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Abstract

Darboux transformations constitute a very important tookhe theory of integrable
systems. They map trivial solutions of integrable partiffiedential equations to non-
trivial ones and they link the former to discrete integrafjstems. On the other hand,
they can be used to construct Yang-Baxter maps which can beted to completely

integrable maps (in the Liouville sense) on invariant lsave

In this thesis we study the Darboux transformations relébegarticular Lax operators

of NLS type which are invariant under the action of the sdechlreduction group.
Specifically, we study the cases of: 1) the nonlinear &dimger equation (with no
reduction), 2) the derivative nonlinear Sédmger equation, where the corresponding
Lax operator is invariant under the action of thereduction group and 3) a deformation
of the derivative nonlinear Sobdinger equation, associated to a Lax operator invariant
under the action of the dihedral reduction group. Theseatemlugroups correspond to

recent classification results of automorphic Lie algebras.

We derive Darboux matrices for all the above cases and we hesa to construct
novel discrete integrable systems together with their Lepresentations. For these
systems of difference equations, we discuss the initialevgdroblem and, moreover,
we consider their integrable reductions. Furthermore, ddevation of the Darboux
matrices gives rise to many interesting objects, suchaaklBnd transformations for the
corresponding partial differential equations as well asmsyetries and conservation laws

of their associated systems of difference equations.

Moreover, we employ these Darboux matrices to construetlisnensional Yang-Baxter
maps for all the afore-mentioned cases. These maps canthetegsto four-dimensional
Yang-Baxter maps on invariant leaves, which are completéggrable; we also consider

their vector generalisations.

Finally, we consider the Grassmann extensions of the YangeBanaps corresponding
to the nonlinear Sckdinger equation and the derivative nonlinear $dimger equation.
These constitute the first examples of Yang-Baxter maps waititommutative variables

in the literature.
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Chapter 1

Introduction

The aim of this chapter is to give an introduction to the scib@ integrable systems,
which forms the context of this thesis. Integrable systenseadn nonlinear processes
and, both in their classical and quantum version, have mpplcations in various fields

of mathematics and physics.

However, the definition of integrable systems is itself hyghontrivial; many scientists
have different opinions on what “integrable” should meaihjolr makes the definition
of integrability elusive, rather than tangible. In fact, angprehensive definition of
integrability is not yet available. As working definitionsewften use the existence of
a Lax pair, the solvability of the system by the IST, the estise of infinitely many
symmetries or conservation laws, or the existence of a srficumber of first integrals
which are in involution (Liouville integrability); theresieven a book entirely devoted to
what is integrability[94].

In this thesis we are interested in the derivation of digchetegrable systems and Yang-
Baxter maps, from (integrable) PDEs which admit Lax repregem, via Darboux
transformations. Specifically, we shall be focusing onipalér PDEs of NLS type whose
corresponding Lax operators possess certain symmetuesodhe action of the so-called

reduction group.

Since these AKNS-type Lax operators we are dealing with tdotes a key role in the

integrability of their associated equations under the tB&jnverse scattering method and



Chapter 1. Introduction 2

the AKNS scheme deserve a few pages in the first part of thsdattion. However, we
will skip the technical parts of their methods, as it is nat #m of this thesis. For detailed
information on the methods and the historical review of gmuits, we indicatively refer

to [4, 1, 31] (and the references therein).

The second part of this chapter is devoted to a brief intrbdndo the integrability
of discrete systems; in the main, their multidimensionalsistency and some recent

classification results.

1.1 Laxrepresentations and the IST

The inverse scattering transformation (or just transfasm)method for solving nonlinear
PDEs. Its name is due to the main idea of the method, namelsettweery of the time
evolution of the potential solution of the nonlinear eqoatifrom the time evolution of
its scattering data. As a matter of fact, the method of therge scattering transform is of
the same philosophy as the Fourier transform techniqueofeing) linear PDES; actually,
the IST is also found in the literature as the nonlinear Fouransform. However, it does

not apply to all nonlinear equations in a systematic way.

The first example of nonlinear PDE solvable by the IST methedhe KdV equation,
namely

U = 6Uly — Upgy, u=u(z,t), (1.2

which is undoubtedly the most celebrated nonlinear PDE tweldast few decades. It
mostly owes its popularity to Gardner, Greene, Kruskal andrd) who were the first
to derive the exact solution of the Cauchy problem for the KdMation, for rapidly
decaying initial values, in late sixties [36]. However, atjon (1.1) was derived by
Diederik Korteweg and Gustav de Vries in 1895, as a mathealatiodel of water-waves
in shallow channels. In fact, they showed that the KdV equiatépresents Scott Russel’'s
solitary wave, known asoliton (see [31] for details). The name “soliton” was given

by Zabusky and Kruskalin 1965, when they discovered numerically that these wave

1They initially called it “solitron”, but at the same time aropany was trading with the same name and

therefore had to remove the “r".
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solutions behave like particles; they retain their amphitand speed after collision.

The work of GGKM in 1967, namely the IST method, is probablye af the most

significant results of the last century in the theory of noeéir PDEs. It is not only a
technique for solving the initial value problem for KdV, bualso initiated a more general
scheme applicable to other nonlinear PDEs. In fact, P. Laxttiva one who contributed

in this direction, formulating a more general framework anjater in [55].

1.1.1 Laxrepresentations

Lax’s generalisation concerns nonlinearolution equationsnamely equations of the
form

w = N(u), u=u(z,t), (1.2)
whereN is a nonlinear differential operator, which does not depamd.

In particular, Lax considered a pair of linear differentiglerators and.A. OperatorC

Is associated to the following spectral problem of findirgeavalues and eigenfunctions
L =N, ¢ =1(z,t) (1.3a)
while A is the operator related to the time evolution of the eigeciions

Uy = Ay, (1.3b)

Proposition 1.1.1 (Lax’s equation) If the spectral parameter does not evoivdime,

namely\;, = 0, then relations (1.3) imply
L+ [L, Al =0, (1.4)

where[L, A] .= LA — AL.

Proof

Differentiation of (1.3a) with respect tamplies

Lyp + Lapy = My (1.5)
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Using both relations (1.3), the above equation can be r@nmrds
(Le+ LA—AL) Y = 0. (1.6)

Now, since the above holds for the arbitrary eigenfunctidm, ¢), it implies equation

(1.4).0

If a nonlinear evolution equation (or a system of equatiafshe form (1.2) is equivalent
to (1.4), then we can associate to it a pair of linear opesatsi(1.3). In this case, equation
(1.4) is called the_ax equationwhile equations (1.3) constituteLax representatiomr,
simply, aLax pair for (1.2). In particular, equation (1.3a) is called gptial partof the
Lax pair (orz-part), while equation (1.3b) is called tismporal part(or ¢-part).

The property of a nonlinear evolution equation to be writisra compatibility condition
of a pair of linear equations (1.4) plays a key role towar@ssivability of the equation

under the IST, and it is usually used as an integrabilityeaon.

Remark 1.1.2 For a given nonlinear evolution equation (1.2) there is nsteyatic
method of writing it as a compatibility condition of a pair lofear equations, namely to
determine operator§ and.A. In fact, the usual procedure is to first study differential
operators of certain form, and then to examine what kind oE®Desult from their

compatibility condition.
Example 1.1.3 The KdV equation (1.1) can be written as a compatibility dbad of the
form (1.4), of a system of linear equations (1.3), whérand.A are given by

L=-0+u, u=u(nt), (1.7a)

A = —40? + 3ud, + 3u,. (1.7b)
OperatorsC and.A constitute a Lax pair for the KdV equation.
Operator (1.7a) is the so-called SgHinger operator and the corresponding equation

L1y = Ay is the time-independent Saidinger equation, which constitutes a fundamental

equation in mathematical physics since the first quartehe0* century. However,
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the Lax pair (1.7) for the KdV equation was not derived frora #guation itself. As a
matter of fact, the “guess” of the operator (1.7a) was iregpioy the desire to link the

KdV equation with Schidinger’s equation.

We will come back to this Scbhdinger equation in the next chapter, where we shall study

its covariance under the so-called Darboux transformation

1.1.2 The inverse scattering transform

Although so far the method of the inverse scattering transie not yet formulated to be
uniformly applicable to all nonlinear evolution equatipiiglways consists of three basic
steps. We briefly explain these steps, and we also presentsbleematically in Figure

1.1

Consider the following Cauchy problem
w = N(u), u(r,0)=f(z), u=ulz,1), (1.8)

for a nonlinear evolution equation. Let us also assume tletbove PDE admits Lax

representation (1.3).

StepI: The direct problem

The direct problem consists of finding the scattering trarmsétion at a fixed value of the
temporal parameter, say= 0, by using the initial conditioni(z,0) = f(x). Thatis to
find the spectral data of operat@y which are called thecattering data The scattering

transform at = 0 is nothing but a set of scattering data, which we desote) |;—.

Step/I: Time evolution of the scattering data

This is the part where one needs to determine the scattedategat an arbitrary time
t € R, i.e. givenS(u)|;—o, use the second equation of (1.3) to deternfiie)|;cr. The
significance of this part lies in the fact that we are now dwpivith a linear problem,

(2.3b), rather than a nonlinear one as the original.
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Step/I1: The inverse problem

Analogously to the Fourier transform method, the final s¢ep recover = u(z, t) from
S(u)lter-

Nonlinear evolution

wz,0) — - - - - - - = - =T~~~ — »  u(z,t)
; A
8 :

o e
O =@
2 3
a o

g
Y
Scattering data evolution
S(u)] o : ]

Figure 1.1: IST scheme

1.1.3 The AKNS scheme

In 1971 Zakharov and Shabat [93] applied the inverse saagteéransform method to
solve the NLS equation, introducing a more general fornmuahan Lax’s. Specifically,

they introduced a pair of linear equations, namely

O = Lap, = (w,1), (1.9a)
O = T, (1.9b)

wherel = L(x,t;\) andT = T (z,t; \) are2 x 2 matrices. They showed that the NLS

equation,

D= DPew 0%, @ = —Que — 4G, (1.10)

can be written as a compatibility condition,, = 1., of the system of linear equations

(1.9), whereL and7 are given by

L=D,+U, T=D+YV, (1.11)
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andU andV by

0 2p .
U=M\os+ , o03:=diag1,—1), (1.12a)
2g O
0 2 —2 .
V= Noy+ A Py~ . (1.12b)
2¢ 0 —qz  2pq

A year later, Ablowitz, Kaup, Newell and Segur in [2], motied by Zakharov and
Shabat’s result, solved the sine-Gordon equation and teegrglised this method to
cover a wider number of nonlinear PDEs (see [3]). In the réshis thesis, we shall

refer to operators of the form (1.11) bax operators of AKNS-type

1.2 Discrete integrable systems

Discrete systems, namely systems with their independeiatblas taking discrete values,
are of particular interest and have many applications irersg¢vsciences as physics,
biology, financial mathematics, as well as several othendiras of mathematics, since
they are essential in numerical analysis. Initially, thegrevappearing as discretisations
of continuous equations, but now discrete integrable systeand in particular those
defined on a two-dimensional lattice, are appreciated iin tven right from a theoretical

perspective.

The study of discrete systems and their integrability editgeinterest in late seventies;
Hirota studied particular discrete systems in 1977, in sesaf papers [43, 44, 45, 46]
where he derived discrete analogues of many already fanmidis.An the early eighties,
semi-discrete and discrete systems started appearingldrthigoretical models in the
work of Jimbo and Miwa; they also provided a method of gemegatliscrete soliton
equations [24, 25, 26, 27, 28]. Shortly after, Ablowitz aradh@ in a series of papers [84,
85, 86] are using numerical methods in order to find solutfonknown integrable PDESs,
using as basis of their method some partial difference @nstwhich are integrable in
their own right. Moreover, Capel, Nijhoff, Quispel and cbkmators provided some of

the first systematic tools for studying discrete integralgktems and, in particular, for the
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direct construction of integrable lattice equations (waicatively refer to [70, 79]); that

was a starting point for new systems of discrete equatioappear in the literature.

In 1991 Grammaticos, Papageorgiou and Ramani proposedshdificrete integrability
test, known assingularity confinemenf39], which is similar to that of the Painlév
property for continuous integrability. However, as menéd in [40], it is not sufficient
criterion for predicting integrability, as it does not fish any information about the rate

of growth of the solutions of the discrete integrable system

As in the continuous case, the usual integrability critebeing used for discrete systems
Is the existence of a Lax pair. Nevertheless, a very impoitaagrability criterion is
that of the 3Deonsistencynd, by extension, thaultidimensional consistencyhis was
proposed independently by Nijhoff in 2001 [72] and Bobenkd &aris in 2002 [15].

In what follows, we briefly explain what is the 3D-consistgmproperty and we review
some recent classification results. For more informatiomhenintegrability of discrete
systems we refer to [69] which is one of the few self-contdin@nographs, as well as

[40] for a collection of results.

1.2.1 Equations on Quad-Graphs: 3D-consistency

Let us consider a discrete equation of the form
Q(u, u19, g1, ur1; a,b) =0, (1.13)

whereu;;, 7,5 = 0,1, u = ug, belong in a se and the parametersb € C. Moreover,
we assume that (1.13) is uniquely solvable for apin terms of the rest. We can interpret

the fieldsu; to be attached to the vertices of a square as in Figure 1.2-(a)

If equation (1.13) can be generalised in a consistent wayeridces of a cube, then it
is said to beBD-consistentIn particular, suppose we have the initial valugs:qg, w10
andug; attached to the vertices of the cube as in Figure 1.2-(b). ,ovee equation
(1.13) is uniquely solvable, we can uniquely determine e@giy o, u19; andug;, Using
the bottom, front and left face of the cube. Then, there aesetiwvays to determine value

u111, and we have the following.
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Definition 1.2.1 If for any choice of initial values, w199, ug10 andugg;, equation) = 0
produces the same valug;; when solved using the left, back or top face of the cube, then

it is called 3D-consistent.

Uo11
! a U111
[}
l
Up1 a (5%] ' a
[ U0 1 T 101 c
[}
l
010
b b c L i Rl U110
b b
® ® .
U a Uio [ a U100
(a) Quad-Graph (b) Cube

Figure 1.2: 3D-consistency.

Note 1.2.2In the above interpretation, we have adopted the followintation: We
consider the square in Figure 1.2-(a) to be an elementargreqn a two dimensional
lattice. Then, we assume that fielddepends on two discrete variablesand m, i.e.

u = u(n, m). Thereforeyu,;s on the vertices of 1.2-(a) are

ugo = u(n,m), wp=u(n+1,m), wupy=ulnm+1), wuy=uln+1m+1).

(1.14)
Moreover, for the interpretation on the cube we assumedtlkdapends on a third variable
k, such that
ugoo = w(n,m, k), uo =u(n+1,mk),... wp =uln+1l,m+1,k+1). (1.15)

Now, as an illustrative example we use the discrete polelktd® equation which first

appeared in [43].

Example 1.2.3 (Discrete potential KdV equation) Consider equation (1,.98)ere is
given by
Q(u, U0, Up1, U115 @, b) = (u — un)(ulo — U()l) + b — Q. (116)
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Now, using the bottom, front and left faces of the cube 1)2\le can solve equations

Q(u, w100, U010, U110; @&, b) = 0, (1.17a)
Q(u, u100, Uoo1, w1015 @, ¢) = 0, (1.17b)
Q(u, up10, uoor, to11; b, ¢) = 0, (2.17¢c)

to obtain solutions fofti;1, w191 @andug;1, Namely

—b

U0 = U + a—’ (1.18a)
Up1o0 — U100

wor = u+ —— (1.18b)
Upo1 — U100

bh—

Uors = U+ —— (1.18¢)

Upo1 — U010

respectively.
Now, if we shift (1.18a) in thé-direction, and then substitute,; andug; (which appear
in the resulting expression far;) by (1.18), we deduce

(@ — b)utoouoio + (b — c)uprotoor + (¢ — a)uigotoor
(a — b)uo(n + (b — C)Ul()() —f- (C — a)uom '

(1.19)

U111 = —

It is obvious that, because of the symmetry in the above sspe, we would obtain
exactly the same expression far; if we had alternatively shifted,(; in them-direction
and substituted:;, andug;; by (1.18), or if we had shifted,;; in the n-direction and

substituted:; 1o anduyg;. Thus, the dpKdV equation is 3D-consistent.

1.2.2 ABS classification of maps on quad-graphs

In 2003 [8] Adler, Bobenko and Suris classified all the 3D-dstesit equations in the case
whereA = C. In particular, they considered all the equations of thenf¢t.13), where

u, U1, Uo1, U1, a, bE C, that satisfy the following properties:

(I) Multilinearity. Function@ = Q(u, w19, 1, u11; a, b) is a first order polynomial in

each of its arguments, namely linear in each of the fields, v, u1;. That s,
Q(u, urg, uo1, u11; @, b) = ayuuigup uin + auuigUor + azutgousr + - .. + ag, (1.20)

wherea; = a;(a,b),71=1,...,16.
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(I Symmetry. Function( satisfies the following symmetry property

Q(u, uig, up1, u11; @, b) = €Q(u, uo1, Ut0, u11; b, a) = cQ(u10, w, Uiy, Up1; a,b), (1.21)
with e, o = +1.
(II1) Tetrahedron property. That is, the final value,; is independent of.

ABS proved that all the equations of the form (1.13) whichs$atihe above conditions,
can be reduced to seven basic equations, usiagits (fraction linear) transformations
of the independent variables and point transformationfhi@fgarameters. These seven
equations are distributed into two lists known as @ist (list of 4 equations) and the

H-list (list of 3 equations).

Remark 1.2.4 The dpKdV equation in Example 4.24 is the fisrt member of Fhéist
(H1 equation).

Lax representations

Those equations of the form (1.13) which satisfy the muakséirity condition (1), admit
Lax representation. In fact, in this case, introducing axilewy spectral parameten,
there is an algorithmic way to find a matrixsuch that equation (1.13) can be written as

the followingzero-curvaturezquation

L(U117U01; a, )\)L(UOLU; b, >\) = L(UH, u10; b, A)L(Ulo, u;a, )\)- (1.22)

We shall see later on that 1) equations of the form (1.13) thiéhfields on the edges of
the square 1.2-(a) are related to Yang-Baxter maps and 2)-Bartgr maps may have

Lax representation as (1.22).

1.2.3 Classification of quadrirational maps: TheF'-list

A year after the classification of the 3D-consistent equatidBS in [9] classified all the

quadrirational maps in the case whete= CP*'; the associated list of maps is known as
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the F'-list. Recall that, a map™ : (z,y) — (u(z,y),v(z,y)) is calledquadrirational, if
the maps

u(,y): A=A, v(z,.): A— A, (1.23)

are birational. In particular, we have the following.

Theorem 1.2.5 (ABS, F'-list) Up to Mobius transformations, any quadrirational map on

CP' x CP*' is equivalent to one of the following maps

(I1=bx+b—a+(a—1)y

U= ayr, v T b(1—a)x + (a—b)zy+alb—1)y’ (F1)
—b h—
u:gP, UZEP, P:ax Y a; (Frr)
a b rT—y
—b
umlp  oip pothy (Fin)
a b T—y
b—a
u=yP v=2aP, P=1+ ; (Frv)
T —y
a—>b
u=y+P, v=z+P, P=2"2 (Ev)
r—y

up to suitable choice of the parameterandb.

We shall come back to the-list in chapter 4, where we shall see that all the equations
of the F'-list have the Yang-Baxter property; yet, the other membétkeir equivalence
classes may not satisfy the Yang-Baxter equation. Howevershall present a more

precise list given in [75].

Finally, we devote the last part of this introduction to @matsthe plan of this thesis.

1.3 Organisation of the thesis

The results of the thesis are distributed to chapters 3, S5aanttd appear in the articles
[50], [49] and [37], respectively. The character of chag@es introductory, while chapter
4 is a review to recent developments in the area of Yang-Bamégrs. Specifically, this

thesis is organised as follows.

Chapter 2 deals with Backlund and Darboux transformations. In particular, stgnvith

the original theorem of Darboux, that was presented in 18332]), we explain that a
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Darboux transformation is nothing else but a transfornrmatidich leaves covariant a
Sturm-Liouville problem. We show that this fact can be useddnstruct hierarchies
of solutions of particular nonlinear equations and we preske very well-known
Darboux transformation for the KdV equation. Moreover, wplain what are Bcklund
transformations, namely transformations which relatesgisolutions of a particular PDE
(auto-BT), or solutions of different PDEs (hetero-BT). We whuow, using BTs, one
can construct solutions of a nonlinear PDE in an algebraionag and we present the

well-known examples of the BTs for the sine-Gordon equatimhthe KdV equation.

In chapter 3 we derive Darboux transformations for particular NLS typpiaions,
namely the NLS equation, the DNLS equation and a deformatidhe DNLS equation.
The spatial parts of the Lax pair of these equations are septed by (Lax) operators
which possess certain symmetries; in particular, thesermtnies are due to the action
of the reduction group. In all the afore-mentioned cases,deeve DTs which are
understood as gauge-like transformations which deperahedly on a spectral parameter
and inherit the symmetries of their corresponding Lax opperd hese DTs are employed
in the construction of novel discrete integrable systemgkvhave first integrals and, in
some cases, can be reduced to Toda type equations. Mordovelerivation of the DT
implies other significant objects, such agdRlund transformations for the corresponding
PDEs, as well as symmetries and conservation laws for tleciased discrete systems.
All these cases of NLS type equations studied in this chapbterespond to recent

classification results.

Chapter 4 has introductory character and it is devoted to Yang-Baxsgysnin particular,
we explain what Yang-Baxter maps are and what is their coforeavith matrix
refactorisation problems. Moreover, we show the relatietwieen the YB equation and
3D consistency equations, plus we review some of the recmiobments, such as the

associated transfer dynamics and some recent classificasalts.

In chapter 5 we employ the Darboux transformations —derivedchapter 3- in the
construction of Yang-Baxter maps, and we study their intagita as finite discrete
maps. Particularly, we construct six-dimensional YB majsctv can be restricted to

four-dimensional YB maps which are completely integrabléhe Liouville sense. These
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integrable restrictions are motivated by the existenceedan first integrals. In the case

of NLS equation, the four-dimensional restriction is thee&edvamilov map.

Chapter 6 is devoted to the noncommutative extensions of both Darlramsformations
and Yang-Baxter maps in the cases of NLS and DNLS equationscif@ally, we
show that there are explicit Yang-Baxter maps with Darboax-tepresentation between
Grassman algebraic varieties. We deduce novel endomanptog Grassmann varieties
and, in particular, we present ten-dimensional maps whash lwe restricted to eight-
dimensional Yang-Baxter maps on invariant leaves, relaietie¢ Grassmann-extended
NLS and DNLS equations. We discuss their Liouville integiifgband we consider their

vector generalisations.

Finally, in chapter 7 we provide the reader with a summary of the results of thaghas

well as with some ideas for future work.
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Chapter 2

Backlund and Darboux transformations

2.1 Overview

Backlund and Darboux (or Darboux type) transformations ioatg from differential
geometry of surfaces in the nineteenth century, and thegtitote an important and
very well studied connection with the modern soliton theang the theory of integrable

systems.

In the modern theory of integrable systems, these transifiooms are used to generate
solutions of partial differential equations, startingfr&nown solutions, even trivial ones.
In fact, Darboux transformations apply to systems of lineguations, while Bcklund

transformations are generally related to systems of neatiequations.

This chapter is organised as follows: The next section deitisDarboux transformations
and, in particular, the original theorem of Darboux and ipplecation to the KdV
equation, as well as its generalisation, namely Crum’s #raoiT hen, section 3 is devoted
to Backlund transformations and how they can be used to comstlutions in a algebraic
way starting with known ones, using Bianchi’s permutabijlity particular, we present
the examples of the &klund transformation for the sine-Gordon equation aeditlV

equation.

For further information on Bcklund and Darboux transformations we indicatively refer

to [41, 62, 80] (and the references therein).
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2.2 Darboux transformations

In 1882 Jean Gaston Darboux [23] presented the so-calledotida theorem” which
states that a Sturm-Liouville problem is covariant withpes to a linear transformation.
In the recent literature, this is called tBarboux transformatio62, 80]. The first book
devoted to the relation between Darboux transformatiodslae soliton theory is that of

Matveev and Salle [62].

2.2.1 Darboux’s theorem

Darboux’s original result is related to the so-call@te-dimensional, time-independent

Schibdingerequation, namely
vV'+AN—uw)y =0, u=u(zx), (2.1)

which can be found in the literature ass&urm-Liouville problenof finding eigenvalues

and eigenfunctions. Moreover, we refernt@s apotential functionor justpotential

In particular we have the following.

Theorem 2.2.1 (Darboux) Lety; = y,(x) be a particular integral of the Sturm-Liouville
problem (2.1), for the value of the spectral parametet \,. Consider also the following

(Darboux) transformation

y—y[l] = (d%c - ll) Y, (2.2)

of an arbitrary solution,y, of (2.1), wherel; = I1(y;) = y1.y; " is the logarithmic

derivative ofy;. Then,y[1] obeys the following equation
Yy [U+(A = u[1])y[1] =0, (2.39)
whereu[1] is given by

ull] = u —211. (2.3b)
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Proof
Substitution ofy[1] in (2.2) into (2.3) implies

(u— 20, —u[1])y + (' — lu — 17 + Lu[l]))y = 0, (2.4)

where we have used (2.1) to exprg&8 | andy”’[1] in terms ofy andy’. Now, sincey in

(2.4) is arbitrary, it follows that
ull] =u—203, o' —Lu—1+4Lu[l]=0. (2.5)
Now, substitution of the first equation of (2.5) to the secondlies
u— 2 — 1) =\ = const, (2.6)

after one integration with respect 1o Equation (2.6) is identically satisfied due to the

definition of the logarithmic function);, and the fact thag; obeys (2.1) 0

Darboux’s theorem states that functigfil] given in (2.2) obeys a Sturm-Liouville
problem of the same structure with (2.1), namely the samateaqu(2.1) but with an
updated potentiak[1]. In other words, equation (2.1) is covariant with respecthi®

Darboux transformation; — y[1], u — u[1].

2.2.2 Darboux transformation for the KdV equation and Crum’s

theorem

The significance of the Darboux theorem lies in the fact traidformation (2.2) maps
solutions of a Sturm-Liouville equation (2.1) to other smus of the same equation,
which allows us to construct hierarchies of such solutidrighe same time, the theorem
provides us with a relation between the “old” and the “newtguial. In fact, if the
potentialu obeys a nonlinear ODE (or more importantly a nonlinear BDien relation
(2.3) may allow us to construct new non-trivial solutionarshg from trivial ones, such

as the zero solution.

!Potentialu may depend on a temporal parameteramelyu = u(x, t).
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Example 2.2.2 Consider the Sturm-Liouville equation (2.1) in the case whére
potential, u, satisfies the KdV equation. Therefore, both the eigenfang and the

potentialu depend ort, which slips into their expressions as a parameter.

In this case, equation (2.1) is nothing else but the spatidiqf the Lax pair for the KdV

equation that we have seen in the previous chapter; recall:

Ly=Ay OF yYp+ (A—u(z,t))y=0. (2.7)

Now, according to theorem 2.2.1, for a known solution of tlld/kequation, say;, we can
solve (2.1) to obtaiy = y(x,t; \). Evaluating at\ = \;, we gety, (z,t) = y(z,t; )
and thus, using equation (2.3b), a new potentj&l. Therefore, we simultaneously obtain
new solutions(y[1], u[1]), for both the linear equation (2.7) and the KdV equatjovhich

are given by

y[1] = (0: — L)y, (2.8a)
ull] = u — 2y 4, (2.8b)

respectively.

Now, applying the Darboux transformation once more, we carstruct a second solution
of the KdV equation in a fully algebraic manner. Specificafiyst we consider the

solutiony,[1], which isy[1] evaluated ah = \,, namely

Y2[1] = (9: — 11)ya. (2.9)

wherey, = y(x,t; A\y) Then, we obtain a second pair of solutiofg2], u[2]), for (2.7)
and the KdV equation, given by
yl2 = (0. — Lyyl1] 2 (0. — )0, — )y, (2.108)

2] = ull] = 20, = =21, + ). (2.10b)

This procedure can be repeated successively, in order giraahhierarchies of solutions

for the KdV equation, namely

([t ul]) = (y[2, u[2]) = -~ = (y[nl, uln]) — -, (2.11)

2Potentiaku[1] is a solution of the KdV equation, since it can be readily shdwat the paify[1], u[1])

also satisfies the temporal part of the Lax pair for KdV.
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where(y[n], u[n]) are given by

k=1 k=1
where “~" indicates that the terms of the above “product” are arrdrfgem the right to
the left.

We must note that Crum in 1955 [22] derived more practical dedamt expressions
for y[n] andu[n], in (2.12), which are formulated in the following generatisn of the

Darboux theorem 2.2.1.

Theorem 2.2.3 (Crum) Letyy, 1, .. .,y, be particular integrals of the Sturm-Liouville
equation (2.1), corresponding to the eigenvalugsX,,...,\,. Then, the following
function
W[yla Y2y Yn, y]
yln] = , (2.13)
[ } W[yl;yZ,---,yn]

whereW |y, yo, . .., y,| denotes the Wronskian determinant of functigng, . . ., v,

obeys the following equation
Yeo[n] + (A —u[n])y[n] = 0, (2.14)
where the potentiak[n] is given by

2

uln] :u—2%ln(W[y1,y2,...,yn]). (2.15)

Remark 2.2.4 Forn = 1, Crum’s theorem 2.2.3 coincides with Darboux’s theoremi2.2.

In this thesis, we understand Darboux transformations ageagéike transformations
which depend on a spectral parameter. In fact, as we shailhdbe next chapter, their

dependence on the spectral parameter is essential towcidiscrete integrable systems.

2.3 Backlund transformations

As mentioned earlier, &klund transformations originate in differential geomet the

1880s and, in particular, they arose as certain transfasnsbetween surfaces.
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In the theory of integrable systems, they are seen as netati@tween solutions of
the same PDE (auto-BT) or as relations between solutions of different PDEs
(hetero-BT). Regarding the nonlinear equations which hawerépresentation, Darboux
transformations apply to the associated linear problenx (pair), while Backlund
transformations are related to the nonlinear equatioif.itSéerefore, unlike DTs, BTs
do not depend on the spectral parameter which appears ireftmation of the Lax pair.
Yet, both DTs and BTs serve the same purpose; they are usedstruct non-trivial

solutions starting from trivial ones.

Definition 2.3.1 (BT-loose Def.) Consider the following partial differenteajuations for

u andw:

F(ty Uy Uy Uy Uy - ) = 0, (2.16a)
G(vavxavtavxmvxta"') = 0. (216b)

Consider also the following pair of relations
Bi(w, Uy Uy« ooy 0, Uy gy ) = 0, (2.17)

betweenu, v and their derivatives. I3, = 0 is integrable forv, mod (F' = 0), and
the resultingv is a solution ofG = 0, and vice versa, then it is an heter@&klund
transformation. Moreover, i’ = G, the relationsB; = 0 is an auto-Bicklund

transformation.

The simplest example of BT are the well-known Cauchy-Riemalatioas in complex

analysis, for the analyticity of a complex functioh= u(x,t) + v(z, t)i.

Example 2.3.2 (Laplace equation) Functions= u(z,t) andv = v(z,t) are harmonic,
namely

Viu=0, V=0, (2.18)

if the following Cauchy-Riemann relations hold

Uy = Vg, Up = —Vp. (2.19)
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The latter equations constitute an auto-BT for the Laplaceagon (2.18) and can be
used to construct solutions of the same equations, stavithgknown ones. For instance,
consider the simple solutiarn(x, t) = «zt. Then, according to (2.19), a second solution of

(2.18),u, has to satisfy,, = x andu; = —t. Thereforey is given by

u = %(:ﬂ —t%). (2.20)

However, even though Laplace’s equation is linear, the s works for nonlinear

equations.

2.3.1 BT for sine-Gordon equation and Bianchi’'s permutability

One of the first examples of BT was for the nonlinear sine-Goehpuation,

U = sinu, u = u(z,t). (2.21)

Let us now consider the following well-known relations

(2.22)

between functions = u(x,t) andv = v(x,t).

We have the following.

Proposition 2.3.3 Relations (2.22) constitute an auto-BT between the solsition=

u(z,t) andv = v(z,t) of the SG equation (2.21).

Proof

Differentiating the first equation of (2.22) with respect @and the second with respect to

(55 o525
(5°), e (5o (57 (2.230)

x, we obtain

N
+
<
N
+
<

, (2.23a)

[\]
O

IS
+ o
S

[\
\&}
[\
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where he have made use of (2.22). Now, we demand that the azpagions are
compatible, namely,; = w;, andv,; = v,. Adding equations (2.23) by parts, we
deduce that: obeys the SG equation. Moreover, the same is true &fter subtraction of

(2.23) by parts. Hence, (2.22) is an autaeRlund transformation for the SG equatian.

Remark 2.3.4 We shall refer to the first equation of (2.22) as fipatial part(or z-part)

of the BT, while we refer to the second one astidporal part(or t-part) of the BT.

Bianchi’s permutability: Nonlinear superposition princip le of solutions of the SG

equation

Starting with a functionu = u(z,t), such that:,, = sinu, one can construct a second

solution of the SG equatiom; = B,, (u), using the spatial part of the BT (2.22), namely

up +u .U —u
(12 >x:alsm( 12 ) (2.24)

Moreover, using another parametes, we can construct a second solution= 5., (u),

U +u . (U2 —u
(22 >x:a251n( 22 ) (2.25)

Now, starting with the solutions,; andu,, we can construct two new solutiong, and

given by

ugy from relationsu;, = B, (u1) anduy; = B, (us), namely

U2 + Uy . fuie—u

( 5 )x = (p sin ( 12 1) , (2.26)
U1 + Us o —u

( 5 )m = o sin (%) , (2.27)

as represented schematically in Figure 2.1-(a).

Nevertheless, the above relations need integration inr dodeerive the actual solutions
uy, ug and, in retrospect, solutions, andusy;. Yet, having at our disposal solutions
u; andus, @ new solution can be constructed using Bianchi's pernvitiatisee Figure

2.1-(b)) in a purely algebraic way. Specifically, we haveftiwing.
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u u
Uy Uz Uy Uz
[eD) (o5 )
a2 aq
U
U12 U21
(a) Construction of solutions using BT (b) Bianchi’s diagram

Figure 2.1: Bianchi’'s permutability

Proposition 2.3.5 Imposing the conditiom;, = uy, the BTs{(2.24)-(2.27} imply the

following solution of the SG equation:

U =u + 4arctan [al + tan <u1 — 1@)1 : (2.28)

o — (V1 4

Proof
First, we subtract (2.25) and (2.27) from (2.24) and (2.28&pectively, and then subtract

by parts the resulting equations to obtain

o <sin (u12—u) + sin (u21 2_ u2)> = (9 (sin (u22—u> -+ sin <u122—u1>) .

Now, the above equation becomes

alsin(U_u—zul_uQ) :agsin(U_u_iul_uQ)), (2.29)

where we have used the well-known identity A + sin B = 2sin(4£2) cos(452).

Finally, using the identitgin(A + B) = sin Acos B £ sin Beos A, for A = (U — u)/4

andB = u; — uq, We deduce

tan U—u = SiTn e fan | 112 , (2.30)
4 g — (1 4

which can be solved fdv to give (2.28).0
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Remark 2.3.6 One can verify thal/ given in (2.28) satisfies both equations (2.26) (where
U = uy2) and (2.27) (wheré&/ = uy;) modulo equations (2.24) and (2.25). Moreover, it
satisfies the corresponding temporal part of equation§)2:2d (2.27).

Remark 2.3.7 Relation (2.28) is nothing else but a nonlinear superpasjtionciple for

the production of solutions of the SG equation.

2.3.2 Backlund transformation for the PKdV equation

An auto-Backlund transformation associated to the PKdV equationivengby the

following relations

u+v), =2a+i(u—0v)?
Ba:( ) 2 (v =) (2.31)

(u—v), = 3(uf —v2) = (U = ) aga,
which was first presented in 1973 in a paper of Wahlquist artdld&sok [90]. In this
section we show how we can construct algebraically a solutiothe PKdV equation,

using Bianchi’s permutability.

Bianchi's permutability: Nonlinear superposition princip le of solutions of the PKdV

equation

Letu = u(z,t) be a function satisfying the PKdV equation. Focusing on tiagial part

of the BT (2.31), we can construct two new solutions, from= B,,, (v) anduy = B, (u),

i.e.
1 2
(wp +u), = 20+ §(u1 —u)?, (2.32)
1
(ug+u), = 200+ §(u2 —u)?. (2.33)

Moreover, following 2.1-(b), we can construct two more froatationsu,, = B, (u1)

andu21 = Bal (Ug), i.e.

1
(w2 +w), = 2as+ §(U12 - U1)27 (2.34)

1
(g1 +u2), = 204+ 5(“21 — up)”. (2.35)
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Proposition 2.3.8 Imposing the conditiom,, = us;, the BTs{(2.32)-(2.35} imply the

following solution of the PKdV equation:

G — Qg

U=u—4

: (2.36)
U1 — U2

Proof

It is straightforward calculation; one needs to subtracB3p and (2.35) by (2.32) and

(2.34), respectively, and subtract the resulting equation

In the next chapter —where we study Darboux transformationgarticular NLS type

equations— we shall see that BT arise naturally in the devivaif DT.
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Chapter 3

Darboux tranformations for NLS type
equations and discrete integrable

systems

3.1 Overview

As we have seen in the previous chapter, Darboux aackBind transformations are
closely related to the notion of integrability [80]. Theyndae derived from Lax pairs in a
systematic way, e.g. [20, 21], and provide the means to nmistlasses of solutions for
the integrable equations to which they are related. Monedlkiey can be interpreted as
differential-difference equations [10, 56, 57, 67] anditkemmutativity, also referred to

as Bianchi's permutability theorem, leads to systems oétkffice equations [7, 71, 78].

In this chapter we use Lax operators which are invariant utigeaction of the reduction
group to derive Darboux transformations. We interpret tb@oaiated Darboux matrices

as Lax matrices of a discrete Lax pair and construct systémifference equations.

More precisely, our starting point is the general Lax opmrat
L=D,+U(p,qN). (3.1)

Here, the2 x 2 matrix U belongs to the Lie algebral(2, C), depends implicitly onc
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through potential®, ¢, and depends rationally on the spectral paramgteimposing
the invariance of operataf under the action of the automorphismsséf2, C), i.e. the
reduction group, inequivalent classes of Lax operatordearonstructed systematically.
This classification of the corresponding automorphic Lgehllas was presented in [60],

which were also derived in [16] in a different way.

Because of this construction, the resulting Lax operatox® Ispecific\-dependence
and possess certain symmetries. We shall be assuming éabtresponding Darboux
transformations inherit the samedependence and symmetries, hence the derivation
of these transformations is considerably simplified in tastext. Once a Darboux
transformation has been derived, one may construct atgoically new fundamental
solutions, i.e. solutions of the equatiaf? = 0, from a given initial one using
this transformation. Moreover, combining two differentrbaux transformations and
imposing their commutativity, a set of algebraic relati@msong the potentials involved

in £ results as a necessary condition.

One may interpret these potentials as functions defined amoadtmensional lattice
and, consequently, the corresponding algebraic relatamneng them as a system of
difference equations. One interesting characteristihefresulting discrete systems is
their multidimensional consistency [8, 9, 15, 68, 69, 72isTmeans that these systems
can be extended into a three dimensional lattice in a camistay and, consequently, in

an infinite dimensional lattice.

Another property of these systems, following from theirickgion, is that they admit
symmetries. The latter are nothing else but théclBund transformation of the

corresponding continuous system to which the Lax operaisirelated.

The chapter is organised as follows: In the next section vieflprexplain what is a
reduction group, what automorphic Lie algebras are andstéhie cases of the PDEs we
study; the nonlinear Sctdinger equation, the derivative nonlinear Satinger equation
and a deformation of the derivative nonlinear Schinger equation. In section 3 we
present the general scheme we follow to derive Darboux ogstiand construct systems
of difference equations. Finally, section 4 is devoted ed#rivation of Darboux matrices

for NLS type equations, while section 5 deals with employtimgse Darboux matrices to
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construct discrete integrable systems and their integnagluctions.

The results of this chapter appear in [50].

3.2 The reduction group and automorphic Lie algebras

The reduction group was first introduced in [63, 64]. It is a&cdete group of
automorphisms of a Lax operator, and its elements are sametius automorphisms of the

corresponding Lie algebra and fractional-linear transfaions of the spectral parameter.

Automorphic Lie algebras were introduced in [58, 59] andigd in [16, 17, 58, 59, 60].
These algebras constitute a subclass of infinite dimensioaalgebras and their name

Is due to their construction which is very similar to the oaedutomorphic functions.

Following Klein’s classification [48] of finite groups of ftéional-linear transformations
of a complex variable, in [16, 17] it has been shown that indase of2 x 2 matrices,

which we study in this chapter, the essentially differexiuction groups are

e the trivial group (with no reduction);
e the cyclic reduction grouf, (leading to the Kac-Moody algebr&});

e the Klein reduction groufs x Z, = Ds.

Reduction group%, andD, have bothdegenerateand genericorbits. Degenerate are
those orbits that correspond to the fixed points of the foaetilinear transformations of

the spectral paramater, while the others are called generic

Now, the following Lax operators

1 0 0 2p
L=D,+\ + , (3.2a)
0 —1 2¢ 0
,[ 1 0 0 2p
L=D,+\ A : (3.2b)
0 —1 29 O
1 0 0 2 0 2
L=D,+(\ -2 A Pl ) (320
0 —1 2¢ 0 20 0
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constitute all the essential different Lax operators, \pithes of minimal order, invariant
with respect to the generatorsof andD, groups with degenerate orbits. In what follows,

we study the Darboux transformations for all the above cases

Operator (3.2a) is associated with the NLS equation [93],
Pt =Pee +40°0, G = —Guw — 4DG°, (3.3)
while (3.2b) and (3.2c) are associated with the DNLS equdtd],
Pt = Paw T A0°Das G = G + A0 (3.4)
and a deformation of the DNLS equation [65]
Pt = Do + 8(0°Q)e — 44e, G = —Guw + (G2 — 4Da, (3.5)

respectively.

3.3 General framework

In this section we present the general framework for thevdgon of Darboux matrices
related to Lax operators of AKNS type. Moreover, we explawhwe can employ these

Darboux matrices to construct discrete integrable systems

3.3.1 Derivation of Darboux matrices

The Lax operators which we consider in the rest of this thesof the following AKNS

form

L(p,qg;\) =D, +U(p,q; N), (3.6)

whereU is a2 x 2 traceless matrix which belongs in the Lie algebrg, C), depends

implicitly on = through the potential functionsandq and is a rational function in the
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spectral parameter € C. We also require that the dependence on the spectral paamet

is nontriviat.

Remark 3.3.1 In the forthcoming analysis we shall only be needing theiappart of

the Lax pair of the associated PDEs.

In what follows, by Darboux transformation we understandagpm
L—L=MLM™, (3.7)

where £ has exactly the same form #@sbut updated with new potentials, and g0,
namely

L = D, + U(pio, q10; M. (3.8)
Matrix M in (3.7) is an invertible matrix called tHearboux matrix

According to definition (3.7), a Darboux matrix may dependamy of the potential
functionsp, ¢, p1o andgqyo, and the spectral parameter Moreover, given a Lax operator

L, we can calculate the Darboux matrix using the following.

Proposition 3.3.2 Given a Lax operator of the form (3.6), the Darboux matrix,

satisfies the following equation
DM + UM — MU =0, (3.9

whereUyg = U(pio, Gio; ).

Proof

By definition of the Darboux transformation we have thatl = M £, namely

(D + U(p1o; qro; A))M = M(Dy + U(p, q; A)). (3.10)

!By nontrivial we mean thak cannot be eliminated by a gauge transformation. For instamatrix

x AL
( ) has trivial dependence onsince

%
-1
AL/2 * AL A\L/2 x 1
A—1/2 * A—L/2 B *
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Therefore, sinced, - M = M, + M D,, the above equation implies th&f must obey
equation (3.9)0

Although the above proposition can be used to determinehis cannot be done in full
generality without making choices far/ and analysing its dependence on the spectral

parameten.

Our first choice will be based on the following.

Proposition 3.3.3 A composition of two Darboux matrices for an operator of therfo

(3.6) is a Darboux matrix for the same operator.

Proof

Let M and K be Darboux matrices for an operatoiof the form (3.6). Then,
LM =ML, LK=KL. (3.11)

by definition of the Darboux matrix. Now,

~

kML 2 kiv P L (3.12)

Therefore,ﬁ = KM L(K M)~ " which proves the statemerid.

We define therank of a Darboux transformation to be the rank of the matrix which
appears as coefficient of the higher power of the spectrahpeter. In the next sections,
we shall be assuming that the Darboux tranformations aram d; in fact, in some
examples, Darboux transformations of full rank can be amitis composition of Darboux

transformations of rank 1.

The second choice is related to the form of the corresporidirgperators. Since the Lax
operators we deal with have rational dependence on therapparameter, we impose
without loss of generality, that the same holds for mattixas well. Moreover, we employ

any symmetries of the Lax operatdt, as symmetries inherited ta. Specifically, if the
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the Lax operatdrZ(\) satisfies a relation of the form
L) =ENLe(N)Z(A) (3.13)

for some invertible functiorv(\) and some invertible matri¥(\), then we shall be

assuming thal/ must obey the same relation, namely

M) = SA)M(a(X)S(N) (3.14)
Relation (3.14) imposes some restrictions on the form of imnatf and reduces the
number of functions involved in it.

Now, let M be a Darboux matrix for the operatdr, and¥ = ¥(z, \) a fundamental
solution of the linear equation
LY (z,\) = 0. (3.15)

Then, we have the following.

Proposition 3.3.4 Matrix M maps fundamental solutions of (3.15) to fundamental

solutions ofC¥ = 0. Moreover, the determinant df is independent of.

Proof
Let M mapV to ¥y, namely¥,, = MW. Then, according to (3.7)

LYyg=MLM "Wy = MLM Y (M) = MLV =0, (3.16)

i.e. ¥, IS a solution of LU = 0. Moreover,V, is fundamental, sinc& is fundamental,
det M 7é 0 and\IJm = MVU.

Now, recall Liouville’s formul& for solutions of the linear equatiah = 0, given by

det W(z,t; \) = det W(xg, t; A) exp (— /ﬂﬂ trU (p(€), q(&); )\)d§> . (3.17)

o
SinceU is traceless, from the above formula we deduce that therdaetants ofU and
Uy, are non-zero and independentaf Hence, the relatio,;, = MV implies that

9, (det(M)) = 0. O

2For simplicity of the notation, we sometimes omit the depsm@ on the potentials and g, i.e.

L(p,q;A) = L(A).
3Itis also known as Abel-Jacobi-Liouville identity.
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3.3.2 Discrete Lax pairs and discrete systems

Starting with a fundamental solution of equation (3.15)y 88 we can employ two

Darboux matrices to derive two new fundamental solutipsand ¥, as follows
Ui = M(]%q,pm,ého; /\)‘I’ =MV, Vg = M(p7Qap01vq01; A)‘I’ = KV. (3.18)

Then, a third solution can be derived in a purely algebraig asashown in Figure 3.1.

Vor My Yn

K K

g Vi

Figure 3.1: Bianchi commuting diagram

Specifically, starting with two fundamental solutions otiaton (3.15)¥, andW¥;, one

can construct two new fundamental solutions using Darboatxioes

M(p107q107p117q11; /\) = Ky M(pOIaQOlapllyfhl;/\) = Mo,
namely the following

X = MuV¥o = My KV = M(pthOlaplla qi1; A)M(p,q,pm,qu; )\)‘I’,

Y= K0V = KoMV = M(plo,C_ho,pnaCIll; )\)M(]%C],plo,%o; /\)\I’-

Imposing that these two different solutions coincide, de= ) = ¥y, (see Figure 3.1),

the following condition must hold
My K — KoM = 0. (3.19)

If the latter condition is written out explicitly, it resglin algebraic relations among the

various potentials involved.

We can interpret the above construction in a discrete wayicBirly, let us assume that

p andq are functions depending not only erbut also on two discrete variablesandm,
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i.e.p = p(x;n,m) andg = q(x;n, m). Furthermore, we define trehift operatorsS and

T acting on a functiorf = f(n,m) as
Sfn,m)= f(n+1,m), Tf(n,m)=f(n,m+1). (3.20)

We shall refer taS and7 as theshift operators in the: and them-direction respectively.

Now, we expect that the shift operat@$sand7 commute with each other and with the

differential operatob),.. In particular, we have the following.

Proposition 3.3.5 The shift operatorsS and 7 commute with each other and also with

the partial differential operator on solutions i = 0.

Proof

Let ¥ be a solution oLV = 0. For the commutativity o§ and7 we have that

TSU = T(M¥) = My Uy, = My K0, (3.21)
and on the other hand

STV = S(KU) = K10y = K;oM U, (3.22)

which proves thatS, 7] ¥ = 0, due to (3.19).

Now, we prove the commutativity between the shift oper&tand the partial differential
operator, and the proof is exactly the sameforWe basically need to show th&t, =
(SY¥),. Indeed,

(ST, = 0,7, 2 (), = M0 + M, X M0 - MU, (3.23)

On the other hand, we have that

(3.6) 3.18

SU, W _SUW) = —UyWyy 2 U M. (3.24)

Due to proposition 3.3.2, the right hand sides of (3.24) a8@3) are equal which

completes the proof:
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In addition, we interpret the shifts pfandq with
py =plrsn+i,m+j), q;=ql@in+im+j), po=p, qo=q, (3.25)

respectively.

In this notation, system (3.18) can be considered as a tisteex pair, and equation
(3.19) is nothing but its compatibility condition. Furtiheore, the resulting polynomials

from condition (3.19) define a system of partial differengeagions forp andg.

Note 3.3.6 For the sake of simplicity, in the rest of the thesis, we adbptfollowing
notation: the derivative with respect toof a scalar object with lower indices, s@yp;;,
will be denoted by;; .. Moreover, for a matrix with lower index, sayfy, with 1, ;; we

shall denote itgi, j)-element.

Now letu be a solution of a system of difference equatiahéy) = 0. Moreover, letu
be given by
U:= R.(u) =u-+er(u), (3.26)

weree is an infinitesimal parameter. We have the following ([66]).

Definition 3.3.7 We shall say thak.(u) constitutes an infinitensimal symmetry —or just
a symmetry— oA (u) = 0, if U:= R(u) is also a solution up to ordes, namely
A(U) = O(é?). (3.27)

Corollary 3.3.8 Map R.(u) defined in (3.26) is a symmetry of a system of difference

equations A(u), if the following conditiofi

> 04 S“T7r(u) =0, (3.28)

igjez Y

is satisfied mod (A(u) = 0).

*OperatorDa := Y, .o, 78T/ is called theFréchet derivative



Chapter 3. Darboux tranformations for NLS type equationsdisctete integrable
systems 37

Proof

If we expandA(u + er(u)) in series, then equating theerms, (3.27) implies (3.28)J

In the next section we shall see for particular examples thatderivation of Darboux

matrices gives rise to particular differential-differenequations which possess first
integrals. In some cases, the latter may be used to reducrithber of the dependent
variables and derive scalar equations; some of them aredat fippe and some others are
defined on a stencil of six or seven points. Additionally, fibven of these systems allows

us to pose an initial value problem on the staircase.

The derived system of differential-difference equatiasn general, of the form

P(p7Q7azp7 aIQ7arp107a:Eq10) = 0. (329)

However, in all the examples of this thesis, system (3.2 lamwn to an evolutionary

differential-difference system of equations of the form

pz = Z<p7 plO)? p = (p7 Q)7 (330)

and its shifted consequences.

For the above system of equations we have the following.

Proposition 3.3.9 The differential-difference equations (3.30) constitganerators of

generalised symmetries of the associated system of diffeequations.

Proof

Indeed,

d
%(MmK — KioM) = My K + My K, — Ky M — Ki9M,,. (3.31)

Now, according to Proposition 3.3.2 we have

M:v = MU — U10M7 MOl,w = MOlUOI - UllMOI
Kx = KU — UOlKa KlO,x = KlOUlo - UllKl(]-
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d

%(M(HK - KlOM) — Ull(KIOM — MOlK) + (MOIK — KloM)U (332)

The right-hand-side of the above is zermod (KoM — My K = 0) which proves the

statement™

Note 3.3.10System (3.30) is nothing but thepart (spatial-part) of a &klund transfo-

rmation between solutions of the PDE associated to the Laxabqr.
In the next section we derive Darboux matrices for particBI2Es of NLS type; the NLS
equation, the DNLS equation and a deformation of the DNLS&qgn.

In all the above cases, we find more than one Darboux matrixhi8tpoint it is worth
mentioning that, the interpretation of any pair of Darbouatrices as a discrete Lax pair
does not always lead to a discrete integrable system. Orotiteaty, in several cases, the

compatibility condition (3.19) yields a trivial system.

3.4 NLS type equations

In this section we study the Darboux transformations rdlébethe NLS type equations

discussed earlier.

As an illustrative example, we start with the NLS equation.

3.4.1 The nonlinear Schbdinger equation

The Lax operator in this case is given by

L:=D,+U(p,q¢;\) =D, + AU+ U°, (3.33a)

whereU! andU° are given by

. ) 0 0 2p
U' =03 =diag(l,—-1), U = . (3.33b)
2¢g 0
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OperatorL is the spatial part of the Lax pair for the nonlinear Sxhinger equation.

The NLS equation has the following scaling symmetry

pio=aB 'p, qo=pBa"'q. (3.34)

A spectral parameter independent Darboux matrix corredipgrio the above symmetry

is given by the following constant matrix

a 0
M = , af #0. (3.35)
0 g

Now, we seek Darboux matrices which depend on the spectratser\. The simplest

A-dependence is a linear dependence. In particular, we haveltowing.

Proposition 3.4.1 Let M be a Darboux matrix for the Lax operator (3.33) and suppose
it is linear in . Let alsoM define a Darboux transformation of rank 1. Then, up to a

gauge transformation)/ is given by

1 0 f»p
M(p7q107f) = A 00 + ) (336)

o 1

where the potentialg and g satisfy the following differential-difference equations

0. f = 2(pq — pr0q0), (3.37a)
9up = 2(pf — p1o), (3.37b)
O2q10 = 2(q — quo f).- (3.37¢)

Moreover, matrix (3.36) degenerates to

—
i~
S
8

1 0
0 0

1o

Proof
Let us suppose that is of the formM = AM; + M,. Substitution of// to equation (3.9)

implies a second order algebraic equatiominEquating the coefficients of the several
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powers of\ equal to zero, we obtain the following system of equations

2\ [0'3, Ml] =0, (3393.)
M My, + o3, My] + UyM, — MUY = 0, (3.39b)
)\0 : MO@ -+ U{)OMO — M()UO - 0, (339C)

where with[os, M;] we denote the commutator @f and M ;.

Equation (3.39a) implies that/; must be diagonal, i.eM; = diag(ci, c2). Then, we
substitute)/; to (3.39b).

Now, for simplicity of the notation, we denote tlig 1) and(2, 2) entries of)M, by f and
g respectively. Then, it follows from equation (3.39c) tha entries of matrix\/, must

satisfy the following equations

Ouf = 2(Mo129 — proMo21), (3.40a)
99 = 2(Mo21p — qr0Mo,12), (3.40Db)
9:Mos2 = 2(pf — gpio), (3.40c)
0:Moor = 2(q9 — qiof). (3.40d)

The off-diagonal part of (3.39b) implies that thie 2) and(2, 1) entries of matrix\/, are
given by

Moo = c1p — capro,  Mop21 = c1qio — C2q. (3.41)
Additionally, from the diagonal part of (3.39b) we deducatth , = c;, = 0. Since
the Darboux transformation is of rank one, namelyk M; = 1, one of the constants,
i = 1,2 must be zero. Thus, after rescaling we can choose eitherl, c; = 0 orc; = 0,

co = —1. These two choices correspond to gauge equivalent Darbatrces.

Indeed, the choice; = 1, c; = 0 implies My 12 = p and My 21 = g10. Moreover, (3.40b)

implies thaty = const.= q, i.e.

w-| F P (3.42)

dio «

In this case the Darboux matrix is given by

1 0 fp
+
00 Qo o

: (3.43)
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where, according to (3.40), its entries satisfy

amf = 2(pq - prho), Oxp = 2(]9f - 042910), Ouro = 2(061 - Q1of)- (3-44)

Now, if « # 0, it can be rescaled ta = 1 and thus the Darboux matrix in this case is

given by (3.36) where its entries obey (3.37).

Similarly, the second choice; = 0, ¢; = —1, leads to the following Darboux matrix

0 0 L pio
N(pi0,q,9) = A ( ) + ( ) . (3.45)
0 -1 q g

The above is gauge equivalent to (3.36), singd (py, ¢, g)o; ' is of the form (3.36).

Therefore, a linear il\ Darboux matrix is given by (3.36) where its entries obey the

differential-difference equations (3.37).
In the case where = 0, from (3.44) we deduce

Pz = 2fD, q10,x = =2 fqu0. (3-46)

Thus, the Darboux matrix in this case is given by

1 0
M(Z%Qlo,f)i)\( )+( / p)- (3.47)
0 0 qio 0O

In addition, after an integration with respectitpequations (3.46) imply thag, = ¢/p.

Hence, the Darboux matrix in this case is given by (3.88).

It is straightforward to show that system (3.37) admits thik¥ving first integral

O (f =P@o) = 0. (3.48)

which implies that, det M = 0.

3.4.2 The derivative nonlinear Schbdinger equation: Zs-reduction

group

The Lax operator in this case is given by

L =D, + \NU?+ \U', (3.49a)



Chapter 3. Darboux tranformations for NLS type equationsdisctete integrable
systems 42

where

2 . 1 0 2p
U® =03 =diagl,—1) and U’ = ) (3.49Db)
2¢g 0

This is the spatial part of the Lax pair for the DNLS equatiB8mif , and it is invariant
under the transformation

51(A) 1 LX) = g3L(—\)os. (3.50)

As a matter of fact, the above involution generates the mmluayroup which is

Isomorphic to theZ, group.

As in the case of the NLS equation, the DNLS equation has tHewimg scaling

symmetry
po=ab'p, qo=pBa"q. (3.51)

A spectral parameter independent Darboux matrix corredipgrto the above symmetry

Is given by the following constant matrix

a 0
M = , af #£0. (3.52)

0 p

Now, we seek Darboux matrices with the samdependence as the non-differential part

of (3.49), namely of the form
M = N>My + AM; + M. (3.53)

Lemma 3.4.2 A second order matrix polynomial ih, of the form (3.53), is invariant

under the involution (3.50), ifiZ, and M, are diagonal matrices and/; is off-diagonal.

Proof
It is straightforward if we demand that satisfies the conditiond/(\) = o3 M (—\)os.
O

As mentioned earlier, we shall restrict ourselves to Daxbwansformations of rank 1,

and we have the following.
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Proposition 3.4.3 Let M in (3.53) be a Darboux matrix for the Lax operator (3.49)
that is invariant under the involution (3.50) andnk M; = 1. Then, up to a gauge

transformation,M is given by

0 0 ca 0
M(p, quo, [; ¢1,¢2) = N2 / + A Ip + ' ., (3.54)

0 0 fao O 0 ¢

wherep andq satisfy the following differential-difference equations

O f = 2f (pqg — Proqro) , (3.554)
c —c
020 = 2p (P10qi0 — Pq) — QMa (3.55Db)
c —c
9210 = 2¢10 (P10G10 — Pq) — 2%- (3.55¢)

Proof
According to Lemma (3.4.2), matriX/, should be diagonal. Additionally, since
rank M, = 1, we consider)M, to be of the formM, = diag(f,0). The choise

M, = diag(0, g) leads to a gauge equivalent Darboux transformation.

Now, 3.9 implies thaf\/ satisfies the following system of equations

M [og, My] =0, (3.56a)
N Jos, My] + UjgMy — MyU' = 0, (3.56b)
N My, + o3, Mo] + UjgMy — MU' =0, (3.56¢)
Mo My, 4+ UlyMy — MU' =0, (3.56d)
A Mg, =0. (3.56€)

The first one, (3.56a), is satisfied automatically sinégeis diagonal. Moreover, the last

one, (3.56e), implies thal/, is constant, i.eM, = diag(c;, ¢2), Wherec;, ¢ € C.

From equation (3.56b) we determine the entries of the @@oihal matrix\/;, namely
Mo = fp and Mo = fqo. (3.57)

That is,M is given by (3.54).

Equation (3.56c¢) implies the first differential-differenequation (3.55a), while equation

(3.56d) implies the following

(fp)s =2c1p — 2cop10 @and  (fquo)s = 2¢2q — 2¢1Gao- (3.58)
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With use of (3.55a), the above equations can be rewrittemeidrm (3.55b) and (3.55c¢),

respectivelyd

A first integral of the differential-difference equatiors%5) is given by

Oz (f2PQ10 - sz) =0. (3.59)

The above integral guarantees that the determinant of thhboDa matrix (3.54) is

independent of.

Remark 3.4.4 If the constantg; andc; in (3.54) are non-zero, then we can rescale them

to 1, by composing with a Darboux matrix (3.52) and changing: fo~! andg,, —

qroa St

However, if either ofc; or ¢, is zero, we can bring the differential-difference equation

(3.55) into polynomial form.

Case l:¢; = ¢o = 0. Modified Volterra chain

In this case, from equations (3.58), we obtéfp).,. = (fq10). = 0. An integration of the
latter implies thatf = 1/p andgo = p, where we have set the constants of integration

equal to 1. Hence, the Darboux matrix (3.54) degenerates to

Maey(p) i= N2 ( 1(/)p 3 ) + A ( ? ; ) | (3.60)

Moreover, the corresponding differential-difference &tpns become

Go=p Op= 2p2 (pw - p—w) ) (3-61)

and the first integral (3.59) holds identically. The resgtidifferential-difference

equations (3.61) constitute the modified Volterra chairj.[91
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Casell:c;=1andc, =0

In this case the Darboux matrix simplifies to

M(Z?,(ho,f)i)\z(f 0)+>\< ! fp)+(1 0). (3.62)
00 fao 0 00

The differential-difference equations (3.55) become

9:f = 2f(pq — pioquo), (3.63a)
2
0xp = 2p (p1oqio — pq) + 7p, (3.63b)
2
Oxq10 = 210 (P10g10 — Pq) — %7 (3.63c)

and the first integral (3.59) can be rewritten as

9x (f*par0) = 0. (3.64)

Now, in order to expres$ in terms ofp andg, avoiding any square roots, we make the

following point transformation
p=u’, q=v>y. (3.65)

Thus, the first integral (3.64) impliegu?v? = 1 and, subsequently, is given by f =

+1/uv. Moreover, for thisf, system (3.63) can be rewritten in a polynomial form as

Opu = u(uigv? — u*v? ) £u'v, 0,0 = v(uigw? — uPv® ) F uv’. (3.66)
3.4.3 A deformation of the derivative nonlinear Schbdinger equa-

tion: Dihedral reduction group

In this case, the Lax operatds given by

L=2D,+NU>+ U+ XU+ 2 2U2, (3.67a)

5The full Lax pair of the associated PDE can be found in [16, 17]
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where

0 2
U2=-U2=0, Ul=UYH = ( P ) . (3.67b)

Operator (3.67) is the spatial part of the Lax pair of the defttion of the DNLS equation

(3.5), and it is invariant under the following transfornoais

31(>\) : E()\) — Ugﬁ(—A)Ug, (3683)

sa(A) : L(A) — Jlﬁ(i)al, o= ( (1) (1) ) : (3.68b)

The above involutions generate the reduction group whi@oisiorphic taZ, x Z, = D,

(dihedral group).

Equation (3.5) has the obvious symmetpy,q) — (—p,—q). A spectral parameter
independent Darboux matrix for (3.67), which correspoondbe latter symmetry, is given
by o3. For a\-dependent Darboux matrix, we seek a matrix with the samercignce
on the spectral parameter as the non-differential pad of (3.67). Specifically, we are

seeking forM of the form

M = My +AM + Mo+ XN""M_y + X"2M_,. (3.69)

Lemma 3.4.5 A matrix of the form (3.69), which is invariant under the intbnss; and

s9In (3.68), Is given by

0 6 o 0 0 v v 0 0 «

Proof

Relation)M (\) = o3 M (—\)os implies that)/,, M, andM_; must be diagonal, whereas
M, and M_; must be off-diagonal. Moreover, from relatidd(\) = oy M (1/)\)oy, we
obtain: My 11 = M_999, M39g = M_511, My 12 = My o1 @nd M o1 = M 12. O
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Proposition 3.4.6 Let M be a Darboux matrix of the form (3.69) for the Lax operator
(3.67) andrank M, = 1. Moreover, suppose that it is invariant under the involote,

andss. Then, up to a gauge transformation and an additive constehis given by

2

0 0 p _ q10
M(p, quo, f,9) = f + A + g + 17!
0 A2 qio 0 p 0

(3.70)

where! is the identity matrix ang, ¢, f andg satisfy the following system of differential-

difference equations

Oop = 2( P1ogio — Pq)p + (p — p10)g + 4 — qlo> (3.71a)
Orqro = 2( progio — Pg)qi0 + (¢ — qi0)g +p — p10> (3.71b)
Ovg = 2( progio — Pg)g + (p — p1o)p + (¢ — 6110)6110)7 (3.71c)
O:f = 2(pq — progio) f- (3.71d)

Proof

From equation (3.9) we deduce the system of equations

M o3, My] =0, (3.72a)
N Jos, My] + UlgMy — MyU' = 0, (3.72b)
N My, + UM, — MU =0, (3.72c)

)\1 : MLI + [0'3, M,l] + UlloMo - MQUl + Ui]lMQ - MQUil == O, (372d)
N My, +UlgMy — MU'+ Uy My — MU =0, (3.72€)
for the entries of\/. Because of the symmetry, the negative powera obrrespond to

the same equations as the above.

Equation (3.72a) is automatically satisfied/ds is diagonal. From equation (3.72b) we

identify the entriesy ando of matrix M in terms of the potentials, namely

y=ap—PBpip and 0= aqo — fq, (3.73)

whereas from (3.72d) we can express their derivatives mdeaf the potentials and the

entries of matriced/, andM, as

Yo = 2(aq — Bgio + pp — vp1o — 0), (3.744a)

= 2(Bp — apio + vq — pqio + ) - (3.74b)
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Now, from equation (3.72c) we obtain the derivatives:@nd; in terms of the potentials,

~ andd, namely

ay = 2(yq — dpp) and [, = 2(6p — vquo)- (3.75)

Substituting (3.73) into the above equations, we dedudentha=const. Moreover, since
rank M, = 1, eithera or $ has to be zero. Thus, we can chogse: 0 and, thenp can
be any arbitrary function of, saya = f(z). The casex = 0 andg = f(z) leads to a

Darboux matrix which is gauge equivalent to the former.
Now, o = f(z) ands = 0 imply thaty = fp anddé = fq,o from (3.73).
The last equation of (3.72) implies
pz = vy = 2f (p(p — p10) + (g — q10)) - (3.76)

Therefore, after a simple integration, we deduce that v (where we have assumed that

the integration constant is zero).
Now, the first equation of (3.75) can be rewritten as

fe = 2f(pq — p1oqro)- (3.77)

Using the above, and since we have expressaddd in terms off, p andq,o, equations

(3.74) can be rewritten as

Dz = 2((2910910 —p)p+q— quo + %(p — plo)), (3.78a)
4100 = 2((17106]10 —DPq)q1o + D — pro + %(q - q10)>. (3.78b)

Now, without any loss of generality, we can%gt= fg, which proves the statemennt.

It is straightforward to show that the quantities

P, = f2 (g - p%o) ;o Dy = f2 (92 +1- p2 - Q%o) ) (3.79)

are first integrals for the system of equations (3.71), ngriigb;, = 0,7 = 1, 2. In fact,

these first integrals imply that matri¥ has constant determinant, since

det M = ()\2 + )\72) (I)l + (I)Q. (380)

This choice was made in order to retrieve polynomial exgoessn (3.78).
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3.5 Derivation of discrete systems and initial value prob-

lems

In this section we employ the Darboux matrices derived inpite¥ious section to derive
discrete integrable systems. We shall present only the p&iDarboux matrices which
lead to genuinely non-trivial discrete integrable systef® these systems we consider

an initial value problem on the staircase.

3.5.1 Nonlinear Schibdinger equation and related discrete systems

Having derived two Darboux matrices for operator (3.33),fa@is on the one given in

(3.36) and consider the following discrete Lax pair
\Iflo - M‘I/, \1/01 - K\I’, (381)

whereM and K are given by

1 0 fp
M = M(p,quo, f) = A + , (3.82a)
0 0 q10 1
1 0 g p
K = M(p,qo1,9) = A + : (3.82b)
00 go1 1
The compatibility condition of (3.82) results to
for — f— (g0 —9) =0, (3.83a)
Jo1 9 — fg910 — P10Gi0 + Po1gor = 0, (3.83b)
p (for — g10) — 1o + po1 = 0, (3.83c)
¢ (f —9) — qo1 + g0 = 0. (3.83d)

This system can be solved either 1@, o1, fo1, g) or for (p1o, q10, f, g10). In either of

these cases, we derive two solutions. The first one is

Pio = Do, Gio=qo1, [ =g, gio= for, (3.84)

which is trivial and corresponds t (p, 10, f) = M (p, qo1, 9)-
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The second solution is given by

_ qop* + (910 — f)p + p1o dor = proqui” + (f — g10)qu1 + 61107 (3.853)

D )
0 1+ pg L+ pan
for = ¢11(p1o + pgro) + f — ]961107 g= qu(pf — po) + g0 +pCJ1o. (3.85b)
1+ pqu 1+ pau

The above system has some properties which take their riskeeirderivation of the

Darboux matrix. In particular, we have the following.

Proposition 3.5.1 System (3.85) admits two first integralg, := f — pgip and G =

g — pqo1, and the following conservation law

(T-1Df=(S—-1)g (3.86)

Proof

Relation (3.48) suggests that

(T=1)(f=pgo)=0 and (§—1)(g—pgn) =0, (3.87)

which can be verified with straightforward calculation,ngsiequations (3.83a). Thus,
F = f — pgio andG := g — pqo1 are first integrals. Moreover, equation (3.83a) can be

written in the form of the conservation law (3.86).

Corollary 3.5.2 The following relations hold.

f—pgo=can) and g— pgy = B(m). (3.88)

Remark 3.5.3 In view of relations (3.88), we can interpret functiofisand g as being
given on the edges of the quadrilateral where system (3s8&fined, and, consequently,

consider system (3.85) as a vertex-bond system [42].
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Initial value problem on the staircase

Our choice to solve system (3.83) faf1, qo1, fo1 andg is motivated by the initial value
problem related to system (3.85). Suppose that initialeslior p and g are given on
the vertices along a staircase as shown in Figure 3.2. Funscfiand g are given on
the edges of this initial value configuration in a consisteay with the first integrals
(3.88). In particular, horizontal edges carry the initialues off and vertical edges the

corresponding ones of

Po1,qo1 P11,q11 Evolution determined by (3.85)

g g1o

p,q P10, 4910

Figure 3.2: Initial value problem and direction of evolutio

With these initial conditions, the values pfandq can be uniquely determined at every
vertex of the lattice, whilegf andg on the corresponding edges. This is obvious from the

rational expressions (3.85) defining the evolution aboeesthircase, cf. Figure 3.2.

For the evolution below the staircase, one has to use

o = q1p* + (for — g)p 4‘19017 o = porqu” + (9 — for)qu + QOl7 (3.89a)

I+pan I+ pgn
P qi1(por +pfor) +9 —PQO17 f= q11(pg — po1) + for +PCI01’ (3.89b)
I+ pgi I+pagn

which uniquely defines the evolution below the staircasedisated in Figure 3.2.

Remark 3.5.4 We could consider more general initial value configuratiohstaircases
of lengths/, and/, in the n andm lattice direction, respectively. Such initial value
problems are consistent with evolutions (3.85), (3.89awrining the values of all fields

uniquely at every vertex and edge of the lattice.
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Derivation of an Adler-Yamilov type of system

Now, using first integrals we can reduce system (3.85) tAdlar-Yamilov typef system

as those in [10]. Specifically, we have the following.

Proposition 3.5.5 System (3.85) can be reduced to the following non-autonodies-

Yamilov type of system fprandg:

a(n) = f(m) aln) = Bm) 5 g0

Po1 = P10 — 1+ paus Dy, Go1 = Q1o t+

Proof
The proof is straightforward if one uses relations (3.88)dplacef and g in system
(3.85).0

Derivation of discrete Toda equation

Now, we will use two different Darboux matrices associatethyihe NLS equation to

construct the discrete Toda equation [82].

In fact, we introduce a discrete Lax pair as (3.81), with= M, (p, f) in (3.38) and
K = M(p, qo1, 9) in (3.36). That is, we consider the following system

10
\1110: )\ +

-

P e, (3.91a)
00 10
p
10
To = | A 7, (3.91b)
00 qo1 1

and impose its compatibility condition.

From the coefficient of the\-term in the latter condition we extract the following

equations

[ = Jor=9— g0, (3.92a)

1
Por = —. (3.92b)
11
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Additionally, the \°-term of the compatibility condition implies

Jorg — giof = % — Po14o1, (3.93a)
g0 — for = ]ﬂv (3.93b)

p
g—f= %. (3.93c)

Now, recall from the previous section that, using (3.883,dhantities; andg, are given
by

g=08(m)+pgu and gio = B(m) + proqu1- (3.94)
We substitute; and g;, into (3.93b) and (3.93c), and then replacand its shifts using

(3.92b). Then, we can expregand fy; in terms of the potentia} and its shifts:

~Gor G0

I U, (3.95a)
q10 q11

for = BL_ 010 4 gy, (3.95b)
420 q11

Proposition 3.5.6 The compatibility of system (3.95) yields a fully discreteld type

equation.

Proof
Applying the shift operato? on both sides of (3.95a) and demanding that its right-hand

side agrees with that of (3.95b), we obtain

o foz I 00 _ g4 1) — B(m). (3.96)
q20 411 12 qu
Then, we make the transformation
q — exp(—w-1,-1), (3.97)
which implies the following discrete Toda type equation

eULTITW _ gWTWALL . gW0ITW W0t — B(m + 1) — [B(m), (3.98)

and proves the statement.
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Remark 3.5.7 The discrete Toda equation (3.98) can be written in the fofrma o

conservation law,

(S —1)ewo-17w=10 = (T — 1)(e"0-17%=10 — 7901 4 G(m)). (3.99)

3.5.2 Derivative nonlinear Schiddinger equation and related discrete

systems

Now we consider the difference Lax pair
Vo = M(p,quo, fic1,¢2) ¥, Wor = M(p,qo1,9;1,1) ¥, (3.100)

where matrix)M is given in (3.54) and at least one of the constants, is different from

zZero.

From the consistency condition of this system, we derive ffilwing system of

equations.
fg10 = 9fo =0, (3.101a)
Jorqir — fqi0 — c1g10q11 + 29901 = 0, (3.101b)
foipor — fp — cagropio + cigp = 0, (3.101c)
for — f —c1(g10 — 9) — fgi0p10¢10 + 9 01001601 = 0. (3.101d)

As in the case of the nonlinear Sékinger equation, we can solve equations (3.101)
either forpg1, qo1, for andg or for pyg, ¢10, f @andg;o, motivated by the evolution of the

intial value problem on the staircase (cf. Figure 3.2).

Specifically, the first branch is the trivial solution giveyn b

c c 1
Po1 = —27 do1 = —1Q107 foo=cig10, 9=—Ff (3.102)
C1 Co C1

The second branch involves rational expressions of theirengavariables, and it is given



Chapter 3. Darboux tranformations for NLS type equationsdisctete integrable

systems -
by
A 2,2 )
Po1r = 7 B? (f P Q0 + c2fp(giop10qi0 — 1) — c3910P10 + C1C2glop) : (3.103a)
A
1m0 (3.103b)
B
for =175 (3.103c)
B
dor = 10 A (f(q11 — qi0 + g10P10910911) + 1910911 (g10P10911 — 1)), (3.103d)

whereA and B are given by the following expressions
A= fpgu + ca(gropioqin — 1), and B := fpqio + c1g10pgin — o (3.103€)

When eithek; or ¢, is equal to 0, then system (3.101) admits a unique non-tgeiation

and it is given by the above expressions if weeidr ¢, equal to 0 accordingly.

Now, as in the case of NLS equation, the derivation of the Daxtmatrix gives rise to

some integrability properties for system (3.101). Spealiffcwe have the following.

Proposition 3.5.8 System (3.101) admits two first integralg, := f*pqiy — cof and

G := ¢*pgo1 — g, and the following conservation law

(T—1)Inf=(S—=1)lng. (3.104)

Proof

Indeed, relation (3.59) suggests that

(T —-1) (fzpqw — czf) =0 and (S-1) (gqum — g) =0. (3.105)

This can be verified with straightforward calculation usaggations (3.101). Thug; =

f — pgio andG := g — pqo; are first integrals. Moreover, from equation (3.101a) we get

In(fg10) = In(gfo1) which implies
Infor —Inf=1Ingy—Ing. (3.106)

The latter equation can be written in the form of the congeymdaw (3.86).0
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Derivation of a six-point difference equation

We now use Darboux matriced/,.,(p) and M (p,qo1,9;1,1) in (3.60) and (3.54),

respectively, to define the following discrete Lax pair

1/p 0 0 1
wo= ([ 70 1o v, (3.107a)
0 0 10
0 0 10
U= (22 7 7 ]+ P v, (3.107h)
0 0 9901 O 0 1

The compatibility of the above system implies the followexguations
1

p P 1
g10=—"9, YGiwo=—¢, — +9gqo1 = GioP1o + —- (3.108)
Po1 q11 DPo1 p

From the first two of the above equations we conclude ¢ghat py; and, thusg;o = p
andgyn = p-11. Additionally, we use the third equation of (3.108) to exgwmdieldg
in terms ofp and its shifts. Then, the first equation of (3.108) can be ittawr as the

following six-point difference equation

Po1r — P _ P11 — P1o (3_109)
Po1 (p01p—11 - pplo) plo(pnpm - pwpzo)

Equation (3.108) can be solved uniquely for any ofgtand its shifts, apart from,, and
po1- This allows us to define uniquely the evolution of the initlata placed on a double

staircase, as it is shown in Figure (3.3)

p-11 Po1 P11

. - O ——— — — — — — — — — |
p P1o Pp20

The stencil where the equation is defined The initial value problem

Figure 3.3:The stencil of six points and the initial value problem for equation (3.109)

A first integral of equation (3.108) is given by the following
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Corollary 3.5.9 Equation (3.108) admits a first integrgl, given by

o = p) o prH)' (3.110)
(Po1p—11 — PP10)

Proof
We express all the fields i@, which is given in proposition 3.5.8, in terms pfand its

shifts. O

3.5.3 A deformation of the derivative nonlinear Schodinger equa-

tion and related discrete systems

Here we employ Darboux matrix (3.70) to introduce the follogvdiscrete Lax pair
Vo= M(p, quo, f,9)V, Vo1 = M(p,qor,u,v)V. (3.111)

The compatibility condition of this Lax pair leads to an etioia solely for f andu, given

by
f01u — U'lOf = O, (3112)

and a system of equations for the remaining fields, given by

p(po1 — p) + (qo1 — qro)qu1 + gorv — gvip =0, (3.113a)
go1 — g + v — V10 + Po1gor — P10g10 =0, (3.113b)

Por — P10 + go1gor + (v — g)qu1 — viogio =0, (3.113c)
gor — Gi0 + go1P — gp1o + vpor — viep =0. (3.113d)

Remark 3.5.10 We shall consider the case where the valuépin (3.79) is nonzero. In
the oposite case, we deduce that pg;o and similarlyv = pqo;; this is due to the fact
that f must be nonzerof(= 0 implies M = 0). Then, system (3.113) has only the trivial

solutionpy; = p1p andgo: = qio.

Proposition 3.5.11 Equation (3.112) can be written in the form of the following

conservation law

(T = 1) In(g — pgro) = (S — 1) In(v — pgor). (3.114)
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Proof

The value ofP; can be rescaled to 1 and thus

1 1
, u? = .

9 — Pq1o0 U — Pqo1

Then, we substitute the above back to equation (3.112), lenthtter can be written in

the form (3.114)0

f? = (3.115)

Motivated by the initial value problem on the staircase,teys(3.113) can be solved
either for @o1, qo1, 901, v) O (P10, 10, g, v10). HOwever, we present this the solution in
the Appendix because of its length. Some properties of By§8e113) are given in the

following.

Proposition 3.5.12 System (3.113) admits two first integrals

g — Pqio U — Pqo1
T -1 =0, (S—1 =0, 3.116

and a conservation law given by

(T —1)(g +pg) = (S —1)(v+pq). (3.117)

Proof

Eliminating f from ®; and®, we obtain
g — Pqio
0y = 0. 3.118
<92+1—p2—q%o) ( )
This suggests that relations (3.116) constitute first ratlisgor system (3.113) and can be

readily shown. Moreover, it is straightforward to show ttia first equation of (3.113)
can be written in the form (3.1173

In what follows, we use the first integrals (3.116) to redugstem (3.113).

Derivation of a discrete Toda type equation

Here we consider the case where the first integrals (3.1V8) the values

. . 1
U P o (3.119)

PH1—p2—q} 2+ 1-p2—q} 2
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which implies the following algebraic equations
g—ph0o=0, (v—=14+p—qu)lv—1—p+qgn)=0. (3.120)
For the latter we choose the solution

9 =pqo, and v=p—qn+1. (3.121)

Substitution of the above expressions into system (3.1&3)btain a system of equations
for p, ¢ and their shifts. Motivated by the initial value problem e staircase as in (3.2),
we solve this system either f@g;, go1 or for pig, g10. In particular, we solve fopg:, go1

and, in order to simplify the retrieved exressions, we makegiint transformation

(p,q) = (p—1,¢—1). (3.122)
Then, we come up with
—2 -2
Doy = 1710(]107 do1 = (p )(g10 )C]u ey (3.123)
q1 P1oqi0 — 2q11

System (3.123) admits the conservation law

(T—=Dp—(qo+q—2)=(S—1)((p—1)q — qun), (3.124)

which results from (3.117) after substitution (3.121)daled by the point transformation
(3.122). Moreover, the first equation of (3.123) can be wemitin the form of a

conservation law, namely

(T = 1) In(pgio) = (S — 1) In(p). (3.125)

Proposition 3.5.13 System (3.123) implies the following discrete Toda type tamua

1
wo,—-1—w __ ,W—wWo1 wo,—1—wW1,—-1 __ L,W—W1 -1 [ wW—-11—wWo1 __ L,W0,—1—W1,—-1 . 3126
e e +e e 2(6 e ). ( )
Proof
Conservation law (3.125) suggests that we can introduce avaewable, w, via the
relations

In(pgio) = wo,—1 — wi,—1, In(p) = wo—1 — w, (3.127)
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and therefore
p=exp(wy_1 —w), ¢q=-exp(w_ip— wp_1). (3.128)
It can be readily shown that, applying the above transfaonab equations (3.123), the

first one is identically satisfied, whereas the second idewrin the form (3.126)0

Equation (3.126) can be written in a conserved form as

(T _ 1)(6w710—w — EWTWL1 | 9pW0,—1W | pW_107W0,—1 4 ewo,fl—wl,q) _

(S _ 1)(€w710—w — eWw-uTw + eW-10 _ 6“’0,—1)'

Remark 3.5.14 If we choose the solution = pgio,v = qo1 — p + 1 of (3.120) instead
of (3.121), and make the point transformatigng) — (p + 1, ¢ + 1), we will derive the

system
2 2
Po1r = p1oQ1o’ do1 = P+ 2)(du + )Q11 -2, (3.129)
q11 P1oqio + 2q11

which after a transformatiop — exp(w — wo —1),q — —exp(wy —1 — w_1¢) IS Written

in the form (3.126).

Derivation of a seven point scalar equation

Let us now choose the following values for the first integ(81417)

- 1 — 1
g — P%o — _2  and U — P01 =2, (3.130)

PH1-p>—q}y 2 v2+1—p?— g}
or, equivalently,
(g+1+p+qon)(g+1—p—qgn) =0, (v—14+p—qgn)(v—1—p+qu)=0. (3.131)

There are obviously four set of solutions fpandv, and we choose

g=p+qo—1, and v=p—gqu +1. (3.132)

Substitution of the above expressions into system (3.14BJ making the point
transformation(p, ¢) — (p — 1,¢q — 1), implies a system of difference equations among
the potentialg andq and their shifts. Its solution fg#y; andqo, is given by

qio — 2 P10gi0 — 2q11
P10, 4qo1 = b (3-133)
P1o(p + qio — 2) — pana

Poi = Pio — qu1 +2+
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Similarly, using the same substitution and point transtian, conservation laws (3.117)

and (3.114) become
(T = 1)pg = (S = 1)(pq — 2q01), (3.134a)
and
(T — 1) In(p — 2)(q10 — 2) = (S — 1) Inp(go1 — 2), (3.134b)

respectively, which of course constitute conservatiorsléow system (3.133).

w-_11 wor e
—_—
w w10
. ,,,,,,,,
w-10 i
m o e T Y
wo,—1 w1,—1

The two quadrilaterals with one
common vertex

The initial value problem

Figure 3.4:The stencil of seven points and the initial value problem on the black and lattite

Proposition 3.5.15 System (3.133) implies the following seven-point scalaaggu

(w — wio)(wo,—1 — w_10) (1 + ;)

w — Wy,—1
1
+(UJ — U}_w)(wlo - wm) (1 — —) =0. (3135)
W — wW-11

Proof

Conservation law (3.134a) suggests that we can introducetentm, w, using the
following relations:
pqg =4(w —w_10), pg—2qo = Hw_11 —w_1p). (3.136)
Expressing andgq in terms ofw, we obtain
w —w-10

p=2————, q=2(wo_1—w 1) (3.137)
Wo,—1 — W-10
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Substitution of the above to the first equation of (3.133Qlies equation (3.135)]

Equation (3.135) involves seven lattice points, and it aaeddved uniquely for any of the
shifts ofw, but not forw. These points can be placed on the vertices of two quadslate
with a common vertex; this allows us to consider an initidliegproblem where the initial
values are placed placed across a double staircase, asume Bigt. Of course, since we
can solve uniquely for both_,; andw; _,, the evolution can be uniquely determined in

both directions.
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Chapter 4

Introduction to Yang-Baxter maps

4.1 Overview

The original (quantum) Yang-Baxter equation originateshmworks of Yang [92] and
Baxter [13], and it has a fundamental role in the theory of tquarand classical integrable

systems.

In this thesis we are interested in the study of the set-#tmal solutions of the Yang-
Baxter equation. The first examples of such solutions apfdear&988, in a paper of
Sklyanin [81]. However, the study of the set-theoreticélisons was formally proposed
by Drinfiel'd in 1992 [32]. Veselov, in [88], proposed the meoelegant term “Yang-
Baxter maps” for this type of solutions and, moreover, he eated them with integrable

mappings [88, 89].

Yang-Baxter maps have been of great interest by many reszardh the area of
Mathematical Physics. They are related to several conagfpistegrability as, for
instance, the multidimensionally consistent equation®[85, 68, 69, 72]. Especially,
for those Yang-Baxter maps which admit Lax representati8h [Bere are corresponding
hierarchies of commuting transfer maps which preservegbetsum of their monodromy
matrix [88, 89].

In this chapter we give an introduction to the theory of Y&water maps.
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In particular, this chapter is organised as follows: In tle&trsection we briefly give an
introduction to the Yang-Baxter equation and Yang-Baxter snay¥e shall restrict our
attention to the Yang-Baxter maps admittibgx-representationvhich we study in the
next chapters of this thesis. In section 3 we discuss theemtimm between 3D consistent
equations and Yang-Baxter maps, while section 4 deals wain dhassification. Finally,
section 5 is devoted to the transfer dynamics of Yang-Baxta@psrand initial values

problems on a two-dimensional lattice.

4.2 The quantum Yang-Baxter equation

LetV be avector space and € End(V®V') alinear operator. The Yang-Baxter equation

Is given by the following
YR2oYBoy® =y»oyBoy!? (4.2)
whereY¥, i, 5 =1,2,3,i # j, denotes the action &f on thei;j factor of the triple tensor

productV ® V ® V. In this form, equation (4.1) is known in the literature asdmantum

YB equation

4.2.1 Parametric Yang-Baxter maps

Let us now replace the vector spaceby a setA, and the tensor produét @ V' by the
Cartesian productt x A. In what follows, we shall considet to be a finite dimensional

algebraic variety inrK¥, whereK is any field of zero characteristic, such@sr Q.
Now, letY € End(A x A) be a map defined by

Yoi(z,y) = (u(z,y), v(z,y)). (4.2)

Furthermore, we define the mapg¥ € End(A x A x A)fori,j =1,2,3, i # j, which
appear in equation (4.1), by the following relations

Y2(2,y,2) = (ulz,y), v(z,y), 2), (4.32)

Y(2,y,2) = (u(z, 2),y,v(x, 2)), (4.3b)

Y?(z,y,2) = (z,u(y, 2),v(y, 2)). (4.3c)
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Let alsoY?! = nY'r, wherer € End(A x A) is the permutation mapz(z,y) = (y, z).

MapY is a YB map, if it satisfies the YB equatio.{). Moreover, it is calledeversible

if the composition ofy 2! andY” is the identity map, i.e.

YoV = Id. (4.4)

Now, let us consider the case where parameters are invaivéiekidefinition of the YB

map. In particular we define the following map
You t (2.y) = (u,0) = (uz,y:0,0), v(z,y:a,b)). (4.5)
This map is callegharametric YB mayff it satisfies thgparametric YB equation

YopoYaioYpl =YyloY,loY,y (4.6)

a,c

One way to represent the majp, is to consider the valuesandy taken on the sides of
the quadrilateral as in figure 4.1-(a); the migp, maps the values andy to the values

placed on the opposite sides of the quadrilateraindv.

Moreover, for the YB equation, we consider the valueg andz taken on the sides of
the cube as in figure 4.1-(b). Specifically, by the definitioB @f the functionsy”, the
mapY,;”> maps

Y23

(r,y,2) =% (v,y,z0), (4.7)

using the right face of the cube. Then, m&@bj maps

13

(ZIZ’, y(l)a Z(l)) if (I(l)v y(l)v 2(2)) = Y;zl,zc]) © }/Ifg(xv Y, Z)v (48)

using the front face of the cube. Finally, m&p; maps

12
Ya b

(W, g, 2) 2 2P,y 2®) =V oV o Vi (2,y, 2), (4.9)
using the top face of the cube.

On the other hand, using the bottom, the back and the leftdattee cube, the values,
y and z are mapped to the valug$”, §® andz(® via the mapy; o V'3 o Y!2 which

consists with the right hand side of equation, namely (4.2)

Yoo oYl o Yo (w,y, 2) = (27,57, 29). (4.10)

a,c
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Therefore, the map,, , satisfies the YB equation (4.6) if and only:if? = 72, y? =

§® andz® = 2,
e

12
\%C
31
Yea 23
Yb,c

Figure 4.1: Cubic representation of (a) the parametric YB arap(b) the corresponding

YB equation.

Most of the examples of YB maps which appear in this thesiparametric.

Example 4.2.1 One of the most famous parametric YB maps is Adler’'s map [5]

Y, a—>b a—>b
) (wv) = (y— T+ , 4.11
(z,y) = (u,v) (y oL x+y) (4.11)

which is related to the 3-D consistent discrete potential/kdguation [67, 74].

4.2.2 Matrix refactorisation problems and the Lax equation

Let us consider the matriX depending on a variable, a parameter and aspectral
parameter\, namely L = L(x;c,\), such that the following matrix refactorisation
problem

L(u;a, \)L(v;b, \) = L(y; b, \) L(x;a,\), forany\ € C, (4.12)
is satisfied whenevéu, v) = Y, ,(x,y). Then,L is called Lax matrix fory, ;, and (4.12)

is called theLax-equatioror Lax-representatiofior Y, ;.

Note 4.2.2 In the rest of this thesis we use the lettéf \Wwhen referring to Lax matrices of
the refactorisation problem (4.12) and the calligraphit for Lax operators. Moreover,
for simplicity of the notation, we usually omit the dependeron the spectral parameter,

namelyL(x;a, \) = L(z;a).
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Since the Lax equation (4.12) does not always have a uniglgiso for (u,v),
Kouloukas and Papageorgiou in [53] proposed the t&rong Lax matrixfor a YB map.

This is when the Lax equation is equivalent to a map
(U, U) = Ya,b<x7 y) (413)

The uniqueness of refactorisation (4.12) is a sufficientddan for the solutions of the
Lax equation to define a reversible YB map [89] of the form 8. 1n particular, we have

the following.

Proposition 4.2.3 (Veselov) Let: = u(x,y), v = v(x,y) and L = L(x; ) @ matrix such
that the refactorisation (4.12) is unique. Then, the mapneefiby (4.13) satisfies the

Yang-Baxter equation and it is reversible.

Proof

Due to the associativity of matrix multiplication and edaat(4.12), we have

L(z;¢)L(y; b) L(w;a) = L(y™;0) L(2W; ¢) L w5 a) =

L(yW;b)L(zM: a) L(2%; ¢) = L(x@;a)L(y?; b)L(2?); ¢). (4.14)

On the other hand

L(2@;a)L(2W; ) L(g1; b) = L(2P; a) L(§®; b) L(2P; ). (4.15)

From the relations (4.14) and (4.15) follows that

L(z®;a) L(y?; ) L(z*; ¢) = L(2®P; a) L(5®; ) L(2?); ¢) (4.16)
Since the refactorisation (4.12) is unique, the above @éguanplies
z? = 3@ y? =@, and 2z =32, (4.17)

which is the Yang-Baxter equation.

For the reversibility, we need to show that

7TY7TY<:U7@/) = (*Tay>7 (418)
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or equivalently that

x:U(U(.%',]J),u(mvy))? (419)

y = u(v(z,y),u(r,y)).

Now, we have that
L(u(z,y);a)L(v(z,y),b) = L(y:b)L(z;a), forany z,y € A.  (4.20)

Forz = v(z, y) andy = u(z,y) we have
L(u(z,y); a)L(v(z, y); b) = L(u(v(z,y), u(z,y)); b) Lv(v(z,y), u(z, y)),a), (4.21)

where we have swappedwith b. Since, the refactorisation is unique, (4.20) and (4.21)
imply (4.19).0

In the case where the map (4.13) admits Lax representatidR)(hbut it is not equivalent
to (4.12), one may need to check the YB property separatelgt, We can use the

following trifactorisation criterion

Corollary 4.2.4 (Kouloukas-Papageorgiou) Let = u(z,y) andv = v(z,y) and L =
L(z; «) a matrix such that (u; a) L(v; b) = L(y; b) L(x; a). If equation (4.16) implies the
relation (4.17), then the map defined by (4.13) is a Yang-@arap.

In this thesis we are interested in those YB maps whose Laseseptation involves

matrices with rational dependence on the spectral paranastéhe following.

Example 4.2.51n terms of Lax matrices, Adler's map (4.11) has the follogvistrong

Lax representation [83, 89]

L(u;a, \)L(v; b, \) = L(y; b, \) L(z;a,\), forany\ € C, (4.22)

Lizia,\) = ( 2m 1) ~ (? 3) | (4.23)
r—a T

where
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4.3 Yang-Baxter maps and 3D consistent equations

From the representation of the YB equation on the cube, agirdEL-(b), it is clear that
the YB equation is essentially the same with the 3D consigtenndition with the fields
lying on the edges of the cube. Therefore, one would expattih can derive YB maps

from equations having the 3D consistency property.

The connection between YB maps and the multidimensionasistancy condition for

equations on quad graphs originates in the paper of AdlereBlat and Suris in 2003
[8]. However, a more systematic approach was presentecipdper of Papageorgiou,
Tongas and Veselov [77] a couple of years later and it is basdgtle symmetry analysis
of equations on quad-graphs. In particular, the YB varigblenstitute invariants of their

symmetry groups.

We present the example of the discrete potential KdV (dpKely)ation [74, 67] which

was considered in [77].

Example 4.3.1 The dpKdV equation is given by

(fir = f)(fio — for) —a+b=0, (4.24)

where the fields are placed on the vertices of the square aguiref{4.2). We consider

the values on the edges to be the difference of the valueseoretiices, namely

r=fio—f, y=fu—rfio, v=fu—fuo and v=fy —f, (4.25)

as in figure (4.2). This choice of the variables is motivatgdhe fact that the dpKdV
equation is invariant under the translation— f + const. Now, the invariants (4.25)
satisfy the following equation

r+y=u+w. (4.26)

Moreover, the equation (4.24) can be rewritten as

(x+y)(x—v)=a—0. (4.27)

Solving (4.26) and (4.27), we obtain the Adler’s map (4.11).
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fOl 11 u

f T10

Z

Figure 4.2: (a) dpKdV equation: fields placed on verticesAtler's map: fields placed

on the edges.

Example 4.3.2 For the dpKdV equation, let us now consider a different caration for

the variables assigned on the edges of the square, namely

r=ffio, y=fiofui, u=forfu, and v=ffor. (4.28)

This choice is motivated by the fact that equation (4.24niaiiant under the change

f—=ef, fu— efu, fro = € fioandfor — €' for.
Now, the above variables satisfy the following equation
Tu = Yo. (4.29)
On the other hand, we have that
y—z= folfu—f), u—v= fo(fun—f), (4.30)
and, therefore, the dpKdV equation can be rewritten as

y—x—(u—v)—a+b=0. (4.31)

Solving (4.29) and (4.31) far andv we obtain the following map

(x,y)—)(u,v)z(y(1+z—:z>,x<1+z:z>>, (4.32)

which is a parametric YB map.

4.4 Classification of quadrirational YB maps: The H-list

All the quadrirational maps in thé'-list presented in the first chapter satisfy the YB
equation. However, in principle, their dbius-equivalent maps do not necessarily have

the YB property, as in the following.
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Example 4.4.1 Consider the map, of the F'-list. Under the change of variables

(x,y,u,v) = (—x, —y,u,v), (4.33)
it becomes
a—>b a—2b
(z,y) = (~y — —x — )- (4.34)
r—=y xr =Yy

The above map does not satisfy the YB equation.

In fact, all the maps of thé'-list lose the YB property under the transformation (4.33).

The quadrirational maps which satisfy the YB equation welassified in [75].

Particularly, their classification is based on the follogvin

Definition 4.4.2 Letp, : X — X be a\-parametric family of bijections. The parametric

YB maps,;, and f/a’b are called equivalent, if they are related as follows

-1

Yoo = pa’ % py" Yab pa X po. (4.35)

Remark 4.4.3 It is straightforward to show that the above equivalencati@h is well

defined; ifY, ; has the YB property, so does the rrﬁp,

The representative elements of the equivalence classt#sragipect to the equivalence

relation (4.35), are given by the following list.

Theorem 4.4.4 Every quadrirational parametric YB map is equivalent (ire teense

(4.35)) to one of the maps of the F-list or one of the maps ofdl@wing list
(1=b)zy+ (b—a)y+bla—1)

U ?JQ ) v an Q (1—a)xy—|—(a—b)x+a(b—1)’ ( I)
. a+ (b—a)y — by

U yQ ) v an Q b+((z—b)x—axy’ ( II)
T axr +b

u = g@; v=—Q, Q= y; (Hirr)
a b x4y
_ axy + 1

U:le v =1z0Q, Q:bxy+1; (Hrv)
a—>b

u=y—P, wv=x+P, P:$+y' (Hy)

We refer to the above list as thé-list. Note that, the map/y is the Adler’s map (4.11).
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4.5 Transfer dynamics of YB maps and initial value pro-

blems

Itis well known that, given a Yang-Baxter map, there is a higrg of commutingransfer

maps which arise out of the consideration of initial value peaik. The connection
between the set-theoretical solutions of the YB equatiath iategrable mappings was
first introduced by Veselov in [88, 89]. In particular he skeoirthat for those YB maps
which admit Lax representation, there is a hierarchy of comimg transfer maps which

preserve the spectrum of their monodromy matrix.

In this section we present the transfer maps, which aris@fotlite consideration of the
initial value problem on the staircase, as they were defind83]. Specifically, in [52]
they considered YB maps, which admitax pair representation(L, M), namely YB

maps which can be represented as
L(u;a, \)M(v;b, \) = M(y; b, \)L(x; a, \). (4.36)

These maps are the so-calleatwiningYB maps.

However, in this section we shall restrict ourselves to theeovhen’. = M. Therefore,
we present the transfer maps defined in [52] in the particdae when they admit Lax

representation (4.12).

For a given a parametric YB mayj, ,, we can consider a periodic initial value problem
on the staircase as in [74, 52]. Motivated by the fact thattBenap can be represented
as a map mapping two successive edges of the quadrilatetfae tmpposite ones (as in
figure 4.1-(a)), we shall place the initial values on the sdafehe staircase. In particular,
letxy, o, ..., 2z, andyy, vys, . .., y, be initial values assigned to the edges of the staircase

with periodic boundary conditions
Tpt1 = T and Yn+1 = Y1, (437)

as in Figure 4.3. The edges with valugsandy;, i = 1,...,n, carry the parameters

andb respectively.
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The YB mapY,;, maps the valueéz;, y;) to <x§1),y§1)) = Yau(zi,y;). Then, the values

on the several levels of the lattice will be given by

(@, 4 = Yo (e "), =itk —1 mod n. (4.38)

% ’Jg

Now, for then-periodic problem in Figure 4.3 we define ttiansfer map
T (1, Ty oo Ty Y1, Yoy e e ey Yp) (:cgl), xél), . ,:cfll),yél), . ,yr(}), ygl)), (4.39)

which maps the initial values,, ..., z, andy, ..., y, to the next level of the staircase.

Note that7} = Y, ,. Moreover, we define the-transfer map

k k k
Tr’f : (xla sy Ty Yiy - - 7yn) = (xg )7' e 737£Lk)7y7(».|317 s 73/7(1]{)7?J§ )7' . 7y7(4k)>7 Tnl = Tn7
(4.40)
wherer = k mod n.
1
S
e e "
o)
T
y Un
Ya,b
Tn
xéQ) xél)
ys) v s

x§2) xél) y
| T3
[
o \ ’

1
0
| x2 z
I
yg )I \ Y1

| Ya,b
—

T

Figure 4.3: Transfer maps corresponding tosthgeriodic initial value problem
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For the transfer map,, we define themonodromy matrix

My A) =[] Ly;: D) L(x;; ), (4.41)

1

j=
wherex := (z1,...,2,),Y := (y1,...,y,) and the ‘" indicates that the terms of the
above product are placed from the right to the left. Simylaol[88], in [52] was proven
that the transfer map),, preserves the spectrum of its monodromy matrix. Theretbee,

function t{ M (x,y; \)) is a generating function of invariants for the niBp

As we will see in the next chapter, the invariants of a map asemtial for integrability

claims.

Example 4.5.1 For Adler's map (4.11) we consider the transfer matrix of the-

periodic initial value problem, given by

Ty(oy.a )_(_a—b _a——l)x+a—bx+a—b)
201, T2, Y1, Y2) = | Y1 931—|-y1’y2 T2+ s 2 T2+ us 1 oty )
(4.42)
Moreover, the corresponding monodromy matrix is given by
Mo (X, Y; A) = L(ya; b) L(w2; a) L(y1; b) L(21; a), (4.43)

wherex := (z1, x2) andy := (y;, y2).
The trace of the monodromy matrix is given by the followinga®sd order polynomial
tr (MZ(Xay; )‘)) = 2)‘2 - ([1(Xa y))2 A— [O(Xa y)7 (444)

wherel, and/; are invariants of the map,, and they are given by

2

L(xy) = af(xy) +bf(y,x) = ] (zx +w), (4.45a)
kl=1
L(X,y) =21 + x2 + Y1 + Yo, (4.45b)

where we have omitted the constant terms, Amglgiven by

f(X,)/) = x% + x% + 2y1y2 + (ml + xz)(yl + yz)- (4.45c)
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Chapter 5

Yang-Baxter maps related to NLS type

equations

5.1 Overview

As explained in the previous chapter, the construction eigvBaxter maps which admit
Lax representation and the study of their integrabilityngportant, as they are related to

several concepts of integrability.

The aim of this chapter is to construct Yang-Baxter maps usiadarboux matrices we
presented in chapter 3, and study their integrability. iBaerly, we are interested in the
Liouville integrability of these maps, as finite dimensibneaps. We shall present six
and four-dimensional YB maps corresponding to all the NLSetgquations which we

considered in chapter 3.

The chapter is organised as follows: In the following setiie give the definitions of
a Poisson manifold, the Poisson bracket and Casimir furstioat we use in the later
sections, for the convenience of the reader. However, faermdormation on Poisson
geometry one could refer to [12, 61]. Moreover, we shall presme basic consequences
of the matrix refactorisation problems; the birationaldfthe deduced YB maps and
the derivation of their invariants. Finally, we will give dhdefinition of the complete

integrability of a YB map.
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In section 3 we construct six-dimensional YB maps for thettedl NLS type equations
which we considered in chapter 3. Furthermore, in the caS#ed\LS and the DNLS
equations the six-dimensional maps can be restricted tediowensional YB maps on
invariant leaves. These maps deserve our attention, astbaglated to several aspects
of integrability; they are integrable in the Liouville serass finite dimensional maps, they
can be used to construct integrable lattices and they alge daplications to a recent

theory of maps preserving functions with symmetries [35].

Finally, section 4 deals with the vector generalisationgheffour-dimensional YB maps.

However, the Liouville integrability of these generalisas is an open problem.

The results of this chapter appear in [49].

5.2 Preliminaries

In what follows, we consided/ to be a differentiable manifold withim(A/) = n, and

C>(M) the space of smooth functions defined/dn

5.2.1 Poisson manifolds and Casimir functions
Let us start with the definition of the Poisson bracket.

Definition 5.2.1 Amap{, } : C*(M) x C>*(M) — C>(M) is called Poisson bracket, if

it possesses the following properties:

1. {of + Bg,h} = a{f, h} + B{g, h}; (bilinear)
2. {f, 9} =—{9, [} (antisymmetric)
3. {fgt hy+{{h, fH gt +{{g. 1}, [} =0 (Jacobi identity)

4. {f.ghy ={f.q}h+{f.h}g;  (Leibnitz rule)

forany f,g,h € C*(M) anda, 5 € C. Moreover, the manifold/ equipped with the

above Poisson bracket is called Poisson manifold, and iersotied ag M/, {, }).
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Yet, the above definition is abstract and, in practice, thedém bracket is usually defined

by the following map
(f,9) > {f.9y =V [T (Vg)', (5.1)

whereJ is an antisymmetric matrix which satisfies the Jacobi idgatnd it is called the
Poisson matrixIt can be readily verified that the above relation definesiad®a bracket.

Specifically, we have the following.

Proposition 5.2.2 Let J = J(x), x € M, ann x n matrix. Then,J defines a Poisson
bracket via the relation (5.1) iff it is antisymmetric anddtisfies the following

n

Z (szaxzjkl + leaxlt]]k + Jlk’axzjl]) = 07 j> kal - 17 sy Ny (52)

=1

foranyx = (z1,...,2,) € M.

Corollary 5.2.3 Any constant antisymmetric matrix defines a Poisson bragkethe

relation (5.1).

Now, for any two smooth functions ai/, we have the following.

Definition 5.2.4 The functionsf, g € C*>°(M) are said to be in involution with respect to

a Poisson bracket (5.1) {ff, g} = 0.

Definition 5.2.5 A functionC = C(x) € C>*(M) is called Casimir function if it is
in involution with any arbitrary function with respect to th@iBson bracket, namely

{C, f}=0,foranyf = f(x) € M.

5.2.2 Properties of the YB maps which admit Lax representation

Since the Lax equation, (4.12), has the obvious symmetry
(u, v, a, b) «— (y, =, b, a) (5.3)

we have the following.
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Proposition 5.2.6 If a matrix refactorisation problem (4.12) yields a ratidmaap (4.13),

then this map is birational.

Proof
LetY : (z,y) — (u,v) be a rational map corresponding to a refactorisation proble
(4.12), i.e.

n1(9573/§ avb) 712(377%@7 b)

- M\ ¥ 4.0) _ 23 4,9,9) 5.4
e di(z,y;a,b)’ vy do(z,y;a,b) -4

wheren;, d;, i = 1,2, are polynomial functions of their variables.
Due to the symmetry (5.3) of the refactorisation problemiZ4. the inverse map df’,
Y1 (z,y) — (u,v), is also rational and, in fact,

nl(v7u; b7 CL) 7’L2<U,u; ba CL)

= . 55
vy dy(v,u; b, a) (5-5)

= di(v,u;b,a)’

ThereforeY is a birational mapQO

Now, for a Yang-Baxter magy, ,, the quantityM (z, y; a,b) = L(y;b)L(x;a) is called
the monodromymatrix. The fact that the monodromy matrix is a generatingcfion of
first integrals is well known from the eighties; for exammeg [33}. In particular, for

the invariants of a YB map admiting Lax representation, weelthe following.

Proposition 5.2.7If L = L(z,a; \) is a Lax matrix with corresponding YB map, :
(z,y) — (u,v), then the ttL(y, b; \) L(x, a; \)) is a generating function of invariants of

the YB map.

Proof
Since,

(4.12)

tr(L(u,a; \)L(v,b;\)) =" tr(L(y,b; \)L(z,a; \)) = tr(L(x,a; \)L(y,b; \)), (5.6)

and the function {tL(z,a; \)L(y,b; \)) can be written as (f.(x,a; \)L(y,b; \)) =
> NI (x,y;a,b), from (5.6) follows that
k

Ii(u,v;a,b) = Ii(x,y;a,b), (5.7)

'Reprint of the 1987 edition.
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which are invariants foy". O

Nevertheless, the above proposition does not guarantéghthagenerated invariants,
I;(z,y;a,b), are functionally independent. Moreover, the number ofithvariants we
deduce from the trace of the monodromy matrix may not be emdaog integrability

claims.

5.2.3 Liouville integrability of Yang-Baxter maps
The invariants of a YB map are essential towards its intelisain the Liouville sense.
Here, we define the complete (Liouville) integrability of & Ynap, following [34, 87].

Particularly, we have the following.

Definition 5.2.1 A 2/N-dimensional Yang-Baxter map,
Y i (xq,...,2on) = (ug,...,usn), u; =ui(xy,...,2oy), i=1,...,2N,

is said to be completely integrable or Liouville integraiile

1. there is a Poisson matrix;; = {z;,z;}, of rank2r, which is invariant under the
action of the YB map, namell; and J;; = {u,, u;} have the same functional form

of their respective arguments,

2. mapY hasr functionally independent invariants, namelyl; o Y = I;, which are

in involution with respect to the corresponding Poisson kedci.e. {I;,I;} = 0,

i,g=1,...,7m,1F# 7,

3. there arek = 2N — 2r Casimir functions, namely functiodg, i = 1,..., k, such
that{C;, f} = 0, for any arbitrary functionf = f(x1, ..., zon). These are invariant
underY, namelyC; o Y = C;.

We will use this definition to study the integrability of theBYmaps presented in the

following section.
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5.3 Derivation of Yang-Baxter maps

In chapter 3 we used Darboux transformations to constréegiable systems of discrete
equations, which have the multidimensional consistenopgnty. The compatibility

condition of Darboux transformations around the squargasty the same with the Lax
equation (4.12). Therefore, in this section, we use Darlimansformations to construct

YB maps.

In particular, we consider Darboux matrices for the NLS tygmpiations studied in
chapter 3; the NLS equation, the DNLS equation and a defeomaif the DNLS

equation. For these Darboux matrices the refactorisaiarot unique. Therefore, for
the corresponding six-dimensional YB maps which are ddrivem the refactorisation
problem, in principle, one needs to check the YB propertyassely. Yet, the entries of

these Darboux matrices obey certain differential equatwhich possess first integrals.

There is a natural restriction of the Darboux map on the affaréety corresponding to
a level set of these first integrals. These restrictions ntia&eefactorisation unique and
this guarantees that the induced four-dimensional YB mapsfg the YB equation and
they are reversible [89]. Moreover, we will show that thedatyB maps have Poisson

structure.

However, the first integrals are not always very useful fa thduction because, in
general, they are polynomial equations. In particular,hi& tases of NLS and DNLS
equations we present six-dimensional YB maps and theirdouensional restrictions
on invariant leaves. These four-dimensional restrictiargsbirational YB maps and we
prove that they are integrable in the Liouville sense. Indhge of the deformation of the
DNLS equation, we present a six-dimensional YB map and atiapproximation to the

four-dimensional YB map.

We start with the well known example of the Darboux transfation for the nonlinear

Schibdinger equation and construct its associated YB map.
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5.3.1 The Nonlinear Schbdinger equation

Recall that, in the case of NLS equation, the Lax operatovsgby

0 2
L, \) = Dy + AU + U, where U, =05, Up= 1. 8
2¢ 0
whereos is the standard Pauli matrix, i.e; = diag(1, —1).
Moreover, a Darboux matrix fof is given by
10
M=\ Al (5.9)
00 d10 1

The entries of (5.9) must satisfy the following system ofagqns

Oxf = 2(pq — Pr0io); 0zp = 2(pf — p10), Oxq10 = 2(q — quof),  (5.10)

which admits the following first integral

Ox(f = paro) = 0. (5.11)
This integral implies thad,, det M = 0.
In correspondence with (5.9), we define the matrix

1 0 X x
M A) = A + ; X = (z1, 29, X), (5.12)
0 0 i) 1

and substitute it into the Lax equation (4.12)
M (u; A)M(v; ) = M(y; \)M(x; A), (5.13)
to derive the following system of equations
vy =21, Us =Yo, U+V =X +Y, ugvy = 2190,

U1+U’Ul :y1+$1Y, U1U2+Uvzx2y1+X}/, U2+u2V:£2+Xy2.

The corresponding algebraic variety is a union of two six@lsional components. The
first one is obvious from the refactorisation problem (5,18)d it corresponds to the
permutation map

X— U=y, Y—=V=X
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which is a (trivial) YB map. The second one can be represeated rational six-

dimensional non-involutive map df?® x K3 — K3 x K3

Y1 + 2329 — 11X + 1Y

r1 = up = , Yip v =2, (514&)
14+ 2192
7 X —ypY
T > Uy = Yo, Yo > vy = 22 T Yivp ¥ ¥ = (5.14b)
14+ 2192
X [ = Y1Y2 T 1Ty + X +x1y2Y7 Vs o F1%2 Y1y + 21y X +Y7 (5.14¢)
14+ 2192 14+ 2190
which, one can easily check that, satisfies the YB equation.
The trace ofM (y; \) M (x; A) is a polynomial in\ whose coefficients are
tr(M(y7 A)M(Xa )‘)) - )‘2 + /\]1(X7 y) + ]2(X7 y)7
where
L(x,y)=X+Y and L(X,y) = moy1 + 2192 + XY, (5.15)

and those, according to proposition 5.2.7, are invariantthie YB map (5.14).

In the following section we show that the YB map (5.14) can éstricted to a four-

dimensional YB map which has Poisson structure.

Restriction on symplectic leaves: The Adler-Yamilov map

In this section, we show that map (5.14) can be restrictetig¢cAdler-Yamilov map on

symplectic leaves, by taking into account the first integ&ll1), of the system (5.10).

In particular, we have the following.

Proposition 5.3.1 For the six-dimensional map (5.14) we have the following:

1. The quantitie® = X — x12, andWV¥ =Y — y1, are its invariants (first integrals).

2. It can be restricted to a four-dimensional mep, : A, x A, — A, x A, where
A,, Ay are level sets of the first integradsand ¥, namely

Aa:{(xlax%X) ng;X:a+x1x2}, (516&)

Ay ={(11,92,Y) € K%Y = b+ y132}. (5.16b)
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Moreover, mag,; is the Adler-Yamilov map.

Proof

1. It can be readily verified that (5.14) impli€s— ujuy = X — z129 andV — vjvy =

Y — y1y.. Thus,® andV¥ are invariants, i.e. first integrals of the map.

2. The existence of the restriction is obvious. Using theddmms X = =z + a
andY = yy2 + b, one can eliminateX andY from (5.14). The resulting map,

X = u(X,y),y = V(X,y), is given by

Yo b a—>b a—>b
X, y) — - ) 5.17
(X,y) (Z/l 1+x1y2371,3/2,$1,$2+ 1+x1y292) ( )

Map (5.17) coincides with the Adler-Yamilov map.

Map (5.17) originally appeared in the work of Adler and Yamail[10]. Moreover, it
appears asa YB map in [51, 76].

Now, one can use the condition = x5 + a to eliminateX from the Lax matrix (5.12),
le.
Moca ) =t (O T xS nm). (5.8)
0 0 To 1
The form of Lax matrix (5.18) coincides with the well known iBaux transformation
for the NLS equation (see [80] and references therein). Malker-Yamilov map follows

from the strong Lax representation
M(u;a, A)M(v;b, A) = M(y; b, \)M(X; a, ). (5.19)

Therefore, the Adler-Yamilov map (5.17) is a reversiblegpaetric YB map with strong

Lax matrix (.18). Moreover, it is easy to verify that it is not involutive.

For the integrability of this map we have the following

Proposition 5.3.2 The Adler-Yamilov map (5.17) is completely integrable.
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Proof
From the trace of\/ (y; b, \) M (x;a, \) we obtain the following invariants for the map
(5.17)

L(XY) = 2122 + 4192 + a + b, (5.20)

I(X,y) = (@ + 2122) (b + y1y2) + T1y2 + T2y1 + 1. (5.21)

The constant terms ify, I; can be omitted. It is easy to check that/; are in involution

with respect to a Poisson bracket defined as
{z1, 22} = {1, 2} =1, and alltherest  {z;,y;} =0, (5.22)

and the corresponding Poisson matrix is invariant undeiyBenap (5.17). Therefore

the map (5.17) is completely integrable.

The above proposition implies the following.

Corollary 5.3.3 The invariant leaves!, and By, given in (5.16), are symplectic.

5.3.2 Derivative NLS equation:Z, reduction

Recall that the Lax operator for the DNLS equation [18, 47] &g by

0 2
L(p,¢;\) = D, + Uy + AUy,  where U, = o3, U, = ( p) , (5.23)
2g O

andos is a Pauli matrix. The operatd} is invariant with respect to the following

L(N) = 03L(=\)os, (5.24)
where L(\) = L(p,q;A). In particular, the involution.24) generates the so-called
reduction group [64, 59] and it is isomorphicig.

The Darboux matrix in this case is given by

0 0 c 0
M =\ ! + A Ip + : (5.25)

0 0 fao 0 0 1
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whose entrie9, ¢, and f obey the following system of equations

2
Opp = 2p(P10Q10 - pQ) - ?(plo - Cp)u (5-263)
2
0xq10 = 2q10(Pr0gr0 — Pg) — ?(0910 —q), (5.26Db)
9:f = 2f(pg — proqro)- (5.26¢)

The system (5.26a)-(5.26¢) has a first integral which oblitpe determinant of matrix
(5.25) to ber-independent, and it is given by

9. (f*pqio — f) = 0. (5.27)

Using the entries of (5.25) as variables, namelyyo, f;¢) — (x1, 22, X; 1), we define
the matrix
X 0 0 =X 10

M(x;\) = \? + A + , X=(z1,29,X). (5.28)
0 0 s X 0 0 1

The Lax equation implies the following equations
wnU +0V =0 X +11Y, wlU+ vV =1.X + 1Y,
UV =XY, WUV =x,XY, uwUV =yXY, uv,UV =21y, XY, (5.29)
U4V 4+ un UV =X +Y 4 29y XY,

As in the case of nonlinear Sdittinger equation, the algebraic variety consists of two

components. The first six-dimensional component corredptmthe permutation map
X—=> U=y, Y—V=X, (5.30)
and the second corresponds to the following six-dimen$iéBanap
r1 = ur = fi(Xy), y1 v = fo(my, 7X),
Ty = up = fo(X,Y), Y2 > v = fi(my, 7X), (5.31)
X = U= f3(X,y), Y =V = f3(ny, mX),
wherer is thepermutation functionm(zy, zo, X) = (22,71, X), 7 = 1 and f, f, and

f3 are given by
-1 X+ (yr — )Y — 210 XY — 222, X7

X,y) = , 5.32a
fl( y) f(X, Y) 122X + x12Y — 1 ( )
fa(X,y) = o, (5.32h)
falx,y) = Dt Eowed (5.32¢)

1y X + 1Y — 1
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One can verify that the above map is a non-involutive YB mdpe ifivariants of this map

are given by

Li(x,y) = XY and  L(X,y)=X-71y)XY + X +Y. (5.33)

Themapy : K3x K3 — K3x K3, given by{(5.31), (5.32a) —(5.32¢) }, can be restricted

to a map of the Cartesian product of two two-dimensional affareties

Aa:{($17$2,X)EKB;X—XQxleZaEK}, (5.34a)

Ay ={(y1.y2.Y) € K%Y —Y?yypp =be K}, (5.34b)

which are invariant varieties of the map Thus, the YB map},;, is a birational map
Ya,b : Aa X Ab — Aa X Ab-

It is easy to uniformise the rational varietl, and express the YB map explicitly. The
equations defining the varietie, and A, are linear inz{, x, andyy, y», respectively.
Hence, we can express

1 a 1 b
.CL’lX I1X2’ Y2 = y1Y y1Y2.

(5.35)

Ty —
The resulting map is given by

h 1
$1P—>U1:h—;y1, XP—>U:h2YV, Y1 — U1 = T, YP—>V:h—2X (536)

where the quantities;, : = 1, 2, are given by

ayY + 11 X(a—Y) aypY + 1 X(b-Y)

hy = = .
YT ap Y+ X(0-Y) T Y + 2 X (b— X)

(5.37)

Nevertheless, in the next section, we present a more synemedy to parametrise the

varietiesA,, A, and the Lax matrix.

7 reduction: A reducible six-dimensional YB map

Now, let us go back to the Darboux matrix (5.25) and replage, fqio, f;¢) —

(21,29, X; 1), namely

,[X 0 0 10
M \) =\ T\ n , X= (11,72, X). (5.38)
0 0 2y 0 0 1
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From the Lax equation we obtain the following equations

U2V1 = T1Y2, UQV:XyQ, UUl :ZE1}/, UV:XY

u1+v1:x1+y1, U+U1U2+V:X+$2y1+Y, uQ+02:x2+y2.

Now, the first six-dimensional component of the algebraigetg corresponds to the
trivial map (5.30) and the second component correspondsntagaof the form (5.31),

with f, f> and f3 now given by

(x1 +y1) X — 1Y — x129(21 + 91)

filx,y) = g : (5.39a)
hley) =, (5.390)
) = e 6369
This map has the following invariants
Li(xy) = XY, L(xy)=x-1y+ X +Y, (5.40a)
I3(X,y) = x1 + v, Ii(X,Y) = z2 + yo. (5.40Db)

Restriction on invariant leaves

In this section, we show that the map given by (5.31) and €-85.39c) can be restricted
to a completely integrable four-dimensional map on invariaaves. As in the previous
section, the idea of this restriction is motivated by thestetice of the first integral of the
system (5.26a)-(5.26¢),

f = (fp)(fao) = k = constant, (5.41)

Particularly, we have the following.

Proposition 5.3.4 For the six-dimensional mafi(5.31), (5.39a) — (5.39¢)} we have the

following:

1. The quantitie® = X — z;x, andWV =Y — y,y, are its first integrals.
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2. It can be restricted to a four-dimensional mg&p, : A, x A, — A, x A, given
by

a—>b a—1x1Yye b—x1Yy0 b—a

) 2 (i n). (642

b—x1y2

and A,, A, are given by (5.16).

Proof

1. Map{(5.31), (5.39a) — (5.39¢)} impliesU — uwjuy = X — z125 andV — vjvy =

Y — y1y.. Therefore® andV¥ are first integrals of the map.

2. The conditionsX = z125 + a andY = y,y, + b define the level setsd, and 4,,
of & andW, respectively. Using these conditions, we can elimimatandY from
map{(5.31), (5.39a) — (5.39¢)}. The resulting mapy,; : A, x Ay, — A, X A,
is given by (5.42).

Now, using conditionX = x;x5 + a, matrix (5.38) takes the following form

k+xi29 0O 0 =z 10
M(x; k3 \) = N2 R o . (5.43)
0 0 2y 0 01

Now, map (5.42) follows from the strong Lax representatibri®). Therefore, it is

reversible parametric YB map. It can also be verified that itat involutive.

For the integrability of map (5.42) we have the following
Proposition 5.3.5 Map (5.42) is completely integrable.

Proof

The invariants of map (5.42) which we retrieve from the tralc&/ (y; b, \) M (X; a, A) are

L(x,y) = (a+ z122) (b + Y192), L(X,y) = (z1 + y1)(z2 +y2) +a+b.  (5.44)
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However, the quantities; + y; andx, + y» In I, are invariants themselves. The Poisson

bracket in this case is given by

{z1, 22} = {y1, 2} = {22, 11} = {y2, 21} =1, andalltherest {z;,y;} =0.
(5.45)
The rank of the Poisson matrix is 2, is one invariant and, = C,C5 + a + b, where
C1 = x1 +y; andCy = x4 + 15 are Casimir functions. The latter are preserved by (5.42),

namelyC; oY, , = C;, i = 1,2. Therefore, map (5.42) is completely integrable.

Corollary 5.3.6 Map (5.42) can be expressed as a map of two variables on thdesgtop

leaf

1+ Yy = c, To + Y2 = Ca. (5.46)

5.3.3 A deformation of the DNLS equation: Dihedral Group

Recall that, in the case of the deformation of the DNLS equatibe Lax operator is
given by
L, ;) =Dy + NUs+ AU + A1U_; — AN2U_y, where
0 2p (5.47)

UQEU,QZO':;, U1: s U,1:O'1U10'1,
2g O

andoq, o3 are Pauli matrices. Here, the reduction group consistseofdlowing set of

transformations acting on the Lax operator (5.47) ,

L) = 03L(=Nos and  L(\) = 1L\ Doy, (5.48)
and it is isomorphic t&, x Zy = D,, [59].
In this case, the Darboux matrix is given by

20 0 1oy 1f(0
M=f + A o o0 ")), (549
0 A2 G0 0 01/ *\p o
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where its entries obey the following equations

9xp = 2((p10g10 — P@)p + (P — P10)g + ¢ — qu0), (5.50a)
Irqio = 2((p10g10 — P@)q10 + p — P10 + (¢ — q10)9), (5.50b)
929 = 2((P10g10 — Pg)g + (P — Pr0)p + (¢ — G10)G10), (5.50c)
9:f = —2(proqio — pa) f- (5.50d)

Moreover, the above system of differential equations agltwio first integralsg, ®; = 0,

i = 1,2, where

Oy = f(g—pgpo) and Dy := f(¢* +1-p* —qiy). (5.51)

In the next section we construct a six-dimensional map from9)).

Dihedral group: A six-dimensional YB map
We consider the matrixN := fM, where M is given by (5.49), and we change
(pu Q107f2) - (‘rlaxQuX)' Then’

/\2X + Zlﬁ'll‘QX + 1 /\I’lX + )\71$2X
N(X, X;\) = , (5.52)
Aro X + )\_11}1X 22X 4+ zi22X +1

where we have substituted the prodyiéy by
g =1+z11:X, (5.53)
using the first integrakp,, in (5.51), and having rescaled — 1.
The Lax equation for the Darboux matrix (5.52) reads
N (U NV A) = N(y; DN (%), (5.54)
from where we obtain an algebraic system of equations, edhiiecause of its length.

The first six-dimensional component of the correspondigglalaic variety corresponds

to the trivial YB map

X—u=y, y—v=X X—U=Y Y—=V=X
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and the second component corresponds to the following map

X?
$1*—>U1=%, Y1 = U1 = 2,
_ [y, mx)
Tg = U = Y2, Yo = U2 = gy, 7TX)’ (5.55)
Xou=I5Y oy Ly (”y’ﬂx),
h(x,y) h(my, 7X)
wheref, g andh are given by
FXY) = 21X + [29 — yo + 220120y1 + 25 (y2 — 322)| XY +
(y2 = DIy (1 + 27) = 21(L+ y7)] XY = (2 = 1)(y — 22) X7~
(27 — )[23(3z1 — 1) — 21 — y1 + 2y (192 — 2122)| XY — (5.56a)

(27 — 1)(ys — Dlya(yi — 1) + 22(y5 — 22191 + 1) XY+
(= 1)%(a5 — 1)(y5 — DXY? 4+ (2 = 1)* (25 — 1) (g2 — 22) XY+

(yl - ml)Y>

g% y) =X + 2y2(y1 — 2) XY + (y5 — 1) (@1 — 11)° XY+
2(:10% —1)(1 - $2y2)X2Y + 2$2($% — 1)(y§ — 1) (2 — yl)X2Y2+ (5.56b)
(x7 = 1)* (a5 — 1)(y5 — HX°Y?

and

h(X, y) =1- 21‘1(3/2 — IL‘Q)X — 2([L‘1y1 — ].)( — 1)XY+
(27 = 1)(w2 = 12)* X7 = 21 (22 — o) (a7 — 1) (3 — DX’V + (5.56¢)
(27 = Dy — Dy — 1)*X*Y™

It can be verified that this is a YB map. FroniAf(x, X; \)N(y,Y;\)) we extract the

following invariants for the above map

L(x,y) = XY, (5.57a)
L(xy) =X +Y + (21 + y1)(z2 + 12) XY, (5.57b)

Ig(x, y) = 2.’1}'11’2X + 2y1y2Y + 2(X . y + $1$2y1y2)XY =+ 2. (557C)
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5.3.4 Dihedral group: A linearised YB map

In the cases of the NLS and DNLS equations we were able toelsm#dimensional
maps and, using their invariants, reduce them to four-dgiogal YB maps. The matrix
refactorisation (4.12) for matrix (5.49) is not unique anhdsidifficult to deduce a six-
dimensional YB map in this case. Therefore, even though we@aniformise equations
(5.51), we can not use them to derive a four-dimensional nvap.we can find a linear

approximation to the former.

In particular, let us replacéfqo, fp) — (exy,€xs) in the Darboux matrix (5.49) and

linearise the corresponding map around 0.

It follows from &; = # and®, = 12—’“2 that the quantitieg and f g are given by

fzﬂ—l—(’)(e) and fgz%—k@(e),

and, therefore, the Lax matrix by

1+ k A2 0 0 /\x1+/\*1x2 1—k (1 O
-t + L LloE +Oe).

M
2 0 A2 Ao 4+ Al 0 2 \o 1

The linear approximation to the YB map is given by

(a=1)(a=b) a=b | 2a (at1)(b—a)
Z1 U1 (@tD)(atd) atb | atb (b+1)(atd) 1
a+1
) ﬂ> U9 _ O O 0 b+—1 ) (5.58)
n U1 % 0 0 0 n
(a=b)(b+1)  2b | b—a (b=1)(b—a)
Y2 2 (at1)(ath) atb | atb (+D)(ath) Y2

which is a linear parametric YB map and it is not involutive.

5.4 2N x 2N-dimensional YB maps

In this section, we consider the vector generalisations®MB maps (5.17) and (5.42).
We replace the variables; andz,, in the Lax matrices withV-vectorsw; andw? to

obtain2N x 2N YB maps.
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In what follows we use the following notation forravectorw = (wq, ..., w,,)

W = (Wl,Wg), where W, = (wl, e U}N), Wy = (wN+17 e w2N) (559)
and also
(w;| :== uy, lw;) == w] and their dot product with  (u;, w;). (5.60)

5.4.1 NLS equation

Replacing the variables in (5.18) wifti-vectors, namely

A a+ (w,
M(W:a,\) = at(wnws) o) (5.61)
|ws) I
we obtain a unique solution of the Lax equation given by thiedong 2N x 2N map
(
ur| = (1| + f(z;a,b) (2],
(ur] = (il + f (2 a,b) (21 (5.622)
\<U2| = (42l
and
V1| = (x1],
(1] = (1] (5.62D)
| (02| = (za] + f(2;0,a) (2],
wheref is given by
b—a
f(Z,b, a) = 1 —I—Z’ g = <x17y2>' (562C)

The above is a non-involutive paramet2iy x 2N YB map with strong Lax matrix given
by (5.61). As a YB map it appears in [76], but it is originallytioduced by Adler [6].
Moreover, one can construct the ab®®& x 2N map for theN x N Darboux matrix

(5.61) by taking the limit of the solution of the refactotism problem in [53].

Two invariants of this map are given by
[1(X7Y§ a, b) = <l’1,l’2> + <3/1,3/2>7 (5638.)
L(X,Y;a,b) = b{x1, 2) + aly1, yo) + (x1,y2) + (T2, y1) + (21, 22)(y1,92). (5.63b)

These are the invariants which are obtained from the trade of, b, \) M (X; a, A) and

they are not enough to claim Liouville integrability.
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5.4.2 Z-, reduction

In the case of/, we consider, instead of (5.43), the following matrix

(5.64)

we obtain a unique solution for the Lax equation given by tilwing 2N x 2N map

(

ur| = (y1| + f(z;a,b) (x|,
(u| = (y1| + f( ){z1] (5.652)
| (u2] = g(z; 0, 0)(yal,
and )
vi| = g(2;0,a)(r|,
(v1] = g( ) (1] (5.65b)
\(v2|:(x2|+f(z;b,a)(y2|,
wheref andg are given by
a—>b a—z
f(za avb) = a4 — Z, g(Z,CL,b) = b— Z’ Z = <:Elay2>' (5650)

The above map is a non-involutive paramefi¢ x 2N YB map with strong Lax matrix
given by (5.64).

It follows from the trace of\/ (y; b, \) M (Xx; a, A), that two invariants for (5.65a)-(5.65b)

are given by

(X, Y5 a,0) = b{x1, T2) + aly1, ya) + (w1, 2) (Y1, ¥2), (5.66a)
IQ(X,y; a, b) = <IL'1 —|—y1,x2 +y2>. (566b)
In fact, both vectors of the inner productinare invariants.

However, as in the case of the NLS vector generalisationptlagiants are not enough to

claim Liouville integrability.
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Chapter 6

Extensions on Grassmann algebras

6.1 Overview

Noncommutative extensions of integrable equations haga bégreat interest since late
seventies; for instance, in [19] the supersymmetric Libbenand sine-Gordon equations
were studied, while in [54] hierarchies of the KdV equatioerevassociated to super Lie
algebras. Other examples include the NLS, the DNLS and KBteans etc. Indicatively,
we refer to [11, 29, 30, 73].

In this chapter, motivated by [38], we are interested in th@sSmann extensions of some
of the Darboux matrices and their associated YB maps preg@mthe previous chapters.
Specifically, we shall present noncommutative extensidmiseoDarboux matrices in the
cases of the NLS equation and the DNLS equation, togethér twe noncommutative
extensions of the associated YB maps. In fact, we will usethgboux matrices to
construct ten-dimensional YB maps which can be restrictedight-dimensional YB

maps on invariant leaves.

The chapter is organised as follows: In the next section weeent the basic facts and
properties of Grassmann algebras which we will need in theWong sections. Section 3
deals with the noncommutative extensions of the Darbouxioestof NLS type equations
and, particularly, the Grassmann extension of the Darboaiimin the cases of the

NLS equation [38] and the DNLS equation. Section 4 is devatethe construction
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of ten-dimensional YB maps and their eight-dimensiondlrigns on invariant leaves
corresponding to first integrals of the former. These YB n@apsstitute noncommutative
extensions of the YB maps presented in chapter 5. Finalgeation 5 we present vector

generalisations of these YB maps.

6.2 Elements of Grassmann algebras

In this section, we briefly present the basic properties ais&mann algebras that we will

need in the rest of this chapter. However, one could con%d]tfpr further details.

Let G be aZ,-graded algebra ovér or, in general, a field{ of characteristic zero. Thus,
G as alinear space is a direct sdiim= G, ® G, (mod 2), such that:;G; C G,4,. Those
elements of that belong either t@+, or to GG; are callechomogeneoyghe ones from

G are calleceven(Bosonic), while those id-; are calledodd (Fermionic).

By definition, the parityja| of an even homogeneous element 0 and it is1 for odd
homogeneous elements. The parity of the prodiugtof two homogeneous elements is
a sum of their paritiesjab| = |a| + |b|. Grassmann commutativity means tlhat =
(—1)lelllgp for any homogeneous elementandb. In particular,a? = 0, for all a; € G,

and even elements commute with all the elements.of

Remark 6.2.1 In the rest of this chapter we shall be using Latin letterg¢dommutative)
even elements of Lax operators or entries of Darboux matrimed Greek letters when
referring to the (noncommutative) odd ones (even thouglekzrare not odd!). Moreover,
for the sake of consistency with the rest of the thesis we sbakinue using the greek
letter A when referring to the spectral parameter, despite the iatitis a commutative

element.
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6.2.1 Supertrace and superdeterminant

Let M be a square matrix of the following form

M= , (6.1)
AL

where P and L are square matrices of even variables, wheféasd A are matrices of

odd variables, not necessarily square.

We define thesupertraceof M —and we will denote it by sti/)— to be the following
quantity
Sstr(M) = tr(P) — tr(L), (6.2)

where tf.) is the usual trace of a matrix.

Moreover, we define thsuperdeterminantf A/ —and we will denote it by sdét/)— to
be

sdetM) = det(P — L 'A)det(L™") = (6.3a)
= det(P ') det(L — AP'II), (6.3b)

wheredet(.) is the usual determinant of a matrix.

The simplest properties of the supertrace and the supentetnt, for two matricest

and B of the form (6.1), are the following

1. str(AB)=str(BA),

2. sdet(AB)=sdet(A)sdet(B).

6.2.2 Differentiation rule for odd variables

The (left) derivative of a product of odd elements, say. ..., a;,, obeys the following

rule

K
80&2‘

(Oéil L Oéik) = 511‘104@'2052'3 oL Oéik —

51‘1‘2041'1051'3 Lt Oh'k + 51'1'3@1'1041‘2 L Ckik — ... (64)
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whered;; is the Kronecker operator. For examplegiind 5 are odd variables, then

a%(aﬁ)zﬂ, but a%(aﬁﬁ—w (6.5)

6.2.3 Properties of the Lax equation

Let L = L(z, x;a) be a Lax matrix where is an even variabley is an odd variable and

a a parameter. Since the Lax equation,

L(u, & a)L(v,n;b) = L(y, ¥;0) L(z, x; a) (6.6)
has the obvious symmetry

(u, & v, m, a, b) «— (y, ¥, z, x, b, a) (6.7)

we have the following

Proposition 6.2.2 If a matrix refactorisation problem (6.6) yields a rationahap

(z,x,y,v) = Yap(u, & v,n), then this map is birational.

Proof
LetY : (z,x,y,%) — (u,& v,n) be a rational map corresponding to a refactorisation
problem (4.12), i.e.

nl(x7X7y71/];a7b) n?(an7yv¢;a'7b)
T u= , U= , 6.8a
dl(%%%%% b) Y dQ(‘ramead};aab) ( )
Y g o n3($,X7Z/,¢§a> b) 1/) s n = 714(957)(797@5; a, b) (68b)

B d3($,x,y,1/1;a,b)’ B d4(x7Xay7w;a’b)7

wheren;, d;, i = 1,2, 3, 4, are polynomial functions of their variables.

Due to the symmetry (6.7) of the refactorisation problent),6the inverse map of’,

Y=t (z,x,y,%) — (u,&,v,n), is also rational and, in fact,

nl(Uﬂ]aUaé; b? CL) n2(7)7777%f§ ba a’)

ue dl(’U?nauaf; b> a)’ ! d2<van7u7£;bv a)’ ( )
n3(van7u7§; b7 CL) 714(7}:777“75%(77 CL)

fH X dg(U,T],U,é; b? CL)7 nH w d4(v,n,u,§; b7 Cl) ( )

ThereforeY is a birational mapQd
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Remark 6.2.3 Functionsd;(z, x,y,¥;a,b), i = 1,2,3,4, must depend on the odd
variables in a way such that their expressions are even. »ange, the expression

xy + xY is even.

Proposition 6.2.4 If L = L(z, x,a; \) is a Lax matrix with corresponding YB mayp, :
(z,x,y,¥) — (u,&,v,m), then st(L(y, ¢, b; \)L(x, x,a; \)) is a generating function of

invariants of the YB map.

Proof

Since,

(4.12)

str(L(u, &, a; A)L(v, 1, b; X)) St(L(y, ¥, b; A\) L(z, x, a; \))

= st(L(z,x,a;A)L(y,¥,b; 7)), (6.10)

and function stfL(x, x, a; A\) L(y, 1, b; X)) can be written as stf.(x, x, a; \) L(y, ¥, b; \))
=Y MLz, x.y,;a,b), from (6.10) follows that
k

Iz’(%é;?fﬂ?;aa b) = Ii(x7X7y7d};a7b)7 (611)

which are invariants fo¥”. O

Remark 6.2.5 The invariants of a YB mapl;(z, x, y, ¥; a, b), may not be functionally

independent.

6.3 Extensions of Darboux transformations on Grass-
mann algebras
In this section we consider the Grassmann extensions of tagbdbx matrices

corresponding to the NLS equation and the DNLS equationattiqular, we present the

noncommutative extension of Darboux matrices (3.36) (38p pnd (3.54) (see [37]).
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6.3.1 Nonlinear Schobdinger equation

The Grassmann extension of the Darboux matrix (3.36) wastoasted in [38]. We
present this Darboux matrix together with its associatex djzerator and we will use it

in the next section to construct a Grassmann extension &dbex-Yamilov map.

Specifically, let us consider a more general Lax operatar (8283), namely the following

noncommutative extension of the NLS operator

L:=D,+U(p,q,1,6,(,5;7) = Dy + AU + U, (6.123)

whereU! andU" are given by

0 2p 0
U' =diag(1,—-1,0), U= 2¢ 0 ¢ |, (6.12b)
o Kk 0

wherep, g € Gq andy, ¢, (, k € GG;. Note that, if we set the odd variables equal to zero,

operator (6.12) coincides with (3.33).

A linear in the spectral parameter Darboux matrix for (3.83iven by the following
[38].

Proposition 6.3.1 Let M = AM; + M, be a Darboux matrix for (6.12). Moreover, I&f
define a Darboux transformation of rank 1. Then, up to a gavgesformation,M is of

the following form

F+X p 0
M(p7Q797¢7 ClucQ> - d10 C1 0 ; (613)
®10 0 ¢

wherec; and ¢, can be either 1 or 0. In the case where = ¢, = 1, the entries of
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M(p,q,0,¢;1,1) satisfy the following system of differential-differenceaipns

F, = 2(pq — progio) + 09 — Oro¢ro, (6.14a)
pz = 2(Fp — p1o) + 0C, (6.14b)
G102 = 2(q — qiof") — K110, (6.14c)
0, = F0 — 01y + pk, (6.14d)
b105 = ¢ — P10 — Cioquo, (6.14e)

and the algebraic equations

(9q10 = (S - 1):"{, (6153.)

d10p = (S — 1)C. (6.15b)

Proof
Substitution of M to equation (3.9) implies a second order algebraic equatioA.
Equating the coefficients of the several powera efjual to zero, we obtain the following

system of equations

N U M) =0, (6.16a)
A My, + [UY, M) + UMy — MyU® =0, (6.16b)
N Mo, + UpyMy — MU® = 0. (6.16¢)

The first equation, (6.16a), implies thaf; must be diagonal, say/; = diag«, 53,7).
Then, from the diagonal part of (6.16b) we deduce that= 5, = ~, = 0. Since
rank(M;) = 1, only one ofa, 5 andv can be nonzero. Without any loss of generality,

we choosex =1 andj =~ = 0.

NOW, the Oﬂ:'d|agona| part of (616b) imp|ié\§0712 =D, M0713 = 9, M0721 = {10, M0731 =
¢10 andMo’gg = M0723 = 0. We call theMQH entryMo’n = F.

Finally, from equation (6.16c) we obta{d/y22). = (My33). = 0, namelyMp 90 = ¢4,

M, 22 = co, together with equations (6.14)
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Note 6.3.2 At this point, it is worth mentioning that the superdeteramh of matrix
M(p,q,0,¢;1,1) in (6.13) implies the following

6x<F — Pq10 — Cblo@) =0, (6-17)

sinced,(sdetM)) = 0. Moreover, (6.17) is a first integral for system (6.14) for=

02:1.

Remark 6.3.3 If one sets the odd variables equal to zero, matrix (6.13)¢iselts of

Proposition 6.3.1 agree with those in Proposition 3.4.$gméed in chapter 3.

6.3.2 Derivative nonlinear Schiddinger equation

Let us now consider a more general than (3.49), namely th@afitlg noncommutative

extension of the DNLS operator

L =D, + \NU?+ \U', (6.18a)
where
0 2p 26
U? =diag(1,-1,—-1) and U'=|24 0 o0 |. (6.18Db)
20 0 0

Operator (6.18) is invariant under the transformation
s1(A) 1 LA) = L(=)N) = s3L(N)s3, (6.19)

wheres; = diag(1, —1,—1), 53 = 1.

We are seeking a Darboux matrix for (6.18) with square depecel in the spectral

parameter, namely of the form
M = XMy + AM; + My, (6.20)

whereM;, i =0, 1,2, is a3 x 3 matrix.
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Lemma 6.3.4 Let M be a second order matrix polynomial of the form (6.20). Then,

M is invariant under the involutior, (\) iff

MZ'JQ = Mi,13 = Mi,?l = Mi,31 =0, 1=0,2, and (621&)

My 11 = Myge = My 33 = M3 = M3 = 0. (6.21b)

Proof

It can be readily proven from/(—\) = s3M (\)s3. O

We restrict ourselves to the case whéfein (6.20) has rank one.

Proposition 6.3.5Let M be a Darboux matrix for (6.18) of the form (6.20), with
rank My = 1, and suppose that it is invariant under the involution (§.19hen, up

to a gauge transformation\/ is given by

f 00 0 fp f0 1 00
M(f,p,q10,0, $10:c1,¢2) =220 0 0| +A|[qof 0 0f+]0 1 0], (622
0 0 O ¢10f 0 0 0 O Co

where its entries satisfy the following differential-diface equations

fe = 2f(pq — p10g100¢ — Or0¢10), (6.23a)
Pz = 2p(p1ogio — pq + brodro — 0¢) — 2M> (6.23b)
G102 = 2q10(P10q10 — Pq + 010010 — 0) — 2M7 (6.23c)
02 = 2¢(p10gi0 — pq + 010010 — 0) + w7 (6.23d)
G100 = 2¢10(P10q10 — Pg + Or0910 — 00) + C2¢_f—61¢10- (6.23e)

Proof
First of all, for the entries of matrice¥/;, i = 1,2, 3 we have (6.21). Then, substitution
of M to equation (3.9) implies a second order algebraic equation Equating the

coefficients of the several powers bfequal to zero, we obtain the following system of
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equations
[U?,M5] =0 (6.24a)
[U?, M;] + UfyMy — MyU"' = 0 (6.24b)
My, + [U?, My] + UfgMy — MU' =0 (6.24c)
M, + UlyMy — MU' =0 (6.24d)
My, = 0. (6.24e)

From (6.24e) follows that the matrix/, must be constant, whereas equation (6.24a)
implies that), is diagonal. Sinceank M, =1 we can choosé//, = diag{f,0,0}
without loss of generality; the casé$, = diag{0, g,0} and M/, = diag{0,0, ~} lead to
gauge equivalent Darboux matrices. In this case, from equés.24b) we have that the

entries of)M; are given by

Mo = fp, Miz=[f0, Mo =aqof and Mg = diof. (6.25)

Now, from equation (6.24c) we deduce equation (6.23a) aatMfz must be diagonal,
namely of the form\/, = diag(c, 1, ¢2) (one of the parameters along its diagonal can be

rescaled to 1). Therefore, matri{ is of the form (6.22).

Finally, equation (6.24d) implies system (6.23b)-(6.2@ehere we have made use of
(6.23a)).0

Note 6.3.6 Entry f is permitted to appear in the denominator in (6.23), as itns a
even variable. This is due to the superdeterminant of maifix In fact, the constant

determinant property of matriX/( f, p, ¢10, 0, ¢10; 1, 1) implies the following equation

Ou(f — 2 (pquo + 0610)) = 0, (6.26)
which makes it quite obvious thgtmust be even. Moreover, (6.26) is a first integral for

the system of differential-difference equations (6.23).

Remark 6.3.7 The results of Proposition 6.3.5 agree with those of PrajposB.4.3 if

one sets the odd variables equal to zero.
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6.4 Grassmann extensions of Yang-Baxter maps

Here we employ the Darboux matrices presented in the pre@ection to construct ten-
dimensional YB maps, which can be restricted to eight-dsmaral YB maps on invariant

leaves. We start with the case of NLS equation.

6.4.1 Nonlinear Schibdinger equation

According to (6.13) we define the following matrix

X + )\ 1 X1
M(x;\) = Ty 1 01, X = (21, T2, X1, X2, X ), (6.27)
X2 0 1

and substitute to the Lax equation.

The corresponding algebraic variety is a union of two tenafisional components. The
first one is obvious from the refactorisation problem, amditesponds to the permutation
map

X—=U=Yy, Y= V=X,

which is a trivial YB map. The second one can be representedes-dimensional non-

involutive Yang-Baxter map given by

X —x1x9 — x1X2 — Y + 1192 + ¢1¢2x
1+ z1y2 + X192

Ty = U =1 —

L (6.28a)

To — Uy = Yo, (628b)
X — -Y
X1 — & =Y — et 1 e %%Xl, (6.28c)
+ 21y
X2 F &o = 1o, (6.28d)

X — @z — xax2 + (@192 + xa¥2)Y + y1ye + Y1ty
1+ z1y2 + X192 7

Y1 = v =@, (6.28f)

X — 2119 — X1X2 — Y + y1y2 + V19
1 + T1Y2 + X1¢2

Y1 = =X, (6.28h)

X = U= (6.28e)

Yo > Vg = To + Y2, (6.289)
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X — — —-Y .

by — My = X2+ T1T2 — X1X2 +Z/13/2¢2’ (6.28i)
1 + T1Y2

(192 + X1¥2) X + 7122 + X1X2 + Y — Y12 — Y12

1+ 2192 + X192

Y = V=

(6.28))

Finally, map (6.28) is birational due to Proposition 6.2.2.

Restriction on invariant leaves: Extension of Adler-Yamilor map

In this section, we derive an eight-dimensional Yang-Bawtap from map (6.28). This
Is a Grassmann extension of the Adler-Yamilov map [10, 5], @@r proof is motivated

by the existence of the first integral (6.17).

In particular, we have the following
Proposition 6.4.1 1. The quantitie® = X —z1x9 — x1x2 andV¥V =Y — 4195 — 119
are invariants (first integrals) of the map (6.28),

2. The ten-dimensional map (6.28) can be restricted to amelgnensional map, ; :
A, x Ay, — A, X Ay, WhereA,, A, are level sets of the first integrads and

namely

A, = {(z1, 29, X1, X2, X) € K% X =a+z29 + X1X2}, (6.29a)

Ay ={(y1,y2, 01,12, Y) € K°Y = b+ y1ys + 11}, (6.29Db)

3. The bosonic limit of map, ; is the Adler-Yamilov map.

Proof

1. It can be readily verified that (6.28) impli€5S— u us — £1& = X — 2129 — X1X2
andV — vive — mne =Y — y1y2 — Y1109, Thus,® and ¥ are invariants, i.e. first

integrals of the map.
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2. The existence of the restriction is obvious. Using theddmms X = zixo+ x1x2+
aandY = yyys + Y119 + b, one can eliminat& andY from (6.28). The resulting

map isx — u = u(x,y),y — v = Vv(Xx,Y), whereu andv are given by

b —a 1 + X — b —qa
u= (y1 + ( )El +$izj)2 X1¢2)x1, Y2, Y1+ o, %) , (6.30a)
((I - b)(]. + T1Yoa — Xle) a—b )
A » X1 . (6.30b
(xl v (1 + 21y2)? Y2, X1, X2 T 7 n xlyng ( )

3. If one sets the odd variables of the above map equal to mamelyy; = x, = 0

andiy, = ¥y = 0, then the map (6.30) coincides with the Adler-Yamilov map.

Now, one can use the conditioh = =122 + x1x2 + a to eliminateX from the Lax matrix

(6.27), i.e.
a+ 1T+ X1X2 A T X3
M(X;a,\) = To 1 0|, (6.31)

X2 0 1
which corresponds to the Darboux matrix derived in [38]. Néwller-Yamilov map’s

extension follows from the strong Lax representation
M (u;a, \)M(v;b, \) = M(y; b, \)M(X; a, \). (6.32)

Therefore, the extension of the Adler-Yamilov's map (6.83 reversible parametric YB
map. Moreover, it is easy to verify that it is not involutiv@irationality of map (6.30) is

due to Prop. 6.2.2.
Now, from st M (y; b, \) M (x; a, A)) we obtain the following invariants for map (6.30)
Ty = a+b+ 12 + Y1ys + xax2 + Y1z,
Ty = (a+ w122 + x1X2) (b + Y1y + V102) + 21y2 + 22y1 + X102 — Xo¥1,
However, these are linear combinations of the followinggnals
I =(a + 2122 + x1X2) (b + y1y2) + V1ba(a + v172) + 2192+

Tay1 + xath2 — xot1, (6.33a)

I, =x129 + Y192, Is = x1x2 + V112, Iy = x1x2012. (6.33b)
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These are in involution with respect to the Poisson bracket

{Jfl,ZL‘Q} = {yl,yg} = 1, {leX?} = {77[)1,’@/}2} =1 and all the rest

{I%xj} = {yivyj} = {$i7yj} = 0.

and the corresponding Poisson matrix is invariant undeyY&enap (6.30). However, we
cannot make any conclusions about the Liouville integitgtalf (6.30), as/; andi, are

not functionally independent (notice th&t = 21,).

6.4.2 Derivative nonlinear Schiddinger equation

According to matrix\ (p, q10, 0, ¢10; 1, 1) in (6.22) we consider the following matrix

X 00 0 =1 vi 100
Mx;N=X10 00]+Az 0 ol+]0 1 0], (6.34)
0 00 Y2 0 0 00 1

wherex = (1, x2, x1, X2, X ) and, in particular, we have set

X:=Ff x:=fp, x2=fqo, x1:=[f0 and xy:=Yof. (6.35)

The Lax equation for the above matrix implies the followirggations

UtV 4+uvy+&me =Y + X +y120 + P1x2, (6.36a)
U’Ui = IZ'Y, 1= 1, 3, Vuz = le, 1= 2, 4, (636b)

As in the previous section, the algebraic variety consigtsvo components. The first

ten-dimensional component corresponds to the permutatam
X—=u=y, Yy V=X, (6.37)

and the second corresponds to the following ten-dimenkiBanap

X= U=\ +i$1, gy% ¢1+iX17 g%, gY , (6.38a)
g h g h

h h h
y = V= —a, $2+i?/2, —X1, X2+i¢2a X . (6.38b)
g h™"" g h f
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wheref = f(X,y), g = g(x,y) andh = h(x,y) are given by the following expressions

fXY) =X — 120 — x1X2 — Y + 12 + 19, (6.39a)
g%, y) = X — x1(z2 + y2) — xa(x2 + ¢2), (6.39b)
h(X,¥) =Y — (1 +y1)y2 — (x1 + ¥1)o. (6.39¢)

6.4.3 Restriction on invariant leaves

In this section, we show that the map given by (6.38)-(6.38) be restricted to a
completely integrable eight-dimensional YB map on invari@aves. As in the previous

section, the idea of this restriction is motivated by the firkegral (6.26).

Particularly, we have the following

Proposition 6.4.2 1. ® = X — x5 — x1x2 andV¥ =Y — y1y, — 11709 are invariants
of the map (6.38)-(6.39),

2. The ten-dimensional map (6.38)-(6.39) can be restritbedn eight-dimensional
mapY,, : A, x Ay, — A, x Ay, WhereA,, A, are given by (6.29).

3. The bosonic limit of the above eight-dimensional map ig (Ba42), corresponding

to the DNLS equation.

Proof

1. Map (6.38)-(6.39) implieE —ujus—&1& = X —z1x9—x1 X2 @NAV —vvg—1n110 =
Y — y1yo — ¥115. Therefore® andV¥ are first integrals of the map.

2. The conditionsX = z1x5 + x1x2 + a andY = y1y2 + Y119 + b define the level
sets,A, and A4,, of ® andV¥, respectively. Using these conditions, we can eliminate

X andY from map (6.38)-(6.39). The resulting map,, : A, x A, — A, x Ay,
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is given by
Ty = up =1y + (a — b)(a i —2’_ X1¢2>Q?1, (6403.)
(a - $1y2)
Ty s Uy — (@ — 2192 — x192) (b —2961?42 + X1¢2)y2, (6.40D)
(b - 901?J2)
a—>b
X1 & =91+ X1, (6.40c)
& — T1Y2
a—2x
X2 = b= L2, (6.40d)
— T1Y2
Y1 > vy = (b — T1Y2 — X1¢2)(a —2$1y2 + X1¢2)x1’ (6.408)
(a — r1ys)
b—a)(b—
Jo o vy = g+ LW Fat) (6.40f)
(b - $1y2)
b—x
Py o= — 2 (6.40g)
a — T1Y2
b—a
Yo = 2= X2+ 2 s (6.40h)
— T1Y2

3. Setting the odd variables of the above map equal to zeneelya; = x» = 0 and
Y1 = 1, = 0, we obtain the YB map (5.42).

This proves the Proposition

Now, using conditionX = x5 + x1X2 + a, matrix (6.34) takes the following form

k + T1r0 + X1X2 0 0 0 1 X1 1 00
M =\ 0 0 0f+A|2e 0 0]+]0 1 0|. (6.42)
0 0 0 x2 0 0 001

Map (6.40) has the following Lax representation
M(u;a, \)M(v; b, N) = M(y; b, \) M (X; a, \). (6.42)

Therefore, it is reversible parametric YB map which is biaél due to Prop. 6.2.2. It

can also be verified that it is not involutive.

For the integrability of map (6.40) we have the following

Proposition 6.4.3 Map (6.40) is completely integrable.
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Proof
The invariants of map (6.40) which we retrieve from 811(y; b, \) M (X; a, \)) are

Ky = (a+ z122 + xax2) (b + v1y2 + Y11)s)

Ky =a+ b+ z120 + y1y2 + T1Y2 + 221 + X1 X2 + V192 + X1¥2 — Xa¥1,

where the constant terms can be omitted. Howeléglis sum of the following quantities

I = (a + z122) (Y1y2 + Y1ba) + b(z122 + X1X2) + Y1Y2X1X2 (6.43a)
I, = x1 X291, (6-43b)

which are invariants themselves. Moreov&s, is sum of the following invariants

Ii=(x1+y)(z2+y2) and L= (x1+¢1)(xe+ ) (6.44)
In fact, the quantitie§’; = x; + y; are invariants theirselves.
We construct a Poisson matrix, such that the following equation is satisfied
VC;-J=0. (6.45)

In this case the Poisson bracket is given by

{w1, 22} = {zo, 91} = {y2, 11} = {y1, 02} = 1,
X xe} = {Y, 2 =1 and  {x1,¢2} = {¢1, x2} = —1.

Map (6.40) preserves the Poisson bracket. Moreover, du6.4®), C;'s are Casimir

functions as
{Ci, [} =(VCi)-J-(Vf) =0, forany f=f(xy). (6.46)

Moreover, the invariant$; and/, are in involution with respect to this Poisson matrix,
namelyVI, - J - (VI;)" = 0. The rank of the Poisson matrix is 4 a6l i = 1,2, 3,4,
are four Casimir functions. Therefore, the eight-dimenaionap (6.40) is completely

integrable.0
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6.5 Vector generalisations4N x 4N Yang-Baxter maps

In what follows we use the following notation fora-vectorw = (wy, ..., w,)

W = (Wl,Wg,wth), where W, = (wl,...,wN), Wy = (wN+17---7w2N)
and wi = (Wan41, -, W3N), Wy = (W3N41, -or WaN ),
wherew; andw, are even andy; andw, are odds. Also,

T

(ug] == uy, lw;) =W, and their dot product with ~ (u;, w;). (6.47)

6.5.1 Nonlinear Schobdinger equation

Now, we replace the variables in map (6.30) with-vectors, namely we consider the
following 4N x 4N map

p

(ui = (il + f(z50,0) (1| (1 + (21, y2) — (X1, 2)),
(uz] = (o, (6.48a)
(&) = (W] + f(z5a,0) xa (1 + (1, y2) — (X1, %2)),
[ (2| = (¢,
and
e
(va| = (@a| + f(2;0,a) (w2 | (1 + (1, 92) — (X1, %2)), (6.48b)
(m| = (x|
(2] = (xal + f (20, @) (yal (1 + (21, 52) — (X1, )
wheref is given by
b—a
f(z;b,a) = m, 2= (T1,Ya). (6.49)

Map (6.48)-(6.49) is a reversible parametric YB map, foras the following strong Lax-

representation

M (u; a)M(v;b) = M(y; b)M(x; a) (6.50)
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where
A+ a+ (wy, we) + (w1, we) (w1 | (w1
M(W; a) = |w2> . (6.51)
|w2) Ion—1

Moreover, map (6.48)-(6.49) is birational and not involati

The invariants of this map are given by

I = a+ b+ (x1,z2) + (Y1, y2) + (X1, X2) + (1, ¥2), (6.52a)
I = b({@1, 2) + (x1, X2)) + al{y1, y2) + (U1, ¥2)) + ((y1, y2)+ (6.52D)
(Y1, 2)) ({21, 22) + (X1, X2))-

However, the number of the invariants we obtain from the gugee of the monodromy

matrix is not enough to claim integrability in the Liouvilkense.

6.5.2 Derivative nonlinear Schiddinger equation

Now, replacing the variables in (6.40) wift:-vectors we obtain the followingN x 4N -

dimensional map

(il =yl + hlz a0, 0){x1[(a = (x1,92) + (xa, ¥2)),

(ua| = g(2;a,0)(ya| — h(z;b,a)(x1, ¥2) (Y2l

(6.53a)
(&l = (| + f(z50,0)(xal,
<€2| = g(Z, aab)<w2’7
and
(0] = g(z:b,0) (1] — bz 0,b) (@],
(va] = (xa| + h(2;D,a)(y2| (b — (z1,y2) + (X1, ¥2)), (6.53b)

(ml = g(2b,a){x1l,

|l = (el + F(25ba) .
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wheref, g andh are given by

a—> a—z ' a—>

ca.b) = “a.b) =
f(27a7) a—Z’ g(Z?G/?) b—Z’

Map (6.53)-(6.54) is reversible parametric YB map, as itthastrong Lax-representation

(6.50) where

N2 (k4 (21, 22) + (X1, X2)) Ay A(x1|
M = Alzs) . (6.55)

Alx2) Iy
Moreover, it is a non-involutive map and birational.
The invariants of the map that we retrieve from the supegtdidche monodromy matrix

are given by

Ky = (a+ (21, 29) + (X1, X2)) (b + (Y1, y2) + (Y1, ¢2))
Ky =a+b+ (x1,72) + (Y1, ¥2) + (T1,92) + (T2, 1) + (X1, Xx2) + (1, 2) +
(X1, %2) — (X211)-

In fact, K5 is a sum of the following invariants
L = (21 +y1, 22+ ¥2), I = (x1+ X2, U1 + 1), (6.56)

and the entries of the above dot products are invariant kectéowever, as in the case
of the NLS vector generalisation in the previous sectioa jtiariants are not enought to

claim Liouville integrability.
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Chapter 7

Conclusions

7.1 Summary of results

In this thesis we used Darboux transformations as the maintadfirst link integrable
partial differential equations to discrete integrabletsys and, then, to construct

parametric Yang-Baxter maps.

In particular, we constructed Darboux matrices for certaam operators of NLS type
and employed them in the derivation of integrable systendiftdrence equations. The
advantage of this approach is that it provides us not onli difference equations, but
also with their Lax pairs, symmetries, first integrals andssvation laws; even with
Backlund transformations for the original partial diffeti@hequations they are related to.
Then, using first integrals in a systematic way we were ahledace some of our systems

to integrable equations of Toda type.

In fact, we studied the cases of the NLS equation, the DNL&tmuand a deformation
of the DNLS equation. These equations were not randomlyeshdsut their associated
Lax operators possess certain symmetries, namely theyneagiant under action of
(reduction) groups of transformation which correspondame classification results on

automorphic Lie algebras.

More precisely, we derived novel systems of difference gqng, namely systems (3.83),

(3.101) and (3.113), which are actually systems with veee®d bond variables [42].
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These systems have symmetries and first integrals whicbhwiditom the derivation
of the Darboux matrix and they are integrable in the sensetliey possess Lax pair.

Additionally, they are multidimensionally consistent.

On the other hand, motivated by the similarity of the Biantyipie compatibility condition
with the Lax equation for Yang-Baxter maps, we used the afoeetioned Darboux
matrices to construct Yang-Baxter maps. Specifically, westanted ten-dimensional
Yang-Baxter maps as solutions of matrix refactorisatiorbfgnms related to Darboux

matrices for all the NLS type equations we mentioned earlier

Motivated by the fact that the potential-entries of the @arb matrices obey systems
of differential-difference equations which admit certéinst integrals, we used the latter
to restrict our ten-dimensional maps to four-dimensiorahg:Baxter maps on invariant
leaves. Particularly, in the case of NLS equation we dertvedAdler-Yamilov map,

while in the case of DNLS equation we derived a novel Yang-8axtap, namely map
(5.42). Moreover, we showed that these Yang-Baxter mapsoangletely integrable and

we considered their vector generalisations.

Finally, following [38] where the noncommutative extensicof the Darboux
transformation for the NLS operator was constructed, weveérthe Grassmann
extension of the Darboux matrix for the DNLS operator. We kygd these Darboux
matrices to construct the noncommutative extensions ofAltller-Yamilov map and
map (5.42), namely maps (6.30) and (6.40). Moreover, we idered the vector

generalisations of these maps.

7.2 Future work

The goal of a PhD thesis is not only to solve problems but alsoréate new ones.
Therefore, we list some open problems for future work epigretically, and we analyse

them.

1. Study the integrability of the transfer maps for the Y&ayter maps corresponding
to NLS type equations;
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2. Study the corresponding entwining Yang-Baxter maps;

3. Examine the possibility of deriving autcaBklund transformations from Yang-

baxter maps for the associated partial differential equati

4. Examine the possibility of deriving heter@é&klund transformations from

entwining Yang-baxter maps;

5. Derive auto-Bcklund and heterodklund transformations related to the

noncommutative extensions of the NLS and the DNLS equations

6. Examine the relation between YB maps which have as Laxeseptations gauge

equivalent Darboux matrices.

Regardingl. one could consider the transfer mafs, as in [52], which arise out
of the consideration of the initial value problem on the rs@se, as in Figure 4.3.
For their integrability we need to use the monodromy matdx{). However, it is
obvious that fom > 2 the expressions derived from the trace of the generatincfifm

(4.41) will be of big length and, therefore, not quite usdturl (Liouville) integrability

claims. Moreover, the trace of (4.41) does not guaranteetiieaderived invariants are
functionally independent. Thus, the most fruitful appioamuld be the discovery of a
universal generating function of invariants for all the mdp, n € N. That may demand

that we have to define the transfer mgpsan a different way.

Concerning2. the idea is to consider a matrix refactorisation problemhefform (4.12)

using two different Darboux matrices. For instance, havim@ur disposal Darboux
matricesM; = M;(z;a,\) and My = Ms(x;a, \), study the solutions of the following
problem

Mi(uw; a, \)Ma(v; b, ) = Ma(y; b, \) M (z; a, A). (7.1)

For 3. recall that the Yang-Baxter maps in chapter 5 were derivedlasiens of matrix
refactorisation problems of particular Darboux matric&ow, one needs to take into
account that the entries of these Darboux matrices are faitesatisfying certain partial

differential equations. The Yang-Baxter map does not prestese solutions. Imposing
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this as a condition, namely that the Yang-Baxter map mapauicolof a particular PDE

to another solution of the same PDE, we obtain some relatioreng these solutions.

With regards tat. the idea is to impose that an entwning Yang-Baxter map presehe
the solutions of the associated partial differential eigumat Then, check if the resulted

relations constitute heteroaBklund transformations for these PDEs.

Concerningp. the idea is the same with the one mentioned.iand4. but regarding the

noncommutative extensions of the Yang-Baxter maps presa@mthapter 6.

Finally, regardings. one should find how YB maps with gauge equivalent Darboux-Lax

representations are related, and use this informatioragsiy them.
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Appendices

A Solution of the system of discrete equations associated

to the deformation of the DNLS equation

The solution of the system (3.113) consists of two branchbs:trivial solution given by

Po1 = P10, qo1 = qo1, UV =4, Go1 = Vio, (A.2)

and a non-trivial given by

1 1 1 1
Po1 = Z]_—l’ qo1 = EF2’ v = E}—:s; go1 = Z]:4’ (A-3)

whereA and B are given by the following expressions
A =(g9(p(q11 — 1) + p1o — v10) + p*(q11 — 1) + pgro(vio — P10)—

(q10 + 1) (g1 — 1)) (g9(pro — plqu1 + 1) + v10) + p*(qu1 + 1)— (A.4a)

Pq10(p1o + v10) + (g0 — 1) (g1 + 1)),

and

B =(q11(q11 — p10o(9 + q10)) + v10(9 + q10 — @11) + (P10 — Q11010+
g1 — 1) + 1o — D(pro(—9q11 + qroqis — 1) + v10(9 — qro + q11)+ (A.4Db)

p(p1o — qu1(qu1 +vio) + 1) + Q%l -1),
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whereasF;, i = 1,...,4, are given by

F1 =¢"(p10 — p)(Proq11 — vi0) + ¢°(P* (P10 — q11v10) — P(Po(qroqr1 + 1) — pro(qro+
2q11)v10 — ¢51 + Vi + 1) + proqii(qio — 2q11) + pro + (q11 — quo)vio)+
9(q10(p*(v3y — 2p10q11v10 + Po — a1 + 1) — 2proquivio + 4p1op(af; — 1)+
Plo — a1 +vio + 1) + (0* = D(qu1(ppro + vip + 1) — (p + pro)vio — ¢1)+
(p — P10)aip(Progir — v10)) + (P> — Vau1 + q10)(p*vi0 + pgro(qiy — vip — 1)+
(g3 — Dvio) + pro(p®qrovio — p°(p* + (4o — 1)(qr0q11 — 1) — qro(quo—

2q1041 — q11) — 2) — pq10(a3o — 2q11q10 + 1)v10) + ppiodio(qroqi1 — 1),

F2 =g (proq11 — v10)(p(q3; — 1) + pro — q11v10) — 9(Pio(q0 — q11)vi0+
pro(qioqr — 1)viy + p(pTo(aty + 2q10q11 — 1) — 2p10gio(ai; + 1)vio+
(1 = giy + 2q10a11)v75 + (¢f1 — D?) + pio(1 = qroan) + pro(grogn + 1)(gf; — 1)+
(@11 = q10)vio — (q10 + q11) (a1 — Dwo) + (1 = p*) (Progur — vi0) (g — 1)+
P10 — q11010) + q10(2p% (V10 — Progi1)? + 4p1oqrivio + p(p1o — qr1vio) (Pio+
a1 — vip — 1) — plolahy +1) — (¢i + Dvip + (651 — 1))+

@3 (Progi1 — v10)(1 — vio(qu1 — pvio) — PP10),

F3 =g*(p1og11 — v10)(pguivio + (1 — p)piy — vio) + 9(p° (pio(at: + 1)—
Aproquivio + qi1 (v + 2) — gy + vl — 1) + p(pTovio(qi (1 — progio)—
P10+ q10) + pro(qroqui (aiy + vip — 1) — aiy + vip + 1) — (quo + qu1)vip+
(q10 — q11)(1 — q11)v10) + 2(pr0g11 — v10)(P1o(qr0 — q11) — Gr0911010 + V10))—
(p(p10 — quivio) + 51 — 1)(p*(progi1 — vio0) — paro(Plo + aiy — vip — 1)+

(3o — D) (proqi1 — v10)),

Fu =g>(v10 — pg11)(Proqi1 — vi0) — g% (vio(qu1((p® + )11 + q10) + ppro(groqi1 + 2) — 2)—
p(q10 + q11)viy — qu(paiy + pro(qroqur — 1) + p(pro(p + p1o) — 1))+
9(P*q11(Proqi1 — vio) + P*(P10(2¢10 + q11)vio + (qroq11 + 1)(1 — ply — gi1)—
q10q11v70) + (a1 — qr0(qu1(qr0 — 4g11) + 4))vio — pro(qu1 + qro(qroqur — 2))vio+
p1op(gio — Dai1 — (qroan — D (pTo + air — 1) + qro(qro — qu1)vip)+
v10(qu1q10(p(P10(1 = P°) + progio + p) + G0 — 1) + i1 (1 = p°)* = (0° + 1)aio)+
2p(p — p10)aio) + (1 — p* — quoqu1) (pProp°q11 — paro(Pio + ¢ — 1)+

p10(a5o — Da11) + pato(q11 — quo)vi.
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