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Abstract

This thesis addresses the problems that arise in state-of-the-art structural learning

methods for (hyper)graph classification or clustering, particularly focusing on develop-

ing novel information theoretic kernels for graphs.

To this end, we commence in Chapter 3 by defining a family of Jensen-Shannon dif-

fusion kernels, i.e., the information theoretic kernels, for (un)attributed graphs. We show

that our kernels overcome the shortcomings of inefficiency (for the unattributed diffusion

kernel) and discarding un-isomorphic substructures (for the attributed diffusion kernel)

that arise in the R-convolution kernels. In Chapter 4, we present a novel framework of

computing depth-based complexity traces rooted at the centroid vertices for graphs, which

can be efficiently computed for graphs with large sizes. We show that our methods can

characterize a graph in a higher dimensional complexity feature space than state-of-the-

art complexity measures. In Chapter 5, we develop a novel unattributed graph kernel by

matching the depth-based substructures in graphs, based on the contribution in Chapter

4. Unlike most existing graph kernels in the literature which merely enumerate similar

substructure pairs of limited sizes, our method incorporates explicit local substructure

correspondence into the process of kernelization. The new kernel thus overcomes the

shortcoming of neglecting structural correspondence that arises in most state-of-the-art

graph kernels. The novel methods developed in Chapters 3, 4, and 5 are only restricted

to graphs. However, real-world data usually tends to be represented by higher order re-

lationships (i.e., hypergraphs). To overcome the shortcoming, in Chapter 6 we present a

new hypergraph kernel using substructure isomorphism tests. We show that our kernel

limits tottering that arises in the existing walk and subtree based (hyper)graph kernels.

In Chapter 7, we summarize the contributions of this thesis. Furthermore, we analyze

the proposed methods. Finally, we give some suggestions for the future work.
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Chapter 1
Introduction

In this chapter we provide an introduction and motivation for the research work presented

in this thesis, explaining why we are interested in kernel methods for structured data (i.e.,

graphs and hypergraphs). We commence by introducing the problems encountered in

existing state-of-the-art methods on structured data. Then we briefly describe the possible

alternative approaches that overcome these problems, following by our research goals and

contributions. Finally, an outline of the thesis is provided at the end of this chapter.

1.1 The Problems

Graph based relational representations, which are widely used in the field of structural

pattern recognition, have proven to be both powerful and flexible. Compared to vector

based pattern recognition, a major drawback with graph representations is the lack of a

natural correspondence order for the vertices or edges. This limits the direct application

of standard machine learning algorithms to problems such as clustering or classifying

graphs. One way to overcome this problem is to embed graphs into a vector space, where

standard machine learning techniques can be employed. Specifically, in the embedding

space, similar graph structures are expected to be close while dissimilar ones far apart.

However, the vector space embedding presents two obstacles. First, since graphs can

1



be of different sizes, the vectors may be of different lengths. The second problem is that

some information residing on the edges of a graph is discarded. In order to overcome

these problems, Riesen and Bunke recently proposed a method for embedding graphs in-

to a vector space [1] that bridges the gap between the powerful graph based representation

and the algorithms available for the vector based representation. The ideas underpinning

graph dissimilarity embedding framework were first described in Duin and Pekalska’s

work [2]. Riesen and Bunke generalized and substantially extended the methods to the

graph mining domain. The key idea is to use the edit distance from a sample graph to a

number of class prototype graphs to give a vectorial description of the sample graph in

the embedding space. Furthermore, this approach potentially allows any (dis)similarity

measure of graphs to be used for graph (dis)similarity embedding as well. Unfortunately,

the edit distance between a sample graph and a prototype graph requires expensive com-

putations, and as a result the graph dissimilarity embedding using the edit distance can

not be efficiently computed for graphs.

Other successful approaches that embed graphs into vectors include a) representing

a graph structure using permutation invariant polynomials computed from the eigen-

vectors of the Laplacian matrix based on algebraic graph theory [3], and b) computing

permutation-invariant graph features via the Ihara zeta function [4]. Unfortunately, the

computation of these methods also tends to be expensive. Because the characteristics

values highly rely on the graph size, and tend to be infinite valued with graphs of large

sizes (e.g., graphs having more than 500 vertices). Furthermore, all these graph embed-

ding methods tend to approximate structural correlations of graphs in a low dimensional

pattern space, and thus lead to information loss.

To address the shortcomings that arise in the graph embedding methods, an interesting

recent addition to the literature is to use graph kernels [5]. Graph kernels can character-

ize graph features in a high dimensional space and thus better preserve graph structures.

Most existing graph kernels (i.e., the R-convolution kernels) can be generally categorized

2



into three classes [6, 7], i.e., graph kernels based on comparing all pairs of a) walks, b)

paths, and c) restricted subgraph and subtree structures. There are mainly three shortcom-

ings arising in the R-convolution kernels. First, the R-convolution kernels do not easily

scale up to large sized structures, and thus compromise to use limited sized substructures.

Unfortunately, graph kernels with substructures of limited sizes tend to reflect restricted

topological information of a graph. Second, the R-convolution kernels roughly compare

any pair of isomorphic substructures, and thus ignore the relative locations between the

substructures within a graph. Third, the R-convolution kernels only count the number of

pairwise isomorphic substructures. As a result, the substructures having no corresponding

isomorphic substructures are discarded. Generally speaking, these shortcomings limit the

precise similarity measure (i.e., the kernel value) for graphs. Therefore, it is fair to say

that developing efficient and effective graph kernels still remains a challenge.

Furthermore, complex data in real world tends to exhibit multiple relationships that

are hard to characterize by using graphs. To overcome this problem, hypergraph based

strategies have been investigated for representing and processing structures where the re-

lations present are of higher order. A hypergraph is a generalization of a graph [8]: unlike

the pairwise edges in a graph, hypergraph representations allow a hyperedge to encompass

an arbitrary number of vertices, and can hence capture multiple relationships among fea-

tures. There have been several successful methods for characterizing hypergraphs, which

include a) marginalizing higher order relationships to unary order [9], b) marginalizing

the higher order relationships to pairwise order and then adopting pairwise graph match-

ing methods [10], c) performing visual clustering by adopting tensors for representing

uniform hypergraphs [11], and d) exploiting a set of coefficients from hypergraph Ihara

zeta function to capture frequency of the cycle structures in a hypergraph [12]. One main

limitation of the existing methods for hypergraph characterization is that they are usually

limited to uniform structures, and do not fully capture hypergraph characteristics. On the

other hand, existing hypergraph characterization methods also tend to require prohibitive

3



computational overheads. In order to overcome these problems, an attractive alternative is

to use kernel methods. Wachman and Khardon [13] have summarized the existing graph

kernels based on walks and then proposed a rooted kernel for hypergraphs. Unfortunate-

ly, like the walk based graph kernels, the rooted hypergraph kernel also suffers from the

notorious tottering problem. This occurs when a random walk on a hypergraph moves

to one direction and then immediately returns to the starting position through the same

vertices and hyperedges multiple times. As a result, tottering may result in many redun-

dant paths in a hypergraph. This shortcoming limits the precise kernel measure between

hypergraphs.

1.2 Motivations and Our Goals

The main goal of this thesis is to develop novel methods that address the problems en-

countered in the mentioned state-of-the-art methods. Specifically:

I) We present novel information theoretic kernels, i.e., a family of Jensen-Shannon

diffusion kernels, for (un)attributed graphs based on the Jensen-Shannon divergence. We

will show how the unattributed diffusion kernel can overcome the inefficiency of the R-

convolution kernels. Furthermore, we will show how the attributed diffusion kernel can

overcome the shortcoming of discarding substructures having no corresponding isomor-

phic substructures that arises in the R-convolution kernels.

II) We present a novel framework for characterizing graphs based on computing depth-

based complexity traces. We will show that the complexity traces can, not only reflect

high dimensional complexity characteristics of graphs, but also be computed efficiently

for graphs of large sizes.

III) We develop a novel unattributed graph kernel (i.e., the depth-based matching ker-

nel) based on the depth-based representations of graphs and a graph matching using these

representations. We will show that the new depth-based matching kernel can, not only
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reasonably reflect depth-based characteristics of graphs, but also overcome the shortcom-

ing of neglecting structural correspondence that arises in the R-convolution kernels.

IV) We develop a new hypergraph kernel based on a new developed Weisfeiler-Lehman

isomorphism test for directed graphs. We will show that our new hypergraph kernel can

limit the tottering problem that arises in the existing walk and subtree based (hyper)graph

kernels.

1.3 Contributions

To achieve the research goals described in Section 1.2, we make the following specific

contributions.

1.3.1 Jensen-Shannon Diffusion Kernels for (Un)attributed Graphs

In Chapter 3 we propose a family of Jensen-Shannon diffusion kernels for (un)attributed

graphs using the Jensen-Shannon divergence. In mutual information, the Jensen-Shannon

divergence is a dissimilarity measure between probability distributions in terms of the

entropy difference associated with the probability distributions [14]. To develop a novel

kernel using the divergence measure, we require an entropy measure for each graph. To

this end, for an unattributed graph, we compute the von Neumann entropy developed by

Han et al. [15]. Furthermore, we also develop a new Shannon entropy associated with a

steady state random walk for the undirected graph. For an attributed graph, we perform

a tree-index method developed by Dahm et al. [16] for the purpose of strengthening the

vertex labels. For a vertex, the tree-index method strengthens the vertex label by taking

the union of the neighbouring vertex labels as lists. Unfortunately, this tree-index method

tends to lead a rapid explosion of the strengthened label length. Moreover, strengthening

a vertex label by only taking the union of the neighbouring label lists also tends to ignore

the original label information of the vertex. To overcome these problems and improve
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the tree-index method, we propose to strengthen the label of a vertex as a new label list

by taking the union of both the original vertex label and its neighbouring vertex labels.

We also use the Hash function for the purpose of compressing the strengthened label list

into a new short index label. As a result, we compute a new label Shannon entropy for

the attributed graph in terms of the frequency of the strengthened labels. With a pair of

(un)attributed graphs and their entropies to hand, the diffusion kernel for the graphs can

be computed using the Jensen-Shannon divergence between a composite entropy of the

graphs and their individual entropies.

We show the advantages of our Jensen-Shannon diffusion kernels for (un)attributed

graphs. For the unattributed Jensen-Shannon diffusion kernel, the required entropy for

a graph can be computed without the need to decompose the graph. As a result, the

unattributed diffusion kernel overcomes the inefficiency arising in the R-convolution ker-

nels. On the other hand, for the attributed Jensen-Shannon diffusion kernel, each strength-

ened vertex label corresponds to a subtree rooted at the vertex. Furthermore, each of the

strengthened labels is used for computing the label Shannon entropy. As a result, unlike

existing R-convolution kernels which count the number of pairwise isomorphic substruc-

tures, our method incorporates all of the identified subtrees into the computation of the

kernel. The new attributed diffusion kernel thus overcomes the shortcoming of discarding

substructures having no corresponding isomorphic substructures.

We study the performance for either the unattributed or the attributed Jensen-Shannon

diffusion kernel on several graph datasets abstracted from bioinformatics databases. We

show that our new Jensen-Shannon diffusion kernel for unattributed graphs can easily

outperform the existing state of the art graph kernels in terms of computational efficiency.

Moreover, we show that our new Jensen-Shannon diffusion kernel for attributed graphs

can easily outperform the existing state of the art graph kernels in terms of the classifica-

tion accuracy.
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1.3.2 Depth-based Complexity Traces of Graphs

In Chapter 4, we propose a novel framework to compute the depth-based complexity

traces for graphs by linking the ideas of graph entropies and depth-based representations.

The depth-based representations of undirected graph structures have been proven power-

ful tool for characterizing the topological structure in terms of the intrinsic complexity

[17, 18]. One approach is to gauge the information content flow through a family of K

layer subgraphs of a graph (e.g., subgraphs around a vertex having a maximum topology

distance or minimal path length K) of increasing size and to use the flow as a struc-

tural signature. Furthermore, this approach allows a complexity trace to be defined which

gauges how the complexity of the graph varies as a function of depth. Unfortunately, to

construct such a complexity trace of a graph requires a burdensome measure of intrinsic

structural complexity, e.g., the time complexity of the heat flow complexity measure on

a subgraph having n vertices is O(n5). Moreover, straightforwardly constructing a com-

plexity trace that characterizes a graph structure in global manner is an elusive problem,

since it is difficult to determine a fine root vertex in the graph.

To overcome the problems, we focus on developing an efficient depth-based signa-

ture, that can both capture fine structure and be evaluated relatively efficiently. To locate

dominant substructures within a graph, we commence by identifying a centroid vertex

which has the minimum shortest path length variance to the remaining vertices. For each

graph a family of centroid expansion subgraphs is derived from the centroid vertex in or-

der to capture dominant structural characteristics of the graph. Since the centroid vertex

is identified through a global analysis of the shortest path length distribution, the expan-

sion subgraphs provide a fine representation of a graph structure. We then compute the

depth-based complexity traces of a graph based on two strategies. The first strategy is to

establish an entropy complexity trace by measuring how the entropies on the centroid ex-

pansion subgraphs vary with the increasing layer size of the expansion subgraphs. While

the second strategy is that we construct a complexity trace by measuring how the dif-
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ferences between the subgraphs and the graph vary with respect to the increasing layer

size of the expansion subgraphs. Since the required entropy measures on the condensed

subgraph family enable efficient complexity computation, the complexity traces result-

ing from the two strategies can be constructed efficiently. We empirically demonstrate

that depth-based complexity traces of graphs can easily scale up to large graphs. The

performance of our framework is competitive to the state-of-the-art graph based learning

methods in the literature.

1.3.3 A Depth-Based Matching Kernel for Unattributed Graphs

In Chapter 5, we investigate how to incorporate the depth-based representations into graph

matching and thus develop a novel graph kernel for unattributed graphs. We commence

by generalizing the depth-based complexity trace around the centroid vertex that was

developed in Chapter 4. We compute the complexity traces of a graph around each ver-

tex. To avoid the inefficient subgraph enumeration in computing the intrinsic complexity

[17], we compute the depth-based representation around a vertex by measuring the Shan-

non entropy on each of its expansion subgraphs associated with the steady state random

walk. The depth-based representation gauges the Shannon entropy flow via the expansion

subgraphs, and thus reflects a high dimensional complexity characteristics of the graph

around the vertex. Based on the obtained depth-based representations for two graphs we

develop a matching strategy similar to that developed by Scott et al. in [19], for point

set matching. The purpose of this step is to match the vertices of the graphs by using the

vertex information extracted from the depth-based representations. For a pair of graphs,

we use the Euclidean distance between the depth-based representations to compute an

affinity matrix. The correspondences between pairwise vertices are obtained from the

affinity matrix. The affinity matrix characterizes local structural similarity between a pair

of graphs and can be used for graphs of different sizes. Finally, we develop the novel

depth-based graph matching kernel by counting the matched vertex pairs. We show that
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the novel kernel is positive definite. Furthermore, we show the relationship between the

depth-based graph kernel and the all subgraph kernel and thus explain the reasons for the

effectiveness of the new graph kernel. We empirically demonstrate the effectiveness and

efficiency of our new graph kernel on graphs from computer vision databases.

1.3.4 A Hypergraph Kernel from The Subtree Isomorphism Tests

The family of Jensen-Shannon diffusion kernels proposed in Chapter 3, the depth-based

complexity traces proposed in Chapter 4, and the depth-based matching kernel proposed

in Chapter 5 are only restricted to graphs. However, real-world data usually tends to be

represented by higher order relationships (i.e., hypergraphs). To address the limitation, in

Chapter 6, we propose a new hypergraph kernel based on isomorphic substructures. This

is facilitated by a Weisfeiler-Lehman (WL) isomorphism test for undirected graphs [20].

The WL isomorphism test for undirected graphs is a canonical labeling method. The key

idea of the WL isomorphism test is to strengthen the set of vertex labels by the labels of

the set of neighbouring vertices (i.e., strengthen a vertex label using a tree-index method).

Here each new label of a vertex corresponds a subtree rooted from the vertex. Since the

computational complexity of the WL isomorphism test on an undirected graph is only

linear in the number of edges or quadratic in the number of vertices, the isomorphism

test offers an elegant way of defining a fast graph kernel. Shervashidze and Borgwardt

[7] have defined a fast subtree kernel (i.e., the WL subtree kernel) for undirected graphs

by performing the WL isomorphism test to update the vertex labels, and then counting

the number of matched vertex labels (i.e., counting the number of pairwise isomorphic

subtrees).

Unfortunately, straightforwardly measuring the WL isomorphism test for hypergraphs

tends to be elusive since a hypergraph may exhibit various relational orders. To overcome

the mentioned problems and construct a hypergraph kernel using the WL isomorphism

test, we transforme a hypergraph into a directed line graph using the Perron-Frobenius op-
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erator [12]. The Perron-Frobenius operator accurately reflects the multiple relationships

exhibited by both uniform and nonuniform hypergraphs, moreover it also represents a di-

rected backtrackless structure for (hyper)graph representations [21]. Hence, the directed

line graph for a hypergraph representation provides not only a convenient framework for

measuring isomorphisms but also an elegant way of limiting the tottering problem arising

in the walk based (hyper)graph kernels [13, 22].

We propose a new directed WL isomorphism test on directed graphs for the purpose of

measuring the isomorphism between hypergraphs. The directed isomorphism test is based

on two steps. The first is to assign a vertex a new in-label using the in-degree of the vertex

and that of its in-neighborhood. The second is to assign a vertex a new out-label using the

out-degree of the vertex and that of its out-neighborhood. As a result, the proposed kernel

for a pair of hypergraphs is defined by performing the new directed WL isomorphism test

to update the in-labels and out-labels of their directed line graphs, and then counting the

number of newly matched in-labels and out-labels (i.e., counting the number of pairwise

isomorphic in-subtrees and out-subtrees). We empirically demonstrate the effectiveness

and efficiency of our new hypergraph kernel on several challenging (hyper)graph datasets.

1.4 Thesis Outline

The rest of the thesis is organized as follows: In Chapter 2, we give a thorough review of

the relevant literature. First, we review the concepts of kernel methods in pattern recogni-

tion. These methods include a) the kernels for vectorial data, b) the information theoretic

kernels for probability distributions over structured data, and c) the kernels for graphs (i.e.,

graph kernels). Second, we review some state-of-the-art complexity measures for graphs.

Finally, we review hypergraph representations in pattern recognition. In Chapter 3, we

propose a family of Jensen-Shannon diffusion kernels for (un)attributed graphs, by using

the Jensen-Shannon divergence. In Chapter 4, we propose a novel framework to compute
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depth-based complexity traces of graphs. In Chapter 5, we propose a novel depth-based

matching kernel for unattributed graphs. The kernel is based on the depth-based repre-

sentations of graphs and a graph matching using the representations. In Chapter 6, we

propose a new hypergraph kernel based on a new developed directed Weisfeiler-Lehman

isomorphism test for directed graphs. Finally, in Chapter 7 we summarize the contribu-

tions of this thesis and suggest avenues for future work.
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Chapter 2
Literature Review

Graphs are important representations in the field of structural pattern recognition. To

address the problems of existing state-of-the-art methods mentioned in Section 1.1, we

aim to develop novel methods that can be effectively and efficiently performed on graphs

for the objective of graph classification or clustering. To achieve this, we focus in more

details on using the kernel methods and entropy based complexity measures for graphs.

In the light of this aim, we commence in Section 2.1 by reviewing kernel theory in

pattern recognition. We introduce the concepts of kernels for vectorial data in gener-

al, and for graphs in particular. Furthermore, we discuss the strength and weakness for

some state-of-the-art graph kernels. We explain our motivation of defining novel kernel

methods for graphs. In Section 2.2, we review several state-of-the-art deterministic and

probabilistic complexity measures for graphs. We discuss the strength and weakness of

the previous researches on quantification of these complexity measures for (un)directed

graphs. Furthermore, we review an attractive alternative complexity measure for undi-

rected graphs, namely the thermodynamic depth-based complexity. We point out that this

approach allows a depth-based complexity trace to be defined as a function of depth. We

discuss the problem of constructing such a complexity trace for a graph. Finally, in this

section (i.e., Section 2.2), we explain our motivation for computing an efficient and ef-

fective depth-based complexity trace of a graph by linking the ideas of the depth-based
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complexity and the entropy measures.

Complex data in the real world tends to exhibit multiple relationships that are hard to

characterize by using graphs. Thus, in Chapter 2.3 we also review hypergraph represen-

tations in pattern recognition. We review some state-of-the-art hypergraph based learning

methods. We explain our motivation for computing a new hypergraph kernel based on

isomorphism tests. Finally, in Section 2.4, we conclude this chapter.

2.1 Kernel Methods

In pattern recognition and machine learning, kernel methods have been widely used in

kernel machines (e.g., the Support Vector Machine (SVM) [23] and the kernel Principle

Component Analysis (kPCA) [24]) for classification or clustering. Typical applications

include a) image classification [1], b) protein prediction [25], c) handwriting recognition

[26], and d) molecule classification [13]. The main advantages of using kernel methods

are threefold [25]. First, kernel methods allow efficient algorithms to be developed that

can deal with high dimensional data without the need of constructing an explicit high

dimensional feature space. Second, kernel methods provide an elegant way of making

standard machine learning methods for vectorial data applicable to more complex data

(e.g, strings, trees, graphs and hypergraphs), and thus bridge the gap between statisti-

cal and structural pattern recognition. Third, kernel methods allow us to extend linear

algorithms to non-linear ones.

This subsection provides a general introduction to kernel methods. To this end, we

commence by reviewing the kernel methods. Some basic concepts and properties of k-

ernel methods are introduced. Furthermore, we review a family of alternative kernels on

probability distributions over structured data, namely the information theoretic kernel-

s. Finally, we review some state-of-the-art graph kernels. We explain the motivation of

developing novel graph kernel methods.
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2.1.1 Kernel Functions

In this subsection, we review some basic concepts of kernel methods. We commence

by introducing the concept of a positive definite kernel, based on the definition from

Schölkopf et al. [27]. Let X denote a nonempty pattern set. A kernel function k :

X × X → R is a symmetric function, i.e., k(yp, yq) = k(yq, yp), that maps the pair of

patterns yp and yq to a real value. The kernel function k is called a positive definite (pd)

kernel if and only if
N∑

p,q=1

cpcqk(yp, yq) ≥ 0, (2.1)

for all N , {c1, . . . , cN} ⊆ R, and any choice of {y1, . . . , yN} ⊆ X .

Note that, a positive definite kernel function is usually called a valid kernel [28].

Moreover, a kernel for a pair of patterns can be seen as a similarity measure between

the patterns. In the literature [29], some standard kernel functions have been developed

for the case where X is a vector space. Examples include a) the linear kernel, b) the

RBF kernel, c) the Polynomial kernel, and d) the Sigmoid kernel. For a pair of vectors

yp, yq ∈ X in a vector space X , these kernels are defined as follows.

1. Linear kernel:

k⟨⟩(yp, yq) = ⟨yp, yq⟩. (2.2)

2. RBF kernel:

kRBF (yp, yq) = exp(−γ∥yp − yq∥2), (2.3)

where γ > 0.

3. Polynomial kernel:

kpoly(yp, yq) = (⟨yp, yq⟩+ c)d, (2.4)

where d ∈ N and c ≥ 0.
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4. Sigmoid kernel:

ksig(yp, yq) = tanh (α⟨yp, yq⟩+ β), (2.5)

where α > 0 and β < 0.

Note that, the linear kernel, the RBF kernel, and the Polynomial kernel are positive def-

inite (see details in [29]). On the other hand, the Sigmoid kernel is not always valid.

However, the Sigmoid kernel has nonetheless been successfully used for real-world ap-

plications [25]. Furthermore, if α is close to zero and β is small enough, the Sigmoid

kernel tends to behave similar to the RBF kernel [25].

In fact, from these given kernels, we can also compute some more sophisticated k-

ernels that better represent the data, based on the closure properties [25]. Assume k1

and k2 are two valid kernels on X × X , k3 is a valid kernel on H × H, φ : X → H

and f : X → R are two mappings, and a ∈ R+. The kernel functions defined by a)

k(yp, yq) = k1(yp, yq) + k2(yp, yq), b) k(yp, yq) = k1(yp, yq)k2(yp, yq), c) k(yp, yq) =

ak1(yp, yq), d) k(yp, yq) = f(yp)f(yq), and e) k(yp, yq) = k3(φ(yp), φ(yp)) are also valid

kernels.

Next, we show how the kernel matrix can be computed using a given kernel function

k. Let {y1, . . . , yN} ⊆ X be a training set having N patterns. The kernel matrix K is a

N ×N square matrix,

K =


k11 k12 . . . k1N

k21 k22 . . . k2N
...

... . . . ...

kN1 kN2 . . . kNN

 , (2.6)

where each element kp,q (1 ≤ p, q ≤ N ) is a real number given by kp,q = k(yp, yq).

This matrix plays a central role in kernel-based methods (e.g., the kernel machines

SVM [23] and kPCA [24]), since all the information available to a kernel-based method

is contained in K [25]. As a result, the kernel matrix K is an interface between the pattern

space X and the kernel based method.
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2.1.2 Information Theoretic Kernels

There has recently been an increasing interest in positive definite kernels for probability

distributions [30]. By mapping each data point in the input space X to a fitted distribution

in a parametric family S, where a kernel for the distributions may be defined, a kernel for

the data points in terms of the distributions can be automatically induced on the original

input space. This framework provides us an alternative way of defining kernels that map

data (e.g., structured data) to a statistical manifold [31]. In real-world applications, these

kernels outperform SVM classifiers associated with linear kernels [32]. Some of these

kernels create a bridge between kernel methods and information theory, and thus have an

information theoretic interpretation [33, 34].

In [30], Martins et al. have reinforced the bridge by developing a new family of

nonextensive information theoretic kernels for probability distributions over structured

data using nonextensive entropies. The extensive entropy is such that the entropy for

different variables is additive over the independent variables. Assume X is a random

variable that takes values in a finite set X based on a probability distribution PX . An

entropy, e.g., the Shannon entropy HS and HS(X) , E[lnPX ], is extensive: if X and Y

are independent, then HS(X,Y ) = HS(PX) + HS(PY ). By contrast, the nonextensive

entropy abandons the requirement of extensivity. The idea of nonextensive entropy was

first introduced by Havrda and Charvit [35], and its applications have been extensively

documented by Gell-Mann and Renyi [36].

Some of the nonextensive entropic kernels (i.e., the nonextensive information theo-

retic kernels) are related to the Jensen-Shannon divergence, that is a mutual information

dissimilarity measure between probability distributions in terms of the entropy difference

associated with the probability distributions. Examples include a) the Jensen-Shannon

kernel [34], b) the exponentiated Jensen-Shannon kernel [37], c) the weighed Jensen-

Shannon kernel [30], and d) the exponentiated weighed Jensen-Shannon kernel [30]. All

these kernels have been performed for text categorization applications that demonstrate
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their effectiveness.

We are interested in computing an information theoretic kernel for graphs from the

Jensen-Shannon divergence measure. The problems of computing the divergence based

kernel for graphs are those of constructing the required probability distributions and com-

puting their associated entropies. As a result, the kernel for a pair of graphs can be de-

fined as the difference between the entropies of the graphs and that of a composite graph

formed by the graphs, using the Jensen-Shannon divergence. Unfortunately, each of these

problems has been proved elusive, and thus leads a serious obstacle to the successful

construction of information theoretic graph kernels.

2.1.3 Graph Kernels

Most existing graph kernels are instances of the R-convolution kernel [38] proposed by

Haussler. R-convolution is a generic way for defining graph kernels by comparing al-

l pairs of isomorphic substructures under decomposition (e.g., graph kernels based on

comparing all pairs of a) walks, b) paths, and c) restricted substructures). Different types

of decompositions will result in a new graph kernel. For a pair of graphs G1(V1, E1) and

G2(V2, E2), suppose {S1;1, . . . ,S1;n1 , . . . ,S1;N1} and {S2;1, . . . ,S2;n2 , . . . ,Sq;N2} are the

sets of the substructures of G1 and G2 respectively. An R-convolution kernel kR [38]

between G1 and G2 can be defined as

kR(G1, G2) =

N1∑
n1=1

N2∑
n2=1

δ(S1;n1 ,S2;n2), (2.7)

where

δ(S1;n1 ,S2;n2) =

 1 if S1;n1 ≃ S2;n2 ,

0 otherwise.
(2.8)

δ is the Kronecker delta, that is, it is 1 if the arguments are equal and 0 otherwise. It can

be shown that kR is a positive definite kernel [38].
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With this scenario, Kashima et al. [22] have proposed a random walk kernel by com-

paring pairs of isomorphic random walks in a pair of graphs. The main drawback of the

random walk kernel is the notorious tottering problem. This occurs when a random walk

on a graph moves in one direction and then immediately returns to the starting position

through the same vertices and edges possibly multiple times. To overcome this shortcom-

ing, Borgwardt et al. [39] have proposed a shortest path kernel by counting the numbers

of pairwise shortest paths having the same length in a pair of graphs. Aziz et al. [21]

have defined a backtrackless kernel using the same length cycles in a pair of graphs. Both

of the methods overcome the tottering problem by capturing backtrackless substructures

(i.e., the shortest paths or cycles in graphs). Unfortunately, shortest paths and cycles are

structurally simple, and reflect limited topology information. Moreover, the computation-

al efficiency of the two kernels also tends to be burdensome (i.e., the runtime may be a

couple of days) for graphs of large sizes (e.g. a graph having more than one thousand

vertices). To address the problem of inefficiency, Shervashidze et al. [7] have developed

a fast subtree kernel by comparing pairs of subtrees identified by the Weisfeiler-Lehman

algorithm. Costa and Grave [40] have defined a neighborhood subgraph pairwise distance

kernel by counting the number of pairwise isomorphic neighborhood subgraphs in a pair

of graphs. Both kernels can be computed in polynomial time. Other graph kernels that are

developed from the R-convolution framework include a) the segmentation graph kernel

developed by Harchaoui and Bach [41], b) the point cloud kernel developed by Bach [42],

and c) the subgraph matching kernel developed by Kriege and Mutzel [43].

Unfortunately, there are three common shortcomings arising in the existing R-convolution

kernels. First, the R-convolution kernels may discard the substructures having no corre-

sponding isomorphic substructures when a pair of graphs are compared. This occurs

when we compute a kernel by simply counting the number of isomorphic substructure

pairs. In other words, the R-convolution kernel may discard some information residing

on the structural arrangement of graphs. Second, the R-convolution kernels do not easily
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scale up to structures of large sizes. Thus, these kernels compromise to use substructures

of limited sizes. Although this strategy curbs the notorious inefficiency of comparing

large substructures, these kernels still require significant computational overheads. More-

over, graph kernels with limited sized substructures can only reflect restricted topological

characteristics of a graph. Third, the R-convolution kernels do not indicate the relative

locations between substructures within a graph, and thus cannot establish a precise struc-

tural correspondence between vertices of a pair of graphs. Generally speaking, these

shortcomings limit the precise similarity measure (i.e., the kernel value) for graphs.

We aim to propose novel information theoretic graph kernels addressing the short-

comings of state-of-the-art graph kernels. To this end, we consider to propose a family

of Jensen-Shannon diffusion kernels for (un)attributed graphs by measuring the Jensen-

Shannon divergence between graph entropies. For a pair of unattributed graphs, the com-

putational complexity of the diffusion kernel is only quadratic in the vertex number of

the larger graph. The Jensen-Shannon diffusion kernel for unattributed graphs thus over-

comes the inefficiency arising in the R-convolution kernels. On the other hand, for a pair

of attributed graphs, we strengthen the vertex labels for each graph by using a tree-index

method, and each strengthened vertex label corresponds to a subtree. The required Shan-

non entropy for an attributed graph is computed in terms of all the strengthened labels (i.e.,

all the identified subtrees from the tree-index method), the Jensen-Shannon diffusion ker-

nel for attributed graphs thus overcomes the shortcoming of discarding un-isomorphism

substructures that arises in the R-convolution kernels. Furthermore, we also consider us-

ing depth-based representations [17] as a means of defining a new depth-based matching

kernel for graphs. The depth-based representation is a powerful tool that can characterize

a graph in terms of rich complexity information (see details in Section 2.2.2). On the other

hand, the resulted depth-based matching reflects the correspondence information between

pairwise vertices. Thus, the depth-based matching kernel can overcome the shortcomings

of using limited substructures and neglecting local substructure correspondence that arise
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in the R-convolution kernels.

2.2 Complexity Measures of Graphs

In this section, we start by reviewing the concepts of the deterministic and probabilistic

complexity measures for graphs. We focus more on the entropy-based complexity mea-

sures. Moreover, we also review an alternative complexity measure for graphs, namely

the thermodynamic depth-based complexity measure for graphs. Finally, we explain the

motivation for computing a fast depth-based complexity trace for a graph by linking the

ideas of entropy measures and depth-based representations.

2.2.1 Deterministic and Probabilistic Complexity Measures

The quantification of the complexity of undirected graphs and networks has attracted

significant attention due to its fundamental practical importance, and has proven powerful

in a number of fields such as network analysis [44], chemistry, and pattern recognition

[5]. Broadly speaking, there are two different approaches to measuring the complexity

of graphs, namely a) deterministic complexity measures, and b) probabilistic complexity

measures.

The available deterministic complexity measures include the encoding, substructure

counting, and generative approaches. The encoding approach aims to measure the Kol-

mogorov complexity of the structure [45]. The substructure counting approach is based

on the frequency of different substructures in a graph [46, 47, 48]. Finally, the genera-

tive approach aims to specify a basis set of elementary graph substructures and a set of

operations which allow the substructures to be combined to form a larger graph. The

complexity of the graph is then defined as the minimum number of operations required to

form the graph from the basis structures [49].

The probabilistic complexity measures include the idea of measuring the entropy of a
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probability distribution associated with a graph. Existing approaches to computing prob-

abilistic complexity are based on the notion of either randomness complexity or statistical

complexity. Randomness complexity aims to quantify the degree of randomness or disor-

ganization of a combinatorial structure. This approach aims to characterize an observed

graph structure probabilistically and compute its associated Shannon entropy. Statistical

complexity, on the other hand, aims to characterize a combinatorial structure using sta-

tistical features such as vertex degree statistics, edge density or the Laplacian spectrum.

Viewed historically, most early work in this area falls into the randomness class, while

recent work is statistically based. The main drawback of randomness complexity is that

it does not properly capture the correlations between vertices [50]. Statistical complexity

aims to overcome this problem by measuring regularities beyond randomness, and does

not necessarily grow monotonically with randomness. In this thesis, we focus in more

detail on using the entropy as a probabilistic complexity measure.

Unfortunately, the computation of the entropy of a graph is by no means a straightfor-

ward problem. In early work, Köner [51] developed a graph entropy which poses com-

plexity characterization as an optimization problem. Assuming that there is a probability

distribution associated with the vertices of the graph, the complexity is the minimal cross

entropy between the probability distribution and the vertex packing polytype of the graph.

However, this approach is not applicable to more general unweigthed graphs. To address

this shortcoming, Dehmer [52, 53] has turned to information theory and proposed a novel

and efficient means of computing graph entropies using information functionals which

are derived from the topological structure of a graph and quantify the information content

of the given graph structure. This approach avoids the combinatorial computations over

different vertex partitions and achieves polynomial time complexity by constructing lo-

cal information subgraphs for a given graph. Anand et al. [54] and Passerini et al. [55]

have applied the von Neumann entropy (or quantum entropy) to the domain of graphs

through a mapping between discrete Laplacians and quantum states [56]. If the discrete
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Laplacian [57] is scaled by the inverse of the volume of the graph we obtain a density

matrix whose entropy can be computed using the spectrum of the discrete Laplacian. The

measure distinguishes between different structures. For instance it is maximal for random

graphs, minimal for complete ones and takes on intermediate values for star graphs. In

addition, when there is degree heterogeneity then the Shannon (classical) and von Neu-

mann (quantum information theoretic) entropies are correlated. However, since the von

Neumann entropy relies on the computation of the normalized Laplacian spectrum, its

computational complexity is cubic in the number of vertices.

To render the computation more efficient, Han et al. [15] have shown how the compu-

tation can be rendered quadratic in the number of the vertices by its quadratic counterpart.

An analysis of the quadratic entropy reveals that it can be computed from a number of

permutation invariant matrix trace expressions. This leads to a simple expression for the

approximate entropy in terms of elements of the adjacency matrix. Another straightfor-

ward route to compute the entropy of a graph is to use the probability state vectors of

random walks on a graph [58]. For instance, in the case of the steady state of the discrete

time random walk, the elements of the state vector are proportional to the normalized

degrees of the vertices. From this probability distribution it is straightforward to compute

the Shannon entropy.

Furthermore, to develop the approximate von Neumann entropy of Han et al. [15] one

step further, Ye et al. [59] have explored how the von Neumann entropy for an undirected

graph can be extended for a directed graph. To do this, they used Chung’s [60] definition

of the normalized Laplacian on a directed graph. According to this definition, the directed

normalized Laplacian is Hermitian, so the interpretation of Passerini et al. in [55] still

holds for the domain of directed graphs. The von Neumann entropy is essentially the

Shannon entropy associated with the normalized Laplacian eigenvalues. The resulted von

Neumann entropy expression of a directed graph depends on the in-degree and out-degree

of pairs of vertices connected by edges.
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2.2.2 Thermodynamic Depth-based Complexity Measures

An attractive alternative complexity measure for an undirected graph is to compute its

thermodynamic depth complexity using depth-based representations [17]. The depth-

based representation of undirected graph structures has been proven powerful tool for

characterizing the topological structure in terms of the intrinsic complexity [17, 18]. One

approach is to gauge the information content flow through a family of K layer subgraph-

s of an undirected graph (e.g., subgraphs around a vertex having a maximum topology

distance or minimal path length K) of increasing size and to use the flow as a structural

signature. By measuring the heat flow complexity of each subgraph, Escolano et al. [17]

have shown how to use this approach to characterize each casual trajectory of an undi-

rected graph leading a vertex to the graph by using the minimal enclosing Bregman balls

(MEBBs) [61]. Then the depth complexity of such an undirected graph relies on the

variability of the different trajectories from each vertex to the graph. Furthermore, this

approach also allows a depth-based complexity trace to be defined which gauges how the

complexities of the subgraphs vary as a function of depth [17]. However, to construc-

t such a complexity trace of an undirected graph requires an expensive computation on

measuring the intrinsic structural complexity. Moreover, straightforwardly constructing a

complexity trace that characterizes an undirected graph structure in global manner is an

elusive problem, since it is difficult to determine a fine root vertex in the graph.

To develop a depth-based complexity trace that addresses the mentioned problem-

s, a condense family of expansion subgraphs around a dominant vertex and an efficient

complexity measure for each of the (sub)graphs are required. To this end, we consider to

define a centroid vertex as the dominant root vertex for a graph, and compute the entropies

on a family of centroid expansion subgraphs derived from the vertex. As stated in Section

2.2.1, some of the entropies can be computed in a polynomial time. The resulted com-

plexity trace of the graph linking the ideas of the depth-based representation and entropy

measures can thus be efficiently computed. Like the graph embedding methods mentioned
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in Section 1.1, such a complexity trace offers us an elegant way to represent a graph into a

feature vector. Moreover, the complexity trace can reflect a high dimensional complexity

characteristics for a graph through the family of centroid expansion subgraphs. By con-

trast, the existing entropy based and the thermodynamic depth complexity measures only

provide an one dimensional complexity feature for a graph.

2.3 Hypergraph Representations in Pattern Recognition

Graph based representations have been proven powerful in structure based pattern recog-

nition. However, complex data in real world tends to exhibit multiple relationships that

are hard to characterize by using graphs. To overcome this problem, hypergraph based s-

trategies have recently been investigated for representing and processing structures where

the relations present between objects are higher order. A hypergraph is a generalization

of a graph [8]. Unlike the pairwise edges in a graph, hypergraph representations allow a

hyperedge to encompass an arbitrary number of vertices, and can hence capture multiple

relationships among features. One way to manipulate hypergraph structures is to exploit

existing graph based methods for learning higher order models. Agarwal et al. [62] have

performed hypergraph clustering by partitioning a weighted graph obtained by transform-

ing the original hypergraph using a weighted sum of hyperedges to form edges. Zhou et

al. [63] have presented a similar graph approximation method for hypergraphs by normal-

izing the Laplacian matrix of the star expansion of a hypergraph. On the side, the tensor

(higher order matrix) based strategy has also been adopted for straightforwardly charac-

terizing the higher order relations in a hypergraph rather than conducting a graph based

pairwise approximation. Zass et al. [9] and Duchenne et al. [64] have separately applied

high-degree affinity arrays (i.e., tensors) to formulate hypergraph matching problems us-

ing different cost functions. Both methods address the matching process in an algebraic

manner but become intractable to compute if the hyperedges are not suitably sampled.

24



Shashua et al. [11, 65] have performed visual clustering using tensors to represent unifor-

m hypergraphs (i.e. those for which the hyperedges have identical cardinality) extracted

from images and videos. For detecting numbers of clusters in a tensor-based framework,

their work has been complemented by He et al.’s [66] algorithm. Similar methods include

those described in [67, 68, 69, 70, 71], in which tensors are used to represent the multi-

ple relationships between objects. One limitation of the existing methods for hypergraph

characterization is that they are usually restricted to uniform structures and cannot be ap-

plied to hypergraphs with arbitrary relational orders. To address this shortcoming, Ren

et al. [12] have exploited a set of polynomial coefficients obtained from the hypergraph

Ihara zeta function for characterizing nonuniform hypergraphs. Though effectively cap-

turing the varying relational orders, the hypergraph Ihara coefficients tend to require an

expensive computation even for hypergraphs of intermediate sizes.

Like graph based pattern recognition, an alternative approach for characterising hy-

pergraphs is to use kernel methods. Unfortunately, most existing R-convolution kernels

can not be performed on hypergraphs, due to the high order relationship among vertices.

To overcome this problem, Wachman and Khardon [13] have generalized the existing

graph kernels based on walks and then proposed a rooted kernel for hypergraphs based on

random walks. Unfortunately, similar to the walk based graph kernels, one limitation of

the rooted hypergraph kernel is the notorious tottering problem. This shortcoming limits

the precise kernel measure between hypergraphs.

To address this problem, the substructure based strategy can be used. To this end, we

consider to propose a new hypergraph kernel based on a new directed Weisfeiler-Lehman

isomorphism algorithm for directed graphs. The new kernel for a pair of hypergraph-

s can be computed by performing the new isomorphism algorithm on the directed line

graphs transformed from the hypergraphs. We show that the directed line graph of a (hy-

per)graph is a backtrackless structure, the new hypergraph kernel from the line graphs

thus overcomes the shortcoming of tottering arising in the rooted hypergraph kernel.
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2.4 Conclusion

We have reviewed the research literature on the domains of the entropy based complexity

measures, depth-based complexity measures and kernel methods on structured data. We

have analyzed the deficiencies of existing state-of-the-art methods and pointed out our

possible solutions for overcoming these shortcomings. This chapter can be summarized

as follows.

In Section 2.1, we review the basic concepts of kernel methods for vectorial data.

Furthermore, we review some state-of-the-art information theoretic kernels for proba-

bility distributions. Finally, we review some state-of-the-art graph kernels, i.e., the R-

convolution kernels. We analyze the strength and weakness of the existing graph kernels.

We point out that defining an efficient and effective graph kernel still remains a challenge.

To overcome the shortcomings of the existing graph kernels, we consider to define a new

family of Jensen-Shannon diffusion kernel for (un)attributed graphs using the Jensen-

Shannon divergence. Moreover, we also propose to use the depth-based representations

as a means of defining a depth-based matching kernel for graphs.

In Section 2.2, we first review two kinds of graph complexity measures, namely a)

deterministic complexity measures, and b) probabilistic complexity measures. Further-

more, we generally review the history of developing entropy based complexity measures

for graphs. We point out that some of the entropies can be computed in polynomial

time. Finally, we review an attractive alternative complexity measure for an undirected

graph, namely the thermodynamic depth complexity using depth-based representation-

s. This approach allows a depth-based complexity trace to be defined for a graph as a

function of depth. Unfortunately, to construct such a complexity trace for an undirected

graph requires an expensive computation on measuring the intrinsic structural complexi-

ty. Moreover, this approach also requires a fine root vertex in the graph. To address these

problems, we propose to define a family of centroid expansion subgraphs rooted at a cen-

troid vertex of a graph. As a result, a complexity trace of the graph can be computed by
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measuring the efficient entropies on the subgraphs.

In Section 2.3, we give the concept of a hypergraph. A hypergraph is a generalization

of a graph. We review some state-of-the-art methods for hypergraphs. We analyze the

shortcomings of the existing methods. To address these problems, we propose to trans-

form a hypergraph into a directed line graph which can reflect full characteristics of the

hypergraph. Then a new hypergraph kernel can be developed by performing a new devel-

oped directed Weisfeiler-Lehman isomorphism algorithm on the directed line graphs.
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Chapter 3
Jensen-Shannon Diffusion Kernels for
(Un)attributed Graphs

In this chapter, we present our first contribution to the design of a family of Jensen-

Shannon diffusion kernels for (un)attributed graphs. For an unattributed graph, we com-

mence by computing the von Neumann entropy that is developed by Han et al. [15]. Fur-

thermore, we also develop a new Shannon entropy associated with a steady state random

walk for the graph. For an attributed graph, we perform a tree-index method developed by

Dahm et al. [16] for the purpose of strengthening the vertex labels. For a vertex, the tree-

index method strengthens the vertex label by taking the union of the neighbouring vertex

labels as lists. Unfortunately, this tree-index method tends to lead a rapid explosion of

the strengthened label length. Moreover, strengthening a vertex label by only taking the

union of the neighbouring label lists also tends to ignore the original label information of

the vertex. To overcome these problems and improve the tree-index method, we propose

to strengthen the label of a vertex as a new label list by taking the union of both the o-

riginal vertex label and its neighbouring vertex labels. We also use the Hash function for

the purpose of compressing the strengthened label list into a new short index label. As a

result, we compute a new label Shannon entropy for the attributed graph in terms of the

frequency of the strengthened labels.
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With a pair of (un)attributed graphs and their entropies to hand, the diffusion kernel

for the graphs can be computed using the Jensen-Shannon divergence between a com-

posite entropy of the graphs and their individual entropies. We show that the Jensen-

Shannon diffusion kernel for unattributed graphs overcomes the inefficiency arising in the

R-convolution kernels. Moreover, we show that the Jensen-Shannon diffusion kernel for

attributed graphs not only accommodates attributed graphs but also overcomes the short-

coming of discarding un-isomorphic substructures arising in the R-convolution kernels.

We explore our Jensen-Shannon diffusion kernel on several graph datasets abstracted from

bioinformatics databases. The experimental results demonstrate the effectiveness and ef-

ficiency of our new kernel.

Chapter outline

The remainder of this chapter is organized as follows. Section 3.1 gives the concepts

of the von Neumann entropy and the Shannon entropy associated with a steady state

random walk for an unattributed graph. Section 3.2 gives the concept of a tree-index

based vertex label strengthening algorithm. Moreover, we analyze the shortcoming of the

tree-index method and show how the tree-index method can be improved by addressing

the shortcoming. Finally, a label Shannon entropy for an attributed graph is defined.

Section 3.3 gives the definition of the Jensen-Shannon diffusion kernel for (un)attributed

graphs. Section 3.4 provides the experimental evaluation. Finally, Section 3.5 concludes

our work.

3.1 Entropy Measures for Unattributed Graphs

In this section we introduce two entropy measures for unattributed graphs required in this

chapter. We commence by reviewing the concept of the von Neumann entropy proposed

by Han et al. in [15]. Finally, we propose an alternative Shannon entropy using the
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probability distribution associated with a steady state random walk on a graph.

3.1.1 Von Neumann Entropy

We commence by reviewing the definition of the von Neumann entropy for a graph. The

von Neumann entropy of a graph is the Shannon entropy associated with the eigenvalues

of the normalized graph Laplacian [54]. We denote the graph under study by G(V,E)

where V is the set of vertices and E ⊆ V × V is the set of undirected edges. The

symmetric adjacency matrix A for G(V,E) is a |V | × |V | matrix that has elements

A(i, j) =

 1 if(vi, vj) ∈ E;

0 otherwise.
(3.1)

The vertex degree matrix of G(V,E) is a diagonal matrix D whose elements are given by

D(vi, vi) = d(vi) =
∑

vj∈V A(i, j). From the degree matrix and the adjacency matrix we

can construct the Laplacian matrix L = D−A. The normalized Laplacian matrix is given

by L̂ = D−1/2LD−1/2. The spectral decomposition of the normalized Laplacian matrix

is L̂ = Φ̂Λ̂Φ̂T where Λ̂ = diag(λ̂1, λ̂2, ..., λ̂|V |) is a diagonal matrix with the ordered

eigenvalues as elements (0 = λ̂1 < λ̂2 < ... < λ̂|V |) and Φ̂ = (ϕ̂1|ϕ̂2|...|ϕ̂|V |) is a matrix

with the corresponding ordered orthonormal eigenvectors as columns. The normalized

Laplacian matrix is positive semi-definite and so has all eigenvalues non-negative. The

number of zero eigenvalues is the number of connected components in G(V,E). The von

Neumann entropy of G(V,E) associated with the normalized Laplacian eigenspectrum

[54] is defined as

HV N = −
|V |∑
i=1

λ̂i

|V |
log

λ̂i

|V |
. (3.2)

The computation of the von Neumann entropy requires a number of operations that

is cubic in the number of vertices, since it requires computing the eigenvalues. Han

et al. [15] have shown how the computation can be reduced to quadratic time by a)

approximating the Shannon entropy by its quadratic counterpart, and b) evaluating traces
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of L̂ using degree distribution. To commence, we follow the definition of Han et al. in

[15] and approximate the Shannon entropy λ̂i

|V |(1−
λ̂i

|V |) as

HV N = −
|V |∑
i=1

λ̂i

|V |
log

λ̂i

|V |
≃

|V |∑
i=1

λ̂i

|V |
(1− λ̂i

|V |
)

=

∑|V |
i=1 λ̂i

|V |
−

∑|V |
i=1 λ̂

2
i

|V |2
. (3.3)

Using the fact that Tr[L̂n] =
∑|V |

i=1 λ̂
n
i , the quadratic entropy can be rewritten as

HV N =
Tr[L̂]

|V |
− Tr[L̂2]

|V |2
. (3.4)

Since the normalized Laplacian matrix L̂ is symmetric and has unit diagonal elements,

then we have

Tr[L̂] = |V |. (3.5)

Similarly, for the trace of the squared normalized Laplacian, we have

Tr[L̂2] =
∑
vi∈V

∑
vj∈V

L̂ijL̂ij =
∑
vi∈V

∑
vj∈V

(L̂ij)
2

=
∑

vi,vj∈V
i=j

(L̂ij)
2 +

∑
vi,vj∈V
vi ̸=vj

(L̂ij)
2

= |V |+
∑

(vi,vj)∈E

1

d(vi)d(vj)
. (3.6)

Substituting Eq.(3.4) and Eq.(3.5) into Eq.(3.3), the entropy becomes

HV N(G) ≃ 1− 1

|V |
−

∑
(vi,vj)∈E

1

|V |2d(vi)d(vj)
. (3.7)

For the graph G(V,E) with |V | vertices, the approximated von Neumann entropy

HV N(G) requires time complexity O(|V |2). This is because the degree matrix D of

G(V,E) can be computed by just visiting the entries in the adjacency matrix A, then the

required entropy HV N(G) of G(V,E) can be directly computed by visiting all the |V |2
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pairs of vertices once in the adjacency matrix A. By contrast, the original von Neumann

entropy defined in [54] requires time complexity |V |3. This indicates that the approximat-

ed von Neumann entropy can be computed in polynomial time, compared to the original

von Neumann entropy.

3.1.2 Shannon Entropy associated with Steady State Random Walks

Finally, we use the probability distribution associated with the steady state random walk

on a graph to calculate its Shannon entropy. For a vertex vi ∈ V , the probability of a

steady state random walk on G(V,E) visiting vertex vi is

PG(vi) = d(vi)/
∑
vj∈V

d(vj). (3.8)

From this probability distribution it is straightforward to compute the Shannon entropy

as

HS(G) = −
|V |∑
i=1

PG(vi) logPG(vi). (3.9)

For the graph G(V,E) with |V | vertices, the Shannon entropy HS(G) associated with

the steady state random walk requires time complexity O(|V |2). Because this entropy also

relies on the computation of the degree matrix D of G(V,E), which can be computed by

visiting all the |V |2 pairs of vertices once in the adjacency matrix A.

3.2 A Label Entropy for An Attributed Graph

In this section, we describe how to compute a label entropy for an attributed graph. We

commence by reviewing the definition of a tree-index vertex label strengthening method

developed by Dahm et al. in [16]. Finally, we show how to compute a label Shannon en-

tropy for attributed graphs associated with the probability distribution over the strength-

ened labels.
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3.2.1 A Tree-Index Based Vertex Label Strengthening Method

We use the tree-index (TI) method for strengthening the vertex labels. Given an attributed

graph G(V,E), the label of a vertex vi ∈ V (i = 1, . . . , |V |) is f(vi). Using the TI

method, the new strengthened label for vi at the iteration h is defined as

TIh(vi) =

 f(vi) if h = 0,

∪vj{TIh−1(vj)} otherwise.
(3.10)

where vj (j = 1, . . . , |V |) is a vertex adjacent to vi. At each iteration h, the TI method

takes the union of neighbouring vertex label lists as a new label list for the vertex vi from

the previous iteration (the initial step is identical to listing). This iteratively creates a deep-

er list corresponding to a subtree, rooted at vi and branching for h layers. An example of

how the TI method defined in Eq.(3.10) strengthens the vertex label is shown in Fig.3.1.

In this example, the initialized vertex labels for vertices A to E are their corresponding

vertex degrees, i.e., 1, 2, 3, 2 and 2 respectively. Using the TI method, the second iter-

ation indicates the strengthened labels for vertices A to E as {{1, 3}}, {{2}, {2, 2, 2}},

{{1, 3}, {2, 3}, {2, 3}} ,{{2, 2, 2}, {2, 3}}, and {{2, 2, 2}, {2, 3}} respectively.

Unfortunately, as Fig.3.1 indicates, the above procedure clearly leads to a rapid explo-

sion of the labels length. Moreover, strengthening a vertex label by only taking the union

of the neighbouring label lists also ignores the original label information of the vertex. To

overcome these problems, at each iteration h we propose to strengthen the label of a vertex

as a new label list by taking the union of both the original vertex label and its neighbour-

ing vertex labels. We use a Hash function to compress the strengthened label list into a

new short label. The pseudocode of the re-defined TI algorithm is shown in Algorithm 2,

where the neighbourhood of a vertex v ∈ V is denoted as N (v) = {u|(v, u) ∈ E}.

In step 4 of Algorithm 1, we propose to use the Hash function for the objective of

compressing the strengthened label. A Hash function is a function that can map the digital

data of arbitrary size into the digital data of required fixed size [72]. The reasons of

using the Hash function are twofold. First, the Hash function can easily compress each
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Algorithm 1: Vertex labels strengthening procedure
1: Initialization.

• Input an attributed graph G(V,E).

• Set h=0. For a vertex v ∈ V , assign the original label f(v) as the initial label Lh(v).

2: Update the label for each vertex.

• Set h=h+1. For each vertex v ∈ G, assign a new strengthened label as

Lh(v) = ∪u∈N (v){Lh−1(u)}.

• Arrange the sequence of the elements in Lh(v) as ascending order and concatenate the

elements into a tuple as sh(v). Add Lh−1(v) as a suffix of sh(v).

• Re-write the new strengthened label for v as

Lh(v) = sh(v). (3.11)

3: Compress the vertex label into a new short label.

• Using a label compressing function f : L → Σ, compress the label Lh(v) into a new short

label for each vertex v as

Lh(v) = f(Lh(v)). (3.12)

4: Check h.

• Check h. Repeat steps 2, 3 and 4 until the iteration h achieves an expected value.
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Figure 3.1: Example of TI algorithm.

strengthened label described by a long list into a new short integer. This will provides us

a beneficial way of saving the physical memory, for the matlab computation. Second, the

compressed label from the Hash function can be efficiently visited [72] using the index

assigned by the function. As a result, we can efficiently strengthen and process a vertex

label using the TI method. Note that, in step 4, we need to use the same Hash function.

This guarantees that all the identical labels of different graphs are mapped into the same

index. Moreover, for a graph G(V,E) and its pairwise vertices vi and vj , if the labels

Lh(vi) = Lh(vj) the subtrees corresponded by the labels are isomorphic.

3.2.2 A Label Shannon Entropy for Attributed Graphs

In this subsection, we define a Shannon entropy over the label probability distribution

for an attributed graph. The entropy measures the uncertainty of the labels for the graph

(i.e., the ambiguity of the subtrees corresponded by the particular labels). Assume L =

{l1, . . . , lx, . . . , l|L|} is a label set that contains all the vertex labels (including the original

and strengthened labels) for different graphs. Given an attributed graph G(V,E) and its

compressed strengthening label Lh(v) defined in Eq.(6.8) for any vertex v ∈ V at iteration

h, we compute the frequency of a particular label lx contained in G(V,E), i.e., chG(lx) for

iteration h. The probability phG(li) of a label lx for G(V,E) at iteration h is

phG(lx) =
chG(lx)∑|L|
x=1 c

h
G(lx)

. (3.13)
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From the probability distribution P h
G of G(V,E), i.e., phG(l1), . . . , p

h
G(li), . . . , p

h
G(l|L|),

the label Shannon entropy HL
S for G(V,E) at iteration h is defined as

HL
S (G) = HL

S (P
h
G) = −

|L|∑
i=x

phG(lx) log p
h
G(lx). (3.14)

3.3 Jensen-Shannon Diffusion Kernels for Graphs

In this section, we define the new kernel for (un)attributed graphs using the Jensen-

Shannon divergence. We commence by presenting the definition of the Jensen-Shannon

divergence. Moreover, we review the concept of a state-of-the-art graph kernel using the

divergence and analyze its drawbacks. Finally, we define the Jensen-Shannon diffusion

kernel for (un)attributed graphs by using the divergence measure.

3.3.1 The Jensen-Shannon Divergence

The Jensen-Shannon divergence is a mutual information dissimilarity measure between

probability distributions in terms of the entropy difference associated with the probability

distributions. Assume M1
+(χ) is a set of probability distributions where χ is a set provided

with some σ − algebra of measurable subsets, the Jensen-Shannon divergence DJS :

M1
+(χ) × M1

+(χ) → R+ between the probability distributions P and Q is a negative

definite (nd) function [14, 54] as:

DJS(P,Q) =
1

2
DKL(P ||M) +

1

2
DKL(Q||M)

=
1

2

∫
χ

ln(
dP

dM
)dP +

1

2

∫
χ

ln(
dQ

dM
)dQ, (3.15)

where M = P+Q
2

and DKL(P ||M) =
∫
χ
ln( dP

dM
)dP is the Kullback-Leibler divergence

between P and M . If χ is countable, i.e., P = (p1, pm, . . . , pM) and Q = (q1, qm, . . . , qM)

are two discrete probability distributions, a general definition is

DJS(P,Q) = HS(
P +Q

2
)− HS(P ) +HS(Q)

2
. (3.16)
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where HS(P ) = −
∑M

m=1 pm log pm is the Shannon entropy of the probability distribu-

tion P , P+Q
2

is the composite probability distribution for P and Q, and HS(
P+Q
2

) =

−
∑M

m=1
pm+qm

2
log pm+qm

2
is the composite Shannon entropy from P+Q

2
for P and Q.

We are interested in computing a graph kernel for a pair of graphs using the Jensen-

Shannon divergence. In the literature, some kernels for structured data from the Jensen-

Shannon divergence have been developed. One instance is the Jensen-Shannon kernel

[30, 54]. Assume the probability distributions P and Q are computed over two structured

data, the Jensen-Shannon kernel between the two data is defined as

kJSK(P,Q) = log 2−DJS(P,Q), (3.17)

where kJSK is a positive definite kernel [30].

In [73], we have developed the Jensen-Shannon kernel kJSK one step further and thus

defined a new kernel for graphs using the Jensen-Shannon divergence. Assume a pair

of graphs G(V,E) and G′(V ′, E ′). The Jensen-Shannon graph kernel for the graphs is

defined as

kJSGK(G,G′) = log 2−DJS(G,G′)

= log 2−HE(G×) +
HE(G) +HE(G

′)

2
. (3.18)

Here, HE(·) can be either the von Neumann entropy HV N(·) defined in Eq.(3.7) or the

Shannon entropy HS(·) defined in Eq.(3.9). G× is a product graph for G and G′ (i.e., a

composite graph for G and G′), and has the vertex set V× and edge set E× as V× = {(v, v′) ∈ V × V ′ : v ∈ V ∧ v′ ∈ V ′};

E× = {((u, u′), (v, v′)) ∈ V 2
× : (u, v) ∈ E ∧ (u′, v′) ∈ E ′}.

(3.19)

Unlike the R-convolution kernels, the entropy associated with a probability distribution

of an individual graph can be computed without decomposing the graph or enumerating

its substructures. As a result, the computation of the Jensen-Shannon kernel between a
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pair of graphs avoids burdensome (dis)similarity measurements which are computed by

comparing all substructure pairs.

Unfortunately, there are four shortcomings arising in the Jensen-Shannon graph ker-

nel. First, this kernel can only capture the global similarity between a pair of graphs, and

hence lacks information concerning the interior topology of the graphs. Second, the re-

quired composite entropy is computed from a product graph formed by the pair of graphs,

the kernel thus does not reflect the detailed correspondence information. Third, Eq.(3.19)

indicates that the size of the product graph G× is multiple in the sizes of G and G′ (i.e.,

|V×| = |V | × |V ′|). As a result, the kernel value may be dominated by G× of large size.

Furthermore, computing the Jensen-Shannon kernel for graphs from the product graph is

less intuitive, thus making it hard to prove whether the kernel kJSGK is positive definite.

Fourth, the kernel kJSGK is restricted on unattributed graphs. To overcome these prob-

lems, we propose new graph kernels by using the Jensen-Shannon divergence measure.

3.3.2 The Unattributed Jensen-Shannon Diffusion Kernel

To compute the Jensen-Shannon diffusion kernel for a pair of unattributed graphs using

the Jensen-Shannon divergence, we require a composite entropy for the graphs. Unfor-

tunately, directly computing the composite entropy tends to be elusive, since the number

of discrete probabilities for the graphs may be different. One way to overcome this prob-

lem is to compute the composite entropy from a composite structure formed by the pair

of graphs. To address the shortcoming of dominating kernel value by the large product

graph that arises in the Jensen-Shannon graph kernel kJSGK , we propose to compute the

composite entropy for a pair of graphs from their disjoint union graph (i.e., a composite

graph), instead of the product graph. For a pair of graphs G(V,E) and G′(V ′, E ′), the

disjoint union graph GU(VU , EU) of G and G′ is defined as [74]

GU = G ∪G′ = {V ∪ V ′, E ∪ E ′}. (3.20)
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Based on the definition in [51], the entropy of GU is

HE(GU) = πHE(G) + π′HE(G
′), (3.21)

where π = |V |/(|V | + |V ′|), π′ = |V ′|/(|V | + |V ′|), and π = 1 − π′. Here, HE(·) can

be either the von Neumann entropy HV N(·) defined in Eq.(3.7) or the Shannon entropy

HS(·) defined in Eq.(3.9). Through Eq.(3.21), we observe that the composite entropy for

a pair of graphs from their disjoint union graph can be directly computed based on their

individual entropies. As a result, the composite entropy can be efficiently computed.

For a pair of unattributed graphs G(V,E) and G′(V ′, E ′), we commence by comput-

ing their disjoint union graph GU and their individual entropies. The Jensen-Shannon

divergence between the unattributed graphs G(V,E) and G′(V ′, E ′) is defined as

DJS(G,G′) = HE(GU)−
HE(G) +HE(G

′)

2
, (3.22)

where HE(GU) is the composite entropy of G and G′ defined in Eq.(3.21), and HE(·) can

be either the von Neumann entropy HV N(·) or the Shannon entropy HS(·) associated with

the steady state random walk.

With the Jesnen-Shannon divergence for unattributed graphs defined in Eq.(3.22) to

hand, we define a Jensen-Shannon diffusion kernel kJS: G×G′ → R+ as

kJS(G,G′) = exp{−λDJS(G,G′)}

= exp{λHE(G) +HE(G
′)

2
− λHE(GU)}. (3.23)

where λ is a decay factor and satisfies 0 < λ ≤ 1. For simplification, we set λ = 1. Note

that, the computation of the diffusion kernel kJS only depends on the individual entropies

HE(G) and HE(G
′), since the required composite entropy HE(GU) can be directly com-

puted from HE(G) and HE(G
′) using Eq.(3.21).

Lemma 3.1 The Jensen-Shannon diffusion kernel kJS is positive definite (pd). 2

Proof. This follows the definition in [75, 76], if a dissimilarity measure sG(G,G′) be-

tween a pair of graphs G(V,E) and G′(V ′, E ′) satisfies symmetry, then a diffusion kernel
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ks = exp(−λsG(G,G′)) associated with the dissimilarity measure sG(G,G′) is pd. For

the graphs G and G′, the Jensen-Shannon divergence DJS is a dissimilarity measure and

satisfies symmetry. Thus, the kernel kJS is a pd kernel by exponentiating the Jensen-

Shannon divergence DJS . �
Time Complexity: For N graphs each of which has n vertices, computing the N × N

kernel matrix using the Jensen-Shannon diffusion kernel kJS requires time complexity

O(Nn2 +N2). This is because computing the von Neumann entropy or the random walk

Shannon entropy only requires time complexity O(n2) . Computing the entropies for all

the N graphs thus requires time complexity O(Nn2). Computing the N×N kernel matrix

requires time complexity O(N2), because the composite entropy for each pair of graphs

can be directly computed using Eq.(3.21). As a result, the complete time complexity is

O(Nn2+N2). Moreover, for a pair of graphs (i.e., N = 2), the time complexity is O(n2).

The computational complexity of our Jensen-Shannon diffusion kernel kJS for u-

nattributed graphs is only quadratic in the number of graph vertices. As a result, unlike

most existing R-convolution kernels the unattributed diffusion kernel kJS can be efficient-

ly computed. Furthermore, since the composite entropy for a pair of graph is computed

from their disjoint union graph, the size of which is the sum of the graph sizes. The u-

nattributed diffusion kernel kJS also overcomes one of the shortcomings arising in the

Jensen-Shannon graph kernel kJSGK [73], i.e., the Jensen-Shannon graph kernel value is

dominated by the product graph of large size. Finally, Reisen and Bunke [25] have ob-

served that in a diffusion kernel the exponentiation enhances the (dis)similarity measure

between the graphs. As a result, the unattributed diffusion kernel kJS is not only a positive

definite kernel but also enhances the similarity measure for graphs by exponentiating the

Jensen-Shannon divergence measure.

Unfortunately, like the Jensen-Shannon graph kernel kJSGK the new unattributed d-

iffusion kernel kJS has three other drawbacks. First, from Eq.(3.21), Eq.(3.22) and

Eq.(3.23), we observe that the probability distribution from a disjoint union graph GU
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of G and G′ cannot reflect any correspondence information between the discrete proba-

bilities for the graphs G and G′. Second, the required entropy, either the von Neumann

entropy or the random walk Shannon entropy, of a graph for the kernel kJS relates to

the vertex degree. The vertex degree is structurally simple and reflects limited topology

information, the kernel kJS thus reflects limited interior topology information for graphs.

Third, the kernel kJS is only restricted to unattributed graphs and cannot capture any label

information residing on the graph vertices. To overcome the shortcomings, below we will

develop another new Jensen-Shannon diffusion kernel for attributed graphs.

3.3.3 The Attributed Jensen-Shannon Diffusion Kernel

We compute a Jensen-Shannon diffusion kernel for attributed graphs by measuring the

Jensen-Shannon divergence between their label Shannon entropies. For a pair of graphs

G(V,E) and G′(V ′, E ′), we commence by strengthening the vertex labels using Algorith-

m 2 for each iteration. For iteration h, the probability distributions for the strengthened

vertex labels are P h
G = {phG(l1), . . . , phG(lx), . . . , phG(l|L|)} and

P h
G′ = {phG′(l1), . . . , p

h
G′(lx), . . . , p

h
G′(l|L|)}

respectively. The Jensen-Shannon divergence between the attributed graphs G(V,E) and

G′(V ′, E ′) at iteration h is defined as

Dh
JS(G,G′) = Dh

JS(P
h
G, P

h
G′)

= HL
S (

P h
G + P h

G′

2
)− HL

S (P
h
G) +HL

S (P
h
G′)

2

= −
|L|∑
x=1

phG(lx) + phG′(lx)

2
log

phG(lx) + phG′(lx)

2

+

|L|∑
x=1

phG(lx) log p
h
G(lx) +

|L|∑
x=1

phG′(lx) log p
h
G′(lx). (3.24)
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where HS
L is the label Shannon entropy defined in Eq.(3.14), and

Ph
G+Ph

G′
2

is the composite

probability distribution of P h
G and P h

G′ .

With the Jesnen-Shannon divergence for attributed graphs defined in Eq.(3.24) to

hand, we define a Jensen-Shannon diffusion kernel kH
JS: G×G′ → R+ as

kH
JS(G,G′) =

H∑
h=0

exp{−λDh
JS(G,G′)}

=
H∑

h=0

exp{λ
|L|∑
x=1

phG(lx) + phG′(lx)

2
log

phG(lx) + phG′(lx)

2

− 1

2
λ

|L|∑
x=1

phG(lx) log p
h
G(lx)−

1

2
λ

|L|∑
x=1

phG′(lx) log p
h
G′(lx)}. (3.25)

where H is the largest number of iteration h, P h
G is the label probability distribution of G

from the TI method as the iteration h and is defined in Eq.(3.13), and λ is a decay factor

and satisfies 0 < λ ≤ 1. For simplification, we set λ = 1.

Lemma 3.2 The Jensen-Shannon diffusion kernel kH
JS is positive definite (pd). 2

Proof. This follows the definition in [75, 76], if a dissimilarity measure sG(G,G′) be-

tween a pair of graphs G(V,E) and G′(V ′, E ′) satisfies symmetry, then a diffusion k-

ernel ks = exp(−λsG(G,G′)) associated with the dissimilarity measure sG(G,G′) is

pd. For the graphs G and G′, the Jensen-Shannon divergence measure Dh
JS(G,G′) =

Dh
JS(P

h
G, P

h
G′) associated with their label probability distributions P h

G and P h
G′ is a dis-

similarity measure and satisfies symmetry. We thus define a pd kernel, i.e., the Jensen-

Shannon base diffusion kernel for G and G′ at each iteration h (for the TI method), and is

defined as

kh
JSB(G,G′) = exp{−λDh

JS(G,G′)}

= exp{λ
|L|∑
x=1

phG(lx) + phG′(lx)

2
log

phG(lx) + phG′(lx)

2

− 1

2
λ

|L|∑
x=1

phG(lx) log p
h
G(lx)−

1

2
λ

|L|∑
x=1

phG′(lx) log p
h
G′(lx)}. (3.26)
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Thus, the Jensen-Shannon diffusion kernel kH
JS can be re-written as

kH
JS(G,G′) = k1

JSB(G,G′) + . . .+ kH
JSB(G,G′)

=
H∑

h=0

kh
JSB(G,G′), (3.27)

i.e., the Jensen-Shannon diffusion kernel kH
JS is the sum of several Jensen-Shannon base

diffusion kernels. The function which is the sum of pd kernels is also a pd kernel. As a

result, the Jensen-Shannon diffusion kernel kH
JS is pd. �

Time Complexity: For N graphs each of which has n vertices and label set L, computing

the N × N kernel matrix using the Jensen-Shannon diffusion kernel kH
JS requires time

complexity O(HN2n2+HN3n). This is because computing the compressed strengthened

labels for a graph at each iteration h (0 ≤ h ≤ H) needs to visit all the n2 entries of the

adjacency matrix, and thus requires time complexity O(Hn2) for all the H iterations.

Computing the probability distribution for a graph requires time complexity O(HNn2)

(for the worst case, i.e. each vertex label for the N graphs at all the H iterations are all

different and there thus are NHn different labels in L), because it needs to visit all the

HNn entries in L for the n vertices. Computing the N × N kernel matrix requires time

complexity O(HN3n), because the label Shannon entropy for each pair of graphs requires

time complexity O(HNn). As a result, the complete time complexity is O(HN2n2 +

HN3n). Moreover, for a pair of graphs (i.e., N = 2), the time complexity is thus O(Hn2).

Compared to the Jensen-Shannon diffusion kernel kJS for unattributed graphs, the

Jensen-Shannon diffusion kernel kH
JS for attributed graphs has three advantages. First,

from Eq.(3.24) we observe that there is correspondence between the discrete probabilities

identified by a strengthened label lx. As a result, our attributed diffusion kernel kH
JS over-

comes the shortcoming of lacking correspondence information between probabilities that

arises in the unattributed diffusion kernel kJS . Second, for the attributed diffusion kernel

kH
JS , the identical strengthened labels from the TI method correspond to the same class

of isomorphic subtrees, the correspondence between the probability distribution also re-
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flects the correspondence information between pairs of isomorphic subtrees. By contrast,

for the unattributed diffusion kernel kJS the required entropy computed from the vertex

degree can only reflect limited topology information, because the vertex degree is struc-

turally simple. As a result, the attributed diffusion kernel kH
JS overcomes the shortcoming

of reflecting limited interior structural information that arises in the unattributed diffusion

kernel kJS . Third, the attributed diffusion kernel kH
JS through the TI method overcomes

the restriction to unattributed graphs that arises in the unattributed diffusion kernel kJS .

Furthermore, from Eq.(3.14) we also observe that the label Shannon entropy required

for the attributed diffusion kernel kH
JS represents the ambiguity of all the compressed

strengthening labels at an iteration h. Each label corresponds to a subtree rooted at the

vertex containing the label, and all the subtrees are considered in the computation of the

kernel measure. As a result, the attributed diffusion kernel kH
JS also overcomes the short-

coming of discarding un-isomorphic substructures arising in the R-convolution kernels.

These observations indicate that our Jensen-Shannon diffusion kernel kH
JS for attributed

graphs has better ability of characterizing graphs than most existing graph kernels.

Finally, like the unattributed diffusion kernel kJS , the attributed diffusion kernel kH
JS

also enhances the similarity measure for graphs by exponentiating the Jensen-Shannon

divergence measure.

3.4 Experimental Results

In this section, we empirically evaluate the performance of the new Jensen-Shannon diffu-

sion kernels for (un)attributed graphs. Our experimental evaluation consists of two parts.

First, we test our new kernel on classification problems using standard graph datasets.

These datasets are abstracted from bioinformatics. Furthermore, we also compare our

new kernels to several state-of-the-art graph kernels. Second, we evaluate the computa-

tional efficiency of the new kernels.
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3.4.1 Graph Datasets

We demonstrate the performance of our new kernel on six standard graph datasets from

bioinformatics databases. These datasets include: MUTAG, NCI1, NCI109, ENZYMES,

PPIs and PTC(MR) [17, 77, 78, 79, 80]. More details are shown in Table.4.1.

MUTAG: The MUTAG dataset consists of graphs representing 188 chemical compounds,

and aims to predict whether each compound possesses mutagenicity.

NCI1 and NCI109: The NCI1 and NCI109 datasets consist of graphs representing two

balanced subsets of datasets of chemical compounds screened for activity against non-

small cell lung cancer and ovarian cancer cell lines respectively. There are 4110 and 4127

graphs in NCI1 and NCI109 respectively.

ENZYMES: The ENZYMES dataset consists of graphs representing protein tertiary

structures consisting of 600 enzymes from the BRENDA enzyme database. The task

is to correctly assign each enzyme to one of the 6 EC top-level classes.

PPIs: The PPIs dataset consists of protein-protein interaction networks (PPIs). The

graphs describe the interaction relationships between histidine kinase in different species

of bacteria. Histidine kinase is a key protein in the development of signal transduction. If

two proteins have direct (physical) or indirect (functional) association, they are connected

by an edge. There are 219 PPIs in this dataset and they are collected from 6 different

kinds of bacteria.

PTC: The PTC (The Predictive Toxicology Challenge) dataset records the carcinogenicity

of several hundred chemical compounds for Male Rats (MR), Female Rats (FR), Male

Mice (MM) and Female Mice (FM). These graphs are very small (i.e., 20 − 30 vertices,

and 25− 40 edges) and sparse. We select the graphs of MR for evaluation. There are 344

graphs in MR.
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Table 3.1: Information of the graph-based datasets

Datasets MUTAG NCI1 NCI109 ENZYMES PPIs PTC(MR)

Max # vertices 28 111 111 126 238 109

Min # vertices 10 3 4 2 3 2

Mean # vertices 17.93 29.87 29.68 32.63 109.63 25.60

# graphs 188 4110 4127 600 219 344

# classes 2 2 2 6 6 2

3.4.2 Experiments on Graph Classification

We evaluate the performance of our unattributed Jensen-Shannon diffusion kernel kJS

(JSDKU) with either the random walk Shannon entropy or the approximated von Neu-

mann entropy. We also evaluate the performance of our attributed Jensen-Shannon dif-

fusion kernel kH
JS (JSDKA). Moreover, we compare our diffusion kernels with several

alternative state-of-the-art graph kernels. The graph kernels used for comparison include:

1) the quantum Jensen-Shannon kernel (QJSK) [110], 2) the Weisfeiler-Lehman subtree

kernel (WLSK) [7], 3) the shortest path graph kernel (SPGK) [39], 4) the graphlet count

graph kernel with graphlet of size 3 (GCGK) [82], 5) the backtraceless random walk k-

ernel using the Ihara zeta function based cycles (BRWK) [21], and 6) the random walk

graph kernel (RWGK) [22]. For our JSDKA kernel, we set the largest number of iteration

H as 10. The reason for this is that the kernel value tends to be stable when h > 9. For

the WLSK kernel, we set the highest dimension (i.e., the highest height of subtrees) of

the Weisfeiler-Lehman isomorphism as 10.

For each kernel, we compute the kernel matrix on each graph dataset. We perform

10-fold cross-validation using the C-Support Vector Machine (C-SVM) to compute the

classification accuracies, from LIBSVM [83]. We use nine folds for training and one fold

for testing. Each of the C-SVMs were performed along with their parameters optimized

on each dataset. We repeat the experiment 10 times. We report the average classification
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Table 3.2: Classification accuracy (in % ± standard error) comparisons
Datasets MUTAG NCI1 NCI109 ENZYMES PPIs PTC(MR)

JSDKA 85.33 ± .65 85.87 ± .14 85.63 ± .13 56.93 ± .41 89.87 ± .43 59.88 ± .40

JSDKU(Shannon entropy) 83.11 ± .80 62.50 ± .33 63.00 ± .35 20.81 ± .29 34.57 ± .54 57.29 ± .41

JSDKU(von Neumann Entropy) 83.50 ± .79 62.20 ± .35 62.00 ± .37 22.92 ± .27 32.37 ± .50 56.30 ± .40

QJSK 82.72 ± .44 69.09 ± .20 70.17 ± .23 36.58 ± .46 65.61 ± .77 56.70 ± .49

WLSK 82.88 ± .57 84.77 ± .13 84.49 ± .13 52.75 ± .44 88.09 ± .41 58.26 ± .47

SPGK 83.38 ± .81 74.21 ± .30 73.89 ± .28 29.00 ± .48 59.04 ± .44 55.52 ± .46

GCGK3 82.04 ± .39 63.72 ± .12 62.33 ± .13 24.87 ± .22 46.61 ± .47 55.41 ± .59

BRWK 77.50 ± .75 60.34 ± .17 59.89 ± .15 20.56 ± .35 − 53.97 ± .31

RWGK 80.77 ± .72 − − 22.37 ± .35 41.29 ± .89 55.91 ± .37

Table 3.3: CPU runtime comparisons on graph datasets

Datasets MUTAG NCI1 NCI109 ENZYMES PPIs PTC(MR)

JSDKA 8” 7h 7h 10′11” 2′50” 1′8”

JSDKU(Shannon entropy) 1” 1” 1” 1” 1” 1”

JSDKU(von Neumann Entropy) 1” 1” 1” 1” 1” 1”

QJSK 13” 2h55′ 2h55′ 4′23” 3′24” 1′6”

WLSK 3” 2′30” 2′30” 20” 20” 9”

SPGK 1” 16” 16” 4” 22” 1”

GCGK3 1” 5” 5” 2” 4” 1”

BRWK 11” 6′49” 6′49” 3′5” > 1 day 29”

RWGK 14” > 1 day > 1 day 9′52” 4′26” 2′35”

accuracies and standard errors for each kernel in Table.3.2. Note that, we vary H from 0

to 10 for our JSDKA kernel. As a result, for each dataset we compute 10 kernel matrices

for our JSDKA kernel. The classification accuracy for each time is thus the average

accuracy over the 10 kernel matrices. Moreover, we also report the runtime of computing

the kernel matrices of each kernel in Table.3.3, with the runtime measured under Matlab

R2011a running on a 2.5GHz Intel 2-Core processor (i.e., i5-3210m). Note that, both our

JSDKA kernel and the WLSK kernel are able to accommodate attributed graphs. In our

experiments, the graphs in the PPIs dataset are unattributed. We thus use the vertex degree

as a vertex label for the PPIs dataset.

Results and Discussions: In terms of the classification accuracies, it is clear that our
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Jensen-Shannon diffusion kernel JSDKA outperforms all these alternative kernels. Only

the WLSK subtree kernel is competitive to our kernel. The reason for this is that the WL-

SK subtree kernel also relies on a tree-index based algorithm (i.e., the Weisfeiler-Lehman

algorithm), and like our kernel can identify the subtrees rooted at each vertex. How-

ever, as an example of an R-convolution kernel, the WLSK subtree kernel will discard

some subtrees having no isomorphic subtree. By contrast, our JSDKA kernel computes

the label Shannon entropy using all the identified subtrees. As a result, our JSDKA k-

ernel overcomes the shortcoming of the WLSK subtree kernel and outperforms it on all

datasets. Compared to our Jensen-Shannon diffusion kernel JSDKU with either the ran-

dom walk Shannon entropy or the approximated von Neumann entropy, the performance

of our kernel JSDKA is significantly better, although both the kernels are based on the

Jensen-Shannon divergence measure between graphs. As we have stated in Section 3.3.3,

the reason for this is that the JSDKU kernel can not reflect the interior topology informa-

tion for graphs, lacks correspondence information, and is also restricted to non-attributed

graphs. The kernel JSDKA overcomes the shortcomings that arise in the JSDKU ker-

nel. Moreover, our JSDKA kernel also outperforms the SPGK, BRWK and GCGK graph

kernels. The reason for this is that the SPGK, BRWK and GCGK graph kernels are

also examples of the R-convolution kernels and have the shortcoming of discarding non-

isomorphic substructures.

In terms of the runtime, it clearly that our JSDKU kernel, with either the random walk

Shannon entropy or the approximated von Neumann entropy, is the most efficient kernel

on all datasets, and easily outperforms other kernels. There is no kernel that is competitive

to our JSDKU kernel. Moreover, our JSDKA kernel is not the fastest kernel, but it can

still finish the computation in a polynomial time on any dataset. By contrast, some kernels

cannot finish the computation on some datasets in one day.
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3.4.3 Computational Evaluation

Finally, we evaluate the computational efficiency (i.e., the CPU runtime) of our unattribut-

ed and attributed Jensen-Shannon diffusion kernels, and reveal the relationship between

the computational overheads and the structural complexity or number of the associated

graphs.
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Figure 3.2: Runtime evaluations for the unattributed diffusion kernel.

Experimental setup: For either the unattributed or the attributed Jensen-Shannon dif-

fusion kernel, we evaluate the computational efficiency on randomly generated graphs

with respect to two parameters: the graph size n and the graph dataset size N . We vary

n = {100, 200, . . . , 2000} and N = {1, 2, . . . , 500}, separately. a) For the experiments

with graph size n, we generate 20 pairs of graphs with increasing number of vertices. We

report the runtime for computing the kernel values between pairwise graphs (H = 10

for the attributed diffusion kernel). b) For the graph dataset size N , we generate 500

graph datasets with an increasing number of test graphs. In each dataset, one graph has

200 vertices. We report the runtime for computing the kernel matrices for each graph

dataset (H = 10 for the attributed diffusion kernel). Note that, for the unattributed diffu-

sion kernel the evaluation results with the Shannon and von Neumann entropy are nearly
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Figure 3.3: Runtime evaluations for the attributed diffusion kernel.

the same. Thus, we only show the results for the unattributed diffusion kernel with the

Shannon entropy. Furthermore, for our attributed Jensen-Shannon diffusion kernel, we

also evaluate the computational efficiency with respect to the largest iteration H of the

TI method. Here, we vary H = {1, 2, . . . , 10}. For the evaluations with the larger pa-

rameter H , we generate a pair of graphs each of which has 200 vertices. We report the

runtime for computing the kernel values of the pair of graphs as a function of H . The

CPU runtime for the unattributed and the attributed Jensen-Shannon diffusion kernels is

reported in Fig.3.2 and Fig.3.3 respectively, as operated in Matlab R2011b on a 2.5GHz
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Intel 2-Core processor (i.e., i5-3210m).

Experimental results: Figs.3.2 (a) and (b) show the results for the unattributed Jensen-

Shannon diffusion kernel when varying the parameters n and N , respectively. Figs.6.4

(a), (b) and (c) show the results for the attributed Jensen-Shannon diffusion kernel when

varying the parameters n, H and N , respectively.

For the unattributed diffusion kernel, we observe that the runtime scales quadratically

with n and N . For the attributed diffusion kernel, we observe that the runtime scales

quadratically with n, linearly with H , and cubicly with N . These results verify that both

of our unattributed and attributed Jensen-Shannon diffusion kernels can be computed in

polynomial time.

3.5 Conclusion

In this chapter, we have defined a family of Jensen-Shannon diffusion kernels for (un)attributed

graphs using the Jensen-Shannon divergence. For the unattributed graphs, we compute

the von Neumann entropy or the random walk Shannon entropy for each graph. With

the entropies for a pair of unattributed graphs to hand, we have shown how to compute

the Jensen-Shannon diffusion kernel for the unattributed graphs by measuring the entropy

difference between their individual entropies and a composite entropy from their disjoint

union graph. Our new diffusion kernel for unattributed graphs overcomes the inefficiency

arising in the R-convolution kernels. For the attributed graphs, our new kernel is based

on an improved tree-index (TI) label strengthening algorithm on attributed graphs. We

compute a label Shannon entropy using the probability distribution associated with the

strengthened labels. With the entropies for a pair of attributed graphs to hand, we have

shown how to compute the Jensen-Shannon diffusion kernel for the attributed graphs

by measuring the entropy difference between their individual entropies and a composite

entropy from their composite probability distribution. Our new diffusion kernel for at-
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tributed graphs overcomes the shortcoming of discarding non-isomorphic substructures

that arises in the R-convolution kernels. Moreover, this kernel also overcomes the short-

comings of restriction to unattributed graphs, lacking correspondence information and

reflecting limited interior topology information that arise in our diffusion kernel for u-

nattributed graphs. The experimental results demonstrate the effectiveness and efficiency

of our kernels.
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Chapter 4
Depth-based Complexity Traces of Graphs

In this chapter, we present our second contribution. We develop a novel framework for

measuring the depth-based complexity traces for graphs, by linking the ideas of graph en-

tropies and depth-based representations. We commence by reviewing the entropy based

graph complexity measures that will be used in this work. We then show how the com-

plexity trace for a graph can be computed by measuring the entropies on a family of cen-

troid expansion subgraphs derived from the graph. The complexity traces for graphs not

only capture the structural characteristics but can also be evaluated efficiently. Experimen-

tal results on several bioinformatics and computer vision datasets empirically demonstrate

that our framework is competitive with complexity based graph methods and alternative

state-of-the-art graph based learning methods reported in the literature.

Chapter outline

The remainder of this chapter is organized as follows. Section 4.1 briefly reviews the

concepts of several graph entropies. Section 4.2 gives the definitions of the centroid

vertex and the centroid expansion subgraphs, and describes how we construct a depth-

based complexity trace for a graph. Section 4.3 provides our experimental evaluation.

Finally, Section 4.4 concludes our work.
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4.1 Entropy-Based Complexity Measures

To compute the depth-based complexity traces for graphs, we need to compute the entropy-

based complexity measures for (sub)graphs. In Chapter 3, we have introduced two en-

tropy measures for graphs. In this chapter, we introduce an alternative approach to mea-

suring graph entropies. We review how the Shannon entropy of a graph can be computed

using the information functionals proposed by Dehmer et al. [52, 53]. Unlike the classical

Shannon entropies defined in [84, 85, 86], the information functionals can assign a prob-

ability value to each vertex in a graph, by using a functional that quantifies the structural

information of the graph under consideration, it can hence be computed in a polynomial

time (i.e., the time complexity of computing the entropy for a graph G(V,E) is O(|V |3)).

By contrast, the classical Shannon entropies focus on obtaining the probability distribu-

tion by determining a partitioning of the underlying vertex set, and require burdensome

computation (i.e., the time complexity is O(|V |5).

For computing the Shannon entropy of a graph G(V,E), Dehmer et al. [53, 52] have

defined two information functionals based on the metrical properties of graphs. They are

as follows.

1-Vertex Functional: For the graph G(V,E), let MK
vi

be a subset of the vertices in V

satisfying MK
vi

:= {vj ∈ V |SG(i, j) = K}, where SG(i, j) is the shortest path length

between vertex vi and vertex vj . Then for a vertex vi ∈ V of G(V,E), the information

functional fVe , e = 1, 2 is defined as

fV1(vi) := αc1|M1
vi
|+...+cK |MK

vi
|+...+cρ|Mρ

vi
|, (4.1)

and

fV2(vi) := c1|M1
vi
|+ . . .+ cK |MK

vi
|+ . . .+ cρ|Mρ

vi
|, (4.2)

where ρ is the greatest length of the shortest paths in SG, cK > 0, 1 ≤ K ≤ ρ, α ≤ 0

and the cK are arbitrary real positive coefficients. Details of selecting effective cK can be

found in [53].
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2-Path Functional: For the vertex vi ∈ V of G(V,E) and K = 1, ..., ρ, let Lφ(vi, K)

denote the sum of the shortest paths from vi to each vertex vµ ∈ MK
vi

. Note that, if there

are more than one shortest path from vi to vµ, we only consider one random shortest path

and we thus have

Lφ(vi, K) := K|MK
vi
|. (4.3)

Then the information functional fPe , e = 1, 2 is defined as

fP1(vi) := αb1Lφ(vi,1)+...+bKLφ(vi,K)+...+bρLφ(vi,ρ), (4.4)

and

fP2(vi) := b1Lφ(vi, 1) + . . .+ bKLφ(vi, K) + . . .+ bρLφ(vi, ρ), (4.5)

where bK are arbitrary real valued positive coefficients. Details of selecting effective bK

can be found in [53].

In order to deal with graphs with large sizes, we propose to use the information func-

tionals fV2 and fP2 to construct graph entropies. The entropies of the sample graph

G(V,E) associated with the information functional fV2 and fP2 are defined as

HfV2 (G) = −
|V |∑
i=1

fV2(vi)

Σ
|V |
j=1f

V2(vj)
log

fV2(vi)

Σ
|V |
j=1f

V2(vj)
, (4.6)

and

HfP2 (G) = −
|V |∑
i=1

fP2(vi)

Σ
|V |
j=1f

P2(vj)
log

fP2(vi)

Σ
|V |
j=1f

P2(vj)
. (4.7)

Selection of parameters cK and bK: In this chapter, we follow Dehmer in [53] and

choose the coefficients cK and bK of fVe and fPe as ρ−K + 1 with the objective of em-

phasizing certain structure characteristics of the underly graph, e.g., high vertex degrees.

Based on the statement of Dehmer et al. [53], for the graph G(V,E) with |V | vertices,

the Shannon entropies HfV2 (G) and HfP2 (G) associated with information functionals

require time complexity O(|V |3).
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4.2 Depth-Based Complexity Traces of Graph Structures

In this section we combine the idea of graph entropies with that of using a depth-based

representation to develop a novel depth-based complexity trace for a graph. Our idea is to

decompose a graph into substructures (i.e., subgraphs) spanned from a root vertex to the

remaining vertices with a minimal path length K. We then compute the complexities on

these substructures as a measure of the information content flow over the substructures. To

obtain a family of subgraphs capturing the fine structure of a graph, we identify a centroid

vertex and use this as the root vertex. The terminology centroid is widely used in several

fields including geometry and physics. In graph theory, the centroid of a graph is defined

as a structure composed of vertices closest to all others [87, 88, 89]. Most of the classical

definitions of a centroid focus on two specific tasks, namely 1) minimax location problems

[90] and 2) minisum location problems [89]. The first task aims to locate the centroid by

finding the vertices possessing the minimal longest distance to all the remaining vertices.

The second task aims to locate the centroid by finding the vertices possessing the minimal

sum of the shortest distance to the remainders. Here we present a novel method to identify

the centroid vertex of a graph by evaluating the shortest path length distribution around a

vertex. We select the vertex possessing the minimum variance of shortest path lengths to

the remaining vertices as the centroid vertex. Since the vertices surrounding the centroid

vertex in a graph lie along the different shortest paths from the vertex, the centroid vertex

has a global view of the vertex path length distribution surrounding it.

4.2.1 Centroid Vertex and Centroid Expansion Subgraphs

The shortest path for a pair of vertices vi and vj in an undirected graph G(V,E) can be

obtained using Dijkstra’s algorithm [91]. Let SG be the matrix whose elements SG(i, j)

represent the shortest path length between vertices vi and vj is the shortest path matrix for

graph G(V,E). The average-shortest-path vector SV for G(V,E) is a vector with the same
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vertex sequence as SG and with element SV (i) =
∑|V |

j=1,i̸=j SG(i, j)/|V | representing the

average shortest path length from vertex vi to the remaining vertices. We then locate the

centroid vertex v̂i for G(V,E) as follows

v̂i = argmin
i

|V |∑
j=1

[SG(i, j)− SV (i)]
2. (4.8)

In other words, the centroid vertex v̂i of G(V,E) is located through selecting a vertex

with a minimum variance of shortest path lengths for all vertices in G(V,E). As a re-

sult, the shortest paths originating from the centroid vertex v̂i form a steady path set that

exhibits the least length variability compared with those path sets originating from the

remaining vertices.

Let NK
v̂C

be a subset of V satisfying the condition

NK
v̂C

= {u ∈ V | SG(v̂C , u) ≤ K}. (4.9)

i.e., the set of vertices whose path lengths to the centroid vertex are less than or equal

to K. For a graph G(V,E) with the centroid vertex v̂C , the K-layer centroid expansion

subgraph GK(VK ; EK) is VK = V ∩NK
v̂C
;

EK = {(u, v) : u, v ∈ NK
v̂C
, (u, v) ∈ E}.

(4.10)

Note that, if there are more than one vertex which satisfy Eq.(4.8), we can simply ran-

domly choose one as the centroid vertex. Furthermore, the number of centroid expansion

subgraphs is equal to the greatest length Lmax of the shortest path from the centroid vertex

to the remaining vertices of the graph. The Lmax-layer expansion subgraph is the graph

G(V,E) itself. An example of the generation of a K-layer subgraph for a graph G(V,E)

is shown in Fig.4.1.

For the graph G(V,E), which has |V | vertices, constructing the family of centroid

expansion subgraphs from the centroid vertex requires time complexity O(Lmax|V |2),
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Figure 4.1: The left-most figure shows the determination of K-layer centroid expansion

subgraphs for a graph G(V,E) which hold |N1
v̂C
| = 6 and |N2

v̂C
| = 10 vertices. While the

middle and the right-most figure show the corresponding 1-layer and 2-layer subgraphs

regarding the centroid vertex v̂C , and are depicted by red-colored edges. In this example,

the vertices of different K-layer subgraphs regarding the centroid vertex v̂C are calculated

by Eq.(4.9), and pairwise vertices possess the same connection information in the original

graph G(V,E).

because this follows the definitions in Eq.(4.9) and Eq.(4.10). For the graph G(V,E), the

Dijkstra algorithm requires time complexity O(|V |2). The enumeration of the centroid

expansion subgraphs GK (K = 1, . . . , Lmax) of G(V,E) requires O(Lmax) operations, in

each of which the computation of the vertex degrees for a centroid expansion subgraph

scales up to O(|V |2). As a result, constructing the centroid expansion subgraphs requires

time complexity O(Lmax|V |2).

4.2.2 Entropy Complexity Traces of Graphs

We first define a depth-based entropy complexity trace for a graph G(V,E).

Definition 4.1 (Entropy complexity trace) For a graph G(V,E) and its K-layer centroid

expansion subgraphs, the entropy complexity trace CTE is an Lmax dimensional vector
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defined as

CTE = [HE(G1), · · · , HE(GK), · · · , HE(GLmax)]T , (4.11)

where Lmax is the greatest length of shortest paths from the centroid vertex v̂C to the re-

maining vertices in G(V,E), GK is the K-layer centroid expansion subgraph of G(V,E),

and H(GK) is the entropy of GK .

Here the entropy function HE(·) could be either the von Neumann entropy HV N(·)

defined in Eq.(3.7), the Shannon entropy HS(·) defined in Eq.(3.9), or the information

functional entropies HfV2 (·) and HfP2 (·) in Eq.(4.6) and Eq.(4.7).

4.2.3 Entropy Difference Complexity Traces of Graphs

In this subsection, we investigate how to use the entropy difference as a means of con-

structing the complexity trace for a graph. We define the depth-based entropy difference

complexity trace for a graph.

Definition 4.2 (Entropy difference complexity trace) For a graph G(V,E) and its K-

layer centroid expansion subgraphs, the entropy difference complexity trace CTED is an

Lmax dimensional vector defined as

CTED =[ED(G1,GLmax), ..., ED(GK ,GLmax), ...,

ED(GLmax ,GLmax)]T , (4.12)

where Lmax is the greatest length of shortest paths from the centroid vertex v̂C to the

remaining vertices in G(V,E), and ED(GK ,GLmax) is the entropy difference between the

K-layer centroid expansion subgraph and the Lmax-layer centroid expansion subgraph

(i.e., graph G(V,E)).

Unlike the entropy complexity trace defined in Definition 4.1 that only records how

the entropies vary from the smaller subgraph to the global graph, the entropy difference

complexity trace gauges how the entropy difference varies between the subgraphs and

the global graph, and thus also reflects the relationship between each subgraph and the
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global graph. In other words, this complexity trace encapsulates an information-based

interior dissimilarity transformation between the graph G(V,E) and its K-layer centroid

expansion subgraphs associated with their entropy differences. Here the layer K runs

from 1 to Lmax. The entropy difference ED(GK ,GLmax) is defined as

ED(GK ,GLmax) = HE(GLmax)−HE(GK). (4.13)

Similar to the entropy complexity traces of graphs, here the entropy function HE(·)

could be the von Neumann entropy HV N(·) defined in Eq.(3.7), the Shannon entropy

HS(·) defined in Eq.(3.9), or the information functional entropies HfV2 (·) and HfP2 (·)

defined in Eq.(4.6) and Eq.(4.7).

4.2.4 Graphs of Different Sizes

For a graph G(V,E), the dimension of the complexity trace vectors are equal to the size of

the largest layer Lmax which is the length of the greatest shortest path from the centroid

vertex to the remaining vertices. Since the lengths of the greatest shortest paths from

the centroid vertices for different graphs of different sizes may be different, hence the

complexity trace vectors for graphs of different sizes may exhibit different dimensions.

To compare these graphs by using complexity trace vectors, we need to make the vector

dimensions uniform. This is achieved by padding out the dimensions of the complexity

trace vectors. For entropy or entropy difference complexity trace vectors CTx and CTy of

two graphs Gx and Gy with dimensions Lmax
x and Lmax

y respectively, where Lmax
x > Lmax

y ,

we use the Lmax
y -th element value of CTy as the padding values for the extended Lmax

y +1-

th to Lmax
x -th elements of CTx.

4.2.5 Computational Complexity Evaluation

The computational complexity of the proposed complexity traces are governed by the

following computational steps. Consider a sample graph G(V,E) with |V | vertices and
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the longest shortest path length Lmax rooted from the centroid vertex. Constructing the

centroid expansion subgraphs derived from the centroid vertex requires time complexi-

ty O(Lmax|V |2). In our framework, the computations of the required approximated von

Neumann entropy, the Shannon entropy associated with the steady state random walk, and

the Shannon entropy associated with the information functionals of the centroid expan-

sion subgraphs require time complexities O(Lmax|V |2), O(Lmax|V |2) and O(Lmax|V |3)

respectively. As a result, the whole time complexity of the complexity traces using the

three different kinds of entropies are O(Lmax|V |2), O(Lmax|V |2) and O(Lmax|V |3) re-

spectively. Lmax is approximately equal to 3
√

|V |.

Therefore, our depth-based complexity traces can be computed in polynomial time.

The reason for this is that we efficiently compute the required entropies on a small set of

expansion subgraphs rooted at the centroid vertex of a graph. By contrast, the depth-based

complexity measure described in [17] establishes expansion subgraphs from each vertex

of a given graph (e.g., a graph having |V | vertices) and then computes the burdensome

intrinsic complexities on the subgraphs. It hence requires time complexity O(|V |7) [17].

4.3 Experimental Results

In this section, we provide experimental evaluation of the proposed depth-based complex-

ity traces of graphs. First, we illustrate the discriminative power of the complexity traces.

Second, we present experiments on synthetic data with the aim of evaluating the stability

of our methods and their ability to distinguish graphs under controlled structural-errors.

Third, we evaluate the computational efficiency of the complexity traces. Finally, we

focus on real-world graph data and assess the performance of the proposed complexity

traces of graphs for graph classification problems. The graphs for testing are abstracted

from a) a real-world image database and b) bioinformatics databases. We provide com-

parisons between the proposed methods and several alternative methods reported in the
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literatures.

4.3.1 Evaluation of Interior Complexity Traces

We commence by illustrating the representational power of the proposed complexity

traces for graphs, and demonstrate that they can be used to distinguish different graph-

s. The evaluation utilizes graphs abstracted separately from images of a box and a cup

in the Columbia object image library (COIL) database [92]. For each object we use 18

images captured from different viewpoints. For each image we first extract corner points

using the Harris detector [93], and then establish Delaunay graphs based on the corner

points as vertices. Each vertex is used as the seed of a Voronoi region, which expands

radially with a constant speed. The linear collision fronts of the regions delineate the

image plane into polygons, and the Delaunay graph is the region adjacency graph for the

Voronoi polygons. Details of constructing a Delaunay graph of an image can be found in

[3].

For the Delaunay graph of each image, we locate the centroid vertex and construct

the centroid expansion subgraphs. We then construct the proposed entropy and entropy

difference complexity traces. Fig.4.2 and Fig.4.3 show the mean complexity trace distri-

butions of graphs for the entropy complexity trace and the entropy difference complexity

trace respectively. The subfigures (a)-(d) of Fig.4.2 and 4.3 show the corresponding mean

complexity trace distributions using the Shannon entropy, von Neumann entropy, and en-

tropies associated with information functionals fV2 and fP 2 respectively. In Fig.4.2 and

Fig.4.3, the x-axis shows the order of the K-layer centroid expansion subgraph for each

individual graph, while the y-axis shows the mean entropy value or the mean entropy

difference as a function of the expansion order. Here the blue line represents the mean

complexity trace of the graphs abstracted from the box object, while the red line repre-

sents that of the graphs abstracted from the cup object. The main feature to note is that

the mean complexity trace distributions of graphs abstracted from the different objects
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Figure 4.2: (a)-(d): Entropy complexity trace distributions using the a) Shannon entropy,

b) von Neumann entropy, and entropies computed using information functionals c) fV2

and d) fP2 .
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Figure 4.3: (a)-(d): Entropy difference complexity trace distributions using the a) Shan-

non entropy, b) von Neumann entropy, and entropies computed using information func-

tionals c) fV2 and d) fP2 .
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are dissimilar. The mean complexity traces of graphs abstracted from the different ob-

jects using the entropy difference are better separated than that abstracted using the graph

entropy. The mean entropy and the entropy difference complexity traces of graphs com-

puted using the von Neumann entropy show the best separation when compared to the

other alternative entropies.

4.3.2 Stability Evaluation of Complexity Traces

To evaluate the stability of our proposed complexity traces from the centroid vertex, we

explore the relationship between the graph edit distance and the Euclidean distance be-

tween pattern vectors encoding the complexity traces. The edit distance between two

graphs Gx and Gy is the minimum edit cost taken over all sequences of edit operations

that transform Gx into Gy [94, 95]. In our experimental evaluation, we establish a new

graph by deleting a number of edges from a seed graph. Compared to the seed graph, the

location of the centroid vertex of the new graph may produce changes. The evaluation

utilizes 100 randomly generated seed graphs. Each seed graph has 100 vertices and 200

edges. For each seed graph, we randomly delete a predetermined number of edges to sim-

ulate the effects of noise. We continuously apply the edge deletion edit operation to the

seed graph 25 times. We delete 1 edge for each time and thus generate 25 edit-operated

graphs as the noise corrupted counterparts, for each of the seed graphs.

The Euclidean distance between the complexity traces of the original seed graph GS

and a noise corrupted counterpart GE obtained by the edit operation is

dS,E =

√
(CTS − CTE)

T (CTS − CTE), (4.14)

where CTS and CTE are their entropy or entropy difference complexity traces of GS and

GE from their centroid vertex. The results of these experiments are shown in Fig.4.4

and Fig.4.5, which show the the mean effects of edge deletion on the entropy and en-

tropy difference complexity traces respectively. The subfigures (a)-(d) of both Fig.4.2
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Figure 4.4: (a)-(d): Distance distributions of entropy complexity traces using the a) Shan-

non entropy, b) von Neumann entropy, and entropies computed using information func-

tionals c) fV2 and d) fP2 .
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and 4.3 represent the corresponding complexity traces computed using the Shannon en-

tropy, von Neumann entropy, and entropies with information functionals fV2 and fP2

respectively. The x-axis shows the number of edges randomly deleted (i.e., the 1-th to

25-th edit-operated graphs), and the y-axis shows the mean value of the Euclidean dis-

tances dS,E between the 100 original seed graphs and their corresponding noise corrupted

counterparts. Moreover, we also draw the stand errors for each of the mean Euclidean

distances.

It is clear that when less than 15 edges are deleted the fluctuation is small, and when

around 20 edges are deleted the fluctuation becomes moderate. On the other hand, when

less than 5 edges are deleted the stand errors are small, when less than 15 edges are deleted

the stand errors are moderate, and when more than 15 edges are deleted the stand errors

tend to be larger. The evaluation results imply that the proposed complexity traces are

robust even when each of the seed graph structures and its identification of the centroid

vertex undergo relatively large perturbations. Since the location of the centroid vertices

of the edit-operated graphs may gradually get far away from that of a seed graph with the

increasing number of deleted edges, the evaluation results also reveal that for a graph the

complexity traces from other vertices tend to be similar to those from the centroid vertex if

the vertices are near to the centroid vertex. Furthermore, there is an approximately linear

relationship between the graph edit distance and the Euclidean distance. This implies that

the proposed complexity traces possess the ability to distinguish graphs under controlled

structural-errors.

4.3.3 Computational Evaluation of The Proposed Complexity Traces

In this subsection, we evaluate the computational efficiency (i.e., the CPU runtime) of the

complexity traces, and reveal the relationship between their computational overheads and

the structural complexity or number of the associated graphs.

Experimental setup: We evaluate the computational efficiency on randomly generat-
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Figure 4.5: (a)-(d): Distance distributions of entropy difference complexity traces using

the a) Shannon entropy, b) von Neumann entropy, and entropies computed using informa-

tion functionals c) fV2 and d) fP2 .
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ed graphs with respect three parameters: a) the graph size n, b) the greatest expan-

sion subgraph layer Lmax of a graph, and c) the dataset size N . Separately, we vary

n = {100, 200, . . . , 2000}, Lmax = {1, 2, . . . , 41} and N = {1, 2, . . . , 300}.

For the experiments with graph size n, we generate 20 graphs having increasing num-

ber of vertices. We report the runtime of computing the complexity traces for each graph.

For the experiments with greatest expansion subgraph layer Lmax, we randomly generate

a graph with 8500 vertices. We report the runtime of computing the complexity traces of

the graph with an increasing expansion subgraph layer Lmax. For the experiments with

graph dataset size N , we generate 300 graph datasets. The datasets have an increasing

number of test graphs. For each dataset, each graph has 100 vertices. We report the

runtime of computing the complexity traces of graphs from each dataset.

Note that, in the computational evaluation each test graph is a scale-free graph. For

generating a random scale-free graph, we commence by generating a graph having 5

vertices as the initialized graph. In the initialized graph, each vertex is connected to all

other vertices. With the initialized graph, we gradually add some new vertices to generate

a required scale free graph. We add 5 new vertices each time, and each new vertex is

randomly connected to 5 vertices of existing vertices. The CPU runtime is reported in

seconds in Fig.6.4, as measured in Matlab R2011a on a 2.5GHz Intel 2-Core processor

(i.e., i5-3210m).

Experimental results: In Fig.6.4, the subfigures from the first row to the fourth row

represent the experiments of the complexity traces using the a) Shannon entropy, b) the

approximated von Neumann entropy, c) the vertex-information functional entropy (i.e.,

fV2), and d) the path-information functional entropy (i.e., fP2) respectively. The subfig-

ures from the first column to the third column represent the experiments of the complexity

traces varying the parameters n, Lmax and N respectively. Note that, for each parameter α

of the information functionals the experiments using the different information functional

entropies are the same.
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Figure 4.6: Runtime evaluations.
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From these plots, we can draw the following conclusions. a) When varying the number

of vertices n of a graph, we observe that the runtime of the complexity traces using the

different entropies scales quadratically or cubically with n. b) When varying the greatest

expansion subgraph layer Lmax of a graph, we observe that the runtime of the complexity

traces using different entropies scales linearly with Lmax. c) When varying the dataset

size N , we observe that the runtime of the complexity traces using the different entropies

scales linearly with N . d) For any parameter, the complexity traces using the Shannon

entropy and the approximated von Neumann entropy are computed more rapidly than

those using the information functional entropies.

These computational experiments verify that our complexity traces can be computed

in polynomial time. The complexity traces using the Shannon entropy and the approxi-

mated von Neumann entropy are more efficient than those using the information function-

al entropies. The reason for this is that the computations of the Shannon entropy and the

approximated von Neumann entropy are quadratic in the number of vertices of a graph.

On the other hand, the computations of the information functional entropies are cubic in

the number of vertices of a graph.

4.3.4 Real-world Datasets

We compare our proposed complexity trace methods with several state of the art meth-

ods. The methods for comparisons are a) graph complexity based methods, b) a graph

embedding method, and c) graph kernel methods. The graph complexity based meth-

ods include 1) the von-Neumann thermodynamic depth complexity (VNTD) [15, 17], 2)

the von-Neumann graph entropy (VNGE) [15], 3) the Shannon graph entropy associated

with the steady state random walk (SGE), 4) the information functionals fV1 (FV1), fV2

(FV2), fP1 (FP1) and fP2 (FP2) [52]. Here we set the parameters α of FV1 and FP1

as 2. The graph embedding method is the coefficients from the Ihara zeta function for

graphs (CIZF) [4]. The graph kernel methods include 1) the Weisfeiler-Lehman subtree
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kernel (WL) [7], 2) the random walk graph kernel (random walk) [22], 3) the shortest

path graph kernel (SPGK) [39], and 4) the graphlet count graph kernel (graphlet count)

with size 4. We use eight standard graph based datasets abstracted from the bioinformat-

ics database for experimental evaluation [17, 77, 78, 79, 80, 96]. These datasets include:

MUTAG, NCI1, NCI109, ENZYMES, D&D, PPIs, CATH1 and CATH2. The MUTAG,

NCI1, NCI109, ENZYMES, D&D and PPIs datasets have been introduced in Chapter 3.

The detail information of the CATH1 and CATH2 datasets is shown as below.

CATH1 and CATH2: The CATH1 dataset consists of proteins in the same class (i.e.,

Mixed Alpha-Beta), but the proteins have different architectures (i.e., Alpha-Beta Barrel

vs. 2-layer Sandwich). CATH2 has proteins in the same class (i.e., Mixed Alpha-Beta),

architecture (i.e., Alpha-Beta Barrel), and topology (i.e., TIM Barrel), but in different

homology classes (i.e., Aldolase vs. Glycosidases). The CATH2 dataset is harder to

classify, since the proteins in the same topology class are structurally similar. The protein

graphs are 10 times larger in size than chemical compounds, with 200 − 300 vertices.

There are 712 and 190 testing graphs in the CATH1 and CATH2 datasets.

More information concerning all these datasets for evaluation are summarized in

Table.4.1.

Table 4.1: Information of the graph based bioninformatics datasets
Datasets MUTAG NCI1 NCI109 ENZYMES D&D PPIs CATH1 CATH2

Max # vertices 28 111 111 126 5748 232 568 568

Min # vertices 10 3 4 2 30 3 44 143

Mean # vertices 17.93 29.87 29.68 32.63 284.32 109.60 205.70 308.03

Number of graphs 188 4110 4127 600 1178 86 712 190

Number of disjoint graphs 0 580 608 31 21 0 18 7

Proportion of disjoint graphs 0% 14.11% 14.73% 5.16% 1.7% 0% 2.53% 3.68%
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4.3.5 Experiments on Bioinformatics Datasets

Experimental setup: We evaluate the performance of our proposed depth-based com-

plexity traces on the graph datasets abstracted from the bioinformatics database. We also

compare them with alternative state-of-the-art graph based learning methods mentioned

in Section 4.3.4. For our proposed methods, the graph complexity based methods and the

CIZF, we calculate the vectors or characterization values of graphs as features. We then

perform 10-fold cross-validation using the Support Vector Machine Classification (SVM)

associated with the Sequential Minimal Optimization (SMO) [97] and the Pearson VII

universal kernel (PUK) [98] to evaluate the performance of our methods and the alterna-

tive methods. We use nine folds for training and one fold for testing. For each method,

we repeat the experiments 10 times. All parameters of the SMO-SVMs were optimized

for each method on different datasets on a Weka workbench. We report the average clas-

sification accuracies of each method in Tables 4.2 and 4.3. The runtime is measured

under a Matlab R2011a running on a ThinkPad T61p with an Intel(T7500) 2.2GHz 2-

Core processor and 2GB RAM. The runtime of each method is shown in Tables 4.5 and

4.6. Here ECTS, ECTV, ECTFV and ECTFP represent the entropy complexity traces as-

sociated the Shannon entropy, von Neumann entropy, and Shannon entropies associated

with information functionals fV2 and fP2 respectively, while EDCTS, EDCTV, EDCTFV

and EDCTFP represent the entropy difference complexity trace using the same entropies

respectively. Note that, for a sample graph the entropy difference complexity trace can

be seen as a lineal transformation from the entropy complexity trace, by just adding the

negative largest layer expansion subgraph entropy value for each element of the entropy

complexity trace. This can be observed from Eq.(4.11), Eq.(4.12) and Eq.(4.13). Howev-

er, the experimental results for both the entropy and entropy difference complexity traces

will still be different. The reason for this is that the entropy values of the largest layer ex-

pansion subgraphs from different sample graphs may be different, since each largest layer

expansion subgraph is a corresponding sample graph itself. In other words, for different
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entropy traces, the entropy difference complexity traces are not computed by shifting the

same distance for the entropy complexity traces in the original principle space.

We also compare our proposed methods with several state-of-the-art graph kernels

mentioned in Section 4.3.4. For each graph kernel method, we compute the kernel matrix

on each dataset. For each kernel matrix we perform Principle Component Analysis (PCA)

[25] to embed the graphs into a feature space as vectors. Any standard machine learning

algorithm can hence be performed to classify the graphs in the principle component fea-

ture space. We also perform 10-fold cross-validation using the SMO-SVM Classification

to evaluate the performance of the kernels. We use nine folds for training and one fold

for testing. We repeat the experiments for 10 times. We report the average accuracies

of different kernels on different datasets. The runtime of these methods were measured

under a Matlab R2011a on a 2.5GHz Intel 2-Core processor (i.e., i5-3210m). We report

these accuracies and runtime in Tables 4.4 and 4.7.

Table 4.2: Performance of proposed complexity traces

Datasets ECTS ECTV ECTFV ECTFP EDCTS EDCTV EDCTFV EDCTFP

MUTAG 85.10 88.29 85.63 85.63 85.63 82.44 81.38 81.38

NCI1 68.32 69.74 66.95 67.73 67.49 67.95 66.37 66.13

NCI109 68.96 69.81 68.13 67.91 66.94 65.93 65.44 64.33

ENZYMES 38.00 38.83 35.00 35.33 29.00 32.16 27.17 28.33

D&D 76.49 75.89 77.58 77.00 75.32 76.15 73.09 73.26

PPIs 73.25 76.74 73.25 75.58 76.74 77.90 79.07 79.07

CATH1 98.87 98.73 97.75 97.75 94.80 88.76 94.10 94.38

CATH2 78.42 80.47 78.94 80.47 77.89 72.10 77.36 77.36

The unit of an accuracy value is %.

Experimental Results: The graphs in the D&D dataset have on average more than 284

vertices and at maximum 5748 vertices. The result for the D&D dataset from our entropy

complexity trace with the entropy associated with the information functional fV2 achieves

the highest accuracy for the proposed complexity traces. The accuracy of the complexity
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Table 4.3: Performance comparisons of graph complexity based methods and the CIZF

Datasets VNTD VNGE SGE FV1 FV2 FP1 FP2 CIZF

MUTAG 83.51 85.10 87.76 84.57 84.57 85.63 85.63 80.85

NCI1 −− 62.15 61.84 62.04 62.04 62.09 62.09 60.05

NCI109 −− 62.05 62.05 62.15 62.15 62.37 62.37 62.79

ENZYMES 30.50 22.33 23.16 24.17 24.17 23.33 23.33 32.00

D&D −− 74.70 75.46 −− 76.31 −− 75.97 −−

PPIs 67.44 63.95 67.44 70.93 70.93 70.93 70.93 70.93

CATH1 −− 98.48 98.87 −− 96.91 −− 96.91 −−

CATH2 −− 75.78 76.31 −− 76.31 −− 76.31 −−

The unit of an accuracy value is %.

−−: can not be finished in one day or the feature values are infinite.

trace outperforms that of all the graph complexity based methods, the coefficients from

the Ihara zeta function (CIZF) method, and all the graph kernel methods for comparisons.

The SPGK kernel, the random walk graph kernel, VNTD, FV1, FV2 and CIZF cannot

finish the computation on the dataset, since they generate burdensome computation. The

accuracies of the other proposed complexity traces outperform or are competitive to those

of these alternative methods. The runtime of our proposed complexity traces outperforms

or is competitive to that of all the alternative methods.

The graphs in the MUTAG dataset are of similar sizes, but correspond to very dif-

ferent structures. On this dataset, the entropy complexity trace with the von Neumann

entropy achieves the highest accuracy of our proposed complexity traces. The accuracy

of the complexity trace outperforms that of all the alternative methods. The accuracies

of the other proposed complexity traces outperform or are competitive to those of these

alternative methods. The runtime of our proposed complexity traces outperforms or is

competitive to that of all the alternative methods.

The graphs in the NCI1 and NCI109 datasets are of similar sizes, but exhibit very dif-

ferent structures. The entropy complexity trace with the von Neumann entropy achieves

the highest accuracies of our proposed complexity traces on the two datasets respectively.
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Table 4.4: Performance comparisons of graph kernel methods

Datasets WL random walk SPGK graphlet count

MUTAG 84.57 86.17 87.23 84.04

NCI1 73.00 −− 70.61 67.71

NCI109 73.28 −− 70.93 67.32

ENZYMES 38.50 25.33 31.16 34.00

D&D 75.63 −− −− 77.33

PPIs 73.25 53.48 67.44 82.55

CATH1 98.17 −− 98.73 98.73

CATH2 73.15 −− 75.26 74.73

The unit of an accuracy value is %.

−−: can not be finished in one day.

The accuracies of the complexity trace on the two datasets outperform those of all the

graph complexity based methods, the CIZF method and most of the graph kernel meth-

ods. The accuracies are lower than those of the WL kernel and the SPGK kernel. The

VNTD and the random walk kernel were too computationally burdensome to apply on

these datasets. The accuracies of the other proposed complexity traces outperform or are

competitive to those of these alternative methods exclude the WL kernel. The runtime of

our proposed complexity traces outperforms or is competitive to that of all the alternative

methods.

The graphs in the ENZYMES dataset are of variable sizes. On this dataset, the entropy

complexity trace with the von Neumann entropy achieves the highest accuracy of our

proposed complexity traces. The accuracy of the complexity trace outperforms that of

all the graph complexity based methods, the CIZF method and the graph kernel methods.

The accuracies of the other proposed complexity traces outperform or are competitive

to those of all the alternative methods. The runtime of our proposed complexity traces

outperforms or is competitive to that of all the alternative methods.

The graphs in the PPIs dataset are of variable sizes. On this dataset, the entropy

difference complexity trace with the entropy associated with the information functionals
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fV2 or fP2 achieves the highest accuracy of our proposed complexity traces. The accuracy

of the complexity trace outperforms that of all these alternative methods excluding the

graphlet count graph kernel. The accuracies of the other complexity traces outperform

or are competitive to those of other alternative methods. The runtime of our proposed

complexity traces outperforms or is competitive to that of all these alternative methods.

The graphs in the CATH1 dataset are of variable sizes. On this dataset, the entropy

complexity trace with the Shannon entropy associated with the steady state random walk

achieves the highest accuracy of our proposed complexity traces. The accuracy of the

complexity trace outperforms that of all these alternative methods. The VNTD and the

random walk kernel were too computationally burdensome to apply on the dataset. The

accuracies of the other complexity traces outperform or are competitive to those of all the

alternative methods. The runtime of our proposed complexity traces outperforms or is

competitive to that of all these alternative methods.

The graphs in the CATH2 dataset are of variable sizes. On this dataset, the entropy

complexity traces with the von Neumann entropy and the entropy associate with the infor-

mation functional fP2 achieve the highest accuracies of our proposed complexity traces.

The accuracies of the complexity traces outperform those of all these alternative methods.

The VNTD and the random walk kernel were too computationally burdensome to apply

on the dataset. The accuracies of the other complexity traces outperform those of all the

alternative methods. The runtime of our proposed complexity traces outperforms or is

competitive to that of all these alternative methods.

Discussions on Experimental Results: On the whole, our proposed complexity traces

can easily scale up to large graphs with even thousands of vertices. The accuracies of our

proposed complexity traces outperform most of the alternative methods on most datasets

used in the experiments. Only on the NCI1 and NCI109 datasets, the accuracies of the

WL kernel and the SPGK kernel are competitive to or better than our methods. This is

caused by the large proportion of disjoint graphs in the two datasets. From Table 4.1,
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Table 4.5: Runtime of proposed complexity traces

Datasets ECTS ECTV ECTFV ECTFP EDCTS EDCTV EDCTFV EDCTFP

MUTAG 1” 1” 1” 1” 1” 1” 1” 1”

NCI1 4” 4” 40” 40” 4” 4” 40” 40”

NCI109 4” 4” 40” 40” 4” 4” 40” 40”

ENZYMES 1” 1” 4” 4” 1” 1” 4” 4”

D&D 42” 44” 23′29” 23′29” 42” 44” 23′29” 23′29”

PPIs 1” 1” 4” 4” 1” 1” 4” 4”

CATH1 5” 5” 50” 50” 5” 5” 50” 50”

CATH2 2” 2” 25” 25” 2” 2” 25” 25”

Table 4.6: Runtime comparisons of graph complexity based methods and the CIZF

Datasets VNTD VNGE SGE FV1 FV2 FP1 FP2 CIZF

MUTAG 19′21” 1” 1” 1” 1” 1” 1” 1”

NCI1 > 1day 1” 1” 4” 4” 4” 4” 26”

NCI109 > 1day 1” 1” 4” 4” 4” 4” 26”

ENZYMES 4h37” 1” 1” 1” 1” 1” 1” 1”

D&D > 1day 4” 3” −− 1′22” −− 1′22” −−

PPIs 52′27” 1” 1” 1” 1” 1” 1” 55”

CATH1 > 1day 1” 1” −− 8” −− 8” −−

CATH2 > 1day 1” 1” −− 3” −− 3” −−

−−: the feature values are infinite.

there are 14.11% and 14.73% of graphs are disjoint for the three datasets. According

to the definitions of our proposed complexity traces, the centroid vertex is identified by

computing the minimum variance of its shortest path lengths, and the complexity trace

for a graph is constructed on the centroid expansion subgraphs from the centroid vertex.

Since there are no connections (e.g., infinite path lengths) between some vertices in the

disjoint graphs, the identification of the centroid vertex in each disjoint graph is unstable.

Moreover, some vertices of a disjoint graph are not included in the centroid expansion

subgraphs. For a graph having disjoint structure, our complexity traces can only utilize

the biggest component of the graph. In other word, the other smaller components of a
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Table 4.7: Runtime comparisons of graph kernel methods

Datasets WL random walk SPGK graphlet count

MUTAG 1” 8” 1” 3”

NCI1 2′27” > 1days 9” 1′35”

NCI109 2′27” > 1days 9” 1′35”

ENZYMES 20” 9′52” 4” 33”

D&D 11′ > 1days > 1day 21′51”

PPIs 8” 14” 7” 3′20”

CATH1 2′41” > 1day 6′ 19′9”

CATH2 12” > 1day 2′55” 7′42”

disjoint graph will be discarded. However, even under such a disadvantageous situations,

our proposed complexity traces can still outperform or be competitive to most of the alter-

native methods except the WL and SPGK kernels on the two datasets. For the MUTAG,

ENZYMES, D&D, PPIs, CATH1 and CATH2 datasets each of which has no or minor

disjoint graphs, our complexity traces can outperform the WL and SPGK kernels. Fur-

thermore, on all datasets used in our experiments, the runtime of our proposed complexity

traces outperforms or is competitive to that of the graph complexity based methods and

the CIZF method, and also outperforms that of all the graph kernel methods.

Furthermore, the accuracies of proposed complexity traces with different entropies

are obviously higher than those of the original entropies. This reveals that our proposed

depth-based representations of graphs can capture richer structures of graphs. Compared

to the single value based complexity measure methods of graphs (i.e., VNTD, VNGE,

SGE, FV1, FV2, FP1 and FP2), our complexity traces of graphs can reflect a high dimen-

sional and comprehensive complexity information of graphs. Through the experimental

evaluations, we also observe that the performance of the proposed depth-based complex-

ity traces of graphs are related to that of different entropies. The higher accuracy of an

entropy can achieve, the higher accuracy of the entropy or entropy difference complexity

trace associated with the entropy can achieve. The performance of the von Neumann en-
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tropy is better than the other entropies. The accuracies of the entropy complexity traces

of graphs are higher than that of the entropy difference complexity traces of graphs, but

the runtime of them is the same.

4.4 Conclusion

In this chapter, we have shown how to construct depth-based complexity traces for a

graph. Our methods were motivated by the ideas of the entropy based graph complexity

measure and the depth-based representations of graphs. We have identified a centroid

vertex by computing the minimum variance of its shortest path lengths, and thus obtained

a family of expansion subgraphs with increasing layer. The complexity traces of a graph

have been constructed by measuring how the graph entropies or the entropy differences

vary with the subgraphs of increasing layer. Experiments on graph datasets abstracted

from bioinformatics and image data demonstrate the effectiveness and efficiency of our

complexity traces in graph classification.
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Chapter 5
A Depth-Based Matching Kernel for
Unattributed Graphs

In this chapter, we present our third contribution. We develop a novel unattributed graph

kernel by matching the depth-based substructures in graphs. We theoretically show the

relationship of the depth-based graph kernel and the all subgraph kernel, and then we ex-

plain the reasons for the effectiveness of the new graph kernel. The depth-based matching

kernel significantly overcomes the shortcoming of neglecting structural correspondence

that arises in the all subgraph kernel (or the R-convolution kernels). We explore our

depth-based matching kernel on several graph datasets abstracted from computer vision

databases. The experimental results demonstrate that our new kernel can easily outper-

form the existing state-of-the-art graph kernels in terms of the classification accuracy.

Chapter outline

The remainder of this chapter is organized as follows. Section 5.1 presents the definition

of h-layer depth-based representation around each vertex for a graph. Section 5.2 presents

the definition of the new graph matching kernel. Section 5.3 provides the experimental

evaluation. Finally, Section 5.4 concludes our work.
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5.1 h-layer Depth-based Representations

In this section, we show how to compute an h-layer depth-based representation around

each vertex of a graph. We commence by generalizing the depth-based complexity trace

around the centroid vertex developed in Chapter 4.

For an undirected graph G(V,E) and its shortest path matrix SG, let NK
v be defined

as NK
v = {u ∈ V | SG(v, u) ≤ K}, where SG(v, u) is the shortest path length between

vertices v and u. For G(V,E), the K-layer expansion subgraph GK
v (VK

v ; EK
v ) around

vertex v is  VK
v = {u ∈ NK

v };

EK
v = {u, v ∈ NK

v , (u, v) ∈ E}.
(5.1)

Assume Lmax is the greatest length of the shortest paths from v to the remaining

vertices of G(V,E). If Lv ≥ Lmax, the Lv-layer expansion subgraph is G(V,E) itself.

Definition 5.1 (h-layer depth-based representation) For a graph G(V,E) and a vertex

v ∈ V , the h-layer depth-based representation around the vertex v of G(V,E) is a h-

dimensional vector

Dh
G(v) = [HS(G1

v), · · · , HS(GK
v ), · · · , HS(Gh

v )]
T (5.2)

where K (K ≤ h ≤ Lv) is the length of the shortest path from the vertex v to the re-

maining vertices in G(V,E), GK
v (VK

v ; EK
v ) is the K-layer expansion subgraph of G(V,E)

around the vertex v, and HS(GK
v ) is the random walk Shannon entropy of GK

v and is

defined in Eq.(3.9). 2

For a graph G(V,E) and a vertex v ∈ V , computing the h-layer depth-based repre-

sentation Dh
G(v) of G(V,E) around v requires time complexity O(h|V |2). This follows

the definition in Eq.(5.1). For the graph G(V,E), computing the shortest path matrix us-

ing the Dijkstra’s algorithm requires time complexity O(|V |2). Computing the Shannon

entropies of the h K-layer expansion subgraphs, which are derived from v, requires time

complexity O(h|V |2). Hence, the whole time complexity is O(h|V |2). This indicates
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that the h-layer depth-based representation around a vertex of a graph can be efficiently

computed. Key to this efficiency is that the Shannon entropy on an expansion subgraph

only requires time complexity O(|V |2). By contrast, in [17] the intrinsic complexity mea-

sure of an expansion subgraph for measuring the depth-based complexity requires time

complexity O(|V |5).

The h-layer depth-based representation Dh
G(v) characterizes the depth-based com-

plexity of G(V,E) with regard to the vertex v in a h dimensional feature space. It cap-

tures the rich depth-based complexity characteristics of substructures around the vertex

v in terms of the entropies of the K-layer expansion subgraphs with K increasing from

1 to h. In contrast, the existing graph kernels in the literatures [75, 76, 108] tend to

compute similarities on global subgraphs of limited sizes and can only capture restricted

characteristics of graphs.

5.2 Depth-based Graph Matching Kernel

We describe how the depth-based representations for graphs can be used for graph match-

ing. We measure graph similarities based on the proposed graph matching method and

thus define a novel depth-based graph kernel.

5.2.1 Depth-based Graph Matching

We develop a matching method similar to that introduced in [19] for point set matching,

which computes an affinity matrix in terms of the distances between points. In our work,

for a vertex v of G(V,E), we treat the h-layer depth-based representations Dh
G(v) as the

point coordinate associated with v. Let Gp(Vp, Ep) and Gq(Vq, Eq) be a pair of graphs, we

use the Euclidean distance between the depth-based representations Dh
Gp
(vi) and Dh

Gq
(uj)

as the distance measure of pairwise vertices vi ∈ Vp and uj ∈ Vq. The affinity matrix
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element R(i, j) is defined as

R(i, j) =
√
[Dh

Gp
(vi)−Dh

Gq
(uj)]T [Dh

Gp
(vi)−Dh

Gq
(uj)]

= ∥ Dh
Gp
(vi)−Dh

Gq
(uj) ∥2. (5.3)

where R is a |Vp| × |Vq| matrix. The element R(i, j) represents the dissimilarity between

the vertex vi in Gp(Vp, Ep) and the vertex uj in Gq(Vq, Eq). The rows of R(i, j) index the

vertices of Gp(Vp, Ep), and the columns index the vertices of Gq(Vq, Eq).

If R(i, j) is the smallest element both in row i and in column j, there should be

a one-to-one correspondence between the vertex vi of Gp(Vp, Ep) and the vertex uj of

Gq(Vq, Eq). We record the state of correspondence using the correspondence matrix C ∈

{0, 1}|Vp|×|Vq | satisfying

C(i, j) =


1 if R(i, j) is the smallest element

both in row i and in column j;

0 otherwise.

(5.4)

Eq. (5.4) implies that if C(i, j) = 1, the vertices vi and vj are matched.

Note that, in row i or column j there may be two or more elements satisfying Eq.(5.4).

In other words, for a pair of graphs, a vertex from a graph may have two or more than

two matched vertices from the other graph. To assign a vertex one matched vertex at

most, we update the matrix C by employing the Hungarian method that is widely used

for solving the assignment problem (e.g., the bipartite graph matching problem) in poly-

nomial time [99]. Here the matrix C ∈ {0, 1}|Vp|×|Vq | can be seen as the incidence matrix

of a bipartite graph Gpq(Vp, Vq, Epq), where Vp and Vq are the two sets of partition parts

and Epq is the edge set. By performing the Hungarian algorithm on the incidence matrix

C ∈ {0, 1}|Vp|×|Vq | (i.e., the correspondence matrix of Gp and Gq) of the bipartite graph

Gpq, we assign each vertex from Gp or Gq at most one matched vertex from the other

graph Gq or Gp. Note finally that, directly performing the Hungarian algorithm on the

matrix R can also assign each vertex from Gp or Gq an unique matched vertex. However,
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it cannot guarantee that each identified element is the smallest both in the row and column

in R. This is because some vertices will not have matched vertices.

For a pair of graphs Gp(Vp, Ep) and Gq(Vq, Eq) (|Vp| = |Vq| = n). Computing the cor-

respondence matrix C ∈ {0, 1}|Vp|×|Vq | (i.e., the final correspondence matrix updated by

the Hungarian algorithm) requires time complexity O(hn3). This follows the definition in

Section 5.2.1. For Gp, computing its n h-layer depth-based representations derived from

each of its vertices requires time complexity O(hn3), and it is the same for Gq. Com-

puting each element of the affinity matrix R requires time complexity O(h), and hence

computing the whole affinity matrix R requires time complexity O(hn2). The compu-

tation of the correspondence matrix C need to enumerate all the n2 pairs of elements in

R and thus requires time complexity O(n2). The Hungarian algorithm on the matrix C

requires time complexity O(n3). As a result, the whole time complexity is O(hn3).

5.2.2 A Depth-based Graph Kernel

Based on the graph matching strategy described in Section 5.2.1, we define a depth-based

graph kernel function.

Definition 5.2 (The depth-based graph kernel) Consider a pair of graphs Gp(Vp, Ep)

and Gq(Vq, Eq). Based on the definitions in Eq.(5.2), Eq.(5.3) and Eq.(5.4), and the Hun-

garian algorithm, we compute the correspondence matrix C. The depth-based graph ker-

nel k(h)
DB using the h-layer depth-based representations of the graphs is

k
(h)
DB(Gp, Gq) =

|Vp|∑
i=1

|Vq |∑
j=1

C(i, j). (5.5)

which counts the number of matched vertex pairs between Gp(Vp, Ep) and Gq(Vq, Eq). 2

Lemma 5.1 The depth-based graph kernel k(h)
DB is positive definite (pd). 2

Proof Intuitively, the proposed depth-based graph kernel is pd because it counts pairs of

matched vertices (i.e., the number of smallest isomorphic subgraphs). More formally, let
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the base kernel k be a function counting pairs of matched vertices in the pair of graphs

Gp(Vp, Ep) and Gq(Vq, Eq)

k(Gp, Gq) = k
(h)
DB(Gp, Gq) =

∑
vi∈Vp

∑
uj∈Vq

δ(vi, uj). (5.6)

where

δ(vi, uj) =

 1 if C(i, j) = 1;

0 otherwise.
(5.7)

where δ is the Dirac kernel, that is, it is 1 if the arguments are equal, and 0 otherwise

(i.e., it is 1 if a pair of vertices are matched and 0 otherwise). Hence the proposed kernel

function k
(h)
DB is the sum of several positive definite Dirac kernels, and is thus pd. �

Time Complexity: The depth-based graph kernel k(h)
DB on a pair of graphs Gp(Vp, Ep) and

Gq(Vq, Eq) (|Vp| = |Vq| = n) requires time complexity O(hn3). This follows the defini-

tion in Section 5.2.1. For the pair of graphs Gp(Vp, Ep) and Gq(Vq, Eq), computing their

correspondence matrix C in terms of h-layer depth-based representations requires time

complexity O(hn3), and counting the number of matched vertex pairs from the matrix C

needs to enumerate all the n2 pairs of elements in C. Hence, the whole time complexity

of the depth-based graph kernel k(h)
DB is O(hn3).

The time Complexity analysis indicates that our depth-based graph kernel k(h)
DB be-

tween pairs of graphs can be computed in polynomial time. Key to this efficiency is that

the required h-layer depth-based representations and the corresponding matching can be

efficiently computed.

The depth-based graph kernel is related to the depth-based representation defined in

Chapter 4. However, there are two significant differences. First, the depth-based rep-

resentation in Chapter 4 is computed by measuring the complexities of subgraphs from

the centroid vertex, which is identified by evaluating the minimum shortest path length

variance to the remaining vertices. By contrast, we compute the h-layer depth-based rep-

resentation for each vertex as a point coordinate. Second,the depth-based representation

from the centroid vertex can be seen as an embedding vector. Embedding a graph into
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a vector tends to approximate the structural correlations in a low dimensional space, and

thus leads to information loss. By contrast, the depth-based graph kernel computed by

matching the h-layer depth-based representation characterizes graphs in a high dimen-

sional space and thus better preserves graph structure.

5.2.3 The Depth-based Graph Kernel on N Graphs

For a graph dataset having N graphs, the kernel matrix of the proposed kernel can be com-

puted using the following computational steps: 1) For each graph, compute the h-layer

depth-based representation around each vertex. 2) Compute the corresponding matrix for

each pair of graphs based on their depth-based representations. 3) Compute the kernel

value for each pair of graphs based on their corresponding matrix.

For N graphs each of which has n vertices, the depth-based graph kernel on al-

l pairs of these graphs requires time complexity O(Nhn3 + N2hn2). This is because

the step 1 requires time complexity O(Nhn3). The step 2 requires time complexity

O(N2hn2+N2n2), and step 3 requires time complexity O(N2n2). As a result, the whole

time complexity is O(Nhn3 +N2hn2).

5.2.4 Linkage to the All Subgraph Kernel

The depth-based graph kernel can be defined in another manner that elucidates its relation

to the all subgraph kernel. Let Gp(Vp, Ep) and Gq(Vq, Eq) be two graphs. The all subgraph

kernel [108] is defined as

ksub(Gp, Gq) =
∑

Sp⊑Gp

∑
Sq⊑Gq

kiso(Sp, Sq), (5.8)

where

kiso(Sp, Sq) =


1 if Sp ≃ Sq,

i.e., Sp and sq are isomorphic

0 otherwise.

(5.9)

87



Theorem 5.1 The depth-based graph kernel kh
DB is equivalent to the all subgraph kernel.

Proof. We prove this theorem by revealing the relationship between the depth-based

representation and the subgraph isomorphism. Based on Eq.(5.2) and Definition 5.1, the

h-layer depth-based representations around a vertex v of Gp(Vp, Ep) and a vertex u of

Gq(Vq, Eq) are

Dh
Gp
(v) = {HS(G1

p;v), · · · , HS(GK
p;v), · · · , HS(Gh

p;v)},

and

Dh
Gq
(u) = {HS(G1

q;u), · · · , HS(GK
q;u), · · · , HS(Gh

q;u)}.

Clearly, the expansion subgraphs Gh
p;v and Gh

q;u encapsulate other smaller subgraphs

GK
p;u and GK

q;u respectively. According to the observations in [17], each depth-based rep-

resentation can be seen as a casual trajectory leading v to Gh
p;v or u to Gh

q;u. Based on the

depth-based matching defined in Section 5.2.1, if the vertices v and u are matched the

two trajectories are close together on a principle space. The h-layer expansion subgraphs

Gh
p;v and Gh

q;u can be seen as approximate isomorphism, i.e., Gh
p;v ≃ Gh

q;u. As a result, the

proposed kernel kh
DB can be re-written as

kh
DB(Gp, Gq) =

∑
Sp⊑Gp

∑
Sq⊑Gq

kiso(Sp, Sq), (5.10)

where

kiso(Sp, Sq) =


1 if Sp = Gh

p;v and Sq = Gh
q;u,

and v and u are matched,

0 otherwise.

(5.11)

Eqs.(5.8) and (5.10) indicate that both the kernels ksub and kh
DB need to identify all

pairs of isomorphic subgraphs. For ksub and kh
DB, each isomorphic subgraph pair adds

an unit value to the kernel value. Thus, both the depth-based kernel and the all subgraph

kernel count the number of isomorphic subgraph pairs and are thus equivalent. �
Theorem 5.1 and its proof highlight the following difference between the depth-based

graph kernel and the all subgraph kernel. a) For the depth-based graph kernel, only the
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subgraphs around a pair of matched vertices having a maximum topology distance K are

evaluated with respect to isomorphism. While for the all subgraph kernel, any pair of sub-

graphs are evaluated for identifying the isomorphism. b) The depth-based graph kernel

overcomes the NP-hard problems of measuring all possible pairs of subgraphs arising in

the all subgraph kernel. c) For the depth-based graph kernel, any pair of isomorphism

subgraphs are identified by a pair of matched vertices. Hence there is a locational cor-

respondence between the isomorphism subgraphs with respect to global graphs. On the

other hand, for the all subgraph kernel, a pair of subgraphs having no location correspon-

dence may also be seen as isomorphism.

5.3 Experimental Results

In this section, we empirically compare our new depth-based matching kernel with several

alternative state-of-the-art graph kernels on several standard graph datasets. Unlike other

chapters (i.e., Chapter 3, 4 and 6) that mainly use graph datasets abstracted from bioin-

formatics, in this chapter, we use graph datasets abstracted from computer vision. The

reasons of using computer vision datasets are twofold. First, many computer vision appli-

cations require the correspondence information between pairwise feature points that are

abstracted from images or 3D shapes, for the objective of similarity measure [102]. For

an instance, one has two graphs abstracted from two digital images both containing the

same object, based on different viewpoints. Here, each vertex represents a feature point.

Identifying the correspondence information between pairwise vertices or substructures

from the identical region is our concern, and can provide us an elegant way of reflecting

precise similarity between the images or shapes (e.g., the similarity measure from the en-

tropic matching that is developed by Escolano et al. in [102]). Second, graph matching

has been proven a powerful tool for identifying the correspondence information between

pairwise vertices (i.e., feature points) in computer vision applications. As a result, the
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Table 5.1: Classification accuracy (in % ± standard error) comparisons using C-SVM.

Datasets DB WLSK SPGK GCGK

COIL5 74.22 ± .41 33.16± 1.01 69.97± .92 67.00± .55

BAR31 69.40 ± .56 58.53± .53 55.73± .44 22.96± .65

BSPHERE31 56.43 ± .69 42.10± .68 48.20± .76 17.10± .60

GEOD31 42.83 ± .50 38.20± .68 38.40± .65 15.30± .68

new matching kernel can easily indicate its main advantage of identifying the correspon-

dence information, on computer vision datasets. The advantage is unavailable for most

existing graph kernels from R-convolution. Finally, in this section, we also evaluate the

computational efficiency of our new kernel.

5.3.1 Datasets

We explore the performance of our kernel on computer vision datasets. These datasets

are COIL5, BAR31, BSPHERE31 and GEOD31. For the COIL5 dataset, each graph

represents an image. For the BAR31, BSPHERE31 and GEOD31 datasets, each graph

represents a 3D shape. Note that, each graph in these dataset is unattributed, for some

kernels which can accommodate the attributed graphs we use the vertex degree as the

label of a vertex. Details of these datasets are described as follows.

COIL5: We establish a COIL5 dataset from the COIL database. The COIL image

database consists of images of 100 3D objects. We use the images for the first five ob-

jects. For each object we employ 72 images captured from different viewpoints. For each

image we first extract corner points using the Harris detector, and then establish Delaunay

graphs based on the corner points as vertices. As a result, in the dataset there are 5 classes

of graphs, and each class has 72 testing graphs. The number of maximum, minimum and

average vertices for the dataset are 241, 72 and 144.90 respectively.

BAR31, BSPHERE31 and GEOD31: The SHREC 3D Shape database consists of 15

classes and 20 individuals per class, that is 300 shapes [100]. This is a usual bench-

mark in 3D shape recognition. From the SHREC 3D Shape database, we establish three
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Table 5.2: Rand index for K-means method.
Datasets DB WLSK SPGK GCGK

COIL5 0.4436 0.3503 0.4124 0.4119

BAR31 0.2319 0.2047 0.1734 0.1638

BSPHERE31 0.1615 0.1304 0.1582 0.1210

GEOD31 0.1502 0.1136 0.1142 0.1002

graph datasets named BAR31, BSPHERE31 and GEOD31 datasets through three map-

ping functions. These functions are a) ERG barycenter: distance from the center of

mass/barycenter, b) ERG bsphere: distance from the center of the sphere that circum-

scribes the object, and c) ERG integral geodesic: the average of the geodesic distances to

the all other points. The number of maximum, minimum and average vertices for the three

datasets are a) 220, 41 and 95.42 (for BAR31), b) 227, 43 and 99.83 (for BSPHERE31),

and c) 380, 29 and 57.42 (for GEOD31), respectively.

5.3.2 Experiments on Graph Datasets

Experimental Setup: a) First, we evaluate the performance of our depth-based matching

kernel (h = 10) (DB) on classification problems. We also compare our kernel with several

alternative state-of-the-art graph kernels. These graph kernels include 1) the Weisfeiler-

Lehman subtree kernel (WLSK) [7], 2) the shortest path graph kernel (SPGK) [39], and

3) the graphlet count graph kernel (GCGK) [82]. For our DB kernel, we set h as 10.

For the WLSK kernel, we set the highest dimension (i.e., the highest height of subtrees)

of the Weisfeiler-Lehman isomorphism as 10. For the GCGK graph kernel, we set the

size of a graphlet as 3. For each kernel, we compute the kernel matrix on each graph

dataset. We perform 10-fold cross-validation using the C-Support Vector Machine (C-

SVM) Classification to compute the classification accuracies, using LIBSVM [83]. We

use nine folds for training and one for testing. All the C-SVMs were performed along

with their parameters optimized on each dataset. We report the average classification

accuracies and standard errors for each kernel in Table.5.1.
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(d) For GCGK kernel

Figure 5.1: Embedding from kPCA for the COIL5 dataset.

b) Second, we evaluate the performance of different kernels on clustering problems.

We commence by performing the kernel Principle Component Analysis (kPCA) on the

kernel matrix to embed graphs into a 2-dimensional principal space. We visualize the

embedding results of each kernel using the first two principal components. The embed-

ding results on the COIL5, BAR31, BSPHERE31 and GEOD31 datasets are shown in

Fig.5.1, Fig.5.2, Fig.5.3 and Fig.5.4, respectively. Moreover, we also show the Euclidean

distance matrices of these embedding results in the principal space for each kernel. The

Euclidean distance matrices on the COIL5, BAR31, BSPHERE31 and GEOD31 datasets

are shown in Fig.5.5, Fig.5.6, Fig.5.7 and Fig.5.8, respectively. Note that, for the BAR31,
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(c) For SPGK kernel
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(d) For GCGK kernel

Figure 5.2: Embedding from kPCA for the BAR31 dataset.

BSPHERE31 and GEOD31 datasets, we only visualize the embedding points and Eu-

clidean distance matrices of the first six classes of graphs. Finally, to place our analysis

of graph clustering on a more quantitative footing, for each kernel we apply the K-means

method to all the kernel embeddings. We calculate the Rand Index for the resulting clus-

ters. The Rand indicating each kernel is listed in Table.5.2.

c) Third, we investigate whether the different kernels can learn the structural variation

within a graph class. For each kernel and its embedding result on the COIL5 dataset, we

mark the points of the first ten graphs in the embedding principal space. These graphs are

abstracted from the first ten images of the first object in the COIL image database. Since
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(b) For WLSK kernel.
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(c) For SPGK kernel.
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(d) For GCGK kernel.

Figure 5.3: Embedding from kPCA for the BSPHERE31 dataset.

the ten images are captured from different viewpoints spaced at intervals of 5◦ around the

object, the ten points are marked with the view number which corresponds to the camera

angle. The results are shown in Fig.5.9.

Experimental Results and Discussions: In terms of the classification and clustering ac-

curacies, we make three observations. a) First, we observe that the accuracies of our

DB kernel are the greatest for all datasets. The performance of our DB kernel obvious-

ly exceeds that of all other kernels. The reason for its effectiveness is that the required

depth-based representations of graphs used for DB kernel establishes a substructure loca-

tion correspondence through the depth-based matching. In contrast, the other alternative
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(b) For WLSK kernel.
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(c) For SPGK kernel.
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(d) For GCGK kernel.

Figure 5.4: Embedding from kPCA for the GEOD31 dataset.

kernels cannot reflect the substructure location correspondence. Furthermore, we observe

that the accuracy of WLSK kernel is obviously lower than other kernels on the COIL5

dataset. The reason for this is that the WLSK kernel requires a tree-index (TI) method

that identifies a subtrees for each vertex by augmenting the label of the vertex using the la-

bels of its neighbouring vertices. For the COIL5 dataset, each graph is a Delaunay graph.

Through these graphs, we observe that the degree of each vertex (i.e., the label of each

vertex) is very similar. As a result, the WLSK kernel can only identify few distinguishable

subtrees. This reveals that the WLSK kernel based on the TI method is not suitable for

Delaunay graphs.
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Figure 5.5: Distance matrix for the COIL5 dataset.

b) Second, in terms of the embedding results, it is clear that our DB kernel produces

the best clusters. The different classes are separated better than other kernels on any

dataset. Note that, for the COIL5 dataset the 72 images for each object are taken from

different viewing directions spaced at intervals of 5◦ around the object. Hence, the em-

bedded graphs for each class are expected to form a circular trajectory rather than a cluster

in the feature space. In the light of this observation, our method shows a greater repre-

sentational power in terms of giving a more trajectory-like embedding than the alternative

methods. Moreover, in terms of the Euclidean distance matrices we observe that all the

kernels have a well-defined block structure on the COIL5 dataset. However, it is clear that
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Figure 5.6: Distance matrix for the BAR31 dataset.

our DB kernel yields a stronger structure than other kernels on the BAR31, BSPHERE31

and GEOD31 datasets. Finally, Table 5.2 indicates that our DB kernel outperforms all the

alternative kernels for all the object classes studied on any dataset. These observations

verify that our DB kernel has better ability to distinguish different classes of graphs.

c) Finally, through Fig.5.9 we observe that our DB kernel produces a clear trajectory

and the neighboring images in the sequence are close together in the embedding principal

space. In contrast, all other kernels hardly result in a trajectory. This verifies that our DB

kernel learns the structural variation within a graph class better than all other kernels.

Comparisons with Increasing h: To take our study one step further, we evaluate the per-
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Figure 5.7: Distance matrix for the BSPHERE31 dataset.

formance of our DB graph kernel on graph datasets with increasing h. Here, we evaluate

how the classification accuracies vary with increasing h (i.e., h = 1, 2, . . . , 10). We report

the results in Fig.5.10, in which the x-axis gives the varying of h, and the y-axis gives the

classification accuracies of our DB kernel. The lines of different colours represent the

results on different datasets. Moreover, we also report the stand error in Table.5.3.

We make two observations through the experimental results. First, we observe that

the classification accuracies tend to become greater with increasing h. This is because the

greater the h, the higher dimensional depth-based complexity information of our kernel

can be captured. Moreover, the accuracies tend to be stable when h > 6. Second, we
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Figure 5.8: Distance matrix for the GEOD31 dataset.

observe that the stand errors tend to become smaller with increasing h.

5.3.3 Computational Evaluation

Finally, we evaluate the computational efficiency (i.e., the CPU runtime) of our DB graph

kernel, and reveal the relationship between the computational overheads and the structural

complexity or number of the associated graphs.

Experimental setup: We evaluate the computational efficiency on randomly generated

graphs with respect three parameters: the graph size n, the layer h of the depth-based rep-
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Figure 5.9: Eigenprojection of graphs.

resentations of graphs, and the graph dataset size N . We vary n = {100, 200, . . . , 2000},

h = {1, 2, . . . , 50} and N = {1, 2, . . . , 500}, separately. a) For the experiments with

graph size n, we generate 20 pairs of graphs with increasing number of vertices. We

report the runtime for computing the kernel values between pairwise graphs (h = 10).

b) For the experiments with the larger parameter h, we generate a pair of graphs each

of which has 200 vertices. We report the runtime for computing the kernel values of the

pair of graphs as a function of h. c) For the graph dataset size N , we generate 500 graph

datasets with an increasing number of test graphs. In each dataset, one graph has 200

vertices. We report the runtime for computing the kernel matrices for each graph dataset
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Figure 5.10: The accuracy with different h layer.

Table 5.3: The standard error with different h layers.

Datasets COIL5 BAR31 BSPHERE31 GEOD31

h=1 ±0.55 ±0.66 ±1.19 ±0.67

h=2 ±0.54 ±0.61 ±1.07 ±0.69

h=3 ±0.50 ±0.64 ±0.94 ±0.68

h=4 ±0.47 ±0.63 ±0.90 ±0.63

h=5 ±0.45 ±0.66 ±0.85 ±0.64

h=6 ±0.46 ±0.57 ±0.83 ±0.62

h=7 ±0.47 ±0.58 ±0.73 ±0.60

h=8 ±0.44 ±0.57 ±0.70 ±0.53

h=9 ±0.41 ±0.56 ±0.71 ±0.54

h=10 ±0.41 ±0.56 ±0.69 ±0.50

(h = 10). The CPU runtime is reported in Fig.5.11, as operated in Matlab R2011b on a

2.5GHz Intel 2-Core processor (i.e., i5-3210m).

Experimental results: Figs.5.11 (a), (b) and (c) show the results for the DB kernel when

varying the parameters n, h and N , respectively. We observe that the runtime scales

quadratically with n, linearly with h, and quadratically with N . These results verify that

our kernel can be computed in polynomial time.
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Figure 5.11: Runtime evaluations.

5.4 Conclusion

In this paper, we have described how to construct a depth-based graph kernel in terms

of matching graphs based on the depth-based representations. The depth-based repre-

sentations for graphs capture a high dimensional depth-based complexity information of

graphs. Furthermore, our matching strategy incorporates structural correspondence into

the kernel. The experimental results demonstrate the effectiveness and efficiency of our

kernel.
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Chapter 6
A Hypergraph Kernel from Subtree
Isomorphism Tests

In this chapter, we present our forth contribution to the design of a hypergraph kernel

based on substructure isomorphism tests. We commence by defining a new directed

Weisfeiler-Lehman (WL) isomorphism test for directed graphs. Then, we define a new

kernel for a pair of hypergraphs by counting the number of pairwise isomorphic substruc-

tures identified by the new WL algorithm from their directed line graphs. We show that

our hypergraph kernel limits the tottering problem that arises in the existing walk and sub-

tree based (hyper)graph kernels. We explore our new hypergraph kernel on either graph or

hypergraph based datasets abstracted from bioinformatics and computer vision databases.

We demonstrate the effectiveness and efficiency of our new hypergraph kernel.

Chapter outline

The remainder of this chapter is organized as follows. Section 6.1 presents the definition

of the directed line graph for a hypergraph. Section 6.2 presents the definition of the

new hypergraph kernel using the new developed directed Weisfeiler-Lehman isomorphis-

m test. Section 6.3 provides the experimental evaluation. Finally, Section 6.4 concludes

our work.
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6.1 Directed Line Graphs

To develop a WL isomorphism test for a pair of hypergraphs, we need to establish a di-

rected line graph for a hypergraph [12]. The directed line graph of a hypergraph is a

dual representation in which each hyperedge is represented by a new vertex. The rea-

sons for using this representation are twofold. First, a pairwise-order representations for

hypergraphs may enable the graph based isomorphism test to be applied to hypergraphs.

Second, the directed line graph will not lead to the order ambiguities that result from the

straightforward expansion or a clique based graph representation of a hypergraph. For a

hypergraph HG(VH , EH), the directed line graph GD(VD,
−→
ED) can be established using

Algorithm 2.

6.1.1 Definitions and Notations

Note that, for step 1 there are potential multiple edges between two vertices in GH(VG, EG)

if the two vertices are encompassed by more than one common hyperedge in HG(VH , EH).

Suppose there are p hyperedges encompassing two vertices in HG(VH , EH). The p hy-

peredges induce p edges separately between the two vertices in GH(VG, EG). For step 3,

it is important to stress that unlike the edge set E of an undirect graph G(V,E),
−→
ED is

a set of directed edges of the directed graph GD(VD,
−→
ED). The adjacency matrix TH of

GD(VD,
−→
ED) is the Perron-Frobenius operator of the original hypergraph. For the (i, j)th

entry of TH , TH(i, j) is 1 if there is a simple edge directed from the vertex i to the ver-

tex j in the directed line graph, and otherwise it is 0. Unlike the adjacency matrix of

an undirected graph, the Perron-Frobenius operator for a hypergraph is not a symmetric

matrix. This is because the constraint in Eq.(6.2) arises in the construction of directed

edges. Specifically, any two directed edges induced by the same hyperedge in the original

hypergraph are not allowed to establish a directed edge in the directed line graph.

An example of transforming a hypergraph into a directed line graph has been shown in
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Algorithm 2: Establishing a directed line graph
Input: A hypergraph HG(VH , EH). Output: A directed line graph GD(VD,

−→
ED) for HG.

1. Establish the clique expansion graph GH(VG, EG) for HG(VH , EH) by connecting each pair of

vertices in a hyperedge ei ∈ EH , the vertex and edge sets are VG = V ;

EG = {{u, v} ⊂ ei | ei ∈ EH}.
(6.1)

2. Establish the associated symmetric digraph DGH(VG, Ed) by replacing each edge of

GH(VG, EG) by a directed edge pair in which the two directed edges are inverse to each other.

3. Establish the directed line graph GD(VD,
−→
ED) of HG(VH , EH) based on DGH(VG, Ed). The

vertex set VD and directed edge set
−→
ED of GD are VD = Ed;

−→
ED = {(u, v)i, (v, w)j ∈ Ed × Ed | i ̸= j}.

(6.2)

where the subscripts i and j denote the indices of the hyperedges from which the directed edges

(u, v) and (v, w) are induced respectively.
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(a) A hypergraph (b) Clique. (c) Di-clique.

(d) Directed line graph.

Figure 6.1: An example of transformation a hypergraph into a directed line graph.

Fig.6.1. For the example hypergraph HG(VH , EH) shown in Fig.6.1(a), the clique graph

GH(VG, EG) is shown in Fig.6.1(b). In GH(VG, EG), the edges belonging to the common

clique are indicated by the same colour while the different cliques are coloured differently.

Furthermore, there are two different edges between v4 and v5, and these edges are induced

by the hyperedge e3 and e4 of HG(VH , EH), respectively. The associated symmetric

digraph DGH(VG, Ed) of GH(VG, EG) is shown in Fig.6.1(c), and the resulting directed

line graph GD(VD,
−→
ED) from DGH(VG, Ed) is shown in Fig.6.1(d).

The transformation from the hypergraph HG(VH , EH) into the directed line graph

GD(VD,
−→
ED) requires time complexity O(|VD|2). This is because the construction of the

adjacency matrix of GD(VD,
−→
ED) relies on visiting all the |VD| (|VD| = |Ed|) edges in

DGH(VG, Ed) and establishing all the |VD|2 entries in the incidence matrix of GD.
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6.1.2 Theoretical Properties

The directed line graph and its Perron-Frobenius operator have several interesting prop-

erties as follows.

1) First, comparing to the (hyper)graph adjacency or Laplacian matrix, the Perron-Frobenius

operator spans a higher dimensional feature space where it may expose richer (hyper)graph

characteristics. This property is a result of the fact that the cardinality of the vertex set for

the directed line graph is much greater than, or at least equal to, that of the original (hy-

per)graph (see details in [12]). Hence, the adjacency matrix (i.e., the Perron-Frobenius

operator) of the directed line graph is described in a high dimensional space than the

original (hyper)graph.

2) Second, the directed line graph represents a (hyper)graph in a complete manner such

that it naturally avoids the information loss arising in the spectral truncation [68] or the

clique graph approximation [63]. This property is due to the constraint in Eq.(6.2) the

connecting arc pair induced by the same hyperedge in the original hypergraph cannot es-

tablish a directed edge in the directed line graph. In other words, such a directed line graph

can distinguish different edges derived from the same hyperedge. This property is illus-

trated in Fig.6.1(d). On the other hand, the clique expansion graph GH(VG, EG) from the

original hypergraph HG(VH , EH) only records adjacency relationships between pairwise

vertices of the hypergraph and cannot distinguish whether or not two edges are derived

from the same hyperedge. This property is illustrated in Fig.6.1(b). Hence, for two d-

ifferent hypergraphs (e.g., the hypergraphs shown in Figs.6.2(a) and (b)) they may have

the same clique expansion graph, and then the same resulted adjacency and Laplacian

matrices defined from the clique expansion graph. But, the directed line graph defined in

Eq.(6.2) may still produce total different structures for the two hypergraphs.

3) Finally, the directed line graph of a hypergraph is a backtrackless structure of the hy-

pergraph. This property is due to the constraints imposed on a hypergraphs by the Perron-

Frobenius operator (i.e., the adjacency matrix of the directed line graph for a hypergraph
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(a) (b)

Figure 6.2: Hypergraph examples.

is not summetric). For the line graph of a hypergraph, a bidirected edge between a pair of

vertices may be not included.

These properties indicate that the directed line graph and its Perron-Frobenius operator

offers us an elegant way for hypergraph isomorphism analysis, which can not only capture

precise hypergraph isomorphism information but can also reflect richer characteristics of

hypergraphs.

6.2 A Hypergraph Kernel

In this section, we develop a new directed WL isomorphism test from undirected graphs

into directed graphs. Finally, we define a new kernel for hypergraphs based on the new

isomorphism test between their directed line graphs.

6.2.1 The Directed Weisfeiler-Lehman Isomorphism Test

WL Isomorphism Test on Undirected Graphs: We commence by reviewing the WL

isomorphism test between undirected graphs [20], i.e., the 1-dimensional variant WL iso-

morphism test. The key idea of the WL isomorphism test is to first augment the label of

a vertex by the labels of its neighbouring vertices, and compress these augmented labels
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into new set of labels. Then, the isomorphism between a pair of graphs can be tested by

checking the identicalness between two sets of strengthened labels.

Suppose G(V,E) is an undirected graph with vertex set V and undirected edge set

E ⊆ V × V . f : L → Σ is a function that assigns vertices new labels from an alphabet

Σ based on the existing vertex labels. The neighbourhood N (v) = {u|(v, u) ∈ E} of a

vertex v ∈ V is the set of vertices connected to v by an edge. The WL isomorphism test

procedure between any pair of undirected graphs Gp and Gq with an increasing iteration

h is as follows:

1. Set h = 0. Initialize the vertex labels. For Gp, compute the vertex degree dp(vp) of

each vertex vp as the initial label Lp;h(vp) of vp. The set of vertex labels for Gp is

Lp;h = {Lp;h(vp) = dp(vp)|vp ∈ Vp}. Do the same computation for Gq.

2. For each vertex vp of Gp, sort the labels of its neighbourhood N (vp) in ascending

order as Lh
N ;p(vp) = {Lp;h(up)|up ∈ Np(vp)}. Do the same computation for Gq.

3. Set h = h + 1. For each vertex vp of Gp, assign a new label as Lp;h(vp) =

{Lp;h−1(vp),Lh−1
N ;p (vp)}. Do the same computation for Gq.

4. Compress the label Lp;h(vp) into a new short label for each vertex vp of Gp, using

the function f : Lp;h → Σ. Do the same computation for Gp.

5. Check h. Repeat step 2, 3 and 4 until the iteration h achieves an expected value. Or

terminate the procedure if the sets of newly generated labels are not identical in Gq

and Gq (i.e., Gp and Gq are not isomorphic).

Note that, in step 4 we use the same vertex label function f for both Gp and Gq. This guar-

antees that all the identical labels of Gp and Gq are mapped into the same number. Further-

more, for each iteration h the initialized or compressed labels Lp;h(vp) and Lq;h(vq) cor-

respond to subtrees of height h rooted from vp and vq respectively. If Lp;h(vp) = Lq;h(vq),
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the subtrees of height h rooted from vp and vq are isomorphic. The undirected WL i-

somorphism test offers us an elegant way of defining a kernel of undirected graphs by

counting the number of pairwise isomorphic subtrees. Unfortunately, straightforwardly

measuring the undirected WL isomorphism between hypergraphs tends to be elusive s-

ince a hypergraph may exhibit various relational orders (i.e., a hyperedge can encompass

an arbitrary number of vertices). The undirected WL isomorphism algorithm cannot dis-

tinguish a significant difference between adjacent vertices connected by different order

hyperedges. For instance, for the two hypergraphs shown in Fig.6.2(a) and (b), they have

the same adjacency matrix and the same degree for each vertex. As a result, the undirect-

ed WL isomorphism algorithm will assign all the vertices the same labels, though these

vertices may be connected by different order hyperedges.

WL Isomorphism Test on Directed Graphs: To overcome the limitation of the original

WL isomorphism test [20] on hypergraphs, we transform a hypergraph into a directed line

graph. As we have stated in Section 6.1, the directed line graph can reflect precise topol-

ogy information of a hypergraph. Furthermore, we generalize the isomorphism algorithm

as a new directed WL isomorphism test on directed graphs. Suppose GD(VD,
−→
ED) is a

directed graph with vertex set VD and directed edge set
−→
ED ⊆ VD×VD, then the structure

of this graph can be represented by a |VD| × |VD| adjacency matrix AD as follows

AD(vD, uD) =

 1 if (vD, uD) ∈
−→
ED

0 otherwise.
(6.3)

The in-degree and out-degree of a vertex vD are

din(vD) =

|VD|∑
uD=1

AD(uD, vD), (6.4)

and

dout(vD) =

|VD|∑
uD=1

AD(vD, uD), (6.5)
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respectively. The in-neighbourhood of a vertex vD ∈ VD is the set of vertices connecting

vD by a directed edge from the vertices, and is

N in(vD) = {uD|(uD, vD) ∈
−→
ED}. (6.6)

The out-neighbourhood of a vertex vD ∈ VD is the set of vertices connected by a directed

edge from vD, and is

N out(vD) = {uD|(vD, uD) ∈
−→
ED}. (6.7)

We develop the directed WL isomorphism test based on two steps. The first step is

to assign a vertex a new in-label using the in-degree of the vertex and that of its in-

neighbourhood. The second step is to assign a vertex a new out-label using the out-degree

of the vertex and that of its out-neighbourhood. The directed WL isomorphism test be-

tween any pair of directed graphs GD;p and GD;q at an increasing iteration h can be mea-

sured using Algorithm 3.

Note that, in Algorithm 3 the initialized or compressed in-label Lin
p;h(vD;p) usually

corresponds an in-subtree (i.e., the root vertex vD;p (for the initialized label), or a di-

rected subtree having shortest paths from other vertices to the root vertex vD;p (for the

compressed label)) of height h rooted at vD;p. The initialized or compressed out-label

Lout
p;h(vD;p) usually corresponds an out-subtree (i.e., the rooted vertex vD;p (for the ini-

tialized label), or a directed subtree having shortest paths to other vertices from the root

vertex vD;p (for the compressed label)) of height h rooted at vD;p. See Fig.6.3 for an

illustration of in-subtrees and out-subtrees of a directed graph. For GD;p and GD;q, if

Lin
p;h(vD;p) = Lin

q;h(vD;q) or Lout
p;h(vD;p) = Lout

q;h(vD;q), the in or out-subtrees of height h

rooted from vD;p and vD;q are isomorphic. Furthermore, note finally that, for a directed

graph GD if a label Lin
h (vD) or Lout

h (vD) with an iteration h (h ≥ 0) corresponds the high-

est in or out subtree rooted at vD in the global directed graph GD, then the label Lin
h′ (vD)

or Lout
h′ (vD) with the iteration h′ (h′ > h) also corresponds the same highest in or out sub-

tree. In other words, for some instances a higher in or out subtree may be a corresponding
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(a) Directed graph. (b) In-subtree. (c) Out-subtree.

Figure 6.3: An in-subtree and out-subtree of height 3 rooted at the vertex 1 on a directed

graph.

lower in or out subtree itself, and a compressed in or out label may also correspond a root

vertex.

For a directed graph GD(VD,
−→
ED) which has |VD| vertices, the directed Weisfeiler-

Lehman isomorphism algorithm on GD requires time complexity O(H|VD|2). Here H is

the largest number of iteration h for the directed WL isomorphism test. This is because

the initialization of in-degree din(vD) and out-degree dout(vD) requires to visit all the

|VD|2 entries in the adjacency matrix of GD, and requires time complexity O(|VD|2).

For each iteration, assigning the vertices new in-labels and out-labels needs to visit all

the |VD|2 entries in the adjacency matrix, and compressing the new generated label of a

vertex requires time complexity O(|VD|) (for the worst-case, i.e., all other vertices are

neighbourhoods for a vertex). As a result, the whole time complexity is O(H|VD|2).

6.2.2 An Isomorphism-Based Hypergraph Kernel

Based on the new directed isomorphism test described in Section 6.2.1, we define a new

hypergraph kernel from the directed line graphs.

Definition 6.1 (The Hypergraph Kernel from Directed Line Graphs) For a pair of hy-
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Algorithm 3: Measuring the directed WL isomorphism for a pair of directed graphs
1: Initialization.

• Input a pair of directed graphs GD;p(VD;p,
−→
ED;p) and GD;q(VD;q ,

−→
ED;q).

• Set h=0. Initialize the vertex labels. For a vertex vD;p of GD;p, assign the in-degree din(vD;p) as the initial in-label

Lin
p;h(vD;p), and assign the out-degree dout(vD;p) as the initial out-label Lout

p;h (vD;p). The set of vertex in-labels and

out-labels for GD;p is Lin
p;h = {Lin

p;h(vD;p) = dinp (vD;p)|vD;p ∈ VD;p} and

Lout
p;h = {Lout

p;h (vD;p) = doutp (vD;p)|vD;p ∈ VD;p} respectively. Do the same computation for GD;q .

2: Sort the labels of neighbourhoods for each vertex.

• For each vertex vD;p of GD;p, sort the labels of its in-neighbourhood N in
p (vD;p) and out-neighbourhood N out

p (vD;p) in

ascending order and concatenate the labels into stuples as Lin;h
N ;p (vD;p) and Lout;h

N ;p (vD;p) respectively. Do the same

computation for GD;q .

3: Update the label for each vertex.

• Set h=h+1. For each vertex vD;p of GD;p, assign a new in-label and a new out-label as tuples

Lin
p;h(vD;p) = [Lin

p;h−1(vD;p),Lin;h−1
N ;p (vD;p)]

⊤ and Lout
p;h (vD;p) = [Lout

p;h−1(vD;p),Lout;h−1
N ;p (vD;p)]

⊤

respectively. Do the same computation for GD;q .

4: Compress the vertex label into a new short label.

• Using the mentioned function f : L → Σ (e.g., the Hash function), compress the in-label Lin
p;h(vD;p) and the out-label

Lout
p;h (vD;p) into new short labels for each vertex vD;p of GD;p as

Lin
p;h(vD;p) = f(Lin

p;h(vD;p)), (6.8)

and

Lout
p;h (vD;p) = f(Lout

p;h (vD;p)), (6.9)

respectively. Do the same computation for GD;p.

5: Check h and evaluate the isomorphism.

• Check h. Repeat step 2, 3 and 4 until the iteration h achieves an expected value. Or terminate the algorithm if the sets of

newly generated in-labels in GD;q and GD;q and the sets of newly generated out-labels in GD;q and GD;q are both not

identical (i.e., GD;p and GD;q are not isomorphic).
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pergraphs HGp(VH;p, EH;p) and HGq(VH;q, EH;q), we commence by transforming HGp

and HGq into directed line graphs as GD;p(VD;p,
−→
ED;p) and GD;q(VD;q,

−→
ED;q) respective-

ly.

Based on step 1 of Algorithm 3, we compute the initialized in-label Lin
p;0(vD;p) and

the initialized out-label Lout
p;0 (vD;p) for each vertex vD;p of GD;p, we also compute the

initialized in-label Lin
q;0(vD;q) and the initialized out-label Lout

q;0 (vD;q) for each vertex vD;q

of GD;q. Furthermore, based on Eq.(6.8) and Eq.(6.9), we compute the compressed in-

label Lin
p;h(vD;p) and the compressed out-label Lout

p;h(vD;p) for each vertex vD;p of GD;p, we

also compute the compressed in-label Lin
q;h(vD;q) and the compressed out-label Lout

q;h(vD;q)

for each vertex vD;q of GD;q. The hypergraph kernel between HGp and HGq is defined as

k
(h)
HD(HGp, HGq) =

∑H
h=0

∑
vp∈VD;p

∑
vq∈VD;q

[δ(Lin
p;h(vp),Lin

q;h(vq)) + δ(Lout
p;h(vp),Lout

q;h(vq))], (6.10)

where H is the largest number of iterations h for the directed WL isomorphism test. Here

δ is the Dirac kernel, that is, it is 1 if the arguments are equal and 0 otherwise (i.e., it is 1

if Lin
p;h(vD;p) = Lin

q;h(vD;q) or Lout
p;h(vD;p) = Lout

q;h(vD;q), and 0 otherwise). 2

Lemma 6.1 The kernel k(h)
HD is positive definite (pd). 2

Proof. Intuitively, the proposed kernel k(h)
HD is pd, because it counts the number of pair-

wise isomorphic in-subtrees and out-subtrees of up to height h in two directed line graphs.

Furthermore, through Definition 6.1 the proposed kernel can be seen as the sum of posi-

tive definite Dirac kernels.

More formally, for an iteration h of the directed WL algorithm, we define a mapping

function ϕh(l, HG) which counts the number of a vertex label lx ∈ L (identified from

the directed WL algorithm) contained by the directed line graph GD(VD,
−→
ED) of a hy-

pergraph HG(VH , EH). Here, L = {l1, . . . , lx, . . . , l|L|} is a label set which contains any

possible vertex label for directed line graphs from hypergraphs. For the hypergraph HG,
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we thus define a label occurrence vector as

FV h
GH = {ϕh(l1, HG), . . . , ϕh(lx, HG), . . . , ϕh(l|L|, HG)}⊤. (6.11)

At an iteration h for the directed WL algorithm, we define a counting function (i.e., a

base counting kernel kh
HDB) for a pair of hypergraphs HGp(VH;p, EH;p) and HGq(VH;q, EH;q).

The base counting kernel counts the number of identical vertex label pairs (i.e., the num-

ber of isomorphic in and out subtree pairs) for the directed line graphs from the hyper-

graphs, and is defined as

kh
HDB(HGp, HGq) = ϕh(l1, HGp)ϕ

h(l1, HGq) + . . .+ ϕh(lx, HGp)ϕ
h(lx, HGq)

+ . . .+ ϕh(l|L|, HGp)ϕ
h(l|L|, HGq)

= ⟨FV h
GHp

, FV h
GHq

⟩, (6.12)

where

FV h
GHp

= {ϕh(l1, HGp), . . . , ϕ
h(lx, HGp), . . . , ϕ

h(l|L|, HGp)}⊤,

and

FV h
GHq

= {ϕh(l1, HGq), . . . , ϕ
h(lx, HGq), . . . , ϕ

h(l|L|, HGq)}⊤,

are the label occurrence vectors of HGp and HGq respectively. As a result, the base

counting kernel kh
HDBase is an inner product (i.e., a liner kernel) of FV h

GHp
and FV h

GHq
,

and is pd. Thus, the hypergraph kernel k(h)
HD can be re-written as

k
(h)
HD(HGp, HGq) = k1

HDB(HGp, HGq) + . . .+ kH
HDB(HGp, HGq)

=
H∑

h=0

kh
HDB(HGp, HGq), (6.13)

which is the sum of pd base counting kernels and is also pd. �
Time Complexity: For a pair of hypergraphs HGp and HGq, their directed line graph-

s are GD;p(VD;p,
−→
ED;p) and GD;q(VD;q,

−→
ED;q) (|VD;p| = |VD;q| = n) respectively. The

proposed hypergraph kernel k(h)
HD on HGp and HGq requires time complexity O(Hn2).
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This is because transforming HGp and HGq into GD;p and GD;q requires time complexi-

ty O(n2). Measuring the directed WL isomorphism test between GD;p and GD;q requires

time complexity O(Hn2). Furthermore, the worst-case of counting the number of pair-

wise isomorphic in-subtrees and out-subtrees requires time complexity O(Hn2). Hence,

the whole time complexity is O(Hn2).

In other words, the time complexity of the proposed hypergraph kernel relies on the

number of the iteration h and the vertex number of the directed line graph for a hyper-

graph. Note that, since a hypergraph may have various order relationships among vertices,

straightforwardly computing the number of vertices for its directed line graph based on

the number of its vertices and hyperedges tends to be elusive. However, based on the

definition in [4], if each hyperedge of a hypergraph HG(VH , EH) is a 2-order relation

between pairwise vertices (i.e., HG is an undirected graph), the number of vertices for

GD(VD,
−→
ED) is related to the number of hyperedges of HG(VH , EH), i.e., |VD| = 2|EH |.

As a result, for the pair of hypergraphs HGp and HGq both having m hyperedges, the k-

ernel k(h)
HD on HGp and HGq requires time complexity O(Hm2).

Note that, the proposed kernel k(h)
HD limits tottering that arises in the rooted hypergraph

kernel. This is due to the fact that the directed line graph of a hypergraph is a backtrackless

structure which contains directed edges (i.e., uni-directional edges). As a result, many

vertices cannot visit a vertex and then immediately return to themselves through the same

edge.

6.2.3 Discussions and Related Work

Since a hypergraph is a generalization of an undirected graph and such a graph can also

be transformed into a directed line graph, computing the hypergraph kernel k(h)
HD between

a pair of graphs is just a special case of our kernel. On the other hand, the original undi-

rected WL isomorphism test described in Section 6.2.1 can be directly measured between

a pair of undirected graphs. It can be straightforward to establish a graph kernel (e.g. the
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fast subtree kernel defined in [7]) based on the undirected WL isomorphism test for undi-

rected graphs. However, the proposed hypergraph kernel for undirected graphs through

their directed line graphs can capture richer characteristics from the original graphs, be-

cause the Perron-Frobenius operator can extract (hyper)graph characteristics in a higher

dimensional feature space than that of the original (hyper)graph. Moreover, the direct-

ed WL isomorphism test can not only distinguish the directed information residing on

the directed edges but also identify more subtrees rooted at each vertex than the original

undirected WL isomorphism test (i.e., for a vertex the directed WL method identifies an

in-subtree and an out-subtree, by contrast the undirected WL method only identifies one

undirected subtree). As a result, our hypergraph kernel can reflect the precise and rich

isomorphism information of (hyper)graphs from their directed line graphs.

Furthermore, similar to the random walk based kernels, the subtree kernel from the

original WL isomorphism test also suffers from tottering. This is because the subtrees

identified by the WL isomorphism may also include several copies of the same pairwise

vertices connected by the same edge. Aziz et al. [21] have shown that if each hyperedge

of a hypergraph is a 2-order relation (i.e., the hypergraph is a graph), there is no bidirected

edge in its directed line graph. In other words, such a directed line graph is a completely

backtraceless structure (i.e., any vertex cannot visit other vertices and then immediately

return to the vertex itself through the same edge). As a result, for graphs our hypergraph

kernel tremendously limits the tottering problem that arises in the existing random walk

and subtree based graph kernels [7, 22].

6.3 Experimental Results

We demonstrate the performance of our hypergraph kernel on several (hyper)graph dataset-

s from bioinformatics and computer vision. These datasets include a) the HCOIL5 and

HAMOS datasets (for hypergraphs), and b) the MUTAG, PTC(MR), PPIs, NCI1, NCI109,

117



ENZYMES and GatorBait datasets (for graphs). The MUTAG, PTC(MR), PPIs, NCI1,

NCI109 and ENZYMES datasets have been introduced in Chapter 3, 4 and 5. The detail

information for the HCOIL5, HAMOS and GatorBait datasets is introduced as follows.

HCOIL5: The HCOIL5 dataset is a hypergraph dataset abstracted from the COIL image

database. The COIL image database consists of 2D images of 100 3D objects. In our ex-

periments, we select the first five objects. For each object we employ 72 images captured

from different viewpoints. For each image we first extract corner points using the Harris

detector [93], and then establish hypergraphs using the corner points as vertices. Each

vertex is used as the seed of a Voronoi region, which expands radially with a constant

speed. The linear collision fronts of the regions delineate the image plane into polygons,

and a hyperedge encompassing a number of vertices is constructed using the high-level

hypergraph feature method described by Ren et al. [12]. There are 360 graphs which

are divided as 5 classes in the HCOIL5 dataset. The number of maximum, minimum and

average vertices for the three datasets are all 549, 72 and 202.90 respectively.

HAMOS: The HAMOS dataset is a hypergraph dataset abstracted from the Air Freight

Image Sequences database of Amos Storkey [101]. In the database, each frame is repre-

sented as an image. For each image, we again use the Harris method and the high-level

hypergraph feature representation. There are 432 graphs which are divided as 21 classes

in the HAMOS dataset. The number of maximum, minimum and average vertices for the

three datasets are all 98, 4 and 55.60 respectively.

GatorBait: GatorBait has 100 shapes representing fishes from 30 different classes [103].

We have extracted Delaunay graphs from their shape quantization (Canny algorithm fol-

lowed by contour decimation). Since the classes are associated to fish genus and not to

species, we find high intraclass variability in many cases. Therefore, the database, though

having only 100 samples, plays a challenging role in testing graph classification. The

number of maximum, minimum and average vertices for the dataset are 545, 239 and

348.70.
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Table 6.1: Accuracy comparisons on hyperraph datasets

Datasets HK HCIZF TLS TNLS

HCOIL5 41.23% − 28.32% 23.21%

HAMOS 43.67% 40.26% 33.21% 30.12%

6.3.1 Experiments on Hypergraphs

Experimental setup: We illustrate the performance of our hypergraph kernel (HK) on

hypergraph classification problems. The hypergraph datasets for testing are abstracted

from two image databases. We also compare our kernel with several alternative state of the

art hypergraph based learning methods. These methods include 1) the Ihara coefficients

for hypergraphs (HCIZF) [12], 2) the truncated Laplacian spectra (TLS) and truncated

normalized Laplacian spectra (TNLS) [63]. For each dataset, we compute the kernel

matrix or feature vectors of test hypergraphs using our kernel and the alternative methods

respectively. For our kernel, we perform 10-fold cross-validation using the C-Support

Vector Machine (C-SVM) Classification associated with the supplied kernel matrix to

compute the classification accuracies. We use nine folds for training and one for testing.

We set the largest number of iterations h for our kernel as 10. All the C-SVMs were

performed along with their parameters optimized on each dataset. For the alternative

methods, we perform 10-fold cross-validation using the Support Vector Machine (SVM)

Classifier with the Sequential Minimal Optimization (SMO) [97] and the Pearson VII

universal kernel (PUK) [104] to compute the classification accuracies associated with the

feature vectors. All the SMO-SVMs and their parameters were performed and optimized

on a Weka workbench. We repeat the each experiment 10 times for each method. We

report the average classification accuracies in Table.6.1.

Experimental Results and Evaluations: From Table.6.1 it is clear that our hypergraph

kernel achieves the greatest accuracies over all image datasets. 1) Our kernel outperforms

TLS and TNLS which use spectral information for hypergraphs. The reason for this is
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that our kernel based on the line graph of a (hyper)graph captures richer (hyper)graph

characteristics than the (hyper)graph spectral representations and also avoids the spectral

truncation arising in TLS and TNLS. 2) For the HAMOS dataset where the maximum

number of vertices is 98, the accuracy of HCIZF is competitive with that of our kernel.

Because HCIZF also relies on directed line graphs, and exploits richer hypergraph char-

acteristics. However, for the HCOIL5 dataset where the maximum number of vertices is

549, HCIZF is intractable for characterizing the hypergraphs. Because the computation

of the underlying Ihara cofficients tends to result in infinities even for hypergraphs of

moderate sizes. In contrast, our kernel can easily scal to large hypergraphs.

6.3.2 Experiments on Graphs

Experimental Setup: We evaluate the performance of our hypergraph kernel (HK) on

graph classification problems. The test graph datasets are abstracted from the bioinfor-

matics databases. We compare our hypergraph kernel with several alternative state-of-the-

art graph kernels. These graph kernels for comparison include 1) the WL subtree kernel

(WLSK) [7], 2) the shortest path graph kernel (SPGK) [39], 3) the graphlet count graph

kernels (GCGK) [82] and 4) the random walk graph kernel (RWGK) [22]. For our kernel,

we set the largest number of iterations h for the new directed WL isomorphism as 10.

For the WLSK subtree kernel, we set the largest number of iterations h for the original

undirected WL isomorphism as 10. For the graphlet count graph kernels, we set the size

of a graphlet as 3. Note that, the WLSK kernel is able to accommodate attributed graphs.

In our experiments, we use the vertex degree as a vertex label for the WLSK kernel.

For our kernel and the alternative graph kernels, we compute the kernel matrix of

each graph dataset. We perform 10-fold cross-validation using the C-SVM Classifica-

tion, which has been introduced in Section 6.3.1, to compute the classification accuracies

associated with the kernel matrices computed using different kernels. We report the av-

erage classification accuracies for each kernel method in Table.6.2. Furthermore, we also
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Table 6.2: Accuracy (in % ± standard error) comparisons on graph datasets
Datasets MUTAG PTC(MR) PPIs GatorBait ENZYMES NCI1 NCI109

HK 83.33 ± .53 56.89 ± .50 87.50 ± .83 11.00 ± .71 37.58 ± .50 80.95 ± .21 81.15 ± .24

WLSK 82.94 ± .54 56.05 ± .51 88.09 ± .41 10.30 ± .79 38.41 ± .45 80.55 ± .20 80.79 ± .21

SPGK 83.16 ± .69 55.50 ± .68 61.62 ± 1.09 7.80 ± .69 28.55 ± .42 74.21 ± .30 73.89 ± .28

GCGK 81.33 ± .74 55.17 ± .36 49.00 ± 1.57 8.00 ± .39 24.87 ± .22 63.72 ± .12 62.33 ± .13

RWGK 77.87 ± .21 54.50 ± .67 69.70 ± .30 8.00 ± .73 22.37 ± .35 > 1day > 1day

Table 6.3: Runtime for various kernels.
Datasets MUTAG PTC(MR) PPIs GatorBait ENZYMES NCI1 NCI109

HK 6” 14” 30′ 25′47” 1′2” 6′10” 6′10”

WLSK 3” 9” 20” − 20” 2′30” 2′30”

SPGK 1” 1” 22” − 4” 16” 16”

GCGK 1” 1” 4” − 2” 5” 5”

RWGK 14” 2′35” 4′26” > 1h35′ 9′52” > 1day > 1day

report runtime of computing the kernel matrices of each kernel in Table.6.3, with the run-

time measured under Matlab R2011a running on a 2.5GHz Intel 2-Core processor (i.e.,

i5-3210m).

Experimental Results and Evaluations: As a whole, our hypergraph kernel overcomes

or is competitive to each of the alternative graph kernels in terms of the classification

accuracies. Only the WL subtree kernel is competitive to our hypergraph kernel. The

reason for this is that the WL subtree kernel relies on the original WL isomorphism test

for undirected graphs, and like our kernel it can precisely capture all the isomorphic sub-

trees. However, our hypergraph kernel still outperforms the WL subtree kernel on most

datasets. The directed line graphs used in our kernel can reflect richer characteristics than

the original graphs, and our kernel also avoids the tottering problem that arises in the WL

subtree kernel. Furthermore, our directed WL isomorphism test can precisely capture the

directed information residing on the directed edges of the line graphs. In terms of the run-

time, our hypergraph kernel is not the fastest kernel, but it can still finish the computation

in a polynomial time. By contrast, some kernels cannot finish the computation on some

datasets in on day.
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Figure 6.4: Runtime evaluations.
6.3.3 Computational Evaluation

In this subsection, we evaluate the computational efficiency (i.e., the CPU runtime) of our

hypergraph kernel, and reveal the relationship between the computational overheads and

the structural complexity of the associated hypergraphs.

Experimental setup: We evaluate the computational efficiency on randomly generated

hypergraphs with respect two parameters: the hypergraph size n, and the largest num-

ber of iteration H for the directed WL isomorphism test. Separately, we vary n =

{1, 2, . . . , 100} and H = {1, 2, . . . , 100}. a) For the experiments with hypergraph size n,

we generate 100 pairs of hypergraphs. The pairs of hypergraphs have an increasing num-

ber of vertices n connected by one hyperedge. In other words, here we investigate how

the computational efficiency is effected by varying the relational order between vertices

for hypergraphs. For each pair of hypergraphs, we set H = 10. We report the runtime

for computing the kernel value for each pair of hypergraphs. b) For the experiments with

the largest number of iteration H , we generate a pair of hypergraphs each of which has

50 vertices connected by one hyperedge. We report the runtime for computing the kernel

values of the pair of hypergraphs based on different H . The runtime is reported in Fig.6.4,

as operated in Matlab R2011a on a 2.5GHz Intel 2-Core processor (i.e., i5-3210m).

Experimental results: The left and right subfigures of Fig.6.4 present the experiments
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of the hypergraph kernel varying the parameters n and H , respectively. When varying the

parameters n and H , we observe that the runtime scales quadratically with n and scales

linearly with H . These computational evaluations verify that our hypergraph kernel can

be computed in polynomial time.

6.4 Conclusions

In this paper, we have proposed a hypergraph kernel based on isomorphism tests. Our

kernel is based on transforming a hypergraph into a directed line graph, which can not

only accurately reflect the multiple relationships exhibited by the hypergraph but is also

amenable to isomorphism tests. We develop a new directed WL isomorphism test for

directed graphs. By performing the new isomorphism test on the directed line graphs of a

pair of hypergraphs, the hypergraph kernel between the hypergraphs is computed in terms

of the number of pairwise isomorphic in-subtrees and out-subtrees from the line graphs.

Our kernel limits the tottering problem that arises in the existing random walk and subtree

based (hyper)graph kernels. The experimental results demonstrate the effectiveness and

efficiency of our kernel.
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Chapter 7
Conclusions and Future Work

In this chapter, we first summarize the main contributions of this thesis. Moreover, we

point out some of the weaknesses of this thesis. Finally, we give some suggestions for the

future work.

7.1 Summary of Contributions

In this thesis, we have developed a new family of information-theoretic kernels, i.e., the

Jensen-Shannon diffusion kernels, for either the unattributed or attributed graphs, using

the Jensen-Shannon divergence measure. Furthermore, we have developed a novel frame-

work of computing depth-based complexity traces for graphs. Based on the new frame-

work, a novel depth-based matching kernel for graphs has also been developed. Finally,

we have proposed a new hypergraph kernel based on isomorphism tests. Below, we pro-

vide a summary of these contributions for each chapter.

7.1.1 Information Theoretic Graph Kernels for Graphs

The first contribution of this thesis is to develop novel information theoretic kernels for

graphs. To this end, in Chapter 3, we have defined a family of Jensen-Shannon diffusion
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kernels for (un)attributed graphs using the Jensen-Shannon divergence, that is an infor-

mation theoretic measure. For the unattributed graphs, we compute the von Neumann or

Shannon entropy for each graph in terms of the vertex degree. For the attributed graph-

s, we perform a tree-index (TI) label strengthening algorithm on attributed graphs. We

compute a label Shannon entropy using the probability distribution associated with the

strengthened labels. With the entropies for a pair of (un)attributed graphs to hand, we

have shown how to compute the Jensen-Shannon diffusion kernel by measuring the en-

tropy difference between the individual graph entropies and their composite entropy from

the disjoint union graph (for unattributed graphs) or the composite probability distribution

(for attributed graphs), using the Jensen-Shannon divergence.

We have shown that our new diffusion kernel for unattributed graphs overcomes the

inefficiency arising in the R-convolution kernels. On the other hand, our new diffusion k-

ernel for attributed graphs overcomes the shortcoming of discarding non-isomorphic sub-

structures that arises in the R-convolution kernels. Moreover, this kernel also overcomes

the shortcomings of restriction to attributed graphs, lacking correspondence information

and reflecting limited interior topology information that arise in our diffusion kernel for u-

nattributed graphs. The experimental results demonstrate the effectiveness and efficiency

of our kernels.

7.1.2 Depth-Based Complexity Traces for Graphs

The second contribution of this thesis is to develop a novel framework of computing a

depth graph complexity. To this end, in Chapter 4, we have shown how to construct a

depth-based complexity trace for a graph, by combining the ideas of the entropy based

graph complexity measures and the depth-based representations of graphs. For a graph,

we have identified a centroid vertex by computing the minimum variance of its shortest

path lengths, and obtained a family of dominant expansion subgraphs with increasing

layer. The complexity trace of the graph is thus constructed by measuring how the graph
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entropies or the entropy differences vary with the subgraphs of increasing layer, as a

function of depth.

We have shown that the depth-based complexity trace can not only be efficiently com-

puted for a large graph (e.g., a graph having thousands of vertices) but also characterize a

graph in a high dimensional complexity feature space. Experiments on graph datasets ab-

stracted from bioinformatics and image data demonstrate the effectiveness and efficiency

of our complexity traces in graph classification.

7.1.3 The Depth-Based Matching Kernel for Graphs

The third contribution of this thesis is to develop a novel matching kernel for graphs,

based on the contribution in Chapter 4. To this end, in Chapter 5 we have described

how to construct a depth-based graph kernel in terms of matching graphs based on the

depth-based representation (i.e., the depth-based complexity trace) around each vertex,

that reflects a high dimensional complexity characteristics of the graph around the vertex.

Based on the obtained depth-based representations for two graphs we have defined a new

matching strategy similar to that Scott et al. [19] previously used for point set matching.

The resulted depth-based kernel is thus defined by counting the matched vertex pairs.

We have shown the relationship between the depth-based graph kernel and the all sub-

graph kernel and explained why our matching strategy incorporates structural correspon-

dence into the kernel. We have empirically demonstrated the effectiveness and efficiency

of our new kernel on synthetic graphs and real-world graphs abstracted from computer

vision databases.

7.1.4 The Hypergraph Kernel Based on Isomorphism Tests

The novel methods developed in Chapters 3, 4 and 5 are only restricted on graphs, and

thus cannot be performed for hypergraphs. To overcome the restriction, the fourth con-
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tribution of this thesis is to develop a novel hypergraph kernel. To this end, in Chapter

6 we have proposed a new Weisfeiler-Lehman hypergraph kernel based on isomorphis-

m tests. Our kernel is based on transforming a hypergraph into a directed line graph,

which not only accurately reflects the multiple relationships exhibited by the hypergraph

but is also amenable to isomorphism tests. We have developed a new directed Weisfeiler-

Lehman isomorphism test for directed graphs. By performing the new isomorphism test

on the directed line graphs of a pair of hypergraphs, the hypergraph kernel between the

hypergraphs is computed in terms of the number of pairwise isomorphic in-subtrees and

out-subtrees from the line graphs.

We have shown that our new hypergraph kernel limits the tottering problem that aris-

es in the existing random walk and subtree based (hyper)graph kernels. Experiments

demonstrate the effectiveness and efficiency of our kernel.

7.2 Weaknesses

The novel methods proposed in this thesis outperform the state-of-the-art methods, how-

ever there are still a number of weaknesses to be noted. In this section, we discuss these

weaknesses and analyze the reasons as follows. Specifically,

I) We have shown both theoretically and experimentally that the attributed Jensen-

Shannon diffusion kernel can easily outperform the state-of-the-art graph kernels in terms

of the classification accuracies. Unfortunately, this kernel still has several weaknesses.

First, the attributed diffusion kernel can only capture the label information residing on the

vertices. As a result, the label information residing on edges are discarded. This draw-

back limits the attributed diffusion kernel to reflect more detailed graph characteristics.

Second, the attributed diffusion kernel requires expensive computation for computing the

composite entropy for a pair of attributed graphs, since it needs to identify the correspon-

dence between each pair of probability distributions in terms of the strengthened vertex
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labels. Third, the attributed diffusion kernel may also suffer from tottering problem. This

is because each strengthened label from the required tree-index method corresponds to a

subtree, and each subtree may include several copies of the same pairwise vertices con-

nected by the same edge.

II) Though the proposed complexity trace can characterize a graph in a higher dimen-

sional complexity feature space than the state-of-the-art graph complexity measures, there

are still several weaknesses. First, the complexity trace method cannot accommodate at-

tributed graphs, thus this method cannot reflect any label information residing on either

the edges or the vertices. Second, the required von Neumann entropy or the Shannon en-

tropy associated with the steady state random walk is computed using the vertex degree,

which is structurally simple. Furthermore, for the Shannon entropy computed from the

information functionals, the required local information graph rooted at a vertex is also

structurally simple. As a result, the complexity trace using these entropies may discard

some topology information.

III) Though the depth-based matching kernel overcomes the shortcoming of ignoring

the location information between substructures arising in the state-of-the-art R-convolution

kernels, there are still some weaknesses. First, the matching kernel is related to the depth-

based complexity trace around each vertex, thus this kernel also suffers from the same

weaknesses that arise in the depth-based complexity trace method. Furthermore, the

matching kernel only identifies the correspondence between vertices, and thus ignores

the correspondence information between edges. As a result, the matching kernel may

discard potential similarity information for a pair of graphs.

IV) The proposed hypergraph kernel not only accommodates both graphs and hyper-

graphs but also limits the tottering problem arising in the state-of-the-art (hyper)graph

kernels using the subtrees and walks. However, this kernel cannot completely avoid the

tottering problem. This is because the proposed directed Weisfeiler-Lehman (WL) iso-

morphism test algorithm on a directed line graph cannot guarantee that any vertex is only
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visited one time. As a result, the in or out subtree identified by the directed WL isomor-

phism test algorithm may still contain several copies of the same vertices. Moreover, the

proposed directed WL isomorphism test algorithm cannot be directly performed on a hy-

pergraph, thus we need extra computation for transforming the hypergraph into a directed

line graph. This may influence the computational efficiency for the hypergraph kernel.

7.3 Future Work

To address the weaknesses of this thesis, in this section we suggest some possible ap-

proaches to overcoming them for further research. Furthermore, we also provide a number

of ways for extending the work in this thesis.

I) To overcome the problems of the attributed Jensen-Shannon diffusion kernel, we

may consider the following strategies. First, we may develop a new label strengthening

method that not only limits or avoids the tottering problem but also accommodates the

label information residing on both the vertices and the edges. This may provide us an

elegant way for overcoming the problems of tottering and discarding edge label informa-

tion that arise in the attributed diffusion kernel. Second, we may also consider to define

a new feature selection [105] method for the objective of selecting more discriminating

labels. As a result, we may overcome the inefficiency of the attributed diffusion kernel,

since we can only identify the correspondence information between a number of selected

labels. Moreover, since some redundant labels may be not included in the selected labels,

the attributed diffusion kernel may reflect more precise similarity measure between a pair

of graphs.

Furthermore, we also consider to extend the Jensen-Shannon diffusion kernel in the

following way. In prior work Hancock et al. have developed methods for characterising

graphs using the commute time [106] and the heat kernel [107]. Both the commute time

and heat kernel of an undirected graph encapsulate the path length information between
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pairs of vertices. It would be interesting to use the commute time or heat kernel as a

means of computing a probability distribution for a graph. We thus can define a new graph

kernel based on the Jensen-Shgannon divergence and the new probability distributions for

graphs.

II) To overcome the problems arising in the complexity trace method for graphs, we

may consider the following strategies. First, to overcome the shortcoming of discarding

label information, we may perform a label strengthening algorithm (e.g., the TI method

required for the attributed Jensen-Shannon diffusion kernel) and thus obtain a probability

distribution in terms of the label frequency. A label Shannon entropy with the probability

distribution can be computed. As a result, we may compute a depth-based complexity

trace for an attributed graph using the label Shannon entropy. Second, to overcome the

shortcoming of structurally simple problem, we may consider to perform the continuous

time quantum walk (CTQW) [109, 110, 111] for a graph to assign each vertex a probabil-

ity and thus obtain a probability distribution in terms of the CTQW. Since the CTQW is

not dominated by the low frequency of the Laplacian spectrum, the CTQW is potentially

able to discriminate better among different graph structures. As a result, we may compute

a new depth-based complexity trace associated with the CTQW that reflects more com-

plicated graph topology information. As we have stated, the depth-based matching kernel

is related to the depth-based complexity trace, the two strategies may be also useful for

overcoming the shortcoming of the kernel.

Furthermore, we also consider to extend the complexity trace method in a number of

ways. First, the depth-based complexity trace not only provides a way for characterising

complexity with depth in a graph, but also opens up directions for future research. Our

method allows the inhomogeneity of complexity with depth to be used as a relatively

compact yet potential detailed characterisation of graph structure. In this thesis we have

concentrated on using the method for construct a vectorial signature for the purposes

of classifying graphs. Of course, the characterisation could be used for a number of
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different tasks including the construction of graph kernels [112] and graph embedding [1].

Additionally, instead of using a feature-vector, we could also incorporate the complexity-

depth characterisation into a tree or string representation of a graph. Finally, different

entropy and divergence measures are available as measures of complexity [30, 110, 113],

and these would also provide interesting alternatives for investigation. Suffice to say,

studies along these lines are underway and will be reported in due course.

III) To completely avoid the tottering problem arising in our hypergraph kernel, we

may consider some non-backtracking substructures for the directed line graph (e.g., the

shortest paths or cycles). We may also consider to extend the hypergraph kernel in fol-

lowing ways. First, we may define a new high order Weisfeiler-Lehman isomorphism

test method for hypergraphs. Thus, we can define a new hypergraph kernel by directly

measuring the isomorphism between a pair of hypergraphs. Furthermore, in [114] we

have explored the use of the discrete-time quantum walks [115, 116] on the directed line

graph, which can be constructed by transforming a hypergraph. It would be interesting

to extend this work, using the discrete-time quantum walks to compute the von Neumann

entropy associated with the quantum state. This may provide a more principled means of

computing a quantum kernel for hypergraphs.
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Glossary of Notation

G(V,E) Graph with vertex set V and edge set E

HS Shannon entropy

HV N von Neumann entropy

A Adjacency matrix of a graph

D Degree matrix of a graph

L Laplacian matrix of a graph

L̂ Normalized Laplacian matrix of a graph

Φ̂ Eigenvector of the normalized Laplacian matrix

Λ̂ Eigenvalue of the normalized Laplacian matrix

SG Shortest path matrix of a graph

k kernel function

δ Dirac kernel

DJS Jensen-Shannon divergence

HG(VH , EH) Hypergraph with vertex set VH and hyperedge set EH
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