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Abstract

Internet content has become one of the most important resources of information. Much of this

information is in the form of natural language text and one of the important components of

natural language text is named entities. So automatic recognition and classification of named

entities has attracted researchers for many years. Named entities are mentioned in different

textual forms in different documents. Also, the same textual mention may refer to different

named entities. This problem is well known in NLP as a disambiguation problem. Named

Entity Disambiguation (NED) refers to the task of mapping different named entity mentions in

running text to their correct interpretations in a specific knowledge base (KB). NED is important

for many applications like search engines and software agents that aim to aggregate information

on real world entities from sources such as the Web. The main goal of this research is to develop

new methods for named entity disambiguation, emphasising the importance of interdependency

of named entity candidates of different textual mentions in the document.

The thesis focuses on two connected problems related to disambiguation. The first is Can-

didates Generation, the process of finding a small set of named entity candidate entries in the

knowledge base for a specific textual mention, where this set contains the correct entry in the

knowledge base. The second problem is Collective Disambiguation, where all named entity tex-

tual mentions in the document are disambiguated jointly, using interdependence and semantic

relations between the different NE candidates of different textual mentions. Wikipedia is used

as a reference knowledge base in this research.

An information retrieval framework is used to generate the named entity candidates for a

textual mention. A novel document similarity function (NEBSim) based on NE co-occurrence
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is introduced to calculate the similarity between two documents given a specific named entity

textual mention. NEB-sim is also used in conjunction with the traditional cosine similarity

measure to learn a model for ranking the named entity candidates. Naı̈ve Bayes and SVM

classifiers are used to re-rank the retrieved documents. Our experiments, carried out on TAC-

KBP 2011 data, show NEBsim achieves significant improvement in accuracy as compared with

a cosine similarity approach.

Two novel approaches to collectively disambiguate textual mentions of named entities

against Wikipedia are developed and tested using the AIDA dataset. The first represents the

conditional dependencies between different named entities across Wikipedia as a Markov net-

work, where named entities are treated as hidden variables and textual mentions as observations.

The number of states and observations is huge, and naı̈vely using the Viterbi algorithm to find the

hidden state sequence which emits the query observation sequence is computationally infeasible

given a state space of this size. Based on an observation that is specific to the disambiguation

problem, we develop an approach that uses a tailored approximation to reduce the size of the

state space, making the Viterbi algorithm feasible. Results show good improvement in disam-

biguation accuracy relative to the baseline approach, and to some state-of-the-art approaches.

Our approach also shows how, with suitable approximations, HMMs can be used in such large-

scale state space problems.

The second collective disambiguation approach uses a graph model, where all possible NE

candidates are represented as nodes in the graph, and associations between different candidates

are represented by edges between the nodes. Each node has an initial confidence score, e.g.

entity popularity. Page-Rank is used to rank nodes, and the final rank is combined with the initial

confidence for candidate selection. Experiments show the effectiveness of using Page-Rank in

conjunction with initial confidence, achieving 87% accuracy, outperforming both baseline and

state-of-the-art approaches.
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Chapter 1

Introduction

Over time, the Internet has became an increasing part of billions of people’s daily life, and now

massive amounts of new data are added to the Internet every day (e.g. news, research, blogs).

The amount of data published on the internet increases exponentially, so it has become extremely

difficult for users to find precisely the information they are looking for. Most web-pages are

designed for human consumption and not for computer consumption. Even web search engines

are only helpful in finding a good set of pages that may be related to the search query, but are

unable to interpret the results, leaving the task of finding the precise piece of information to the

user. Computers are only used to present the contents of web-pages, i.e. decoding different web

script languages, and have no reliable way to process the semantics [Breitman et al., 2007].

In 2001, Berners-Lee et al. [2001] presented the concept of the Semantic Web . They defined

the Semantic Web as an extension to the current web—in which informationin the form of natural

language text is given a defined meaning that allows both humans and computers to work in co-

operation. The task of giving a defined meaning to the information is a huge task and can

be divided into many subtasks, including co-reference resolution, word sense disambiguation,

named entity recognition and classification, and named entity disambiguation (NED).

In any document, particularly news stories, named entities (NE) are semantically richer than

most vocabulary words [Petkova and Croft, 2007]. So, named entities are one of the main

components of text on the web. A textual named entity mention is a pointer to a real world

entity, such as a person, location, or organization. However, these pointers are ambiguous: one
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Chapter 1. Introduction

named entity expression may refer to more than one real world entity. The relation between

named entity textual mention and the real world named entity is many-to-many as the one real

world entity may be referred to by more than one named entity textual mention.

A named entity may be a single word, such as “London” or “Microsoft”, or a collection of

words like “University of Sheffield” or “United Kingdom”. Also, the named entity may be a

dictionary word, meaning it may be found in the language dictionary, for example “Mark” is

both a person name and an English verb, while the majority of named entities, like the name

“David Cameron” or place “London”, are not found in a language dictionary. There is no fixed

dictionary for real named entities; new named entities arise every day, some of which are added

to the knowledge bases. Textual mentions of named entities are also highly dynamic as many

new textual mentions that refer to previously mentioned named entities are being added to on-

line sources daily. The only available reference resources for real world entities are knowledge

bases. Wikipedia is the best known such knowledge base. It is widely used as a reference

knowledge base to disambiguate ambiguous named entity mentions by researchers working on

this problem because of its breadth and free availability [Cucerzan, 2007, Han and Zhao, 2009a,

Milne and Witten, 2008a, Ratinov et al., 2011]. It contains only references to relatively well

known individuals, but is nevertheless suitable for research on this problem.

In general, named entities have a special importance in information extraction from text, or

text mining. In the last two decades lots of research has been done on named entity recognition

and classification, and good progress has been made [Nadeau and Sekine, 2007]. However, many

of the recognized named entities are ambiguous, and it is very important for software agents—

which aim to aggregate information on real world entities from sources such as the Web—to

be able to identify which entities are the intended interpretation of different textual mentions.

For example, the information associated with the basketball player “Michael Jordan” must be

distinguished from the information associated with the football player “Michael Jordan”. Also,

it is important for search engines to correctly identify different names for the same named entity

to get full coverage when searching for a named entity with different names. For example, the

rapper MC Hammer’s birth name is “Stanley Burrell” and correctly identifying documents in

which “Stanley Burrell” is used to refer to him is important for completeness in information
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gathering (of course Stanley Burrell, aka MC Hammer, needs to be distinguished from Stanley

Burrell, the NBA basketball star). These examples illustrate the complexity of the many-to-many

relation between NE textual mentions and the real world entity being named.

Named entity disambiguation approaches may be placed into two classes. The first class,

which we refer to as Individual entity disambiguation approaches, addresses the problem of

disambiguating an individual NE mention in a textual context (for example, in a search engine

query or in a text document). In this case other NE mentions in the same context do not receive

any particular attention, in particular they are not disambiguated themselves. Work addressing

this problem includes [Bunescu and Pasca, 2006, Cucerzan, 2007, Han and Sun, 2011]. The

second class of approaches may be termed Collective entity disambiguation approaches and in

these all NE textual mentions in a context are jointly disambiguated.

In this work, we highlight both individual and collective disambiguation approaches. How-

ever, we hypothesis that when disambiguating a NE textual mention, the other NEs found in the

same context will be a good source of information.

1.1 Motivation

In the last two decades a lot of attention has gone into analysing web text as a valuable source of

continually updated information. Disambiguating named entities is very exciting task in NLP. It

is a challenging task because of the domain diversity and dynamics of the knowledge bases and

named entities. NED can help to improve performance in the following research domains:

• Information Retrieval: Search engines needs named entity disambiguation to resolve the

cross linking between different named entites with different textual mentions within web

page text.

• Knowledge Base Builders: As is well known, building a knowledge base is a very difficult

task. First, it reacquires a lot of resources to navigate through a collection of data to

build knowledge base nodes and fill each node with the required information. The second

challenge is to update this knowledge base, as new data contains extra information. The

research reported here may useful for this second task. For example, from new news wire

3



Chapter 1. Introduction

stories, entity linking may be used to locate the knowledge base nodes that are related to

each entity,enabling KB contents to be updated.

• Information Seekers: When someone reads an article, some terms may be unknown in the

article or some terms may be of interest. The reader must then carry out another search

to investigate the term of interest. This research will help to build new technologies to

link named entities which are recognized automatically or manually by the reader to a

knowledge base or other explanatory documents to get more information about that entity.

All in all, the main benefit to be gained from this research is providing an underpinning capability

for use in other text mining applications and research.

1.2 Problem definition

The relation between names and the real world entities they denote is many-to-many: one entity

may have several names, and the same name may be shared by multiple entities. Establishing

which real world entity a name mention denotes in a particular textual context is the problem

of named entity disambiguation (NED). We interpret this problem, more specifically, as the

problem of disambiguating named entity textual mentions—that are annotated manually or by

a Named Entity Recognition (NER) system in a document—against a set of named entities in

a reference knowledge-base (KB). In addressing the problem we make two assumptions. First,

we assume the correct interpretation for each NE textual mention has an entry in the knowledge

base. Second, each NE textual mention is included in a text document which contains one or

more other named entities.

1.3 Research Focus

The purpose of this research is to develop and evaluate new approaches to disambiguate the dif-

ferent textual mentions of different named entities within a document, linking them to the correct

named entity reference in a specific knowledge base. The novel perspective in addressing the

4



NED problem is to use the mutual information gained from other co-occurring textual mentions

of different named entities. overcoming the accuracy of existing approaches.

1.4 Thesis Contributions

The main contributions of this thesis are:

1. An NE based search framework for retrieving and scoring a reliable short list of NE can-

didates from a knowledge base.

2. An investigation of learn-to-rank approaches to re-rank the different candidates of a spe-

cific NE textual mention.

3. A collective NED approach based on Hidden Markov Models (HMMs).

4. Development of various approximations to use the Viterbi algorithm with a huge number

of states, making it feasible for use in NED.

5. A graph based collective NED approach using Page-Rank in conjunction with local fea-

tures and entity coherence to rank NE candidates.

6. A graph partitioning for collective NED, based on clique partitioning.

1.5 Research Findings

The main findings of this research are:

1. The named entity mentions in a document can help to disambiguate each other or, at least,

be used to generate a short list of the disambiguation NE candidates. IR based approaches

can use the other textual mentions successfully to find a short list of NE candidates, then

use learn-to-rank approaches to re-rank these candidates for disambiguation.

2. The NED problem can be modelled as the problem of finding the NE sequence that emits

a specific sequence of NE textual mentions. This approach is theoretically limited and can
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not disambiguate all NE textual mentions properly because there may not be a sequential

path of NE dependency between the candidates of different NE textual mentions.

3. Graph representation is the best for NE dependency or coherence as it can model all re-

lations. The main problem with graph approaches is algorithm complexity. Effective

employment of the NE candidate confidence scores may help to find the disambiguation

candidates in the graph using linear time algorithms.

4. Using NE candidate confidence score as an initial node score in Page-Rank and recom-

bining this score with the final PR score improves the results of NED.

5. Clique Partitioning can be used to find highly cohesive NE candidates in a graph. Starting

with a seed clique and iteratively expanding it, or finding new seeds and expand those,

improves the results of NED.

1.6 Thesis Outline

The rest of this thesis is organized into five chapters:

• Chapter 2: Literature Review and Existing Data Sets

This chapter consists of two parts. The first explores work related to the named entity

disambiguation task, like word sense disambiguation (WSD), and entity linking (EL).

The main differences between these related tasks and named entity disambiguation are

also highlighted. Following that a discussion of state-of-the-art approaches for NED is

presented. The second part describes two different datasets which are widely used to eval-

uate state-of-the-art approaches, the TAC-dataset and AIDA-dataset. Finally, measures

commonly used to evaluate NED system performance are presented.

• Chapter 3: Named Entity Based Document Similarity with SVM Re-ranking

This chapter presents a named entity based document similarity approach, NEB-Sim,

which retrieves a short NE candidate list for each named entity textual mention. This simi-

larity function is based on NE textual mention co-occurrence in the knowledge base. Also,
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re-ranking methods are applied using the NEB-Sim scores and other similarity scores to

re-rank the candidate list and select the highest ranked candidate. Results show that us-

ing our NEB-Sim similarity score helps to find a short list of candidates that contains

the correct candidate. Additionally, results show reliable relations between NEB-Sim and

cosine-similarity scores that can be learned using the SVMrank algorithm to re-rank the

candidates and get the correct candidate in the first position.

• Chapter 4: Disambiguating Named Entities using HMMs

This chapter presents a new formulation for the collective named entity disambiguation

problem where it is framed as the problem of finding the best hidden state sequence using a

Hidden Markov model (HMM). Three different approximations are presented to overcome

problems with using the Viterbi algorithm when dealing with a huge number of states.

Results show our approximations work well, passing the baseline and some state-of-the-

art approaches.

• Chapter 5: Graph-Based Named Entity Disambiguation

This chapter presents two collective disambiguation approaches based on a graph model.

The first approach models the NED problem as one of ranking graph nodes using can-

didate confidence and coherence between different NE candidates. The second approach

uses a clique partitioning algorithm to find the good cliques of candidates and iteratively

expand these until all NE textual mentions are disambiguated. Results of both approaches

show an improvement in the accuracy of NED, leading to scores that exceed the state-of-

the-art as well as the baseline.

• Chapter 6: Conclusions and Future Work

This chapter presents a summary of contributions and also discusses how these achieve

our research goals. Some avenues for future work are also discussed.

1.7 Publications

The following publications have been produced during this research work:
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1. Ayman Alhelbawy, Robert Gaizauskas.“Collective Named Entity Disambiguation using
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tional Conference on Computational Linguistics (COLING 2014), 2014.

2. Ayman Alhelbawy, Robert Gaizauskas.“Graph Ranking for Collective Named Entity Dis-

ambiguation.” Proceedings of the 52nd Annual Meeting of the Association for Computa-

tional Linguistics (ACL 2014), 2014.

3. Ayman Alhelbawy, Robert Gaizauskas. “Named Entity Disambiguation Using HMMs.”
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International Joint Conferences on, vol. 3, pp. 159-162. IEEE, 2013.
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5. Amev Burman, Arun Jayapal, Sathish Kannan, Madhu Kavilikatta, Ayman Alhelbawy,
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Chapter 2

Literature Review and Datasets

2.1 Introduction

Sense ambiguity is one of the old, well known, problems in NLP. It is easy for humans to

disambiguate words, and names while it is not such a simple task for machines. Sense ambiguity

has been a serious problem since the rise of machine translation in the early of 1940s, and has

been a separate computational linguistics task since then. Until the twenty years ago, the sense

ambiguity problem definition was limited to the ambiguity of common nouns, adjectives, and

verbs. In the 1990s, the problem of named entity recognition and classification became a subtask

of information extraction. Initially, little attention was payed to the ambiguity problem of named

entities, and research focused mainly on recognizing and classifying named entities in text. After

making good progress in recognizing and classifying named entities, research then moved to

solving the next problem—that of NE ambiguity. In this chapter we present an overview of

sense disambiguation problem tasks, and some detailed explanation of the NED problem.

The chapter is organized into four sections. Section 2.2 presents an overview of the dis-

ambiguation tasks related to the NED task, like word sense disambiguation (WSD), Linking

with Wikipedia (Wikification), and entity linking (EL). A general framework for named entity

disambiguation, and the state-of-the-art disambiguation approaches are explored and classified

in section 2.3. Section 2.4 provides a listing and description of the most popular features used

for NED. Section 2.5 presents a detailed description of the available datasets that have been
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widely used in evaluating state-of-the-art approaches which we will also use to evaluate our pro-

posed solutions. Finally, the evaluation measures used to evaluate the different approaches are

described in section 2.7.

2.2 Overview of Sense Disambiguation Tasks

In this section, the sense ambiguity problem and its challenges are explored, and a short survey

of some interesting disambiguation tasks is presented. In general, disambiguation is the process

of selecting the proper candidate from a list of candidates, given an ambiguous entity within

a specific context. Perhaps, the oldest disambiguation problem in NLP is that of word sense

disambiguation (WSD). A brief description of the WSD task is presented in section 2.2.1. Fur-

thermore, research into linking entities to a Wikipedia knowledge base is discussed in section

2.2.2.

2.2.1 Word Sense Disambiguation

Word sense disambiguation is one of the oldest defined computational linguistics tasks. It was

formulated as a distinct task during the early days of machine translation. This task attracted the

attention of researchers for many years and is still an open problem. WSD is an important task in

natural language processing, which addresses the process of identifying which sense (meaning)

of a word is used in a sentence, when the word has multiple meanings.

WSD approaches can be broadly classified into two main classes. The first, supervised

approaches, use machine learning techniques to learn a classifier for each polysemous word us-

ing a labelled dataset, and classify a term (word) to its sense label [Agirre and Soroa, 2008,

Boyd-Graber et al., 2007, Gutiérrez et al., 2012, Sinha and Mihalcea, 2007]. The second class of

approach is the unsupervised methods, where no labelled datasets are provided. Graph based ap-

proaches are widely used for unsupervised disambiguation [Navigli and Lapata, 2007]. Knowl-

edge resources like Wikipedia and WordNet are used to add different contextual features to the

words or to enrich the graph [Ponzetto and Navigli, 2010]. In general, supervised approaches

for WSD have achieved better results than unsupervised approaches [Navigli, 2009].
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NED has some similarities with WSD, since both are concerned with meaning based on con-

text. Some approaches are re-used to solve NED problems as shown in section 2.3. Nevertheless,

there are still some differences, providing a new set challenges; some of these differences are

listed below.

• WSD assumes a nearly static list of words with associated senses, e.g. the dictionary from

an online resource such as WordNet. The challenge is to link the word in the context to

the proper sense in this list. In contrast, in NED the challenge is to link the named entity

textual mention to a dynamic list of knowledge base entries.

• A named entity textual mention may be an abbreviation or alias, e.g. “NY” or “the Big

Apple” may be used to refer to New York city. In knowledge bases there is just one entry

for each named entity. So, in our example, only one entry titled with “New York city” is

found in the KB. This problem is not found in WSD, because all synonyms have entries

in the dictionary as well.

• While WSD defines a word as a single token, a named entity may be referred to by a single

token or series of tokens (i.e. “the Big Apple”).

• WSD is only concerned with the dictionary term, which may be a noun, verb, or adjective,

but a named entity may not be a dictionary term, and should be a person, organization, or

location name.

2.2.2 Named Entity Linking

The problem of named entity linking is to identify and connect textual named entity mentions

to a knowledge base entry that has some information about this mention. There are different

tasks defined with this core definition. To Wikify, or link to a Wikipedia target, is to link any

mention that has an entry in the Wikipedia knowledge base. So, the objective is to identify and

link named entities (e.g. Microsoft, Barack Obama, Sheffield), events (e.g. The Second World

War), theories (e.g. Pythagorean theorem), expression definitions (e.g. algorithm), etc., to the

Wikipedia knowledge base [Mihalcea and Csomai, 2007].
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In 2008, the US National Institute of Standards and Technology (NIST) initiated the Text

Analysis Conference (TAC) to support research within the Natural Language Processing com-

munity by providing the infrastructure necessary for large-scale evaluation of NLP methodolo-

gies. One TAC track is the Knowledge Base Population (KBP) track which defined the task of

entity linking (EL).

The entity linking task — as KBP defines it — is to determine, for each query, which knowl-

edge base entity is being referred to, or if the entity is not present in the reference KB [McNamee

and Dang, 2009]. A query in the KBP track consists of a named entity and the context for that en-

tity to use in disambiguation. Disambiguation is one of the main challenges of this task because

some entities will share confusable names (e.g. George Washington could refer to the president,

the university, or the jazz musician; Washington could refer to a city, state, or person).

Many researchers have tried to tackle the problem from different points of view, depending

on their experience in related NLP domains (Chang et al. [2010], Reddy et al. [2010], Varma

et al. [2009]). Efforts have also been made to build standard resources for the evaluation of

entity linking techniques by the Linguistic Data Consortium (LDC) at the University of Penn-

sylvania. All linguistic resources, including data, annotations, system assessment, tools, and

specifications, have been created by LDC. These linguistic resources are distributed for NIST as

part of the TAC KBP evaluations [Simpson et al., 2010]; this is discussed later, in section 2.5.1.

The entity linking task can be divided into the two subtasks of named entity disambiguation

and identifying which mentions have no link in the knowledge base. In the following sections,

we survey different techniques used to disambiguate named entities against the knowledge base.

2.3 Previous Work in NED

Before 2008, very few researchers were trying to find solutions for disambiguating different

textual mentions of different named entities in Web pages. After NIST introduced the task of

entity linking, and provided resources, many researchers started to pay attention to the NED

problem and tackled it from different perspectives. This section presents a summary of the NED

system architecture and different approaches used to disambiguate NE textual mentions.
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2.3.1 General Definitions

Some expressions are frequently used by researchers working in named entity disambiguation;

these are related to the Wikipedia KB. In this section, a list of these expressions are defined as

follows:

• Redirect Page: A redirect page in Wikipedia is an aid to navigation; it contains no content

itself, only a link to another page (target page) with a different name, and strongly relates

to the concept of the redirect page name. It contains #REDIRECT [[target page]]. A

redirect page may be created for a number of reasons:

Misspellings: When Wikipedia entries with misspelled titles are corrected, the old titles

are redirected to the new correct title. For example, “Barak Obama” is redirected to

the entry with the correct spelling “Barack Obama”;

Alternative names: Some entities have different aliases. The different aliases are used

to redirect to one name. For example, “44th President of the United States” is redi-

rected to “Barack Obama”, and informal name “Sheffield University” is redirected

to “University of Sheffield”;

Short names: A short surface form may be used to refer to the full surface form of an

entity. For example, the surface form “Obama” is redirected to the full surface form

“Barack Obama”;

Abbreviations and initials: Abbreviation is frequently used in English as a short form

that refers to an entity. In Wikipedia, if there is a primary topic to the abbreviation

or the initial then a redirect page is created, and if there is no primary topic a redirect

will be for a disambiguation page. For example, “USA” is the abbreviation which

redirects to the primary topic “United States”.

• Disambiguation Page: Disambiguation pages are specifically created for ambiguously

named entities, and consist of links to articles defining the different interpretations of the

named entity textual mention. The same string may have a redirect page to the primary

topic and a disambiguation page to refer to different entities with the same name. For

13



Chapter 2. Literature Review and Datasets

example “USA” has a redirect page to “United States” and a disambiguation page that

contains links to entities for which USA may be used as an acronym, such as “Union of

South Africa”, “United Space Alliance”, “University of South Alabama”, “United States

Army”, “United Spirit Arena”, and “Université’ Sainte-Anne”.

• Wikipedia Hyper-links: Wikipedia pages typically contain some links to external pages or

other Wikipedia entries. These links are written as an anchor, which is the textual form

that appears in the page and the entity to be linked with. External links are written using

the html “href” tag, while internal links are formatted as [[mention—NE]]. Mention is the

surface string form that is used to mention the NE, while NE refers to the page title. If

the mention is equal to the NE, then the second parameter, NE, is ignored. Some different

links to the “Barack Obama” page could be [[Obama—Barack Obama]], [[44th President

of the United States—Barack Obama]], and [[Barack Obama]].

• Wikipedia Categories: A classification of the topics associated with each page. These are

normally found at the end of the page. All pages under the same topic have some semantic

relation. For example, “Barack Obama” is classified under the following topics: “African-

American United States Senators”, “Illinois Lawyers”, “Politicians from Chicago, Illi-

nois”, “Presidents of the United States”, and “Presidents of the United Nations Security

Council”. It is formatted in the Wikipedia dump as [[Category:xyz]].

2.3.2 NED General Framework

In this section, a generic framework for NED systems is discussed. Figure 2.1 shows a general

architecture which the majority of developed systems follow. Some approaches ignore certain

steps that they do not consider important. A detailed description of the components in the

architecture is presented in the following subsections.

2.3.3 Query Expansion

The target of query expansion is to find different forms of the NE textual mention that may refer

to the same NE in the knowledge base. This phase may include different steps, like correcting
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Figure 2.1: General Architecture of NED systems

spelling errors and expanding a short textual mention to its longer names that appear in the query

document [Zheng et al., 2010]. Chang et al. [2010] used the Stanford NER system and Stanford

deterministic co-reference system to find all textual mentions that are co-referent with the query

textual mention. Generally, expanding the NE textual mention query improves both accuracy

and recall, while ignoring it makes the disambiguation phase more difficult. We did not use

any query expansion techniques, and focused on the candidate generation and disambiguation

approach because using expansion techniques will affect the overall results. In other words,

using expansion techniques (as in Chang et al. [2010]) will affect the total results by the Stanford

deterministic co-reference system accuracy.
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2.3.4 Candidate Generation

The process of evaluating the likelihood for each entry in the knowledge base to be the correct

disambiguation entity for a specific NE textual mention in a specific context is excessively time

consuming. So identifying an appropriate sub-set of candidate entries, i.e. candidate generation,

becomes one of the main tasks of NE textual mention disambiguation. Candidate generation

is defined as the task of reducing the set of KB entries to be examined to a feasible number of

entries to allow the calculation within a feasible time. Methods used to generate the candidate list

are classified into two classes, static and dynamic approaches. Static approaches use a predefined

list and knowledge base repository to generate a candidate list of NE textual mentions. Dynamic

approaches use search techniques to find all possible NE candidates. There is no independent

evaluation of both candidate generation approaches, as researchers only select one of them to

generate a candidate list for each textual mention, and the final evaluation is for the overall NED

solution.

Static Candidate Generation

In this approach, a knowledge base repository is used to find all candidates of a specific NE

textual mention. Wikipedia is used to build a knowledge base repository containing a huge map

of real NE entries in the KB and the different textual forms using hyper-links, redirect pages, and

disambiguation pages. Therefore, NE candidates for a specific NE textual mention are selected

by finding the mention’s corresponding entries in the knowledge base repository. This approach

is widely used to find candidates for a specific NE textual mention ( Han and Sun [2011], Han

and Zhao [2009b], Reddy et al. [2010], Shen et al. [2012], Varma et al. [2010]). However, there

are drawbacks and limitations to this approach as shown below:

1. Wikipedia is not guaranteed to contain all textual forms for different named entities. So

some NEs may have different surface forms that are not found in the Wikipedia hyper-

links, disambiguation pages, or redirect pages.

2. The NE textual mention may be found in Wikipedia, but without being used to refer to

the true target NE, i.e. only mentioned in the article as plain text. One example is the
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Wikipedia NE entry of “Cardiff International Arena”, which may be referred to as “CIA”,

while there is no anchor for “CIA” which refers to that entity. The disambiguation page

for “CIA” also has no mention of “Cardiff International Arena” as one of its possibilities

for the acronym. There is no automatic method to generate these cases. Consequently,

if “CIA” is mentioned in a query document, “Cardiff International Arena” never appears

in the candidate list using this approach. This problem is not limited to acronyms, and

also appears for full names. A frequent occurrence in the dataset is a short name which

could be used to refer to the real NE in the context, like using “Austria” to refer to “Austria

national football team” or “Manchester City” to refer to “Manchester City Football Club”.

None of these short names are used in Wikipedia to refer to the real NE. Consequently,

using this approach, the candidate lists generated for many NE textual mentions do not

include the correct NE candidate.

We used this approach indirectly while using an HMM for disambiguation, as the conditional

probability will only have a value greater than zero if it appears in the training data (details in

chapter 4). Due to the limitations of this approach, recall falls very low, which affects the overall

accuracy. As an alternative, dynamic candidate generation is used in our proposed graph-based

solution (see chapter 5).

Dynamic Candidate Generation

This approach uses more advanced methods to select the NE candidates from the knowledge

base. The basic dynamic NE candidate generation method is to use information retrieval tech-

niques to search over the set of all titles of entries in the KB to find all NE candidates that are

similar, or partially similar, to the NE textual mention. This search may use different similar-

ity metrics like Dice score, skip bigram Dice score, or Hamming distance [Rao et al., 2013].

Another approach expands the query by adding some selected terms from the query document

and extending the search scope by including Wikipedia documents [Reddy et al., 2010]. More

advanced approaches use context modelling and document semantic analysis to create the can-

didate list [Ponzetto and Navigli, 2010] or to filter huge candidate lists [Nguyen and Cao, 2012].

Dynamic approaches may employ the static approach as an initial list and enrich it with

17



Chapter 2. Literature Review and Datasets

Individual Disambiguation Collective Disambiguation
Information Retrieval YES NO

Supervised Approaches YES NO
Graph based YES YES

Table 2.1: NED Approach classification Matrix

search results. The main advantage of this approach is of increasing the probability that the true

NE may be included in the candidate list. The disadvantage is that a huge number of candidates

must be evaluated. In our work, dynamic candidate list generation is always used. Additionally,

an intelligent candidate generation approach using named entity based search is proposed in

chapter 3.

2.3.5 Named Entity Disambiguation Approaches

Many disambiguation approaches have been proposed since 2009. These can be classified using

two different perspectives. The first considers whether entities are disambiguated jointly, i.e.

individual versus collective disambiguation approaches. The second is concerned with the dis-

ambiguation techniques used, like machine learning, information retrieval, semantic, and graph-

based approaches. There is some overlap between different approaches, while others do not

work together, for example, collective approaches do not intersect with information retrieval or

machine learning approaches. Table 2.1 shows a summary of the intersection between these

different approaches from the different classification perspectives.

In this section different approaches for disambiguating named entities are presented. Some

research is concerned only with person name disambiguation [Ono et al., 2008], but the majority

is concerned with disambiguating three major types of named entities (locations, persons, and

organizations). A few researchers include all types of named entities, including a Misc NE class

[Hoffart et al., 2011]. The difference between approaches is in the features used, as some are

based on a specific class of named entities.

Dependency Perspective

Individual Disambiguation Individual named entity disambiguation approaches are used to
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disambiguate a single textual named entity mention in a document without considering

any other named entities in the document, or by considering other textual mentions but

without disambiguation [Bunescu and Pasca, 2006, Dredze et al., 2010, Mihalcea and

Csomai, 2007, Zhou et al., 2010].

Collective Disambiguation Collective approaches include those where the different mentions

to different named entities in a document must be disambiguated jointly. The reference

of a named entity for each textual mention will affect the references of the other named

entity mentions [Han et al., 2011, Hoffart et al., 2011, Kleb and Abecker, 2010, Kulkarni

et al., 2009].

Methodology Perspective This classification perspective is based on the disambiguation

methodology. These approaches can be classified into three main categories, though some are

mixes of them. The first class contains Information Retrieval (IR) based approaches, where a

named entity mention is disambiguated by enhancing the search strategy and weighting criteria

for the different candidates. The second class contains supervised approaches, where training

data is required to train a learning model and learn a ranking function or weighting parameters.

Finally, graph-based approaches model the problem as a solution graph that includes all possi-

ble solutions, and different approaches are developed to find the best candidate for every textual

mention.

IR-Based Approaches

This set of approaches formulates the NED problem as an information retrieval problem, so the

textual mention and its context form the query, and the knowledge base forms the document

collection.

Cucerzan [2007] proposed a collective disambiguation approach that models the interdepen-

dence between the disambiguation decisions. He used a named entity recognizer to identify

all named entity textual mentions in a query document. Alo, all Wikipedia categories are ex-

tracted and each entity in Wikipedia is assigned a set of categories. KB entities are represented

as two vectors of the categories and the context entities, i.e. the named entities found in the en-

19



Chapter 2. Literature Review and Datasets

tity Wikipedia page. NE candidate lists for any NE textual mention in the query document are

formed by finding all NEs mapped to the same textual mention, then the query document is rep-

resented as two vectors of the context entities, i.e. all NE candidates of all NE textual mentions

in the document, and categories (union of categories of all NE candidates). The disambiguation

process is defined as a maximization of the agreement between the KB entity context vector and

the document context vector, as well as the agreement between the document categories vector

and the KB entries category vector.

Gottipati and Jiang [2011] proposed an unsupervised approach to disambiguate individual

NEs in a document by adopting a KL-divergence retrieval model (Lafferty and Zhai [2001]) to

rank all candidates. The query language model is expanded by considering the local context of

the NE textual mention in the query document and global knowledge obtained from the most

likely NE in Wikipedia. The candidate selection process is based on the highest rank above a

threshold, and the NE class agreement, i.e. the NE textual mention class identified by the NER

tagger must be the same as the NE candidate class.

Supervised Disambiguation Approaches

These methods use machine learning algorithms to disambiguate an individual named entity’s

textual mentions. Machine learning is used in two contexts, to learn weights for the importance

of different features for combination [Shen et al., 2012], and in learn-to-rank where the disam-

biguation problem is treated as a ranking problem. For learn-to-rank, training samples are used

to learn a ranking function that minimizes a loss function; researchers propose three approaches.

Point-wise: Ranking is tackled as a classification of candidates. This approach does not select

the best candidate for the textual mention, instead it considers the different candidates indepen-

dently and assigns to each candidate the probability that it is the correct one, allowing the most

probable candidate to be selected as the disambiguation candidate. Different classifiers may be

used to find such probabilities. Zhang et al. [2010] employed a SVM binary classifier to learn

context compatibility for disambiguation candidates. Milne and Witten [2008a] proposed us-

ing different classifiers, such as C4.5, Naı̈ve Bayes, and SVM, to train a model with different
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features to link with Wikipedia.

The point-wise approach is widely used in information retrieval to rank the resulting doc-

uments, but is rarely used in NED. Possible uses for a point-wise approach in NED may be to

reduce the candidate list, or to decide whether the correct KB entry is included in the candidate

list regardless of the reason (which may be due to omissions by the candidate list generation,

or that the entry has not yet been added to the actual KB). Using this approach, each candidate

is given a score independently of the other candidates. The main disadvantage of this approach

is that it ignores the relationship between candidates — in other words, the preference between

different candidates is ignored.

Pair-wise: Ranking is tackled as a classification of candidate pairs; the objective function is

to minimize the number of misclassified pairs. Each pair of instances (a, b) is labelled with a

being more relevant than b, or b being more relevant than a. Evaluating the preferences between

candidate pairs overcomes the disadvantage of the point-wise ranking [Rao et al., 2013].

Different algorithms have been developed to minimize the number of misclassified pairs,

like RankBoost [Freund et al., 2003], Ranking Perceptron [Zheng et al., 2010], and RankNet

[Burges et al., 2005]. The first use of the pair-wise learn-to-rank approach in NE disambiguation

was by Bunescu and Pasca [2006], where a SVM kernel is used to compare the context around

the NE textual mention and the context of the candidate entity, in combination with the esti-

mated contextual words and the NE candidate Wikipedia categories. Joachims [2002] proposed

SVMrank which is an adaptation of the SVM algorithm using the maximum margin approach

to learning the preference between a pair of objects [Joachims, 2002, 2006]. Maximum mar-

gin approaches assume the correct NE candidate y should receive a higher score than all other

candidates, ŷ ∈ Y, ŷ 6= y plus a margin γ. SVMrank is widely used in NED to learn the pref-

erence between different candidates [Dredze et al., 2010, Rao et al., 2013]—providing us with

confidence in its use for ranking in our NE based document similarity approach(see chapter 3).

List-wise: Ranking is used to learn from lists of candidates. This approach tries to optimize

the value of the evaluation measure, averaged over all queries in the training data. Different
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algorithms like SVMmap [Yue et al., 2007], and ListNet [Cao et al., 2007, Zheng et al., 2010]

has been developed to learn the ranking, using mean average precision (MAP) to calculate the

list-wise loss function.

Graph-Based Approaches

Graph models has been widely used in word sense disambiguation (WSD), which has many

similarities with NED (Gutiérrez et al. [2011, 2012]). Graph-based approaches have also been

used successfully for the NED problem, usually with collective approaches. Guo et al. [2011]

used a directed graph, with both textual mentions and NE candidates as graph nodes; edges

connect textual mentions to candidates, or vice versa, but there are no links between mentions

or between candidates. The rank of each candidate is calculated based on the out-degree and in-

degree links. The key point in this approach is the links found between some textual mentions

and NE candidates of other textual mentions. However, the interdependency between different

candidates of different textual mentions is not represented. Hachey et al. [2011] proposed a

graph-based approach which initialises a graph of unambiguous named entities, and assumes

that textual mentions with only one NE candidate are unambiguous. Other candidates are added

to the graph if they have a link to one or more graph nodes with a specific length through the

link pages or categories. This assumption is not accurate enough to rely on, as it makes further

decisions of the textual mentions depend on the accuracy of the candidate generation phase,

which already has a trade off between recall and the candidate list size.

Other researchers pay more attention to the NE candidates interdependence. Han et al.

[2011] use local dependency between the NE mention and the candidate entity, and semantic

relatedness between candidate entities to construct a referent graph, proposing a collective in-

ference algorithm to infer the correct reference node in the graph. Random graph walk models

are used, but this does not give significant improvement; Gentile et al. [2009] reported 0.06%

improvement over Cucerzan’s approach, and Liu [2009] reported 92.9% as the highest accuracy

with random walks for a transition count of one, while the exact match approach achieves 98.4%

accuracy. The exact match approach tries to find the exact match string first and if no entity with

exact string match exists, then it selects the entity which is the most frequent attached to the NE
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textual mention. Hoffart et al. [2011] poses the problem as one of finding a dense sub-graph,

which is infeasible for graphs of any large size, as finding the densest sub-graph is a NP-hard

problem. So, an algorithm originally used to find strongly interconnected, size-limited groups

in social media is adapted to prune the graph, and then a greedy algorithm finds the densest

graph. We compare the graph-based model results presented in chapter 5 to Hoffart’s results, as

the same dataset is used for evaluation. Our graph-based approach differs from Hoffart’s work

in evaluating all graph nodes using the Page-Rank algorithm, without resorting to reduction or

greedy algorithms.

2.4 NED Popular Features

Many features have been used for NED. Features may be separated into two classes: local fea-

tures are extracted from the query document without any external sources, while global features

are calculated independently of the query document and are based solely on external sources. A

summary of the most well known local features are listed in section 2.4.1, and section 2.4.2 lists

some of the popular global features.

2.4.1 Local Features

Local features are popular and many researchers have proven their importance. This type of

feature takes into account the context of the ambiguous NE textual mention and the document

concepts. The following list shows some frequently used local features.

Named Entity Type Matching

A binary feature that indicates NE class agreement between the annotated NE textual

mention in the query document and the candidate NE class in the KB [Dredze et al., 2010,

Zhang et al., 2010].

Cosine Similarity

A lexical feature based on the vector-space model, presented by Salton et al. [1975]. The
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cosine similarity between a document d and query q is defined as shown in equation 2.1.

sim(d, q) =
dq

‖d‖ ‖q‖
=

∑N
i=1wi,dwi,q√∑N

i=1w
2
i,d

√∑N
i=1w

2
i,q

(2.1)

Where Vd = [w1,d, w2,d, . . . , wN,d]
T is the weight vector for document d;

and:

wt,d = tft,dlog
|D|

|{d′ ∈ D|t ∈ d′}|
(2.2)

where:

tft,d is the term frequency of term t in document d;

|D| is the total number of documents in the document set;

|{d′ ∈ D|t ∈ d′}| is the number of documents containing term t;

and log |D|
|{d′∈D|t∈d′}| is the inverse document frequency.

Different researchers use cosine similarity for different features in different contexts. Let

Ctxt(e) denote the context of the NE e, i.e. the top 200 token TF-IDF summary of the

text within which the entity is hyperlinked in Wikipedia; text(e) denotes the top 200 token

TF-IDF summary of the entity page in Wikipedia; text(m) refers to the textual mention

tokens; Ctxt(m) the context of NE textual mention m, i.e. N-token window around m.

Then, four variations of similarity measure may be calculated as follows:

1. cos-Sim(text(e), text(m))

2. cos-Sim(Ctxt(e), text(m))

3. cos-Sim(text(e), Ctxt(m))

4. cos-Sim(Ctxt(e), Ctxt(m))

This feature is widely used in NED [Dredze et al., 2010, Fader et al., 2009, Ratinov et al.,

2011, Zheng et al., 2010]. Cosine similarity is not a reliable feature for NED, especially

when trying to find the similarity between the textual mention itself and KB entry title, as

shown in detail in chapter 5.

Entity Context Probability

24



Encodes the context of the named entities, i.e. P (c|e), where c is context of the named

entity e. For a specific context, a higher probability will be assigned to the named entity

which frequently appears with that context. Han and Sun [2011] proposed an entity con-

text model to estimate the distribution P (c|e) by encoding the context of an entity e in a

unigram language model. They define the context as the surrounding window of 50 terms,

and used formula 2.3 to find the entity context probability.

P (c|e) = Pe(t1)Pe(t2)Pe(t3) . . . Pe(tn) (2.3)

where Pe(t) = Counte(t)∑
t Counte(t)

, and Counte(t) is the frequency of occurrence of term t in

the context of the named entity e.

2.4.2 Global Features

Global features refer to context independent features, i.e. calculated independently of the query

document or the local context of the NE textual mention. It is used widely and successfully in

the NED task, as it is easy to calculate and can be calculated once offline. The following is a

shortlist of the most popular global features used for the NED task:

Word Category Pair

This feature was first proposed by Bunescu and Pasca [2006] for NED and was used

in much research, including Zhang et al. [2010], where they used word–category pairs

extracted from the Wikipedia article as a good signal for disambiguation. Each Wikipedia

article has been assigned at least one category, so all words in the article can be assigned

the article categories. For each word in the query document, or words in the NE textual

mention context, a list of word–category pairs can be generated. This feature was used by

Bunescu and Pasca [2006] in conjunction with the cosine similarity to rank a specific NE

candidate. Zhang et al. [2010] formalised this as the probability of a word appearing with

different categories in the Wikipedia KB.

Entity Popularity

The probability of an entity occurring in the KB. This feature has been implemented in
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different formulas with slightly different meanings; Han and Sun [2011] defined it as in

equation 2.4, while Ratinov et al. [2011] defined it as the fraction of Wikipedia pages that

have a link to the NE e.

P (e) =
Count(e) + 1

|M |+N
(2.4)

where Count(e) is the number of references to the entity e in the KB, M is the set of

textual mentions referring to e, and N is the total number of entities in the KB.

Mention–Entity Popularity

The fraction of times that the NE candidate e is linked to the textual mention m. To

calculate this probability, all Wikipedia hyper-links are used as the source of mentions

(anchor text) and NE (the KB entry URL) association to build a dictionary of mention–

entity frequency. This feature is widely used, and is also known as commonness [Han and

Zhao, 2009a, Milne and Witten, 2008a, Ratinov et al., 2011, Shen et al., 2012]. Mention–

Entity popularity score can be calculated using equation 2.5.

P (e|m) =
Countm(e)∑

ei∈Em
Countm(ei)

(2.5)

where Countm(e) is the number of associations between the NE candidate e and the tex-

tual mention m, and Em is the set of entities to which the textual mention m refers. Some

researches like [Nguyen and Poesio, 2012]. normalize it over all mentions by dividing by

the probability of the textual mention p(m) as show in equation 2.6.

commonness(e,m) =
p(e|m)

p(m)
(2.6)

Entity–Mention Popularity

The probability of textual mention m, given a specific NE e. Like mention–entity pop-

ularity, all Wikipedia hyper-links are used as a source for the mention–entity association
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dictionary. Entity–Mention popularity score is calculated using equation 2.7.

P (m|e) = Counte(m)∑
mi∈Me

Counte(mi)
(2.7)

where Counte(m) is the number of associations between the textual mention m and the

NE candidate e, and Me is the set of mentions that refer to the entity e [Han and Sun,

2011].

Entity Semantic Relatedness

An adaptation of Normalized Google Distance (NGD) [Cilibrasi and Vitanyi, 2007] to use

Wikipedia links rather than Google’s search results, also called the Wikipedia Link-based

Measure (WLM) proposed by Milne and Witten [2008b]. This feature is widely used in a

number of different approaches ([Han and Zhao, 2009a, Milne and Witten, 2008a, Nguyen

and Poesio, 2012, Ratinov et al., 2011, Zhou et al., 2010]). Equation 2.8 calculates the

semantic relatedness between two entities e1 and e2, where e1 and e2 are two Wikipedia

pages of interest, E1 and E2 are the sets of all pages that links to e1 and e2 respectively,

and W is the set of all Wikipedia pages.

SR(e1, e2) =
log(max(|E1|, |E2|))− log(|E1

⋂
E2|)

log(|W |)− log(min(|E1|, |E2|))
(2.8)

2.5 Evaluation Datasets

Despite the different datasets that have been manually developed to evaluate the linking to

Wikipedia tasks, there are no established benchmarks for NED. The only available related bench-

mark is the TAC KBP entity linking task. NIST has released a dataset for use in the TAC KBP

entity linking task (EL), referred to as the TAC-dataset; a detailed description is presented in sec-

tion 2.5.1. The TAC-dataset is suitable for single entity disambiguation approaches. There are

hand-annotated datasets for NED, such as the one reported in Kulkarni et al. [2009], though this

is quite small and uses an out of date snapshot of Wikipedia. Another dataset called AIDA was

prepared by Hoffart et al. [2011] for the NED task. The AIDA-dataset is based on the CoNLL-
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2003 data for NER tagging, with the majority of the tagged NE mentions disambiguated against

Wikipedia. It is described in section 2.5.2.

An important difference between the TAC and AIDA datasets is the entity type scope. All

annotated mentions in the TAC-dataset were selected to be references to a specific named entity

that was classified as Person, Organization, or Place; annotated mentions in the AIDA-dataset re-

fer to these named entity types but in addition also include a Miscellaneous type (which includes

events, eras in time, languages, religions, film titles, book titles, etc.).

2.5.1 TAC Dataset

Efforts have been made to build standard resources for the evaluation of entity linking tech-

niques by the Linguistic Data Consortium (LDC), at the University of Pennsylvania. These have

resulted in a set of linguistic resources, including data, annotations, system assessment, tools,

and specifications, distributed for NIST as part of the TAC KBP evaluations [Simpson et al.,

2010].

The KBP dataset consists of a reference knowledge base (KB) and a collection of documents

that contain potential mentions of, and information about, the target entities for the KBP evalua-

tion tasks. All datasets are prepared by LDC, ensuring they are well-formed XML and can thus

be parsed using a standard XML parser. In 2009, the LDC released the first version of this data

set, containing 1,289,649 data files collected from various genres. The following year, 63,943

new documents from a new web collection, and 424,296 documents from the existing GALE

web collection, were added, resulting in the 2010 dataset of 1,777,888 documents for use in

linking to a knowledge base. Table 2.2 summarizes the data genres and number of documents;

the numbers are the same for 2009 and 2010, with the exception of the web collection, which

was added in 2010.

The second part of this dataset is the knowledge base. LDC used the October 2008 snapshot

of Wikipedia to construct a reference KB of 818,741 entities to support TAC-KBP. As presented

in figure 2.2, each entity has the following items:

• Entity ID A unique identifier for each entity in the knowledge base.
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Genre Documents
bc broadcast conversation transcripts 17
bn broadcast news transcripts 665
cts conversational telephone speech transcripts 1
ng newsgroup text 562
nw newswire text 1,286,609
wl weblog text 1,795
wb web collection (2010 only) 488,239

Table 2.2: Source Collection Corpus Released by LDC in 2009 & 2010

<?xml version='1.0' encoding='UTF-8'?>
<knowledge_base>
.
.
.
.
<entity wiki_title="Barepot" type="GPE" id="E0009429" name="Barepot">
<facts class="infobox UK place">
<fact name="country">England</fact>
<fact name="latitude">54.64</fact>
<fact name="longitude">-03.53</fact>
<fact name="official_name">Barepot</fact>
<fact name="shire_county"><link>Cumbria</link></fact>
<fact name="region">North West England</fact>
<fact name="os_grid_reference">NY0129</fact>
</facts>
<wiki_text><![CDATA[Barepot

Coordinates:

Barepot used to be a village in Cumbria, England. As Workington and Seaton grew,
Barepot and also Seaton became districts of Workington. Both Seaton and Barepot
share a Workington post code (CA14). Barepot has about 70 houses and is situated
on the River Derwent. There are no transport links (e.g. Workington Circulars),
but Barepot is only a 5-10 minute walk into the centre of Workington.
]]></wiki_text>
</entity>
.
.
.
.
</knowledge_base>

Figure 2.2: Example KB Entry

• Wikipedia page title A canonical name for the Wikipedia page.

• Wikipedia page name The title for the Wikipedia page.

• Entity type The type assigned to the entity; PER (person), ORG (organization), GPE

(geo-political), or UKN (unknown). Types were assigned by the LDC in a processing

phase after assigning UKN as a default type for all entities. The assignment process
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depends on the type of an article’s Infobox, if any, so this mapping was determined by the

type most likely associated with a given Infobox name (e.g. entity id = E0009430 Infobox

School is ORG). The assigned types are not 100% accurate (e.g. entity id = E0009382

Infobox Company is UKN). A breakdown of entity types and their frequencies in the KB

is presented in table 2.3.

Type Entities
GPE 116,498
ORG 55,813
PER 114,523
UKN 531,907

Table 2.3: A Break Down of KB Entity Types

• Infobox A table containing a list of attributes about the page’s subject. Some types of

Infobox are discarded, since they contain no key-value pairs; so not all entities have an

Infobox. Some attributes (e.g. picture captions) are ignored, and other features may be

parsed incorrectly. When a Wikipedia article contains more than one Infobox, only the

first is included in the KB.

• Wikipedia page text A stripped version of the text of the Wikipedia article. This item

may be helpful in disambiguating the target mention.

Queries and Golden Standard

All queries are formatted as XML files, where each node contains an entity mention and the

document ID that contains this mention. Since this document provides a context for the entity

mention, it may be helpful for mention disambiguation. Most target entities were selected to

include ambiguous names; Simpson et al. [2010] describe the selection process performed by

the LDC. A breakdown of the given queries used in TAC 2009 and TAC 2010 is presented in

table 2.4, and a sample of XML entries in the query file is presented in figure 2.3

Since the queries are designed specially for evaluation purposes, queries should cover the

following problems:
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Year Queries NIL/KB ORG PER GPE Total

2010 2250
NIL 446 538 246 1230
in KB 304 213 503 1020

2009 3904
NIL 1697 272 160 2129
in KB 1013 255 407 1675

Table 2.4: Number of Queries, By Type and KB Presence

<?xml version='1.0' encoding='utf8'?>
<kbpentlink>
  .
  .
  <query id="EL1914">
    <name>Mahdi</name>
    <docid>AFP_ENG_20070406.0397.LDC2009T13</docid>
  </query>
  <query id="EL1915">
    <name>Mahdi</name>
    <docid>AFP_ENG_20070417.0098.LDC2009T13</docid>
  </query>
  <query id="EL1916">
    <name>Mahdi</name>
    <docid>AFP_ENG_20070427.0442.LDC2009T13</docid>
  </query>
  <query id="EL1917">
    <name>Mahmood Shah</name>
    <docid>APW_ENG_20070730.0206.LDC2009T13</docid>
  </query>
  <query id="EL1918">
    <name>Mahmood Shah</name>
    <docid>APW_ENG_20080922.0278.LDC2009T13</docid>
  </query>
  <query id="EL1919">
    <name>Mahmood Shah</name>
    <docid>APW_ENG_20080922.0397.LDC2009T13</docid>
  </query>
  <query id="EL1920">
    <name>Mahmood Shah</name>
    <docid>LTW_ENG_20080128.0022.LDC2009T13</docid>
  </query>
  <query id="EL1921">
    <name>Mahmood Shah</name>
    <docid>LTW_ENG_20080910.0094.LDC2009T13</docid>
  </query>
  <query id="EL1922">
    <name>Mahmood Shah</name>
    <docid>NYT_ENG_20070629.0167.LDC2009T13</docid>
  </query>
  .
  .
</kbpentlink>

Figure 2.3: Example Query XML File

• Name Variations: Since an entity often has multiple mention forms, such as aliases (Rom-

mel vs “The Desert Fox”).
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• Alternative Spellings: like “Ossama”, “Ussamah”, or “Oussama”.

• Abbreviations: like NIST for “National Institute of Standards and Technology”.

Examples for these cases are presented by McNamee et al. [2010] as part of his breakdown of

the queries used in the TAC 2010 evaluation. Query #1213 is a good example of the ambiguous

acronyms problem, since the “DRC” mention refers to “the Democratic Republic of Congo”,

however, both ‘DCR’ and ‘DRC’ appear as acronyms in the provided document. Another exam-

ple of entity name alias is query #1717, where “Iron Lady” refers to Ukrainian Prime Minister

“Yulia Tymoshenko”.

The TAC dataset was prepared for two tasks, “Entity Linking” and “Slot filling”, and this

explains the big difference between the number of documents and the number of annotated

mentions. This dataset is suitable for the EL task, and for single named entity disambigua-

tion approaches. However it is not suitable for evaluating collective disambiguation approaches

because not all named entity textual mentions are annotated in the query document.

2.5.2 AIDA Dataset

Hoffart et al. [2011] proposed the AIDA-dataset1 to test their system, Accurate Online Disam-

biguation of Named Entities. This dataset is based on the CoNLL-2003 data for NER tagging.

So, the dataset is pre-annotated and used to be a gold standard in NER tagging task before. Most

tagged NE mentions have been manually disambiguated against multiple knowledge bases, such

as Wikipedia, YAGO [Suchanek et al., 2007], and Freebase2 [Bollacker et al., 2008]; details are

summarized in table (2.5). There are some annotated NE textual mentions that do not have a

proper entry in the KB, so we refer to them as ”Mentions Not Linked to Wikipedia”. There are

some key differences between the AIDA-dataset and the TAC-dataset:

• The number of named entity mentions in the AIDA-dataset is significantly greater than in

the TAC-dataset;

1The AIDA-dataset is available to download from www.mpi-inf.mpg.de/yago-naga/aida (last visited
9-April-2014)

2www.freebase.com (last visited 9-April-2014)
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Property Count
Documents 1,393
Annotated Mentions 34,956
Mentions Not Linked to Wikipedia 7,136

Table 2.5: AIDA Dataset Properties

• in the AIDA-dataset, the majority of named entities in each document are annotated, while

only one or two named entities are annotated in each TAC-dataset query document;

• annotated named entity mentions in the TAC-dataset are always one of three standard

classes (person, location, organization), while the AIDA-dataset includes the additional

Misc class.

The number of NE textual mentions in dataset documents varies from one to 157 NE textual

mention. Table 2.4 shows that around 85% of documents contain less than 30 NE textual men-

tions while 15% contains more than 30. Only one document contains 157 NE textual mentions

and all other documents contains less than 100.

Figure 2.4: AIDA dataset documents analysis
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2.6 Knowledge Base

There are a number of available knowledge bases for linking. We used the most popular, a

snapshot of Wikipedia; most state-of-the-art approaches use this as a reference knowledge base,

making our results comparable. However, different dumps of Wikipedia are used in differ-

ent approaches. We used two different Wikipedia dumps in our experiments. The first is the

Wikipedia 2008 snapshot provided by NIST for the Entity Linking task in TAC 2009, 2010, and

2011, which is used in evaluating the document similarity using NEs approach (see chapter 3).

The second is the Wikipedia 2012 snapshot, which is used to evaluate HMMs, and graph model

approaches (see chapters 4 and 5).

2.7 Evaluation Measures

Different evaluation metrics have been used to evaluate different approaches to NED. The key

metric used by researchers in NED task is accuracy, though some researchers treat NED as an

IR problem and use precision and recall to measure system performance.

2.7.1 Accuracy

We use accuracy as one principal evaluation metric. There are two types of accuracy measures:

micro-averaged accuracy and macro-averaged accuracy.

Micro-averaged accuracy corresponds to the percentage of correctly disambiguated textual

mentions taken across all entities and all documents. It is calculated as shown in equation 2.9,

and is used in most state-of-the-art evaluations, and by the majority of researchers, to evaluate

NED system performance [Chen and Ji, 2011, Du et al., 2013, Gentile et al., 2009, Gottipati and

Jiang, 2011, Han and Sun, 2011, Jačala and Tvarožek, 2012, Liu, 2009]. Micro-accuracy was

also the primary evaluation metric in TAC 2009.

Amicro =
Correctly Disambiguated Mentions

Total NE Mentions
(2.9)

Macro-averaged accuracy has two different interpretations. The first is the average per-
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centage of correctly disambiguated textual mentions for each unique named entity, as shown in

equation 2.10. In other words, it is the average of micro-accuracy for each named entityEi ∈ E.

We follow this interpretation in our experiments on graph model approaches presented in chap-

ter 5. This is the formal interpretation used in TAC for the KBP entity linking task, and also in

other research [Chang et al., 2010, Dredze et al., 2010, Han and Sun, 2011].

Amacro =

∑|E|
i

Num of Mentiones Correctly Linked to Ei

Num of menstions must be linked to Ei

|E|
(2.10)

whereE is the set of all NE entries in the KB that should be linked, and |E| is the number unique

NEs in the dataset.

The second interpretation is that macro-averaged accuracy is the average percentage of cor-

rectly disambiguated textual mentions for each document Di ∈ D, as shown in equation 2.11.

Amacro =

∑|D|
i

Num of Correctly disambiguated mentions in Di

Num of mentions in Di

|D|
(2.11)

whereD is the set of all documents in the dataset, and |D| is the number of documents. We used

this interpretation in experiments used to test the HMMs approach presented in chapter 4. This

interpretation is also used by some researchers, such as [Hoffart et al., 2011, Shirakawa et al.,

2011]

2.7.2 Precision and Recall

Precision and recall are well-known metrics in information retreival tasks. However, they are

not widely used in evaluating NED. Some NED approaches include the named entity recognition

task as part of the NED system, i.e. identify the NE textual mentions in the document which refer

to an entry in the KB, for use in collective disambiguation [Han et al., 2011, Hassell et al., 2006].

One of the reasons is that not all NE textual mentions in the dataset are annotated, e.g. in the TAC

dataset only one or two NE textual mentions are annotated; while in another dataset, many NE

textual mentions may be annotated, but there is no guarantee of 100% coverage. The intuition is

that annotating the missed NE textual mentions may help disambiguation.
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Consequently, it is the proportion of annotated NE textual mentions which is evaluated.

Precision is defined as the proportion of mention–entity assignments that match the ground truth

assignments, while recall is the proportion of ground truth assignments that could be assigned

by the proposed method. Equations 2.12 and 2.13 show formulae for the precision and recall.

Precision =
|A

⋂
B|

|B|
(2.12)

Recall =
|A

⋂
B|

|A|
(2.13)

where A represents the set of mention–entity assignments achieved by the proposed system, and

B represent the ground truth mention–entity assignments.

As this metric evaluates the results of two different tasks, NE recognition and disambigua-

tion, it is not valuable for evaluating the performance of the disambiguation task alone.

Hoffart et al. [2011] used precision at a specific recall level, P@n, and defined the recall

level n as the n-most confident candidates of every specific textual mention. Thus, calculating

the precision at recall level one (precision@1.0) is equal to accuracy, since it is defined as the

overall correctness of the textual mentions assigned to a KB entity in the ground truth. This

allows us to compare our results with Hoffart et al.’s even though they appear to be using different

evaluation metrics.
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Chapter 3

Named Entity Based Document

Similarity with SVM Re-ranking∗

As mentioned in chapter 2, candidate list generation is an important step in named entity dis-

ambiguation. This step is concerned with reducing the search space of candidate entities for an

ambiguous NE textual mention to a limited number. So, we have a trade-off between the size

of candidate list and the recall. The main objective in this chapter is to present a new document

similarity function (NEB-sim) based on named entity mentions co-occurrence and show how it

can contribute in NED.

In this chapter, the problem of named entity disambiguation is tackled as an information

retrieval problem, i.e. the KB is treated as a document collection and the NED task as that of

returning the correct document given the query mention and query document. A document simi-

larity function, NEB-Sim, has been developed to calculate the similarity between two documents

given a specific NE mention in one of them (see section 3.2). NEB-Sim is used in conjunction

with cosine similarity to learn a model for ranking the reference knowledge base candidate doc-

uments. Naı̈ve Bayes and SVM classifiers are used to re-rank the retrieved documents (see

section 3.3). Our experiments, are carried out on the TAC-dataset (see section 2.5.1). Results

show NEB-Sim achieves significant improvement in recall as compared with a cosine similarity

∗Parts of this chapter has been published in Advanced Machine Learning Technologies and Applications, pp.
379-388. Springer Berlin Heidelberg, 2012
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approach. Also, using a machine learning technique significantly improves the recall compared

to each similarity function separately (see section 3.4). Finally, some conclusions and discussion

of the presented approach and its relevance to the research problem are presented in section 3.5

3.1 Introduction

The problem of Information Retrieval (IR) has a special importance in NLP. General IR tech-

niques do not always give the best solution for different tasks. So, many adaptations have been

made for different tasks to obtain better accuracy in terms of precision and recall. Many ap-

proaches to NED adopt a Vector Space Model (VSM) using cosine similarity with a TF-IDF

weighting scheme. Furthermore, they explore various query formulation strategies including

using the query mention, the sentence containing the query mention, or a window of words sur-

rounding the query mention, and a selected set of words [Reddy et al., 2010]. Traditional search

methods consider the NE mention terms plus some selected terms from the query document ac-

cording to the query formulation scheme, but not all of these terms are useful in search. Some

research has modelled the dependency between named entities and other terms in the KB docu-

ment to weight the different terms, [Gottipati and Jiang, 2011, Han and Sun, 2011, Petkova and

Croft, 2007].

Named entity based search has improved retrieval performance in different tasks like cross-

language retrieval [Mandl and Womser-Hacker, 2005] and event detection [Kumaran and Allan,

2004]. Such an approach has not been investigated for named entity disambiguation. As in a

formulation of the NED problem as an IR problem, it is natural to explore a vector space model

approach as a baseline. We consider several query formulation strategies. However, analysis of

the poor results using this approach leads to the observation that it is the other NEs co-occurring

with the query mention that are most helpful in disambiguating the query mention. Building on

this insight, we have developed a novel similarity function to search the KB documents based

on the statistical co-occurrence between NEs.

In this chapter, we present a tailored technique to retrieve the most probable knowledge base

entries referring to a named entity mentioned in a document. We hypothesize that the similarity
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between the different mentions for different named entities in the query document and the KB

candidate documents (which are all KB documents that contain the query mention) is a good

indicator for the correct KB entry. Also, such a similarity score could be used to learn a model

for re-ranking the KB candidates. We present a document similarity measure (NEB-Sim) that

uses the different mentions for different named entities in both documents (query document

and KB candidate document) and show how it can contribute in named entity disambiguation.

Different re-ranking techniques are tested to compare the performance of the NEB-Sim measure

against the normal cosine similarity measure.

The proposed approach is evaluated on the TAC-dataset (see section 2.5.1). Comparison

with a vector space model baseline approach based on cosine similarity with TF-IDF weighting

shows our NE based search can indeed improve performance significantly. The effect of using

only different mentions for different named entities in the document with the cosine similarity

and NEB-Sim similarity function are also studied. The experiments show that using different

mentions for named entities with cosine similarity does not significantly improve the perfor-

mance, while using the NEB-Sim similarity function improves the performance significantly.

3.2 Named Entity Based Search

Our hypothesis is that textual mentions for different named entities in a document are the most

valuable resource for disambiguating any of the named entity mentions. So, NE mentions ex-

tracted from the query document (other than the query mention) appear more useful than other

query document terms. The query mention is defined as the ambiguous named entity mention

to be disambiguated, while document terms refers to all terms that are not a part of any named

entity, like nouns, verbs, adverbs,etc.

The following example is taken from the dataset “eng-NG-31-143446-10242486.sgm”, with

some omissions for the sake of brevity (indicated by ellipses.) The example illustrates the diffi-

culty of disambiguating the query mention “Barak”. It is very ambiguous, and could be any of

“Barack Obama”, “Ehud Barak”, “Barak Moshe”, or “Barak Valley”.
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<DOC>
<DOCID> eng-NG-31-143446-10242486 </DOCID>
<DOCTYPE SOURCE="usenet"> USENET TEXT </DOCTYPE>
<DATETIME> 2008-04-06T06:27:59 </DATETIME>
<BODY>
<HEADLINE>
swi news: Saturday, April 05, 2008, 29 Adar Bet, 5768
</HEADLINE>
<TEXT>
<POST>
<POSTER> Heidi <lilo97...@yahoo.com> </POSTER>
<POSTDATE> 2008-04-06T06:27:59 </POSTDATE>

Barak tries to calm Syrian nerves over Israeli drill ’Israel has no
intentions of launching any such operation," says defense minister in
public bid to allay Damascus concerns scheduled nationwide exercise
foretelling of aggressive Israeli intent

Roni Sofer Published: 04.05.08, 23:33 / Israel News

"The home front drill commencing tomorrow is an exercise that has been
in the works for several months. Israel has no intentions to launch
any such operation or any others. Messages of reassurance have been
communicated across to all relevant parties," so reiterated officials
in the Prime Minister’s Office on Saturday night after several days of
exacerbated tensions with Damascus.
.
....
.
Barak’s deputy, Matan Vilnai, will brief the government on Sunday on
the course of the exercise. All State offices are also expected to
take part in the drill.

Hanan Greenberg contributed to this report
.....
</POST>
</TEXT>
</BODY>
</DOC>

It is clear from the example that most of the other non-NE words in the query document

are unlikely to help in identifying the correct “Barak”; however, “Matan Vilnai” is very useful

indeed. Thus, the joint relation between different mentions of named entities appears to be a

promising factor for NE mention disambiguation.

NE based document retrieval is based on the assumption that NEs co-occurring with a spe-

cific NE in the same context will help in ranking the documents that contain information about

this NE.
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Figure 3.1: General Architecture of Named Entity Based Search

The architecture diagram of our proposed system is illustrated in figure 3.1. As shown in

the architecture digram, the proposed system has two phases. The first is an offline phase which

indexes all KB documents (see section 3.2.1). Additionally, the statistical co-occurrence relation

between all NE mentions recognized in the KB documents is explored and a co-occurrence

model is built (see section 3.2.2). The online phase is second, where the NE index is used

to find candidate documents for the query mention in a given query document, and the NE
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co-occurrence model is used to score each candidate document with the NEB-Sim similarity

function (see section 3.2.3).

3.2.1 Document Collection Indexing

Referring to our hypothesis, not all document terms are useful. Clearly NE mentions are useful

and we will see how far we can get with just them. So, just the named entity mentions are

used to index. In this first phase, all KB documents are converted into a KB pseudo-document

representation. A KB pseudo-document is a knowledge base document represented in terms of

the different mentions for named entities only.

To convert a KB document into a KB pseudo-document, the Stanford NER tagger is used to

extract named entity mentions in the knowledge base document text. The Stanford NER tagger

implements a linear chain Conditional Random Field (CRF) sequence model [Lafferty et al.,

2001]. It also incorporates some non-local structure models into the local model (which is the

trained CRF) and uses Gibbs sampling to find the correct state sequence [Finkel et al., 2005].

We used the three class model (Location, Person, Organization) trained on the CoNLL2003,

MUC-6, and MUC-7 datasets.

The KB pseudo-documents have to be indexed in order to speed-up the search process. KB

pseudo-documents are represented in a vector space model using the Appache Lucene Indexer.

3.2.2 Modelling KB Named Entities

In the second phase, the named entity model θ is built given a set of KB pseudo-documents

D and a set E of recognized named entities mentioned in the documents in D where ∀ d ∈

D ∃E where E = {e1, e2, e3, ..., en}. The conditional probability between any two distinct

named entity mentions ei, ej ∈ E is estimated using the following formulae

p(ei) =

∑
d∈D in(d, ei))

‖D‖
(3.1)

p(ei, ej) =

∑
d∈D in(d, ei ∧ ej)

‖D‖
(3.2)
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p(ei|ej) =
p(ei, ej)

p(ej)
(3.3)

where the function in(d, e) returns 1 if the NE mention e occurs in d and 0 otherwise and

in(d, ei ∧ ej) returns 1 if in(d, ei) = in(d, ej) = 1, 0 otherwise.

3.2.3 Searching and Scoring

In this phase, all knowledge base pseudo-documents are searched for the query mention em

given the query document. The query document is converted into a standard peseudo-document

which contains all named entities extracted by the NER tagger. All KB peseudo-documents

that contain the query mention named entity em will be retrieved as candidate documents that

describe the query named entity mention em. As a rule of thumb, the document that describes a

named entity must contain a mention of the named entity while not all documents mentioning a

named entity describe it. This candidate set is huge and highly ambiguous. For each document,

a numerical score is assigned to the candidate document using NEB-Sim. The basic concept

is to use the relative information gained from the NE mentions in the query document and the

document collection. Two similarity functions are proposed and their performance compared.

The first similarity function is based on the information theoretic definition of similarity

proposed by [Lin, 1998]:

IT -Sim(A,B) =
I(Common(A,B))

I(Description(A,B))
(3.4)

where I(Common(A,B)) is the information content of the statement describing what A and

B have in common and I(Description(A,B)) is the information content of the statement de-

scribing whatA andB are. In the proposed model, the elementary units of a document are taken

to be the NE mentions recognized in it.

We define the NEB-Sim document similarity function as follows:

• Let A be the query document containing a set of NE mentions Ea;

• let B be a KB document containing a set of NE mentions Eb;
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• let em be the query NE mention;

• let Eab be the set of NEs common to A and B, i.e. Eab = Ea
⋂
Eb;

NEB-Sim1(A,B) =

∑
e∈Eab

p(e | em)∑
e∈Ea

p(e | em) +
∑
e∈Eb

p(e | em)
(3.5)

However, this similarity function has a problem since it is affected by the relative weight

of the candidate document NEs which are not in common with the query document, so the

denominator will change for each candidate. As a kind of normalization, the relative weight of

the KB document is removed in the second similarity function, based on the assumption that

the weight of all related named entities found in the KB document ( Description(B)) is not

important in scoring the candidate. Following this assumption, we obtain the following formula:

NEB-Sim2(A,B) =

∑
e∈Eab

p(e | em)∑
e∈Ea

p(e | em)
(3.6)

There is an analogy between the similarity function NEB-Sim1 and the Jaccard similarity coef-

ficient. The Jaccard coefficient is defined as the size of the intersection divided by the size of

the union of the sample sets A and B, as shown in equation 3.7. Both functions consider the

proportion of shared items in both documents relative to the total items found in both documents.

However, our NEB-Sim1 function does not consider the number of shared items in both doc-

uments, like Jaccard similarity, and calculates the sum of conditional probabilities of different

named entities in the document, given the query NE mention.

J(A,B) =
A
⋂
B

A
⋃
B

(3.7)

3.3 Learning to Rank Documents

As discussed in the literature review, learning-to-rank is a popular topic in document retrieval

[Liu, 2011]. For the task of named entity disambiguation, re-ranking is one of the supervised

approaches to get the correct NE reference document in the KB at the top of the candidate list.

Learn-to-rank approaches are categorized into three classes, point-wise, pair-wise, and list-wise
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(see section 2.3.5). The following learn-to-rank approaches are tested to re-rank the candidate

documents and their results are compared.

1. Point-wise approach: This is the simplest learn-to-rank approach. A Naı̈ve Bayes classi-

fier is used to classify each instance into relevant or non-relevant. We used the point-wise

approach to discard some of the non-relevant candidate documents while the rank score is

still the same.

2. Pair-wise approach: This approach focuses on the relative order between two instances.

It is a classification on instance pairs where the objective function is to minimize the

number of misclassified pairs. SVMrank [Joachims, 2002, 2006] is used to build a pair-

wise ranking model and re-rank the candidate documents.

3. List-wise approach: The SVMmap algorithm is used to learn a model to optimize the value

of the evaluation measure, averaged over all queries in the training data [Yue et al., 2007].

So, it is used to learn the ranking, using Mean Average Precision (MAP) to calculate the

list-wise loss function.

3.4 Experimental Results and Discussion

The TAC-KBP 2011 data set is used to carry out different experiments. The dataset contains

2231 query documents containing 2250 query mentions (for more details see section 2.5.1). As

this research focuses on the problem of disambiguation, we used only the set of queries which

have an entry in the Wikipedia KB. Exactly 1124 out of the 2250 query mentions have an entry

in the Wikipedia KB snapshot used in TAC 2011. For each query mention, the highest 100

scored documents are retrieved and the performance checked at different ranks, i.e. at rank 1, 5,

10, 30, 50, and 100. Accuracy is used as the performance measure. We explored three different

query formulation schemes described as follows:

QM: Query mention terms alone are used.

QS: The sentences containing the query mention in the query document are used as a query, in
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addition to the query mention which is the mandatory part in the query. The result docu-

ments must therefore contain the query mention and may contain some sentence tokens.

QD: This scheme extends the QS scheme and includes all document terms instead of the query

sentence. The full query document is used in addition to the query mention, i.e. all query

document terms are used in the query as optional terms, while the query mention tokens

are mandatory.

QNES: This scheme uses the collection of different named entity mentions in the query docu-

ment in addition to the query mention as a query.

We also considered three different search scopes, defined as follows:

Title: the search scope is the Wikipedia page title.

Text: the search scope is the Wikipedia page document.

NES: the search scope is the pseudo-document, i.e. the KB document which consists of only

NEs.

As a baseline, cosine similarity with TF-IDF weighting is used to retrieve candidate en-

tries from the Wikipedia KB using the different query formulation schemes and different search

scopes with results as shown in section 3.4.1. Then, the results using named entities and a com-

parison between using named entities in search using cosine similarity and using our similarity

function are shown in section 3.4.2. Re-ranking using different learn-to-rank approaches results

are shown in section 3.4.3. Finally, we present a discussion of the results to show how NEs are

used to improve the accuracy and the effect of using re-ranking in section 3.4.4.

3.4.1 Baseline Results

Cosine similarity with TF-IDF weighting is used with the different query formulation schemes as

a baseline approach to search the Wikipedia knowledge base document. Apache Lucene2 is used

to index all Wikipedia KB documents and titles (which is referred as “Title” and “Text” scope

2http://lucene.apache.org/java/docs/ (last visited 30-Jun-2014)
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in our experiments). Also, Lucene is used to search the scope and score the results by cosine

similarity using vector space model and TF-IDF term weighting scheme. Table 3.1 summarises

the results of searching the Wikipedia KB using QM,QS, and QD query schemes. It is not

meaningful to use the QS and QD query schemes with the title scope. So, we used only the QM

scheme with the title scope.

Result Graphs: We used a graphical representation for all results. The x-axis represents the

top-N scored candidate and y-axis represents the accuracy at recall level specified by top-N.

Finally, legend is coded as <Query Scheme – Search Scope>, eg. QD-Text means using query

document (“QD”) query scheme and “Text” search scope.

Figure 3.2 is a graphical presentation to the results shown in table 3.1. The figure shows the

accuracy of the baseline approach at different ranks. These results shows using the QD query

scheme to search within the KB text is better than other query schemes i.e. QS, and QM. Also

using query mention text (QM) as a search query to search in KB titles is better than using the

same scheme to search within the KB text considering small number of candidates, i.e. less than

25 candidate, while considering large number of candidates the QM scheme performs better

with text scope rather than title scope. From figure 3.2 we can conclude limiting the scope to

title reduces the recall. Also, as the query becomes larger, adding more information, the recall

is increased which is expected with the vector space model.

3.4.2 NEB-Sim Results

To explore the effect of using document similarity measures based on NE mentions, two sets

of experiments were carried out. In the first set of experiments, we used the same query

schemes that were used in the baseline experiments (QM, QS, and QD) to search the KB pseudo-

Query Scheme Scope A@1 A@5 A@10 A@20 A@30 A@50 A@100
QM Title 0.23 0.37 0.48 0.57 0.60 0.63 0.65
QM Text 0.10 0.20 0.31 0.44 0.53 0.62 0.72
QS Text 0.15 0.30 0.42 0.54 0.62 0.71 0.78
QD Text 0.22 0.45 0.56 0.64 0.69 0.74 0.80

Table 3.1: Baseline Approach Results
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Figure 3.2: Baseline Approach Results

48



documents, i.e. NES scope. Similarity is measured with cosine similarity. The results of this set

of experiments are shown in table 3.2.

Query Scheme Scope A@1 A@5 A@10 A@20 A@30 A@50 A@100
QM NES 0.09 0.23 0.34 0.46 0.55 0.63 0.73
QS NES 0.11 0.27 0.38 0.51 0.59 0.67 0.75
QD NES 0.27 0.54 0.63 0.71 0.75 0.80 0.84
QNES NES 0.27 0.56 0.64 0.72 0.77 0.81 0.85

Table 3.2: Results using Named Entities with Cosine Similarity

To make it easier to analyse these results, they are also presented graphically in figure 3.3.

As shown in the figure, using the QM scheme achieves the lowest performance because it just

uses one named entity mention and does not get the benefits of the occurrence of other named

entities. So, as the number of named entity mentions increases in the query i.e. QS and QD, the

accuracy gets better. Using QNES to search the KB text performs better than any searching over

the NEs.

Figure 3.3: Results using Named Entities with Cosine Similarity

In the second set of experiments the NEB-Sim similarity function is used to score the dif-
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ferent candidates. The scope in this experiments is always the KB pseudo-documents, i.e. NES,

and the query scheme is QNES. The results of this set of experiments are shown in table 3.3. It

is clear from the table that NEB-Sim2 does better than the NEB-Sim1.

Approach A@1 A@5 A@10 A@20 A@30 A@50 A@100
NEB-Sim1 0.18 0.32 0.36 0.39 0.41 0.44 0.46
NEB-Sim2 0.28 0.57 0.68 0.77 0.81 0.84 0.90

Table 3.3: Results using NEB-Sim scoring functions

To conclude the investigation of using NEs on the query side and NEs in the search scope

i.e. pseudo-document, we combined the results in one figure. Figure 3.4 shows the difference

between matching NEs in the query and KB document using the cosine similarity function and

when using the NEB-Sim named entity based document similarity measures. The figure shows

NEB-Sim2 outperforms cosine similarity scoring. Also, comparing the results of QM-in-NES

to other results, we see how using other named entity mentions in the query document is useful

in creating a good candidate list with high recall.

3.4.3 Re-Ranking Results

Different experiments have been carried out for re-ranking. As described in section 3.3, three

learn-to-rank approaches are tested to re-rank the candidate list for the query NE textual men-

tion. Tables 3.4, 3.5, and 3.6 list the results of using the different techniques. The query scheme

column shows which query scheme is used to retrieve the candidate list while the similarity col-

umn shows which similarity function is used as a feature for re-ranking. We tested re-ranking

using only the cosine similarity function with the different query schemes. Then, we used the

cosine similarity in conjunction with the NEB-Sim similarity function for re-ranking the candi-

dates. In some cases the NEB-Sim similarity score is the same for all candidates because there

is only one NE mention annotated in the document, so there are no other NE mentions to be

used in NEB-Sim similarity. In such cases, re-ranking will not affect this result. Hence, we used

the cosine similarity in addition to the NEB-Sim for re-ranking. For all experiments, accuracy is

measured at recall levels 1, 5, 10, 20, 50, and 100. In this set of experiments, the whole candidate

list are considered for re-ranking. That explains why around 100% accuracy is obtained at some
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Figure 3.4: Results using NEB-Sim scoring functions
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recall levels while the maximum achieved accuracy without re-ranking is not more than 90%.

Query scheme Similarity A@1 A@5 A@10 A@20 A@30 A@50 A@100
QM 0.181 0.28 0.38 0.535 0.628 0.714 0.843
QS Cosine 0.254 0.361 0.465 0.63 0.706 0.797 0.881
QD 0.367 0.572 0.678 0.752 0.809 0.869 0.936
QM 0.587 0.817 0.907 0.951 0.969 0.975 0.99
QS Cosine,NEB-Sim 0.589 0.81 0.904 0.947 0.97 0.975 0.99
QD 0.654 0.858 0.941 0.962 0.977 0.977 0.985

Table 3.4: Point-wiseRe-Ranking using Naı̈ve Bayes Classifier

Query scheme Similarity A@1 A@5 A@10 A@20 A@30 A@50 A@100
QM 0.137 0.207 0.274 0.344 0.38 0.429 0.525
QS Cosine 0.171 0.224 0.28 0.348 0.376 0.422 0.523
QD 0.189 0.256 0.29 0.342 0.373 0.398 0.528
QM 0.783 0.938 0.962 0.988 0.995 0.998 0.998
QS Cosine,NEB-Sim 0.79 0.935 0.968 0.983 0.99 0.998 0.998
QD 0.752 0.92 0.972 0.985 0.99 0.995 1

Table 3.5: Pair-wise Re-Ranking using SVMrank

Query scheme Similarity A@1 A@5 A@10 A@20 A@30 A@50 A@100
QM 0.168 0.272 0.308 0.363 0.396 0.446 0.563
QS Cosine 0.165 0.269 0.305 0.363 0.395 0.444 0.559
QD 0.155 0.253 0.293 0.349 0.386 0.431 0.563
QM 0.535 0.765 0.869 0.944 0.957 0.969 0.982
QS Cosine,NEB-Sim 0.544 0.759 0.861 0.94 0.952 0.968 0.983
QD 0.623 0.812 0.918 0.967 0.975 0.98 0.985

Table 3.6: List-wise Re-Ranking using SVMmap

3.4.4 Discussion

In this section, we present some notes and comments about the results shown in previous sec-

tions. Initially, in the baseline approach we can notice that the QD scheme always does better

than other schemes when searching in the Text scope (table 3.1). This result supports our hyp-

nothesis because QD uses the whole query document, and the most effective parts are the NE

mentions in the document. Furthermore, we can note the same conclusion for the QNES scheme,

which is used to search NES scope, even with cosine similarity (table 3.2). Comparing tables

52



3.1 and 3.2, we note that when searching the NES instead of Text scope, and use QNES instead

of QD scheme, improves the results a little, which indicates using other terms that are not part

of NE mentions is misleading. The results shown in table 3.2 shows the performance of QD

and QNES schemes are very close when we used NES scope. This result makes sense, as the

NES search scope restricts the similarity to the named entity mentions in the query document.

However, the difference in the results is because of the different size of the query when using QD

and QNES, which is a factor in cosine similarity calculations. Our NEB-Sim scoring function

does better than using the cosine similarity to score the search result documents based on NEs.

Figure 3.5: Comparison between BaseLine and Named Entity Based Search

Figure 3.5 shows a comparison between the baseline approach (QD-Text) and named entity

based search approach (NEB-Sim2). The first is set up with the QD scheme and Text search

scope, and cosine similarity is used to score the candidates. The second approach is set up with

the QNES scheme and NES search scope, using our similarity function NEB-Sim2. NEB-Sim2

achieves a significant improvement over the best query scheme against full documents (QD),

where p < 0.05. More analysis has been done to compare NEB-Sim1 and NEB-Sim2, and we

conclude that ignoring the relative weight of the candidate document in similarity function NEB-
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Method A@1 A@5 A@10 A@20 A@30 A@50 A@100
Query scheme: QM

SVMrank 0.783 0.938 0.961 0.987 0.995 0.997 0.997
Naı̈ve Bayes 0.586 0.816 0.907 0.951 0.969 0.974 0.990
SVMmap 0.535 0.765 0.868 0.943 0.956 0.969 0.982

Query scheme: QS
SVMrank 0.789 0.934 0.967 0.982 0.990 0.997 0.997
Naı̈ve Bayes 0.589 0.810 0.903 0.947 0.969 0.975 0.990
SVMmap 0.543 0.759 0.860 0.939 0.952 96.70 98.22

Query scheme: QD
SVMrank 0.752 0.919 0.971 0.985 0.989 0.995 1.000
Naı̈ve Bayes 0.654 0.858 0.940 0.961 0.977 0.977 0.984
SVMmap 0.623 0.811 0.917 0.966 0.974 0.979 0.984

Table 3.7: The accuracy after re-ranking

Sim2 improves performance significantly over NEB-Sim1, where p < 0.0001. In our analysis,

we used unpaired (independent) two-sample student t-tests with two tails and unequal variances.

To study the effect of using different learn-to-rank approaches, one algorithm is used for

each of these approaches and tested using the different query schemes (see section 3.4.3). The

best results were achieved when cosine similarity scores and NEB-Sim score are used as features

with the different query schemes. Table 3.7 summarizes the results of using different learn-to-

rank approaches with different features generated using different query schemes. The same

results were presented in section 3.4.3 in a different format. To study the contribution of each

learn-to-rank approach, the results are grouped by the query scheme used to generate the cosine

similarity score.

For visual analysis, the results are shown in figures 3.6a, 3.6b, and 3.6c. The first observation

from these graphs is that SVMrank, i.e. pair-wise re-ranking, outperforms both the Naı̈ve Bayes

and SVMmap approaches, and Naı̈ve Bayes outperforms SVMmap for all query schemes. Re-

ranking improves the short listing of the NE candidate list, as we can observe the accuracy

dramatically increased at recall 1, 5, and 10 candidates. Then, using the top scoring candidate

for disambiguation, we achieved 79% accuracy. Also, we can claim that the correct candidate is

in the top 20 candidates. Comparing these results to either the base line or NEB-Sim approach

results, we can see how re-ranking improves the accuracy at all recall points.
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3.5 Conclusions

In this chapter we claimed that different mentions for different named entities occurring with the

query mention in the same context are helpful for improving the search results in the candidate

generation phase of an NED system. We presented a document similarity function based on

NEs in both the query document and the KB document. The results show the correctness of the

conjecture that the NEs co-occurring with a specific NE can disambiguate it in a useful way,

or at least help shorten the list of NE candidates. One of our similarity functions, NEB-Sim2,

achieves a significant improvement over the cosine similarity measure. Also, we proposed using

our NEB-Sim similarity with the cosine similarity score to re-rank NE candidates. We explored

different Learn-to-rank approaches and conclude this is a reliable method for re-ranking NE

candidates, especially the pair-wise approach.

The approach presented in this chapter uses different named entity mentions in the same

query document to disambiguate a specific textual mention. The other NE mentions in the

document are still ambiguous and that is the main drawback of the individual disambiguation

approaches. In the following chapters, two different collective disambiguation approaches are

presented.
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(a) Learning To Rank Results using Query Scheme: QM

(b) Learning To Rank Results using Query Scheme: QS

(c) Learning To Rank Results using Query Scheme: QD
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Chapter 4

Disambiguating Named Entities using

HMMs∗

In this chapter we present a novel approach to disambiguate textual mentions of named entities

against the Wikipedia knowledge base. The conditional dependencies between different named

entities across Wikipedia are represented as a Markov network. In our approach, named entities

are treated as hidden variables and textual mentions as observations. The number of states and

observations is huge and naı̈vely using the Viterbi algorithm to find the hidden state sequence

that emits the query observation sequence is computationally infeasible, given a state space of

this size. Based on an observation that is specific to the disambiguation problem, we propose

an approach that uses a tailored approximation to reduce the size of the state space, making the

Viterbi algorithm feasible. Results show good improvement in disambiguation accuracy relative

to the baseline approach and to some state-of-the-art approaches. Also, our approach shows

how, with suitable approximations, HMMs can be used in such large-scale state space problems.

The rest of this chapter is organized as follows: section 4.1 presents a broad view of HMM

and the problems of using such technique in disambiguation problems. The proposed NED

framework and a detailed description for the HMM modelling and the decoding is discussed in

section 4.2. A description of the evaluation dataset is given in section 4.3. Experimental setup

∗Part of this work has been published in In Web Intelligence (WI) and Intelligent Agent Technologies (IAT), 2013
IEEE/WIC/ACM International Joint Conferences on, vol. 3, pp. 159-162. IEEE, 2013.
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and experimental results with comparison against the baseline approach and some state-of-the-

art approaches are presented in section 4.4. Finally, some conclusions and a discussion of how

HMMs can be used in such problems are presented in section 4.6.

4.1 Introduction

A Hidden Markov Model (HMM) is a tool to model the probability distribution of a state se-

quence that generates a sequence of observations [Ghahramani, 2001]. So, it is a simple dynamic

Bayesian network. The main difference between simple Markov models and Hidden Markov

models is that in the former the state is directly visible to the observer and the parameters are

the transition probabilities while in a hidden Markov model the state is not visible but the output

is visible. For each state, there is a probability distribution over all possible outputs. So, the se-

quence of observations gives some indications about the sequence of states. The hidden Markov

model has the following assumptions:

1. The state of the hidden process satisfies the Markov property. This is a memoryless prop-

erty of a stochastic process where the probability distribution of the future states of the

process is based on the current state regardless the previous states. So, the value of state

St at time t is dependent only on a finite number of immediately proceeding states, i.e.

St−n, . . . , St−1. When the current state is dependent only on the previous state, the model

is known as a first order Markov model. In an n order Markov model, the current states

value depends on n previous states.

2. The observation generated at time t is generated by a process whose state St is unknown

or hidden.

3. The hidden state variable has a discrete value.

The joint probability distribution of a sequence of states S1:T and observations O1:T where

T is the sequence length is given as shown in equation 4.1.

P (S1:T , O1:T ) = P (S1)P (O1|S1)
T∏
t=2

P (St|St−1)P (Ot|St) (4.1)
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To define the probability distribution of a sequence of observations, we need to find the prob-

ability of the initial state P (S1), the transition probability between different states P (St|St−1)

which is represented in a K ×K matrix where K is the number of states, and the observation

emission probability P (Ot|St) which is represented in a K × L matrix where L is the number

of observations.

The approach we present in this chapter is a collective approach, where all NE textual men-

tions in a context are jointly disambiguated. We assume that when disambiguating a NE mention,

the other NE mentions found in the same context will be a good source of information.

We treat KB entries in Wikipedia as surrogates for real world entities. The textual portion of

these entries typically contains mentions of multiple other named entities. When these mentions

are hyper-linked to other KB entries we can infer that there is some relation between the real

world entities corresponding to the KB entries. These links allow us to build up statistical

co-occurrence counts both between entities and between mentions and entities that occur in

the same context (i.e. in the same document, though other we explore other interpretations of

“context” too).

Thus, all the named entities in the knowledge base can be represented in a Markov Network,

where the nodes represent entities and the edges represent conditional dependencies computed

between “grounded” (i.e. hyper-linked to a Wikipedia entry) mentions of the two connected

entities, where the later occurrence is assumed to be dependent on the former. A Markov network

is similar to Bayesian network in its representation of dependencies but differs in that Bayesian

networks are directed and acyclic [Koller and Friedman, 2009], while Markov Networks need

not be. For any text document containing a set of NE mentions, each NE mention may be

mapped to a set of named entities in the Markov network, i.e. those entities which are possible

interpretations of the name.

We treat the task of NED as finding the best sequence of Wikipedia KB named entities given

a set of different mentions for different named entities in the same context. The KB named

entity entry (state) is not directly visible and we have just the NE mention (observation). Thus,

we employ an HMM approach and use the Viterbi decoding algorithm to find the best NE entry

(state) sequence that generates the mention (observation) sequence.
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HMMs have been successfully used for various sequence labelling tasks in natural language

processing, including part of speech tagging [Ekbal et al., 2007, Hasan et al., 2007, Van Gael

et al., 2009], and NE recognition for different languages [Chopra et al., 2012]. they have also

been successfully used in Information Extraction [Elliott et al., 1995]. But, to the best of our

knowledge, such an approach has not been investigated for the NED task.

The huge number of states/entities (≈ 1 million) would appear to make it infeasible to use

an HMM for this problem. However, we observe that by taking advantage of particular charac-

teristics of the NE disambiguation task (e.g. considering only the set union of disambiguation

sets for all NE textual mentions in a specific context of interest) we can reduce the state space,

making the HMM approach feasible without affecting results.

4.2 Framework

In this section, a detailed description of the NED problem formulation and approximation are

presented. Our proposed framework consists of two main modules. The first one is an offline

process to model all states and observations found in the Wikipedia KB. The second module

is the disambiguation module which uses the generated model to decode an input observation

sequence into the most probable sequence of states that emits such an observation sequence.

Figure 4.1 shows the general architecture of our framework. We begin by clarifying what we

mean by state and observation:

State: The Wikipedia knowledge base entry for a NE.

Observation: A NE textual mention or surface form that appears in a document.

4.2.1 Wikipedia HMM Modelling

We address only the most popular types of named entities: locations, organizations and persons.

As a first step, the DBpedia ontology2 is used to build up a list of named entities of types of

2We used version 3.8 which is available to download from http://wiki.dbpedia.org/Downloads38
(Last visited 30-Jun-1014)
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Figure 4.1: HMM-Based NED System Architecture

interest, resulting in a list of 1,244,682 unique NE entries in the KB that are taken to be the KB

reference states.
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sequence set raw sequences reduced sequences States Observations
sentence 17,700,551 5,492,638 475,569 592,503
paragraph 15,444,803 5,021,551 545,388 699,730
segment 6,801,829 3,587,421 786,772 1,080,807
document 3,541,181 2,468,442 996,836 1,414,560

Table 4.1: Properties of Extracted Wikipedia Sequences

Next, Wikipedia3 is parsed to identify all sequences containing one or more NE mentions

(anchor text) linked, via an inter-wiki link, to one of the reference states. This yields a list of

1,629,961 NE textual mentions extracted from the Wikipedia anchors that is used to form the

observation dictionary. The dependencies between different named entities in the Wikipedia

knowledge base and the emission probabilities for different textual mentions are modelled using

the HMM trainer4.

To model NE dependencies we explore four different assumptions about the textual scope,

or “context” of NE dependencies, defining a segmentation scheme for each:

sent: NE context is a single sentence.

par: NE context is a single paragraph. Here the context is interpreted as a collection of sen-

tences that have been aggregated into one paragraph and are likely on the same topic.

seg: NE context is a Wikipedia article subsection. Here the context consists of multiple para-

graphs under the same subtitle, i.e. all paragraphs under a specific title in the page table of

contents.

doc: NE context is the entire document. Here all named entities found in a document are con-

sidered as one sequence.

HMM models were trained using NE sequences extracted from the Wikipedia KB according

to the different segmentation schemes. Thus, different models are trained with the same named

entities but using different sequences.

3We use a Wikipedia dump that was taken in February 2012.
4We used the HMM trainer provided in the NLTK (version: nltk-2.0.1rc1). Also, we modified the Viterbi decoder

provided in the same package
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Because of the huge number of extracted sequences, training is slow5 and the resulting mod-

els are very large. To alleviate these issues we reduced the number of sequences used in training

by considering only sequences that have at least one of the test mentions or test named entities

(of course, many named entities or states other than those used in test data will still appear in

these sequences). Table 4.1 shows a summary of the number of sequences, reduced sequences,

number of states and the number of observations across every context. Overall this reduced

the number of sequences used in training by 30–70% and the number of states in the resulting

models by 17–60%, depending on the sequence type. For each context scheme a model µ is

generated, yielding four models: µsent, µpar, µseg, and µdoc.

4.2.2 HMM disambiguation

The proposed formulation for NED takes the form of a hidden Markov model (HMM), where

the states correspond to the Wikipedia named entities E and mentions M are stochastically

emitted each time a state is visited. HMM NED training involves estimating the different men-

tions emission probabilities p(mi|ej) and the transition probabilities between different states

p(ei|ei−1) Given an observation sequence Mtest = m1, . . . ,mn where n ≥ 1 the goal of NED

is to find a stochastic optimal tag sequenceEtest = e1, . . . , en that maximizes the joint probabil-

ity of a sequence of states and observations Pr(e1:n,m1:n), where x1:n abbreviates x1, . . . , xn.

According to the first order HMM assumption, this joint probability is given by:

Pr(e1:n,m1:n) ≈ p(e1)p(m1|e1)
n∏

i=2

p(ei|ei−1)p(mi|ei) (4.2)

The Viterbi algorithm is a well known algorithm used to find the most probable state se-

quence that emits an unlabelled observation sequence [Manning and Schütze, 1999]. We used

the Viterbi algorithm to find the best NE sequence that emits the unlabelled sequence of men-

tions. However, using the Viterbi algorithm with all states can be computationally infeasible

when working with a very large-scale state space. Suppose N is the number of states/named

entities found in Wikipedia and M is the number of observations/textual mentions found in

5For the reduced datasets described below, training took about 5 days per model.
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Wikipedia. N ≈ 106 and M ≈ 1.5 × 106. Then, the size of transition matrix A that keeps the

transition probability between all states is N2 ≈ 1012 and the size of the emission probability

matrix B that stores for each state the probability of that state emitting one of the observations

is N ×M ≈ 1.5 × 1012. Despite the sparseness of both matrices, all states must be visited to

calculate the best path according to the Viterbi algorithm. The complexity of the Viterbi algo-

rithm is O(T × N2) where T is the sequence length. Thus the algorithm would appear to be

intractable for our problem.

However, for the NED problem, where for each mention the correct entity is assumed to

be a known entry in the KB, the set of candidate disambiguation states for each observation is

known or can be constructed using simple techniques. Therefore it is a waste of time to try to

find the best sequence from amongst all states when the correct one is partially known given the

disambiguation sets. Thus, we make the following observation:

Observation: For any ambiguous observation Mi there is a set of candidate states Ei =

{e1i , . . . , e
j
i}, where j is the number of disambiguation candidates. Typically, |Ei| � |E|.

Assuming the correct NE falls into the NE candidate list of each mention/observation, a new

state space of the disambiguation set of named entities for all mentions in the sequence can be

used instead of using the original state space that includes all states. This approximation makes it

computationally feasible to find the best sequence using the Viterbi algorithm. We propose three

variant approximations for reducing the state space to decode a textual NE mention sequence into

a sequence of Wikipedia knowledge base named entities. We have adapted the Viterbi algorithm

to handle these approximations. To explain the following approximations, we use simple figures

to show the state space representation for each approximation. The example used is for a NE

textual mention sequence a, b, c and d. Their instances in their disambiguation candidate list are

represented by squares, circles, triangles and hexagons respectively.

Approximation 1 Suppose we have a dependency model µ that models the dependency net-

work of the states E. In this approximation, the state space is reduced to include only the set of

states that emits any of the observations in the input sequence M , where M = m1,m2, ...mn.
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Figure 4.2: State space representation in Approximation 1

Hence a new state space EM is defined where EM ⊂ E and EM = {E1
⋃
E2

⋃
...
⋃
En} with

Ei = {e1i , e2i , e3i , ..., eki }, k being the number of NE candidates for a mention mi and 1 ≤ i ≤ n.

Then, EM = {e1M , e2M , e3M , ..., ecM}, where c is the total number of all candidates in all can-

didate lists. Figure 4.2 shows a simple diagram of the state space for an observation sequence

a, b, c and d where a candidates are presented in rectangles, b candidates in circles and c can-

didates in triangles. Each column presents all possible states for all observations. The HMM

decoding steps, as adapted from Manning and Schütze [1999], are as follows:

1. Initialization:

δ(j) = p(Ej
M )× p(m1|ejM ) , 1 ≤ |EM |
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2. Recursion:

δt(j) = max1≤i≤c [δt−1(i)× aij ]× p(mt|ejM )

where 1 ≤ j ≤ c ; 2 ≤ t ≤ k and c = |EM |

Note here that states considered are just those in EM rather than in E.

Figure 4.3: State space representation in Approximation 2

Approximation 2 In approximation 1 the state space is reduced to include only those states,

i.e. entities, which are deemed potential states to emit the observations, i.e. mentions, in the test

sequence to be labelled. However, a further observation is that not all states in this restricted

state space are possible states for all observations. If approximation 1 works perfectly, then

every state will emit the correct observed textual mention and the state should be in the mention

candidate list. However, there is nothing to guarantee this as the relation between state and

observation is many-to-many.

A more precise application of our observation is presented in this approximation. Not only is

the state space customized for each test sequence to be labelled, the state space is determined for

each NE textual mention. In this approximation, we reduce the state space for each observation

separately. So, for every observation there is a specific state list, i.e. state list as shown in figure

4.3 where a, b, c, and d candidates are presented as rectangles, circles, triangles, and hexagons,
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respectively. Hence a new EM will be defined where EM ⊂ E and EM = {E1, E2, . . . , En}

and Ei = {e1i , e2i , e3i , . . . , eki } where k is the number of NE candidates for a mention mi. The

HMM decoding steps in this case are:

1. Initialization:

δ(j) = p(ej1)× p(m1|ej1) , 1 ≤ j ≤ |E1|

2. Recursion

δt(j) = max1≤i≤|Et| [δt−1(i)× aij ]× p(mt|etj)

where 1 ≤ j ≤ |Et| ; 2 ≤ t ≤ k

Note that in this case a separate set of states is considered for each mention.

Approximation 3 In collective NED approaches a basic intuition is that named entities mutu-

ally inform the disambiguation of each other. This mutual information is inherently order free,

i.e. independent of the order in which the named entities appear in the training or test sequences.

However, the HMM technique we have adopted is order dependent, both at the model building

stage and in decoding. One consequence is that the order in which observations occur in the

query/test sequence may be one for which the model contains sparse or inaccurate information

and that presenting the same observations in a different order would result in a more accurate

tagging. One might consider computing all possible orderings of NE mentions in the query

sequence, using the Viterbi algorithm to find the optimal labelling for each ordering and then

picking the labelling with the highest probability across all orderings. However, this is not com-

putationally feasible. Nevertheless, one simple heuristic is to reorder the observation sequence

according to the ambiguity degree of the observations.

Ambiguity Degree We define the ambiguity degree of a NE textual mention as a measure

of how ambiguous the NE textual mention is. It is defined as the number of candidate named

entities for the NE textual mention. For a specific NE textual mention, the lower the number of

candidates the less ambiguity is.
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Thus, in this variant of our approach, the state space is reduced for each textual mention

separately as in approximation 2, but with one difference which is reordering the mention se-

quence by ambiguity degree, as shown in figure (4.4). HMM decoding steps are the same as in

approximation 2. However, we now compute the best state sequence probability for the query

mentions twice: once in the order they occur in the query document and once after reordering the

query mentions according to ambiguity degree. The state sequence with the highest probability

is considered the solution for the query sequence.

Figure 4.4: State space representation in Approximation 3

4.3 Dataset

For our experiments we use the AIDA-dataset, which is based on the CoNLL 2003 data for

NER tagging, in which most tagged NE mentions have been disambiguated against Wikipedia

[Hoffart et al., 2011]. The dataset contains 1,393 documents with 34,956 NE textual mentions of

which 27,817 have been disambiguated against Wikipedia. Details of this dataset are presented

in section 2.5.2.

As discussed in section 4.2.1 on HMM training, DBpedia is used to get a list of all named

entities found in Wikipedia, of types Person, Location, and Organization. However, not all

named entities in Wikipedia are classified in DBpedia. In particular, some named entities that
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occur in AIDA are not included in DBpedia. Since this results in no training sequences that

mention these named entities being extracted from Wikipedia, our system could not possibly

disambiguate mentions of their NEs in the test set. To overcome this problem, all NEs found in

the AIDA dataset which are not classified in DBpedia are added to our list of Person, Location,

and Organization entities.

4.4 Experimental Results

Figure 4.5: Macro Accuracy of NED using HMM with Approximation 3

Our baseline is a simple statistical approach that uses co-occurrence counts of NE men-

tions and the named entities to which they are linked in Wikipedia. An NE mention is always

disambiguated to the NE with which it is most frequently associated in the Wikipedia pages.

During testing, the test data is segmented using three context schemes: sent, par and doc.

While the test collection is not segmented into paragraphs, a heuristic is used to build up artificial

paragraphs by taking consecutive sentences until the number of NE mentions is 3 or more. For

each context scheme, the NE textual mention sequence is extracted and Viterbi is used to decode
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Figure 4.6: Micro Accuracy of NED using HMM with Approximation 3

the mention sequence using one of the pre-prepared models (see section 4.2.1).

A set of experiments was carried out to test the accuracy of different approximations using

the different models and different contexts. Micro and macro accuracy are used as the evaluation

measures. Recall that, micro accuracy is accuracy over all NE mentions in the test set, while

macro accuracy is the accuracy per document averaged over all test documents (see section 2.7).

Results are presented in table 4.2 and show best accuracy occurs when using approximation 3,

sentence context in the query and the model µseg. For each approximation, the query context

segmentation scheme has an impact on the results, while the effect of changing models is very

slight. This observation is shown in an alternative presentation in figures 4.5 and 4.6, which

show accuracy figures for Approximation 3.Theoretically, using shorter model contexts may

divide the longer sequences into a smaller sequences. Then, transition probabilities of states at

sequence boundaries are affected.
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Test Context µ
Approx. 1 Approx. 2 Approx. 3

Amacro Amicro Amacro Amicro Amacro Amicro

Sent

µsent 62.09 69.46 69.33 74.65 73.76 78.09
µpar 62.44 69.76 69.72 74.97 73.96 78.18
µseg 62.10 69.91 70.24 75.55 74.18 78.49
µdoc 60.06 68.74 70.03 75.50 73.90 78.13

Par

µsent 55.12 61.07 68.98 72.06 73.54 75.89
µpar 55.87 61.87 69.17 72.42 73.90 76.39
µseg 56.79 63.09 70.14 73.51 73.99 76.94
µdoc 56.10 62.80 70.28 73.76 74.00 77.09

Doc

µsent 50.32 57.01 68.69 71.27 69.64 72.86
µpar 50.90 57.78 68.60 71.50 69.55 73.27
µseg 51.82 59.12 68.92 72.15 69.66 73.73
µdoc 52.40 59.47 69.08 72.34 69.74 73.84

Table 4.2: Results of using different approximations for HMM disambiguation

4.5 Discussion

4.5.1 Comparison with the state-of-the-art

It is difficult to compare our results to the state-of-the-art results because there is no standard

benchmark. Hoffart et al. [2011] re-implemented the methods of Cucerzan [2007] and Kulkarni

[2009] and evaluated them using the AIDA dataset. Table (4.3) shows a comparison between the

results of our approach, the baseline approach, and some state-of-the-art results. However, our

approach is very simple and direct to apply, it exceeds the results of Cucerzan and Kulkarni, but

not Hoffart’s, which is more complex than ours.

Approx. 1 Approx. 2 Approx. 3 Baseline Cucerzan Kulkarni Hoffart
Accuracymacro 62.10 70.24 74.18 44.06 43.74 76.74 81.91
Accuracymicro 69.91 75.55 78.49 43.55 51.03 72.87 81.82

Table 4.3: HMM and State-of-the-art Results

Hoffart et al. proposed a graph model representation of all candidates for all NE textual

mentions and treated the NED problem as finding the dense sub-graph. They used popularity

prior feature which is equivalent to the emission probability in our proposed model. Moreover,

they used more advanced features to measure the similarity between the NE textual mention and

the NE candidate, such as keyphrase-based and syntax-based similarity. Graph links represent
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the coherence between different entities, or between the prior probability of the NE textual

mention and the NE candidate. The strength of Hoffart’s work is using the graph model to

represent the interdependency and coherence relations, while we used a sequence model. The

graph model is more general than the sequence model.

Cucerzan proposed a collective disambiguation approach that models the interdependence

between the disambiguation decisions. Each entity in the Wikipedia KB is represented as two

vectors, one is the context vector which represents all NE links in the entity page, and the other

vector is a vector of category tags of this entity page. NE textual mentions in the query document

are mapped to NE candidates using a static repository. So the query document is also represented

as two vectors, one vector contains all category tags associated with all NE candidates of all NE

textual mentions, and the other is the context vector which contains all candidates of all NE

textual mentions. The disambiguation process aims to maximize the agreement between the KB

entity and the document vectors. The disadvantage of Cucerzan’s work is using static candidates

generation. Cucerzan uses a map of named entities and NE textual mentions which are extracted

from Wikipedia hyperlinks, redirects, and disambiguation pages. So the correct disambiguation

entity is less likely to be in the candidate list. Moreover, Cucerzan uses the context entities,

i.e. the entities found in the entity page in Wikipedia, but does not consider their importance or

dependency.

4.5.2 Analysis

We analysed the knowledge base sequences, test data sequences and results. We make the fol-

lowing observations.

How does context affect the results? Accuracy goes down when we used the document con-

text scheme in testing. This is likely because different paragraphs in a long document may have

different topics and the named entities mentioned in them may be weakly related. At the same

time, the results are improved when we used the segment context when extracting the training

sequences. This is likely because of high coherence and dependency between named entities

found in Wikipedia page segments.
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Topology problem According to our assumption, the dependencies between all named entities

are represented as a Markov Network. However, Markov network is not fully connected, i.e.

each node is not connected to all other nodes. For each mention sequence, we tried to find the

best sequence of named entities/states from the set of NE candidates for the different mentions

in the context. There are many solutions represented in different patterns in the NE dependency

network. Figure 4.7 shows the NE candidate dependency network for four mentions a, b, c, and

d. The shaded nodes represent the disambiguation candidates and the dashed links represent the

connections between the correct candidates. The correct candidates are in the shaded shapes

a2, b2, d1, and c1. However, an HMM model cannot decode the correct pattern here because

three of the entities are dependent on only one.

Figure 4.7: NE disambiguation network

As we found the sentence context the most robust and reliable context, we analysed the re-

sults when using the sentence context in disambiguation. We found 50% of the sequences are

of length one (i.e. consist of just one NE mention) and that these sequences contain 26% of the

named entities in the test set. For such singular sequences, the decision is taken by consider-

ing only the prior and emission probabilities which is not sufficiently reliable. So, collective

disambiguation is effective in sequences of length more than one.
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4.6 Conclusions

In this chapter we presented a novel approach for NED using HMMs. The proposed approach

modelled the dependency between different named entities and tackled the NED problem as

finding the best state sequence of candidates given a sequence of NE textual mentions (observa-

tions) in the query document. The Viterbi algorithm is used to decode the observation sequence

into the hidden state sequence that emits this observation sequence. It is infeasible to use Viterbi

to decode an observation sequence in a huge state space, so we proposed three different approx-

imations to overcome this problem.

Our results show that HMMs can be used as an effective approach to collectively disam-

biguate different textual mentions of different named entities in a document. Our proposed

approximations make using HMMs feasible for the NED task, where both numbers of states and

observations are huge. Using the information contained in the joint presence of named entities

may not be sufficient to solve the NED problem on its own, but it goes a surprising way towards

doing so.

A new sequence of observations which have never been seen before in the training data can

be decoded using a HMM model. However, in some cases the correct disambiguation candidate

entities are not presented in a sequence. So, improving the features and increasing training for

the model will not improve the results of this approach. We conclude that graph modelling is

more suitable for modelling NE dependency rather than sequence modelling. In the next chapter

we present two novel approaches for NED based on graph modelling for NE dependency.
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Chapter 5

Graph-Based Named Entity

Disambiguation∗

5.1 Introduction

In chapter 4 we presented an HMM based approach for NED. These problem was tackled as

a time series stochastic process where NE entries in the KB are treated as a hidden states and

the textual mentions as the emitted observations. The main problem with this formulation is

the statistical dependency topology, i.e. the dependency between one named entity candidate

and the different NE candidates of other textual mentions may not be decoded, as Viterbi al-

ways chooses the best candidate at time t that maximizes the overall sequence probability. This

chapter presents a graph based approach for collective named entity disambiguation where dis-

ambiguation of each textual mention considers the possible candidates of other NEs textual

mentions. The main hypothesis in this approach is that different named entities in a document

help to disambiguate each other and one NE may help to disambiguate more than one other

textual mention.

In our approach, all possible NE candidates are represented as nodes in the graph and asso-

ciations between different candidates are represented by edges between the nodes. Each node

∗Parts of this chapter have been published in Proceedings of the 25th International Conference on Computational
Linguistics (COLING 2014), 2014.
Also in Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (ACL 2014), 2014.
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has associated with it an initial confidence scores, e.g. entity popularity. Such graphs are called

solution graphs. Figure 5.1 shows an example of the solution graph for three mentions “A”,

“B”, and “C” found in a document, where the candidate entities for each mention are referred to

using the lower case form of the mention’s letter together with a distinguishing subscript. The

goal of disambiguation is to find a set of nodes where only one candidate is selected from the set

of entities associated with each mention, e.g. a3, b2, c2. The nodes in this set should be highly

coherent and have high confidence scores.

Figure 5.1: Example of solution graph

Our approach first ranks all nodes in the solution graph using the Page-Rank algorithm [Page

et al., 1999], then re-ranks all nodes by combining the initial confidence and graph ranking

scores. We consider several different measures for computing the initial confidence assigned to

each node and several measures for determining and weighting the graph edges. Node linking

relies on the fact that the textual portion of KB entries typically contains mentions of other

NEs. When these mentions are hyper-linked to KB entries, we can infer that there is some

relation between the real world entities corresponding to the KB entries, i.e. that they should

be linked in our solution graph. These links also allow us to build up statistical co-occurrence

counts between entities that occur in the same context which may be used to weight links in our

graph. The proposed graph approach is compared with a baseline and state-of-the-art approaches

[Cucerzan, 2007, Hoffart et al., 2011, Kulkarni et al., 2009, Shirakawa et al., 2011]. Experiments

are carried out using AIDA dataset (see section 2.5.1) and the results show the effectiveness of
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using Page-Rank in conjunction with initial confidence.

The rest of this chapter is structured as follows: The following section (5.2) presents a quick

review on the Page-Rank algorithm. Section 5.3 describes the process of selecting a candidate

list for each NE textual mention from the Wikipedia KB and assigning a confidence score for

each NE candidate. Section 5.4 describes the solution graph and the entity coherence repre-

sentation. Section 5.5 presents our clique disambiguation approach for collective named entity

disambiguation. Section 5.6 presents the graph ranking approach for collective named entity dis-

ambiguation including graph ranking, score combination schemes, and candidate selection tech-

niques. Experimental results, comparison to the state-of-the-art and analysis of the results are

presented in section 5.7. Finally, section 5.8 concludes the presented graph-based approaches.

5.2 Page-Rank Algorithm

The Page-Rank (PR) algorithm was developed by Larry Page and Sergey Brin in order to rank

Web search results [Page et al., 1999]. It is a general algorithm to compute the rank of each

node in a graph based on the links between nodes. The main intuition underlying this algorithm

is that, pages that have more incoming links from important nodes should receive a higher rank

than pages that have fewer incoming links from less important nodes. So, a node has a high rank

if the sum of the ranks of incoming link nodes is high. In this section, a simple brief explanation

to PR algorithm is presented.

A simplified version of Page-Rank is presented in formula 5.1 [Brin and Page, 2000] where

y: The target node to be ranked;

d: A damping factor, which is a fraction from 0 to 1;

in(y): The set of nodes that have links pointing to node y;

out(x): The set of nodes that have links from node x;

PR(y) = (1− d) + d
∑

x∈in(y)

PR(x)

|out(x)|
(5.1)
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Example: To make this clearer, let us use the graph example shown in figure 5.2. Let us ignore

the damping factor (d = 1) and let the initial rank for all pages be the uniform distribution. So,

PR(e1) = PR(e2) = PR(e3) = PR(e4) = 0.25. Then,

PR(e1) =
PR(e2)

2
+
PR(e3)

1
+
PR(e4)

3
=

0.25

2
+

0.25

1
+

0.25

3
= 0.4583

PR(e2) =
PR(e4)

3
=

0.25

3
= 0.0833

PR(e3) =
PR(e2)

2
+
PR(e4)

3
=

0.25

2
+

0.25

3
= 0.2083

Page-Rank models the user behaviour, where a surfer clicks on links at random. This random

surfer visits a particular web page with a certain probability. This is why the page-rank of a

certain page receives the rank of incoming nodes divided by the number of outgoing links. The

probability of this surfer visiting a given page is the sum of probabilities for the surfer clicking

any link pointing to this page. For sink nodes, where there are no outgoing links, the surfer needs

to change to another random node in the graph. Also, the surfer may getting bored and suddenly

change to another node in the graph without following any links. So, the probability is reduced

by the damping factor, d, the probability that the surfer does not stop clicking on links. The

higher d is, the more likely the random surfer will keep clicking links; so 1−d is the probability

the surfer stops clicking links and jumps directly to the page. Therefore, all nodes always have

a minimum rank, which is the probability of the surfer jumping to this page. The second version

Figure 5.2: Example of solution graph
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of the Page-Rank algorithm normalized this factor by dividing by the number of nodes in the

graph, as shown in equation 5.2 where N is the number of nodes in the graph.

PR(y) =
(1− d)
N

+ d
∑

x∈in(y)

PR(x)

|out(x)|
(5.2)

In our example all edges are considered to be equally weighted. So, the rank of the source

node is equally distributed over the destination nodes. When the graph edges are weighted,

the source node rank is proportionally distributed over the target nodes according to the edge

weight. Let us suppose node x has initial rank 100 and four links to four nodes with weights

0.2, 0.15, 0.35, 0.30. Then, the initial rank will be distributed over four nodes and the nodes

will receive the following values 20, 15, 35, 30. In the normal case where all edges are equally

weighted, each destination node will receive 25. So, if weighted edges are to be used PR is

calculated as shown in equation 5.3, where Wx,y is the weight of the edge from node x to node

y.

PR(y) =
(1− d)
N

+ d
∑

x∈in(y)

PR(x)×Wx,y (5.3)

In our proposed solution, we use the Page-Rank implementation provided in the NetworkX

package2 which implements an eigenvector method for Page-Rank [Langville and Meyer, 2005].

5.3 Named Entity Candidate Generation

In this section, we present process of selecting NE candidates from the KB. Given an input doc-

ument D containing a set of pre-tagged NE textual mentions M = {m1,m2,m3 . . .mk}, we

need to select all possible candidate interpretations for each mi from the knowledge base, i.e.

for each NE textual mention mi ∈M we select a set of candidates Ei = {ei,1, ei,2, ei,3 . . . ei,j}

from the KB. The NE textual mention mi is used to search the KB entry titles using Lucene3

to find entries with titles that fully or partially contain the NE textual mention. The following

2http://networkx.lanl.gov/reference/generated/networkx.algorithms.link_
analysis.pagerank_alg.pagerank.html (last visited 30-Jun-2014)

3https://lucene.apache.org/ (last visited 30-Jun-2014)
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example shows the possible candidates for the textual mention “Sheffield”: “Sheffield, New

Zealand,”, “University of Sheffield”, “Sheffield United F.C.”, “Sheffield, Massachusetts”, “Fred

Sheffield”, “Sheffield, Alabama”, etc. The result of this search is quite large and this increases

the likelihood of the correct entry occurring somewhere in the list, i.e. it improves recall. How-

ever, the challenge now moves to the disambiguation step. In this step, we need to assign a

confidence score to each candidate, as shown in the following section.

5.3.1 Candidate Confidence Score

For each candidate ei,j , a set of initial confidence scores IConf(ei,j) is assigned. These scores

are calculated for each NE candidate independent of other candidates or the candidates for other

NE textual mentions in the document. Three scores are calculated locally using the NE textual

mention context. There is also one global confidence score, entity popularity (EP), which is

calculated globally independent of the document or the textual mention context by using the

Freebase KB Bollacker et al. [2008]. The four confidence scores to be calculated for each NE

candidate as follows:

• Cos: The cosine similarity between the NE textual mention and the KB entry title.

• JwSim: While the cosine similarity between a textual mention in the document and the

candidate NE title in the KB is widely used in NED, this similarity is a misleading feature.

For example, the textual mention “Essex” may refer to either of the following candidates

“Essex County Cricket Club” or “Danbury, Essex”, both of which are returned by the can-

didate generation process. The cosine similarity between “Essex” and “Danbury, Essex”

is higher than that between “Essex” and “Essex County Cricket Club”, which is not help-

ful in the NED setting. We adopted a new mention-candidate similarity function, jwSim,

which uses Jaro-Winkler similarity as a first estimate of the initial confidence value for

each candidate. This function considers all terms found in the candidate entity KB entry

title, but not in the textual mention as disambiguation terms. The percentage of disam-

biguation terms found in the query document is used to boost in the initial jwSim value,

in addition to an acronym check (whether the NE textual mention could be an acronym
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for a specific candidate entity title). Experiments show that jwSim performs much better

than the standard cosine similarity.

• Ctxt: The cosine similarity between the sentence containing the NE mention in the query

document and the textual description of the candidate NE in the KB (we use the first

section of the Wikipedia article as the candidate entity description).

• EP: Entity popularity refers to connectivity to this entity. It has been used successfully as

a discriminative feature for NED Nebhi [2013]. Freebase provides an API interface to get

an entity’s popularity score, which is computed during Freebase data indexing. This score

is a function of the entity’s inbound and outbound link counts in Freebase and Wikipedia4.

Initial confidence scores are calculated independently for each candidate entity for an NE men-

tion. However, after the initial calculation, initial confidence scores for all candidates for a single

NE mention are normalized to sum to 1.

5.4 Solution Graph

In this section we discuss the construction of a graph representation that we call the solution

graph. All candidate entities for the different NE textual mentions in the document are repre-

sented as an undirected graph G = (V,D) where V is the node set of all possible candidate

entities for different NE textual mentions in the input document and D is the set of edges be-

tween nodes. Because the same entity may be found multiple times as a candidate for different

textual mentions and each occurrence must be evaluated independently, each node is formed

as an ordered pair of textual mention mi and candidate entity ei,j . So, the graph nodes are

formulated as a set V = {(mi, ei,j) | ∀ei,j ∈ Ei, ∀mi ∈M}.

A set of entities is coherent if real world relations hold between them. We use such relations

to link candidate entities for different NE textual mentions in our graph model. Edges are not

drawn between different nodes for the same mention. However, they are drawn between two

entities when there is a relation between them (see figure 5.1 for example). Different approaches

4https://developers.google.com/freebase/v1/search (last visited 30-Jun-2014)
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to determine and weight entity coherence relations are presented in the following section.

5.4.1 Entity Coherence

Entity coherence refers to the real world relatedness of different entities which are candidate

interpretations of different textual mentions in the document. Such relatedness is not based on

document context, so the relatedness of two candidate entities is always the same regardless of

the query document. Coherence is represented as an edge between nodes in the graph. We used

two measures for coherence:

• Entity Reference Relation (Ref): This is a boolean relation between two entities e1 and e2.

The Ref relation holds if the Wikipedia document for either entity has a link to the other.

Since the Wikipedia hyperlinks are directed, this relation is implicitly directed. However,

we assume an inverse relation also exists and represented the relation as undirected.

Ref(ei, ej) =


1, if ei or ej refers to the other

0, otherwise
(5.4)

• Entity Co-occurrence (Jprob): An estimate of the probability of both entities appearing in

the same sentence. Wikipedia documents are used to estimate this probability, as shown

in (5.5), where S(e) is the set of all sentences that contain a hyperlink reference to the

entity e and S is the set of sentences containing any such entity references.

Jprob(ei, ej) =
|S(ei)

⋂
S(ej)|

|S|
(5.5)

5.5 Cliques Partitioning Disambiguation

The clique model originated in social network studies when Luce and Perry Luce and Perry

[1949] defined a clique as a set of two or more people who are mutual friends. In graph theory,

this pattern is known as a complete sub-graph. Assuming that NEs which appear in the same

document can be split into groups of highly cohesive entities, we adopt the clique partitioning

82



technique to find the largest clique in terms of size and weight. Given an undirected graph

G(V,D), where V is the set of all nodes and D is the set of all edges, Gs = (Vs, Ds) is a

sub-graph of G, where Vs ⊆ V and Ds ⊆ D. Gs is called the complete sub-graph, or clique,

if and only if each node in Vs has a link in Ds to all other nodes in Vs. The clique partitioning

algorithm aims to find all possible complete sub-graphs Gs in an undirected graph G. Our

approach iteratively finds the ‘best’ clique, then deletes all ‘wrong’ candidate entities for textual

mentions that are disambiguated by the selected clique, and converts the selected clique to a node

in the graph to be used in the next iteration. The details are shown in algorithm 1. Figure 5.3

shows an example of the clique partitioning disambiguation algorithm with a graph of candidate

entities for six NE textual mentions, A, B, C, D, E, and F. Candidate entities are coded with the

lower case letter of the NE textual mention plus an index subscript, e.g. a1, a2, a3, etc. Cliques

are shown with bold links in different colours.

Figure 5.3: Example of Clique Partitioning Disambiguation

As described in section 5.4, one of the properties of the disambiguation graph is that there

are no links between candidates of the same NE textual mention. As a result of this, we can

guarantee that there is no more than one candidate for each textual mention in any clique.
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Data: Undirected graph G(V,E) and for each node v ∈ V an associated IConf score

Result: Solution sub-graph

while not all textual mentions are disambiguated do

1. clique-List = find cliques(G);

2. weight each clique by summing the IConf scores of all nodes in the clique;

3. select the highest scoring clique and use its nodes as disambiguation candidates;

4. remove all wrong candidates for any mention disambiguated in step 3;

5. merge all nodes in the selected clique into one node with IConf score of the

new node = sum of the IConf scores of the merged nodes;

end
Algorithm 1: Clique Disambiguation Algorithm

This approach does not use an entity coherence weighting (e.g. Jprob). Rather, it uses the

entity links to find the cliques, regardless of the link weight. We used Algorithm 457 Bron and

Kerbosch [1973] to find all maximal cliques in a graph. The algorithm is quite slow due to being

recursive and the huge number of nodes. To speed up the disambiguation, we filtered the nodes

with low confidence from the graph, keeping only the top 50 NE candidates for each NE textual

mention. The NetworkX package also provides an implementation for this algorithm, which is

used in this work.

5.6 Graph Ranking Disambiguation

The clique approach disambiguates different NE textual mentions iteratively, where in each

iteration one or more NE mentions are disambiguated taking into account the disambiguated

mentions from the previous iteration. The graph Ranking approach iteratively ranks all graph

nodes depending on the links. So, all NE candidates of all NE textual mentions in the text are

ranked together without ignoring any of them. Hence, a selection algorithm is used to combine

the initial confidence and the graph rank score, and select the most appropriate NE candidate.
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5.6.1 Graph Ranking

The links between different candidates in the graph represent real world relations. These rela-

tions are used to reliably boost relevant candidates. In some setups, the weight of these links are

set to 1 and in some others they are set to the entities’ coherence score. All nodes in the graph are

ranked according to these relations using Page-Rank. We adapted a version of the PR algorithm

with normalization term to rank the different NE candidates according to entity coherence as

shown in equation 5.6, where N is the number of nodes in the graph, coh(ei) is the set of nodes

that cohere with node ei and W (ei, ej) is the weight of the edge between ei and ej nodes. The

original PR uses a directed graph while our graph is an undirected graph; so all links are treated

as bidirectional.

PR(ei) =
(1− d)
N

+
d

F (ei)

∑
ej∈coh(ei)

PR(ej)×W (ei, ej) (5.6)

F (ei) =
∑

ej∈coh(ei)

W (ei, ej) (5.7)

The standard PR algorithm assumes the initial rank of all nodes is uniformly equal, while in

our approach we used the initial confidence as an initial weight for the candidate nodes.

5.6.2 Candidate Re-Ranking

A problem with Page-Rank for our purposes is the dissipation of initial node weight (confidence)

over all linked nodes. The final rank of a node is based solely on the importance of linked nodes

and the initial confidence plays no further role. In our case this is not appropriate, so the final

rank for each mention is calculated after graph ranking, by combining the graph rank with the

initial confidence score. Let us refer to the graph rank of a candidate as PR(ei). We used two

different combination schemes Rs and Rm as described in equations 5.9 and 5.8.

Rm(ei,j) = IConf(ei,j)× PR(ei,j) (5.8)
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Rs(ei,j) = IConf(ei,j) + PR(ei,j) (5.9)

5.6.3 Decision Making

Data: Ei is a candidate list of one NE textual

mention mi

Result: The best disambiguation NE

candidate êgi

R1 = {(Rm(ei,j), ei,j) | ∀ei,j ∈ Ei};

R2 = {(Rs(ei,j), ei,j) | ∀ei,j ∈ Ei};

Sort R1 in descending order ;

Sort R2 in descending order ;

R1diff = R1[0]-R1[1];

R2diff = R2[0]-R2[1];

if R1diff > R2diff then
return highest rank scored entity of R1,

(R1[0])

else
return highest rank scored entity of R2,

(R2[0])

end
Algorithm 2: Selection Algorithm

Selecting the proper candidate is the final phase in the disambiguation process. The simplest

approach is to select the highest ranked entity in the list for each mention mi according to

equation 5.10 or 5.11, which correspond to the rank combining schemes expressed in equations

5.8 and 5.9. Experiments show that overall using the Rm combining scheme is better than the

Rs scheme. However, the highest rank, after combining graph rank score and initial confidence

score, is not always correct. So we developed a dynamic selection algorithm which uses both

combination schemes to pick the best disambiguation candidate. We found that a dynamic choice

between the re-ranking schemes, based on the difference between the top two candidates, as
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described in Algorithm 2, works best. The selected candidate entity is referred to as ê with the

superscript showing the selection scheme.

êmi = argmax
ei,j

Rm(ei,j) (5.10)

êsi = argmax
ei,j

Rs(ei,j) (5.11)

5.7 Experiments and Results

5.7.1 Experimental setup

The AIDA dataset is used in testing the proposed Graph-Based approach (see section 2.5.2 for

more details). This dataset contains 1393 documents, and 34,965 annotated mentions, where

7136 mention are not linked to Wikipedia. For fair comparison to Hoffart’s work, we only

considered NE mentions with an entry in the Wikipedia KB, ignoring 20% of query mentions

without a link to the KB, as Hoffart did.

Micro- and macro-averaged accuracy are the measures used to evaluate the proposed ap-

proach. Details of these measures are shown in section 2.7.

The Python package “NetworkX” is used to build the solution graph. This package provides

an implementation of page-rank algorithm which is used in the experiments. This implemen-

tation uses the power method solver where the maximum number of iterations is set to 1000

and the convergence tolerance is set to 1.0e-8. The final setting is the damping factor used for

page-rank: alpha = 0.85.

5.7.2 Baseline Results

Initially, we evaluated the performance of two baselines. One is a setup where a ranking based

solely on different initial confidence scores is used for candidate selection, i.e. without using

Page-Rank. In this setup a ranking based on Freebase popularity does best, with micro- and

macro-averaged accuracy scores of 80.55% and 78.09%, respectively. This is a high baseline,
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close to the state-of-the-art. Our second baseline is the basic PR algorithm, where weights of

nodes and edges are uniform (i.e. initial node and edge weights are set to 1, with edges being

created wherever REF or JProb are non-zero). Micro- and macro-averaged accuracy scores of

70.60% and 60.91% were obtained with this baseline. Detailed results is shown in table 5.1.

Ranking Score Amicro Amacro

Cosine Similarity (Cos) 38.44 45.68
Jaro-Winkler (JwSim) 61.01 58.81
Context Simillarity (Ctxt) 24.58 21.44
JwSim+Ctxt 62.38 56.58
Entity Popularity (EP) 80.55 78.09
Page-Rank score (PR) 70.60 60.91

Table 5.1: NED using Initial Confidence Score or PR

5.7.3 Cliques Approach Results

The clique partitioning disambiguation algorithm experiments are set up so that a link between

nodes is created whenever a non-zero coherence relation is found between nodes regardless of its

weight. We used different settings for the candidates filter. In the case where no candidates filter

is applied, all nodes are considered to find the best initial clique. Bigger cliques with nodes that

have lower confidence may be selected in the first iteration. This approach is very sensitive to the

results of the first iteration, consequently the accuracy goes down. Also, the clique partitioning

algorithm takes a long time because of the huge graph size. At the other extreme, if we use only

a small number of candidates with the highest confidence scores, then the accuracy also goes

down because in most cases the correct disambiguation entity is filtered out of the graph. We

used the highest 50 candidates in the graph, and all other nodes are deleted. Table 5.2 shows the

results of using different initial confidence scores in clique partitioning disambiguation.

IConf Cos JwSim Ctxt EP
Amicro 71.59 72.26 58.06 86.10
Amacro 64.83 69.53 57.37 81.79

Table 5.2: NED using Clique Partitioning Approach
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IConf
PR es em eg

Amicro Amacro Amicro Amacro Amicro Amacro Amicro Amacro

Cos 70.60 60.83 79.19 73.56 59.73 56.75 78.41 72.35
JwSim 70.61 60.94 82.61 77.66 79.34 73.89 83.16 78.28
Ctxt 70.61 60.83 74.18 62.95 70.09 58.93 75.45 65.22
JwSim+Ctxt 70.63 60.86 82.86 77.59 80.38 74.40 83.37 78.35
EP 71.78 61.23 86.93 83.90 82.03 81.07 87.59 84.19

Table 5.3: Results using initial confidence to initialize node rank before using Page-Rank (PRI )

5.7.4 Graph Ranking Results

To study the graph ranking using PR, and the contributions of the initial confidence and entity

coherence, experiments were carried out using PR in different modes and with different selection

techniques. In the first experiment, referred to as PRI , initial confidence is used as an initial

node rank for PR and edge weights are uniform, with edges being created wherever REF or

JProb are non-zero, as in the PR baseline. Table 5.3 shows the results both before re-ranking,

i.e. using only the PR score for ranking, and after re-ranking using different selection schemes

(indicated by ês, êm, and êg). When comparing these results to the PR baseline we notice a small

positive effect in using the initial confidence as an initial rank, instead of uniform ranking. The

major improvement comes from re-ranking nodes by combining the initial confidence with the

PR score. All combination methods and selection schemes improve the results over the baseline

results when using the same confidence score, while the dynamic selection scheme overcomes

the static one.

In our second experiment, PRC , entity coherence features are tested by setting the edge

weights to the coherence score and using uniform initial node weights. We compared JProb and

REF edge weighting approaches and a variant in which the REF edge weights are normalized to

sum to one over the whole graph, and are then added to the JProb edge weights (Jprob+Ref). Re-

sults in table 5.4 show the JProb feature seems to be more discriminative than the Ref feature

but the combined Jprob + Ref feature performs better than each separately, just outperform-

ing the baseline. We used the best initial confidence score, i.e. Freebase score, for re-ranking.

Again, combining the initial confidence with the PR score improves the results.

Finally, table 5.5 shows the accuracy when using different combinations of initial confidence
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Edge Weight
PR es em eg

Amicro Amacro Amicro Amacro Amicro Amacro Amicro Amacro

Jprob 66.52 55.83 83.16 80.50 80.92 79.63 83.31 80.38
Ref 67.48 59.76 82.06 79.10 80.18 79.03 81.80 78.53
Jprob+Ref 72.69 65.71 83.59 80.98 81.33 80.53 83.46 80.69

Table 5.4: Results using edge weights for Page-Rank (PRC)

and entity coherence scores just in the case when re-ranking is applied. Here, the Jprob+Refs

combination does not add any value over JProb alone. Interestingly, using initial confidence

with differentially weighted edges does not show any benefit over using initial confidence and

uniformly weighted edges (table 5.3).

5.7.5 Comparison To the State-of-the-art

To compare our results with the state-of-the-art, we report Hoffart et al.’s results [2011], as

they re-implemented two other systems and ran them over the AIDA dataset, which we also

used to evaluate our approach. We also compare with Shirakawa et al. [2011] who carried out

their experiments using the same dataset. Table 5.6 shows a comparison between the results of

our approach and the state-of-the-art. Our approach exceeds the results of the state-of-the-art.

However our approach is very simple and direct to apply, unlike Hoffart et al.’s and Shirakawa

et al.’s which are considerably more complex. Also, our approach does not require any kind of

training, like the HMM-based approach presented previously (in chapter 4.)

Hoffart et al. proposed a graph model representation of all candidates for all NE textual men-

tions and treated the NED problem as finding the dense sub-graph. Moreover, they used more

advanced features to measure the similarity between the NE textual mention and the NE candi-

date, such as keyphrase-based and syntax-based similarity. Graph links represent the coherence

between different entities, or between the prior probability of the NE textual mention and the

NE candidate. Our approach differs from Hoffart’s work in evaluating all graph nodes, without

resorting to reduction or greedy algorithms. Also, the features we used are simpler and more

direct to calculate.

Shirakawa et al. did not use candidate generation, as they used a probabilistic taxonomy to

conceptualize the NE textual mentions and use Freebase to find the entities that have the same
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Amicro Amacro

IConf 80.55 78.09
PRC 83.59 80.98
PRI 87.59 84.19
PRCI 86.10 82.80
Clique 86.10 81.79
Cucerzan 51.03 43.74
Kulkarni 72.87 76.74
Hoffart 81.82 81.91
Shirakawa 81.40 83.57

Table 5.6: Comparison Between Proposed Approaches and State-of-the-art

concepts. When more than one entity is found, the Freebase rank is used to select the highest

ranked entity. Looking at the Shirakawa results analysis, a high accuracy is achieved with the

short text documents; this is because their approach is individual disambiguation, i.e. not a col-

lective approach, so they do not gain any benefits from the co-occurring named entities. Also,

for larger documents, more terms contribute in defining the concepts, which may be more con-

fusing. Our collective approaches presented in this chapter work better with the huge documents

that contain more NE textual mentions. Shirakawa’s approach may be better than collective

approaches when there is only one NE textual mention in the document. In such cases, the

individual approaches work better than collective.

Han et al. [2011] presents a graph-based method which looks similar to a graph ranking

approach. They proposed to use the compatibility between an NE candidate e and an NE textual

mentionm. This compatibility measures the overlapping words between the NE textual mention

context (a window of size 50) and the NE article in the KB using the bag-of-words model.

Compatibility measure is represented as an edge between the textual mention node and the NE

candidate node in the referent graph. Also, semantic relations between entities are used to

represent the links between different NE candidate nodes (for more details on the semantic

relation feature, see section 2.4.2). The NE textual mention is used as the evidence for its NE

candidates. Evidence importance is calculated by the proportion of this evidence in the document

relative to the other evidences. The initial evidence reinforced by propagating them according

to the graph links. Both compatibility and relatedness are used as link weights in the graph.
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An iterative algorithm is used to propagate the evidence importance on the graph using the link

weights. The disambiguation is done by selecting the node that maximizes the evidence and

compatibility scores.

Unfortunately, we are unable to compare our results to Han et al.’s approach for two reasons.

The first is that they used a dataset which is different from the AIDA dataset. Secondly, they

used another evaluation metric to measure the method performance, i.e. precision and recall.

However, we highlight the differences between our graph-based approaches and Han’s approach,

and comment on their published results.

• The graph representation is different. We refer to Han’s graph as a referent graph and

our graph as a solution graph. In the referent graph both NE textual mentions and NE

candidates are represented as nodes, while in the solution graph only NE candidates are

presented as nodes. The solution graph is also undirected, while the referent graph has

directed links between candidate nodes and NE textual mention nodes, and undirected

links between NE candidate nodes.

• There are some similarities between the Page-Rank and the collective inference, as both

are a random walk process in the graph. However, Han propagates the initial evidence

importance within the graph and falls to the same dissipation of evidence problem we

previously highlighted. In our graph ranking approach we recombine the NE candidate

confidence with the PR score and dynamically choose between two methods of combina-

tion, which implies a considerable improvement.

• Using the context similarity as a compatibility measure is not a good measure, as our

results show.

• Both Han’s and our graph-ranking approach aim to find a globally optimized set of co-

herent entities, which includes only one NE candidate for each NE textual mention. The

clique disambiguation approach aims to find a set of locally optimised coherent NE can-

didates that disambiguate a subset of the NE textual mentions, and iteratively expand this

set, or find new sets, until all NE textual mentions are assigned an NE candidate in these
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selected sets.

• In Han’s experiments, textual mentions which have an entry in the KB for evaluation are

used; at the same time, they reported 0.76 recall. As they did not discuss the candidate

generation method, we can not explore the reasons for this low recall. Also, they reported

0.87 precision with 0.20 recall, which indicates a weak approach.

5.7.6 Discussion

The Page-Rank algorithm was originally designed for directed graphs while our coherence fea-

tures are undirected. So, the node rank depends on both incoming and outgoing links (when con-

verting the undirected graph to a directed graph). That explains the little improvement over basic

PR when using the initial confidence as an initial rank before using PR (see table 5.3). How-

ever, when comparing PR results in tables 5.3 and 5.4, we can see that the PR algorithm is more

sensitive to the links than to initial ranks. The combined coherence approach (Jprob + Ref )

actually has a value other than the different weighting it supplies; the approach results in more

edges than either of the combined approaches do alone. In all PR results wherever edge weights

are applied, the result of using the combined coherence measures outperforms either of them

singly.

Informal failure analysis was carried out to determine reasons for disambiguation failure.

Reasons identified include:

1. The correct NE candidate does not exist in the graph. In such cases the disambiguation

approach selected is irrelevant and what is needed is improved candidate selection.

2. Lack of edges. When there are no edges between any of the query NE mention candidate

entities and other mentions’ candidates. In this case the decision depends only on the

initial confidence score.

3. Where the Freebase popularity score (EP) is used, whenever this score for the correct NE

candidate is 0, which means the selection process is based on the PR score.

Table 5.7 shows an example of the highest three NE candidates for three NE mentions taken

from a document (overall the document contains textual mentions for ten different NEs). The
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first one is “Ford” and is disambiguated correctly to “Ford Motor Company”, where the PR

and popularity scores are higher than any of the other candidates. The second one is ,“Magna”,

disambiguated correctly, where the first two NE candidates have the same PR score but the popu-

larity score discriminates between them. The third, “Markham”, is disambiguated to “Clements

Markham” while it should be disambiguated to “Markham, Ontario”. The problem in this case

is that all NE candidates for the mention “Markham” are not linked to any entity candidates

for any other NE mentions in the document (problem 2 above). Therefore, the popularity score

dominates the final rank score.
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NE Candidate PR Score FB Rank Our Rank
×10−3 ×10−3 ×10−3

Ford
Ford Motor Company 21.367 62.119 1.327
Ford Galaxie 4.593 10.937 0.050
Ford GT 2.835 11.433 0.032
Ford Zephyr 0.831 13.705 0.011
Ford Scorpio 0.831 9.514 0.008

Magna
Magna International 2.647 4.779 0.013
Magna Powertrain 2.647 2.178 0.006
Germania 0.831 3.466 0.003
Chew Magna 0.831 2.988 0.002
Fascioloides magna 0.831 2.902 0.002

New York Stock Exchange
New York Stock Exchange 4.405 42.339 0.186
Silver v. New York Stock Exchange 0.831 51.050 0.042
Stock exchange 0.831 22.422 0.019
New York Sack Exchange 0.831 9.189 0.008
Zimbabwe Stock Exchange 0.831 0.000 0.000

North American
North America 16.546 52.688 0.872
North American Plate 0.831 18.023 0.015
North American Review 0.831 15.711 0.013
North American Union 0.831 13.398 0.011
North American GAA 0.831 12.970 0.011

Johnson Controls Inc
Johnson Controls 4.603 125.000 0.575
Who Controls the Internet? 0.831 0.000 0.000
Vickie Johnson 5.537 0.000 0.000
Vantage Controls 0.831 0.000 0.000
Universal controls 0.831 0.000 0.000

FARMINGTON HILLS [Farmington Hills, Michigan]
Farmington Public Schools 0.831 111.915 0.093
North Farmington High School 0.831 13.085 0.011
Wiscasset, Waterville and Farmington Railway 0.831 0.000 0.000
West Farmington, Ohio 0.831 0.000 0.000
University of Maine at Farmington 0.831 0.000 0.000

Markham [Markham, Ontario]
Clements Markham 0.831 4.415 0.004
Markham Waxers 0.831 3.669 0.003
Edwin Markham 0.831 2.894 0.002
Monte Markham 0.831 2.803 0.002
E. A. Markham 0.831 2.749 0.002

Table 5.7: Example of NE Candidate Scores
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5.8 Conclusion

In this chapter, we presented two collective approaches for named entity disambiguation based

on graph models. Both approaches present all candidates for all NE textual mentions as nodes

in a graph and link these nodes using the entity coherence relation. The first approach uses

the Page-Rank algorithm to rank all graph nodes in different settings and then combine the

candidate confidence score with the Page-Rank score to select the disambiguation candidate for

each NE textual mention. The second approach evaluates all possible cliques in the graph using

the candidate confidence score and selects the best clique; the algorithm iteratively expands the

selected clique or finds new good cliques until all NE textual mentions are disambiguated.

Our results show that graph ranking approaches, in conjunction with the candidate confi-

dence scores and entity coherence across a disambiguation graph, can be used as an effective

approach to collectively disambiguate named entity textual mentions in a document. Our pro-

posed features are very simple and easy to extract, and work well when employed in PR algo-

rithms. Also, entity coherence is a discriminative feature when using graph models for NED.

Clique partitioning approaches can be used to find a cohesive set of candidates, and consider-

ing the best clique can help to delete wrong candidates from the graph as a kind of pruning. This

pruning helps to expand the selected clique or find other good cliques in the next iterations. This

iterative process improves the disambiguation accuracy because some of the wrong candidates

will not affect the disambiguation of the other NE textual mentions.

The main conclusion from this work is that graph models are suitable for modelling the can-

didate dependency and gives the availability to decode different dependency patterns. However,

it is very sensitive to the node links, such that missing links (undiscovered or absent relations)

affect the accuracy of these approaches.
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Chapter 6

Conclusions and Suggestions for

Future Work

6.1 Introduction

This study has highlighted different approaches for disambiguating named entity textual men-

tions in a document. The study set out to find reliable methods to disambiguate different tex-

tual mentions of different named entities in a document. The study has also sought to deter-

mine whether the statistical co-occurrence between named entities in the Wikipedia knowledge

base can result in accurate disambiguation for both individual and collective disambiguation

approaches. The study sought to answer the following questions:

• Can document similarity search based on named entities help to find good candidates for

named entity disambiguation?

• Can NE dependency relations help in selecting good candidates and in disambiguation?

• What is the best NE candidates dependency model?

• Are collective disambiguation approaches better than individual approaches?

To answer these questions, we first presented a document similarity function, NEB-Sim,

based on a document’s named entities. Our function results are compared to the traditional
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cosine similarity scores using different context schemes. The evaluation metric is the accuracy

over the top N candidates. This comparison shows the appropriateness of our NEB-Sim function

to select good NE candidates from the knowledge base entries. Also, we explored using different

learn-to-rank approaches to rank the retrieved NE candidates for selecting the highest ranked

candidates as the disambiguation NE. This approach is an individual disambiguation approach

and, while ranking improves the results, it does not match the state-of-the-art results. Therefore,

we presented three different collective disambiguation approaches.

The first collective disambiguation approach treats the task of NED as finding the best se-

quence of named entities, given a set of different mentions for different named entities in the

same context. We used an HMM based approach developed different approximations to deal

with the huge number of NEs. The approach works successfully to decode the proper sequence

of named entities, and works better than some individual disambiguation approaches. We realize

there is a theoretical limitation to this approach because some dependency patterns can not be

recognized using this approach. We got better results when we used graph approaches, where

this limitation is not present. The second and third collective disambiguation approaches used a

graph model to represent the candidateś coherence relations.

In the second collective NED approach, we used Page-Rank to rank all graph nodes based

on the coherence relations. This rank score is combined with the local feature score using a

novel algorithm to find a new rank for different candidates. The third collective disambiguation

approach uses the cliques partitioning algorithm to iteratively find one or more cliques of highly

coherent candidates for different NE textual mentions. The results of both the second and third

approaches show good improvement in disambiguation accuracy and exceed the current state-

of-the-art results.

The next section lists the findings of this research in addition to our initial research questions.

6.2 Empirical Findings

The main findings of this research are summarized in the following list:

1. Using a document similarity measure based on named entities improves the performance
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of named entity candidate selection from a KB for the NED task (see section 3.4.2).

2. NE textual mention co-occurrence relations may help to select initial candidates for a

specific NE textual mention (see section 3.4.2).

3. Sentences containing NE textual mentions are the richest contexts from which to extract

contextual information or features. Using these contexts improves candidate quality in the

candidate generation phase.

4. Sequence modelling is not the best solution for NED. It is limited because multiple NEs

may be dependent on only one other NE, and the Viterbi algorithm can not decode such a

non-sequential dependency pattern (see section 4.5.2).

5. Graph modelling is the best representation of the NE candidate dependencies; it can han-

dle cases which HMMs can not (see section 4.5.2).

6. Entity coherence or co-occurrence relations are reliable relation for use in graph models

to find the most cohesive set of NE candidates for NE textual mentions in a document (see

section 5.7.3).

7. NED can be improved by finding the minimum number of coherent sets of candidates of

different NE textual mentions in a document. The clique partitioning algorithm is reliable

for finding subsets of cohesive NE candidates, given a good coherent set measure (see

section 5.7.3).

8. Using the initial confidence score to initialize candidate nodes before using Page-Ranking

is helpful to rank the candidate nodes based on the link structure, though it is not enough

for NED as the initial confidence scores are distributed over the linked nodes. Combining

the Page-Rank score with the confidence score improves the NED accuracy (see section

5.7.4).

6.3 Thesis Contributions

The main contributions of this thesis are:
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1. Development of an NE based search framework for retrieving and scoring a reliable short

list of NE candidates from a knowledge base (see section 3.2).

2. Demonstrating how using learn-to-rank approaches to re-rank the different candidates of a

specific NE textual mention can improve candidate generation for NED (see section 3.3).

3. Design and development of a collective NED approach based on Hidden Markov Models

(HMMs) (see section 4).

4. Developing different approximations to be used with the Viterbi algorithm with a huge

number of states, making it feasible for use in NED (see section 4.2.2).

5. Developing a graph partitioning algorithm for collective NED (see section 5.5).

6. Developing a graph based collective NED approach using Page-Rank in conjunction with

local features and entity coherence to rank NE candidates (see section 5.6).

6.4 Future Work

The previous section describes our contributions towards the problem of named entity disam-

biguation. There are some problems which still need to be addressed to improve NED accuracy.

Future avenues for this work include:

• Missing Cases Analysis:

The first extension to this work is to analyse the cases that are missing, especially in the

graph base approaches which achieves good results, and from these cases try to work out

why they are missed. This failure analysis may help to figure out better settings for the

proposed approaches.

• Coherent Set Measure:

We presented a clique partitioning based approach to NED. We used NE candidate con-

fidence scores to weight the different clique coherences by summing all NE candidate

confidence scores. A possible extension is to improve this coherency measure by consid-

ering the link weights, i.e. Jprob, in the weighting function.
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• Co-reference Resolution:

In the current work, the different textual mentions for the same named entity in the docu-

ment are disambiguated separately and may have different features. A possible extension

is to collect the co-referenced NE textual mentions together, combine their features, and

use one candidate list for all.

• Multiple Graph Ranking:

In the presented graph model approach (see chapter 5), we used Page-Rank to rank all

possible candidates for all NE textual mentions in the document. The power of the graph

model is considering the candidates of the other textual mentions when evaluating a spe-

cific NE candidate. The drawback of that approach is the sensitivity to wrong decisions.

In other words, the wrong decision for one NE textual mention will affect the candidate

selection for other NE textual mentions. It would be interesting to explore ways to identify

the most accurate disambiguation for one of the NE textual mentions and then remove the

other candidates for that NE textual mention and re-rank again, but using that accurate

disambiguated entity. This will affect the other candidates’ rankings.

• Incorporating Entity Semantic Relations with the Graph Model:

The current work did not address the semantic relations between candidates of different

textual mentions. Another possible avenue is to enrich the solution graph with semantic

relations between different candidates. Different semantic relations between NE candi-

dates of different textual mentions could be extracted from an ontology. These relations

may be classified into direct and indirect relations. A direct relation like birth place may

connect two NE candidates A and B, while another relation like mother connects NE

candidates A and D; from this example we can note the differential importance of dis-

tinct relations. More research is needed to discover and evaluate this importance. Indirect

relations between two entity candidates, A and B, occur when A has a relation to an in-

termediate NE candidate C, which in turn has a relation to NE candidate B. Machine

learning techniques could be used to weight the different relations.
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• Combine Individual and Collective Approaches:

An individual disambiguation approach is presented in chapter 3 using NE document sim-

ilarity based search. Two collective approaches are presented in chapters 4 and 5. Another

avenue of future work is to combine both approaches by using our individual disambigua-

tion approach to give some scores (like NEB-Sim and SVM-rank) to the candidates and

use these as local features in the graph model.

• Disambiguation by Finding the Densest Sub-graph:

We used Page-Rank to rank all graph nodes based on an initial confidence and link weight-

ing. It could be useful to use the initial confidence and the link weights to find the densest

sub-graph which contains one candidate from every NE textual mention candidate list.
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