to IL-1RI).

N-terminal truncation increases the biological activity of all members of the IL-36

family by 1000-10000 fold compared to the full length proteins. Each member of the

family requires a different truncation of the N-terminus to increase activity [128]. IL-

36RA requires only removal of the methionine to drastically increase its activity.

Whereas IL-36α (K6), IL-36β (R5) and IL-36γ (S18) require cleavage 9 amino acids 

away from the IL-1 domain conserved region (A-X-Asp – A = aliphatic amino acid, X =

any amino acid, Asp – Aspartic acid) at the N-terminus (N-terminal amino acid and the

amino acid number from N-terminus are given in brackets) [128]. However, unlike other

IL-1 family members caspase-1 is not likely to be the protease responsible for this

cleavage due to its very specific consensus sequence for cleavage, this consensus

sequence is not present around the IL-36 cleavage site [205]. This has been confirmed in

vitro where LPS/ATP stimulated macrophages with confirmed caspase-1 activity could

not cleave IL-36α [206].  

1.5.3.1 Expression and role of IL-36 cytokines

The expression patterns of these molecules are slightly different when looking at the

four family members. IL-36RA is constitutively expressed in keratinocytes whereas the

agonists often require induction. IL-36β mRNA levels have been detected in human 

synovial tissue [207] and IL-36α shown to be increased in chronic kidney disease [208]. 

IL-36γ has recently been shown to be released from keratinocytes expressing human 

papillomavirus (HPV) 11 interestingly at lower levels than normal keratinocytes [209].

In the same study on HPV11 human monocyte derived immature Langerhans cells were

shown to respond to IL-36γ by release of further pro-inflammatory cytokines [209]. IL-

36γ has also been implicated in lung pathology and is known to be expressed by lung 

epithelial cells in mice where it can induce neutrophil infiltration independently of IL-1α 

and IL-1β [210]. Interestingly this study showed that induction of inflammation was 
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present when the full length form of IL-36α was administered, however the truncated 

form or possible in vivo cleavage/activation was not analysed in this study. All of the IL-

36 cytokines are expressed in the skin and most of the work on IL-36 is focused around

psoriasis. In keratinocytes IL-36 expression is induced by TNFα, IL-17 and IL-1α [60, 

97, 211, 212]. Human lung fibroblasts produce IL-8 and CCL20 in response to IL-36γ 

[213]. IL-36β and IL-36γ have also been implicated in monocyte derived DCs (MDDCs) 

maturation with IL-36β inducing release of IL-18 and IL-12p70 along with increased 

expression of CD40 and CD80 resulting in Th1 cell activation [214]. IL-36γ has also 

been implicated in human Th1 cell lineage and subsequent Th1 type immunoactivation

by activation of T-box expressed in T cells (T-bet) [215]. T-bet is a transcription factor

involved in Th1 lineage polarisation and activation and consequent release of IFNγ 

[216, 217]. This same study also showed that IL-36γ from both myeloid cells and 

keratinocytes may promote a Th1 driven inflammation and also enhance levels of

chemokines such as CCL20, which plays a role in Th17 infiltration. This has also been

confirmed in murine models where IL-36 members have been shown to be expressed by

innate immune cells and lymphocytes. This consequently leads to increased release of

pro-inflammatory cytokines and chemokines. This role of IL-36 leads to Th1 and Th17

cell proliferation and polarisation and DC activation [218]. Interestingly it was also

noted that active forms of IL-36γ induce further release of IL-36γ from primary human 

keratinocytes [215]. This was also shown for IL-36β [212] and suggests that the IL-36 

cytokines show a similar pattern to that of IL-1, where an autocrine effect has been

indicated [219]. This work along with others indicates a pivotal role for IL-36γ in innate 

and adaptive immunity. Due to the fact that in humans IL-36 expression seems largely

limited to epithelial cells, IL-36 activity blockade could be of interest for therapy in

inflammatory skin diseases such as psoriasis.

Release of IL-36 from the cell is at present not well understood. TLR activation has

been shown to induce transcription of IL-36γ in primary human keratinocytes, however 

the TLR3 agonist polyinosinic:polycytidylic acid (Poly I:C) was the only stimulus that

allowed visualisation of IL-36γ outside the cell [211]. However, this was consequently 

shown to be due to induce caspase-3/7 and pyroptosis, programmed cell death, which

was indicated to be a caspase-1 dependent mechanism. Interestingly it was also shown
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that IL-36γ transcription is caspase-1 dependent, suggesting expression is switched on 

before the cell goes into a state of pyroptosis [211]. Release of IL-36α in bone marrow 

derived macrophages has been shown to only occur following a stimulus coupled

mechanism i.e. two stimuli such as LPS and ATP, in a similar manner to IL-1β. It was 

assumed that IL-36α did not undergo proteolytic cleavage during release due to its 

appeared similar motility on an sodium dodecyl sulphate (SDS) page gel in the

supernatant and lysate [206]. However, we now know that the mature form of IL-36α 

only requires cleavage of 5 amino acids from the N terminus and the difference would

not be detectable on an SDS page gel.

It has to be highlighted that current knowledge on IL-36 regulation is mainly based on

mRNA and the lack of protein expression data or in vivo detection of IL-36 members

suggests there is still a plethora of knowledge still to be gained regarding these elusive

IL-1 members.

1.5.3.2 The relevance of IL-36 in psoriasis

Psoriatic inflammation is complex involving many factors of the skin cytokine network.

IL-36 appears to be another important mediator as highlighted by the severe clinical

phenotype seen in patients with unleashed IL-36 activity (loss-of-function mutation in

the RA).

The recent interest in the role of IL-36 in psoriasis is due to 1) findings related to the

loss-of-function mutations [5, 111] and 2) data showing that IL-36 is highly up-

regulated in psoriatic skin [60, 97, 220]. It was shown that IL-36 expression could be

induced in human primary keratinocytes by treatment with IL-17 and this induction was

much more prominent in keratinocytes derived from psoriatic patients [60]. A multitude

of genome studies and microarrays have shown that IL-36γ frequently appears as one of 

the top 30 up-regulated genes when comparing non-lesional and lesional psoriatic skin

[221]. Most recently IL-36γ has appeared in the top 20 when comparing psoriatic skin to 

skin from cutaneous lupus erythematosus [222]. These findings were strengthened when

it was shown that mice over-expressing IL-36α developed a psoriasis-like skin 

phenotype including epidermal thickening and immune cell infiltration, this phenotype
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was worsened by a deficiency in IL-36RA [220]. This supports the view that the balance

between IL-36 agonists and antagonists plays a crucial role in psoriatic inflammation.

Of interest, mice over expressing IL-36α also showed over-expression of the psoriasis 

relevant mediators IL-17A, IL-23 and TNFα. Inhibition of IL-36R prevented psoriatic 

like changes in the skin [223]. In murine models of imiquimod induced psoriasiform

dermatitis increased IL-36 expression in DCs was noted. Mice deficient in IL-36R are

protected from developing the imiquimod induced psoriasiform dermatitis, and

accordingly mice deficient in IL-36RA had exacerbated disease [224].

IL-36 members can induce AMPs, such as HBD, expression. AMPs are highly up-

regulated in psoriasis and the IL-36 may play a role as an important amplifier [97].

Along with the induction of AMPs IL-36 has also been shown to not only be up-

regulated in response to Th17 cytokines but also induce Th17 cytokine release in

psoriatic skin lesions [212]. A study has also suggested a link between IL-36 and

rheumatoid arthritis and PsA, IL-36α was shown to be up-regulated in the synovium 

which consequently induced IL-8 and IL-6 release from the synovial fibroblasts [207,

225]. IL-36β mRNA has also been detected in synovial fibroblasts [207].  

The link between IL-36 and psoriasis has been further strengthened by the discovery of

a loss-of-function mutation in IL-36RA which consequently causes unleashed activity of

the IL-36 agonists. This mutation causes a rare, potentially life threatening form of

psoriasis termed generalised pustular psoriasis (GPP). This disease phenotype related to

the IL-36RA mutation has been given the name deficiency of IL-36 receptor antagonist

(DITRA) as a comparison to the IL-1 related disease, deficiency of IL-1 receptor

antagonist (DIRA) [5, 111, 226]. DITRA has now been identified in a variety of

populations, however the mutation is only present in a subset of GPP patients. Mutations

in IL-36RA have now also been identified in patients suffering from severe adverse drug

reactions which manifests as acute generalised exanthematous pustulosus (AGEP) [227].

This is suggestive of a role for IL-36 in a pustular phenotype of disease indicative of

neutrophil inflammation and innate immunity activation.

In light of recent publications IL-36 is evidently an important mediator in psoriasis and

PsA along with other pro-inflammatory cytokines such as IL-17, IL-22, TNFα and IL-8.  
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1.5.4 Interleukin-18

As previously mentioned IL-18 is a member of the IL-1 family. It was first described as

‘IFNγ inducing factor’ in 1989 because following intraperitoneal injection of endotoxin 

into mice IL-18 was identified in the serum. It was then first cloned in 1995 [228]. IL-18

as with other IL-1 family members contains no signal peptide, so is therefore secreted

from the cell via an unconventional pathway. IL-1β and IL-18 are similar in the fact that 

they are produced in a pro-form and are then cleaved into activity. However, pro-IL-18

is constitutively expressed in a wide range of cells, the best described being in blood

monocytes that express pro-IL-18 but not pro-IL-1β [229]. The expression pattern of IL-

18 is indeed similar to IL-1α and IL-33, all of which are present in keratinocytes and a 

large proportion of epithelial cells. However, pro-IL-18 is structurally similar to IL-37

suggesting a close association between the two [230].

1.5.4.1 Processing and function of IL-18

Cleavage of pro-IL-18 is very similar to that of IL-1β in that assembly of the NLRP3 

inflammasome is required in order to cleave pro-caspase-1 into its active form which

then consequently cleaves pro-IL-18 into its active form. As mentioned previously

assembly of the NLRP3 inflammasome requires a two-step stimulation and this often

occurs following cellular stress. In humans LPS appears to be a strong stimulus for IL-

18 production which is detectable in the peripheral blood from sepsis patients [231].

This confirms that idea that stimulation with a TLR agonist followed by a cellular stress

signal is required in order to see release of mature IL-18 [232]. Activation of the NLRP3

inflammasome in keratinocytes has also been shown to occur by Dermatophagoides

pteronyssinus (house dust mite) in a cysteine protease dependent manner, suggesting

that such allergens can be triggers for skin inflammation [233]. Following activation of

IL-18 by caspase-1 IL-18 is secreted, however up to 80% of the pro-IL-18 remains

unprocessed and intracellular. The importance of caspase-1 in activation of IL-18 has

been shown using caspase-1 deficient mice where very little circulating IFNγ is 

detectable following endotoxin challenge [234]. Conversely, in caspase-1-deficient

murine macrophages stimulated with Fas ligand biologically active IL-18 was detected

[235]. In a similar manner to IL-1α and IL-33 pro-IL-18 is also released following cell 
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death, which could be Fas signalling mediated. However it is yet to be elucidated

whether pro-IL-18 is then cleaved in the extracellular space by neutrophilic proteases

[236]. Mature active IL-18 binds to IL-18Rα with low affinity unless in the presence of 

the accessory receptor, IL-18Rβ. On binding of mature IL-18 to the IL-18Rα and IL-

18Rβ a complex is formed which allows for downstream signalling via the TIR domain 

and subsequently activates NF-κB [237]. The IL-18Rα is widely expressed on cells 

whereas the expression of IL-18Rβ is more limited and found predominantly on T cells, 

ILC1 and DCs. This limits the cell types that respond to IL-18, however cytokines such

as IL-2 can induce expression of IL-18Rβ [238]. IL-18 is also present as a membrane 

protein on around 30-40% of macrophages stimulated with macrophage colony

stimulating factor (MCSF) [239].

The main cellular source for IL-18 is activated macrophages and monocytes [240].

However, keratinocytes have also been shown to produce bioactive IL-18 in the

inflammatory state [241]. In the presence of IL-12 or IL-15 IL-18 is a potent inducer of

IFNγ and Th1 polarisation [242], the co-stimulation is required in order to up-regulate 

IL-18Rβ, as mentioned previously. IL-18 as a polariser along the Th1 and ILC1 pathway 

[243] plays a role in particular in chronic inflammatory conditions including chronic

atopic eczema, lupus erythematosus and psoriasis [244] [245].

Interestingly IL-18 can also enhance a Th2 response [246] in the appropriate

microenvironment. It can enhance IL-13 production and when combined with IL-2 it

activates T cells and NK cells [247]. Keratinocytes also respond to IL-18, following a

dual signal in order to up-regulate the receptor, by production of CXCL10 which is a

chemokine that attracts C-X-C chemokine receptor (CXCR)3 IFNγ producing T cells 

(Th1 subset) [245].

1.5.4.2 IL-18 binding protein (IL-18BP)

IL-18 is tightly regulated at the transcriptional level, the protein level by controlling

cleavage as well as at the receptor level, where IL-18BP prevents binding of IL-18. IL-

18BP was first identified when screening potential soluble receptors for IL-18 [248]. It

has now been shown that it is constitutively expressed and binds with high affinity to
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IL-18, [249] preventing binding to its receptor. In fact IL-18BP binds IL-18 at a much

higher affinity than it binds to IL-18Rα. There have been four isoforms of IL-18BP 

described in humans a, b, c and d. IL-18BPa and IL-18BPc neutralise IL-18 to >95% at

a molar excess of 2. However, IL-18BPb and IL-18BPd lack complete Ig domains on

the C-terminus so have therefore lost any neutralising capacity [250]. IL-18BP is not

categorised as a traditional soluble receptor because it does not contain the extracellular

ligand binding domain of the IL-18R. IL-37b has also been suggested to bind to IL-

18BP following which a complex is formed with IL-18Rβ preventing the formation of a 

functional receptor complex and therefore inhibiting downstream signalling. Of note,

IL-37b binds the IL-18Rα and prevents recruitment of the IL-18Rβ [171]. 

In healthy human serum IL-18BP is present at a 20 molar excess compared to IL-18

[251]. IL-18 and IL-18BP are often up-regulated together especially in the context of

inflammatory conditions. IL-18BP has been shown to be robustly induced by IFNγ in a 

diverse number of non-leukocyte cell types [252, 253]. This is in line with the concept

that on induction of pro-inflammatory molecules, the antagonist is also up-regulated to

control inflammation. In disorders such as familial hemophagocytosis IFNγ is unable to 

up-regulate IL-18BP therefore the activity of IL-18 is uncontrolled [254]. It is thought

that the imbalance between IL-18 and IL-18BP may play a role in the pathogenesis of

IFNγ or IL-18 mediated diseases. In systemic lupus erythematosus IL-18 and IL-18BP 

are hugely increased over healthy controls, however IL-18BP is not sufficiently up-

regulated to neutralise IL-18 effectively [255]. This insufficient up-regulation in IL-

18BP in the plasma has also been shown for patients suffering from chronic liver disease

[256]. Over-expression of IL-18BP in murine models has also been shown to suppress

antigen presentation cells (APC)-derived Th17 polarising cytokines, suggesting that if

IL-18BP was used as a possible therapeutic it may have effects on not only Th1 derived

cytokines but Th17 derived cytokines [257]. IL-18BP has been trialled (Phase I) as a

subcutaneous therapeutic in patients suffering from RA and psoriasis vulgaris, the drug

was well tolerated and it was shown that the drug displayed dose dependent

pharmacokinetics [258].
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1.5.4.2.1 Utilisation of IL-18BP by viruses

Some viruses have developed a strategy to avoid immune surveillance by either up-

regulating host IL-18BP or producing their own homologue. This allows the virus to

prevent IL-18 mediated immune responses. Poxviruses produce a homologue of IL-

18BP which shares 20-40% amino acid sequence with the human IL-18BP [259].

Interestingly, this is thought to have been acquired from the host and then modified by

natural selection. Molluscum contagiosum virus has an IL-18BP homologue that

contains a long C-terminal tail which has been shown to provide increased binding

properties [260]. Furthermore, specific human papillomavirus (HPV) proteins have been

shown to up-regulate the endogenous form of IL-18BP in the host which may support

viral immune evasion [261].

1.6 Interleukin-27

IL-27 is a heterodimeric cytokine and member of the IL-12 family which was first

described as a cytokine thought to act on T cells [262]. Since the discovery of IL-27

many studies have tried to fully elucidate its functional roles within the immune system

and both pro-inflammatory and anti-inflammatory roles have been highlighted. However

many roles of this cytokine still remain enigmatic [263]. IL-27 is comprised of two

subunits, p28 and Epstein-Barr virus-induced 3 (EBI3) (see Figure 1-6). The IL-27

subunits also have other binding partners which consequently form different cytokines,

such as IL-12 and IL-35. Due to the weak binding of the subunits it is thought they may

act independently as natural antagonists of the heterodimeric IL-27 [264]. IL-27 is

produced by APCs early in the immune response and increases sensitivity of target cells

to IL-12 [265].
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Figure 1-6. Diagrammatic representation of the IL-12 family of cytokines and receptors.

This demonstrates the significant homology of IL-27 with other IL-12 family members. EBI3 is shared

with IL-35 and p28 is shared with cytokine like factor-1 (CLF-1) and may also signal on its own. The IL-

27 receptor complex also has homology with the other IL-12 family receptors, sharing glycoprotein 130

(gp130) with the IL-35 receptor and 2 receptor subunits with CLF-1 [266]. Of note, the IL-6R also

contains a gp130 subunit [267].

1.6.1 IL-27 receptor and signalling

The IL-27 receptor is a heterodimeric receptor comprised of WSX-1/IL-27RA and

gp130 (see Figure 1-6). WSX-1/IL-27RA contains a cytoplasmic domain which contains

box 1 binding motifs for janus kinase (JAK)1/2 which contributes to the downstream

signalling of the WSX-1/gp130 complex [268]. Downstream signalling of IL-27 leads to

activation of both STAT1 and 3 pathways [269]. A STAT3-responsive molecule,

suppressor of cytokine signalling (SOCS) 3, has been shown to inhibit STAT3

signalling by binding directly to the gp130 receptor chain preventing JAK

phosphorylation [270]. SOCS3 also cross-regulates STAT1 activation. Interestingly

keratinocytes fail to up-regulate SOCS3 efficiently when compared to autologous

macrophages and as a consequence fail to regulate/stop the production of pro-

inflammatory cytokines such as CXCL10 in the context of repeated stimulation with IL-
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27 [271]. The two receptor subunits of IL-27 are differentially expressed in tissues as

with many heterodimeric receptors. Gp130 is expressed relatively widely whereas

WSX-1 is expressed predominately on immune cells such as B and T cells [272]. A

soluble WSX-1/IL-27RA has also been identified released from a range of cell lines and

primary cells, metalloproteases have been implicated in production of this soluble

receptor [273].

1.6.2 Pro-inflammatory roles of IL-27

IL-27 was initially described to provide a rapid clonal differentiation and expansion of

Th1 cells, consequently causing production of IFNγ [262, 274]. Antigen-stimulated 

WSX-1-deficient cells have significantly reduced IFNγ levels, suggesting a role of IL-27 

in increasing responsiveness of T cells to IL-12 leading to increased Th1 polarisation

[262]. WSX-1 deficient mice with proteoglycan-induced arthritis had delayed onset of

disease and reduced severity, this was associated with fewer Th1 and Th17 cells [275].

However, the role of IL-27 in arthritis is not entirely clear as local addition of IL-27 into

the joints of mice with collagen induced arthritis show disease amelioration [276].

With regard to human pathologies, in the serum of psoriatic patients IL-27 is

significantly higher compared to healthy controls. IL-27-secreting cells were identified

in the dermal layer of psoriatic lesions and these cells were not present in healthy

controls or atopic dermatitis lesions, suggesting that IL-27 may be involved in the

development of psoriatic lesions [277]. However, further studies have also shown that

IL-27 is expressed in chronic eczematous skin lesions. IL-27 can prime keratinocytes to

be more responsive to pro-inflammatory signals [278]. Increased serum levels of IL-27

have also been identified in patients suffering from ankylosing spondylitis which was

indicated to correlate with disease severity [279]. Monocytes, mast cells [272, 280],

primary human keratinocytes, fibroblasts and human antigen presenting cells all react to

IL-27 [59, 278]. In inflammatory dendritic epidermal cells (IDECs) and keratinocytes,

IL-27 acts as a priming signal for IL-23 and CXCL10 production respectively. This

effect is specific to IL-27 and was not shown for any other IL-12 family members [281].
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1.6.3 Anti-inflammatory roles of IL-27

As previously discussed it has been suggested that IL-27 plays a pro-inflammatory role

in initiation or early stages of inflammation, however in the later stages of inflammation

a more anti-inflammatory role has been proposed. This suggests that IL-27 may be an

important mediator in the prevention of chronicity of inflammation. The suggestion that

IL-27 played a role in Th1 differentiation was shattered, at least in murine models, when

it was shown that WSX-1 knockout mice only had a reduction in IFNγ briefly following 

infection with Leishmania major, subsequently which normal IFNγ levels were detected 

[282]. However, these mice did develop organ damage thought to be due to exacerbated

action of T cells, possibly indicating a role for IL-27 as an anti-inflammatory mediator.

Mice deficient in WSX-1 infected with Toxoplasma gondii are still capable of mounting

a sufficient inflammatory response but the inflammation is not resolved and

consequently developed a lethal T cell mediated inflammation [283]. The ability of IL-

27 to dampen down wide ranging inflammation opened up questions as to the

mechanisms involved. It has been shown that IL-27 can antagonise the activity of IL-2

and has also been shown to reduce the expression of both Gata3 and RORγt, which may 

explain its role in dampening down T cell mediated inflammation [284]. Another anti-

inflammatory role of recombinant IL-27 has been shown by its ability to reduce ROS

released from activated macrophages and neutrophils [285].

A number of the regulatory roles of IL-27 have been attributed to the up-regulation of

IL-10. It is thought that IL-27 acts on all T helper subtypes to enhance IL-10 production

[286-288]. This was initially shown in 2007 using murine models and has now been

attributed to human IL-27 as well in the context of visceral Leishmaniasis [289]. During

respiratory viral infections, such as influenza CD8+ T cells respond to IL-27 with

increased expression of IL-10. However memory CD8+ T cells in the same viral

infection lose the gp130 receptor which consequently deems them unable to respond to

IL-27 on repeat infection [290] [291]. Interestingly, patients suffering from multiple

sclerosis (MS) are often treated with IFNβ and it has been shown that this causes 

increases in IL-10 and a decrease in IL-23 and IL-1β. It is thought that response to IFNβ 

therapy in MS is mediated by IL-27 because responders to therapy show significantly
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more IL-27 release from PBMCs compared to non-responders. This is supported by

murine models of experimental autoimmune encephalomyelitis where treating with

IFNβ increased IL-27 and attenuated signs of disease [292]. In vitro experiments have

shown that stimulation of fibroblast-like synoviocytes derived from rheumatoid arthritis

patients with IL-27 showed a significant reduction in release of pro-inflammatory

mediators such as IL-6 and CCL20 [293]. Of note, many of the studies looking at the

anti-inflammatory or regulatory roles of IL-27 are in mice therefore the role of IL-27 in

humans remains to be fully accounted for. However, a recent publication in human

PBMCs have indicated a complex mechanism between IL-27 and IL-17A, where the

inflammatory state may determine responses and the actions between the two are by no

means unidirectional. This implies a possible anti-inflammatory role in surrounding

resting cells to prevent over-activation but also boosting inflammatory responses by

their reciprocal actions [294]. This current finding is of interest in IL-17A mediated

diseases such as psoriasis.

1.7 Proteolytic cleavage of inflammatory mediators in the skin

It is well known that both IL-1β and IL-18 require cleavage in order to gain biological 

activity as described previously. However, proteolytic cleavage is not just limited to that

of the IL-1 family members but extends to other cytokines such as IL-6, IL-2 and TNFα 

and chemokines as well as cytokine receptors. This proteolytic cleavage may be

intracellular such as via the inflammasome, or by a protease present in the extracellular

space. Proteolytic cleavage discussed in this section will be inflammasome independent

as cleavage dependant on the inflammasome has been discussed in 1.4.1.

1.7.1 Proteases in the skin

On the basis of the catalytic domain proteases are grouped as follows; aspartate,

cysteine, glutamate, metallo-, serine and threonine with the prime aim to break peptide

bonds. The prominent proteases present in the skin compartment are metallo-, serine,

cysteine and aspartic proteases [295]. Of note, aminopeptidases are also likely to be

present in the skin due to their widespread expression. Aminopeptidases are often

membrane bound and will remove a single amino acid from the N-terminus. The most
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well studied of these is aminopeptidase N (AMN) or CD13 which is Zn2+ dependent

ectopeptidase [296]. Within the skin compartment serine proteases appear to play a role

in barrier homeostasis. Proteases will also be present in the skin as fungal or bacterial

derivatives as well as proteases produced by infiltrating immune cells such as

polymorphonuclear (PMN) cells. Proteases themselves require cleavage to gain activity

often by removal of an N-terminal amino acid which then initiates a downstream

cascade of activation and is important to prevent constant activation of inflammatory

mediators [295]. The balance of proteases and protease inhibitors is crucial in

maintaining healthy skin homeostasis and there are also many protease inhibitors

expressed in the skin that have wide ranging inhibition often to a specific catalytic

domain protease. This is evident in the rare genetic disorder, Netherton syndrome which

leads to widespread break down of the epidermal barrier. It is caused by mutations in the

serine protease inhibitor Kazal-type 5 (SPINK5) gene [297]. There are now an

increasing number of disease states especially within the skin that are being attributed to

the imbalance of protease and protease inhibitor.

1.7.1.1 Metalloproteinases in the skin

Metalloproteinases are proteases whose catalytic activity is dependent on the presence

of a metal ion. Matrix metalloproteinases (MMPs) are Zn2+ dependent and are important

in remodelling of tissue by cleavage of collagens. MMPs expressed in mammals

primarily cleave specific collagens as well as some growth factors. Aberrant expression

of MMPs has been attributed to many disease states where tissue degradation is present

such as arthritis and psoriasis [298]. ADAMs are a family of metalloproteinases of

which ADAM10 and ADAM17 are expressed in the skin. This family of proteases are

important in the cleavage of receptors from the plasma membrane to produce soluble

receptors [299] which are crucial in the control of inflammation. Loss of function of

ADAM17 causes chronic inflammation [295].

1.7.1.2 Cysteine and aspartic proteases in the skin

Cysteine proteases can be classed into two categories in mammals based on the

structural organisation of the active site, one group being related to papains and one
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which includes the caspases and legumains [300]. It is thought that these cysteine and

aspartic proteases in the skin are essential for desquamation and thereby are important in

the maintenance of the skin barrier.

Cysteine-dependent aspartate-directed proteases (caspases) are a family of 14

endoproteases that rely on a catalytic cysteine residue in the caspase active site and only

cleave after aspartic amino acids in the substrate [301]. Caspases are widely expressed

and as discussed previously caspase-1 plays a crucial role in intracellular cleavage of IL-

18 and IL-1β. An important epidermal enzyme is caspase-14 which is required for the 

breakdown of filaggrin into natural moisturising factors in order to maintain barrier

homeostasis [302] [303]. Like other caspases it is produced in a pro-form and thought to

be cleaved into activation by a serine protease with elastase-like properties in the

cornified layer of the epidermis [304]. Another cysteine protease expressed in the skin is

cathepsin C which is a lysosomal protease in the papain family. Mutations in the

cathepsin C gene are responsible for two genetic disorders, Papillon-Lefevre [305] and

Haim-Munk [306], both of which have clinical phenotypes that indicate a role for

cathepsin C in the organisation of the epidermis and barrier function. However,

cathepsin C deficient mice do not display the phenotype of the human disease but do

have deficiencies in processing and activation of granzyme A and B which are essential

for T cell mediated killing [307].

Cathepsin D is an aspartic protease and is the most abundant protease in the

endolysosomes. It is active at the pH of healthy skin, around 5.5. Cathepsin D is thought

to be crucial in the final stages of desquamation [308] and therefore deficiency of

cathepsin D results in down-regulation of the proteins such as involucrin. Clinically this

produces symptoms such as dry skin with hyperkeratosis [309].

1.7.1.3 Serine proteases in the skin

Serine proteases are large family of proteases that use a catalytic triad in the substrate

binding pocket (Ser, His, Asp). It is thought that as with the cysteine and aspartic

proteases, the serine proteases produced by keratinocytes are important in terminal

differentiation and desquamation of keratinocytes therefore maintaining barrier
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homeostasis. Serine proteases can be divided in to three distinct groups; trypsin-like

enzymes (cleaves C-terminally at Arg or Lys), chymotrypic enzymes (cleaves after

aromatic or bulky hydrophobic amino acids) and elastase-like enzymes (cleaves after

small or medium non-polar amino acids) [300].

Matriptase and prostasin are important serine proteases produced by keratinocytes in the

interphase between the stratum granulosum and stratum corneum. These proteases are

transmembrane anchored proteases that crucially cleave profilaggrin in to its active form

[310]. This is an extremely important protein in barrier homeostasis and mutations in the

filaggrin gene have been linked to atopic dermatitis and asthma, possibly due to the

disturbed barrier allowing penetration of allergens as well as infectious agents [311].

Matriptase is thought to be activated by exposure to acidic pH in the skin and this in turn

may activate prostasin [312]. However, activation of these proteases is tightly controlled

due to the complex mechanism by which activation occurs, therefore a small window is

present where they are both active and have the ability to cleave the substrate [313]. The

importance of these proteases is not just limited to activation of filaggrin but it has also

been proposed that matriptase may activate the largest family of serine proteases in the

skin, kallikrein-related proteases [314], suggestive of a role for these proteases in

mediation of inflammatory skin diseases.

Kallikrein-related proteases (KLKs) are tryptic or chymotryptic serine proteases. These

proteases are produced by keratinocytes in the stratum granulosum where they are

released from lamellar bodies [300]. At present eight members have been described in

healthy skin, the most important described as KLK5, KLK7, KLK8 and KLK14 in skin

homeostasis. KLK 5 and KLK7 have been isolated in an active form in the stratum

corneum and KLK14 has been predominantly identified in the sweat glands [315]. The

specific functions of the KLKs in the skin remains to be fully elucidated, however with

the use of murine models and in vitro studies some light has been shed on their possible

roles in the skin. Kallikreins have been shown to cleave corneodesmosomes, which as

with other proteases produced by keratinocytes suggests crucial involvement in

desquamation and barrier homeostasis [316]. There has also been suggested roles in

regulating antimicrobial activity in the skin [317] which may contribute to the
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pathogenesis of rosacea [318]. KLK5 and KLK14 have been shown to cleave and

consequently activate protease-activated receptor 2 (PAR-2) [319]. These receptors are

involved in maintenance of the barrier, however they also play a role in inflammation,

pruritis and scar formation [315]. KLK7 over-expression in murine models displays an

itchy, hyperproliferative, inflamed phenotype with reduced barrier integrity [320]. This

suggests that KLK7 may be involved in the pathogenesis of skin diseases that develop

this phenotype such as atopic dermatitis. The only kallikrein knockout mouse that has

been published is KLK8. This murine model has apparently normal skin apart from

when inflammation is induced using UV light and resolution of inflammation is delayed

[321]. Due to the unique environment of the skin and the necessity for control of

desquamation, the activity of KLKs are pH and water dependent [322].

Apart from the serine proteases produced by keratinocytes, those produced by

infiltrating cells also contribute to inflammatory pathologies. The serine proteases

produced by these cells may play an important role in the pathogenesis of inflammatory

disorders. The serine proteases produced by neutrophils are present in the azurophils

and are thought to be responsible for intracellular degradation of microorganisms [323].

These proteases also have action in the extracellular space and it is thought that

avoidance of the numerous circulating serine proteases inhibitors may be via the serine

proteases remaining on the cell membrane but maintaining activity [324].

Three structurally similar serine proteases are present in neutrophils; cathepsin G (CG),

proteinase 3 (PR3) and neutrophil elastase (E). Murine models deficient in these specific

proteases has indicated an important role in bacterial clearance [325]. It is also worth

noting that a fourth serine protease is also present in neutrophil granules, neutrophil

serine protease 4 (NSP4). This protease shares <40% structural homology with the other

neutrophil serine proteases and is unique in that it has a preference for cleavage with an

Arg at the P1 position [326]. However, mice deficient in NSP4 show no changes in

phenotype that seems of clinical relevance [327]. Neutrophil serine proteases require

processing for enzymatic activity, in a murine model cathepsin C, which is a lysosomal

cysteine protease, has been identified for processing and activation of PMN proteases

[328]. C-terminal cleavage is also required for normal trafficking within the cell [329].
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1.7.2 Inactivation of inflammatory mediators by proteolytic cleavage

As previously described proteases are prevalent in the skin and provide important

extracellular proteolytic activities especially at the sites of inflammation. TNFα was the 

first pro-inflammatory cytokine to be identified as rapidly inactivated following

incubation with activated PMNs [330] and also recombinant E and CG. The cleavage of

TNFα into at least two fragments results in loss of cytotoxic activity [331]. This has also 

been shown for the inflammatory cytokine IL-6 at the sites of inflammation.

Recombinant PMN serine proteases cleave IL-6 at different sites; however, all lead to

inactivation. IL-6 is known to activate neutrophils so cleavage may be a way to provide

negative regulation [332, 333]. IL-2, the potent T cell activator has also been shown to

be susceptible to cleavage by E and these cleaved products actually have a negative

regulatory role in preventing the pro-adhesive properties of IL-2 thereby preventing

further immune cell infiltration [334]. Chemokines including CXCL12 and CCL3 have

also been shown to be cleaved by serine proteases released by neutrophils and

recombinant E, CG and PR3 resulting in loss of chemotactic activity [335, 336].

Another important modulatory role of proteases within the skin is the shedding of

cytokine receptors. Membrane bound metalloproteases as well as PMN serine proteases

have been implicated in this role. PMN serine proteases cleave the IL-2 receptor, TNF

and IL-6 receptor (IL-6R) close to the plasma membrane and form soluble receptors

[337]. However, ADAM17 is the predominate sheddase that cleaves both TNF receptor

(TNFR) I and TNFRII as well the IL-6R and IL-15R. ADAM10 also cleaves IL-6R, and

both ADAM10 and ADAM17 are involved in cleavage of adhesion molecules to alters

cellular adhesion and consequently cellular infiltration [338, 339]. This not only

provides soluble receptors to act as decoys but is also important in regulation of cell

adhesion controlling cellular infiltration into inflamed areas.

1.7.3 Activation of inflammatory mediators by proteolytic cleavage

Pro-inflammatory cytokines often require cleavage before activation occurs. Proteases

released from immune cells only present in inflammation are common mechanisms by

which pro-inflammatory cytokines are activated. However, other proteases present in the
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skin may also play a crucial role in the cleavage of cytokines into bioactive forms. As

previously discussed IL-1β is cleaved in to activity by caspase-1 within the cell. 

However if pro-IL-1β is present in the extracellular space due to cell necrosis alternative 

cleavage of IL-1β can occur to enable activity. This has been confirmed by turpentine-

induced inflammation in murine models; those deficient in IL-1β were protected from 

inflammation whereas those deficient in caspase-1 were not [340, 341]. Serine proteases

released from neutrophils can cleave IL-1β into its active form, specifically PR3 [342]. 

This is not the same cleavage site as caspase-1 but between the valine-arginine adjacent

to this caspase-1 site [337]. However, MMPs have also been shown to cleave pro-IL-1β 

such as stromelysin 1 and gelatinases A and B [343]. There has also been some

suggestion that PR3 released from neutrophils can cleave pro-IL-18, however it has not

been confirmed as to whether this cleavage produces the bioactive product [236] [344].

Chemokines are crucial in the inflammatory response and enable infiltration of immune

cells to the site of inflammation. Chemokines however often require cleavage. CXCL8

or IL-8 is a potent chemokine that attracts neutrophils. IL-8 is cleaved to increase its

chemotactic functions by PR3 [345]. This is a protease produced predominantly by

neutrophils suggesting that on infiltration of neutrophils release of proteases encourages

further infiltration. There are various isoforms of IL-8, clustering into 3 main categories

one of which has no chemotactic ability while the other 2 have significant biological

activity. This needs to be taken into account when assessing levels of IL-8 and the

balance between active and inactive forms following cleavage [346]. CG cleaves

CXCL5 into activation to increase its neutrophil chemotactic ability [347]. The

chemotactic ability of CCL15 (MIP3δ) to attract monocytes can be increased 1000 times 

following N-terminal cleavage by CG [348].

TNF is produced as a pro-form that is membrane bound and is proteolytically released

from the membrane. A metalloprotease was identified that cleaves TNF into its active

from and this was named TNF-converting enzyme (TACE) [349], which is now known

as ADAM17. This has been confirmed by using murine models which express an

inactive form of ADAM17. T cells from these mice have significantly reduced TNF

levels. [350]. As well as ADAM17 it has also been shown that PR3 can cleave TNF
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into its active form [351]. Interestingly the two other prominent serine proteases

released from neutrophils, E and CG, have been shown to inactivate mature TNF [352].

The cleavage sites of PR3 and ADAM17 in order to activate TNF are not identical. PR3

cleaves between a valine-arginine in the immediate vicinity to the site of ADAM17

[337].

1.8 RNA aptamers

RNA aptamers are single stranded oligonucleotides selected in vitro to bind a target with

high specificity and affinity. Single stranded RNA is conformationally very flexible and

can adopt a range of 3-dimensional (3-D) structures, some of which will bind to the

target. Of note, ssDNA aptamers can also be generated and are being developed in

parallel with RNA aptamers. RNA aptamers can function in a similar way to antibodies

and small molecule inhibitors that are currently used in therapy. However, in

comparison to antibodies they provide a non-immunogenic alternative and have

advantages due to their small size and also their ability to target epitopes that antibodies

cannot. The structural flexibility of aptamers also means that RNA aptamers can often

bind epitopes that are hidden from antibody targeting. Due to these unique features of

RNA aptamers they present as interesting potential therapeutics [353]. RNA aptamers

are also being developed to act as delivery systems that can be loaded with toxins,

enzymes and chemotherapy agents to target specific cells [354]. Fusion of siRNA and

shRNA with RNA aptamers has been shown to effectively deliver these interfering

RNAs to specific cells [355].

1.8.1 Production of RNA aptamers

RNA aptamers are traditionally generated through the use of systemic evolution of

ligands by exponential enrichment (SELEX). This can either be performed in vitro or

using whole cells, such as cancer cells which may provide an array of cellular targets for

establishing healthy cell from cancerous cell (Cell-SELEX) [356]. In vitro SELEX is

performed using a library of RNA molecules which is then incubated with the receptor

or ligand of interest. This is heated and cooled to encourage formation of stable

structures, followed by washing to remove unbound molecules. The RNA structures that
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bound to the target are eluted and incubated with a control sample, this provides

negative selection. The molecules that bound in the positive round and did not bind in

the negative round are then isolated, reverse transcribed and then amplified using

polymerase chain reaction (PCR) and then the process is repeated until the pool of RNA

molecules are specific for the required target. This pool is then cloned and sequenced to

obtain the individual sequences (see Figure 1-7). Due to the in vitro nature of this

process it can be altered depending on the properties required for the end product, such

as different temperatures and different forms of negative selection, which can be

repeated more than once [357]. Cell-SELEX is performed in a similar manner, for

example using live cancer cells for the positive selection round and healthy cells for the

negative selection. The library of single stranded oligonucleotide segments incubated

with the cells can be fluorescently labelled, allowing the whole process to be monitored

using flow cytometry [356].
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Figure 1-7. Summary of the SELEX process.

Steps 1 – 4 are performed before the cycle is repeated until a few RNA molecules are bound with high

specificity and affinity. These are then cloned and sequenced and then chemical modification can be

performed on the specific RNA molecules [358].

This method is undoubtedly faster than producing monoclonal antibodies and more

specific due to the multiple rounds of selection and screening. However, RNA

molecules are inherently unstable, so without chemical modification these molecules

would be of no use as a therapeutic or research tool [359]. Chemical modification such

modifying the 2’OH position of the ribose of pyrimidines to incorporate a fluorine

reduces RNase degradation and maintains hair-pin loops and single stranded structures

that are thought to be important for the binding of the aptamer to its target. Other

common modifications used are the addition of O-methyl or amino group to the 2’

position of the ribose [360]. However, fluorine is the most common modification due to

its small size compared to the other chemical modifications available. These chemical

modifications have been shown to allow stability of aptamers for 2 hours in human

serum [361]. These chemical modifications also increase thermodynamic stability

therefore maintaining structure of the RNA molecule. Aptamers can also be easily

labelled with fluorophores in order to track the aptamers, this has been utilised in an

experimental setting however it can also be used in diagnostics to identify diseased cells
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[357]. Aptamers can also be used as a diagnostic due to the binding affinity of RNA

aptamers, detecting cancerous cells at extremely low levels [357].

1.8.2 Potential clinical use of RNA aptamers

The use of aptamers as therapeutics is relatively novel and aptamers have shown

promising results so far. A number of aptamers are in pre-clinical trials and at least nine

aptamers are in various stages of clinical testing [362]. Apart from the above mentioned,

another advantage of aptamers over antibodies is their small size which allows increased

transport and tissue penetration. However aptamers are not likely to be utilised as a

systemic therapy so antibodies will be advantageous when systemic therapy is required

[353]. Small molecule inhibitors which are increasing in popularity especially for

treatment of inflammatory diseases are a similar size to aptamers and therefore the

systemic clearance will be comparable. However, aptamers have the advantage of being

potentially more specific avoiding off target side effects [363]. The majority of aptamers

that have been produced as a potential therapeutics bind a target to modulate

downstream signalling, they are most commonly used as neutralisers rather than

stimulators. This typically occurs by the binding of the target and preventing structural

changes that are required for downstream signalling [364] or prevent binding to the

receptor [365]. However, a few aptamers have been produced as agonists, namely

aptamers against the extracellular domain of the EGFR [366] and isoleucyl tRNA

synthetase [367].

RNA aptamers have been produced most commonly as a cancer therapeutic. Aptamers

produced using Cell-SELEX can provide a tool to distinguish between healthy and

cancerous cells [368]. This is essential for cancer therapy due to the need to reduce

healthy tissue death and side effects. RNA aptamers have been produced to target

various aspects of the disease including adhesion molecules such as E-selectin which

prevents metastases [369]. Modulation of the immune system has also been targeted

including cytotoxic T-cell antigen 4 (CTLA-4) [370]. An aptamer has been produced

against CXCL12, which is involved in aiding tumour metastases and angiogenesis

[371]. Immunological targeting by aptamers has also been demonstrated as an

alternative to antibody neutralising therapy, prevention of pro-inflammatory cytokines
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binding to the receptor is an invaluable tool to control dysregulated immune responses.

Pro-inflammatory cytokines such as IL-17A have been targeted for aptamer therapy

which is prominent in many inflammatory diseases such as psoriasis [365].

1.8.3 Potential mechanisms of internalisation of oligonucleotides

In order for RNA aptamers to function inside the cell, targeting signalling pathways or

nuclear proteins directly, aptamers need to cross the cell membrane. This would either

have to be achieved using chemical introduction into the cells or by utilising

physiological mechanisms. If an aptamer was to be used therapeutically then it would be

preferable to utilise cellular mechanisms without the need for chemical treatment of the

cells which could damage the cell membrane and may cause unwanted immune

responses. A DNA aptamer, AS1411, has been described as an effective anti-neoplastic

aptamer which targets nucleolin, which is often over-expressed in cancer cells and

binding of the aptamer consequently interferes with DNA replication and leads to cell

death [372]. In contrast to initial studies it has now been shown that this DNA aptamer

is in fact internalised by healthy cells and cancer cells rather than cancer cells alone.

However in cancer cells the aptamer is thought to be taken up by macropinocytosis and

in healthy cells it is thought that the uptake is via an alternative mechanisms which may

lead to lysosomal degradation [373]. Interestingly the AS1411 uptake mechanism

appears to play a role in the efficacy of the aptamer, with the aptamer only having an

effect in cancer cells [373]. Macropinosomes have been shown to be leaky, therefore

possibly allowing delivery of the aptamer in to the cell.

Another mechanism that has been suggested for aptamer uptake is via specific receptors.

The uptake of AS1411 was shown in a fibroblastic cell line, however plasmid DNA

uptake has also been identified in human primary keratinocytes. This uptake was shown

to be receptor-dependent and indicated a possible role for DNA-binding proteins. It was

shown that ezrin and moesin, which are DNA-binding membrane-cytoskeleton proteins,

are involved in the uptake and trafficking of DNA however, the specific transmembrane

DNA receptor is yet to elucidated [374]. Receptor mediated uptake has also been shown

utilising the IL-6R, the RNA aptamer specific to this receptor could carry cargo (toxins

or siRNA) 10x its molecular weight and deliver this into the cell [375]. Therefore
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possible mechanisms by which aptamer uptake in to cells occurs has been shown to be

via both macropinocytosis [373] and receptor-dependent [374, 375]. These mechanisms

deliver the oligonucleotide molecules into the cells in a form by which they still

maintain neutralising effects. However, mechanisms have also been suggested by which

uptake occurs and the oligonucleotides internalised are targeted for degradation and are

therefore not functional [373].

More extensive research has been performed in the delivery of siRNA into cells and

various mechanisms are utilised to increase efficacy. It is thought that siRNA is

internalised predominantly via endocytotic mechanisms, and delivery mechanisms can

be improved by association with other molecules such as aptamers or antibodies that

target a specific ligand to initiate receptor-dependent endocytosis [376]. An important

feature of delivering siRNA into the cell via endocytosis is the endosomal escape to

avoid degradation and enter the cytosol to enable their silencing effects [377]. This is

often overcome by promoting fusion with the endosomal membrane or causing

disruption of the membrane and this would be important in the formulation of siRNA to

ensure escape of endosomal degradation [377]. However, as with the aptamers

macropinocytosis has also been described as an effective delivery mechanism for siRNA

[378].

1.8.4 The challenges of using RNA aptamers for therapeutics

Following the development of the aptamer technology it took 15 years for an RNA

aptamer to be available on the market as a therapeutic. Currently there is only one food

and drug administration (FDA) approved therapeutic aptamer on the market, Macugen®

(Pegaptanib) which is in use for treatment of age-related macular degeneration as well a

diabetic retinal disease [379]. There are many challenges that present when establishing

oligonucleotide therapy. Aptamers have been administered intravenously,

subcutaneously and intravitreally. However nuclease degradation, renal clearance and

rapid biodistribition need to be overcome [380]. Nuclease degradation is overcome by

the chemical modifications made to oligonucleotides either before or after SELEX.

Following SELEX further modifications can be made including capping of

oligonucleotide termini protecting from exonuclease activity. Protection from nucleases
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can also be achieved by the use of Spiegelmers. This is the replacement of the D-ribose

with an L-ribose which yields unnatural L-nucleotides [381, 382]. Renal clearance of

aptamers has been overcome by the addition of high molecular weight polyethylene

glycol (PEG). This is a commonly used strategy for therapeutics and has been shown to

slow renal clearance and increase half-life therefore increasing bioavailability [383].

Toxicity of aptamer therapy has not been extensively studied however in trials

Macugen® and AS1411 have shown minimal toxicity [380]. The immune response to

oligonucleotides has been studied in relation to the activation of TLRs, which are known

to respond to both RNA and DNA and produce an IFN type immune response. However

this response is primarily following sensing of extensive regions of double stranded

RNA or DNA [384]. This would have to be a consideration when assessing an aptamer

for therapeutic use.

1.9 Interleukin-17

In 2005 it was demonstrated that with regard to Th cells, there were more than the three

lineages, Th1, Th2 and T reg. This new lineage was described to produce IL-17 and

consequently this new subset of Th cells was named Th17 [89, 385]. IL-17A was first

cloned and described in 1993 and was previously known as CTLA8 [386]. IL-17A and

IL-17F are the best characterised of the IL-17 family and are the only members known

to be produced by Th17 cells. However, genomic sequencing has also identified IL-17B,

IL-17C, IL-17D and IL-17E (also known as IL-25) [387]. All of these are covalent

homodimers although a heterodimer of IL-17A and IL-17F has also been described

[388] (see Figure 1-8). There are diverse cellular sources and expression of the IL-17

family members which all are thought to have pro-inflammatory roles [389].

1.9.1 IL-17 receptors and signalling pathways

The IL-17 receptor family comprises of five distinct subunits, IL-17RA-IL-17RE (see

Figure 1-8). All of these subunits contain a single transmembrane protein domain, with a

conserved extracellular fibronectin III-like domain and a cytoplasmic SEF/IL-17R

(SEFIR) domain. It is still to be fully elucidated how these receptor subunits form a

functional receptor [387].
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Figure 1-8. Diagrammatic representation of the IL-17 receptor subunits and the pairings formed to

produce functional receptors.

IL-17RA-IL-17RC has three known ligands whereas IL-17RB-IL-17RA and IL-17RE have only one

know ligand. IL-17RD-IL-17RA and IL-17RD have no known ligands. Downstream signalling pathways

have been established for IL-17RA, IL-17RD-IL-17RA, IL17RB and IL-17RD.

IL-17RA is the largest IL-17R complex [390] and was initially identified as the receptor

for IL-17A. It has now been shown to bind IL-17F and the heterodimer of IL-17A and

IL-17F. Initial studies with human IL-17 suggested that binding of IL-17A to IL-17RA

was not sufficient to elicit a response [391], it was not until much later that it was

described that IL-17RC was required to have a fully functional receptor complex [392].

However, it is not fully understood what number of each of these subunits is present in

this receptor complex and many theories have been proposed as to how these subunits

form the functional receptor [387]. At present it is thought that a trimeric receptor is

likely, as shown in figure 1-8. IL-17RA expression is widespread including epithelial

cells, fibroblasts and macrophages [390] and also can be induced in T cells by IL-21 and

down-regulated by phosphoinositide-3-kinase (PI3K) [393, 394]. Unlike other cytokine

receptors the IL-17R is required at high levels to elicit a response and it has been

suggested that IL-17RA may act in a regulatory role by internalising IL-17A upon
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binding and removing it from the inflammatory environment [394]. The other IL-17

receptor subunits are poorly described and the pairing shown in figure 1-8 is the

proposed mechanism by which these subunits form their functional receptors [395].

The downstream signalling from the IL-17 receptors is complex and many pathways

have been reported to be activated, such as the JAK pathway which was implicated

following inhibition of JAK which consequently reduced IL-17A expression [396].

However, these results using small molecule inhibitors should be interpreted with

caution due to the possible non-specific effects and possible transcription factor

activation due to cytokines up-regulated down stream of IL-17 [397]. Due to the highly

pro-inflammatory role of IL-17A it was originally proposed that the downstream

signalling of its receptor may well compare to the IL-1R and the TLRs. Downstream of

the IL-17RA activation of p65 and p50 has been shown which suggests that the

canonical NF-κB pathway may play a role in the inflammatory signature of IL-17A 

[398]. Act1 has been shown to be recruited to the IL-17RA intracellular domain, which

is a known adapter molecule for NF-κB activation [399]. MAPKs are also activated 

downstream of IL-17RA, the most strongly activated of these are ERKs [400]. Unlike

IL-17RA, IL-17RB contains a TNFR-associated factor 6 (TRAF6) binding motif in its

cytoplasmic component of the receptor, this is a well-known mechanism by which NF-

κB is activated [401]. The downstream signalling of IL-17RD is still to be fully 

elucidated although activation of MAPKs have been proposed due to the evolutionary

origins of IL-17RD and its role in non-primate development [402].

1.9.2 Functional roles of IL-17

As previously mentioned IL-17A and IL-17F are thought to be predominantly leukocyte

derived cytokines, T cells and innate lymphocytes such as ILCs have been described to

produce IL-17 [403, 404]. IL-17 producing cells express the transcription factor

associated with IL-17 production, RORγt. Most studies have also shown that IL-6 and 

IL-1β is required for Th17 development [405]. However IL-21, IL-23 and TGFβ 

signalling has also been implicated [406-408]. The role of IL-23 in the development of

the Th17 subset in an inflammatory context has now been extensively researched [409,

410]. A well-known biological role of IL-17 is the induction of pro-inflammatory
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cytokines, chemokines and MMPs from tissue resident cells leading to tissue

remodelling and, among others, recruitment of neutrophils to site of inflammation [411].

IL-17 and the often co-expressed IL-22 play a prominent role in induction of AMPs and

mice deficient in IL-17 are highly susceptible to both fungal and bacterial infections.

This has also been confirmed in humans with genetic mutations leading to reduced Th17

numbers, or upon treatment with IL-17 neutralising antibodies [412]. Dominant-

negative mutations in STAT3 lead to a hyper-IgE syndrome which prevents generation

of Th17 cells and consequently these patients suffer from mucocutaneous candidiasis

and pulmonary infections, predominantly due to Staphyloccus aureus [413]. STAT3 is

essential for Th17 development downstream of IL-6 [414]. These observations indicate

a crucial role for IL-17 in the defence against invading pathogens. Together with the

environmental stimuli, levels of IL-21, IL-23 and TGFβ control the magnitude of the IL-

17 mediated response by stimulating surrounding cells to produce chemokines such as

IL-8 to further recruit inflammatory cells such as neutrophils [405]. IL-17 has been

shown to promote contact-dependent cytotoxicity by IFNγ-induced up-regulation of 

intracellular adhesion molecule (ICAM)-1 on keratinocytes [415]. The role of IL-17 in

Th1 differentiation is controversial with some studies suggesting it plays a role in Th1

generation [416] and some that suggest a negative feedback loop by RORγt on Th1 

differentiation [417]. IL-17 has also been shown to induce other pro-inflammatory

mediators such as the IL-36 family members [212].

1.9.3 The role of IL-17 in disease

As previously discussed IL-17 is highly pro-inflammatory and is an effective mediator

in host defence. However if IL-17 expression is dysregulated this can lead to

uncontrolled and chronic inflammation and tissue damage. The role of IL-17 in

autoimmunity was established when it was shown in murine models that Th17 cells

were crucial in the initial stages of experiment autoimmune encephalitis [418]. IL-17A

and IL-17F are also highly expressed in rheumatoid arthritis [419]. It is thought that in

rheumatoid arthritis IL-17 causes a induction of cytokines (e.g. TNFα and IL-6) and 

chemokines (e.g. IL-8) as well as destructive enzymes such as MMP1 from
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synoviocytes [420]. IL-17 has also been shown to inhibit apoptosis of synoviocytes

causing tissue hyperplasia [421].

IL-17 has extensively been described as playing a pivotal role in the pathogenesis of

psoriasis. After the identification of the Th17 subset of cells, it was shown that these are

highly prevalent in lesional psoriatic skin [3]. Specifically keratinocytes have been

identified as targets for IL-17 and IL-22 activity. In these cells, IL-17 acts

synergistically with TNFα on inflammatory mediators known to be critical in psoriatic 

inflammation [2]. IL-17 and IL-22 play a role in the change of barrier homeostasis

typical for psoriatic plaque [422]. Interestingly, in a relatively small cohort of psoriasis

patients Th17 cells were not shown to be the most prominent producers of IL-17A but

mast cells and neutrophils [423]. It has also been shown that the CD8+ T cells in

psoriatic skin contain significantly more IL-17 producing CD8+ cells compared to

healthy skin [423]. Due to the apparent importance of IL-17 in psoriasis it is an

important target for antibody therapies. Data on the extremely high efficacy of

secukinumab (blocks IL-17A) holds the promise to not only control but clear psoriasis

with this treatment [424]. There is also a monoclonal antibody that blocks the p40

subunit of IL-12 and IL-23 (ustekinumab), two cytokines crucial for Th1 and Th17

differentiation. Ustekinumab has shown good clinical responses in skin psoriasis and

data for PsA seem promising [387].

1.10 Project aims

Although the pathogenesis of psoriasis is extensively studied there are still shortfalls in

our understanding as to the role of all aspects of the disease pathogenesis. There is no

doubt that this is a highly inflammatory disease [425] which is predominantly mediated

by an influx of immune cells [3]. However, the role of the skin resident cells particularly

the largely overlooked fibroblasts have not been well described in the chronic

inflammation seen in psoriasis. The inflammatory response is a highly regulated process

that is tightly controlled in order to prevent tissue damage and chronic inflammatory

states. This control occurs at various levels, including transcriptional, translation and

receptor regulation. At the receptor level the balance of agonists, antagonists and
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binding proteins is crucial. This balance is not well understood, especially in disease

states.

Therapeutic approaches for psoriasis patients varies greatly depending on severity of

disease. The most severe patients are most commonly treated with systemic anti-

inflammatories that are not always effective and frequently show side effects. However,

for these patients recently developed biologics hold the promise for long-term, efficient

control of the disease. Due to the very high costs of biologics this approach is not

available for the majority of patients. There is a great need in particular for the mild to

moderate disease group, to develop more effective and well tolerated topical therapies.

The main aim of this investigation on psoriatic inflammation was:

 To understanding the role of the novel group of IL-1 family cytokines, IL-36 in

psoriasis and the importance of proteolytic cleavage of these proteins.

Additional aims were as follows:

 To identify how endogenous IL-18BP production can be enhanced in the skin

compartment. The focus is on IL-27, which has previously indicated as a

possible inducer of IL-18BP. To investigate the therapeutic value of an IL-17

targeting RNA aptamers in relation to psoriatic skin inflammation.
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Chapter 2 – Materials and methods
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2.1 Materials

Unless otherwise stated all reagents were analytical grade and obtained from Sigma-

Aldrich, UK.

Table 2-1. Primary antibodies used

Antibody Specificity Species and

isotype

Source

162601 Human IL-36β Mouse IgG1 R&D systems

162122 Human IL-36α Mouse IgG2B R&D systems

2A8 Human IL-36γ Mouse IgG1κ Sigma-Aldrich

GTX108466 Human IL-36γ Rabbit IgG  GeneTex 

278706 Human IL-36γ Rat IgG2A R&D systems

190524 Human IL-36RA Mouse IgG2B R&D systems

ab171844 Human IL-1RL2 Rabbit IgG Abcam

GT239 Human GAPDH Mouse IgG2B GeneTex

CD28.2 Human CD28 (LEAF™) Mouse IgG1κ BioLegend

OKT3 Human CD3 (LEAF™) Mouse IgG2Aκ BioLegend

A-5598 Myc tag (HRP) Rabbit IgG Sigma-Aldrich

R6H1 Human CCR6 (PE) Mouse IgG1 eBioscience

SC-23877 Human cytokeratin 10 Mouse IgG1 Santa Cruz

D1.3 Hen egg lysozyme (Isotype

ctrl)

Mouse IgG1 Produced in-house
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Table 2-2. Secondary antibodies used

Antibody Specificity Species Label Source

A-0168 Mouse IgG Goat HRP Sigma-Aldrich

A-9542 Rat IgG Rabbit HRP Sigma-Aldrich

STAR124P Rabbit IgG Goat HRP AbD Serotec

STAR120F Mouse IgG Goat FITC AbD Serotec

2.1.1 Buffers used

Loading dye for SDS-PAGE gels – 62.5 mM Tris pH 6.8, 10% Glycerol, 2% SDS,

0.001% bromophenol blue +/- 5% β2-mercaptoethanol 

Gel electrophoresis running buffer – 25 mM Tris, 90mM glycine, 0.1% SDS

Western blot transfer buffer – 90 mM glycine, 25 mM Tris 20% Methanol

Western blot blocking buffer – Tween-20 0.1% in PBS + 5% milk

PBS Tween (for washing Western blot membranes) – PBS, 0.1% Tween-20

NP-40 lysis buffer – 1% NP-40 (or equivalent), 0.15M NaCl, 10mM EDTA, 10Mm

NaN3, 10mM Tris-HCl pH8

Coomassie stain – 40% Methanol, 10% Acetic Acid, 0.05% Brilliant Blue R-250,

remaining dH2O

Coomassie de-stain - 10% Acetic Acid, 40% Methanol, remaining dH2O

Bacterial lysis buffer – 20mM Tris pH8, 10% Glycerol, 5mM MgSO4

Nickel column buffer – 500mM NaCl, 20mM Tris pH7.4, 10% Glycerol, 20-500mM

Imidazole

Size exclusion column buffer – 20mM Tris pH7.4, 300mM NaCl, 5% Glycerol

TBE: 0.09M Tris, 0.09M Boric acid, 2mM EDTA

6x DNA loading dye – 0.05% Orange G, 30% glycerol
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2YT bacterial media – 3.3% Tryptone soya broth, 1% Yeast extract (Oxoid, Thermo

Scientific)

Complete E-media - E-media contained per litre; 600ml DMEM HEPES (Sigma-

Aldrich, UK), 320ml Hams F-12 (Gibco Invitrogen), 0.10 mg/ml streptomycin and

100U/ml penicillin (Gibco Invitrogen), 5% FCS, 10ug Cholera Toxin (Sigma-Aldrich,

UK), 5mg/ml hydrocortisone (Sigma-Aldrich, UK), 5ng/ml epidermal growth factor

(EGF) (BD Biosciences), 10ml 100x cocktail mix containing; 0.18M Adenine (Sigma-

Aldrich, UK), 5mg/ml Insulin (Gibco), 5mg/ml Transferrin (Sigma-Aldrich, UK), 2x10-

8µg MT3 (Sigma-Aldrich, UK).

2.1.2 Cell lines used

Human Embryonic Kidney 293 T (HEK293T) are adherent derivatives of the human

embryonic kidney 293 cell line that was established by transformation with sheared

adenovirus type 5 DNA [426].

Human Embryonic Kidney 293 TT (HEK293TT) cell lines are adherent derivatives of

293 cells with a sheared adenovirus type 5 DNA and simian virus-40 [427]

Human Embryonic Kidney 293 FT (HEK293FT) cell lines are also adherent derivatives

of 293 cells which stably expresses the SV40 large T antigen from the

pCMVSPORT6TAg.neo plasmid. Expression of the SV40 large T antigen is controlled

by the human cytomegalo-virus (CMV) promoter.

COS-7 are an adherent fibroblast-like cell line established from SV40 T antigen

transformed CV-1 simian cells from African Green Monkey kidney cells [428].

HaCat cells are an adherent spontaneously transformed cell line derived from adult

human keratinocytes [429].

2.2 General methods

Unless otherwise stated all reagents are from Sigma-Aldrich, UK. Unless otherwise

stated cells were cultured in Dulbecco’s Modified Eagle Medium (DMEM) (Lonza,

Slough, UK) supplemented with 5% fetal calf serum (FCS) (PromoCell, Heidelberg,
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Germany), 0.5% L-Glutamine (Sigma-Aldrich, UK) and 0.05 mg/ml streptomycin and

50U/ml penicillin (Sigma-Aldrich, UK) at 37°C, 5% CO2 and 95% humidity.

2.2.1 Obtaining primary cells

All human samples were taken in accordance with the Declaration of Helsinki and

participants gave their written informed consent (REC number: 11/YH/0368 NHS

patients – see Appendix figure 25). Healthy volunteers were also recruited from the

university and written consent was also sought (BIOSCI09-001).

2.2.2 Culture of primary cells and cell lines

Human primary keratinocytes (HPK) were cultured in Keratinocyte Growth Media

(KGM) Kit II (PromoCell, Heidelberg, Germany). Culture medium was changed every

second to third day. On stimulation keratinocytes were placed in Keratinocyte Growth

Media with all supplements apart from epidermal growth factor and hydrocortisone.

When the fibroblasts reached 90% confluency and HPK 60-70% confluency the cells

were passaged. For primary fibroblasts and all adherent cell lines, cells were washed

with sterile phosphate buffered saline (PBS) (Gibco, Life technologies, UK) and then

trypsin (170.000U/L)-EDTA (200mg/ml) (Lonza, Slough, UK) was added and placed in

the incubator for 2 minutes at 37°C, 5% CO2. An equal amount of serum containing

DMEM was added to the trypsinised cells in order to neutralise the enzyme. The cells

were then centrifuged at 230xg and then re-seeded. For HPK, cells were also washed

with sterile PBS and then EDTA (Versen) 1% (Pan Biotech, Germany) was added for 2

minutes at 37°C, 5% CO2. Trypsin was added in the same manner as for the fibroblasts

however neutralisation was achieved with trypsin neutralising solution (Lonza, Slough,

UK). Cell lines were cultured in the same manner as human primary fibroblasts. In order

to freeze cells they were re-suspended in freezing media (PromoCell, Heidelberg,

Germany) and placed in a Mr. Frosty™ (Thermo Scientific) at -80°C for 24 hours

before long-term storage in liquid nitrogen.
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2.2.3 Outgrowth of fibroblasts from healthy and patient derived skin and tendon

biopsies

Biopsies were taken from healthy controls or patients following consent (NHS patient

donors - REC number: 11/YH/0368) and transported in DMEM supplemented with 5%

FCS (PromoCell, Heidelberg, Germany), 0.5% L-Glutamine (Sigma-Aldrich, UK), 0.05

mg/ml streptomycin and 50U/ml penicillin (Sigma-Aldrich, UK) and 0.5% of 250μg/ml 

amphotericin B (Sigma-Aldrich, UK). Skin biopsies were then cut into small sections

using a scalpel. The sections were carefully placed into a six well plate and left to air dry

in the cell culture hood for approximately 15 minutes. The same media that the biopsies

were transported in was then carefully added to the wells ensuring that the tissue stays

adhered to the plate. Biopsies were then cultured at 37°C, 5% CO2 for 1-2 weeks before

cells were sufficiently confluent to passage and consequent culture was in media with

out amphotericin B.

2.2.4Transfection of primary cells and cell lines

Cells were cultured in normal growth media until confluency of 80-90% was reached in

a 6-well plate. On the day of transfection normal media was substituted for reduced

serum Opti-MEM (Gibco, Life Technologies, UK). 1µg of DNA was then diluted in

400µl of Opti-MEM and then 6µl of TurboFect transfection regent (Thermo Scientific,

UK) was added. The solution was vortexed and incubated for 15-20 minutes at room

temperature. This solution was then added dropwise into the 6 well plate containing 4ml

of Opti-MEM in each well. After 8 hours the media was removed and replaced with 2ml

of fresh Opti-MEM.

2.2.5 Peripheral blood collection

In order to isolate neutrophils and peripheral blood mononuclear cells (PBMCs) 30-

60ml of peripheral blood was collected from healthy donors and psoriatic patients in

sterile Vacutainer® lithium heparin (BD Biosciences, Oxford, UK). Ethical approval

was sought from the University of Leeds for healthy donors and national ethical

approval was gained for patient material. Consent of donors was sought and anonymity
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was strictly adhered to. Blood was kept at room temperature after donation and used

immediately.

2.2.6 Isolation of PBMCs from whole blood

PBMCs were isolated from peripheral whole blood using density gradient. Peripheral

blood was diluted 1:1 with sterile PBS (Gibco, Life technologies, UK). An equal amount

of diluted blood was then carefully layered onto Ficoll-Paque plus (GE Healthcare,

Buckinghamshire, UK). This was then centrifuged for 40 minutes at 400xg with no

brake. PBMCs were then removed and diluted 1:1 with sterile PBS. Cells were then

centrifuged at 350xg for 4 minutes and supernatant removed. PBMCs were either used

immediately or cultured in Roswell Park Memorial Institute (RPMI)-1640 supplemented

with 5% FCS (PromoCell, Heidelberg, Germany), 0.5% L-Glutamine (Sigma-Aldrich,

UK) and 0.05 mg/ml streptomycin and 50U/ml penicillin (Sigma-Aldrich, UK).

2.2.7 CD4+ T cell isolation from PBMCs – using MACS® cell separation

PBMCs were centrifuged at 350xg for 4 minutes. The supernatant was removed before

washing with sterile PBS. Using the CD4+ T cell isolation kit II (Miltenyi Biotec,

Surrey, UK) cells were then stained with magnetic labels as per manufacturer’s

instructions. After magnetic labelling the cells were then put through LS columns

(Miltenyi Biotec, Surrey, UK) as per manufacturer’s instructions. The method used

allows for collection of untouched CD4+ cells so there is no magnetic tags which could

potentially interfere with further experiments. After separation, cells were centrifuged at

350xg for 4 minutes and either used immediately or cultured in RPMI-1640

supplemented with 5% FCS (PromoCell, Heidelberg, Germany), 0.5% L-Glutamine

(Sigma-Aldrich, UK) and 0.05 mg/ml streptomycin and 50U/ml penicillin (Sigma-

Aldrich, UK).

2.2.8 Culture of primary CD4+ T cells

Freshly isolated T cells were cultured in RPMI-1640 media (Lonza, Slough, UK)

supplemented with 5% FCS (PromoCell, Heidelberg, Germany), 0.5% L-Glutamine

(Sigma-Aldrich, UK) and 0.05 mg/ml streptomycin and 50U/ml penicillin (Sigma-
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Aldrich, UK). If CD4+ T cells were cultured for longer than 2 days the media was

supplemented with 5ng/ml of IL-2 (Immunotools, Friesoythe, Germany).

2.2.9 Enrichment of CCR6+ T cells from CD4+ T cells

Following magnetic separation of CD4+ population cells were centrifuged at 300xg for

10 minutes and then re-suspended in 40μl of a PBS based buffer, pH 7.2, containing

0.5% bovine serum albumin (BSA) and 2mM EDTA. Cells these were then stained with

10μl of PE labelled CCR6 antibody (eBioscience, Hatfield UK. Clone: R6H1) for 10

minutes at 4°C. In order to remove unbound primary antibody 1-2ml of buffer was then

added before centrifugation at 300xg for 10 minutes. Supernatant was then removed and

80μl of buffer used to re-suspend the cells, 20μl of Anti-PE microbeads (Miltenyi

Biotec, Surrey, UK) was then added and incubated for 15 minutes at 4°C. The cells were

washed again with 1-2ml of buffer and then re-suspended in 500μl of buffer before

magnetic separation was performed with LS columns (Miltenyi Biotec, Surrey, UK) as

per manufacturer’s instructions. Cells were either used immediately or cultured in

RPMI-1640 supplemented with 5% FCS (PromoCell, Heidelberg, Germany), 0.5% L-

Glutamine (Sigma-Aldrich, UK) and 0.05 mg/ml streptomycin and 50U/ml penicillin

(Sigma-Aldrich, UK).

2.2.10 Isolation of PMNs from whole blood

Whole blood was separated by using density gradient in a similar manner to that used

for isolation of PBMCs however instead of using Ficoll, Histopaque 1077 (Sigma-

Aldrich, UK) was layered in equal amounts on top of Histopaque 1119 (Sigma-Aldrich,

UK). The diluted whole blood was then layered on top of this and centrifuged at 400xg

for 30 minutes with no brake. The PMN layer, which is above the red blood cell pellet,

was then removed using a 10ml sereological pipette and cells were washed with PBS. In

order to remove contamination of erythrocytes the pellet was re-suspended in 0.2%

NaCl and the tube was inverted 10x. An equal volume of 1.6% NaCl was then added

and inverted once. Cells were then centrifuged at 350xg for 4 minutes and the cell pellet

was re-suspended with RPMI-1640 supplemented with 5% FCS (PromoCell,

Heidelberg, Germany), 0.5% L-Glutamine (Sigma-Aldrich, UK) and 0.05 mg/ml
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streptomycin and 50U/ml penicillin (Sigma-Aldrich, UK). Cells were stimulated on day

of separation and were not cultured for longer than an hour.

2.2.11 Construction of skin equivalents

Human primary fibroblasts from either healthy controls or psoriatic patients were

cultured as described previously. The first step for skin equivalent construction involves

making a dermal scaffold to support the human primary keratinocytes. For this 1 – 2 x

106 of human primary fibroblasts were used for each collagen scaffold. In order to make

the collagen plug all solutions and plastic ware were kept cold and then following

harvesting and pelleting of fibroblasts (as previously described) the pellet was re-

suspended in 0.3ml of 10xDMEM + 0.3ml of 10x reconstitution buffer (2.2g NaHCO3,

4.77g HEPES, 100ml 0.05M NaOH). Then 2.4ml of Collagen G (Type 1 and 4 –

Biochrom AG, Merck Millipore) was added and 3mls of fibroblast/collagen mix was

added to a 35mm Petri dish. The gels were allowed to solidify at 37°C 5% CO2 for 30

minutes before adding 1.5ml of E-medium (with 5ng/ml EGF). These were then cultured

for 2 days. 1 – 2 x 106 of primary keratinocytes was then seeded on the top of each

collagen scaffold and cells were allowed to grow to confluence, the media was changed

daily (E-medium + EGF). After 2 days skin equivalents were ready for the air/liquid

interface stage. The support grids (Sigma, UK) were placed in 10cm Petri dishes and

then using sterile forceps the skin equivalent was carefully placed on the support grid.

E-medium (no EGF) was then added, ensuring that media did not come over the edge of

the support grid and only sat underneath it touching the underside of the skin equivalent.

Media was changed every other day for 14 days and if stimulation was required this was

added into the culture media 96 hours before fixing rafts with 4% paraformaldehyde.

Skin equivalents were sectioned, mounted onto slides and H&E stained by Propath Ltd

UK (Hereford, UK).

2.2.12 Enzyme-linked immunosorbent assay (ELISA)

Cell-free supernatant was collected, stored at -20 (short term) or -80°C and analysed for

the content of protein using a DuoSet human ELISA kit (RnD Systems, Abingdon, UK

or BioLegend, Hatfield, UK) following the manufacturer’s instructions.
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2.2.13 Flourescence assisted cell sorting (FACS)

In order to stain for surface receptors cells were detached, if adherent, using EDTA

(Versen) 1% (Pan Biotech, Germany) and then washed with PBS. Cells were then

incubated with blocking buffer (5% serum in PBS) for 1 hour on ice before spinning

down and washing twice with PBS. Cells were then incubated with the primary antibody

at the concentration recommended by supplier for 1 hour on ice following which they

were washed twice with PBS. Cells were then incubated with secondary antibody at the

concentration suggested by supplier for 1 hour on ice following which cells were

washed 3 times with PBS. Cells were re-suspended in PBS and kept on ice before

analysis.

2.2.14 Quantitative real-time polymerase chain reaction (qRT-PCR)

qRT-PCR was performed on a RotorGen (Qiagen, Hilden, Germany) using a ΔΔCT-

analysis based on the generation of standard curves for both the housekeeping gene

(U6snRNA – Forward ctcgcttcggcagcaca, Reverse gcaaattcgtgaagcgtt) and the target

gene (QuantiTect Primer Assay, Qiagen unless otherwise stated). For RNA isolation

Quick-RNA MiniPrep (Zymo Research, Cambridge Bioscience, Cambridge, UK) was

used. First strand cDNA synthesis kit (Fermentas / Thermo Fisher Scientific,

Loughborough, UK) was used for reverse transcription. QuantiFast SYBR green PCR

(Qiagen) was used to carry out the RT-PCR following manufacturer’s instructions.

2.2.15 Fixing and staining cells for fluorescence imaging

Following culture of cells on a 13mm glass cover slip in a 24 well plate cells were

washed 3 times with PBS. 4% paraformaldehyde was then added to cells and incubated

at room temperature for 15 minutes. For experiments detecting fluorescent molecules

within the cells, following fixation antibody staining was not required. Cells were

washed with PBS 3 times, the last wash containing 1µg/ml of 4',6-diamidino-2-

phenylindole (DAPI) to stain the nucleus. Before mounting, slides were washed with

dH2O. Coverslips were mounted onto Poly-lysine coated slides using Fluoromount-G™

(eBioscience, Hatfield, UK) and sealed around the edges. Once mounted, slides were
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kept at 4°C before imaging using an inverted LSM510 confocal microscope coupled to a

LSM Image Browser.

2.2.16 Di-AminoBenzidine (DAB) staining of paraffin embedded skin equivalents

Skin equivalents were sectioned and mounted onto microscope slides by Propath UK.

Mounted microscope slides were rehydrated and deparaffinised by submerging in

Xylene (VWR chemicals) for 5 minutes, this was repeated twice. Slides were then

sequentially submerged in 100%, 90% and 70% ethanol for 1 minute before being

submerged for 5 minutes in water. Water was changed after 2 minutes of incubation.

Slides were then submerged in 10mM sodium citrate + 0.05% Tween (pH 6) and boiled

for 10 minutes in order to unmask antigens from paraffin embedding before antibody

staining. Slides were again washed with water 3 times for 5 minutes before incubating

with 3% hydrogen peroxide for 10 minutes. Slides were washed twice in water for 5

minutes each before being washed in PBS for 5 minutes. Slides were then placed in a

humidity chamber and blocking buffer added (10% FCS in PBS) for 1 hour or overnight

at 4°C. Following incubation sections were washed for 5 minutes in PBS, this was

repeated 5 times. Slides were then incubated in humidity chamber with primary

antibody diluted in 1.5% blocking buffer (1.5% FCS in PBS) for an hour at room

temperature. Washing in PBS was performed again 5 times before addition of secondary

antibody diluted in 1.5% blocking buffer (1.5% FCS in PBS) and incubated in humidity

chamber for 1 hour at room temperature. PBS washing was repeated again 5 times. DAB

staining was performed using a Vector Laboratories (Peterborough, UK) substrate kit

following manufacturer’s instructions. A counterstain was performed using

haematoxylin (Sigma-Aldrich) for 20 seconds before washing repeatedly with water.

Sections were then dehydrated by incubation of slides in 95% ethanol twice for 10

seconds. Sections were then incubated in 100% ethanol twice for 10 seconds, then in

xylene twice for 10 seconds. Slides were then air-dried and mounted with coverslips

using DPX mounting media (VWR chemicals). Slides were then imaged using a Leiss

light microscope.
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2.3 Molecular biology

2.3.1 SDS-Polyacrylamide gel electrophoresis (PAGE)

Whole cell extracts were prepared by lysing cells in a NP40 lysis buffer supplemented

with protease inhibitors (Complete EDTA-free protease inhibitors, Roche). Cells were

removed from the tissue culture plate in lysis buffer and left on ice for 15-20 minutes

before being centrifuged to remove cell debris. Supernatant from the lysed cells was

removed and samples were stored at -20°C or used immediately. Samples were mixed

with 4 x loading buffer and boiled for 5 minutes. Following brief centrifugation of the

samples they were loaded onto a 4% polyacrylamide stacking gel (pH6.8) and resolved

on a 12-17% acrylamide gel (pH 8.8) alongside molecular weight markers (New

England Biolabs). 1.5mm gels were cast and run using a Mini PROTEAN III gel system

(Biorad). Gels were run in running buffer at 0.03-0.04 Amps per gel as long as required

for good separation. Gels were either analysed by Coomassie staining followed by de-

stain or were used in Western blots.

2.3.2 Western blotting

Following SDS electrophoresis, resolved polypeptides were transferred to HybondC+

nitrocellulose (Amersham biosciences) or Immobilon-P (Millipore) membranes in

transfer buffer by applying 100V for 1-2 hours. Membranes were then blocked for 1

hour in blocking buffer. Primary antibodies were diluted to the concentration advised by

the manufacturer in blocking buffer and incubated with agitation for 1 hour at room

temperature. Membranes were then washed with PBS 0.1% Tween-20 3 times each for 5

minutes at room temperature with agitation. Secondary horse radish peroxidase (HRP)

antibodies (Sigma-Aldrich, UK) were diluted to a concentration advised by the

manufacturer in blocking buffer and membranes were incubated for 1 hour with

agitation at room temperature. Membranes were then washed as before. The ECL was

used as per manufacturer’s instructions (GE Healthcare) to detect specific antibody

binding to membranes and emitted light was detected on X-ray film (GE Healthcare)

following incubation of varying incubation times from 20 seconds to 5 minutes.
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2.3.3 Agarose gel electrophoresis

Gels were prepared using electrophoresis grade agarose in 1xTBE containing 0.2µg/ml

Ethidium Bromide. DNA samples were mixed with 6x DNA loading dye and run at

100V alongside 1 kb DNA ladders. DNA in agarose was observed and photographed

under short-wave UV light for observation or long-wave UV light when further cloning

was required.

2.3.4 Conventional PCR for cloning

Primers were designed (see Appendix for all primers, figures 3-23) in order to amplify

the sequence for the protein of interest using conventional PCR (KOD hot start DNA

polymerase, Novagen). A sample was then taken from the PCR product and run on a 1%

agarose gel alongside a DNA marker (New England Biolabs) and UV light used to

assess whether a band was present at the correct size. Extra adenine nucleotides were

added on to the end of the product using TAQ polymerase (Promega, USA) in

preparation for insertion into a TA overhang vector (Champion pET SUMO expression

system, Invitrogen, USA). Following addition of nucleotides the product was run on a

1% agarose gel and the band carefully cut out with a scalpel. DNA was extracted from

the gel using QIAquick gel extraction kit (Qiagen) following manufacturer’s

instructions.

2.3.5 Restriction digest

PCR products and vectors were cut with relevant restriction enzymes in optimal buffers

with 1% BSA (New England Biolabs). Reactions were carried out at 37°C for 3 hours.

For the vectors after 2 hours of incubation alkaline phosphatase was added to prevent re-

ligation of the vector. Following digest products were run on a 1% agarose gel and then

bands cut out and purified using QIAquick gel extraction kit (Qiagen) following

manufacturer’s instructions.
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2.3.6 Ligation

The ligation of the insert into the vector was carried out at a molar ratio of 1:3 vector to

insert and 1ng of insert was added. T4 ligase was used following manufacturer’s

instructions (Invitrogen, USA). The reaction was carried out overnight at 16°C.

2.3.7 Transformation

Following ligation the vector was transformed into DH5α cells (Φ80lacZΔM15 

Δ(lacZYA-argF) U169 recA1 endA1 hsdR17 (rK–, mK+) phoA supE44 λ– thi-1

gyrA96 relA1) in order to allow enough DNA proliferation to sequence. The ligation

reaction was added to the thawed cells for 30 minutes on ice. The cells were then heat

shocked at 42°C for 30 seconds, then placed back on ice for 2 minutes before adding

SOCS medium (Invitrogen, USA) and then placed at 37°C with shaking for 1 hour.

Cells were then plated on 2% agar plates containing relevant antibiotics.

Following overnight incubation at 37°C colonies were picked and a colony PCR

performed using TAQ polymerase (Promega, USA). Positive colonies were then grown

up in 2YT media containing relevant antibiotics overnight at 37°C. DNA was extracted

from the cells using QIAprep Spin Miniprep kit (Qiagen) following manufacturer’s

instructions. Sequencing was then confirmed using Sanger sequencing (GATC- Biotech,

Germany). Sequence profiles were analysed using a BLAST

(http://blast.ncbi.nlm.nih.gov/Blast.cgi) programme for comparison with the predicted

sequence (see Appendix for all sequences).

2.3.8 Expression of IL-1 family members in E. coli

Following successful sequencing of the constructs 1ng DNA was then transformed in to

expression strains of E. coli – BL-21 (DE3) (fhuA2 [lon] ompT gal (λ DE3) [dcm] 

∆hsdSλ DE3 = λ sBamHIo ∆EcoRI-B int::(lacI::PlacUV5::T7 gene1) i21 ∆nin) and

BL21-CodonPlus(DE3)-RIPL (E. coli B F– ompT hsdS(rB – mB–) dcm+ Tetr gal

λ(DE3) endA Hte [argU proL Camr] [argU ileY leuW Strep/Specr]) in the same manner 

as with the DH5α cells. (DE3) encodes an Lac inducible T7 polymerase. The BL21-

CodonPlus (DE3)-RIPL cells also contain a plasmid encoding rare tRNA that are needed

for expression of mammalian proteins. Cells were then grown overnight in either



78

33µg/ml of kanamycin for BL21 (DE3) or both kanamycin and 33µg/ml

chloramphenicol for the BL21-CodonPlus cells. Larger cultures containing relevant

antibiotics and 5% filtered glucose, to prevent leaky expression were then inoculated

with 1 50th of the overnight culture. Initially cells were grown at 37°C until they reached

an optical density (at 600 nm) of 0.6 and then cells were induced with isopropyl β-D-1-

thiogalactopyranoside (IPTG) at 0.8mM and then grown over night at 16°C, 25°C and

37°C. The optimal temperature for expression was assessed by running the bacterial

lysates before and after induction on an SDS page gel and then stained over night with

Coomassie and de stained the following day. Following optimisation larger volumes of

culture were grown up at the ideal temperature in order to get the required amount of

protein. After overnight growth of cultures they were spun down at 4000g for 5 minutes.

The bacterial pellet was then re-suspended in bacterial lysis buffer. Lysozyme

(0.35mg/ml) and DNase (20µg/ml) were added and the bacteria were sonicated on ice

for 8 cycles of 20 seconds on 30 seconds off. The lysed bacteria were then spun at

30,000g for 30 minutes and the supernatant removed and filtered. The constructs

produced contained a His tag so protein was purified using a nickel-affinity

chromatography. The column was equilibrated with 20mM imidazole nickel column

buffer and then the filtered bacterial supernatant was added containing 20mM imidazole

to prevent non-specific binding to the column. Following addition of bacterial

supernatant the nickel column was washed with 5 column volumes of 20mM imidazole

and then 50mM imidazole. Protein was eluted from the column in 5 column volumes of

100mM imidazole and then 500mM and 1ml fractions collected to run on a SDS page

gel and stain with Coomassie to analyse when the protein comes off the nickel column.

Fractions that contained the protein were then pooled.

2.3.9 Purification of protein using size exclusion column

Pooled fractions from nickel-affinity chromatography purification were concentrated to

5ml and then sterile filtered at 0.45µm. The size exclusion column was prepared by

running 1 column volume of degassed sterile filtered water and then the same for

column buffer. The protein was loaded and fractions were collected when a 280nm peak

was present, excluding any peaks that were present in the void volume or any that were
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suggestive of a protein dimer. Fractions were pooled and concentrated before being run

on an SDS page gel and stained with Coomassie to check that the purity of the protein.

Western blots were also carried out to check the protein expressed and purified was

correct.

2.3.10 Removing SUMO from relevant constructs

Following size exclusion protein purification when it was necessary the SUMO tag was

removed from the constructs. Optimisation of the amount of SUMO protease, His-ULP-

1, was carried out and this differed depending what the preceding amino acid was.

Therefore, between 1:50 and 1:200 ratio protease to protein was used for between 24-48

hours at 4°C. Cleavage was assessed by running on an SDS page and then Coomassie

stained. Due to the SUMO and SUMO protease containing His tags these constructs

could be removed using a nickel column to purify protein away from the SUMO and

SUMO protease. For all constructs that were to be used in cell culture the nickel column

was thoroughly washed with 0.5M NaOH before calibration with 20 mM imidazole

buffer. The sample was then added and the column elute collected which would

represent the pure cut protein. This was then re-run on the size exclusion column to

ensure purity and only monomers of the protein were present. Again, all glassware used

to make buffers and the column itself was thoroughly washed with 0.5M NaOH.

2.3.11 RNA aptamer chemical synthesis

Chemical syntheses of the RNA aptamers used were produced in house by the

University of Leeds. The aptamers were produced with a 5’ monophosphate and a

fluorine modification at the 2’ on pyrimidine bases. The sequenced produced without

flourophores was: 5' GGU CUA GCC GGA GGA GUC AGU AAU CGG UAG ACC 3'.

Addition of a 5’ Cy3 flourophore: 5' cy3-GGU CUA GCC GGA GGA GUC AGU AAU

CGG UAG ACC 3'. Addition of a 5’ Cy3 and 3’ Cy5: 5' cy3-GGU CUA GCC GGA

GGA GUC AGU AAU CGG UAG ACC-cy5 3'.
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Chapter 3 – IL-18 binding protein is up-regulated by

IL-27
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3.1 Introduction

The production and release of pro-inflammatory cytokines by skin resident cells during

an inflammatory response is crucial to aid in eradication of invading pathogens and

maintain skin homeostasis (see 1.2.2 for in depth discussion). However, resolution of

inflammation once the environmental threat has been removed is crucial to avoid

permanent tissue damage (e.g. scarring) or chronic inflammatory conditions (see 1.2.3

for in depth discussion). The skin resident cells possess a control mechanism in that

release of pro-inflammatory mediators is followed by release of anti-inflammatory

mediators to antagonise their activity. These mechanisms are tightly regulated and are

essential for the prevention of chronic inflammation (see 1.2.4 for in depth discussion).

The focus of this chapter is to describe a novel anti-inflammatory mechanism of IL-27

which is its ability to up-regulate IL-18 binding protein (BP) which antagonises IL-18.

IL-27 is a member of the IL-12 family of cytokines that has been shown to have

pleiotropic roles in inflammation and both anti-inflammatory and pro-inflammatory

actions have been identified. Interestingly, IL-27 appears to possess unique features that

are not shared with other IL-12 family members. IL-27 has been shown to up-regulate

the IL-12R which displays high binding affinity with its agonists and is crucial in Th1

polarisation [265]. IL-27 has also been shown to induce IL-23 release from APCs,

which plays a role in Th17 polarisation but also IFNγ release from memory Th1 cells 

[281]. In human macrophages, monocytes and keratinocytes IL-27 has been described to

play an inflammatory role by induction of CXCL10. Due to the property of CXCL10 to

attract CXCR3+, IFNγ producing T cells to the area of inflammation, IL-27 has been 

proposed as an important mediator in inflammatory skin diseases such as eczema and

psoriasis [277, 278]. However, in contrast work carried out in murine models has

suggested a role for IL-27 as an anti-inflammatory mediator in the later stages of

infection. IL-27 knock-out mice have been shown to be more susceptible to

experimental autoimmune encephalitis [430]. Mice over-expressing WSX-1 displayed

reduced lupus erythematosus like symptoms in a disease model [431]. Conversely to

what has been shown in human cells, IL-27 has also been shown to inhibit Th17

differentiation in mice in a STAT1-dependent but IFNγ-independent manner [430]. IL-
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27 has also been shown to stimulate murine cells to produce IL-10, a well-known anti-

inflammatory mediator [432].

IL-18 is a member of the IL-1 family of cytokines and has been described to have a

highly pro-inflammatory function [186, 433, 434]. Within the skin IL-18 is expressed by

resident skin DCs and also keratinocytes. However, expression of IL-18 is not seen by

fibroblasts in the skin compartment [435, 436]. IL-18 supports both Th1 and Th2

differentiation depending on the surrounding cytokine milieu and is important in

regulation of innate and adaptive immunity [433, 437]. Murine models deficient in IL-

18 have a significantly reduced ability to produce IFNγ as well a reduction in NK cell 

activity [438]. In murine asthma models deficiency in IL-18 reduced airway remodelling

and chronic inflammation [439]. IL-18 and its receptor have also been found to be

highly expressed in chronic inflammatory skin lesions, such as psoriatic plaques [440,

441] and cutaneous lupus erythematosus (CLE) [442]. It is thought that IL-18 plays a

role in the chronification of inflammatory diseases and its role in inflammatory fibrosis

has been shown in lung [443], kidney [444] and cardiac pathologies [445]. Skin

epithelial cells isolated from patients with CLE were shown to be more responsive to IL-

18 with regard to production of TNFα compared to healthy controls. TNFα induced 

apoptosis in response to IL-18 was also noted in this study, which is crucially important

in the disease pathogenesis of CLE [446]. Healthy keratinocytes respond to IL-18

stimulation by producing CXCR3 ligands such as CXCL10 [245] and increased surface

expression of MHC I and II [442]. IL-18 has recently been found to activate IFNγ 

producing innate lymphoid cells 1 (ILC1). The recently described ILCs seem to be

closely linked to tissue responses at epithelial surfaces [447].

Due to the evident pro-inflammatory effects of IL-18, it is important as with any pro-

inflammatory cytokine that it is controlled. IL-18 is controlled by its natural antagonist,

IL-18BP [248]. IL-18BP prevents IL-18 binding to its cell surface receptor and exhibits

a high neutralising capacity [249]. The balance between IL-18 and IL-18BP is crucial in

understanding pathologies related to over-expression of IL-18 or IFNγ. However, in 

inflammatory disorders both IL-18 and IL-18BP are up-regulated and current methods

have limitations in quantitative determination of cytokine activity in the tissue (in
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particular as IL-18 exists as a pro- and active form) [444, 448, 449]. At the start of this

project IFNγ was the only known inducer of IL-18BP. However, IFNγ not only induces 

IL-18BP but also the chemokine CXCL10 which attracts further Th1 cells into the area

of inflammation. This has been shown in a variety of non-leukocytic cell types [252]. It

has been identified that in DLD-1 colon carcinoma cells IL-18BP expression is

dependent on STAT1 binding to the GAS element in the IL-18BP promoter [450]. The

importance of IL-18BP can be demonstrated by the fact that viruses such as human

papillomavirus (HPV) and pox viruses either produce a IL-18BP homologue or up-

regulate the endogenous form leading to increased viral virulence [260, 261, 451, 452].

It is of importance to understand potential alterations in the balance between anti-

inflammatory and pro-inflammatory mediators, particularly in the development of

chronic inflammatory skin diseases. Experimental work presented in this chapter aimed

to identify and describe novel mediators that have the ability to up-regulate endogenous

IL-18BP in human skin resident cells.

3.2 IL-18BP expression following IL-27 stimulation

IL-27 was established as an interesting molecule for IL-18BP production when all the

IL-12 family cytokines were used to treat human primary keratinocytes to assess their

functional responses. IL-27 has also been previously described to induce CXCL10

which suggests STAT1 activation occurs downstream of the IL-27 receptor, which

supposedly is also required for IL-18BP expression [278].

Human primary keratinocytes were treated with 50 ng/ml of IL-12 family cytokines

including IL-12, IL-27 and IL-23. IFNγ was used as a positive control at 10ng/ml and 

50ng/ml to assess cell responsiveness (Figure 3-1 a). After 48 hours of treatment cell

free supernatant was removed and IL-18BP levels were detected using ELISA. A

significant difference was detected between the non-stimulated control and IL-27

treatment. No significant expression of IL-18BP was detected with the other two IL-12

family members. IFNγ at a concentration of 50 ng/ml showed approximately a 100 fold 

stronger response compared to IL-27 at the same concentration in human primary

keratinocytes. Human primary keratinocytes were treated with increasing concentrations
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of IL-27 ranging from 5 ng/ml to 100 ng/ml for 48 hours before IL-18BP protein

concentrations were analysed by ELISA (Figure 3-1 b). A significant difference was

shown between the non-stimulated control and treatment with IL-27 at 50 ng/ml and 100

ng/ml. IL-18BP protein release showed no further increase after 100 ng/ml (data not

shown). This experiment was also performed in HaCat cells. IL-27 treatment using

HaCat cells ranged from 1 ng/ml to 100 ng/ml and again significance between non-

stimulated control and IL-27 treatment at 50 ng/ml and 100 ng/ml was detected (Figure

3-1 c). At 10ng/ml HaCat cells also produced significant levels of IL-18BP compared to

non-stimulated control. HaCat cells displayed a similar expression of IL-18BP in

response to IL-27 as primary cells. Interestingly, human primary keratinocytes were the

only skin resident cells to have a basal expression of IL-18BP (Figure 3-1 and Figure 3-

3).
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Figure 3 - 1. IL-27 dose dependently up-regulates IL-18 binding protein (BP) in human

keratinocytes.

Human keratinocytes and HaCat cells were plated at 20,000 cells per well and then stimulated for 48

hours following which supernatants were removed and IL-18BP protein concentration analysed by

ELISA. a - Human primary keratinocytes (HPK) were stimulated with varying concentrations of IFNγ and 

IL-12 family member cytokines. n = 7, independent experiments and different donors. b - Human primary

keratinocytes were stimulated with IL-27 (5 ng/ml-100 ng/ml). n = 3, independent experiments and

different donors. c – Human keratinocyte cell line, HaCat cells were also stimulated with IL-27 (1 ng/ml-

100 ng/ml). n = 3. Mean +/- Standard error of the mean (SEM) is depicted on all graphs. ns = Non-

stimulated. Raw data was analysed using an un-paired student’s t-test (GraphPad Prism 5.03, GraphPad

Software, San Diego, CA). ** = p ≤ 0.01 *** = p ≤ 0.001. Data in this figure was collected in 

collaboration with Division of Immunodermatology and Allergy Research, Department of Dermatology,

Hannover Medical School, Hannover, Germany [59]
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In order to study whether primary human dermal fibroblasts also produced IL-18BP in

response to IL-27 cells were treated with increasing concentrations of IL-27 (1ng/ml to

100 ng/ml). Following 48 hours of treatment IL-18BP concentrations analysed by

ELISA (Figure 3-2 a). Human primary fibroblasts produced unexpectedly high amounts

of IL-18BP and significant differences in IL-18BP levels were seen compared to non-

stimulated control at IL-27 concentrations of 10 ng/ml, 50 ng/ml and 100 ng/ml. As

IFNγ is presently the only known inducer of IL-18BP, cells were also treated with 

equivalent concentrations (50 ng/ml) of IL-27 and IFNγ for 48 hours prior to IL-18BP 

measurement (Figure 3-2 b). In contrast to human primary keratinocytes, IL-27

(50ng/ml) stimulated fibroblasts produced IL-18BP in the same range as after

stimulation with the equivalent concentration of IFNγ at 50 ng/ml.  It is also worth 

noting that human primary fibroblasts produced higher concentrations of IL-18BP

compared to human primary keratinocytes. Human primary fibroblasts are responsive to

extremely low levels of IL-27, around 70% of donors responded to 1 ng/ml of IL-27.
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Figure 3 – 2. IL-27 dose dependently increases levels of IL-18BP in human primary fibroblasts.

Human primary fibroblasts were plated at 20,000 cells per well and then stimulated for 48 hours following

which supernatants were removed and IL-18BP protein concentration was analysed by ELISA. a –

Human primary fibroblasts were stimulated with IL-27 (1 ng/ml-100 ng/ml) for 48 hours. n = 7,

independent experiments and different donors. b – Human primary fibroblasts were stimulated with 50

ng/ml of IL-27 and IFNγ for 48 hours. n = 4, independent experiments and different donors. Mean +/- 

SEM is depicted on all graphs. ns = Non-stimulated. Raw data was analysed using an un-paired student’s

t-test (GraphPad Prism 5.03, GraphPad Software, San Diego, CA). ** = p ≤ 0.01 *** = p ≤ 0.001 [59] 

These experiments indicated that 50 ng/ml of IL-27 was sufficient to induce significant

levels of IL-18BP and this concentration was used for all future experiments.

3.3 Time dependent expression of IL-18BP and CXCL10 in response to

IL-27

As a known inducer of IL-18BP IFNγ was used a comparator in this experimental setup. 

Human primary fibroblasts and human primary keratinocytes were treated with 50 ng/ml

of IL-27 for 5 hours and 16 hours before mRNA was isolated and qRT-PCR was

performed to determine mRNA levels of IL-18BP (Figure 3-3). In primary human

fibroblasts there was a significant increase in mRNA levels at 16 hours compared to

non-stimulated control (Figure 3-3 a). No significant differences were seen in human
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primary keratinocytes, however a slight increase in IL-18BP mRNA levels was present

(Figure 3-3 b). The mRNA levels of IL-18BP were hugely increased (10 fold to 100

fold) in human primary fibroblasts compared to human primary keratinocytes, which is

in line with what has been shown on protein expression levels.

Figure 3 – 3. mRNA levels of IL-18BP are up-regulated in IL-27 stimulated human primary

fibroblasts.

Primary human cells were plated at 20,000 cells per well and then stimulated with 50 ng/ml IL-27 and

mRNA expression of IL-18BP was determined by quantitative PCR (qPCR), the values were normalised

using a housekeeping gene, U6 and then normalised to the ns control to depict fold increase. a - Human

primary fibroblasts were stimulated with 50 ng/ml IL-27 for 5 and 16 hours. n = 2, independent

experiments and different donors. b – Human primary keratinocytes (HPK) were stimulated with 50 ng/ml

of IL-27 for 5 and 16 hours. n = 2, independent experiments and different donors. Mean +/- SEM is

depicted on all graphs. ns = Non-stimulated. Raw data was analysed using an un-paired student’s t-test

(GraphPad Prism 5.03, GraphPad Software, San Diego, CA). * = p ≤ 0.05 [59] 

In order to establish whether protein expression of IL-18BP was also increased over

time human primary fibroblasts and HaCat cells were stimulated with 50 ng/ml of IL-27

for 24, 48, 72 and 96 hours before cell-free supernatants were removed and IL-18BP

protein expression was analysed using ELISA (Figure 3-4). A significant increase of IL-

18BP expression was detected in the human primary fibroblasts after 48, 72 and 96

hours; whereas HaCat cells only showed a statistically significant difference after 72 and
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96 hours. In human primary fibroblasts the production of IL-18BP was maintained until

96 hours and the same time kinetic was also seen in human primary keratinocytes (data

not shown). In vitro experiments are difficult to perform for longer than 96 hours,

however experiments performed at 120 hours suggest that IL-18BP production and

consequent accumulation plateaus at 96 hours.

Figure 3 – 4. IL-18BP is released in a time dependent manner in response to IL-27.

Human primary fibroblasts and HaCat cells were plated at 20,000 cells per well and then stimulated with

50 ng/ml of IL-27 for varying amounts of time before supernatants were collected and IL-18BP protein

concentration assessed by ELISA. a – Human primary fibroblasts were stimulated with 50 ng/ml of IL-27

for varying time points (24, 48, 72, 96). n = 4, independent experiments and different donors. b – HaCat

cells were stimulated with 50 ng/ml of IL-27 for varying time points (24, 48, 72, 96). n = 4. Mean +/-

SEM is depicted on all graphs. Raw data was analysed using an un-paired student’s t-test (GraphPad

Prism 5.03, GraphPad Software, San Diego, CA). * = p ≤ 0.05 ** = p ≤ 0.01 *** = p ≤ 0.001[59] 

It is known that both IFNγ [252] and IL-27 [278] induce CXCL10 therefore levels of 

CXCL10 in response to both IL-27 and IFNγ were studied in human primary fibroblasts 

in order to compare the pro-inflammatory ability of these mediators. Cells were treated

with 50 ng/ml of IL-27 or with 10 ng/ml of IFNγ, which is within the physiological 

range for these cytokines (Figure 3-5). After 24, 48, 72 and 96 hours cell-free

supernatants were removed and analysed by ELISA. Results from these experiments

showed that CXCL10 is released along with IL-18BP at 24 hours however IL-18BP

expression is maintained for longer. This is consistent with observation from other
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mediators where upon stimulation expression of the anti-inflammatory molecule is seen

at a later time point than the pro-inflammatory one. IL-27 induced lower levels of

CXCL10 compared to IFNγ. In the cells treated with IFNγ CXCL10 levels peaked at 24 

hours whereas IL-27 treated cells peaked at a later time point maintaining the expression

for longer, however at a lower level overall. Taken results from Figure 3-2 b into

account these results may suggest that IL-27, compared to IFNγ, promotes the 

production of the anti-inflammatory IL-18BP rather than the pro-inflammatory

CXCL10.

Figure 3 – 5. CXCL10 is differentially expressed compared to IL-18BP in response to IL-27 or

IFNγ. 

Human primary fibroblasts were plated at 20,000 cells per well and then stimulated with 50 ng/ml of

cytokine for varying amounts of time before supernatants were collected and CXCL10 protein

concentration assessed by ELISA. a – Human primary fibroblasts were stimulated with 50ng/ml of IL-27

for varying time points (24, 48, 72, 96). n = 4, independent experiments and different donors. b – Human

primary fibroblasts were stimulated with 10 ng/ml of IFNγ for varying time points (24, 48, 72, 96). n = 4. 

Mean +/- SEM is depicted on all graphs.

3.4 IL-27 activates STAT1 downstream of its receptor

It has previously been shown that STAT1 activation is crucial for IL-18BP expression as

well as expression of CXCL10 [450]. In order to decipher the signalling pathways

involved in the ability of IL-27 to up-regulate IL-18BP experiments were performed in

collaboration Prof. Heiko Muhl at Pharmazentrum Frankfurt/ZAFES. This research
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group had previously performed experiments regarding STAT1 activation and IL-18BP

promoter in IFNγ stimulated DLD-1 colon carcinoma cells [450]. Here, HaCat cells 

were treated with 100 ng/ml of IL-27 or 20 ng/ml of IFNγ for 30 minutes before cell 

lysis. Cell lysates were run on an SDS page gel before western blotting for both STAT1

and phosphorylated STAT1 (Figure 3-6 a). IL-27 initiated STAT1 phosphorylation and

thus activation after 30 minutes however this was to a lesser degree than seen for IFNγ. 

mRNA levels of IL-18BP in HaCat cells were also confirmed using qRT-PCR.

Significant levels of IL-18BP mRNA were detected following treatment with IL-27 as

seen in human primary keratinocytes (Figure 3-6 b); however IFNγ did up-regulate IL-

18BP mRNA to a greater extent. Luciferase reporter assays were performed to analyse

the IL-18BP promoter activity in response to IL-27 (Figure 3-6 c). Wild type promoter

(pGL3-BPwt) indicates induction of IL-18BP which was significantly inhibited when

the proximal GAS site (pGL3-BPmt/prox) was mutated. In contrast, if the distal GAS

site (pGL3-BPmt/dist) was mutated there was no significant difference in mRNA levels

of IL-18BP. A double mutation in both the distal and proximal GAS site (pGL3-

BPmt/prox/dist) resulted in a similar inhibition of the gene promoter compared to a

single mutation in the proximal GAS site. These results indicate a crucial role for the

proximal GAS site in the IL-18BP promoter.
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Figure 3 – 6. IL-27 induces IL-18BP via a STAT1 pathway and the proximal GAS site in the IL-

18BP promoter is crucial for gene activation.

HaCat cells were stimulated with IL-27 and IFNγ and analysis performed in order to elucidate 

downstream signalling for release of IL-18BP. a – HaCat cells were stimulated for 30 min with 100 ng/ml

of IL-27, 20 ng/ml of IFNγ or used as a non-stimulated control. Cells were lysed and the obtained nuclear 

extract analysed by Western blot using antibodies specific for total STAT1 and pSTAT1-Y701. n=3, one

representative experiment shown. b – HaCat cells were stimulated for 24 h with 50 ng/ml of IL-27, 20

ng/ml of IFNγ or used as un-stimulated control and mRNA expression of IL-18BP was determined by 

qRT-PCR. IL-18BP mRNA was normalised to that of GAPDH and is shown as mean fold induction

compared to un-stimulated control. n = 6. c – HaCat cells were transfected with the indicated IL-18BP

promoter constructs. After 24 h, cells were kept as non-stimulated control or stimulated with 100 ng/ml of

IL-27. After another 24 h, cells were harvested and luciferase assays were performed. Data are expressed

as mean fold-luciferase induction (compared to the non-stimulated control transfected with the same

plasmid). n = 4, independent experiments. * = p ≤ 0.05 and ** = p ≤ 0.01 compared to non-stimulated 

control of the respective plasmid; #p,0.05 compared pGL3-BPwt under the influence of IL-27, $$p,0.01

compared to pGL3-BPmt/dist under the influence of IL-27. Experiments carried out in collaboration with

Prof. Heiko Muhl (Pharmazentrum Frankfurt/ZAFES, University Hospital Goethe-University Frankfurt,

Frankfurt am Main, Germany). [59]
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3.5 Understanding the different expression levels of IL-18BP and

CXCL10 at different time points

The results shown in figures 3-4 and 3-5 indicate that CXCL10 and IL-18BP are

released at different kinetics following activation by IL-27 or IFNγ. One possibility for 

prolonged protein expression is increased stability of the IL-18BP mRNA. Therefore in

order to study this fibroblasts were stimulated with 50 ng/ml of IL-27 for 4 hours and

then actinomycin D was added, which stops all transcription. mRNA was isolated at the

point of actinomycin D addition and then 1, 2, 3 and 4 hours after actinomycin D

addition (Figure 3-7 a). Once the mRNA was isolated qRT-PCR was performed for IL-

18BP and IL-8. IL-8 mRNA is known to be relatively unstable, therefore this provided a

good comparator to assess whether IL-18BP mRNA was stabilised following IL-27

treatment. IL-18BP mRNA showed a kinetic very similar to IL-8 mRNA in this

experiment so we concluded that mRNA stability was not a key factor in prolonged IL-

18BP production. Another hypothesis was that IL-27 may cause constant activation of

STAT1 and the consequent maintenance of IL-18BP expression that has been shown in

previous experiments. In order to study this hypothesis human primary fibroblasts were

treated with 50 ng/ml of IL-27. The media was then removed and fresh media added

after washing cells 1, 4, 12, 24 hours after IL-27 treatment. The cells were then cultured

for 48 hours (from the point of initial stimulation) and supernatants removed, IL-18BP

levels were analysed by ELISA. Interestingly, removal of the stimulus from the

supernatant after an hour did not have a marked reducing effect on IL-18BP production,

possibly suggesting that constant receptor activation is not required to have a continued

expression of IL-18BP.



94

Figure 3 – 7. IL-18BP RNA does not show increased stability and constant IL-27 receptor activation

is not required for prolonged production of IL-18BP.

Human primary fibroblasts were plated at 20,000 cells per well and then stimulated with 50 ng IL-27. a –

Human primary fibroblasts were stimulated and then 4 hours later treated with actinomycin D (AD), cells

were lysed at 1, 2, 3 and 4 hours following treatment. qPCR was performed using primers for IL-18BP

and IL-8, a known low stability RNA. n = 1 b – Human primary fibroblasts were stimulated with IL-27

and then media removed and cells washed at 1, 12, 24 hours and fresh media added. Following addition of

fresh media cells were cultured for 48 hours from point of initial stimulation for levels of IL-18BP protein

using ELISA. n = 1. NS = Non-stimulated. [59]

If IL-27 was to be used therapeutically as a topical inducer of the anti-inflammatory

protein IL-18BP in IL-18 mediated diseases then the release of CXCL10 would need to

be completely inhibited. This was attempted in vitro by treating human primary

fibroblasts with 50 ng/ml of IL-27 and then adding 10 µg/ml hydrocortisone at the same

time or 1, 4, 8, 12 and 24 hours either before or after IL-27 treatment (Figure 3-8).

Treatment of human primary fibroblasts with 50 ng/ml of IL-27 induced significantly

less CXCL10 compared to IL-18BP. However, addition of hydrocortisone 1 hour before

IL-27 treatment (Figure 3-8 a) or hydrocortisone 1 hour after IL-27 treatment (Figure 3-

8 b) completely inhibited CXCL10 expression while maintaining IL-18BP levels and

this was maintained for up to a 12 hour gap between treatments. It is worth noting that
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addition of IL-27 and hydrocortisone at the same time did not reduce CXCL10

expression.

Figure 3 – 8. CXL10, but not IL-18BP release is prevented by hydrocortisone.

Primary human fibroblasts were plated at 20,000 cells per well and then stimulated with 50 ng/ml of IL-27

in the presence and absence of 10µg/ml of hydrocortisone (HC) and IL-18BP and CXCL10 ELISAs were

carried out to establish the level of protein released. a – Human primary fibroblasts were stimulated with

10µg/ml of HC and then at time points ranging from 1 – 24 hours later 50 ng/ml of IL-27 was added.

After 48 hours IL-18BP and CXCL10 were analysed via ELISA.. n = 3. b – Human primary fibroblasts

stimulated with 50 ng/ml of IL-27 and then at time points ranging from 1 – 24 hours 10 µg/ml of HC was

added. After 48 hours IL-18BP and CXCL10 were analysed via ELISA. n = 3. Mean +/- SEM is depicted

on all graphs. NS = Non-stimulated.
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3.6 Discussion and future work

Skin resident cells play a crucial role in the pathogenesis of many chronic inflammatory

skin diseases such as psoriasis and CLE. These diseases often have uncontrolled levels

of pro-inflammatory cytokines and it is thought that an imbalance between the pro-

inflammatory and the anti-inflammatory mediators may play a role in the development

of chronic disease. In this chapter a novel anti-inflammatory mechanism of human IL-27

has been defined in skin resident cells. As previously described, IL-18 is thought to play

a pathogenic role in many inflammatory skin diseases [453]. IL-18 may well be

important in the maintenance of inflammation due to its ability to induce TNFα and 

initiate IFNγ release from Th1 lymphocytes and ILC1. In addition, its ability to induce 

MMPs may be important in chronic inflammation. As well as its involvement in chronic

inflammation IL-18 has also been described to play a role in allergic contact dermatitis

[454], which is a common, difficult to treat skin manifestation of delayed type

hypersensitivity.

At present, in depth knowledge about the expression levels of IL-18 and its natural

antagonist IL-18BP is lacking in chronic inflammatory skin diseases. It is has been

identified that the amount of free IL-18 and the amount bound to IL-18BP needs to fully

understood in relation to skin disease [455]. For other diseases, levels of IL-18 and IL-

18BP have been determined and up-regulation of both has been shown in chronic liver

disease. However, in advanced cirrhotic liver disease Ludwiczek et al., suggests that

IL-18BP is not sufficiently up-regulated to control IL-18 mediated immune responses

[256]. Heart failure patients have also been described to have increased IL-18 but

decreased IL-18BP, again suggestive of an uncontrolled inflammation due to imbalance

of pro- and anti-inflammatory mediators [456]. In contrast, a recent study has shown

that IL-18 and IL-18BP are both highly up-regulated in the blood of patients with

atherosclerosis [449]. However, some imbalance may be present as blocking of IL-18

has been shown to reduce the size and inflammatory state of the atherosclerotic plaque

[457]. IL-18 has also been implicated in adult-onset Still’s disease and the analysis of

free IL-18 has been used as an important factor in the assessment of disease remission

[458].
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IL-18BP is clearly a crucial mediator that is important for controlling the highly

inflammatory functions of IL-18 and possibly important in the resolution of

inflammation. It is thought that there are basal levels of IL-18BP present in the

circulation and also data in this chapter has highlighted the ability of keratinocytes to

produce basal levels of IL-18BP. It is worth noting that data presented here suggest that

dermal fibroblasts are significant producers of IL-18BP. These cells do no produce IL-

18, which points to a possible role for dermal resident cells as ‘controllers’ of

inflammation. Thus dermal fibroblasts which produced significantly higher levels of IL-

18BP compared to the keratinocytes, seem to play an important role in the complex

network of cell types and mediators that provide the fine tune control of inflammatory

responses.

As described previously IL-27 is a pleiotropic cytokine that has been described to have

both pro-inflammatory and anti-inflammatory roles. It has been shown to prime

keratinocytes, macrophages and IDECs for IL-23, CXCL10 and TNFα production and 

has therefore been described to play a role in many inflammatory diseases [277, 278,

281, 432]. On the contrary other studies have suggested a role for IL-27 as an anti-

inflammatory mediator in the later stages of infection. In one study IL-27 was shown to

down-regulate cytokines involved in Th1, Th2 and Th17 subset development [459]. This

study and others support the notion that IL-27 may have pro-inflammatory functions to

produce a robust inflammatory response, following which at the later stages of infection

IL-27 plays a more regulatory role. The complex mechanism by which IL-27 acts may

be due to its downstream signalling, both STAT1 and STAT3 are known to be activated

during IL-27 receptor activation. Of note, STAT3 does not play a role in the expression

of IL-18BP in colon carcinoma cells [460]. The anti-inflammatory roles of IL-27 have

predominantly been described in murine models however, in this chapter a novel anti-

inflammatory mechanism of IL-27 has been described. This may be crucial in

understanding the role of IL-27 in the pathogenesis of inflammatory diseases.

The anti-inflammatory roles of IL-27 have predominantly been described in murine

models however, data presented in this chapter add a novel anti-inflammatory

mechanism of IL-27 relevant for human tissues. Data presented indicate that the
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proximal GAS site on the IL-18BP promoter is crucial for IL-18BP expression.

However, a previous study has shown that in cardiac myocytes the β2-adrenergic 

receptor triggers a signalling cascade that leads to cAMP response element-binding

(CREB) and CCAAT-enhancer-binding protein (c/EBP) β dependent IL-18BP release 

[461]. This was also shown in another study where c/EBP bound to the proximal GAS

site on the IL-18BP promoter in HepG2 cells [462]. Taken together this suggests that

there may be differential transcription factors involved in IL-18BP expression in

different cell types, the studies shown here are in transfected cell lines and murine cell

which may differ greatly to human primary cells. Therefore this is an important avenue

for further work. However, due to the emerging interest in the IL-18/IL-18BP axis in

cardiomyopathy it would be interesting to further elucidate a role for c/EBP in the

induction of IL-18BP in human cardiac myocytes.

It would be of therapeutic interest to manipulate the IL-18/IL-18BP axis. There has been

one Phase I clinical trial in patients with rheumatoid arthritis and plaque psoriasis where

subcutaneous doses of IL-18BP were well tolerated and levels were maintained in the

serum if injections were repeated every two days [258]. However, efficacy was not fully

determined in that Phase I study and further work is required to establish whether

treatment with IL-18BP would reduce chronic inflammation in different organs. It was

however noted that IL-18BP at intermediate doses did in fact improve some clinical

symptoms, interestingly at high doses this disease altering effect and reduced cell

activation was not seen [258]. This is consistent with murine models of collagen-

induced arthritis where IL-18BP at high doses increased disease severity [463]. It is a

possibility that high levels IL-18BP may be bound by the IL-1 family member, IL-37

depriving IL-18BP of its antagonist properties [464]. In some immune responses it

would not be beneficial to reduce IL-18. For example in viral infection where virus

virulence is increased by the ability of the virus to increase either endogenous IL-18BP

or homologues of this molecule [261]. In this situation the antiviral properties of IL-18

are crucial to reduce viral infection. However, in myocardial infarction and murine

models of heart failure IL-18BP seems to play a protective role against tissue damage

and may therefore in some situations be a viable therapeutic [465]. Due to the issues
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demonstrated using recombinant IL-18BP as a therapeutic, up-regulation of endogenous

IL-18BP may present a promising alternative option as a therapeutic.

Interestingly, data in this chapter has shown that the inflammatory mediator CXCL10

that is also induced following IL-27 stimulation and consequent STAT1 activation can

be inhibited in skin resident cells with the simple addition of commonly used anti-

inflammatory, hydrocortisone. However, this effect was not seen if given at the same

time as IL-27, hydrocortisone only inhibited CXCL10 if given an hour before or after

IL-27. Hydrocortisone and hydrocortisone acetate are often used topically in skin

inflammation. These drugs exert their action by binding to the glucocorticoid receptor in

the cytoplasm and this consequently leads to reduction in pro-inflammatory transcription

factors. This has been shown to involve reduction in NF-ĸB pathway activation but it 

has been suggested that there may be other pathways targeted [466]. Interestingly,

treatment of cells with hydrocortisone had no effect on levels of IL-18BP. This suggests

that the downstream signalling of IL-27 may be more complex than currently reported

and these cytokines may not only be STAT1 dependent, as previously discussed c/EBP

may also play a role [462].

Taken together, the presented data suggest that IL-27 could be used as a therapeutic.

However, having an hour between treatments is not a practical solution and more work

is needed make use of the anti-inflammatory properties of IL-27. IL-27 could be a novel

way to induce endogenous IL-18BP in the skin. This could be achieved by using a

combination of IL-27 and a commonly used immune suppressive topically for the

treatment of inflammatory skin diseases. However, IL-27 would need to be assessed

more thoroughly for its ability to induce any other pro-inflammatory mediators. In

conclusion, the results presented describe a novel anti-inflammatory mechanism for the

pleiotropic cytokine, IL-27. IL-27 has the ability to preferentially up-regulate IL-18BP

and may control IL-18 mediated inflammation. The data show that IL-18BP expression

following treatment with IL-27 is dependent on STAT1 activation and indicates the

importance of the proximal GAS site on the IL-18BP promoter. Following stimulation

of skin resident cells with IL-27 IL-18BP seems to have a delayed production, peaking

at around 48 hours but with a prolonged ability to release protein, up to 120 hours. This
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has been proposed as accumulation of stabilised protein rather than stabilisation at the

transcriptional level as we failed to see high mRNA stability. A previous study has

suggested that IL-18BP accumulates in the supernatant of cultured cells [462]. Constant

receptor activation was not shown to impact IL-18BP protein levels, again suggestive of

an accumulation of protein that is stable for a prolonged period. However, washing the

cells with PBS may not have sufficiently removed the IL-27, therefore more work is

required to analyse activation of downstream transcription factors over a range of time

periods. Data in this chapter also suggests that the pro-inflammatory cytokine CXCL10,

which is also up-regulated to a lesser degree than IL-18BP by IL-27, could be fully

inhibited by the use of well know immune suppressive drugs in combination with IL-27.

However, further work is needed to fully elucidate the downstream signalling pathway

following IL-27 receptor activation before this can be used in pilot studies as a

therapeutic molecule.
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Chapter 4 – Establishing the efficacy of the anti-IL-

17A RNA aptamer, Apt21-2 in skin resident cells
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4.1 Introduction

IL-17A is a pro-inflammatory cytokine that has been implicated in the pathogenesis of

many inflammatory diseases. This cytokine is predominantly produced by Th17

lymphocytes and is a key mediator in chronic tissue inflammation [467]. However, Th17

cells do not exclusively produce IL-17 but also produce IL-21 and IL-22 [468], the latter

of which has also been implicated in psoriasis [469]. IL-17A was initially described as a

player in autoimmunity, being identified in human rheumatoid arthritis as an up-

regulated mediator. More recently, the IL-17 family has been identified as having six

members; IL-17A, IL-17B, IL-17C, IL-17D, IL-17E and IL-17F. IL-17A and IL-17F

have been most well described and are thought to be involved in IL-17 mediated disease

[387]. Apt21-2 has been shown to be a specific neutraliser of IL-17A. Lack of

crossreactivity is not surprising considering that IL-17F and IL-17A only share 55%

homology [365].

Murine models and use of neutralising antibodies against IL-17 have provided useful

insights into the pathogenic role of IL-17. This has led to the development of

neutralising anti-IL-17 therapeutic antibodies for treatment of both multiple sclerosis

and ankylosing spondylitis [470]. However, IL-17 has also been linked directly to

disease in humans. Th17 cells were identified in the lesional skin of psoriasis which

initially linked IL-17 to a possible role in disease pathogenesis [3]. IL-23, which has

been shown to be crucial in Th17 development, is also up-regulated in psoriasis [471].

The effector cytokines released from Th17 cells such as IL-17A cause the pathogenic

skin changes seen in psoriasis as well as increased inflammatory mediators that further

enhance Th17 activity. This positive feedback loop maintains the psoriatic lesion and

contributes to the chronicity of the disease. These observations along with extensive

publications suggesting a pathogenic link between psoriasis and IL-17 has led to the

development of novel biologics targeting this pathway [472]. Humanised antibodies

targeting IL-17A (secukinumab and ixekizumab) and blocking its pro-inflammatory

action by preventing binding to its receptor have been developed, as well as antibodies

targeting the IL-17 receptor and preventing agonist binding (brodalumab) [424, 473]. At
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present these biologics are showing promising results in clinical trials, affirming the

concept that IL-17 is a critical cytokine in the pathogenesis of psoriasis [474].

These highly pro-inflammatory and pathogenic roles of IL-17A make this molecule an

obvious target for therapeutic intervention. Th17 cells co-express IL-22 which is

described to play a role in psoriatic skin symptoms but it has also been shown to be

protective in colitis [469]. This suggests that the pathogenic role of Th17 cytokines may

be relevant to the tissue context and surrounding cytokine milieu and this needs to be

taken into account when designing therapeutics to target this pathway.

The importance of IL-17 in disease is evident. However, at present humanised

monoclonal antibodies and limited small molecule inhibitors are the only therapies

specifically targeting this pathway. Antibodies have disadvantages in that they can be

immunogenic and anti-drug antibodies can be detected in a substantial number of

patients [475]. This can lead to symptoms ranging from mild skin reactions to

anaphylaxis and often significant reduction of the therapeutic efficacy [475].

Therapeutic antibodies are also costly to produce and they have systemic

immunosuppressive properties. Systemic therapy is however not necessarily required in

a skin limited disease. Treatment of systematic diseases, such as multiple sclerosis and

severe psoriasis, may be suited to an antibody based systemic therapy but these

biologics do not work in all patients. For this reason and the fact that these biologic

therapies are often associated with side effects an effective, topical strategy is required

for treatment of psoriasis and other chronic inflammatory skin diseases [476].

RNA aptamers are single stranded oligonucleotides segments that bind targets

specifically and with great affinity [379] (See 1.7 for more detailed discussion). These

molecules are non-immunogenic due to the lack of a 5’ triphosphate and limited regions

of double stranded RNA which prevents activation of intracellular retinoic acid-

inducible gene 1 (RIG-I) or TLR3 [477, 478]. RNA aptamers are easily produced in

vitro keeping costs down. Multiple rounds of selection allows for highly specific

binding. The small size and structural flexibility of these RNA molecules also allows for

binding to epitopes on the target molecules that would not be detected by antibodies

[380]. The first RNA aptamer was FDA approved in 2004 against VEGF for treatment
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of age-related macular degeneration (Macugen®) [479], many more are currently in

various stages of clinical trials for treatment ranging from cancer to inflammatory

diseases [353]. An anti-human IL-17A RNA aptamer was produced in 2011 by Ishiguro

et al. [365], who showed that this aptamer prevented IL-17A binding to its receptor

consequently preventing downstream signalling. Murine models were used to assess

efficacy of the aptamer and it was shown to inhibit IL-17 action in the Th17 mediated

autoimmune models. This chemically produced RNA aptamer was named Apt21-2 and

will be referred to as this from here on. A RNA aptamer has also been produced that

specifically binds and antagonises the heterodimeric form of IL-17A/IL-17F, however

this aptamer is still at its early stages and requires optimisation to increase its

neutralisation capacity [480]. Of note, this aptamer is not being designed for therapeutic

use but for a tool to overcome the hurdles of specifically identifying this heterodimeric

form of IL-17.

This chapter will aim to assess the efficacy of Apt21-2 in human skin resident cells with

the view to further elucidate the potential of this aptamer as a topical therapy for the

treatment of Th17 mediated skin diseases such as psoriasis. This will focus on both

primary human keratinocytes and dermal fibroblasts and also whether Apt21-2 can

neutralise the effects of endogenous human IL-17A.

4.2 Structure of Apt 21-2

Apt21-2 was produced synthetically in house at the University of Leeds according to the

sequence of the previously published functional anti-IL-17A RNA aptamer [365].

Apt21-2 is 33 nucleotides long and includes pyrimidines modified with the addition of

2’ fluorine to increase stability of the RNA molecule. Apt21-2 has very limited sections

of double-stranded RNA which is advantageous for reducing activation of the

intracellular TLR3 and RIG-I receptors (Figure 4-1). Apt21-2 was also produced with

fluorophores added on either exclusively the 3’ end (Cy3) or both the 3’ (Cy3) and 5’

(Cy5) end (for sequences see 2.2.18). This was to allow monitoring of the aptamer using

fluorescence microscopy and the double-labelled aptamer allowed for visualising

whether the RNA molecule was still intact.
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Figure 4 – 1. IL-17A aptamer - Apt21-2

An mfold (Michael Zuker & Nick Markham, the mfold web server) diagram of the potential structure

Apt21-2 is depicted. It is worth noting that this is only a prediction and Apt21-2 may form a different

structure and oscillate between many. This aptamer was chemically synthesised due to its known ability to

antagonise IL-17A activity. It is 33 nucleotides long and has a small portion of double stranded RNA,

which is advantageous in reducing TLR and RIG-I responses The pyrimidines have been modified by the

addition of fluorine to increase stability of the RNA.

4.3 Efficacy of Apt21-2 in human primary fibroblasts

The previously published study describes the efficacy of Apt21-2 in murine models and

human cells. However in order for this to be a potential therapeutic to treat skin-related

disease the ability of Apt21-2 to neutralise the effects of physiologic IL-17A on skin

resident cells need to be assessed. The focus of this chapter is on skin resident cells due

to the known relevance of IL-17A in the pathogenesis of psoriasis. In order for Apt21-2

to be developed as a topical therapy it needs to be confirmed that it has human IL-17A

neutralising capacity with regard to both human primary keratinocytes (results depicted
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in 4.4) and fibroblasts activation. In order to address these questions human primary

fibroblasts were treated with 10 ng/ml of recombinant IL-17A and then increasing

concentrations of Apt21-2 (5 nM-100 nM). After 24 hours cell-free supernatant was

removed and IL-6 protein concentrations analysed using ELISA. In the previously

published study [365] IL-6 was used as the pro-inflammatory readout and levels were

reduced in the presence of Apt21-2, hence why it has been used in this study. A size-

matched control aptamer was also used in these experiments. This aptamer (47tr) was

synthesised against polymerase from foot-and-mouth disease virus [481].

Human primary fibroblasts treated with increasing doses of Apt21-2 in the presence of

10ng/ml of recombinant IL-17A showed significant reduction of IL-6 release, the

significant reduction in IL-6 correlated with increasing aptamer concentrations (Figure

4-2 a). This data set was normalised to the IL-17A treated cells without Apt21-2 and

compared to this control in the presence of 80 nM of Apt21-2 more than a 50%

reduction in IL-6 was seen. No significant reduction of IL-6 production was seen when

cells were treated with increasing concentrations of 47tr in the presence of IL-17A,

suggestive of the fact that IL-17A cannot be neutralised by a size matched control RNA

aptamer. Recombinant TNFα was also used in combination with increasing 

concentrations of Apt21-2 to assess whether this aptamer was specific to IL-17A (Figure

4-2 b).  Human primary fibroblasts were treated with 10ng/ml of IL-17A and TNFα in 

the presence and absence of increasing concentrations of Apt21-2 (5 nM – 100 nM).

This data set was also normalised to IL-17A or TNFα alone and a reduction in IL-6 

release was evident in the presence of Apt21-2 but not in the presence of the control

aptamer, 47tr. This indicates that Apt21-2 is a specific neutralising RNA aptamer

against IL-17A and does not have an effect on other pro-inflammatory cytokines. These

experiments were carried out in healthy human primary fibroblasts as well as fibroblasts

isolated from psoriatic patients (Figure 4-2 c). Both healthy and psoriatic fibroblasts in

the presence of 10ng/ml of IL-17A and increasing concentrations of Apt21-2 (5 nM –

100 nM) showed reductions in IL-6 levels. This indicated that Apt21-2 also had an

effective neutralising capacity in fibroblasts derived from psoriatic patients.
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Figure 4 – 2. Apt21-2 effectively neutralises recombinant IL-17A in healthy and psoriatic human

primary fibroblast culture.

Human primary fibroblasts were stimulated with 10 ng/ml of IL-17A in the presence or absence of

increasing concentrations of aptamer. After 24 hours IL-6 levels were analysed by ELISA. a – Human

primary fibroblasts were stimulated with 10 ng/ml of IL-17A in the presence or absence of chemically

synthesised control aptamer (47tr) (n = 3) and Apt21-2 (n = 4). IL-6 levels shown represent normalised

values to the control stimulated with IL-17A only. b – Human primary fibroblasts were stimulated with 10

ng/ml of IL-17A or 10ng/ml of TNFα in the presence and absence of Apt21-2. IL-6 levels shown 

represent normalised values to the IL-17A only control. n = 2. c – Human primary fibroblasts isolated

from both healthy control and psoriatic patients were stimulated with 10ng/ml of IL-17A in the presence

and absence of Apt21-2. n = 1. Mean +/- Standard error of the mean (SEM) is depicted on all graphs. NS

= Non-stimulated. Raw data was analysed using a one way ANOVA with Bonferroni post-test (GraphPad

Prism 5.03, GraphPad Software, San Diego, CA). ** = p ≤ 0.01 *** = p ≤ 0.001. [476] 

Human primary fibroblasts were also co-cultured with human CD4+ CCR6+ IL-17

producing T cells to assess the functionality of Apt21-2 on endogenous rather than

recombinant IL-17A (Figure 4-3). In order to do this CD4+ CCR6+ T cells were isolated



108

from PBMCs using MACS® separation from both healthy and psoriatic donors.

Following isolation CD4+ CCR6+ T cells were cultured with healthy human primary

fibroblasts in the presence of antiCD3/antiCD28 to activate the T cells and increasing

concentrations of Apt21-2 (5 nM – 100 nM). As shown with the recombinant IL-17A

there was a substantial decrease in IL-6 release following treatment with the aptamer.

Interestingly the CD4+ CCR6+ T cells derived from psoriatic patients required a higher

concentration of Apt21-2 in order to detect neutralisation of IL-6, suggestive of the fact

that more IL-17A was produced by these cells.

Figure 4 – 3. Apt 21-2 effectively neutralises physiologic IL-17A in a T cell – fibroblast co-culture.

Human primary fibroblasts were cultured in the presence or absence of CD4+ CCR6+ (Th17 cells)

isolated from either healthy donors or psoriatic donors. Th17 cells were stimulated with 450 ng/ml and

200 ng/ml of aCD3/aCD28 antibodies respectively. Increasing concentrations (5 nM – 80 nM) of Apt 21-2

was added to the co-culture. After 24 hours IL-6 levels were analysed by ELISA. n = 1. NS = Non-

stimulated. [476]
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4.4 Efficacy of Apt21-2 in human primary keratinocytes

Apt21-2 was confirmed to have neutralising effects in human primary fibroblasts

therefore experiments were also carried out in human primary keratinocytes.

Keratinocytes were treated with 10 ng/ml of recombinant IL-17A in the presence and

absence of increasing concentrations of Apt 21-2 and control aptamer, 47tr (5 nM – 100

nM). After 24 hours of stimulation cell free supernatants were removed and both IL-6

(Figure 4-4 a) and IL-8 protein (Figure 4-4 b) concentrations were analysed by ELISA.

IL-8 was used as an additional pro-inflammatory mediator that is produced by

keratinocytes in response to various inflammatory mediators [482] and in these

experiments the human primary keratinocytes were producing low levels of IL-6.

Unexpectedly no significant neutralisation of IL-8 or IL-6 release was detected in the

human primary keratinocytes, in contrast to the human primary fibroblasts where

neutralisation could be seen with the addition of only 5 nM of Apt21-2. High

concentrations of Apt21-2 (80 nM) were also added to the cells alone to assess for

possible activation of the keratinocytes. However levels were not significantly different

to the non-stimulated control. No difference in the effects of Apt21-2 and the size

matched control, 47tr could be detected.
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Figure 4 – 4. Apt 21-2 does not neutralise IL-17A in human primary keratinocyte culture.

Human primary keratinocytes were stimulated with 10ng/ml of IL-17A in the presence or absence of

increasing concentrations of aptamer (5 nM-80 nM) and 80 nM of Apt21-2 alone. Cell supernatants were

then removed after 24 hours and protein levels analysed by ELISA. a – Human primary keratinocytes

were stimulated with 10 ng/ml of IL-17A in the presence or absence of Apt 21-2. Cell supernatants were

collected after 24 hours and IL-6 levels analysed using ELISA. n = 3. b - Human primary keratinocytes

were stimulated with 10 ng/ml of IL-17A in the presence or absence of Apt 21-2. Cell supernatants were

collected after 24 hours and IL-8 levels analysed using ELISA. Mean +/- SEM is depicted on all graphs.

NS = Non-stimulated. [476]

4.5 Unexpected uptake of Apt21-2

Results depicted in 4.3 and 4.4 indicate a huge contrast in efficacy of Apt21-2 in the two

different skin resident cells. Therefore, this led to some exploratory experiments and due

to the availability of fluorescently labelled aptamers this allowed for tracking of the

aptamer following its addition to cells. It had previously been suggested that relatively

small DNA molecules were internalised by cells [373], therefore this led to investigate

the possibility of RNA molecules being taken up in skin resident cells. Human primary

keratinocytes were treated with 3’ Cy3 labelled Apt21-2 in serum containing conditions

and imaged using live cell imaging at 3 hours and 20 hours (Figure 4-5 a + b).

Interestingly, even after the relatively short time period of 3 hours the images suggested

that the aptamer was being internalised by the human primary keratinocytes and this

uptake was further clarified at 20 hours. This was also confirmed in fixed cells using
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fluorescent microscopy. Primary human keratinocytes were treated with 3’ and 5’ (Cy3

and Cy5 respectively) labelled Apt21-2, as well as a 3’ Cy3 labelled 47tr size matched

control aptamer. After 4 hours of treatment with the aptamer cells were fixed with 4%

paraformaldehyde and counterstained with DAPI to distinguish the nuclei, following

which cells were mounted and imaged. After 4 hours both control aptamer (Figure 4-5

c) and Apt21-2 (Figure 4-5 d-f) were convincingly internalised by the human primary

keratinocytes. It appears that the keratinocytes have the ability to internalise any small

RNA molecules due to the control aptamer being internalised to the same degree. Cy3

and Cy5 were co-localised in images where cells had been treated with the double-

labelled aptamer (Figure 4-5 d-f), suggestive of the fact that the RNA aptamer had been

internalised and remained intact within the cells.
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Figure 4 – 5. Small RNA molecules are rapidly internalised by human primary keratinocytes.

Human primary keratinocytes were treated with 80 nM of labelled Apt21-2 at various time points in order

to track uptake of the RNA. a, b - Primary human keratinocytes treated with Cy3-labelled Apt21-2 at 3

hours (a) and 20 hours (b), using live-cell imaging. c - Human primary keratinocytes were also treated

with a Cy3-labelled control aptamer (47tr) for 4 hours. DAPI (diamidino-2-phenylindole, top left), Cy3

(top right hand), and merged (lower left). d–f Human primary keratinocytes were also treated with a

3’Cy3 and 5’Cy5 double-labelled aptamer for 4 hours. Images were taken at increasing magnification

from d through to f. DAPI (top left), Cy3 (top right hand), Cy5 (lower left), and merged (lower right).

Following incubation cells were fixed with 4% paraformaldehyde and stained for DAPI. Slides were

imaged using an inverted LSM510 confocal microscope coupled to a LSM Image Browser. Bars = 50 µM.

[476]

Previous publications have suggested that aptamer uptake may be receptor mediated

[375], therefore uptake may only occur in the presence of the target. In order to assess

whether this was true for Apt21-2 the human primary keratinocytes were treated with 80
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nM 3’ Cy3 labelled Apt21-2 alone (Figure 4-6 a-c) or with 10 ng/ml of recombinant IL-

17A in the presence of 3’ Cy3 labelled Apt21-2 (Figure 4-6 d-f). No difference could be

seen in the uptake ability whether IL-17A was present or not which is not surprising

because Apt21-2 should prevent IL-17A binding to its receptor. However, it does

indicate that Apt21-2 bound to IL-17A does not prevent internalisation.
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Figure 4 – 6. Apt21-2 is not dependent on IL-17A in order for internalisation to occur.

Human primary keratinocytes were treated with 80 nM of 3’ cy3 labelled Apt21-2 for 4 hours in the

presence and absence of 10 ng/ml of recombinant IL-17A in order to track uptake of the RNA. a – c

Human primary keratinocytes were incubated for 4 hours with 80 nM of 3’Cy3 labelled aptamer. a –

Nuclei stained with DAPI. b – Cy3 fluorescence. c – Merge of Cy3 fluorescence and DAPI. d - f Human

primary keratinocytes were incubated for 4 hours with 80nM of 3’Cy3 labelled aptamer in the presence of

10 ng/ml of recombinant IL-17A. d – Nuclei stained with DAPI. e – Cy3 fluorescence. f – Merge of Cy3

fluorescence and DAPI. Following incubation cells were fixed with 4% paraformaldehyde and stained for

DAPI. Slides were imaged using an inverted LSM510 confocal microscope coupled to a LSM Image

Browser. Images representative of two experiments. Bars = 50 µM.
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Due to the unexpected finding in human primary keratinocytes human primary

fibroblasts were also analysed for double-labelled 3’ and 5’ (Cy3 and Cy5 respectively)

labelled Apt21-2 uptake. Dermal fibroblasts were treated with Apt21-2 and then

incubated for 6 hours before fixation with 4% paraformaldehyde and then

counterstained with DAPI to distinguish the nuclei (Figure 4-7). Slides were then

mounted and imaged using fluorescent microscopy. Dermal fibroblasts were treated for

6 hours due to the fact that human primary fibroblasts have not been described to have

the same uptake ability as keratinocytes. After the 6 hour incubation there is some

uptake of Apt21-2 in to the cells and co-localisation is present, suggestive of an intact

RNA molecule. However, due to the higher level of background seen in the fibroblasts

compared to the keratinocytes it is suggestive that not as much Apt21-2 is taken up or a

longer time period is required for uptake.
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Figure 4 – 7. Small RNA molecules are also taken up by human primary fibroblasts.

Human primary fibroblasts were treated with 80 nM of 3’Cy3 and 5’Cy5 labelled Apt21-2 for 6 hours. a –

Nuclei stained with DAPI. b – 3’Cy3 fluorescence. c – 5’Cy5 fluorescence. d – Merge of Cy3 and Cy5.

Following incubation cells were fixed with 4% paraformaldehyde and stained for DAPI. Slides were

imaged using an inverted LSM510 confocal microscope coupled to a LSM Image Browser. Bars = 50

µM.

4.6 Immune activation by Apt21-2

Results depicted in 4.4 and 4.5 indicate that human primary keratinocytes and

fibroblasts effectively internalise RNA molecules however this may cause a RIG-I

response by the cell, which is a cytosolic sensor of intracellular PAMPs, particularly

RNA [483]. Endosomal TLRs such as TLR3, TLR7, TLR8 and TLR9 are also important
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in sensing intracellular pathogen derived nucleic acids [484]. Activation of these

intracellular receptors leads to release of type-I IFNs and pro-inflammatory cytokines.

However, these receptors importantly sense double stranded RNA and a 5’ triphosphate

therefore Apt21-2 should not be detectable by these intracellular receptors. In order to

investigate whether uptake of Apt21-2 was in fact eliciting response from these

receptors, primary human keratinocytes and fibroblasts were treated with either 80nM

Apt21-2, 100ng/ml poly (deoxyadenylic-deoxythymidylic) acid (Poly dA:dT) or 1µg/ml

Poly I:C. Poly dA:dT is a synthetic double stranded DNA and Poly I:C is a synthetic

double stranded RNA and both were used as positive controls that would activate the

intracellular pathogen sensors. Cells were treated for 24 hours before RNA was isolated

and qRT-PCR was performed to analyse known downstream genes of the intracellular

TLRs and RIG-I-like receptors as well as IFN induced genes such as IFNλ (Figure 4-8). 

MX1 and Gbp-1 were analysed and these are normally up-regulated following activation

of the cell by IFNs. IFNβ was analysed due to the fact that it is a known downstream 

mediator of TLR3. Both the human primary keratinocytes and human primary

fibroblasts did not show any increased expression of the panel of IFN and intracellular

receptor response genes, in comparison to the positive controls which did induce these

IFN response genes in different patterns depending on cell type. These results are

suggestive of the fact that internalisation of Apt21-2 is not eliciting an immune response

by either human primary keratinocytes or fibroblasts.
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Figure 4 – 8. Human primary cells were treated with small RNA molecules and no up-regulation of

interferon response genes could be detected.

Human primary cells were stimulated with either 1µg/ml Poly I:C, 100ng/ml Poly dA:dT or 80nM of

Apt21-2 for 24 hours before mRNA was isolated and qRT-PCR performed. a – Human primary

keratinocytes were stimulated with Poly I:C, Poly dA:dT and 80nM of Apt21-2 for 24 hours. qRT-PCR

was performed to assess levels of MX1, IFNβ, IL-29 and Gbp-1. b - Human primary fibroblasts were

stimulated with Poly I:C, Poly dA:dT and 80nM of Apt21-2 for 24 hours. qRT-PCR was performed to

assess levels of MX1, IFNβ, IL-29 and Gbp-1. All qRT-PCR data was normalised to the housekeeping 

gene U6. Mean +/- SEM is depicted on all graphs. NS = Non-stimulated.
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4.7 Discussion and future work

The role of IL-17 in chronic inflammatory skin diseases such as psoriasis is well

described. IL-17 has been identified as a key mediator involved in driving of the

inflammatory cascade seen in psoriatic lesions [424]. For this reason it has been

highlighted as a possible therapeutic target in the treatment of psoriasis. Humanised

monoclonal antibodies are currently in the latter stages of clinical trials or already

licensed for treatment and efficacy is promising in psoriasis showing potent and rapid

reduction of disease symptoms [474]. However this is a systemic therapy which if

effective in blocking the pathogenic IL-17 will also lead to side effects such as fungal

infections, due to the important role of IL-17 in anti-fungal immune responses [414].

There are also questions over the long term safety of these drugs and the extremely high

costs mean that alternatives are also necessary [485]. Therefore, it is crucial that for

chronic inflammatory skin diseases limited to the skin a topical therapy is developed to

avoid systemic side effects.

Developments have been made in moving the treatment of psoriasis to a more topical

rather than systemic approach. A recent study in mice has shown that the newly

developed skin penetrating methotrexate ameliorated imiquimod induced psoriasiform

inflammation using clinical criteria [486]. Methotrexate is used extensively in

dermatology as an inexpensive effective systemic therapy, however it is toxic to various

cell types including liver and bone marrow. These serious side effects limit the use of

this drug, however this recent study has established an effective novel way to use this

drug topically [486]. These up and coming topical therapies in psoriasis will be crucial

to increase effective treatments for patients where conventional therapy has failed. RNA

aptamers present as an ideal molecule to use for topical therapy. They are cost effective

due to the in vitro production and non-immunogenic. Due to the unique structure of

these molecules they can also bind epitopes that antibodies cannot so therefore maybe

an invaluable therapeutic tool when biologic therapy has failed. RNA aptamers are

currently being produced against a huge range of targets ranging from anti-cancer

therapies to anti-viral therapies [487]. One RNA aptamer is at present FDA approved
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and is used topically to treat age-related macular degeneration [379], therefore a topical

therapy for skin using this technology is within reach.

The experiments in this chapter aimed to establish whether Apt21-2 could be a potential

therapeutic for the topical treatment of IL-17 mediated skin diseases. Apt21-2 was

successful at neutralising the effects of recombinant IL-17A and endogenous IL-17 in

primary human fibroblasts however this same positive effect was not seen in the human

primary keratinocyte culture. This was likely due to the rapid uptake of Apt21-2 in to

the cells. The specific site by which Apt21-2 binds IL-17A was not established in this

study, however Ishiguro et al., [365] who designed the aptamer did establish binding

affinity (Kd - 48.5 pM) and specificity using surface plasmon resonance. This in

conjunction with our data showing reduction in IL-6 levels following addition of IL-17A

in combination with Apt21-2 indicates that Apt21-2 is preventing binding of IL-17A to

its receptor. Ishiguro et al., [365] identified that Apt21-2 showed neutralising effects for

both murine and human IL-17A, for which there is 63% homology suggesting binding is

occurring in this conserved region. However, in order to confirm the region of Apt21-2

binding that prevents IL-17A binding to its receptor co-crystallisation of IL-17A in

combination with the aptamer would be required. Alternatively, mutational analysis of

the aptamer or recombinant IL-17A could be performed to assess which regions are

required for binding.

Our previous work has shown that dermal fibroblasts are undoubtedly a significant

source of pro-inflammatory cytokines, so therefore reducing IL-17 mediated effects may

be beneficial for modulating disease. However, for a topical therapy to work

keratinocytes need to be taken into account because they form the barrier of the skin and

therefore are the first cells to come into contact with anything placed on the skin. If

Apt21-2 was to be used as a topical therapeutic in treating chronic inflammatory skin

diseases then keratinocytes would need to be bypassed. At present there are various

methods by which drugs can be administered directly into the dermis [488]. Results

depicted in this chapter indicate that despite internalisation of Apt21-2 in keratinocytes

and to a lesser degree fibroblasts there is not a type-1 IFN response. This is crucial when

designing therapeutics and despite the non-immunogenic features of small RNA
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aptamers, siRNA has been shown to activate a RIG-I response [489]. Therefore the lack

of a type-1 IFN response in human primary fibroblasts is an encouraging result for

developing Apt21-2 as a therapeutic.

There is an increasing demand for delivery of drugs or vaccines directly into the dermis

bypassing the difficult to penetrate stratum corneum, therefore technologies are being

developed. These include jet injectors, which involve a high powered stream of liquid

that pierces the skin and delivers the drug into the dermis [488]. Hollow microneedles

containing aqueous drugs [490] and biodegradable drug incorporated needles [491] have

both been developed as dermal delivery systems. A patch system has also been

developed where drug coated microneedles are attached to an adhesive patch and can be

placed on the skin piercing the epidermis and reaching the dermis [492]. These newly

developed technologies allow for therapeutic potential of Apt21-2 to prevent IL-17

mediated inflammation in the dermis. However, further studies are needed to establish

the penetrative capabilities of RNA aptamers once in the skin because at present this has

not been investigated. This needs to be established due to the abundant number of

RNases that are present in the skin. Ribonuclease (RNase) 7 and 5 are particularly well

described within the skin compartment due to their role in cutaneous defence [493]. The

effects of these RNAses on Apt21-2 integrity need to be established before the concept

of using RNA aptamers as a topical skin therapy can be taken further.

Data presented in this chapter indicates that Apt21-2 effectively neutralises both

recombinant and endogenous IL-17A in a human primary fibroblast culture. However,

the ineffective neutralising capacity in the human primary keratinocytes and the finding

that this small RNA aptamer was passively taken up into the cell was not an expected

finding. This may however explain the lack of neutralising ability because Apt21-2 was

not available in the extracellular space. Of note, the keratinocytes were inefficiently

stimulated by IL-17A and this may also account for lack of neutralisation, the low levels

of activation that were seen were however not altered. Data presented in this chapter

indicate that Apt21-2 neutralises endogenous IL-17 however it is worth noting that this

experiment was only performed once and the experimental setup has limitations. CD4+

CCR6+ enrichment of PBMCs can yield small numbers of cells which is likely to be the
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reason for the low levels of IL-6 seen following stimulation. This experiment need

repeating to confirm that this effect with the inclusion of an IL-17 neutralising antibody

control as well as FACS staining in conjunction to indicate efficient enrichment and

presence of IL-17, with these controls the neutralising effect of Apt21-2 could be

confirmed as IL-17 mediated.

The uptake of RNA molecules by keratinocytes is a novel finding as uptake of RNA

aptamers in to primary skin resident cells has not previously been described. However,

human primary keratinocytes do have tendencies to take up substances from the

environment and uptake of melanosomes is crucial for keratinocyte survival and

protection from UV. The mechanisms by which melanosome transfer into keratinocytes

occurs are not all together clear [494]. The rapid uptake of Apt21-2 may well explain the

lack of IL-17A neutralising capacity in human primary keratinocytes, however the

human primary fibroblasts also appeared to internalise the aptamer but still indicated

significant IL-17A neutralisation. The amount of background that is evident despite the

longer incubation compared to the keratinocytes is suggestive that the fibroblasts do not

internalise the RNA molecules as effectively. In order to establish this conclusively a

time resolve would be required comparing human primary keratinocytes and fibroblasts

which could be carried out using an in vitro assay on an IncuCyte™. Quantification of

uptake could also be analysed using FACS and again human primary keratinocytes and

fibroblasts could be compared. Uptake of oligonucleotides by human primary fibroblasts

has not been described in the literature, however uptake of the DNA aptamer AS1411

has been described in a human fibroblastic cell line, Hs27 [373]. This uptake was

described to be by a mechanism which led to endosomal entrapment or lysosomal

degradation in healthy cells [373]. Healthy human primary keratinocytes have been

described to passively take up plasmid DNA [374]. Interestingly in comparison to what

has been shown in Hs27 cells uptake of plasmid DNA led to a small amount of plasmid

transcription suggestive of the fact that not all DNA was degraded in lysosomes or

endosomes [374]. In fact in this study it was suggested that macropinocytosis was the

mechanism by which uptake of plasmid DNA occurred due to inhibition of the uptake

by phosphoinositide 3-kinase [495]. The DNA aptamer AS1411 was taken up by

macropinocytosis only in the cancer cells tested, however this did effectively deliver the
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aptamer to its intracellular target due to the leaky nature of macropinosomes. This is

consistent with the uptake of DNA plasmid where low levels of plasmid transcription

occurred. It is thought that unlike Gram-positive bacteria which express specific

receptors for uptake of DNA, mammalian cells are more likely to take up DNA by

utilising existing endocytic pathways [374]. It has been shown in muscle cells that

plasmid DNA is taken up by potocytosis, which is receptor mediated endocytosis [496].

AS1411 uptake has previously been described as being nucleolin dependent, however it

also appears to be taken up by alternative mechanisms which are not receptor dependent

[373]. RNA aptamer uptake has been described in a receptor mediated manner in a

haematopoietic cell line and in this study the RNA uptake was dependent on IL-6

receptor expression. Interestingly this RNA aptamer was used to carry cargo into the cell

and by this receptor mediated endocytosis cargo could be delivered into the cell 10 times

the size of the 19 nucleotide RNA aptamer [375].

Although in human primary keratinocytes Apt21-2 is not a viable option for

neutralisation of IL-17A, it does present as a possible novel way to target intracellular

mediators with the use of RNA aptamers without the need for chemical introduction.

There is undoubtedly a need for cell penetrating molecules that can deliver therapeutics

or act inside the cell [497]. The fact that Apt21-2 was effectively internalised in the

presence of its target suggests that there could be scope for the use of Apt21-2 as an

RNA aptamer to take cargo therapeutics into the cell. In order for new RNA aptamers to

be developed for use inside the cell the exact mechanisms by which uptake occurs need

to be established. It is likely due to published literature that this is an active mechanism,

however this needs to be confirmed in the human primary cells by assessing uptake

ability when the cells are at 4°C [374]. Lack of activity suggests an endocytic uptake

whereas internalisation at 4°C suggests a passive mechanism.

Following an initial temperature dependency experiment, more detailed experiments

would need to be performed in order to confirm what had been shown. As described in

Reyes-Reyes et al., [373] inhibition of various uptake mechanisms can be utilised to

establish the mechanism by which RNA aptamers are being taken up by the primary

skin resident cells. Macropinocytosis could be a mechanism by which uptake occurs as
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well as endocytosis, which is generally regarded as the mechanism by which siRNA is

internalised [376]. Endocytosis can be split into clathrin-mediated endocytosis,

caveolae-mediated endocytosis and clathrin and caveolae-independent endocytosis

[498]. Specific inhibitors would need to be used to establish if endocytosis was

responsible for uptake. Treatment of cells with cytocholasin D has been shown to inhibit

endocytosis therefore this could be used to assess this as an internalisation mechanism

[373]. Dynasore could be used to inhibit both clathrin and caveolae dependent

endocytosis due to the requirement for GTPase dynamin in these forms of endocytosis

[499]. Fluorescent staining of markers for endosomes such as EEA1, Rab5, and Rab11

would also be necessary to establish where the intact RNA aptamer was within the cell

[500]. If Apt21-2 was shown to be internalised by endocytosis, the development of the

formulation by which delivery was performed would have to carefully designed in order

to escape the endocytotic pathway by disrupting the endosomal membrane to deliver the

RNA aptamer into the cytosol [377]. However, this is a well-regarded essential

mechanism for siRNA delivery therefore many technologies are available to escape

endosomal degradation [377].

Macropinocytes is another possibility that may be responsible for internalisation of

Apt21-2 if endocytosis was ruled out. However it is worth noting that previous studies

have identified different internalisation pathways in different cell types, therefore a

number of relevant cell types would need to be tested. Following uptake of the aptamer

in to the cells co-staining with dextran would indicate whether macropinocytosis was

responsible for uptake, as well as chemical inhibition of this process using amiloride

[373]. Of note, hyperstimulation of macropinocytosis has been indicated to cause a

novel mechanism of cell death which was not seen in this study [501, 502].

Before Apt21-2 could be taken forward as a therapeutic more in depth studies would

need to be carried out regarding activation of the cells. In this chapter it was shown that

a RIG-I or TLR response was not evident in the panel of mediators analysed following

uptake of Apt21-2, which is to be expected due to the 5’ monophosphate group on RNA

aptamers. The intracellular pathogen sensors predominantly detect 5’ triphosphate

groups and double stranded RNA [477, 478] which are absent or limited in the RNA
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molecules used. Cell viability and cell death would also need to be assessed following

uptake of RNA aptamers using longer time points compared to what has been currently

carried out. Cell death is commonly regarded as a positive outcome in aptamer

development targeting cancer cells using specific cancer cell markers, therefore RNA

aptamers for intracellular targets would need to be carefully designed to avoid this.

In conclusion, this chapter has confirmed the neutralising efficacy of Apt21-2 on both

recombinant and endogenous IL-17 in human primary fibroblast culture. Unexpectedly,

it has also described a novel feature of human primary keratinocytes in their ability to

take up small RNA molecules. More work is required to fully elucidate the pathways

involved in this uptake. RNA aptamers have been shown to modulate protein-protein

interactions therefore aptamers could be designed to utilise this function inside the cell

both in an experimental and therapeutic setting [503]. This unique function of

keratinocytes could present with an invaluable tool to target pro-inflammatory signalling

pathways without the need for chemical introduction in to the cell. This could be utilised

in the topical treatment of chronic inflammatory skin diseases predominantly affecting

the epidermis which would not lead to the widespread side effects seen in systemic

therapies.
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Chapter 5 – Elucidating the role of IL-36 cleavage
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5.1 Introduction

IL-36 is a relatively newly described subfamily in the IL-1 family of cytokines. The

family includes four members; IL-36α, IL-36β, IL-36γ and IL-36 receptor antagonist 

(RA) that bind to the receptor IL-1Rrp2 (IL-36R). All apart from IL-36RA also bind

to the common accessory protein to all IL-1 members, IL-1RAcP [203, 204]. The IL-

36 members constitute an independent system from IL-1, however the IL-36R does

also signal via NF-κB [185]. In 2011 it was identified that, similar to other IL-1 

family members the IL-36 family members also require N-terminal cleavage to gain

biological activity [128]. In line with other IL-1 family members the IL-36RA plays

a crucial role in controlling the pro-inflammatory activity of IL-36α, IL-36β and IL-

36γ. As for other IL-1 members the balance between the agonists and antagonists is 

important in maintaining control over inflammatory responses. It has also been

proposed that another cytokine, IL-38 may also have antagonistic properties on IL-

36 by binding in a similar manner as IL-36RA to the IL-36R [126]. However, there

is at present limited literature on IL-38.

The predominant source of the IL-36 cytokines is keratinocytes. IL-36RA is

constitutively expressed, whereas IL-36γ is effectively induced following treatment 

with phorbol 12-myristate 13-acetate (PMA) and pro-inflammatory cytokines [60,

211]. IL-36 expression has also been identified in other epithelial tissues such as the

lung, however lack of available reagents has hampered the investigation at the

protein level [207, 208, 210]. Most recently it has been shown that IL-36 stimulates

maturation of DCs therefore driving T cell proliferation and actively playing a role in

skin inflammation [504]. Due to IL-36 being mainly expressed by epithelial cells the

majority of the research in this area is focused on the skin (and bronchial epithelial

cells). Therefore, emerging evidence in both human cells and in murine models

indicates that IL-36 may play a crucial role in skin inflammation.

IL-36 has particularly been implicated in the pathogenesis of psoriasis and different

studies have identified IL-36 mRNA and protein in psoriatic plaques [505]. IL-36γ is 

consistently one of the most up-regulated genes in these arrays and our unpublished

work suggests that it may be a biomarker to distinguish psoriasis from other

inflammatory skin conditions [97, 221, 222]. The link to psoriasis pathogenesis has

been further strengthened by the identification of a disease causing missense
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mutation in the IL-36RA gene that leads to dysfunctional IL-36RA. This mutation

has been identified in a subset of GPP patients in a number of populations [5, 111].

Biophysical analysis showing N-terminal cleavage results in >30000 fold increase in

receptor affinity [128]. However, the bioactive, cleaved form of IL-36 has not yet

been identified in physiological conditions therefore it is crucial to understand how

and when these pro-inflammatory cytokines are being activated. In addition to this

the protease responsible for IL-36 cleavage is still to be elucidated. As previously

discussed some IL-1 family members such as IL-1β and IL-18 are cleaved in to their 

active form inside the cell by inflammasome dependent caspase-1 [129]. It is

however unlikely that IL-36 is cleaved by caspase-1 due to its requirement for a

specific consensus sequence [205]. Both IL-1β and IL-18 if released from the cell in 

their inactive full length forms can be cleaved by a number of different proteases

[344] including the neutrophil serine protease, PR3 [342], however the activity of IL-

18 following cleavage by PR3 is yet to be fully elucidated [236]. Given the lack of

data on IL-36 bioactivity in vivo, a greater understanding of the biology of IL-36 and

the protease/s responsible for cleavage and the mechanisms by which IL-36 is

released is needed.

The aims of this work were to (1) elucidate the role of the predicted active forms of

IL-36 in vitro using primary skin resident cells derived from both healthy and

psoriatic donors, and (2) to elucidate which protease could be responsible for this

cleavage. Due to paucity of knowledge about the release of these cytokines from the

cell this will also be investigated using in vitro techniques. In order to establish

potential functional roles of IL-36 on skin phenotype 3-D skin equivalents as well as

single layer cultures will be treated with different forms of IL-36.

5.2 Response of primary skin resident cells to IL-36

Activated skin resident cells can produce significant levels of pro-inflammatory

cytokines, such as IL-8 which is a potent chemoattractant that will recruit neutrophils

in to the skin, this along with other cytokines aid in the mounting an inflammatory

response [506]. IL-36 has been shown to induce pro-inflammatory cytokines [218]

and due to the relevance of IL-36 in psoriasis and the importance of neutrophils in

this disease [3] IL-8 was used as a marker cytokine for IL-36 bioactivity.

Biophysical analysis suggested that cleavage of IL-36 at the N-terminus increased
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activity [128]. Cleaved IL-36 was commercially available therefore these were tested

using human skin resident cells.

5.2.1 IL-36α 

In order to study this, human primary keratinocytes and fibroblasts derived from

both healthy and psoriatic donors were stimulated with 100 ng/ml of both IL-36α in 

its full length form and its cleaved form (5 amino acids removed from the N-

terminus IL-36α K6), these were both commercially available (Figure 5-1). After 48 

hours of stimulation levels of IL-8 were analysed by ELISA. In the healthy human

primary fibroblasts a significant increase of IL-8 production was detected between

the non-stimulated control and the truncated IL-36α K6 that was not seen following 

treatment with the full length IL-36α (Figure 5-1 a). A significant increase of IL-8 

was also seen between the non-stimulated control and IL-36α K6 in the healthy 

human primary keratinocytes and no significant difference was seen following

treatment with the full length IL-36α (Figure 5-1 b). This suggests that in healthy 

human primary fibroblasts and keratinocytes IL-36α requires N-terminal cleavage to 

have a significant pro-inflammatory effect. However, although no statistically

significant differences were seen in the psoriatic human primary fibroblasts there

was a defined increase in IL-8 following treatment with IL-36α truncated (Figure 5-1 

a). The psoriatic human primary keratinocytes were un-responsive (Figure 5-1 b).

This was possibly due to high passage number and due to limited availability of

psoriatic keratinocytes no alternative donors were available for testing. No other IL-

36 members were tested using this donor due to the un-responsiveness.
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Figure 5 – 1. IL-36α requires cleavage for activity in human primary fibroblasts and 

keratinocytes.

Human primary cells were plated at 20,000 cells per well and stimulated for 48 hours following which

supernatants were removed and IL-8 levels analysed by ELISA. a – Human primary fibroblasts from

both healthy and psoriatic donors were stimulated with 100 ng/ml of both IL-36α full length and 

truncated forms. n = 3, independent experiments and different donors. b – Human primary

keratinocytes from both healthy and psoriatic donors were stimulated with 100 ng/ml of both IL-36α 

full length and truncated forms. Healthy donors n = 3, Psoriatic donors n = 1, independent

experiments and different donors. Mean +/- Standard error of the mean (SEM) is depicted on all

graphs. NS = Non-stimulated. Raw data was analysed using a Kruskal-Wallis test (GraphPad Prism

5.03, GraphPad Software, San Diego, CA). * = p ≤ 0.05 
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5.2.2 IL-36β 

Human primary skin resident cells were also treated with IL-36β in both its full 

length and truncated form. Human primary fibroblasts derived from both healthy and

psoriatic donors and healthy human primary keratinocytes were stimulated with 100

ng/ml of full length IL-36β and truncated IL-36β (4 amino acids removed from the 

N-terminus) (Figure 5-2). After 48 hours cell free supernatant was removed and IL-8

concentrations were analysed using ELISA. Although, with the limited available

sample number, no statistically significant differences were detected in either the

healthy or psoriatic human primary fibroblasts there is no doubt that following

treatment with IL-36β truncated compared to full length there is an increased 

production of IL-8 (Figure 5-2 a). This was also seen in the healthy human primary

keratinocytes (Figure 5-2 b). This data although lacking in statistical significance

does suggest that IL-36β in line with the other IL-36 family members requires N-

terminal cleavage to gain significant pro-inflammatory activity.



132

Figure 5 – 2. IL-36β requires cleavage for activity in human primary fibroblasts and 

keratinocytes.

Human primary cells were plated at 20,000 cells per well and stimulated for 48 hours following which

supernatants were removed and an IL-8 ELISA performed. a – Human primary fibroblasts from both

healthy and psoriatic donors were stimulated with 100 ng/ml of both IL-36β full length and truncated 

forms. n = 3, independent experiments and different donors. b – Human primary keratinocytes from

healthy donors were stimulated with 100 ng/ml of both IL-36β full length and truncated forms. n = 3, 

independent experiments and different donors. Mean +/- SEM is depicted on all graphs. NS = Non-

stimulated. Raw data was analysed using a Kruskal-Wallis test (GraphPad Prism 5.03, GraphPad

Software, San Diego, CA).
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5.2.3 IL-36γ 

Human primary skin resident cells were also treated with IL-36γ in its full length 

form and also its truncated form. Human primary fibroblasts derived from both

healthy and psoriatic donors as well as healthy human primary fibroblasts were

stimulated with 100 ng/ml of full length and truncated IL-36γ (17 amino acids 

removed from the N-terminus – S18). After 48 hours of stimulation IL-8 protein

concentrations were analysed by ELISA (Figure 5-3). In human primary fibroblasts a

significant increase in IL-8 release was detected following treatment with truncated

IL-36γ (S18) compared to full length IL-36γ and this was seen in both fibroblasts 

derived from healthy and psoriatic donors (Figure 5-3 a). Interestingly, a significant

increase in IL-8 production was also detected between the healthy and psoriatic

human primary fibroblasts treated with 100 ng/ml IL-36γ truncated (S18) (Figure 5-3 

a). Preliminary data suggests that this difference in response is not related to

differential expression of the IL-36 receptor on the cells, as confirmed by FACS.

Although no statistical difference was detected in IL-8 production following

treatment with truncated IL-36γ (S18) in healthy human primary keratinocytes there 

was a defined increase in IL-8 production that was not seen upon treatment with full

length IL-36γ (Figure 5-3 b). This again is suggestive that IL-36γ requires N-

terminal cleavage in order to gain significant pro-inflammatory activity.
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Figure 5 – 3. IL-36γ requires cleavage for activity in human primary fibroblasts and 

keratinocytes.

Human primary cells were plated at 20,000 cells per well and stimulated for 48 hours before analysis

by IL-8 ELISA was performed. a – Human primary fibroblasts from both healthy and psoriatic donors

were stimulated with 100 ng/ml of both IL-36γ full length and truncated forms (S18). Healthy donors 

n = 6, psoriatic donors n = 4, independent experiments and different donors. b – Human primary

keratinocytes from healthy donors were stimulated with 100 ng/ml of both IL-36γ full length and 

truncated forms. Healthy donors n = 3, independent experiments and different donors. Mean +/- SEM

is depicted on all graphs. NS = Non-stimulated. Raw data was analysed using a Kruskal-Wallis test

(GraphPad Prism 5.03, GraphPad Software, San Diego, CA). * = p ≤ 0.05 ** = p ≤ 0.01 *** = p ≤ 

0.001.
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5.3.4 Effects of IL-36 on PMN and T cell activation

The truncated cleaved forms of IL-36 were also tested to assess their direct activity

on PMNs and PBMCs. Standard transwell chemotaxis assays were performed to

assess the effect of IL-36 on the migratory capacity of the PMNs. However, no

chemokinetic or chemotactic effects were observed. No increase in PMN activation

following IL-36 treatment was identified, as assessed by CD11b expression,

generation of reactive oxygen species from the PMNs or CD62L shedding. PBMCs

were also treated with both the full length and active cleaved forms of IL-36. Levels

of activation were established by looking at CD69 levels, however no T cell

activation was identified.

5.3 Cleavage of full length IL-36

As shown in the previous figures (5.1 to 5.3), IL-36 family members require N-

terminal cleavage to increase their pro-inflammatory functions. As previously

mentioned a distinctive feature of psoriasis is the accumulation of neutrophils in

epidermal-dermal junctions, known as Munro’s abscesses [3]. Therefore it was

logical to assume that with an increased level of neutrophils in a disease where

increased levels of IL-36 were also present that these highly protease rich cells may

be involved in the cleavage of IL-36. In order to study this hypothesis PMNs were

isolated from whole blood of healthy donors and immediately after isolation PMNs

were stimulated with 100 ng/ml of PMA for 1 hour at 37°C. After stimulation cells

were removed and supernatant was incubated with full length IL-36γ. IL-36γ was 

used for these experiments as it was found to be the most up-regulated IL-36

member in psoriasis. As well as the fact that the truncated form has 17 amino acids

removed from the N-terminus which means difference in mobility of the protein on

an SDS PAGE gel was detectable. This is not the case for other IL-36 members. IL-

36γ was incubated with the PMN supernatant for 10 minutes and 30 minutes at 37°C 

(Figure 5-4).
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Figure 5 – 4. Supernatant from stimulated polymorphonuclear (PMNs) cells can cleave IL-36γ. 

PMNs were isolated from peripheral blood of healthy donors and stimulated with 100 ng/ml of

phorbol 12-myristate 13-acetate (PMA) for 1 hour at 37°C. Following this incubation cells were

removed and supernatant either used immediately or frozen at -80°C. Supernatant was then incubated

with full length IL-36γ for 10 minutes and 30 minutes. Western blot analysis including a full length 

and cleaved control is shown. Western blot is representative of 3 independent experiments.

Following incubation samples were analysed by Western blotting. It was shown that

after even after 10 minutes of incubation with PMN supernatant cleavage of protein

could be detected which was more prominent after 30 minutes. The lower molecular

weight bands on the gel were suggestive of the full length protein being cleaved by a

protease derived from activated PMNs.

5.4 Production of recombinant tagged IL-36

Due to the exciting results depicted in Figure 5-4 numerous attempts were performed

to pull down the cleaved products seen in the lower bands on the Western blot using

immunoprecipitation. However, it was concluded that the commercially available

antibodies did not bind with great enough affinity for immunoprecipitation to

retrieve enough protein to analyse. Also, the experiments depicted in 5.3 could only

be performed on IL-36γ due to the small number of amino acids removed from the 

N-terminus of the other proteins. Therefore, in order to elucidate the accurate

products following protease cleavage without suitable reagents recombinant proteins

were produced containing an N-terminal SUMO tag. This allowed for identification

of N-terminal cleavage due to the size difference being evident on an SDS PAGE
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gel. Recombinant IL-36 proteins were also produced with an N-terminal SUMO tag

and a C-terminal His tag using a pET 28 (+) vector (see Appendix figure 2 for vector

map). This would allow for nickel affinity chromatography following digestion if

further analysis was required and needed to be isolated from the proteases that had

cleaved IL-36.

All figures depicted in this section are representative images of the production and

purification of N-terminally SUMO tagged IL-36γ, however the same method was 

utilised for all of the IL-36 proteins and for both the N-terminally tagged and N and

C-terminally tagged proteins. A diagrammatic representation of the constructs

produced is depicted in figure 5-5 a. The IL-36 members were all cloned into a

Champion pET SUMO expression system (see Appendix figure 1 for vector map)

and then transformed into DH5α cells to check accuracy of cloned sequence (See 

Appendix figure 4 - 23 for primers and sequences of all IL-36 members). The IL-36

members were expressed in BL21-CodonPlus (DE3)-RIPL strain of E. coli and the

overnight growth temperature following induction with IPTG was optimised (Figure

5-5 b). Following overnight culture samples were taken and run on an SDS PAGE

gel and stained with Coomassie. Compared to the pre-induction samples a band

relating to IL-36 can clearly be seen (indicated by the red arrow) at all temperatures,

however the strongest band is present at 25°C.
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Figure 5 – 5. Optimisation of IL-36 expression in E. coli

IL-36 members (IL-36α, IL-36γ, IL-36RA) were cloned using a pET expression system including a 

SUMO-his tag in order to purify the protein and aid solubility. a - Diagrammatic representation of the

N-terminal SUMO-His tag as well as constructs produced including a C-terminal His tag. b – IL-36s

were cloned and then transformed into expression strains of E. coli. A sample was taken prior to

induction and then compared to overnight growth following induction at 18°C, 25°C and 37°C.

Coomassie stained gel shows samples at different temperatures following overnight incubation. c –

Coomassie stained gel of nickel affinity chromatography soluble fractions. These figures are

representative experiments for one construct however this was carried out for all constructs.

All further larger scale expression cultures were induced using 0.8mM IPTG and

then grown overnight at 25°C due to optimisation results depicted in Figure 5-5 b.

Following overnight growth and cell lysis (see 2.3.8) the protein present in the

soluble fraction of the cells was then purified using nickel affinity chromatography.

Protein was eluted from the nickel column using increasing concentrations of

imidazole, 1ml fractions were taken and a sample of each run on an SDS PAGE gel

and stained using Coomassie. In Figure 5-5 c the prominent band is the purified IL-

36 protein. This method was used for all IL-36 recombinant proteins produced.
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Following nickel affinity chromatography IL-36 proteins were further purified using

a size exclusion column which then allowed for differentiation between monomers,

dimers and aggregates therefore allowing monomers to be purified and used for

further experiments (Figure 5-6 a). The fractions that represent the monomer peak

were run on an SDS PAGE gel and stained with Coomassie to assess purity. As

shown in Figure 5-6 b following this purification method the sample is extremely

pure.

Figure 5 – 6. Further purification of IL-36 proteins using size exclusion.

IL-36 members were purified using nickel column chromatography following which they were further

purified using size exclusion. a – A representative 280nm UV graph taken from the software used to

analyse the fractions removed from the size exclusion column. Fractions from the peak that

represented the monomer fraction was collected and concentrated. b – Coomassie stained gel of size

exclusion fractions. The depicted experiments are representative of the experiments carried out for all

constructs.

Following numerous attempts to express IL-36β it was concluded that expression 

was not viable. Various optimisation methods were performed including using

different strains of expression E. coli – Shuffle® competent cells, Rosetta™ 2 (DE3)
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competent cells and ArticExpress competent cells. The induction stage of the E. coli

was also optimised with the use of auto-induction and alterations of glucose and

lactose concentrations. However, none of these techniques led to any IL-36β 

expression so therefore from here on IL-36β was not used in any of the experiments 

(See Appendix figure 10 – 13 for primers used and sequences). The lack of

expression could be due to its reduced phylogenetic relationship and therefore less

structural similarity to the other IL-36 members [507].

5.5 Identifying putative proteases responsible for IL-36 cleavage

In order to identify specific proteases that cleave IL-36 all IL-36 proteins were

produced as described in 5.4 with an N-terminal SUMO tag. The tag allowed for

visualisation of N-terminal cleavage via SDS PAGE analysis. Therefore different

cellular supernatants could be tested in order to assess their cleavage activity. In

order to study this, PMN supernatant was obtained as described in 5.3 and human

primary fibroblasts and keratinocytes were also stimulated with 100ng/ml of PMA

for 24 hours at 37°C before supernatant was removed. Supernatant from the three

different cell types was then incubated with IL-36α (Figure 5-7 a), IL-36γ (Figure 5-

7 b) and IL-36RA (Figure 5-7 c) for 1 hour at 37°C. Following incubation samples

were then analysed by Western blot. N-terminal cleavage of the IL-36 members was

only present when incubated with supernatant from activated PMN. This is in line

with what was shown using the commercially available IL-36γ in 5.3 and it is 

interesting to note that all of the IL-36 members are cleaved.
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Figure 5-7. IL-36 proteins with a SUMO tag incubated with activated cellular supernatants are

cleaved by supernatant from PMNs.

SUMO tagged IL-36s were incubated with a range of supernatants from activated cells. PMNs were

isolated from whole blood of healthy donors and then stimulated with 100 ng/ml of PMA for 1 hour at

37°C. Human primary keratinocytes and fibroblasts were stimulated with 100 ng/ml of PMA for 24

hours at 37°C. Supernatant was then removed from the cells and incubated with IL-36α (a), IL-36γ 

(b) or IL-36RA (c) for 1 hour at 37°C, along with a PBS control which was also incubated for 1 hour

at 37°C. Samples were then analysed by Western blotting.

In order to further elucidate the protease that appears to be responsible for the

cleavage of IL-36 all proteins were cleaved using supernatant from activated PMNs

in the presence and absence of various protease inhibitors. IL-36α (Figure 5-8 a), IL-

36γ (Figure 5-8 b) and IL-36RA (Figure 5-8 c) were incubated with activated PMN 

supernatant for 1 hour at 37°C. This was carried out in the presence of pan serine,

cysteine and aspartic protease inhibitors (PI, PI Roche), MMP inhibitors (EDTA),

pan cysteine protease inhibitors (IAA) or pan serine proteases inhibitors (PMSF, α1 

anti-trypsin). Following incubation, samples were analysed via Western blot analysis

and run alongside a positive control and a sample that was incubated with activated

PMN supernatant and did not contain any protease inhibitors. As expected both pan

protease inhibitors prevented cleavage in all IL-36 members tested. EDTA and IAA

did not prevent cleavage which suggests that an MMP or cysteine protease was not

responsible for IL-36 cleavage. However, both serine protease inhibitors (PMSF, α1 
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anti-trypsin) prevented cleavage which is suggestive of a PMN derived serine

protease that is responsible for IL-36 cleavage.

Figure 5 – 8. IL-36 cleavage by activated PMN supernatant can be prevented by serine protease

inhibitors.

Sumo tagged IL-36s were incubated with supernatant from PMNs stimulated with PMA for 1 hour at

37°C. Incubation was performed in the presence or absence of a range of protease inhibitors. PI =

complete protease inhibitor cocktail (Roche), EDTA = Ethylenediaminetetraacetic acid, inhibitor of

proteases where a metal ion is required for cleavage, PI Roche = complete ultra-protease inhibitor

cocktail which includes aspartic proteases (Roche), IAA = iodoacetic acid a pan cysteine protease

inhibitor, PMSF = phenylmethylsulfonyl fluoride a pan serine protease inhibitor, α1 anti-trypsin is 

another pan serine protease inhibitor. a – IL-36α was incubated with activated PMN supernatant in 

the presence and absence of the panel of protease inhibitors. b - IL-36γ was incubated with activated 

PMN supernatant in the presence and absence of the panel of protease inhibitors. c - IL-36RA was

incubated with activated PMN supernatant in the presence and absence of the panel of protease

inhibitors. Samples were then analysed using Western blotting.

Although Figures 5-7 and 5-8 were suggestive of PMN serine proteases being

responsible for cleavage other proteases were analysed for completeness. Due to the

expression of the IL-36 members being largely limited to human epithelium and the
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known relevance of IL-36 in inflammatory skin diseases we focused on cleavage in

the skin compartment. Therefore in collaboration with Dr Ulf Meyer-Hoffert at the

University of Kiel, Germany the SUMO tagged IL-36 members were also subjected

to cleavage by recombinant kallikreins. These are serine proteases that are produced

predominantly by keratinocytes [300]. In order to study this, IL-36α was incubated 

with kallikrein 5 (Figure 5-9 a) and kallikrein 7 (Figure 5-9 b) for increasing periods

of time. There was no cleavage of IL-36α following even prolonged incubation with 

kallikrein 7, however after 3 hours of incubation with kallikrein 5 N-terminal

cleavage could be detected. IL-36γ was also incubated with kallikrein 5 (Figure 5-9 

c) and kallikrein 7 (Figure 5-9 d) for increasing periods of time. Minimal cleavage of

IL-36γ was detected following 24 hours of incubation with kallikrein 5, however 

substantial cleavage of IL-36γ was detected after only 5 minutes of incubation with 

kallikrein 7 and after 24 hours nearly all protein was cleaved. IL-36RA was also

incubated with kallikrein 5 (Figure 5-9 e) and kallikrein 7 (Figure 5-9 f) for

increasing periods of time. No remarkable cleavage could be detected when IL-

36RA was incubated with kallikrein 5 or 7 at even 24 hours of incubation.
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Figure 5-9. IL-36 proteins with a SUMO tag can be cleaved by recombinant kallikreins.

SUMO tagged IL-36 proteins were incubated with recombinant kallikreins for a range of time

periods. a – IL-36α was incubated with recombinant kallikrein 5 (KLK5). b - IL-36α was incubated 

with recombinant kallikrein 7 (KLK7). c – IL-36γ was incubated with recombinant kallikrein 5. d -

IL-36γ was incubated with recombinant kallikrein 7 (KLK7). e - IL-36RA was incubated with

recombinant kallikrein 5 (KLK5). f - IL-36RA was incubated with recombinant kallikrein 7 (KLK7).

Silver stained gels show protein bands following incubation with the kallikreins. Cleaved samples

were then analysed by mass spectrometry. The data displayed in this figure was carried out by Dr Ulf

Meyer-Hoffert and Jan Fischer, Department of Dermatology, University Hospital Schleswig-Holstein,

Kiel, Germany.
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The cleavage products of IL-36γ identified in Figure 5-9 d were analysed by mass 

spectrometry and the results will be discussed along with all other mass spectrometry

data in 5.6 (see Table 5-1).

5.6 IL-36 cleavage products identified

Figure 5-8 suggested that a serine proteases derived from PMNs were responsible for

IL-36 cleavage. In order to identify the precise cleavage products by mass

spectrometry recombinant proteases were used in order to maintain a relatively pure

sample suitable for mass spectrometry. The three most prominent neutrophil serine

proteases, cathepsin G (CG), elastase (E) and proteinase 3 (PR3) were tested. In

order to study this, recombinant CG, E and PR3 were incubated with SUMO tagged

IL-36α (Figure 5-10 a), IL-36γ (Figure 5-10 b) and IL-36RA (Figure 5-10 c) for 10 

minutes at 37°C. Following incubation samples were run on an SDS PAGE gel and

protein bands determined by Coomassie stain. Incubation with all of the recombinant

PMN serine proteases results in complete cleavage of IL-36α and IL-36γ, however 

cleavage of IL-36RA was detectable but not all IL-36RA was cleaved. The red

arrows indicate the N-terminally cleaved IL-36 and the SUMO tag, which is depicted

as the higher band on the Coomassie stained gels.

Figure 5 – 10. IL-36 proteins can be efficiently cleaved using recombinant neutrophil serine

proteases.

Sumo tagged IL-36 proteins were incubated with the three most common neutrophil serine proteases,

cathepsin G (CG), elastase (E) and proteinase 3 (PR3) at 1:20th of IL-36 added for 10 minutes at

37°C. a - IL-36α. b – IL-36γ. c – IL-36RA. Coomassie stained gel shows samples following

incubation.
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This incubation was exclusively carried out with recombinant proteins therefore the

samples were relatively pure, as depicted on the Coomassie stained gels on Figure 5-

10 a-c. This allowed for further analysis by mass spectrometry and N-terminal

sequencing. The N-terminal cleavage products identified are diagrammatically

depicted in Figure 5-11 a-c. From here on the N-terminal cleavage products are

referred to as the N-terminal amino acid and the number of amino acids from the N-

terminus.

Figure 5-11. Diagrammatic representation of cleavage products identified following incubation

with recombinant neutrophil serine proteases.

Following incubation with recombinant serine proteases samples were analysed by mass spectrometry

and N-terminal sequencing. Diagrammatic representation of the N-terminal cleavage products

detected for IL-36α (a), IL-36γ (b) and IL-36RA (c), depicted by the red arrows.

The cleavage product of IL-36α identified was I7 following incubation with 

recombinant neutrophil serine proteases. Two IL-36γ cleavage products were 

identified following incubation with recombinant serine proteases, these were Y16

and Q17. Two cleavage products were also identified for IL-36RA, S4 and V2. The

biophysical prediction of cleavage products identified IL-36RA V2 as the most

active form of the receptor antagonist [128]. As depicted in Figure 5-8 IL-36γ 

following cleavage with kallikrein 7 was also analysed by mass spectrometry and the

same products were identified as with the recombinant serine proteases, which were

Y16 and Q17.
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IL-36α Elastase Proteinase 3 Cathepsin G PMN SN PMN SN

+ AMN

K6

I7 x

L5 x

N-terminal sequencing of product cleaved with all 3 proteases confirm I7

IL-36γ Elastase Proteinase 3 Cathepsin G KLK7 PMN

SN

PMN

SN +

AMN

Y16 x x x x

Q17 x x x x

S18

N-terminal sequencing of product cleaved with all 3 proteases confirm Y16 and Q17

IL-36RA Elastase Proteinase 3 Cathepsin G PMN SN PMN SN

+ AMN

V2 x

L3 x

S4 x x x x x

Table 5-1. Summary table of cleavage products identified by mass spectrometry and N-terminal

sequencing.

Depicted are all the cleavage products identified by mass spectrometry and N-terminal sequencing

following incubation with recombinant serine proteases (elastase, proteinase 3 and cathepsin G) as

well as with activated PMN supernatant (PMN SN). IL-36 proteins were also incubated with activated

PMN supernatant following which aminopeptidase N (AMN) was added and incubated further. As

described in Figure 5-9 KLK7 cleavage of IL-36γ was also analysed using mass spectrometry. The 

IL-36 cleavage products are depicted as the amino acid and the number from the N-terminus

indicating the amount of amino acids removed from the N-terminus.
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The cleavage products identified for IL-36α and IL-36γ were not products that had 

been predicted as active forms by Towne et al., [128] (see Table 5-1). In order to

assess whether these active products could be identified other proteases were

incubated with IL-36. Owing to the fact that the products identified for IL-36α and 

IL-36γ only had one extra amino acid compared to the active form, aminopeptidases 

were a logical target due to their known cleavage functions. Aminopeptidase N

(AMN), also known as CD13, is a type II metalloprotease that cleaves single amino

acids from the N-terminus of proteins [508]. In order to assess the role of AMN it

was incubated at 1:20th and 1:100th of the IL-36 protein, this was added to the IL-36

proteins following cleavage by recombinant serine proteases or in combination with

recombinant serine proteases. However, following cleavage with AMN the same

products were identified by mass spectrometry to those following incubation with

recombinant serine proteases alone. However, this may have been due to the AMN

not working. In order to test whether the N-terminal SUMO could possibly affect

cleavage the SUMO tag was removed prior to cleavage. This did not affect the

cleavage products detected. All cleavage products are summarised in table 5-1.

In order to compare the cleavage products following incubation with recombinant

neutrophil serine proteases and the proteases responsible for the cleavage in the

activated PMN supernatant, the IL-36 proteins that had N- and C-terminal tags to

allow for purification following cleavage were used. Using these tagged IL-36

proteins cleavage was carried out with supernatants and cells relevant to

inflammatory skin diseases, including activated PMN supernatant, activated PMNs,

detached and attached activated keratinocytes and a punch skin biopsy from healthy

and psoriatic donors. This was carried out with a range of stimulations to activate the

cells known to be relevant in psoriatic inflammation (IL-17 and TNFα; also added as 

stimulus: PMA). However, following purification and analysis by mass spectrometry

the biophysical predictions of the active IL-36 forms were not identified and results

were inconclusive due to apparent complete digestion of the protein, therefore

experiments need to be performed using a more diverse range of time points.
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5.7 Production of identified cleaved products

In order to test the activity of the identified IL-36 cleavage products in mammalian

cell culture all the identified cleavage products shown in 5.6 were produced as

recombinant proteins. These proteins were generated in the same manner as

described in 5.4 with the specific cleaved sequence cloned into the Champion pET

SUMO expression system. However once the SUMO tagged proteins were purified

the SUMO tag was removed using a specific protease (His-ULP-1) that cleaves only

the SUMO tag (leaving the exact N-terminus). Both His-ULP-1 protease and the

SUMO tag following cleavage contain His tags, allowing for purification of the IL-

36 proteins away from the protease and SUMO tag (Figure 5-12 a). Following

purification, the IL-36 proteins were verified using mass spectrometry. The predicted

active products [128] for IL-36α (K6) and IL-36γ (S18) were also produced to act as 

positive controls. A summary gel of all constructs produced with SUMO tags

removed is depicted in Figure 5-12 b.

Figure 5 - 12. Cleavage products identified following serine protease cleavage are produced in

E. coli.

The cleavage products identified following recombinant neutrophil serine protease cleavage depicted

in Figure 5 – 10 were produced in E. coli. a – The IL-36 cleavage products were produced in the same

manner as the full length IL-36 proteins using a Champion pET SUMO expression system and then

purifying the protein using nickel affinity chromatography followed by size exclusion

chromatography. After purification the SUMO tag was removed using a highly specific protease, His-
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ULP-1 which also contains a His tag following which the His-ULP-1 and the SUMO tag were

purified by nickel affinity chromatography. Mass spectrometry analysis was performed to ascertain

that the exact protein sequence had been produced. b – Coomassie stained gel of all IL-36 cleaved

proteins produced including positive controls, 36γ S18 and 36α K6 that were not identified following 

serine protease cleavage.

5.8 Response of human primary fibroblasts to the cleaved IL-36

proteins

In order to determine the activity of the truncated IL-36 proteins produced as

described in 5.7 primary human skin resident cells were treated with these proteins.

Human primary fibroblasts were stimulated with increasing concentrations of IL-36

proteins and after 48 hours concentrations of IL-8 were analysed using ELISA.

Healthy human primary fibroblasts were treated with 100 ng/ml of commercially

available IL-36β truncated (T), which was used as a positive control to confirm cell 

responsiveness. Increasing concentrations (1 nM – 100 nM) of IL-36α full length, 

K6 and I7 were used to stimulate the fibroblasts (Figure 5-13 a). A statistically

significant increase in release of IL-8 was detected following treatment with 100 nM

IL-36α K6 compared to non-stimulated control. A steady increase in IL-8 was 

evident with increasing concentrations of IL-36α K6, however the full length and I7 

IL-36α did not induce any substantial release of IL-8. In order to control for LPS 

contamination a control IL-36 sample which was boiled for 20 minutes prior to

addition to cells confirms that the increase in IL-8 is not related to LPS

contamination. A limulus amebocyte lysate (LAL) test was also performed following

manufacturer’s instructions in order to assess endotoxin levels, levels were deemed

at a low enough level for tissue culture experiments (<1 EU/µg).
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Figure 5 – 13. IL-36 proteins require specific N-terminal cleavage in order to increase activity in

healthy human primary fibroblasts.

Healthy human primary fibroblasts were plated at 20,000 cells per well and stimulated with the IL-36

cleavage products identified previously for 48 hours before levels of IL-8 were analysed by ELISA. a

– Human primary fibroblasts were stimulated with IL-36α cleavage products (K6 and I7) as well as 

the full length control. n = 3, independent experiments and different donors. b - Human primary

fibroblasts were stimulated with IL-36γ cleavage products (Y16, Q17 and S18) as well as the full 

length control. n = 3, independent experiments and different donors. IL-36β truncated (T) at 100 

ng/ml (5.4nM) was used as positive control in both experiments, which is a commercially available

IL-36 which has previously been shown to be active. Mean +/- SEM is depicted on all graphs. NS =

Non-stimulated. Raw data was analysed using a Kruskal-Wallis test (GraphPad Prism 5.03, GraphPad

Software, San Diego, CA). * = p ≤ 0.05 
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Healthy human primary fibroblasts were also treated with increasing concentrations

(1 nM – 100 nM) of IL-36γ in its full length and cleaved forms, Y16, Q17 and S18 

(Figure 5-13 b). Although no statistical significance was shown in the IL-36γ S18 

treated samples, it is evident that a dose dependent increase of IL-8 release can be

seen following increasing concentrations of IL-36γ S18. A boiled control for IL-36γ 

S18 was also performed and this confirms the increase in IL-8 is not related to LPS

contamination. There was no substantial IL-8 release following treatment with full

length or Y16 IL-36γ however a small induction of IL-8 could be detected following 

treatment with 100 nM of IL-36γ Q17. 

In order to establish differences in response to IL-36 in cells derived from psoriatic

patients compared to healthy cells psoriatic human primary fibroblasts were also

stimulated with IL-36. This was performed in the same manner as previously

described with the cleavage products of IL-36α and IL-36γ and then after 48 hours 

IL-8 concentrations analysed by ELISA. Psoriatic human primary fibroblasts were

treated with increasing concentrations (1 nM- 100 nM) of full length and cleavage

products (K6 and I7) of IL-36α as well as commercially available IL-36β truncated 

(T) as a positive control (Figure 5-14 a). Statistically significant increases of IL-8

release were detected following treatment with 50 nM and 100 nM of IL-36α K6. No 

significant increases in IL-8 were detected following treatment with the full length

protein or IL-36α I7. Interestingly, IL-8 expression in response to 50 nM and 100 

nM of IL-36α K6 is significantly higher in psoriatic fibroblasts (~3000 pg/ml to 

~7000 pg/ml) compared to healthy fibroblasts (Figure 5-14 c). Psoriatic human

primary fibroblasts were also treated with full length and cleavage products (Y16,

Q17 and S18) of IL-36γ alongside IL-36β truncated (T) as a positive control (Figure 

5-14 b). A statistically significant increase in IL-8 release was detected following

treatment with both 50 nM and 100 nM of IL-36γ S18. As in the healthy human 

primary fibroblasts there was little IL-8 release following treatment with IL-36γ full 

length or Y16. However IL-36γ Q17 did induce some IL-8 which was significantly 

increased (~200 pg/ml to ~600 pg/ml) compared to the concentration that was

detected in healthy human primary fibroblasts. This may be physiologically

significant however it is much lower than the IL-8 levels seen with IL-36γ S18. In 

the same manner as to with the IL-36α K6 the levels of IL-8 released in the psoriatic 
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compared to healthy human primary fibroblasts was significantly higher (~2000

pg/ml to ~6000 pg/ml) (Figure 5-14 d).

Figure 5 – 14. IL-36 proteins require specific N-terminal cleavage in order to increase activity in

psoriatic human primary fibroblasts.

Psoriatic human primary fibroblasts were plated at 20,000 cells per well and stimulated with the IL-36

cleavage products identified previously for 48 hours and levels of IL-8 analysed by ELISA. a –

Human primary fibroblasts were treated with IL-36α cleavage products (K6 and I7) as well as the full 

length control. n = 4, independent experiments and different donors. b - Human primary fibroblasts

were stimulated with IL-36γ cleavage products (Y16, Q17 and S18) as well as the full length control. 

n = 3, independent experiments and different donors. c – Comparison of human primary fibroblasts

from both healthy (Figure 5-13 a) and psoriatic donors stimulated with IL-36α K6 (Figure 5-14 a). d –

Comparison of human primary fibroblasts from both healthy (Figure 5-13 b) and psoriatic (Figure 5-

14 b) donors stimulated with IL-36γ S18. IL-36γ truncated (T) at 100 ng/ml (5.4nM) was used as 

positive control in both experiments (commercially available IL-36). Mean +/- SEM is depicted on all

graphs. NS = Non-stimulated. Raw data was analysed using a Kruskal-Wallis test (a+b) and multiple

student’s T test with Holm-Sidak post-test (GraphPad Prism 5.03, GraphPad Software, San Diego,

CA). * = p ≤ 0.05 ** = p ≤ 0.01 

The activity of the IL-36 proteins appeared to be determined by the removal of a

precise number of amino acids from the N-terminus (see Figure 5-14). In order to

study this further mutational analysis was performed for both IL-36α K6 and IL-36γ 
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S18 to assess whether the specific amino acid or the length of the N-terminus was

crucial for activity. The N-terminal amino acid was therefore substituted for an

alanine. Following amino acid substitution from a lysine (IL-36α K6) or a serine (IL-

36γ S18) to an alanine IL-36γ showed no reduction in activity (Figure 5-15) 

suggestive of the importance of the N-terminal length rather than a specific amino

acid. Preliminary data suggests that the same is true for IL-36α (data not shown). 

Figure 5-15. IL-36γ requires a specific N-terminal length in order to maintain activity. 

Healthy human primary fibroblasts were treated with both IL-36γ S18 and IL-36γ S18A, where the N-

terminal serine has been substituted for an alanine. Following 48 hours of stimulation IL-8 levels

were detected using ELISA. n = 3, independent experiments and different donors. Mean +/- SEM is

depicted on all graphs. NS = Non-stimulated. Preliminary results suggest that these results also reflect

what is seen for IL-36α K6. 

As mentioned previously RAs are crucial in order to control inflammation.

Following cleavage of IL-36RA by the recombinant neutrophil serine protease,

elastase, a cleavage product was detected where the methionine was removed from

the N-terminus. Also following cleavage by recombinant neutrophil serine proteases

and activated PMNs another product was detected with three amino acids removed

from the N-terminus (IL-36RA S4). In order to test the efficacy of these

differentially cleaved receptor antagonists both healthy and psoriatic human primary

fibroblasts were treated of IL-36RA V2 in the presence and absence of commercially

available IL-36γ truncated (T) at 100 ng/ml (5.4nM) or the active IL-36γ S18 at 10 

nM. In both the healthy and psoriatic human primary fibroblasts the IL-36RA
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effectively reduced the IL-36γ T or IL-36γ S18 induced IL-8 release on increasing 

concentrations of IL-36 V2 (Figure 5-16 a + b). In the healthy human primary

fibroblasts complete reduction of IL-36γ T induced IL-8 to non-stimulated levels 

was seen at 50 nM of IL-36RA V2 (Figure 5-16 a). However, in the psoriatic human

primary fibroblasts higher concentrations (100 nM) of IL-36RA V2 were required to

reduce IL-8 levels to non-stimulated control, this is likely to be due to the increased

responsiveness of these cells (Figure 5-16 b). In contrast to IL-36RA V2 which alone

showed no activation of the cells and in combination with IL-36γ truncated (S18) 

showed antagonistic properties IL-36RA S4 indicated no antagonistic properties

(Figure 5-16 c).
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Figure 5 – 16. IL-36 receptor antagonist requires removal of the N-terminal methionine to

enable antagonistic properties.

Healthy and psoriatic human primary fibroblasts were plated at 20,000 cells per well and treated with

IL-36RA cleavage products (V2 and S4) in the presence and absence of commercially available IL-

36γ truncated (T) or IL-36γ S18 at 100ng/ml (5.4nM) or 10nM, which has previously shown to be 

active. After 48 hours of treatment IL-8 concentrations analysed by ELISA. a – Healthy human

primary fibroblasts were stimulated with IL-36RA V2 in the presence and absence of commercially

available IL-36γ T. n = 3, independent experiments and different donors. b - Psoriatic human primary

fibroblasts were stimulated with IL-36RA V2 in the presence and absence of active IL-36γ S18. n = 3, 

independent experiments and different donors. Boiled controls were performed for IL-36RA V2 to

rule out LPS contamination (data not shown) c – Healthy human primary fibroblasts were treated with

100nM of IL-36RA S4 in the presence and absence of IL-36γ S18. n = 1. Mean +/- SEM is depicted 

on all graphs. NS = Non-stimulated.

5.9 Response of skin equivalent models to stimulation by IL-36

In 5.8 it was shown that the cleaved IL-36α K6 and IL-36γ S18 induce release of 

high levels of IL-8 in human primary fibroblasts. However, due to the significance of

the IL-36 members in chronic inflammatory skin diseases such as psoriasis it was
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presumed that IL-36 may play a more complex role than simply increasing IL-8

release. Therefore in order to study the potential interplay between fibroblasts and

keratinocytes in a more physiological setting, 3-D skin equivalents were produced

using human primary keratinocytes and fibroblasts derived from both healthy and

psoriatic donors.

3-D skin equivalent models were produced using healthy human primary

keratinocytes and fibroblasts. These models were cultured for 10 days at the air-

liquid interface before addition of 20 ng/ml of IL-22, 100 nM IL-36α full length and 

IL-36γ full length or 100 nM IL-36α K6 and IL-36γ S18 for a further 96 hours. 

Following 14 days of culture at the air-liquid interface skin equivalents were fixed

with 4% formaldehyde, sectioned and mounted onto microscope slides. Sections

were then stained using H&E and stained for the presence of cytokeratin 10 (CK10).

Figure 5-17 identifies active IL-36 compared to untreated control and IL-22, which

is regarded as an inducer of psoriatic phenotype in skin equivalents [509], IL-36α K6 

and IL-36γ S18 indicate a marked change in phenotype (Figure 5-17 a-c). An 

enlarged epidermis is clearly present however, the CK10 which is a differentiation

marker, staining does not suggest that this is related to aberrant differentiation

because the CK10 levels look relatively consistent in untreated, IL-22 and IL-36

treated skin equivalent sections.
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Figure 5 – 17. Treatment of skin equivalents constructed with healthy fibroblasts and

keratinocytes with IL-36 shows a defined phenotype.

Skin equivalents produced from healthy human primary keratinocytes and fibroblasts were treated for

96 hours with either IL-22 or IL-36α K6 and IL-36γ S18. Following which skin equivalents were 

fixed in 4% paraformaldehyde, sectioned and stained with H&E or cytokeratin 10 (CK10) using a

DAB detection system and counterstained with haematoxylin then imaged using a Leiss light

microscope at a 16x objective. Multiple images were taken and a representative image is displayed.

Untreated skin equivalent sections were stained using H&E (a) and CK10 (d). n = 1 experiment. IL-

22 (20 ng/ml) treated skin equivalent sections were stained using H&E (b) and CK10 (e). n = 1

experiment. IL-36α K6 and IL-36γ S18 (100 nM) treated skin equivalent sections were stained using 

H&E (c) and CK10 (f) n = 1 experiment.
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The images taken of the CK10 stained sections were counterstained with

haematoxylin enabling nuclei counting to be performed for each image frame and an

average nuclei count to be analysed (Figure 5-18). A statistically significant increase

in the number of nuclei was detected following treatment with 100 nM of IL-36α K6 

and IL-36γ S18, however an increase in the number of nuclei was also seen in the 

skin equivalents treated with 100nM of full length IL-36α and IL-36γ.   

Figure 5 – 18. IL-36 treatment of skin equivalents derived from healthy keratinocytes and

fibroblasts induces proliferation in the epidermal layer.

Skin equivalents produced from healthy fibroblasts and keratinocytes were stained with CK10 and

counterstained with haematoxylin which allowed quantification of nuclei. Nuclei were counted in

each x16 image frame using Image J software. 4 representative images of each skin equivalent were

counted and the IL-36α K6 and IL-36γ S18 represented 2 experiments. NT = non-treated. Mean +/- 

SEM is depicted on the graph. Raw data was analysed using a Kruskal-Wallis test (GraphPad Prism

5.03, GraphPad Software, San Diego, CA). * = p ≤ 0.05  

3-D skin equivalent models were also produced using keratinocytes and fibroblasts

from healthy and psoriatic patients to attempt to elucidate the intrinsic roles of skin

cells derived from psoriatic patients. However, the results were not conclusive

therefore data is not shown.



161

5.10 IL-38 as a possible IL-36 antagonist in human fibroblasts

IL-38 has been described to have antagonistic properties on IL-36 acting in a similar

manner as the IL-36RA [126]. IL-38 proteins were produced in the Champion pET

SUMO expression system in the same manner as the IL-36 proteins described in 5.4

and 5.7. Four different forms of IL-38 were produced, one full length and 3 others

with amino acids removed from the N-terminus (IL-38 C2, IL-36 S3, IL-38 L4).

These forms were produced due to the alignment with other IL-1 members in the

same manner as was used for prediction of IL-36 cleavage (see Appendix figure 24

for alignment). The SUMO tag was removed using His-ULP-1 protease before the

IL-38 proteins were used to treat human primary cells. In order to test this in a

culture system in which the IL-36RA V2 had been shown to be an effective

antagonist on IL-36 members (see 5.8), healthy human primary fibroblasts were

stimulated with increasing concentrations (1 nM – 100 nM) of full length and

cleaved IL-38. This was performed in the presence and absence of 100ng/ml of the

commercially available IL-36γ truncated (T) (Figure 5-19). After 48 hours of 

stimulation IL-8 concentrations analysed by ELISA.

Following treatment with increasing concentrations of full length IL-38 in the

absence of IL-36γ T increasing levels of IL-8 were detected and a further increase of 

IL-8 was seen when IL-38 in combination with IL-36γ T was used (Figure 5-19 a). 

This suggests that full length IL-38 binds to a receptor on the cells causing

downstream signalling and therefore displays an agonist and not antagonistic role.

Full length IL-38 was also boiled for 20 minutes before being added to the cells and

this confirmed that LPS was not responsible for the increase in IL-8 release (data not

shown). When human primary fibroblasts were treated with increasing

concentrations of IL-38 C2 in the absence of IL-36γ an increase in IL-8 release was 

also seen and this was increased further when IL-38 C2 was used in combination

with IL-36γ T (Figure 5-19 b). This shows that removing one amino acid from the N-

terminus does not enable the antagonistic properties in this experimental set-up. In

contrast both IL-38 S3 and IL-38 L4 even at 100 nM in the absence of IL-36γ T did 

not induce IL-8 (Figure 5-19 c + d). In combination with IL-36γ T IL-38 S3 does 

still not display any antagonistic properties, however IL-38 L4 in combination with

IL-36γ T showed a slight tendency to reduce IL-36γ T induced IL-8 release in some 
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donors. However, the overall trend is that neither the full length IL-38 nor the

cleavage products produced here have an antagonistic role on IL-36.

Figure 5 – 19. Both full length IL-38 and cleavage products fail to antagonise IL-36.

Human primary fibroblasts were plated at 20,000 cells per well treated with cleavage products (C2,

S3 and L4) of IL-38 in the presence or absence of a commercially available IL-36γ truncated (T) that 

is known to be active. 48 hours after stimulation supernatants were removed and IL-8 protein

concentrations were assessed by ELISA. a – Human primary fibroblasts were stimulated with full

length (FL) IL-38 in the presence and absence of IL-36γ T. n = 4, independent experiments and 

different donors. b - Human primary fibroblasts were stimulated with IL-38 C2 in the presence and

absence of IL-36γ T. n = 4, independent experiments and different donors. c - Human primary

fibroblasts were stimulated with IL-38 S3 in the presence and absence of IL-36γ T. n = 4, independent 

experiments and different donors. d - Human primary fibroblasts were stimulated IL-38 L4 in the

presence and absence of IL-36γ T. n = 4, independent experiments and different donors. NS = non-

stimulated. Mean +/- SEM is depicted on all graphs.

5.11 Mammalian expression of IL-36

As mentioned previously, the majority of the IL-1 family proteins do not contain a

leader sequence, therefore release from the cell has to be via a non-conventional

pathway. Caspase-1 is thought to play a role in the release of some IL-1 members
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(shown for IL-1α and IL-1β, discussed in 1.4.1) from the cell. Therefore, the 

cleavage and consequent increased activity of the IL-36 members may occur inside

the cell prior to release or it may be released and cleaved into activation outside the

cell. In order to study this, a vector, pcDNA 3.1+ (see Appendix figure 3 for vector

map), over-expressing the IL-36 members with and without N- (myc) and C-(His)

terminal tags was transfected in to a range of mammalian cells (depicted in Figure 5-

20 a). The figures depicted in 5-20 are representative but have been performed in all

conditions and different cell types. The transfection efficiency was confirmed using a

green fluorescent protein (GFP) vector, which identified a good percentage of cells

were successfully transfected (Figure 5-20 b). After 24 hours of transfection mRNA

was isolated and levels of IL-36 mRNA established using qRT-PCR which

confirmed that the plasmid was being successfully transcribed (Figure 5-20 c).

However, no IL-36 protein could be detected using the plasmid containing IL-36

alone or in combination with the myc and His tags. This was attempted in various

cell lines including 293T, 293TT, 293FT, Cos7 cells as well as primary cells.

Optimisation was extensively carried out altering transfection time, transfection

reagents and cell confluency. The transfection was also carried out 12 hours prior to

the addition of the proteasome (MG132) or lysosome (chloroquine) inhibitors to

prevent protein degradation before cells were harvested for protein analysis.

Unfortunately, due to the lack of protein seemingly being produced the trafficking

and cleavage of IL-36 could not be monitored in a cellular system. Of note, available

commercial antibodies also fail to detect intracellular IL-36.
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Figure 5 – 20. IL-36 is potentially post-translationally regulated.

Various cell lines (293T, 293TT, 293FT and Cos7) and human primary cells were transfected with

pcDNA 3.1+ containing IL-36 constructs and mRNA levels and transfection efficiency analysed. a –

Diagrammatic representation of the pcDNA 3.1+ plasmid constructs used. IL-36α, IL-36β and IL-

36RA were cloned into the plasmid without N- and C-terminal tags. All IL-36 products were also

cloned into the pcDNA 3.1+ plasmid containing a C-terminal His tag and N-terminal myc tag. b – A

GFP control plasmid was also transfected in conjunction with the experimental plasmids to assess

transfection efficiency. These images represent the transfection efficiency in all cell lines transfected.

c – 24 hours after transfection mRNA was isolated from the cells and qRT-PCR performed for IL-36α 

and IL-36RA, Ct values are shown following ΔΔCT-analysis and fold increase is depicted compared 

to GFP transfection control. U6 – housekeeping gene, GOI = gene of interest. This table represents

results for 293T and Cos7 cells, however similar results were identified for all other cell types used.

5.12 Discussion and future work

The IL-36 family of cytokines have only been described relatively recently and there

is currently a significant lack of suitable reagents e.g. for protein detection. As a

consequence the full IL-36 functional activity, intra- and extracellular trafficking and

regulation still needs to be elucidated. This is of clinical relevance due to clear link

between subtypes of GPP and an uncontrolled IL-36 activity due to a loss-of-
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function mutation in the RA [5]. Numerous studies have also identified that IL-36 is

highly up-regulated in lesional psoriatic skin compared to the non-lesional skin in

the same patients [222]. Keratinocytes derived from psoriatic patients intrinsically

produce more IL-36 in response to IL-17 and TNFα [60]. These clear links with 

psoriasis suggests that the IL-36 family may be of interest as a therapeutic target. It

is consequently crucial to gain insight in mechanisms and pathways leading to IL-36

activation and inactivation.

In this chapter the previously predicted cleavage products that were thought to be the

most active using biophysical analysis [128] were tested in human primary skin

resident cells. It was confirmed that compared to the full length proteins the cleaved

IL-36α, IL-36β and IL-36γ were all significantly more active in their ability to 

increase IL-8 release (>10 fold increase, see Figure 5-1 - 3) in both keratinocytes and

fibroblasts, which is in line with the biophysical predictions. IL-8 is a chemokine

that attracts neutrophils, and the significant levels released from skin resident cells

may drive the neutrophilic inflammation seen in psoriasis. This effect has also been

shown in lung fibroblasts, where treatment of IL-36 induces significant levels of IL-

8 [213]. However it was shown that IL-36 had to be used at high concentrations to

see an effect, suggestive of the fact that full length proteins were used in these

experiments [213]. Results depicted in this chapter demonstrate that the truncated IL-

36α caused significantly more IL-8 release compared to truncated IL-36γ. This is in 

line with finding from Towne et al., [128] who analysed the binding affinity of the

cleaved products. All IL-36 cleavage products displayed a higher binding affinity

compared to the full length protein, however the cleaved IL-36α had a significantly 

higher binding affinity compared to the cleaved IL-36β and IL-36γ [128]. In this 

chapter, data was presented in support of human primary fibroblasts being more

efficient responders to IL-36 in their production of IL-8 compared to human primary

keratinocytes. This is in line with the suggestion that human primary fibroblasts are

the predominant responders to IL-36 in the skin whereas the human primary

keratinocytes are the significant producers of IL-36 [60].

Of note, in response to the cleaved IL-36 proteins human primary fibroblasts derived

from psoriatic patients produced significantly higher levels of IL-8. This is

suggestive of the fact that psoriatic cells are intrinsically more responsive to IL-36.

This may well be due to increased IL-36R levels on these cells, however preliminary
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experiments carried out alongside the work shown in this chapter did not indicate

any changes in receptor levels compared to healthy human primary fibroblasts. Due

to these findings it is unlikely that differential expression of IL-36 receptor is the

cause for increased responsiveness. As previously discussed the IL-36 receptor

signals via NF-κB [185]. It is well regarded that in some psoriatic patients the NF-κB 

pathway is dysregulated due to common genetic mutations (see Table 1-1). These

mutations effect negative regulators in this pathway causing potential over activity

and consequent increase in pro-inflammatory mediator release [99]. It would be an

interesting avenue for further work to assess responsiveness of psoriatic fibroblasts

to IL-36 according to the patient’s genotype.

The results depicted in this chapter suggest that all the IL-36 members require

cleavage to increase binding affinity to the IL-36 receptor in order to see an increase

in pro-inflammatory cytokine release downstream of the NF-κB pathway. This work 

has been focused on elucidating the cleavage of IL-36 proteins into their most

bioactive forms. Of note, a newly described neutrophil serine protease, NSP4, was

not tested in the panel of recombinant neutrophil serine proteases. This was due to its

known low abundance in neutrophil azurophils, NSP4 is released at levels

representing only 5% of the cathepsin G released [510]. However, if this neutrophil

protease was responsible for cleavage then the active IL-36 products would have

been identified following incubation with activated PMN supernatant.

IL-36RA is cleaved in to its active and highly antagonistic form by the recombinant

serine protease, elastase. This is an important finding due to the crucial role of

receptor antagonists in controlling inflammation and preventing the possibility of

chronic inflammation. In contrast the proteases released from activated PMNs and

recombinant neutrophil serine proteases cleave the IL-36 agonists (IL-36α and IL-

36γ) into a form in which they are inactive. However, the cleavage site identified in 

this work is in close proximity to the site in which cleavage would lead to the highly

active form [128]. This is not consistent with the N-terminal cleavage of IL-1β 

which can be cleaved at different points within a small range on the N-terminus with

no effect to activity [511]. This specific cleavage site required for IL-36 is likely to

be related to activation of the active site within the receptor. In this chapter the

length of the N-terminus rather than the specific amino acid has been shown to play

a crucial in biological activity. In order to establish the specific receptor binding sites
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for IL-36 the crystal structure should be solved in complex with its receptors, this

would be an important area for further work. A recent publication has reported the

crystal structure of IL-36γ [512] and previously the structure of murine IL-36RA had 

been reported [513]. This crystal structure despite not being co-crystallised with the

receptors does allow modelling of IL-36γ with the previously published IL-1 

receptor complexes [512]. This is in line with what was shown in Figure 5-15 that

the length and not the amino acid on the N-terminus is important for receptor

binding. When IL-36γ is modelled in the IL-1 receptors the backbone of the serine at 

the N-terminus forms a hydrogen bond with an aspartate in the receptor. Therefore,

confirming the length of the amino acid is important to form the hydrogen bond and

the backbone of any amino acid could form this bond. Any extra amino acids would

cause steric hindrance for receptor binding. The structural analysis of IL-36γ and 

consequent in vitro techniques indicated a mutation at amino acid 162 from an

alanine to aspartic acid increased binding affinity [512]. This is of interest due to the

possibility of a gain-of-function mutation in a subset of psoriatic patients.

The identified IL-36γ cleavage product Q17 did initiate some IL-8 release which was 

more pronounced in the psoriatic fibroblasts, at a local concentration this could be

physiologically relevant. It is known that neutrophils, the large proportion of cells in

PMNs, are present at a high density in psoriatic lesions [3]. The data presented in

this chapter favours a regulatory role of PMNs in a psoriatic lesion regarding IL-36-

mediated inflammation. This is not all together surprising considering the substantial

role neutrophils play in the resolution of inflammation (see 1.2.3). The IL-36α and 

IL-36γ cleavage products, I7 and Y16, Q17 respectively, detected were highly 

reproducible with the neutrophil proteases and kallikreins tested. This could suggest

that these cleavage products are highly physiologically relevant and there is a

possibility that another cleavage step is required to cleave IL-36α and IL-36γ into 

their active form, however this remains to be elucidated. This could however be due

to a susceptible free region at the N-terminus present in all IL-36 members as shown

by previously published crystal structures [512] [513]. This structural analysis

suggests that the N-termini of the IL-36 proteins contain exposed flexible regions

that are discrete from the IL-1 domain that could simply make the N-terminus more

susceptible to proteolytic processing.
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The results depicted in this chapter do however leave the protease responsible for

cleavage of the agonist IL-36 members in to their active forms undetermined. The

data suggest that proteases released from skin resident cells or from activated PMNs

are not, on their own, responsible for processing IL-36 into the fully active form. The

lack of detection of the active forms could also potentially indicate that the IL-36

members are in fact not released from the cell in their full length form, which would

be in line with other IL-1 family members such as IL-1β and IL-18 (see 1.4.1 for in 

depth discussion on other IL-1 members) [140]. IL-36 may either be released from

the cell in its active form, a cleaved inactive form or its full length form. If it was

released in an inactive but cleaved form then cleavage by proteases present in the

skin compartment need to act on IL-36 proteins to process it in to its active form

outside the cell. However, it may the case, as with IL-1β that following necrotic cell 

death full length inactive IL-1β is present in the extracellular space and neutrophil 

serine proteases then cleave it into its active form (see 1.6.3) [342].

There is evidence in murine models to suggest that the full length IL-36 is cleaved

outside of the cell rather than prior to release from the cell. Intratracheal

administration of full length IL-36α [514] or IL-36γ [210] in to mice induces a 

significant influx of neutrophils in an IL-1α/IL-1β independent manner and also 

increases expression of other pro-inflammatory cytokines. In this in vivo model it is

likely that IL-36 is cleaved by an extracellular protease in order to exert its pro-

inflammatory effects. This theory could be tested by producing mutants that are un-

cleavable and injecting this protein to compare the pro-inflammatory effects exerted

by the mutant and physiologic full length IL-36. Therefore, despite having tested

inflammatory cells and skin resident cells for their ability to cleave IL-36 the

conditions or microenvironment to enable IL-36 processing may have been

overlooked. Psoriasis shows altered protease activity and serine proteases mutations

have been identified which are linked with disease susceptibility (see Table 1-1) [99,

515]. Therefore increased protease activity in psoriasis may actually lead to more

active IL-36 and play a significant role in disease pathogenesis.

There are many proteases in the skin including MMPs, cysteine and serine proteases

(discussed in more detail in 1.6.1) as well as proteases derived from the skin

microflora. Experiments presented in this chapter included skin biopsies from both

healthy and psoriatic patients that were incubated with IL-36 before the protein was
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purified and analysed. However, results from these experiments failed to

demonstrate biological active IL-36 forms. This may be due to the incubation period

being too long, if the tissue was available then numerous shorter time points could be

performed to rule this out and this is a crucial area for further work. One healthy skin

biopsy was stimulated with cytokines thought to be important in psoriasis, IL-17 and

TNFα, and the other biopsies left untreated including one from a psoriatic donor. 

Although cleavage was detected following incubation with both treated and

untreated skin biopsies, the correct cytokine micro milieu may not have been present

in order to produce proteases that could cleave IL-36 into its active form. This

reiterates the need for sensitive reagents to detect IL-36 and its active cleaved forms

in vivo to fully understand the role it plays in disease.

Another possibility for the lack of active form identified is that the cleavage could be

occurring by a protease derived from an exogenous source. Skin biopsies were

removed from healthy and psoriatic donors and washed extensively with antibiotics

to prevent bacterial contamination in culture. However, this means that the potential

influence of skin microbiota derived proteases may have been missed. The skin has a

diverse microbial flora and in its healthy state contains 1012 resident bacteria/m2,

therefore the proteases produced by bacteria must be taken into consideration. Skin

relevant bacteria such as Staphylococci aureus and S. epidermidis, Streptococcus

pyogenes and Pseudomonas aeruginosa produce extracellular proteases [300]. These

include serine-, cysteine- and metallo-proteases. Fungi also present a source for

proteases in the skin, Candida albicans and Malazessia are commensal yeasts

present on healthy skin without any symptoms. When fungal colonisation becomes

pathogenic, proteases are produced as a virulence factor to aid the infective process.

For Candida albicans these proteases include secreted aspartic proteases (Saps) and

may disturb the endogenous balance of protease and protease inhibitor [516]. House

dust mite (HDM) presents as a common allergen in many allergic disease, it has been

shown that the main allergen from HDM displays protease activity. There are 4

known proteases; Dermatophagoides pteronyssinus (Der p), Der p1, Der p3, Der p6,

Der p9 and they all require cleavage to facilitate activity. These proteases have been

shown to play a role in cleavage of PAR-2 and other membrane associated receptors

[517]. Der p1 does have a preference for a serine at its P1’ site (MEROPS database),

therefore this may well be a target for cleavage of IL-36γ in to its active form. Of 
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note, it has also been shown in murine models that IL-36γ is up-regulated in 

response to HDM challenge [518]. All of these possible exogenous proteases may

well shift the balance of the endogenous protease – protease inhibitor system and

may be related to pathogenesis of inflammatory skin diseases, this could potentially

also involve increasing activity of possible mediators of disease such as IL-36. It has

been shown that IL-36 is up-regulated in response to live scabies mites in a skin

equivalent model [519] and also in various bacterial [520, 521] and fungal infection

[126, 522]. It is well known that scabies mites produce significant levels of proteases

in order to aid their life cycle [523] and the fungal and bacterial proteases have been

discussed previously. Therefore it is possible that these exogenous proteases may

play a role in IL-36 cleavage following up-regulation of IL-36 upon infection. Of

note, there is rarely infection seen in psoriatic skin lesions and there is reduced

microbiome diversity [524]. However in comparison to other chronic inflammatory

skin disease there is a unique microbiome which may be relevant to disease

pathogenesis [524]. As previously discussed there are many emerging roles of IL-36

in the inflammatory response. From data depicted in this chapter there is no doubt

that it plays a role in neutrophil infiltration in to the skin and there is certainly much

more to elucidate about this group of cytokines.

A type of tissue immune cells not discussed with regard to IL-36 cleavage are mast

cells which are abundant in tissues such as the skin [525]. These cells would have

undoubtedly been present in a skin biopsy however they may not have been activated

sufficiently in order to degranulate and release their plethora of proteases. It has been

shown that in response to LPS mast cells will only release cytokines and no obvious

degranulation was detected [526]. Therefore this may be an area for further

investigation in the pursuit of the protease responsible for IL-36 cleavage.

IL-36 release from the cell remains to be fully elucidated due to the lack of a leader

peptide which is a common feature of all IL-1 family members [527]. There are

many studies identifying increases in IL-36 mRNA in various epithelial cell types

however there is a significant lack of data with regard to IL-36 protein and in

particular IL-36 in the extracellular space. At present the literature suggests that IL-

36 is released from the cell following loss of membrane integrity such as pyroptosis

[206, 211]. A double activation signal of cells has also been suggested as a

mechanism for release of IL-36 in a similar manner to IL-1β [405]. It seems that IL-
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36 protein is often detected in the extracellular space following treatment of cells

with dsRNA [213] which as observed by Lian et al., [211] causing loss of cellular

membrane integrity.

In this chapter it was demonstrated that attempts were made to over express IL-36

members in mammalian cell culture in order to try and elucidate the point at which

IL-36 cleavage is likely to occur. In order to assess whether the active form was

released from the cell an in vitro set up with N- and C-terminal tags was required, as

described in 5.11. N- and C-terminal tags were required due to the minimal

difference in molecular weight it would be difficult to assess the difference between

active and inactive forms simply by the mobility on an SDS PAGE gel. The

problems encountered whilst attempting to over express IL-36 may be due to the

presence of mRNA instability elements. This has been described for other IL-1

family members, IL-18 and IL-37, in which the rapid degradation of mRNA is

thought to be a tightly maintained control mechanism utilised to control release of

pro-inflammatory cytokines [172]. Another option for detection of cleaved and full

length forms would be to produce antibodies specifically against the active cleaved

IL-36 forms. This may be difficult to achieve however it would an invaluable tool to

identify the different forms of IL-36 found in vivo. There is minimal data identifying

IL-36 in vivo, however IL-36α has been identified in the synovium of patients 

suffering from rheumatoid arthritis and PsA [225]. At present the commercially

available antibodies appear to lack sensitivity and this may therefore be the reason

for the paucity in IL-36 protein data. A crucial area for further work will be to

identify the cleaved active forms in vivo and produce more sensitive reagents to

study IL-36.

IL-36 has been shown to be up-regulated in psoriasis as described previously (see

1.4.3.2). However, at present, IL-36 has not been implicated in causing

morphological changes in psoriatic plaque. In this chapter a novel function of the

active form of IL-36 has been described regarding the hyperproliferation of the

epidermal compartment in a 3-D skin equivalent model following 96 hours of

cleaved active IL-36 treatment. The induction of a psoriatic like phenotype using

pro-inflammatory cytokines has been previously demonstrated in a skin equivalent

model using a de-epidermised dermis to seed keratinocytes [509]. IL-22 treatment

was used as a control due to its known role in epidermal thickening and psoriatic
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pathogenesis [528]. However IL-36 was a much more potent inducer of epidermal

enlargement and keratinocyte proliferation. In comparison to the full length IL-36

active cleaved IL-36 induced significantly more epidermal proliferation. However

this has also been alluded to in murine models. In a fibroblast growth factor receptor

(FGFR) deficient murine model severe barrier defects are seen as well as activation

of keratinocytes and T cells, with an increased expression of IL-36β in the epidermis 

[529]. The relevance of IL-36 in the barrier defects seen was confirmed by injecting

recombinant IL-36β intradermally, this showed increased keratinocyte proliferation 

after 24 hours [529]. Another study has shown that ADAM17, which is downstream

of FGFR2, deficient mice show a similar phenotype and at 10 days old mRNA levels

of IL-36α and IL-36β are significantly increased [530]. Data shown in this chapter as 

well as previously published murine models indicates a potential role for IL-36 in the

epidermal changes that are characteristically identified in psoriasis. An interesting

avenue for further work would be to include IL-36RA along with the active cleaved

IL-36 to assess how much of the hyperproliferation could be ameliorated in the skin

equivalent cultures. This would then establish whether the hyperproliferation seen

was purely IL-36 mediated. It may well be that IL-36 is inducing other mediators,

therefore it would be interesting to analyse the supernatants from these skin

equivalents and assess levels of pro-inflammatory mediators using a multiple analyte

detection method, such as FlowCytomix™. The IL-36 effect may well have been

overridden by mediators released from the psoriatic skin resident cells that were not

present in the healthy cells, which may be the reason for the limited changes in

morphology seen when psoriatic cells were used.

This experimental set-up used both healthy keratinocytes and fibroblasts, however

interestingly when psoriatic keratinocytes were used in combination with healthy

fibroblasts an increased epidermal compartment was observed. This was regardless

of the treatment conditions suggestive of an intrinsic proliferative role of psoriatic

keratinocytes. However, it is worth noting these experiments are preliminary and

need to be repeated with different donors due to the donor variability that is often

seen in primary cultures. In addition the fact that the psoriatic keratinocytes used

were of high passage number and therefore in an altered ‘differentiation’ state needs

to be taken into consideration. Proliferation was determined in this chapter using

nuclei counting, however further work is required to stain for proliferation markers
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such as Ki67. Further work is also required to expand the panel of markers used to

stain the skin equivalent sections such as cytokeratin 16 which is known to be

dysregulated in psoriasis [531], this is required to substantiate the preliminary

findings shown in this chapter. However the treatment of the healthy skin equivalent

models with active IL-36 was reproduced using cells from two different donors

suggestive of this being a reproducible finding. In order to fully replicate psoriatic

skin the skin equivalent model would ideally be populated with autologous immune

cells that are known to be relevant in psoriasis in a similar manner as described by

van den Bogaard et al., [532]. It would be of great interest to assess the role of IL-36

in an immune cell populated 3-D skin equivalent model.

IL-38 was also investigated in this chapter due to its potential role as an antagonist of

the IL-36 family [126]. The aforementioned study was performed using full length

IL-38 and PBMCs, this suggested antagonistic properties on IL-36 however this was

shown to be much weaker than IL-36RA. Preliminary work is depicted in this

chapter which indicates that IL-38 is not an antagonist for the IL-36 family in human

primary fibroblasts. Cleavage products were produced for IL-38 using the same basis

that appears to hugely increase the activity of IL-36 (alignment shown in Appendix

figure 24). Using the method of counting from the conserved IL-1 domain at the N-

terminus correctly identified the active IL-36 products, this method would suggest

that IL-38 S3 should be active. However, this could not be verified in the preliminary

work depicted here. This may be because IL-8 is not the ideal downstream marker to

analyse, therefore a range of pro-inflammatory mediators should be assessed. It is

also possible that IL-38 is binding to a different receptor that is not necessarily

expressed on human primary fibroblasts but exerts inhibitory effects on the IL-36

downstream signalling in other cells such as SIGIRR, which functions at present are

poorly understood.

In conclusion, the truncated active form of IL-36 stimulates significant IL-8 release

from skin resident cells which consequently attracts neutrophils into the skin and this

IL-8 release is increased further in fibroblasts derived from psoriatic patients. This

points to an intrinsic difference of these cells regarding responsiveness to IL-36 and

indicates a role for IL-36 in the neutrophilic inflammation seen in psoriasis. The

activated neutrophils present in psoriatic skin fail to fully activate the pro-

inflammatory IL-36 members and activate the IL-36RA which suggests that
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neutrophils could play a regulatory role in the IL-36-mediated inflammation. IL-36

also potentially plays a role in the psoriatic phenotype in which the epidermis is

enlarged and keratinocyte proliferation is evident. Therefore, IL-36 may be a pivotal

cytokine in psoriatic inflammation and may be an invaluable target for psoriatic

therapeutics as well as other chronic inflammatory disorders. However, more work is

required to fully elucidate the release, activation and control of this newly described

family of cytokines.
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Chapter 6 – Discussion



176

A key problem for treating diseases such as psoriasis and eczema is their tendency to

become chronic and the complex disease pathogenesis including different subtypes

of disease. It is crucially important to understand processes leading to chronic

inflammation and subtypes of disease in order to develop therapeutics that

effectively reduce inflammation without severe side effects. There are many

suggestions of how chronic inflammation occurs and a complex network of immune

cells, surrounding stromal cells as well as the cytokine micro milieu all contribute to

the process.

6.1 The balance between pro- and anti-inflammatory mediators

As discussed throughout this work pro-inflammatory cytokine release is always

accompanied by expression of regulatory molecules that inhibits the pro-

inflammatory function. These control mechanisms are present at various levels

including the receptor level. Agonists are prevented from binding to their receptor by

receptor antagonists, decoy receptors, binding proteins [187] as well as altering

binding capacity of the mediators by proteolytic cleavage. Control mechanisms are

also present downstream from the receptor at transcription and translational levels.

There are numerous examples of the importance of regulators within the IL-1 family

and much has been learned from monogenetic diseases affecting the inflammasome

in which excessive activation of IL-1β leads to episodic fever syndromes such as 

Muckle Wells [533]. These syndromes are often successfully treated with

Anakinra® which is a recombinant IL-1RA which neutralises IL-1 activity. This

illustrates the consequences and severe symptoms that ensue when the imbalance

between pro- and anti-inflammatory mediators are disturbed. The up-regulation of

IL-1RA by a component of Aspergillus fumigatus cell wall (galactosaminogalactan)

has also been shown to be a virulence factor in Aspergillus fumigatus infection

[534]. This illustrates the powerful immune modulatory effects these ‘controllers’ of

the immune system play.

The newly described subset of IL-1 family members, IL-36, are also crucially

controlled by the IL-36RA and loss-of-function mutations in this protein lead to a

severe, life-threatening subset of psoriasis, GPP [5, 111]. This, as well as data

depicted in chapter 5 indicating the importance of IL-36RA in controlling the pro-

inflammatory IL-36 members suggests that a recombinant IL-36RA therapeutic may
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be a valid option for treatment of psoriasis. As has been already described, IL-36γ 

specifically is highly up-regulated in psoriasis therefore controlling these IL-36

members, could be of potential therapeutic benefit.

The IL-1 family consists of one binding protein, IL-18BP. This BP importantly

controls the highly pro-inflammatory IL-18. Previously IFNγ was the only known 

inducer of IL-18BP [450]. In chapter 3 a novel mechanism by which IL-18BP can be

up-regulated was described. IL-27 was described to efficiently up-regulate IL-18BP

in human primary skin resident cells. Interestingly, levels of IL-18BP were

significantly higher in human primary fibroblasts which indicates a potentially more

regulatory role of the dermal layer of the skin compared to the highly reactive and

pro-inflammatory keratinocytes. One could speculate that some tissue cells are

programmed to be more regulatory than pro-inflammatory and work on

mesenchymal stromal cells which used dermal fibroblasts as control cells has already

delivered hints for the generally more regulatory properties of fibroblasts [535]. The

importance of the IL-18/IL-18BP balance is currently of great interest in disease

states where IL-18 has been long regarded as highly up-regulated. Recent literature

is focused on the importance of this IL-18/IL-18BP balance in cardiac dysfunction

[465, 536]. Inefficient up-regulation of IL-18BP to control the increase of IL-18 in

diseases such as systemic lupus erythematosus is also thought to be crucial to the

chronicity of this disease [537]. IL-18 currently also re-gains increased interest as a

key factor in ILC1 polarisation [121, 243]. In chapter 3, IL-27 in addition to

hydrocortisone was shown to up-regulate IL-18BP without the induction of the pro-

inflammatory chemokine CXCL10. Therefore endogenous induction of IL-18BP

using IL-27 in combination with hydrocortisone could be a therapeutic tool to re-

address this balance.

6.2 Control of pro-inflammatory mediators by proteases

Pro-inflammatory mediators are also controlled at the transcriptional level and

changes in mRNA stability is a well described mechanism by which this occurs. This

has been described for both IL-37 and IL-18 within the IL-1 family [172]. Another

mechanism by which pro-inflammatory mediators are regulated is by their

proteolytic activation. As extensively discussed in this thesis, proteolytic cleavage is

important in the control of IL-1 family members. In chapter 5 the importance of
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proteolytic cleavage of IL-36 is demonstrated. The results demonstrate that the

activity of IL-36 changes dramatically between removal of only one extra amino acid

from the N-terminus. This is however different for the related family member IL-1β 

which can be cleaved into activation at different sites in close proximity on the N-

terminus [511].

As previously mentioned, over-activation of caspase-1 seen in cryopyrin-associated

periodic fever syndromes leads to excessive IL-1 release and consequently

autoinflammation [68, 538]. This may be of relevance in psoriasis in which IL-36

may be the driver of disease for a subset of patients and over-activation of the

protease cleaving IL-36 or diminished IL-36RA activity may cause the chronic skin

inflammation seen. Given the recent description of DITRA as an autoinflammatory

psoriasis subtype and our current knowledge on the IL-36 system, it can be

postulated that psoriatic inflammation (even in the absence of the IL-36RA loss-of-

function mutation) shows features of autoinflammation and that IL-36 may promote

this [538]. Probably due to the limited expression of IL-36 mostly in epithelial

tissues and its specific activation requirements it may be unlikely to cause systemic

inflammation. Results presented in chapter 5 highlight release of IL-8 from skin

resident cells as a functional property of active IL-36. The chemokine IL-8 leads to

neutrophilic infiltration into the skin and this is a defined feature of psoriatic

histology. Over-activation of a protease and consequent over-activation of IL-36

could be a driver of psoriatic disease however, it is clear that T cell activation and

recruitment into the skin is also key to the psoriatic phenotype.

In health there is a balance not only between pro- and anti-inflammatory mediators

but also between proteases and protease inhibitors. A reduced activity of protease

inhibitors can lead to uncontrolled protease activity, as is seen in Netherton

syndrome. A genetic mutation in the serine protease inhibitor Kazal-type 5

(SPINK5) which encodes lympho-epithelial Kazal type inhibitor (LEKTI) 5 leads to

chronic skin inflammation and loss of epidermal integrity due to uncontrolled serine

protease activity [539]. In vitro using SPINK5 knockdown skin equivalents the

epidermal thickness and increased tendency for the epidermis to detach from the

dermis was reduced when KLK5 and KLK7 were also knocked down. This indicates

that kallikrein inhibitors may of therapeutic benefit in this disease [539].
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6.3 Possible novel therapeutics in psoriasis

Due to the importance of proteases in the activation of IL-36, protease inhibitors

could be of therapeutic value in psoriasis, the benefits of these being that they are

more cost effective than biological therapy. Phase I trials have indeed been carried

out for cathepsin S inhibitors for treatment of psoriasis. This was performed due to

the up-regulation of cathepsin S by psoriatic keratinocytes [540]. At present,

protease inhibitors are used extensively in anti-viral therapies. However, in diseases

such as asthma where altered levels of MMPs have been reported [541] broad range

MMP inhibitors such as tetracycline and doxycycline have been investigated as

potential treatment strategies [542]. Once the protease/s that cleaves IL-36 is

determined therapeutic approaches could be developed aiming to inhibit IL-36

activation. Doxycycline has also been shown to indirectly inhibit the proteolytic

activity of kallikrein-related peptidases [543] as well as other more specific trypsin-

like serine protease inhibitors (ε-aminocaproic acid) [544]. These have been 

suggested for use in rosacea where increased activity of KLK5 has been shown

[544]. α1 Antitrypsin deficiency leads to a lack of serine protease inhibition and 

predisposes to chronic obstructive pulmonary disease and liver disease, treatment of

this disease is achieved by readdressing the balance of proteases/protease inhibitors

[545]. This could be of relevance if a dysregulation of proteases is identified in

relation to IL-36 activity in psoriasis.

Psoriasis is undoubtedly related to uncontrolled pro-inflammatory mediators.

Genetic mutations in the NF-κB pathway, namely A20 and CARD14 have been

linked to the most common form of psoriasis [99], psoriasis vulgaris. This points to a

loss of control at the signalling level which leads to high levels of pro-inflammatory

mediator expression. Chronic inflammation as seen in rheumatoid arthritis and lupus

erythematosus but also skin psoriasis has been shown to have a negative impact on

life expectancy, thought to be related to the increased risk of cardiovascular disease.

As with rheumatoid arthritis severe psoriasis also presents with co-morbidities [86].

Cardiovascular disease is also thought to be a life limiting factor in severe psoriasis,

this is likely due to the uncontrolled systemic inflammation [546]. Importantly, on

reducing inflammation this risk is also reduced [547, 548] strongly supporting the

view that any state of chronic inflammation should be treated early and efficiently.

Rheumatoid arthritis, as other chronic inflammatory diseases such as inflammatory
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bowel diseases and psoriasis can often be successfully treated and even cleared with

biological therapies. Currently the most widely used biologics block the action of

TNFα thereby reducing the uncontrolled inflammation [549]. In most health systems 

only a minority of severely affected patients will receive biologics due to the

enormous costs of this therapy. However, given the emerging view that chronic

inflammation may drastically increase the risk of cardiovascular events, health

economists may have to re-calculate the long term benefit of efficient and early

treatment.

There are many options for treatment of psoriasis ranging from topical anti-

inflammatories to systemic biological therapy for more severe disease. However,

traditional systemic therapy such as ciclosporin A, methotrexate, acitretin and

fumaric acid can cause significant side effects, slow onset or suboptimal efficacy. On

the other hand, topical therapy which is often used for localised disease is often not

sufficient to clear the skin of psoriatic plaques and has low patient compliance [550].

Therefore, more targeted therapies are required and over the past decade biologic

therapy targeting specific cytokine pathways have been developed. Small molecule

inhibitors have more recently been developed which target pro-inflammatory

signalling pathways and neutralise action of transcription factors such as JAKs [550].

At present, there is an increasing array of FDA approved anti-TNFα humanised 

monoclonal antibodies (etanercept, adalimumab, infliximab, golimumab) used to

successfully treat psoriasis in some patients [551]. The IL-17 pathway is also being

targeted for biologic therapies and various neutralising antibodies have been

produced against one IL-17 family member, IL-17A (secukinumab, ixekizumab),

[552]. However, despite the promising results achieved for patients following

treatment with these biologic therapies there have also been severe side effects in

some patients. The most prominent issue with blocking cytokine function is the

increased risk of serious infection. IL-17A and IL-17F are both crucial for

mucocutaneous fungal defence and genetic mutations in the IL-17RA subunit have

been shown to lead to recurrent Candida albicans infection [553]. There are other

risks including immunogenicity of the antibodies and also infusion reactions can

occur which has recently been extensively reviewed by Carrascosa et al., [554].

There is no doubt that for severely affected patients these biologic therapies have

revolutionised psoriasis treatment and there is an ongoing discussion if they should
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be utilised early to prevent the ‘psoriatic march’ of co-morbidities [1]. However, for

some patients these therapies are not an option due to unavailability (e.g. when

disease activity is scored mild or moderate by PASI), side effects or lack of efficacy

and therefore other avenues must be developed. It is also well recognised that there

is paucity in topical treatment for limited and/or localised disease that would prevent

unnecessary side effects in these patients.

In chapter 4 the use of RNA aptamers for topical therapy of inflammatory skin

diseases was explored using an RNA aptamer to neutralise IL-17A. Topical therapy

is advantageous because it is not associated with the infection risks and other side

effects seen in systemic therapy. RNA aptamers are still at the early stages of clinical

use, however one RNA aptamer is FDA approved (Macugen®) and many are in

clinical trials. In chapter 4 the concept of RNA aptamers as a topical skin therapy

was described due to the novel discovery that small RNA molecules can be taken up

by keratinocytes without the need for chemical permeabilisation of the cell. This

would allow for a new generation of topical therapy that could target specific pro-

inflammatory signalling pathways in a similar way to the small molecule inhibitors

but without the widespread immune system suppression. However, more work is

needed to show whether this approach to target intracellular molecules with RNA

apatmers is indeed feasible.

6.4 Conclusion

In conclusion, understanding the mechanisms by which regulatory mechanisms are

controlled is crucial in order to fully elucidate chronic inflammation and produce

effective specific therapeutics. The focus of this thesis has been on psoriasis which

was originally portrayed as simply a skin disease, however recently the disease has

been further investigated and in its severe form is now regarded as a systemic disease

which may have symptoms in the joints and cardiovascular system as well as some

psychological associations. It is therefore important that therapies to treat this life-

altering and probably life-expectancy reducing disease are constantly evolving

mirroring the progressive treatment options available in rheumatology clinics. In the

future, the aim for treatment of psoriatic disease would be to screen for genetic

mutations in order to subcategorise patients and assess the best pathway to target.

Such stratified medicine approaches are currently being explored in large national
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and international initiatives. However, novel ways to target these pathways need to

established and this work is continuing, as described in chapter 4. This would

prevent the ‘trial and error’ method of treatment and hopefully reduce side effects

and increase treatment efficacy for patients.

There also needs to be further work into the concept of biomarkers to specifically

distinguish subtypes of psoriasis further than what is currently performed by simply

categorising based on clinical phenotype. Currently progress is being made in

distinguishing psoriasis from other chronic inflammatory skin diseases using

molecular signatures, of which IL-36 has been identified as a marker for psoriasis

[555]. However biomarkers for subtypes of psoriasis are still be identified. This

would hopefully identify those that require early biologic intervention to prevent

psoriatic arthritic joint damage as well as distinguish between other similar chronic

inflammatory skin diseases and treat more specifically. As described in this thesis,

targeting IL-36, IL-18 or IL-17 pathways topically or systemically may all be of

significant clinical benefit if the most suitable patient subgroup for these approaches

can be identified.
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Appendix

Appendix Figure 1 - Champion pET SUMO bacterial expression (Invitrogen).

Schematic representation of the vector used for the bacterial expression of IL-36.
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Appendix Figure 2 - pET-28a(+) used for bacterial expression (Novagen).

Schematic diagram of the vector used for bacterial expression of IL-36 with N-terminal SUMO (from

another vector) and C terminal His.
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Appendix Figure 3 - pcDNA3.1+ used for mammalian expression (Invitrogen).

Schematic diagram of vector used for mammalian expression of IL-36 for both untagged and tagged

proteins, with tags being incorporated with the primers.
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MEKALK IDTPQQGSIQDINHRVWVLQDQTLIAVPRKDRMSPVTIALISCRHVETLEKDRG

NPIYLGLNGLNLCLMCAKVGDQPTLQLKEKDIMDLYNQPEPVKSFLFYHSQSGRNSTFES

VAFPGWFIAVSSEGGCPLILTQELGKANTTDFGLTMLF

Appendix Figure 4 – IL-36α sequence. 

IL-36α sequence depicting predicted IL-1 domain (Blue), active form [128] (Red), PMN cleavage 

products (space).
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IL-36a F

1 ATGGAAAAAGCATTGAAAATTGACACACCTCAGCAGGGGAGCATTCAGGATATCAATCAT

1 -M--E--K--A--L--K--I--D--T--P--Q--Q--G--S--I--Q--D--I--N--H-

61 CGGGTGTGGGTTCTTCAGGACCAGACGCTCATAGCAGTCCCGAGGAAGGACCGTATGTCT

21 -R--V--W--V--L--Q--D--Q--T--L--I--A--V--P--R--K--D--R--M--S-

121 CCAGTCACTATTGCCTTAATCTCATGCCGACATGTGGAGACCCTTGAGAAAGACAGAGGG

41 -P--V--T--I--A--L--I--S--C--R--H--V--E--T--L--E--K--D--R--G-

181 AACCCCATCTACCTGGGCCTGAATGGACTCAATCTCTGCCTGATGTGTGCTAAAGTCGGG

61 -N--P--I--Y--L--G--L--N--G--L--N--L--C--L--M--C--A--K--V--G-

241 GACCAGCCCACACTGCAGCTGAAGGAAAAGGATATAATGGATTTGTACAACCAACCCGAG

81 -D--Q--P--T--L--Q--L--K--E--K--D--I--M--D--L--Y--N--Q--P--E-

301 CCTGTGAAGTCCTTTCTCTTCTACCACAGCCAGAGTGGCAGGAACTCCACCTTCGAGTCT

101 -P--V--K--S--F--L--F--Y--H--S--Q--S--G--R--N--S--T--F--E--S-

361 GTGGCTTTCCCTGGCTGGTTCATCGCTGTCAGCTCTGAAGGAGGCTGTCCTCTCATCCTT

121 -V--A--F--P--G--W--F--I--A--V--S--S--E--G--G--C--P--L--I--L-

IL-36a R

421 ACCCAAGAACTGGGGAAAGCCAACACTACTGACTTTGGGTTAACTATGCTGTTTTAA

141 -T--Q--E--L--G--K--A--N--T--T--D--F--G--L--T--M--L--F--*-

Appendix Figure 5 - IL-36α – primers for Champion pET SUMO vector. 

IL-36α sequence containing primers depicted by arrows – F = forward primer, R = reverse primer. 

Following successful cloning and transformation into DH5α cells sequences were confirmed by Sanger 

sequencing.
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36a F no tag

HindIII

TAGAGAAAGCTTCCACCATGGAAAAAGCATTGAAAATTGACAC

36a R no tag

Not1

TAGAGGCGGCCGCTTAAAACAGCATAGTTAACCCAAAG

aagcttccacccatggaaaaagcattgaaaattgacacacctcagcag

M E K A L K I D T P Q Q

gggagcattcaggatatcaatcatcgggtgtgggttcttcaggaccagacgctcatagca

G S I Q D I N H R V W V L Q D Q T L I A

gtcccgaggaaggaccgtatgtctccagtcactattgccttaatctcatgccgacatgtg

V P R K D R M S P V T I A L I S C R H V

gagacccttgagaaagacagagggaaccccatctacctgggcctgaatggactcaatctc

E T L E K D R G N P I Y L G L N G L N L

tgcctgatgtgtgctaaagtcggggaccagcccacactgcagctgaaggaaaaggatata

C L M C A K V G D Q P T L Q L K E K D I

atggatttgtacaaccaacccgagcctgtgaagtcctttctcttctaccacagccagagt

M D L Y N Q P E P V K S F L F Y H S Q S

ggcaggaactccaccttcgagtctgtggctttccctggctggttcatcgctgtcagctct

G R N S T F E S V A F P G W F I A V S S

gaaggaggctgtcctctcatccttacccaagaactggggaaagccaacactactgacttt

E G G C P L I L T Q E L G K A N T T D F

gggttaactatgctgttttaagcggccgctcgagtctagagggcccgtttaaacccgctg

G L T M L F - A A A R V

Appendix Figure 6 – IL-36α primers for mammalian expression with no tags. 

A - Primers for pcDNA3.1 (+) vector – no tags. Highlighted red sequence depicts restriction sites used. F

= forward and contains a HindIII restriction site and R = reverse and contains a Not1 restriction site. B –

Following cloning and transformation into DH5α cells the sequence was verified by Sanger sequencing, 

sequence depicted. Red highlighted section depicts Kozak sequence and the restriction sites are also

highlighted (green – HindIII, blue – Not1).

A

B
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36a F N and C tag

HindIII Myc Kpn1

TAGAGAAGCTTCCACCATGGAGCAGAAACTCATCTCTGAAGAGGATCTGGGTACCATGGAAAAAGCATTGA

AAATTGACAC

36a R N and C tag

Not1 His EcoR1

CTCTAGCGGCCGCTCAGTGATGGTGATGGTGATGGAATTCAAACAGCATAGTTAACCCAAA

1 - ACGTGCTGGTTTACTTTAGCTTCACCATGGAGCAGAAACTCATCTCTGAAGAGGATCTGG - 60

1 - V L V Y F S F T M E Q K L I S E E D L G - 20

61 - GTACCATGGAAAAAGCATTGAAAATTGACACACCTCAGCAGGGGAGCATTCAGGATATCA - 120

21 - T M E K A L K I D T P Q Q G S I Q D I N - 40

121 - ATCATCGGGTGTGGGTTCTTCAGGACCAGACGCTCATAGCAGTCCCGAGGAAGGACCGTA - 180

41 - H R V W V L Q D Q T L I A V P R K D R M - 60

181 - TGTCTCCAGTCACTATTGCCTTAATCTCATGCCGACATGTGGAGACCCTTGAGAAAGACA - 240

61 - S P V T I A L I S C R H V E T L E K D R - 80

241 - GAGGGAACCCCATCTACCTGGGCCTGAATGGACTCAATCTCTGCCTGATGTGTGCTAAAG - 300

81 - G N P I Y L G L N G L N L C L M C A K V - 100

301 - TCGGGGACCAGCCCACACTGCAGCTGAAGGAAAAGGATATAATGGATTTGTACAACCAAC - 360

101 - G D Q P T L Q L K E K D I M D L Y N Q P - 120

361 - CCGAGCCTGTGAAGTCCTTTCTCTTCTACCACAGCCAGAGTGGCAGGAACTCCACCTTCG - 420

121 - E P V K S F L F Y H S Q S G R N S T F E - 140

421 - AGTCTGTGGCTTTCCCTGGCTGGTTCATCGCTGTCAGCTCTGAAGGAGGCTGTCCTCTCA - 480

141 - S V A F P G W F I A V S S E G G C P L I - 160

481 - TCCTTACCCAAGAACTGGGGAAAGCCAACACTACTGACTTTGGGTTAACTATGCTGTTTG - 540

161 - L T Q E L G K A N T T D F G L T M L F E - 180

541 - AATTCCATCACCATCACCATCACTGAGCGGCCGCTCGAGTCTAGAGGGCCCGTTTAAACC - 600

181 - F H H H H H H *

A

B
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Appendix Figure 7 – IL-36α primers for mammalian expression with N and C-terminal tags. 

A - Primers for pcDNA3.1 (+) vector – N and C-terminal tags. Highlighted red sequence depicts

restriction sites used. F = forward and contains a HindIII and Kpn1 restriction site as well as a myc tag

(blue). R = reverse and contains a Not1 and EcoR1 restriction site (red) and a His tag (purple). B –

Following cloning and transformation into DH5α cells the sequence was verified by Sanger sequencing, 

sequence depicted. Red highlighted section depicts the restriction sites (Kpn1 and EcoR1) and tags are

also highlighted (blue – myc, purple – His).
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F no his SUMO Nco1

Nco1 SUMO

TAGTAGCCATGGATGTCGGACTCAGAAGTCAATCAAG

ATGTCGGACTCAGAAGTCAATCAAGAAGCTAAGCCAGAGGTCAAGCCAGAAGTCAAGCCT - 60

1 - M S D S E V N Q E A K P E V K P E V K P - 20

61 - GAGACTCACATCAATTTAAAGGTGTCCGATGGATCTTCAGAGATCTTCTTCAAGATCAAA - 120

21 - E T H I N L K V S D G S S E I F F K I K - 40

121 - AAGACCACTCCTTTAAGAAGGCTGATGGAAGCGTTCGCTAAAAGACAGGGTAAGGAAATG - 180

41 - K T T P L R R L M E A F A K R Q G K E M - 60

181 - GACTCCTTAAGATTCTTGTACGACGGTATTAGAATTCAAGCTGATCAGACCCCTGAAGAT - 240

61 - D S L R F L Y D G I R I Q A D Q T P E D - 80

241 – TTGGACATGGAGGATAACGAT

81 - L D M E D N D

ATTATTGAGGCTCACAGAGAACAGATTGGTGGTATGGAAAAAGCATTGAAAATTGACAC - 300

81 - I I E A H R E Q I G G M E K A L K I D T - 100

301 - ACCTCAGCAGGGGAGCATTCAGGATATCAATCATCGGGTGTGGGTTCTTCAGGACCAGAC - 360

101 - P Q Q G S I Q D I N H R V W V L Q D Q T - 120

361 - GCTCATAGCAGTCCCGAGGAAGGACCGTATGTCTCCAGTCACTATTGCCTTAATCTCATG - 420

121 - L I A V P R K D R M S P V T I A L I S C - 140

421 - CCGACATGTGGAGACCCTTGAGAAAGACAGAGGGAACCCCATCTACCTGGGCCTGAATGG - 480

141 - R H V E T L E K D R G N P I Y L G L N G - 160

481 - ACTCAATCTCTGCCTGATGTGTGCTAAAGTCGGGGACCAGCCCACACTGCAGCTGAAGGA - 540

161 - L N L C L M C A K V G D Q P T L Q L K E - 180

541 - AAAGGATATAATGGATTTGTACAACCAACCCGAGCCTGTGAAGTCCTTTCTCTTCTACCA - 600

181 - K D I M D L Y N Q P E P V K S F L F Y H - 200

A

B
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601 - CAGCCAGAGTGGCAGGAACTCCACCTTCGAGTCTGTGGCTTTCCCTGGCTGGTTCATCGC - 660

201 - S Q S G R N S T F E S V A F P G W F I A - 220

661 - TGTCAGCTCTGAAGGAGGCTGTCCTCTCATCCTTACCCAAGAACTGGGGAAAGCCAACAC - 720

221 - V S S E G G C P L I L T Q E L G K A N T - 240

721 - TACTGACTTTGGGTTAACTATGCTGTTTGAATTCCATCACCATCACCATCACTGAGCGGC - 780

241 - T D F G L T M L F E F H H H H H H * A A - 260

781 - CGCACTCGAGCACCACCACCACCACCACTGA

Appendix Figure 8 – IL-36α primers for N and C-terminal tagged protein bacterial expression. 

A - Primers for pET 28 (+) vector using IL-36α in pET expression system as template. Highlighted red 

sequence depicts restriction sites (Nco1) used. Reverse primers as depicted in Appendix Figure 7. B –

Following cloning and transformation into DH5α cells the sequence was verified by Sanger sequencing, 

sequence depicted. N-terminal Sumo tag is depicted in blue, EcoR1 restriction site (red) and His tag is

depicted in purple.
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MNPQR EAAPKSYAIRDSRQMVWVLSGNSLIAAPLSRSIKPVTLHLIACRDTEFSDKEKGN

MVYLGIKGKDLCLFCAEIQGKPTLQLKLQGSQDNIGKDTCWKLVGIHTCINLDVRESCFM

GTLDQWGIGVGRKKWKSSFQHHHLRKKDKDFSSMRTNIGMPGRM

Appendix Figure 9 – IL-36β sequence. 

IL-36β sequence depicting predicted IL-1 domain (Blue), active form [128] (Red), PMN cleavage 

products (space).
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IL-36b F

1 ATGAACCCACAACGGGAGGCAGCACCCAAATCCTATGCTATTCGTGATTCTCGACAGATG

1 -M--N--P--Q--R--E--A--A--P--K--S--Y--A--I--R--D--S--R--Q--M-

61 GTGTGGGTCCTGAGTGGAAATTCTTTAATAGCAGCTCCTCTTAGCCGCAGCATTAAGCCT

21 -V--W--V--L--S--G--N--S--L--I--A--A--P--L--S--R--S--I--K--P-

121 GTCACTCTTCATTTAATAGCCTGTAGAGACACAGAATTCAGTGACAAGGAAAAGGGTAAT

41 -V--T--L--H--L--I--A--C--R--D--T--E--F--S--D--K--E--K--G--N-

181 ATGGTTTACCTGGGAATCAAGGGAAAAGATCTCTGTCTCTTCTGTGCAGAAATTCAGGGC

61 -M--V--Y--L--G--I--K--G--K--D--L--C--L--F--C--A--E--I--Q--G-

241 AAGCCTACTTTGCAGCTTAAGCTTCAGGGCTCCCAAGATAACATAGGGAAGGACACTTGC

81 -K--P--T--L--Q--L--K--L--Q--G--S--Q--D--N--I--G--K--D--T--C-

301 TGGAAACTAGTTGGAATTCACACATGCATAAACCTGGATGTGAGAGAGAGCTGCTTCATG

101 -W--K--L--V--G--I--H--T--C--I--N--L--D--V--R--E--S--C--F--M-

361 GGAACCCTTGACCAATGGGGAATAGGAGTGGGTAGAAAGAAGTGGAAGAGTTCCTTTCAA

121 -G--T--L--D--Q--W--G--I--G--V--G--R--K--K--W--K--S--S--F--Q-

421 CATCACCATCTCAGGAAGAAGGACAAAGATTTCTCATCCATGCGGACCAACATAGGAATG

141 -H--H--H--L--R--K--K--D--K--D--F--S--S--M--R--T--N--I--G--M-

IL-36b R

481 CCAGGAAGGATGTAG

161 -P--G--R--M--*-

Appendix Figure 10 - IL-36β – primers for Champion pET SUMO vector. 

IL-36β sequence containing primers depicted by arrows – F = forward primer, R = reverse primer. 

Following successful cloning and transformation into DH5α cells sequences were confirmed by Sanger 

sequencing.
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36b F no tags

BamH1

TAGAGAGGATCCCCACCATGAACCCACAACGGGAGGCAGCACCC

36b R no tags

Not1

TCTCTAGCGGCCGCCTACATCCTTCCTGGCATTCCTATGTTG

ggatccccaccatgaacccacaacgg

M N P Q R

gaggcagcacccaaatcctatgctattcgtgattctcgacagatggtgtgggtcctgagt

E A A P K S Y A I R D S R Q M V W V L S

ggaaattctttaatagcagctcctcttagccgcagcattaagcctgtcactcttcattta

G N S L I A A P L S R S I K P V T L H L

atagcctgtagagacacagaattcagtgacaaggaaaagggtaatatggtttacctggga

I A C R D T E F S D K E K G N M V Y L G

atcaagggaaaagatctctgtctcttctgtgcagaaattcagggcaagcctactttgcag

I K G K D L C L F C A E I Q G K P T L Q

cttaagcttcagggctcccaagataacatagggaaggacacttgctggaaactagttgga

L K L Q G S Q D N I G K D T C W K L V G

attcacacatgcataaacctggatgtgagagagagctgcttcatgggaacccttgaccaa

I H T C I N L D V R E S C F M G T L D Q

tggggaataggagtgggtagaaagaagtggaagagttcctttcaacatcaccatctcagg

W G I G V G R K K W K S S F Q H H H L R

aagaaggacaaagatttctcatccatgcggaccaacataggaatgccaggaaggatgtag

K K D K D F S S M R T N I G M P G R M -

gcggccgctcgagtctagagggcccgtttaaacccgctgatcagcctcgactgtgccttc

A A A R V

Appendix Figure 11 – IL-36β primers for mammalian expression with no tags. 

A - Primers for pcDNA3.1 (+) vector – no tags. Highlighted red sequence depicts restriction sites used. F

= forward and contains a BamH1 restriction site and R = reverse and contains a Not1 restriction site. B –

Following cloning and transformation into DH5α cells the sequence was verified by Sanger sequencing, 

sequence depicted. Red highlighted section depicts Kozak sequence and the restriction sites are also

highlighted (green – BamH1, blue – Not1).

A

B
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36b F N + C

BamH1 Myc Kpn1

TAGAGGGATCCCCACCATGGAGCAGAAACTCATCTCTGAAGAGGATCTGGGTACCATGAACCCACAACGGG

AGGCA

36b R N + C

Not1 His EcoRV

CTCTAGCGGCCGCTCAGTGATGGTGATGGTGATGGATATCCATCCTTCCTGGCATTCC

1 - CCATGTACGTTTACTTAGCTTGGTACCGAGCTCGGATCCCCACCATGGAGCAGAAACTCA - 60

1 - M Y V Y L A W Y R A R I P T M E Q K L I - 20

61 - TCTCTGAAGAGGATCTGGGTACCATGAACCCACAACGGGAGGCAGCACCCAAATCCTATG - 120

21 - S E E D L G T M N P Q R E A A P K S Y A - 40

121 - CTATTCGTGATTCTCGACAGATGGTGTGGGTCCTGAGTGGAAATTCTTTAATAGCAGCTC - 180

41 - I R D S R Q M V W V L S G N S L I A A P - 60

181 - CTCTTAGCCGCAGCATTAAGCCTGTCACTCTTCATTTAATAGCCTGTAGAGACACAGAAT - 240

61 - L S R S I K P V T L H L I A C R D T E F - 80

241 - TCAGTGACAAGGAAAAGGGTAATATGGTTTACCTGGGAATCAAGGGAAAAGATCTCTGTC - 300

81 - S D K E K G N M V Y L G I K G K D L C L - 100

301 - TCTTCTGTGCAGAAATTCAGGGCAAGCCTACTTTGCAGCTTAAGCTTCAGGGCTCCCAAG - 360

101 - F C A E I Q G K P T L Q L K L Q G S Q D - 120

361 - ATAACATAGGGAAGGACACTTGCTGGAAACTAGTTGGAATTCACACATGCATAAACCTGG - 420

121 - N I G K D T C W K L V G I H T C I N L D - 140

421 - ATGTGAGAGAGAGCTGCTTCATGGGAACCCTTGACCAATGGGGAATAGGAGTGGGTAGAA - 480

141 - V R E S C F M G T L D Q W G I G V G R K - 160

481 - AGAAGTGGAAGAGTTCCTTTCAACATCACCATCTCAGGAAGAAGGACAAAGATTTCTCAT - 540

161 - K W K S S F Q H H H L R K K D K D F S S - 180

541 - CCATGCGGACCAACATAGGAATGCCAAGGATGGATATCCATCACCATCACCATCACTGAG - 600

181 - M R T N I G M P R M D I H H H H H H * A - 200

A

B
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Appendix Figure 12 – IL-36β primers for mammalian expression with N and C-terminal tags. 

A - Primers for pcDNA3.1 (+) vector – N and C-terminal tags. Highlighted red sequence depicts

restriction sites used. F = forward and contains a BamH1 and Kpn1 restriction site as well as a myc tag

(blue). R = reverse and contains a Not1 and EcoRV restriction site (red) and a His tag (purple). B –

Following cloning and transformation into DH5α cells the sequence was verified by Sanger sequencing, 

sequence depicted. Red highlighted section depicts restriction sites (Kpn1 and EcoRV) tags are also

highlighted (blue - myc, purple – His).
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F no his SUMO Nco1

Nco1 SUMO

TAGTAGCCATGGATGTCGGACTCAGAAGTCAATCAAG

1 - ATGTCGGACTCAGAAGTCAATCAAGAAGCTAAGCCAGAGGTCAAGCCAGAAGTCAAGCCT - 60

1 - M S D S E V N Q E A K P E V K P E V K P - 20

61 - GAGACTCACATCAATTTAAAGGTGTCCGATGGATCTTCAGAGATCTTCTTCAAGATCAAA - 120

21 - E T H I N L K V S D G S S E I F F K I K - 40

121 - AAGACCACTCCTTTAAGAAGGCTGATGGAAGCGTTCGCTAAAAGACAGGGTAAGGAAATG - 180

41 - K T T P L R R L M E A F A K R Q G K E M - 60

181 - GACTCCTTAAGATTCTTGTACGACGGTATTAGAATTCAAGCTGATCAGACCCCTGAAGAT - 240

61 - D S L R F L Y D G I R I Q A D Q T P E D - 80

241 - TTGGACATGGAGGATAACGATATTATTGAGGCTCACAGAGAACAGATTGGTGGTATGAAC - 300

81 - L D M E D N D I I E A H R E Q I G G M N - 100

301 - CCACAACGGGAGGCAGCACCCAAATCCTATGCTATTCGTGATTCTCGACAGATGGTGTGG - 360

101 - P Q R E A A P K S Y A I R D S R Q M V W - 120

361 - GTCCTGAGTGGAAATTCTTTAATAGCAGCTCCTCTTAGCCGCAGCATTAAGCCTGTCACT - 420

121 - V L S G N S L I A A P L S R S I K P V T - 140

421 - CTTCATTTAATAGCCTGTAGAGACACAGAATTCAGTGACAAGGAAAAGGGTAATATGGTT - 480

141 - L H L I A C R D T E F S D K E K G N M V - 160

481 - TACCTGGGAATCAAGGGAAAAGATCTCTGTCTCTTCTGTGCAGAAATTCAGGGCAAGCCT - 540

161 - Y L G I K G K D L C L F C A E I Q G K P - 180

541 - ACTTTGCAGCTTAAGCTTCAGGGCTCCCAAGATAACATAGGGAAGGACACTTGCTGGAAA - 600

181 - T L Q L K L Q G S Q D N I G K D T C W K - 200

601 - CTAGTTGGAATTCACACATGCATAAACCTGGATGTGAGAGAGAGCTGCTTCATGGGAACC - 660

201 - L V G I H T C I N L D V R E S C F M G T - 220

661 - CTTGACCAATGGGGAATAGGAGTGGGTAGAAAGAAGTGGAAGAGTTCCTTTCAACATCAC - 720

A

B
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221 - L D Q W G I G V G R K K W K S S F Q H H - 240

721 - CATCTCAGGAAGAAGGACAAAGATTTCTCATCCATGCGGACCAACATAGGAATGCCAGGA - 780

241 - H L R K K D K D F S S M R T N I G M P G - 260

781 - AGGATGGATATCCATCACCATCACCATCACTGAGCGGCCGCACTCGAGCACCACCACCAC - 840

261 - R M D I H H H H H H * A A A

Appendix Figure 13 – IL-36β primers for N and C-terminal tagged protein bacterial expression. 

A - Primers for pET 28 (+) vector using IL-36α in pET expression system as template. Highlighted red 

sequence depicts restriction sites (Nco1) used. Reverse primers as depicted in Appendix Figure 7. B –

Following cloning and transformation into DH5α cells the sequence was verified by Sanger sequencing, 

sequence depicted. N-terminal Sumo tag is depicted in blue, EcoR1 restriction site (red) and His tag is

depicted in purple.



236

MRGTPGDADGGGRAV Y QSMCKPITGTINDLNQQVWTLQGQNLVAVPRSDSVTPVTVAVIT

CKYPEALEQGRGDPIYLGIQNPEMCLYCEKVGEQPTLQLKEQKIMDLYGQPEPVKPFLFY

RAKTGRTSTLESVAFPDWFIASSKRDQPIILTSELGKSYNTAFELNIND

Appendix Figure 14 – IL-36γ sequence. 

IL-36γ sequence depicting predicted IL-1 domain (Blue), active form [128] (Red), PMN cleavage 

products (space).
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IL-36g F

1 ATGAGAGGCACTCCAGGAGACGCTGATGGTGGAGGAAGGGCCGTCTATCAATCAATGTGT

1 -M--R--G--T--P--G--D--A--D--G--G--G--R--A--V--Y--Q--S--M--C-

61 AAACCTATTACTGGGACTATTAATGATTTGAATCAGCAAGTGTGGACCCTTCAGGGTCAG

21 -K--P--I--T--G--T--I--N--D--L--N--Q--Q--V--W--T--L--Q--G--Q-

121 AACCTTGTGGCAGTTCCACGAAGTGACAGTGTGACCCCAGTCACTGTTGCTGTTATCACA

41 -N--L--V--A--V--P--R--S--D--S--V--T--P--V--T--V--A--V--I--T-

181 TGCAAGTATCCAGAGGCTCTTGAGCAAGGCAGAGGGGATCCCATTTATTTGGGAATCCAG

61 -C--K--Y--P--E--A--L--E--Q--G--R--G--D--P--I--Y--L--G--I--Q-

241 AATCCAGAAATGTGTTTGTATTGTGAGAAGGTTGGAGAACAGCCCACATTGCAGCTAAAA

81 -N--P--E--M--C--L--Y--C--E--K--V--G--E--Q--P--T--L--Q--L--K-

301 GAGCAGAAGATCATGGATCTGTATGGCCAACCCGAGCCCGTGAAACCCTTCCTTTTCTAC

101 -E--Q--K--I--M--D--L--Y--G--Q--P--E--P--V--K--P--F--L--F--Y-

361 CGTGCCAAGACTGGTAGGACCTCCACCCTTGAGTCTGTGGCCTTCCCGGACTGGTTCATT

121 -R--A--K--T--G--R--T--S--T--L--E--S--V--A--F--P--D--W--F--I-

421 GCCTCCTCCAAGAGAGACCAGCCCATCATTCTGACTTCAGAACTTGGGAAGTCATACAAC

141 -A--S--S--K--R--D--Q--P--I--I--L--T--S--E--L--G--K--S--Y--N-

IL-36g R

481 ACTGCCTTTGAATTAAATATAAATGACTGA

161 -T--A--F--E--L--N--I--N--D--*-

Appendix Figure 15 - IL-36γ – primers for Champion pET SUMO vector. 

IL-36γ sequence containing primers depicted by arrows – F = forward primer, R = reverse primer. 

Following successful cloning and transformation into DH5α cells sequences were confirmed by Sanger 

sequencing.
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36g F no tag

HindIII

TAGAGAAAGCTTCCACCATGAGAGGCACTCCAGGAGACGCTGATG

36g R no tag

Not1

CTCTCAGCGGCCGCTCAGTCATTTATATTTAATTCAAAGGCAGTGTTGTATG

aagcttccaccatgagaggcactccaggagacgctgatggtggaggaagggccgtctatcaatcaatgtgt

M R G T P G D A D G G G R A V Y Q S M C

aaacctattactgggactattaatgatttgaatcagcaagtgtggacccttcagggtcag

K P I T G T I N D L N Q Q V W T L Q G Q

aaccttgtggcagttccacgaagtgacagtgtgaccccagtcactgttgctgttatcaca

N L V A V P R S D S V T P V T V A V I T

tgcaagtatccagaggctcttgagcaaggcagaggggatcccatttatttgggaatccag

C K Y P E A L E Q G R G D P I Y L G I Q

aatccagaaatgtgtttgtattgtgagaaggttggagaacagcccacattgcagctaaaa

N P E M C L Y C E K V G E Q P T L Q L K

gagcagaagatcatggatctgtatggccaacccgagcccgtgaaacccttccttttctac

E Q K I M D L Y G Q P E P V K P F L F Y

cgtgccaagactggtaggacctccacccttgagtctgtggccttcccggactggttcatt

R A K T G R T S T L E S V A F P D W F I

gcctcctccaagagagaccagcccatcattctgacttcagaacttgggaagtcatacaac

A S S K R D Q P I I L T S E L G K S Y N

actgcctttgaattaaatataaatgactgagcggccgc

T A F E L N I N D -

A

B
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Appendix Figure 16 – IL-36γ primers for mammalian expression with no tags. 

A - Primers for pcDNA3.1 (+) vector – no tags. Highlighted red sequence depicts restriction sites used. F

= forward and contains a HindIII restriction site and R = reverse and contains a Not1 restriction site. B –

Following cloning and transformation into DH5α cells the sequence was verified by Sanger sequencing, 

sequence depicted. Red highlighted section depicts Kozak sequence and the restriction sites are also

highlighted (green – HindIII, blue – Not1).
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36g F N + C tag

HindIII Myc Kpn1

TAGAGAAGCTTCCACCATGGAGCAGAAACTCATCTCTGAAGAGGATCTGGGTACCATGAGAGGCACTCCAG

GAGAC

36g R N + C tag

Not1 His EcoR1

TCTCAGCGGCCGCTCAGTGATGGTGATGGTGATGGAATTCGTCATTTATATTTAATTCAAA

1 - CCCGGGGTGCGTTTACTTAGCTTCACCATGGAGCAGAAACTCATCTCTGAAGAGGATCTG - 60

1 - P G V R L L S F T M E Q K L I S E E D L - 20

61 - GGTACCATGAGAGGCACTCCAGGAGACGCTGATGGTGGAGGAAGGGCCGTCTATCAATCA - 120

21 - G T M R G T P G D A D G G G R A V Y Q S - 40

121 - ATGTGTAAACCTATTACTGGGACTATTAATGATTTGAATCAGCAAGTGTGGACCCTTCAG - 180

41 - M C K P I T G T I N D L N Q Q V W T L Q - 60

181 - GGTCAGAACCTTGTGGCAGTTCCACGAAGTGACAGTGTGACCCCAGTCACTGTTGCTGTT - 240

61 - G Q N L V A V P R S D S V T P V T V A V - 80

241 - ATCACATGCAAGTATCCAGAGGCTCTTGAGCAAGGCAGAGGGGATCCCATTTATTTGGGA - 300

81 - I T C K Y P E A L E Q G R G D P I Y L G - 100

301 - ATCCAGAATCCAGAAATGTGTTTGTATTGTGAGAAGGTTGGAGAACAGCCCACATTGCAG - 360

101 - I Q N P E M C L Y C E K V G E Q P T L Q - 120

361 - CTAAAAGAGCAGAAGATCATGGATCTGTATGGCCAACCCGAGCCCGTGAAACCCTTCCTT - 420

121 - L K E Q K I M D L Y G Q P E P V K P F L - 140

421 - TTCTACCGTGCCAAGACTGGTAGGACCTCCACCCTTGAGTCTGTGGCCTTCCCGGACTGG - 480

141 - F Y R A K T G R T S T L E S V A F P D W - 160

481 - TTCATTGCCTCCTCCAAGAGAGACCAGCCCATCATTCTGACTTCAGAACTTGGGAAGTCA - 540

161 - F I A S S K R D Q P I I L T S E L G K S - 180

541 - TACAACACTGCCTTTGAATTAAATATAAATGACGAATTCCATCATCATCATCATCATTGA - 600

181 - Y N T A F E L N I N D E F H H H H H H * - 200

A

B
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Appendix Figure 17 – IL-36γ primers for mammalian expression with N and C-terminal tags. 

A - Primers for pcDNA3.1 (+) vector – N and C-terminal tags. Highlighted red sequence depicts

restriction sites used. F = forward and contains a HindIII and Kpn1 restriction site as well as a myc tag

(blue). R = reverse and contains a Not1 and EcoR1 restriction site (red) and a His tag (purple). B –

Following cloning and transformation into DH5α cells the sequence was verified by Sanger sequencing, 

sequence depicted. Red highlighted section depicts restriction sites (Kpn1 and EcoR1) tags are also

highlighted (blue - myc, purple – His).
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F no his SUMO Nco1

Nco1 SUMO

TAGTAGCCATGGATGTCGGACTCAGAAGTCAATCAAG

1 - GGTGACGAATTCCCTCTAAATAATTTTGTTTACTTTAAGAAGGAGATATACCATGGATGT - 60

1 - * R I P S K * F C L L * E G D I P W M S - 20

61 - CGGACTCAGAAGTCAATCAAGAAGCTAAGCCAGAGGTCAAGCCAGAAGTCAAGCCTGAGA - 120

21 - D S E V N Q E A K P E V K P E V K P E T - 40

121 - CTCACATCAATTTAAAGGTGTCCGATGGATCTTCAGAGATCTTCTTCAAGATCAAAAAGA - 180

41 - H I N L K V S D G S S E I F F K I K K T - 60

181 - CCACTCCTTTAAGAAGGCTGATGGAAGCGTTCGCTAAAAGACAGGGTAAGGAAATGGACT - 240

61 - T P L R R L M E A F A K R Q G K E M D S - 80

241 - CCTTAAGATTCTTGTACGACGGTATTAGAATTCAAGCTGATCAGACCCCTGAAGATTTGG - 300

81 - L R F L Y D G I R I Q A D Q T P E D L D - 100

301 - ACATGGAGGATAACGATATTATTGAGGCTCACAGAGAACAGATTGGTGGTATGAGAGGCA - 360

101 - M E D N D I I E A H R E Q I G G M R G T - 120

361 - CTCCAGGAGACGCTGATGGTGGAGGAAGGGCCGTCTATCAATCAATGTGTAAACCTATTA - 420

121 - P G D A D G G G R A V Y Q S M C K P I T - 140

421 - CTGGGACTATTAATGATTTGAATCAGCAAGTGTGGACCCTTCAGGGTCAGAACCTTGTGG - 480

141 - G T I N D L N Q Q V W T L Q G Q N L V A - 160

481 - CAGTTCCACGAAGTGACAGTGTGACCCCAGTCACTGTTGCTGTTATCACATGCAAGTATC - 540

161 - V P R S D S V T P V T V A V I T C K Y P - 180

541 - CAGAGGCTCTTGAGCAAGGCAGAGGGGATCCCATTTATTTGGGAATCCAGAATCCAGAAA - 600

181 - E A L E Q G R G D P I Y L G I Q N P E M - 200

601 - TGTGTTTGTATTGTGAGAAGGTTGGAGAACAGCCCACATTGCAGCTAAAAGAGCAGAAGA - 660

201 - C L Y C E K V G E Q P T L Q L K E Q K I - 220

661 - TCATGGATCTGTATGGCCAACCCGAGCCCGTGAAACCCTTCCTTTTCTACCGTGCCAAGA - 720

A

B



243

221 - M D L Y G Q P E P V K P F L F Y R A K T - 240

721 - CTGGTAGGACCTCCACCCTTGAGTCTGTGGCCTTCCCGGACTGGTTCATTGCCTCCTCCA - 780

241 - G R T S T L E S V A F P D W F I A S S K - 260

781 - AGAGAGACCAGCCCATCATTCTGACTTCAGAACTTGGGAAGTCATACAACACTGCCTTTG - 840

261 - R D Q P I I L T S E L G K S Y N T A F E - 280

841 - AATTAAATATAAATGACGAATTCCATCATCATCATCATCATTGAGCGGCCGCACTCGAGC - 900

281 - L N I N D E F H H H H H H * A A A L E H - 300

Appendix Figure 18 – IL-36γ primers for N and C-terminal tagged protein bacterial expression. 

A - Primers for pET 28 (+) vector using IL-36α in pET expression system as template. Highlighted red 

sequence depicts restriction sites (Nco1) used. Reverse primers as depicted in Appendix Figure 7. B –

Following cloning and transformation into DH5α cells the sequence was verified by Sanger sequencing, 

sequence depicted. N-terminal Sumo tag is depicted in blue, EcoR1 restriction site (red) and His tag is

depicted in purple.
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M VL SGALCFRMKDSALKVLYLHNNQLLAGGLHAGKVIKGEEISVVPNRWLDASLSPVILG

VQGGSQCLSCGVGQEPTLTLEPVNIMELYLGAKESKSFTFYRRDMGLTSSFESAAYPGWF

LCTVPEADQPVRLTQLPENGGWNAPITDFYFQQCD

Appendix Figure 19 – IL-36RA sequence.

IL-36RA sequence depicting predicted IL-1 domain (Blue), active form [128] (Red), PMN cleavage

products (space).
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IL-36RA F

1 ATGGTCCTGAGTGGGGCGCTGTGCTTCCGAATGAAGGACTCGGCATTGAAGGTGCTTTAT

1 -M--V--L--S--G--A--L--C--F--R--M--K--D--S--A--L--K--V--L--Y-

61 CTGCATAATAACCAGCTTCTAGCTGGAGGGCTGCATGCAGGGAAGGTCATTAAAGGTGAA

21 -L--H--N--N--Q--L--L--A--G--G--L--H--A--G--K--V--I--K--G--E-

121 GAGATCAGCGTGGTCCCCAATCGGTGGCTGGATGCCAGCCTGTCCCCCGTCATCCTGGGT

41 -E--I--S--V--V--P--N--R--W--L--D--A--S--L--S--P--V--I--L--G-

181 GTCCAGGGTGGAAGCCAGTGCCTGTCATGTGGGGTGGGGCAGGAGCCGACTCTAACACTA

61 -V--Q--G--G--S--Q--C--L--S--C--G--V--G--Q--E--P--T--L--T--L-

241 GAGCCAGTGAACATCATGGAGCTCTATCTTGGTGCCAAGGAATCCAAGAGCTTCACCTTC

81 -E--P--V--N--I--M--E--L--Y--L--G--A--K--E--S--K--S--F--T--F-

301 TACCGGCGGGACATGGGGCTCACCTCCAGCTTCGAGTCGGCTGCCTACCCGGGCTGGTTC

101 -Y--R--R--D--M--G--L--T--S--S--F--E--S--A--A--Y--P--G--W--F-

361 CTGTGCACGGTGCCTGAAGCCGATCAGCCTGTCAGACTCACCCAGCTTCCCGAGAATGGT

121 -L--C--T--V--P--E--A--D--Q--P--V--R--L--T--Q--L--P--E--N--G-

IL-36RA R

421 GGCTGGAATGCCCCCATCACAGACTTCTACTTCCAGCAGTGTGACTAG

141 -G--W--N--A--P--I--T--D--F--Y--F--Q--Q--C--D--*-

Appendix Figure 20 - IL-36RA – primers for Champion pET SUMO vector.

IL-36RA sequence containing primers depicted by arrows – F = forward primer, R = reverse primer.

Following successful cloning and transformation into DH5α cells sequences were confirmed by Sanger 

sequencing.
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36RA F no tags

HindIII

TAGAGAAAGCTTCCACCATGGTCCTGAGTGGGGCGCTGTGC

36RA R no tags

Not1

TCTCTAGCGGCCGCCTAGTCACACTGCTGGAAGTAGAAGTC

aagcttcaccatggtcctgagtggggcgctgtgcttccgaatgaag

M V L S G A L C F R M K

gactcggcattgaaggtgctttatctgcataataaccagcttctagctggagggctgcat

D S A L K V L Y L H N N Q L L A G G L H

gcagggaaggtcattaaaggtgaagagatcagcgtggtccccaatcggtggctggatgcc

A G K V I K G E E I S V V P N R W L D A

agcctgtcccccgtcatcctgggtgtccagggtggaagccagtgcctgtcatgtggggtg

S L S P V I L G V Q G G S Q C L S C G V

gggcaggagccgactctaacactagagccagtgaacatcatggagctctatcttggtgcc

G Q E P T L T L E P V N I M E L Y L G A

aaggaatccaagagcttcaccttctaccggcgggacatggggctcacctccagcttcgag

K E S K S F T F Y R R D M G L T S S F E

tcggctgcctacccgggctggttcctgtgcacggtgcctgaagccgatcagcctgtcaga

S A A Y P G W F L C T V P E A D Q P V R

ctcacccagcttcccgagaatggtggctggaatgcccccatcacagacttctacttccag

L T Q L P E N G G W N A P I T D F Y F Q

cagtgtgactaggcggccgctcgagtctagagggcccgtttaaacccgctgatcagcctc

Q C D - A A A R V

Appendix Figure 21 – IL-36RA primers for mammalian expression with no tags.

A - Primers for pcDNA3.1 (+) vector – no tags. Highlighted red sequence depicts restriction sites used. F

= forward and contains a BamH1 restriction site and R = reverse and contains a Not1 restriction site. B –

Following cloning and transformation into DH5α cells the sequence was verified by Sanger sequencing, 

sequence depicted. Red highlighted section depicts Kozak sequence and the restriction sites are also

highlighted (green – HindIII, blue – Not1).

A

B
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36RA F N and C tags

HindIII Myc Kpn1

TAGAGAAGCTTCCACCATGGAGCAGAAACTCATCTCTGAAGAGGATCTGGGTACCATGGTCCTGAGTGGGG

CGCTG

36RA R N and C tags

Not1 His EcoR1

TCTCAGCGGCCGCTCAGTGATGGTGATGGTGATGGAATTCGTCACACTGCTGGAAGTAGAA

1 - CCGTGTAGGTTTACTTAGCTTCCACCATGGAGCAGAAACTCATCTCTGAAGAGGATCTGG - 60

1 - V * V Y L A S T M E Q K L I S E E D L G - 20

61 - GTACCATGGTCCTGAGTGGGGCGCTGTGCTTCCGAATGAAGGACTCGGCATTGAAGGTGC - 120

21 - T M V L S G A L C F R M K D S A L K V L - 40

121 - TTTATCTGCATAATAACCAGCTTCTAGCTGGAGGGCTGCATGCAGGGAAGGTCATTAAAG - 180

41 - Y L H N N Q L L A G G L H A G K V I K G - 60

181 - GTGAAGAGATCAGCGTGGTCCCCAATCGGTGGCTGGATGCCAGCCTGTCCCCCGTCATCC - 240

61 - E E I S V V P N R W L D A S L S P V I L - 80

241 - TGGGTGTCCAGGGTGGAAGCCAGTGCCTGTCATGTGGGGTGGGGCAGGAGCCGACTCTAA - 300

81 - G V Q G G S Q C L S C G V G Q E P T L T - 100

301 - CACTAGAGCCAGTGAACATCATGGAGCTCTATCTTGGTGCCAAGGAATCCAAGAGCTTCA - 360

101 - L E P V N I M E L Y L G A K E S K S F T - 120

361 - CCTTCTACCGGCGGGACATGGGGCTCACCTCCAGCTTCGAGTCGGCTGCCTACCCGGGCT - 420

121 - F Y R R D M G L T S S F E S A A Y P G W - 140

421 - GGTTCCTGTGCACGGTGCCTGAAGCCGATCAGCCTGTCAGACTCACCCAGCTTCCCGAGA - 480

141 - F L C T V P E A D Q P V R L T Q L P E N - 160

481 - ATGGTGGCTGGAATGCCCCCATCACAGACTTCTACTTCCAGCAGTGTGACGAATTCCATC - 540

161 - G G W N A P I T D F Y F Q Q C D E F H H - 180

541 - ACCATCACCATCACTGAGCGGCCGCTCGAGTCTAGAGGGCCCGTTTAAACCCGCTGATCA - 600

181 - H H H H *

A

B
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Appendix Figure 22 – IL-36RA primers for mammalian expression with N and C-terminal tags.

A - Primers for pcDNA3.1 (+) vector – N and C-terminal tags. Highlighted red sequence depicts

restriction sites used. F = forward and contains a HindIII and Kpn1 restriction site as well as a myc tag

(blue). R = reverse and contains a Not1 and EcoR1 restriction site (red) and a His tag (purple). B –

Following cloning and transformation into DH5α cells the sequence was verified by Sanger sequencing, 

sequence depicted. Red highlighted section depicts restriction sites (Kpn1 and EcoR1) tags are also

highlighted (blue - myc, purple – His).
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F no his SUMO Nco1

Nco1 SUMO

TAGTAGCCATGGATGTCGGACTCAGAAGTCAATCAAG

1 - CCTGGACGGGTAAATTCCCTCTAGAAATATTTTGTTTAACTTTAAGAAGGAGATATACCA - 60

1 - P G R V N S L * K Y F V * L * E G D I P - 20

61 - TGGATGTCGGACTCAGAAGTCAATCAAGAAGCTAAGCCAGAGGTCAAGCCAGAAGTCAAG - 120

21 - W M S D S E V N Q E A K P E V K P E V K - 40

121 - CCTGAGACTCACATCAATTTAAAGGTGTCCGATGGATCTTCAGAGATCTTCTTCAAGATC - 180

41 - P E T H I N L K V S D G S S E I F F K I - 60

181 - AAAAAGACCACTCCTTTAAGAAGGCTGATGGAAGCGTTCGCTAAAAGACAGGGTAAGGAA - 240

61 - K K T T P L R R L M E A F A K R Q G K E - 80

241 - ATGGACTCCTTAAGATTCTTGTACGACGGTATTAGAATTCAAGCTGATCAGACCCCTGAA - 300

81 - M D S L R F L Y D G I R I Q A D Q T P E - 100

301 - GATTTGGACATGGAGGATAACGATATTATTGAGGCTCACAGAGAACAGATTGGTGGTATG - 360

101 - D L D M E D N D I I E A H R E Q I G G M - 120

361 - GTCCTGAGTGGGGCGCTGTGCTTCCGAATGAAGGACTCGGCATTGAAGGTGCTTTATCTG - 420

121 - V L S G A L C F R M K D S A L K V L Y L - 140

421 - CATAATAACCAGCTTCTAGCTGGAGGGCTGCATGCAGGGAAGGTCATTAAAGGTGAAGAG - 480

141 - H N N Q L L A G G L H A G K V I K G E E - 160

481 - ATCAGCGTGGTCCCCAATCGGTGGCTGGATGCCAGCCTGTCCCCCGTCATCCTGGGTGTC - 540

161 - I S V V P N R W L D A S L S P V I L G V - 180

541 - CAGGGTGGAAGCCAGTGCCTGTCATGTGGGGTGGGGCAGGAGCCGACTCTAACACTAGAG - 600

181 - Q G G S Q C L S C G V G Q E P T L T L E - 200

601 - CCAGTGAACATCATGGAGCTCTATCTTGGTGCCAAGGAATCCAAGAGCTTCACCTTCTAC - 660

201 - P V N I M E L Y L G A K E S K S F T F Y - 220

A

B
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661 - CGGCGGGACATGGGGCTCACCTCCAGCTTCGAGTCGGCTGCCTACCCGGGCTGGTTCCTG - 720

221 - R R D M G L T S S F E S A A Y P G W F L - 240

721 - TGCACGGTGCCTGAAGCCGATCAGCCTGTCAGACTCACCCAGCTTCCCGAGAATGGTGGC - 780

241 - C T V P E A D Q P V R L T Q L P E N G G - 260

781 - TGGAATGCCCCCATCACAGACTTCTACTTCCAGCAGTGTGACGAATTCCATCACCATCAC - 840

261 - W N A P I T D F Y F Q Q C D E F H H H H - 280

841 - CATCACTGAGCGGCCGCACTCGAGCACCACCACCACCACCACTGAGATCCGGCTGCTAAC - 900

281 - H H * A A A L E H H H H H H * D P A A N - 300

Appendix Figure 23 – IL-36RA primers for N and C-terminal tagged protein bacterial expression.

A - Primers for pET 28 (+) vector using IL-36α in pET expression system as template. Highlighted red 

sequence depicts restriction sites (Nco1) used. Reverse primers as depicted in Appendix Figure 7. B –

Following cloning and transformation into DH5α cells the sequence was verified by Sanger sequencing, 

sequence depicted. N-terminal Sumo tag is depicted in blue, EcoR1 restriction site (red) and His tag is

depicted in purple.
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36a ------------------------------------------------------------
gama ------------------------------------------------------------
RA ------------------------------------------------------------
IL38 ------------------------------------------------------------
il37 ------------------------------------------------------------
il1b MAEVPELASEMMAYYSGNEDDLFFEADGPKQMKCSFQDLDLCPLDGGIQLRISDHHYSKG
beta ------------------------------------------------------------

36a ---------------------------------------------------MEKALKIDT
36-g ---------------------------------------MRGTPGDADGGGRAVYQSMCK
RA -------------------------------------------------------MVLSG
IL38 ------------------------------------------------------MCSLPM
il37 ----MSFVGENSGVKMGSEDWEKDEPQCCLEDPAGSPLEPGPSLPTMNFVHTSPKVKNLN
il1b FRQAASVVVAMDKLRKMLVPCPQTFQENDLSTFFPFIFEEEPIFFDTWDNEAYVHDAPVR
b ----------------------------------------------------MNPQREAA

36a PQQGSIQDINHRVWVLQDQTLIA--VPRKDRMSPVTIALISCRHVETLEKDRGNPIYLGL
36-g PITGTINDLNQQVWTLQGQNLVA--VPRSDSVTPVTVAVITCKYPEALEQGRGDPIYLGI
RA ALCFRMKDSALKVLYLHNNQLLAGGLHAGKVIKGEEISVVPNRWLDASL----SPVILGV
IL38 ARYYIIKYADQKALYTRDGQLLVGDPVADNCC-AEKICILPNRGLDRTK----VPIFLGI
il37 PKKFSIHDQDHKVLVLDSGNLIA--VPDKNYIRPEIFFALASSLSSASAE-KGSPILLGV
il1b SLNCTLRDSQQKSLVMSGPYELKALHLQGQDMEQQVVFSMSFVQGEESND--KIPVALGL
b PKSYAIRDSRQMVWVLSGNSLIA--APLSRSIKPVTLHLIACRDTEFSDKEKGNMVYLGI

. :. . : . :. . : **:

36a NGLNLCLMCA--KVGDQPTLQLKEKDIMDLYNQPEPVKS-FLFYHSQSGRNSTFESVAFP
36g QNPEMCLYCE--KVGEQPTLQLKEQKIMDLYGQPEPVKP-FLFYRAKTGRTSTLESVAFP
RA QGGSQCLSCG--VGQE-PTLTLEPVNIMELYLGAKESKS-FTFYRRDMGLTSSFESAAYP
IL38 QGGSRCLACV--ETEEGPSLQLEDVNIEELYKGGEEATR-FTFFQSSSGSAFRLEAAAWP
il37 SKGEFCLYCDKDKGQSHPSLQLKKEKLMKLAAQKESARRPFIFYRAQVGSWNMLESAAHP
il1b KEKNLYLSCV--LKDDKPTLQLESVDPKNYP--KKKMEKRFVFNKIEINNKLEFESAQFP
b KGKDLCLFCA--EIQGKPTLQLKLQGSQDNIGKDTCWKLVGIHTCINLDVRESCFMGTLD

. . * * *:* *: . . . .

36a GWFIAVSSEGGCPLILTQELGKANT----TDFGLTMLF-----------
gama DWFIASS-KRDQPIILTSELGKSYN----TAFELNIND-----------
RA GWFLCTVPEADQPVRLTQLPENGGWNAPITDFYFQQCD-----------
IL38 GWFLCGPAEPQQPVQLTKESEPSAR----TKFYFEQSW-----------
il37 GWFICTSCNCNEPVGVTDKFENRKH----IEFSFQPVCKAEMSPSEVSD
il1 NWYISTSQAENMPVFLGGTKGGQDI----TDFTMQFVSS----------
b QWGIGVGRKKWKSSFQHHHLRKKDKDFSSMRTNIGMPGRM---------

Appendix Figure 24 – Alignment of IL-36s, IL-38, IL-37 and IL-1β. 

Alignment of all of these IL-1 members allows for comparison of the site of cleavage in order to increase

activity. The red highlighted amino acid indicates the point of cleavage for IL-36 and IL-1β to increase 

activity, however of note IL-1β can also be cleaved into activity around this point. IL-37 and IL-38 are 

speculated to have increased activity if cleaved at this point. The green highlighted amino acids are the

conserved aspartic acids 9 amino acids away from the cleavage point that have been used in order to

predict active forms of IL-36.
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Appendix figure 25 – Ethical approval letter

Letter confirming ethical approval had been granted in order to take biopsies or collect excess skin from

NHS patients.


