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Abstract

This thesis explores the role of modelling and computational simulation, in relation to social

systems, with specific focus on Schelling’s Bounded Neighbourhood Model. It discusses the

role of computational modelling and some techniques that can be used in the Social sciences.

Simulation of social interaction consistently creates debate in the Social sciences. However,

most models are dismissed as either too simplistic or unrealistic. In an attempt to counter

these criticisms, more complex models have been developed. However, by increasing the com-

plexity of the model, the underlying dynamics can be lost. Schelling’s models of segregation

are a classic example, with much of the work building on his simple segregation model. The

complexity of the models being developed are such that, real world implications are being in-

ferred from the results. The Complex Systems Modelling and Simulation (CoSMoS) process

has a proven track record in developing simulations of complex models. In a novel appli-

cation, the CoSMoS process is applied to Schelling’s Bounded Neighbourhood Model. The

process formalises Schelling’s Bounded Neighbourhood Model and develops a simulation. The

simulation is validated against the results from Schelling’s model and then used to question

the model. The questioning of the model is an attempt to examine the underlying dynamics

of the segregation model. In this respect, two measures, static and dynamic, are used in

the analysis of the results. Initally, the e↵ect of ordered movement was tested by chang-

ing the movement, from ordered to random. A second experiment examined agents’ perfect

knowledge of the system. By introducing a sample, the agents’ knowledge of the system is

reduced. The third experiment introduced a friction parameter, to examine the e↵ect of ease

of movement into and out of the neighbourhood. In the final experiment, Schelling’s model

is recast as a network model. Although the recasting of the model is slightly unorthodox, it

opens the model up to network analysis. This analysis allows the easy definition of a ‘social

network’ that is overlaid on Schelling’s ‘neighbourhood network’. Two di↵erent networks are

applied, Random and Small World. The results of the experiments showed, that Schelling’s

model is remarkably robust. Whilst the adjustments to the model all contributed to changes

in the output, the only significant di↵erence occurred when the social network was added.
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Chapter 1

Introduction

Advances in computing, both in terms of speed and programming, have made an impact

in many areas. The linking of computing with natural sciences has produced fields such as

quantum computing, genetic algorithms and chemical computing. Economics is attempting

to exploit this computational power, with current research based on developing Artificial

Intelligence that can take advantage of the market and make profits. Computation has also

spread into the social sciences: Human Computer Interaction (HCI) considers the e↵ects

of computing on individuals, usability and statistical methods; History, where multi-agent

systems have been used to model counter-factual events and Sociology where multi-agent

systems are used to create artificial societies [2]. Many of these fields share common ground

with their use of modelling and simulation to investigate complex systems and complexity.

According to Aristotle

“the whole is more than the sum of the parts.” [9]

This is considered to be the first known attempt to describe the outcome of a complex sys-

tem [61]. More than 2000 years later, there is still no satisfactory scientific definition, but

a great deal of debate. For now, a complex system is defined, broadly speaking, as a sys-

tem containing components that interact, producing global behaviour that are something other

than the aggregate of those interactions. Complexity is taken to be the study of complex sys-

tems and their emergent behaviour. Descriptions of complex systems range from Aristotle’s

sentence, to the mathematical entropy of Shannon [81]. In a review of the prevalence of com-

plexity, Eve et al. [33] o↵er a list, summarized in Table 1.1. This list, which omits economics

and politics, illustrates the abundance of complex systems in the natural and social sciences.

It should be noted that while this trans-disciplinary approach links previously unrelated re-

search areas, it causes controversy over fundamental issues such as definitions (ontology) and

1



2 CHAPTER 1. INTRODUCTION

Subject area Examples of complexity

Mathematics an extension of limit theory and complex topology [22].

Classical Physics problems of turbulence [51].

Thermodynamics issues in the study of entropy [55].

Chemistry refinements of catalysts + phase boundaries [44].

Biology description of ecological feedback [25].

Sociology bio-mass use in a region [77].

Table 1.1: A table of examples (with additional entries for Biology and Sociology) of complexity by
subject area from [33].

methodology. Certainly there is no universally agreed definition of what constitutes a com-

plex system. These debates over complex systems, whilst important, can distract from the

task at hand. To avoid this issue, here a complex system is defined as: a system containing

components that interact, producing global behaviour that are something other than the

aggregate of those interactions.

Within the area of modelling and simulation, the advances in computational power have

led to numerous applications. This can be seen in the work of Schelling in his segregation

models [74] and Epstein’s Sugarscape [31], both of which have been used in much of the

discourse on sociology and simulation. Both these experiments were motivated by real world

social systems. These social simulations are an attempt to reproduce the complexity of real

world human systems from models of core processes that underlie global behaviour. How-

ever, the view of social systems as complex systems is far from accepted within social science.

Yet, one can argue the case that, social systems have many characteristics in common with

complex systems. Indeed, a growing number of authours, especially in relation to cities and

urban regions, have made this point (for example [21] [43], [12] and [68]). These authours

(and others) have begun to use complexity to describe and model social systems. Some of

these techniques are introduced in Chapter 2, with examples of their application to social

systems. The most common architectures used is Agent Based Modelling (ABM). One of

the most well know of these models is Schelling’s segregation model, which is discussed in

Chapter 3. The model has been used to describe cities in both America and Israel, and

shows that slight intolerance leads to high levels of segregation. These findings have led to

heated debates about the validity of the model, and ideas of validity and verification are the

focus of Chapter 4. Following Epstein’s argument [30], that a general ABM framework will
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emerge from individual frameworks, the Complex System Modelling and Simulation (CoS-

MoS) process is applied to Schelling’s model. The CoSMoS process (discussed in Section 4.3)

has successfully developed valid simulations of complex systems. In a novel application, the

process is applied to Schelling’s Bounded Neighbourhood Model. The development of a valid

simulation of Schelling’s Bounded Neighbourhood Model is described in Chapter 5. Once val-

idated, the simulation is used to test Schelling’s ordered movement rule, the work is presented

in Chapter 6. Following the CoSMoS process, the results from the experiment lead to more

questions about the model. From this three assumptions are examined: Chapter 7 explores

the e↵ects of agents’ complete knowledge of the system; Chapter 8 restricts the movement of

the agents; whilst Chapter 9 recasts the model as a network and introduces a social network.

A summary of the results and contributions of the thesis, as well as some conclusions and

further work, are presented in Chapter 10.



4 CHAPTER 1. INTRODUCTION



Chapter 2

Modelling Social Systems

Although there is disagreement about the structural aspects of social systems, a minimal

requirement is the interaction of two organisms [100]. There is agreement that social systems

have many characteristics in keeping with complex systems [73]. From this stems the belief

that the tools and techniques of complexity can be applied to social systems. Although the

field of complexity could be seen to have strong links to sociology [21], the ideas are still

far from accepted by many in the social sciences. Authours such as Sawyer [73], Byrne [21],

Fossett [37] and Walby [95] are suggesting that the tools of complexity o↵er a great deal to

social science. Some of the tools are now presented, with brief examples of their application

to social systems.

2.1 Di↵erential Equations

Di↵erential Equations are at the heart of mathematical physics and are a significant motiva-

tion for mathematical analysis [82]. Di↵erential equations involve the relationship between

infinitesimal changes of independent variables (such as time) and the dependent variables

such as temperature. In the simplest case, given a ‘smooth’ function y = f(x), its derivative

f 0(x) = dy/dx can be interpreted as the rate of change of y with respect to x. Many of the

general laws of nature, such as physics, chemistry, biology and astronomy, can be expressed

in this language. In the physical sciences the equations are developed from a deep and precise

understanding of the phenomena being studied. It is e↵ective where the constituent entities

are homogeneous, deterministic and smooth (at least statistically).

The Italian mathematician Volterra, known for his work on integral equations, used dif-

ferential equations to model biological systems [92]. This mathematical biology led Alfred

Lotka to theorise that natural selection was a struggle for available energy. Those organisms

5
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that capture and use energy most e�ciently are the ones that prosper. (It is interesting that

he suggested the switch in society from solar to non-renewable energy would pose a funda-

mental challenge [5]). Applying these ideas of e�ciency to animal populations led to the

development of the Lotka-Volterra predator prey model. The equations model the growth

and decline of two populations, one predator (often referred to as foxes) and one prey (often

rabbits). Let R(t) and F (t) represent the number of rabbits and foxes respectively that are

alive at time t, then the Lotka-Volterra model [86] is:

dR

dt
= aR� bRF,

dF

dt
= eRF � cF,

where a is the natural growth rate of rabbits in the absence of predation (foxes), b is the death

rate per encounter of rabbits due to predation (foxes), c is the natural death rate of foxes in

the absence of food (rabbits), and e is the e�ciency of turning predated rabbits into fox’s

o↵spring. The equations are part of a family of models known as logistic growth equations,

other types include the parasitic model and the competition model. The parameters selected

are considered to be the most important aspects of the system being analysed. Certainly

birth and death rates are the most important factor in population size and these are clearly

a↵ected by the presence (or absence) of food. In the model the number of encounters between

the two groups is found to be proportional to the number of rabbits times the number of

foxes. This would seem to imply there is no spatial segregation of the populations as they

appear to consistently encounter each other. Despite their relative simplicity these equations

have been successful at modelling pairs of populations such as lynxs and hares in the Hudson

Bay [54] and, according to Kau↵mann [50, p210], arctic foxes and hares as well as commercial

fishing in the Adriatic.

In an influential paper, Hosler et al. [48] used di↵erential equations to model the collapse

of the Mayan civilization between 750 - 900AD. Basing their work on the anthropologi-

cal theory put forward by Willey and Shimkin [101], they developed a model based on a

deviation-amplifying feedback loop, between the increasing ritual and public building. This

enhanced the prestige of the elite, led to the consequent decline in food production, which

was considered demeaning [48]. These and other elements, of the social and economic systems

that made up the society, were quantified. From these, specified recurrence equations1 were

1“A recurrence equation (or di↵erence equation) is the discrete analog of a di↵erential equation. A dif-
ference equation involves an integer function f(n) in a form like f(n) � f(n � 1) = g(n) where g is
some integer function. This equation is the discrete analog of the first-order ordinary di↵erential equation
f 0(x) = g(x).” [59].
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chosen, to determine their interacting behaviour over time. The model produced showed a

collapse, and further, that di↵erent behaviours from the ruling elite, could have postponed

the collapse (although not prevent it). However, it is important to note that, in his critique,

Gilbert [43, p42] points out this model completely ignores some, seemingly important, fac-

tors such as interactions with other tribes, warfare and spatial factors. Indeed later studies

showed the Mayan ‘collapse’ was less suddenm and pointed towards a more gradual shift

of dominance from one part of the region to another. This result exemplifies the danger of

producing models with inaccurate data, and without careful consideration of the techniques

being used. It certainly shows that, when modelling complex systems, even the ‘correct’ result

can sometimes be ‘wrong’. Often di↵erential equations, or some variation such as di↵erence

equations, are more than adequate for simulating dynamical systems. But, if the system be-

ing measured is non-linear, even the smallest of variations in the initial settings can have an

exponential e↵ect on the outcome (sensitivity to initial data or ‘Butterfly E↵ect [86]). This

problem has become well known and can be traced back to Lorenz’s attempts to model the

weather using a computer simulation based on the following simple system of three ordinary

coupled di↵erential equations that describe the relevant atmospheric physics [86].

dx

dt
= �(y � x)

dy

dt
= x(�� z)� y

dz

dt
= xy � �z,

where �,�,� > 0 are physical constants.2 After Lorenz repeated his calculations from an

earlier data point, he noticed significant deviations developed in time even though calculation

were restarted from the exact same point in the plot. This was the origin of the familiar

Butterfly E↵ect, as apparently insignificant rounding errors correspond to the e↵ect that the

motion of a butterfly’s wings could have on the weather.

Di↵erential equations are often used to investigate systems in the natural sciences. How-

ever they are unable to capture individual behaviours of members of a population being

modelled. Additionally they are only able to incorporate spatial aspects of the system by

2for the interested reader � is the Prandtl number which “. . . is a dimensionless number approximating the
ratio of momentum di↵usivity (kinematic viscosity) and thermal di↵usivity. It is named after the German
physicist Ludwig Prandtl” [97]. � is the Rayleigh number which “. . . is a dimensionless number associated
with buoyancy driven flow (also known as free convection or natural convection). When the Rayleigh number
is below the critical value for that fluid, heat transfer is primarily in the form of conduction; when it exceeds
the critical value, heat transfer is primarily in the form of convection” [98].
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introducing further variables. This leads to more intractable partial di↵erential equations.

Moreover, while models of complex systems using di↵erential equations can be accurate over

small timescales, their nature means that any real long term predictions su↵er from expo-

nential error rates. Parameters selected for modelling in the natural sciences are usually very

simplistic and are, perhaps, chosen more for mathematical simplicity. For example in the

predator-prey model, the parameter that relates the food obtained to the number of o↵spring

is hardly a realistic representation. The o↵spring are the result of far more complex inter-

actions than just the amount of food available. Introducing more parameters to make the

simulation more realistic would obviously make the equations more complicated. Moreover

some natural aspects such as hunting or escape strategies cannot be incorporated in a simple

way into numerical equations. There is no way, at present, of introducing modifications to

the environment; the results of external changes can only be seen in terms of population

numbers. Drogoul and Ferber [27] point this out, arguing that, with numerical modelling,

the hunting/feeding process can only be represented by the volume of available prey, and

the probability of the predator finding the prey. Rather than describing the behaviour of

the predators/prey, it can only quantify the relation between the numbers involved. Finally,

numerical simulations are unable to cope with qualitative data, such as the relation between

a stimulus and the behaviour of an individual, which are well beyond the scope of analytical

equations and numerical simulations [27]. Perhaps most important, there seems to be no way

of capturing the evolution of ‘emergent’ behaviour or structure. Whilst modelling complex

systems using di↵erential equations o↵ers a reasonable representation at a population level,

it is clear that there are limitations that need to be taken into consideration. Most impor-

tantly, dealing with qualitative data is proving intractable in models for the natural and

social sciences. Nevertheless, despite this, some simpler complex systems can be represented

by a relatively small number of key variables.

2.2 Cellular Automata

Cellular Automata (CAs) were developed by von Neumann and Ulam [94] in the 1940s.

In collaboration with another mathematician Ulam, von Neumann had been searching for

logical solutions to the complexity of natural growth [99]. Von Neumann demonstrated that,

on a two dimensional lattice grid, particular patterns of cells, with 29 states and specific

state transitions, could self-replicate. It was discoverd that simple rules, governing state

transitions, can create a variety of unexpected behaviours. Wolfram [104] used a simple form

of CA, what he called an ‘elementary cellular automata’. Elementary CAs have two possible

values for each cell (0 or 1), and rules that depend only on the values of the cells directly
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Figure 2.1: Wolfram’s binary representation of 30

Figure 2.2: The first 15 generations of rule 30

adjacent. The evolution of an elementary cellular automaton can completely be described by

a table specifying the state a given cell will have in the next generation based on the value of

the cell to its left, the value the cell itself, and the value of the cell to its right. Since there

are 2 ⇥ 2 ⇥ 2 = 23 = 8 possible binary states for the three cells neighbouring a given cell,

there are a total of 28 = 256 elementary cellular automata, each of which can be indexed

with an 8-bit binary number. An example of 30 (called rule 30) can be seen in Figure 2.1.

Each generation of cells calculates its state in the next generation, which is then displayed

on the row below. Some of Wolfram’s rules reached an equilibrium in a few generations and

88 produced results that were mirror images. However, the most interesting was rule 30

(Figure 2.1) which produced a chaotic result (Figure 2.2). This ‘chaotic’ behaviour was used

by Wolfram to generate random numbers for large integers in Mathematica [105].

The interesting behaviours of CAs have led to numerous di↵erent experiments with dif-

ferent parameters. Adjustments to the shape of the cells has led to triangular and hexagonal

CAs, whilst an increase in the size of possible systems allowed Rendell [70] to build a universal

Turing machine in the ‘Game of Life’.
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Figure 2.3: An example run of the Game of Life.

The Game of Life [40], developed by John Conway in the 1970s, is often used as an

example of a complex system; since many argue that it has emergent behaviours. Conway

was searching for a simple ruleset that could produce interesting behaviour, using von Neu-

mann’s [94] cellular automata architecture. Conway explored a simplified version in the same

two dimensional environment. Rather than the 29 states of von Neumann, Conway’s cells

had just two states: active or inactive. The state of a cell is based on the state of its imme-

diate neighbourhood, defined as the eight surrounding squares. A simple ruleset governs the

transition from the current state to the next state.

• Active cells

– with two or three neighbouring active cells survives for the next generation.

– with four or more active neighbours dies (becomes inactive) from overpopulation.

– with less than two neighbours dies from isolation.

• Inactive cells

– if adjacent to exactly three active cells becomes a birth cell and will be active at

the next generation.

Conway was searching for a simple initial configuration that would result in complex

behaviour. Whilst most configurations quickly moved to equilibrium in very few generations

(for example Figure 2.3), one configuration produced some startling results. From the initial

r-pentomino configuration (Figure 2.4) the system completes over 1000 generations before

reaching a stable state. Small groups of five active cells undergoing simultaneous reflection

and translation give the appearance of moving structures (Figure 2.5). These structures are

called gliders from this reflection and translation known as glide symmetry. Other cells get

caught in cyclic (and hence essentially finite) configurations which appear to blink on and
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Figure 2.4: The r-pentomino.

Figure 2.5: The reflection/translation action of the ‘glider’ gives the appearance of a structure moving
across the environment.

o↵. Solid structures are formed by groups of cells. From the ruleset one might anticipate

the blocks and even the ‘blinker’ structure. However the ‘gliders’ seem to be impossible to

predict from the rules without explicitly simulating them. Their appearance has been called

emergent by a number of authours, including Langton [52] and Bedau [13], and correspond to

our description of emergent properties of the system. Of course a perception of a system

level is needed to detect them (or their motion) since at the cellular level all one can detect

is an active/inactive cell.

The Game of Life has been the focus of a number of studies, see for example one based

on statistical analysis by Schulman [80]. Bak et al [11] use “statistical mechanics upon

the self-organised systems” in an attempt to describe behaviours of groups of cells (such as

gliders), rather than individual cells. The description can be seen as using the global emergent

properties to measure the system. Bak notes that a trait of self-organising systems is their

scale free structures. Scale free properties follow a power law distribution that applies at any

scale. Such that, given a function f(x) = axk, scaling that by a factor of c causes only a

proportionate scaling of the function, thus:

f(cx) = a(cx)k = ckf(x) / f(x).

Bak uses a 150⇥150 lattice grid with open boundary conditions and initialises the system

with an (unspecified) random distribution of live sites. Bak then defines a measure s of the

total activity of the system and allows the system to evolve until it reaches a ‘rest state’. The

rest state of the system is defined as “local still life and simple cyclic life” [11] and ignores

long period cyclic states since Bak concedes his “method of generation cyclic structures of
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long period are extremely rare and essentially never encountered” (Bak does not define what

the length of a long period is). Once the system is at rest, Bak perturbs it (without saying

what form the perturbation takes) and measures the activity that arises. This activity s is

the cumulative number of ‘births’ and ‘deaths’ from the initial rest state to the next rest

state. By averaging 40,000 such perturbations Bak finds that, not only does the distribution

of the activity of the system D(s) follow a power law D(s) / s�⌧ for ⌧ ⇡ 1.4, but so does the

distribution of the duration of the perturbations, D(T ) / T�b for b ⇡ 1.6 [11]. By ignoring

the low level interactions and instead focusing on the emergent behaviour of the system, Bak

is able to neatly side step having to track a possibly exponentially growing number of micro-

states. Since each cell can have two possible states n cells need to consider 2n possible states,

this means the possibles number of states for Bak’s experimental setup is 222500. The problem

is akin to the gas laws, whereby, whilst it is possible to work out the temperature, one could

never know the individual velocities of the molecules. So Bak et al. resort to measuring

the emergent properties rather than calculating individual cell positions and states. The

complexity the Game of Life produces from such simple rules o↵ers the possibility that, some

of the complexities of social interaction could be reduced to a few simple rules.

2.3 Game Theory

Game theory is a well known field of mathematics and was introduced by John von Neu-

mann and Oskar Morgenstern in their influential book “Theory of Games and Economic

behaviour” [93]. Game theory is the formal study of interactions between ‘goal-oriented’

agents and the strategic scenarios that arise in these settings. Further details can be found

in von Neumann’s book [93]. However, briefly, players interact through games of chance.

Their strategies are the executions of choices, based on a payo↵ and probability. Players

work towards maximizing their payo↵s by assuming all players will be doing the same and

thus attempting to develop a ‘best response’ to a rational choice.

A famous example of modelling using game theory is the prisoners’ dilemma. In this

problem two players (A and B) face a choice of betraying or co-operating. If both choose to

co-operate their payo↵ is 2, if they both betray the payo↵ is 1. The dilemma comes from

the fact that if one player betrays whilst the other co-operates the betraying player gets

a payo↵ of 3 whilst the co-operator gets nothing. Consider player A: if B co-operates, A

does better by betraying (3) than cooperating (2); if B betrays, A does better by betraying

than co-operating (0). Therefore, whatever happens, the best response for both players is to

betray, even though they would both be better o↵ if they both co-operated.
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Zhang [109] uses Game Theory to model Schelling’s Bounded Neighbourhood Model. His

model is a lattice graph with periodic boundary conditions (i.e a torus), where each vertex

is a residential location. Any location i has H neighbouring vertices, where H is a fixed

integer. So that H = 4 would be a von Neumann neighbourhood and H = 8 is a Moore

neighbourhood. Pi is the price of location i, Wi the number of White neighbours and Bi the

number of Black neighbours. Zhang assumes all the agents earn an identical income Y, since

he claims that “even if each person i earns a di↵erent Yi, all results remain the same” [108].

The price Pi is determined by a simplified market mechanism whereby prices respond to

demand, more demand implies higher prices, so that Pi = Bi +Wi. From this Zhang is able

to define a utility of a White agent as Uwi = Y +⇡Wi�Pi = Y +(⇡�1)Wi�Bi where ⇡ > 0.

A positive value of ⇡ implies the more White neighbours a White agent has the happier the

agent is. Letting ✓ = ⇡ � 1 > �1 gives

Uwi = Y + ✓Wi �Bi.

Zhang now assumes Blacks care only about price at location j giving them a utility,

Ubj = Y � Pj

= Y �Wj �Bj .

From this utility Zhang makes a proposition:

If Blacks are colour-neutral and Whites have a slight preference for like-colour

neighbours, then, in the long run: (i) residential segregation is observed most of

the time; (ii) the rate of vacancy is higher in Black neighbourhoods than in White

neighbourhoods; and (iii) Whites pay more than Blacks do for equivalent housing.

Zhang’s model points to this proposition, since Whites would be unwilling to move to a black

neighbourhood, whereas blacks would have no problem moving. Although Zhang introduces

a bounded rationality, in that agents will sometimes make utility decreasing moves, the e↵ect

is negated over the time periods he uses. The erroneous moves are eventually outweighed

by rational movement. Zhang’s Pi equation assumes location i is occupied because Zhang

believes it odd that i commands a di↵erent price before and after an agent moves in. No

evidence to support this assumption is given (and if one considers a property that has been

vacant for a long period of time, the price could increase if it became occupied). It is possible

that Zhang would consider the change in price to be led by the market as a whole rather than

an individual in the market. Additionally the model uses rental housing market data to define

the pricing mechanism. Zhang fails to experiment with the preference parameters to see the
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Figure 2.6: The network with n = 6 and m = 8.

e↵ect they have, mainly citing the fact the model is using ‘some’ survey data from Farley

et al. [35] and [34]. Whilst Farley’s work would seem to suggest Zhang’s conclusions about

preference is correct, Zhang could have explored the results of di↵erent preference levels, to

see if Farley’s survey work still held for his model.

Whilst game theory is a useful tool in modelling social interactions, it creates an environ-

ment specific to the problem domain. There is no concept of any other interactions or the

e↵ects they might have on the results. Certainly in Zhang’s experiment there is no evolution

of agents, the population is static and the evolution of the agents themselves is an important

part of any model of society. Indeed, as van Baal [90] points out, a game theoretic model

takes a hugely simplistic approach, even unrealistic, as often agents involved play a huge

number of ‘games’ to evolve a strategy without really implementing any individual evolution.

2.4 Networks

From the biological to the social, network descriptions have been used to unlock insights into

the systems they are describing.The tools used in the analysis of such networks have been

developed from graph theory (the mathematical field that deals with networks). Consider

the network G(V,E), where V is a set of nodes (verticies in graph theory, hence the V )

and E a set of unordered pairs of members of V here called links (edges in graph theory).

The cardinality of V is called the order of G and (following [63]) is denoted n, whilst the

cardinality of E is called the size of G, denoted here by m. A simple network is shown in

Figure 2.6. Whilst Figure 2.6 is a nice visual representation of a network, it is di�cult to



2.4. NETWORKS 15

analyse mathematically. Another representation is the adjacency matrix A. For example,

creating a matrix based on

Aij =

8
<

:
1 if there is a link between nodes i and j

0 otherwise;
(2.1)

means, the network shown in Figure 2.6 can also be represented in the following manner:

A =

0

BBBBBBBBB@

0 1 0 0 0 1

1 0 1 1 1 0

0 1 0 1 1 0

0 1 1 0 1 0

0 1 1 1 0 0

1 0 0 0 0 0

1

CCCCCCCCCA

(2.2)

The matrix retains all the information from the graph and submits easily to analysis. For

example just by looking at the matrix two things are apparent. Firstly, A is zero along the

diagonal; this means there are no edges from a node to itself. Secondly, A is symmetrical,

meaning the network is undirected (i.e., if there is a link between i and j, then there is a

link between j and i). In addition other network measures can be described in terms of A.

The degree of a node in a network is defined as the number of edges connected to it. Here

we denote the degree of node i by ki. The degree of an undirected network of order n can be

written in terms of A thus

ki =
nX

j=1

Aij . (2.3)

Since every link in an undirected network has two ends, if there are m links there must be

2m ends. This is also equal to the sum of the degrees of all the nodes meaning

2m =
nX

i=1

ki, (2.4)

which can be rewritten as

m =
1

2

nX

i=1

ki =
1

2

X
Aij . (2.5)

The mean degree c of a node in an undirected network is

c =
1

n

nX

i=1

ki, (2.6)
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which, when combined with equation (2.3), gives

c =
2m

n
. (2.7)

Applying this to the example network m = 8 and n = 6,

c =
2(8)

6
=

8

3
. (2.8)

The maximum possible connections available to a network (with n � 2) is 1
2n(n � 1). This

can be used to calculate the density

⇢ =
2m

n(n� 1)
=

c

n� 1
. (2.9)

The range of ⇢ is strictly 0  ⇢  1. Applying this to the example network (Figure 2.6)

gives a density of ⇢ = 0.2667. Another measure of networks is the distance between any two

nodes. The path is a collection of links mapping the route between the nodes. There can

be a number of paths between two nodes. For example Figure 2.7 shows two di↵erent paths

between node 0 and node 4. Calculating the number of paths of length r on a network can be

achieved using Aij . Since Aij = 1 for links between nodes i and j; it follows that the product

AikAkj is 1 if there is a path length of 2 from j to i via k. The total number N2
ij of paths

via any other node is

N2
ij =

nX

k=1

AikAkj =
⇥
A2

⇤
ij
, (2.10)

where [. . . ]ij denotes the ijth element of the matrix. This can be generalised to r,

N r
ij = [Ar]ij . (2.11)

The mean path length simple averages the path length in the network. More importantly

the shortest path length (also called the geodesic path) between nodes i and j is the smallest

value of r such that [Ar]ij > 0. The degree distribution (pk) of the example network can be

displayed as a histogram (Figure 2.8). The fraction of n nodes that have degree k can be

calculated giving:

p0 = 0, p1 =
1

6
, p2 =

1

6
, p3 =

3

6
, p4 =

1

6
, (2.12)

with pk = 0 for k > 4. The value pk can also be considered a probability of a randomly

selected node having degree k; thus
Pn

k=0 pk = 1. The total number of nodes with a given k

can be calculated from npk or can be read from the histogram.
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Figure 2.7: A comparison of path lengths between the same two nodes: 2 (left) and 4 (right)

Figure 2.8: The degree distribution of the example network.
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Figure 2.9: The network with p0 = 1 means it now has two components

Although in the example network p0 = 0, by removing the link between nodes 0 and 5 it

is possible to have a network where p0 6= 0 (Figure 2.9). The resulting network now has two

components, with

p0 =
1

6
, p1 =

1

6
, p2 = 0, p3 =

3

6
, p4 =

1

6
, (2.13)

with pk = 0 for k > 4.

Networks are adept at modelling social systems, and are one of the few techniques al-

ready well used in the Social sciences. Social networks are considered self-organising and

emergent [62], in other words complex. However they are di�cult to reproduce in simula-

tions, with most social network simulations using some variation of a random network. Recent

work by Hamill and Gilbert [45] develops a social circle network model. The authours argue,

that standard network models do not fit well with sociological observations of social circles.

Key aspects of large social networks are the di↵ering sizes of personal networks, limits to

those sizes, high clustering, positive assortativity of degree of connectivity, and low density.

Drawing on the metaphor of social circles, they define a personal network with five di↵erent

strength of connections, from strongest to weakest. The stronger connections are fewer in

number (under the, not unreasonable, assumption stronger ties take more ‘time and e↵ort’

to maintain). By introducing a ‘social reach’, the agents in the network are limited in the

number of social ties they can achieve. The networks then evolve connections based on these

parameters. To do this 1000 agents are simulated on an unbounded grid of just under 100,000

cells. The agents then move around the grid making (and breaking) connections. Results are

the average of 30 runs. The networks that are produced have characteristics of ‘real-world’

social networks. They vary in size, depending on the ‘social reach’ of individuals, which also
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limits the size of the network. Overlapping social reaches cause high clustering, whilst the

movement of agents makes the networks dynamic. The social reach parameter seems to be

the key to the development of the networks. Whilst this is something that could lead to criti-

cism of simplicity, the authours note that their method simply “create[s] agent-based models

that represent empirical social networks with greater veracity than the standard network

models” [45, p91]. Certainly this is a useful method for developing ‘non-standard’ networks,

and further applications are likely. It is interesting to note, the method the authours use to

develop the network is Agent Based Modelling, which is one of the most used methods in

Social simulation.

2.5 Agent Based Modelling

Agent (or Individual) Based Modelling (ABM) is the use of a multi-agent environment archi-

tecture to model a system. The architecture is able to overcome some of the limitations of

previous techniques, by directly modelling individuals, and their interactions, in an environ-

ment. The agents are an abstract representation of the individual members of the population,

and the environment they interact with is an abstraction of their real world environment.

Therefore, modelling is done at a local scale, with the agent and its interactions with the

environment being modelled, rather than attempting to model the population as a whole. It

is defined by Wooldrige and Jennings [106] as

“An agent is a computer system that is situated in an environment and that is

capable of autonomous action in that environment to achieve its set objectives.”

According to Gálan et al. [39], with agent-based modelling, the entities of the system are

represented explicitly and individually (but not necessarily accurately) in the model. The

limits of the entities in the target system, correspond to the limits of the agents in the model;

and the interactions between entities, correspond to the interactions of the agents in the

model. This abstract impression of an agent, means that it lends itself well to modelling a

number of di↵erent phenomena. Since the modelling of a system can now be done at a local

scale, it is believed that valid results will emerge from these individual processes.

There are those that argue agent models are non-mathematical and non-deductive, claim-

ing they lack the mathematical rigour of equation based analysis. Epstein [29] counters these

claims, arguing that every agent is a computer program and, as such, is computable by a

Turing machine (Turing computable). Since for every Turing machine there is a unique corre-

sponding, and equivalent, partial recursive function [47], in principle, one can cast any agent

based computational model as an explicit set of recursive functions. Although, in practice,
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these might be extremely complex and di�cult to interpret they surely exist. This is a pow-

erful counter to the arguments that agent-based models are non-mathematical. As Epstein

points out, the non-deductiveness follows since recursive functions are computed determin-

istically from initial values. Given the nth (including the initial) state the nth+1st state is

computable, in a strictly mechanical and deterministic way, by recursion.

According to Epstein [31], Agent Based Modelling was first used by Schelling in his ‘Dy-

namical Models of Segregation’ [74] (although Schelling used di↵erent terminology). During

the first half of the 1990s researchers at the Santa Fe Institute, led by Joshua Epstein and

Robert Axtell, used agent architecture techniques and developed Sugarscape, an agent based

simulation, using a generative social science model [31]. The Santa Fe Institute has long

argued that ABMs are an excellent tool for modelling social phenomena, such as segrega-

tion. This is in no small part due to their suitability for modelling complex agents. ABMs

have been able to show how simple, and predictable, local interactions can generate familiar

global patterns, such as the di↵usion of information [31], emergence of norms [71], wealth

aggregation [31], segregation of populations [74] or participation in collective action [57]. Ep-

stein [29] talks of a generative social science and growing artificial societies from the bottom

up claiming “if you didn’t grow it, you didn’t explain its emergence.” Macy [57] gives strong

support to the generative views of Epstein, believing that ABMs o↵er theoretical leverage,

where the global patterns of interest can be seen to be more than, the aggregation of indi-

vidual attributes. Macy argues that emergent behaviours cannot be understood without a

bottom up dynamical model of the micro processes from individuals [57]. The simulation of

these individuals combines to give, what Sawyer calls, artificial societies, which he defines as

“a set of autonomous agents operating in parallel and communicating with each other” [73,

p2]. Sawyer argues these artificial societies will lead to an understanding of the mechanics

of micro-to-macro emergence, macro-to-micro causation and “the dialectic between social

emergence and social causation” [73, p8]. Macy hopes that ABMs could o↵er an alternative

approach for sociologists (and all social scientists), who have often modelled social processes

as interactions among variables [57]. Certainly ABMs seem to o↵er an excellent way to

model social systems. Schelling [74] used an ABM consisting of coins and a checkers board

to explore the e↵ects of individual preference on global segregation (the experiment is ex-

plored in full in section 3). His conclusions generated huge interest and some controversy

with sociologists such as Massey [58] and Yinger [107] criticising its simplistic nature. Even

so, Schelling’s models of segregation have become well known within the social simulation

community, precisely because they provide alternative modes of exploring issues, more com-

monly investigated using traditional statistical analysis. The apparent ease of modelling using

ABMs, most notably by Epstein [29] and the Santa Fe Institute, but also by Gilbert [43],
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Sawyer [73] and others, has led to an explosion of ABMs modelling social interaction. This

is well documented by both Railsback [69] and Nikolai and Madey [64] who identify over 50

current ABM platforms. However for all these platforms there is no universal approach to

this technique. Epstein believes a framework will emerge over time, as these many approaches

merge and are refined [30].

In the mean time, Laurie and Jaggie [53] use ABM techniques to explore some of the

e↵ects of changing the values of parameters selected by Schelling. They suggest most work

on Schelling’s models has focused on the preferences (p) of agents (defined in Section ?? as

⌧). Although Laurie and Jaggie use p, their main focus is on the neighbourhood of agents,

up to a distance of R, calling this parameter an agent’s vision. The environment consists

of an N ⇥ N square array, with periodic boundary conditions. This creates a society on

an edgeless torus rather than a square grid which, they argue, suppresses possible boundary

e↵ects. They then propose two more parameters: c for concentration of the minority race

and v, for the concentration of vacant residences. The system is initialised with N = 50,

whilst v is randomly initialised so that (1 � v)N2 sites are occupied by c(1 � v)N2 Blacks,

and (1 � c)(1 � v)N2 Whites. Since they are only interested in the e↵ect of R, they set

c = 0.5, so that the number of Blacks is equal to the number of Whites. At each iteration an

agent is chosen at random for ‘evaluation’. The agent checks its R-neighbourhood and makes

a movement decision based on the ratio of the neighbourhood. If the ratio of an agent’s

own type is greater or equal to p the agent is ‘satisfied’ and will not move. However if the

ratio is lower the agent makes a series of attempts to move. Selecting a random vacant site

the agent calculates the ratio and, if its satisfaction is increased, moves. If the satisfaction

is not increased (i.e is the same or lower) the agent randomly selects a di↵erent vacant site

repeating the process a maximum of vN2 times before admitting defeat and staying put. To

measure the degree of segregation within the system, Laurie and Jaggie define an “ensemble

averaged, von Neumann segregation coe�cient at equilibrium” [53, p2693]. This value S is

defined as;

S =
1

(1� v)N2

2

4
X

j,white

(fj � fw)

(1� fw)
+

X

k,black

(fk � fb)

(1� fb)

3

5

where fw(c) and fb(c) represents the expected fraction of white or black neighbours respec-

tively from a random initial configuration. Their results show that for p < 0.4 the population

does indeed reach a stable equilibrium with S < 0.5 (i.e. more integrated than segregated).

Going further their model shows that when p = 0.3 and R = 5, S = 0.03±0.03 suggesting the

possibility of a completely integrated stable state. Laurie and Jaggie argue that there is “a
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large region of the parameter space (p,R), particularly for moderate values of R(2  R  7),

where integrated communities remain stable for arbitrarily long times.” They claim that,

once R is expanded from the myopic level of Schelling to modest levels 3  R  5, non-

segregated stable communities form. This happens even when preference p is non-zero and

“quite substantive” [53, p2691].

Whilst the results are interesting, their hope that it could o↵er insights to policy makers

is di�cult to support. Firstly their environment has no real relation to reality. With no ge-

ographic or economic factors, the model is just too abstract to be able to claim any relation

to reality. Laurie and Jaggie’s suggestion seems not to add anything to defend the criticisms

levelled at Schelling’s models about their simplistic nature (discussed in section 3). Indeed

one would argue their suggestion of policy implementation, coming without consultation of

any sociological experts (when both are physicists), compounds the problems agent based

modellers have when trying to model social systems, that of credibility amongst the socio-

logical community. Additionally, their use of two equal populations completely removes any

ideas of minorities which Schelling was attempting to address. However they highlight an

important factor in the value of p. They report that in a number of studies (although they

only cite Epstein and Axtell [31]) p = 0.5 is considered a ‘colour-blind’ value. However, they

rightly point out that far from being colour-blind an agent with p = 0.5 will never be ‘happy’

in a minority and will actively seek to leave any neighbourhood within which they are not at

least equal.

The success of ABMs in modelling social interactions, has led to the field of Computational

Social Science. This fast growing field can be traced back to Epstein’s book ‘Generative social

science’ [29]. The field combines social models and computer simulation, mainly through

ABMs, and attempts to give social scientists access to the power of simulation. Although

other techniques are applicable (for example network models), ABMs are by far the most

common. This is could easily be attributed to the abstract nature of ABMs, most models

can be described as ABMs. This, almost overwhelming, use of a single modelling technique,

limits the ability of the field to o↵er di↵erent perspectives of the same problem. Finally, there

is a noticeable lack of discussion of the environment. Although it has been fifteen years since

Beer [14] stated, [emphasis added]:

“we must learn to think of an agent as containing only a latent potential to

engage in appropriate patterns of interaction. It is only when coupled with a

suitable environment that this potential is actually realized through the agent’s

behavior in that environment.”
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Since then there has been relatively little progress in incorporating spatial factors in ABMs.

The focus of ABMs on agents is understandable and, once again, Beer is correct in asserting

that “an agent’s behavior properly resides only in the dynamics of the coupled system and not

in the individual dynamics of either” [14]. Thus, for the power of ABMs to be truly exploited

there is a need for improvement in the models of the environment. The rigid conformity

of grid based systems is slowly being reduced, although ideas of irregular grids still cling

to abstract ideas of space. Surprisingly, a way forward has been suggested by the video

game industry. Their consumers demand highly realistic and dynamic environments that are

coupled with intelligent agents. This demand has led to the implementation of Geographical

Information Systems into ABMs and o↵ers the possibility of building models with much more

complex spatial environments.

2.6 Geographic Information Systems

Information systems are a useful tool to manage knowledge by making it easy to organize,

store, access, manipulate and synthesise, as well as applying the knowledge to a problem.

Geographic Information Systems (GISs) are a form of information system where the knowl-

edge is geographical. These GISs are tools that are often developed in a task specific way,

so that two GISs are often incompatible. GISs were initially developed in Canada in the

1960s by Roger Tomlinson and colleagues for the Canadian Land Registry. These systems

were able to hold information about a spatial location and their inital success meant that

within 5 years a GIS lab has opened in Harvard [56]. Although initially developed by town

planners, recent developments have attempted to combine GISs with Agent Based Models.

O’Sullivan [65] believes GISs form an important part of modelling complex systems and ar-

gues they are a fundamental tool for modelling spatially explicit agent based models of social

systems. A GIS is able to define multiple scales, from streets to neighbourhoods to areas

to cities. Rather than having a static grid environment, GIS can o↵er the opportunity to

explore dynamical evolving environments. Using a real world example of Ya↵o (an area in

Tel Aviv, Israel), Benenson et al. [15] implement a GIS environment (Figure 2.10) into an

ABM of Schelling’s segregation model. The selection of the area is based on two main factors.

Firstly, there is 50 years of empirical data about the makeup of the population; secondly, the

street network has remained relatively unchanged over the timescale with residential con-

struction limited. Within the environment a population of 30,000 agents representing Arabs

and Jews is randomly distributed with a ratio of 1:2. This ratio is selected on the basis of

census information from 1955. Residencies are split into two types, oriental and modern block

buildings. Agents’ preferences were asymmetrical in relation to each other, Jews preferred to
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Why Is the Yaffo Model so Insensitive to Parameters?

The reason for the Yaffo model’s robustness was the ‘‘try the better’’
(TRB) algorithm of residential choice we formulated. An agent who uses
TRB orders opportunities by their utilities prior to making a choice

Figure 1
Yaffo Model: (a) Definition of the Neighborhood Relationships

and (b) Map of Buildings’ Architectural Styles

Source: Benenson et al. (2002).

Table 1
Correspondence Between the Yaffo Model and Reality, 1995

Measure of Correspondence Yaffo Model

Overall percentage of Arab agents in the area 32.2 34.8

Moran index I for Arab agents 0.65 0.66

Percentage of Jewish agents in houses of oriental style 28.1 15.0

Percentage of Arab agents in houses of block style 18.5 8.0

Benenson et al. / Spatially Explicit Modeling 473

 at University of York on March 22, 2010 http://smr.sagepub.comDownloaded from 

Figure 2.10: A GIS representation of Ya↵o from [16]
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Why Is the Yaffo Model so Insensitive to Parameters?

The reason for the Yaffo model’s robustness was the ‘‘try the better’’
(TRB) algorithm of residential choice we formulated. An agent who uses
TRB orders opportunities by their utilities prior to making a choice

Figure 1
Yaffo Model: (a) Definition of the Neighborhood Relationships

and (b) Map of Buildings’ Architectural Styles

Source: Benenson et al. (2002).

Table 1
Correspondence Between the Yaffo Model and Reality, 1995

Measure of Correspondence Yaffo Model

Overall percentage of Arab agents in the area 32.2 34.8

Moran index I for Arab agents 0.65 0.66

Percentage of Jewish agents in houses of oriental style 28.1 15.0

Percentage of Arab agents in houses of block style 18.5 8.0

Benenson et al. / Spatially Explicit Modeling 473

 at University of York on March 22, 2010 http://smr.sagepub.comDownloaded from 

Figure 2.11: An example neighbourhood from [16]

live with Jews, whilst Arabs have no preference. A neighbourhood is defined as a group of

neighbouring houses whose Voronoi polygons share an edge (Figure 2.11).

If an agent is ‘unsatisfied’ they are given K opportunities to move. Agents assess K

options and places them into an order based on a utility ui with 0  ui  1 for i = 1, 2, . . . ,K

before making a choice. If an option is available and the utility exceeds an agent’s current

utility, the agent moves based on a probability pi = p(ui) (i.e. p(0) = 0, p(1) = 1). If an

agent does not move they check the next possibility until either they move or reach the end

of the list. Using this simple model, Benenson et al. are able to produce results that are

comparable to empirical results [16]. From this, they believe that it is possible to, not only

model urban social change, but also to model it accurately. However, there are a number of

issues with the model that they present. Most importantly is the classification of two types of

housing and their respective desirability for the two populations. Although they cite empirical

research that suggests this preference is a real world phenomenon, the addition of this to the

agents’ utility model certainly drives the populations into the dwellings that have been pre-

determined. Additionally, the idea that a house situated across a road from another house is

not considered part of an individual’s neighbourhood is unrealistic. It would be more realistic

to have a di↵used model of preference, so that the houses could be considered by agents, but

are less important than connected neighbours. Furthermore there is little explanation about

the passage of time. The number of moves allowed per year is not mentioned in the paper.

Certainly there is no indication how this timescale is broken down, apart from suggesting a

total timeframe of 50 years. Still the experiment is a novel application of a GIS to an ABM,
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and should be an important tool in future research.

More recently, ideas of Participatory GISs have been advocated. Participatory GIS looks

to utilise the knowledge of local communities to enhance the applications of GISs. It is hoped

that by combining GISs and Participatory Learning and Action PGISs will increase the use-

fulness of GISs [26]. By inviting this input it is hoped the previously static nature of GISs can

become more dynamic and responsive to the needs of users. The practice integrates several

tools and methods whilst often relying on the combination of expert skills with socially dif-

ferentiated local knowledge [26]. It promotes interactive participation of stakeholders in gen-

erating and managing spatial information and it uses information about specific landscapes

to facilitate broadly-based decision making processes that support e↵ective communication

and community advocacy [26]. However the approach is limited to technologically confident

participants, meaning some important stakeholders could be missed.

2.7 Summary

One of the problems of dealing with complex systems is that complexity is not boolean.

Rather, complexity can be considered a scale from simple complex systems, such as reacting

particles, to highly complex systems, such as social systems. Additionally the complexity

can be in both the environment and the components within the environment. The problem

is probably best described by Herb Simon’s ‘situated ant’ [83]. An ant following a random

walk on a beach produces a complex path. An observer watching might be amazed at this

complexity created by the ant. However, Simon suggests, the complexity of the environment

is creating the complex path rather than the ant. The analogy suggests complexity of the

environment is as important as the complexity of the individual.

From the previous sections, it would appear that complex systems can be considered (at

least) an individual situated within an interacting environment. By creating a matrix based

on the complexities of both the environment and the individuals one should be able to classify

the system being studied accordingly. Taking the environment as the horizontal axis, it is

clear there are a number of ways to represent the environment. Aspatial environments are

probably the simplest since their is no spatial representation, the environment is considered

just the mixture of individuals. Network space is a graphical representation of connections

(often called vertices) between individuals (nodes). Distance is considered in terms of the

number of nodes between two individual nodes, rather than Euclidean distance along the

links. Structured space has a notion of distance between nodes but it is not a metric as

it does not satisfy the triangle inequality (i.e., for the distance between two nodes, A and

C, is not necessarily less than or equal to the distance between A and B plus B and C).
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Figure 2.12: The Social Simulation Matrix. D.E = Di↵erential Equation. As space and agency
complexity increase, di↵erent modelling techniques are needed to capture the increased complexity.
The matrix is an attempt to map techniques in modelling social systems to the complexity of the object
being modelled. The matrix highlights the breath of modelling covered by Agent Based Models.
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Moving away from these abstract notions we come to simple homogeneous space. Here

the environment is a uniform collection of Euclidian space incorporating ideas of distance

and location. Introducing variation in the space takes us to heterogeneous space. Now

di↵erent spatial locations can have di↵erent attributes. Increasing the heterogeneity of the

environment eventually brings us to geographical space which can be considered an almost

one to one mapping with a ‘real-world’ environment.

Individuals within the environments can be scaled according to agency. By this we mean

an ability to act independently and make choices based on available information. The sim-

plest form of agency is a population level, statelessness form. Individual components are

indistinguishable and, therefore, treated as a continuum rather than as single components.

Identifying individual components allows us to introduce ideas of agency properly, the sim-

plest form of which is passive components. As the name suggests these components are

unable to respond to any changes in their environment and continue with their set goal

irrespective of external influence. More complex reactive components are able to react to

environmental changes to achieve goals. This reaction is based on a hierarchical set of be-

havioural rules. Hybrid components introduce a subsystem responsible for abstract planning

and decision making. Adaptive components are similar to hybrids but have an important

addition, namely they are able to learn from their environment. Whilst reactive and hybrid

components have a knowledge about their environment, adaptive components have additional

knowledge about their own structure and evolutionary capacity. This knowledge and learning

ability allows components to adapt their behaviours to reach their goal. Finally cognitive

components are able to create a symbolic internalised model of their environment. From this

model they are able to reason and plan strategies to achieve their goal.

By plotting these two aspects of a system we can produce the social simulation matrix in

Figure 2.12. The matrix can be used to guide the process of selecting a modelling tool for the

task at hand. As complex systems are multi-faceted, the toolset needed for analysis can be

compared to the Swiss army knife. The very nature of a complex system requires many tools

to process the huge amount of information. With so many tools available to model social

systems it is useful to map the available techniques onto the social simulation matrix. The

development of these (and other) techniques using computational modelling and simulation,

has led to the birth of Computational Social Science [29]. One of the most well used models

in the field is Schelling’s ‘Dynamic Models of Segregation’, which is now introduced in detail.
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Schelling’s models of Segregation

Schelling’s models of segregation have been the focus of a number of studies using a variety of

di↵erent techniques. In his ground breaking paper [74], Schelling used ABMs to explore ideas

of segregation in heterogeneous populations. The models he developed used simplified ideas

of social interaction. As has been mentioned, this has been described as the first ABM [30].

It has also been called the first simulation of an artificial society [73]. Although described

as ‘elegant’ [28], Schelling’s models are at times confused (for example, Axelrod talks of

Schelling’s Bounded Neighbourhood Model but describes the Spatial Proximity Model [10])

and closer analysis reveals intricacies (such as the movement of the agents) that have been

overlooked. Schelling actually describes two distinct models, a Spatial Proximity Model [74,

p149] and a Bounded Neighbourhood Model [74, p167]. Finally he combines aspects of the

two into a Tipping Model [74, p181]. His models are now described in detail.

3.1 Spatial Proximity Model

The Spatial Proximity Model explores the aggregate/global e↵ects of two groups of characters

making decisions based on a local neighbourhood N for each character. Schelling created a

one dimensional environment with two types of characters, equal in number and randomly

arranged along the environment. The environment was Schelling’s typewriter which defined

the limits of 70 characters per line. Each character has a location, a thresholded ‘happiness’

about the makeup of their own neighbourhood N and a movement rule. An example of the

system can be seen in Figure 3.1. For characters situated a distance of at least n from the

boundary, Schelling chooses the neighbourhood N to contain 2n characters, n on the left and

n on the right. For characters closer to the boundary, say m < n units, he considers a reduced

29
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Figure 3.1: An example initial configuration of Schelling’s one dimensional Spatial Proximity
Model [74]. Marks above characters indicate ‘unhappiness’.

neighbourhood with m+ n characters. An iterative process described in algorithm 1 is then

implemented. For a general neighbourhood a rule is applied, such that, if within N , less than

n are of the same type as the character, it is deemed ‘unhappy’. For boundary conditions the

rule is modified, such that, if less than m+n
2 are the same type a character is ‘unhappy’. To

alleviate their ‘unhappiness’ a movement rule is defined, such that, an ‘unhappy’ character

can move to the nearest position that would satisfy its ‘happiness’. If a ‘happy’ position is

equidistant, characters move to the right.

Algorithm 1 Spatial Proximity Model

while System not at equilibrium do
for each character do

calculate ‘happiness’
end for
for i = 1 to 70 do

if char i ‘unhappy’ then
movement rule

end if
end for

end while

Algorithm 2 Calculate ‘happiness’

count agents in N
if number of own type < n then
‘unhappy’

else
’happy’

end if

Characters are considered in turn from left to right. If a movement changes a character

from ‘happy’ to ‘unhappy’, the character must wait until the next iteration to move. If a

character becomes ‘happy’ they no longer move. After each iteration, if any characters are

‘unhappy’, the process repeats until all agents are ‘happy’ (equilibrium) and the while loop is

terminated. To give an illustrative example, if we set n = 2 the neighbourhood of a ‘+’ would
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Algorithm 3 Movement rule

if ‘unhappy’ then
move to nearest ‘happy’ position

end if

be ‘oo+oo’. Applying the rules to an initial state and highlighting (a lá Schelling) ‘unhappy’

characters produces:

oo

´

+oó

´

++ó+

´

+óó

´

+

´

+ó

Taking each agent in turn from left to right, the first agent move (highlighted + moves 2

places right) would produce:

oooo+++ó++óó

´

+

´

+ó

Since a number of ‘unhappy’ characters have been made ‘happy’ by the move they chose not

to move and the next character move gives:

oooo+++++ooo

´

+

´

+ó

oooo++++++ooo

´

+o

and finally:

oooo+++++++oooo

which is an equilibrium (i.e. all characters are at least satisfied with their neighbours).

If a previously ‘happy’ character is made ‘unhappy’ by another’s move, this new ‘unhappy’

character must wait until all the other characters have moved before they can themselves

move. So for example:

+

´

+oooo++++oooo

´

++

the movement of the first ´+ leads to:
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+oooo+++++oooo

´

++

which creates a newly ‘unhappy’ character (the leftmost +). This character must wait for

the iteration to complete before itself moving.

Schelling concludes that, with all things being equal, di↵erent random sequences of 70

characters with n = 4 “... yield[s] from about five groupings with an average of 14 members

to about seven or eight groupings with an average of 9 or 10, six being the modal number of

groups and 12 the modal size.”

To highlight this finding two di↵erent initial configurations with the same ruleset are ex-

plored below. If a character is equidistant from a ‘happy’ position, it will move to the right.

The first configuration achieves equilibrium after one iteration:

o+++++oo++ooo++oo+++oooo++++ooo+++++oooooo+++oooo++++oooooo++o++ooo+++

+++++++oooooooooooo++++++++++++++ooooooooooooo+++++++oooooooooo+++++++

as does the second:

++o++o++oo+++ooo++++ooo++oooo+++ooooo++++oo++++oo+oo+ooo++++ooo++ooo+o

+++++++++ooooooo++++++oooooooooooo++++++++++++oooooooooo++++++++oooooo

A third configuration has two runs to explore the e↵ect of the movement rule. The first

is from Schelling’s movement rule:

oo+++ooo+++oo+++oo+++oooo+++oooo+++ooo++ooo+++ooo+o+o+++ooo++++oooo+++

+ooooooo+++++++++++ooooooooo+++o+++o++oooooooooo++++++++++++++ooooooo+

ooooooo++++++++++++oooooooooo++++++++ooooooooooo+++++++++++++++ooooooo

and the second from modifying a movement rule to consider the characters in a random order

(rather than the sequential left to right order):

oo+++ooo+++oo+++oo+++oooo+++oooo+++ooo++ooo+++ooo+o+o+++ooo++++oooo+++

ooooooo++++++++++++++ooooooooooo++++++oooooooooo++++++++++++++ooooooo+

ooooooo++++++++++++++ooooooooooo++++++oooooooooo+++++++++++++++ooooooo

As these results show, the movement rule of left to right or random does not produce
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qualitatively di↵erent results; indeed the final states are identical.

Schelling’s model produces a higher degree of segregation than he expected. He argues

that because smaller groupings of regular alternation of characters (as well as alternating

pairs) would also be equilibria their non-appearance was “striking” [74]. For example, the

infinite configurations:

. . . o+o+o+o+o+. . .

. . . oo++oo++oo++. . .

are equilibria under Schelling’s rules. However, this only holds for even n. If the neighbour-

hood for n is odd all characters would be ‘unhappy’. This complete switch from only a minor

parameter change suggests the system is actually unstable. Additionally, the introduction of

boundary conditions would always lead to ‘unhappy’ characters at the boundary. The insta-

bility of these systems is reduced as the size of the clusters increases. Intuitively, one can

see that the characters are acting with “complete knowledge”, insofar as, when a character

moves, it is always towards a neighbourhood with a higher percentage of its own type than

the one it currently occupies. The aggregate result of these conditions means that any cluster

of the same characters of size greater than 2n + 1 cannot be split and thus will only grow

in size. These emergent phenomena combine to produce the “striking” results of Schelling

but can actually be deduced. These larger groupings are substantially more stable than the

alternating and pairwise equilibria. Certainly, with the chosen ‘happiness’ thresholded (i.e.

50%), alternating characters would only be ‘happy’ with a certain neighbourhood size. Ad-

ditionally there are situations where the system will never reach an equilibrium. If we take

n = 2 the following system:

ooo++

will cycle between two configurations as the two ‘+’ characters continually swap positions.

From this we can define an axiom of the system; to reach an equilibrium there must be at

least n + 1 characters of the same type. Schelling himself didn’t have the tools available to

study this phenomena and subsequent work has tended to ignore it, instead concentrating

on the two dimensional models. However, as we have been able to demonstrate with these

simple examples, the system will tend to a highly segregated configuration.

From his Spatial Proximity Model, Schelling identified the following five parameters avail-

able for variation:
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• Neighbourhood size;

• Ratio of populations;

• Rules governing movement;

• Original configuration;

• Demanded percentage of own type;

Neighbourhood size is one of the obvious parameters to explore. Schelling reduces n by

1 (from 4 to 3) and reports that this produces an average of 7 to 8 characters per cluster.

Schelling is unclear as to whether this average is the mean, median or mode, but we will

assume this is the modal value, consistent with his previous workings. Although not an

overly surprising result, Schelling did discover an interesting arrangement of the smallest

possible cluster sizes, that is . . . oo+o++o+oo+o++. . . which is only stable if the ends repeat

indefinitely (i.e., forms a recurring symmetric pattern). Smaller cluster sizes of alternating

characters are completely unstable owing to the reasons discussed earlier.

Schelling investigates whether the ratio of the populations has any e↵ects, and, in an

attempt at fairness, randomly removes characters from one of the populations. With this

method, 17 of 35 ‘o’s are removed. As the inequality between the populations increases,

so does the degree of segregation. Although Schelling fails to measure this property with

mathematical rigour, it becomes clear that as the number of a population falls, so does the

probability of the existence of a stable cluster the increasing the degree of segregation of the

population. It is obvious that if one population falls below n+ 1 the system will never reach

equilibrium. Similarly until the population reaches 2(n+1) the maximum number of clusters

will be 1.

Schelling theorizes about restricted movement, in which a character who cannot move to

somewhere with half their own type, moves to somewhere with 3
8 instead. He suggests that

the neighbourhoods move to equilibrium at a quicker rate (although he is unclear how much

quicker) which seems reasonable.

3.1.1 Extended Spatial Proximity Model

Schelling explores what one might consider the most influential of the parameters, namely

a character’s demand for their own type within their neighbourhood. Although he studied

these e↵ects in detail, Schelling felt the one dimensional environment was too restrictive

and, instead, considered a two dimensional grid. The setup introduced ideas of empty space

to “make search and satisfaction possible” [76]. Although the environment has changed,
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Figure 3.2: An example initial configuration of Schelling’s two dimensional Spatial Proximity
Model [74].

Figure 3.3: Final configuration after left to right, top to bottom movement rule [74].

Schelling attempts consistency by keeping the ruleset the same. Thus, 138 characters are

equally split (39 # and 39 o) and randomly distributed across the environment. The remain-

ing spaces are left blank to allow movement of characters. The definition of neighbourhood

is changed to a Moore neighbourhood (i.e. the eight cells surrounding the central cell in a

3x3 group). Characters on a boundary edge only count the cells within the boundary as

their neighbourhood. ‘Unhappy’ characters move to the closest position that satisfies their

desired neighbourhood makeup (i.e. 50% of their own type). If two positions are equidistant

one is chosen at random.The choice of character to move is chosen from left to right, top

to bottom. However, Schelling admits that “no exact rule for order of movement has been

strictly adhered to” [74]. To highlight the e↵ect of the movement rule, Schelling o↵ers the

initial system set up (Figure 3.2), which produces the final configuration (Figure 3.3).

Schelling argues this is “too striking to need comment” [74]. But by doing so he misses

an important point: the segregation is still driven by the same rules as the one dimensional
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Figure 3.4: Final configuration after ‘random’ movement rule [74, p157].

model. Thus characters are still unable to start their own group and instead must just join a

larger group of their own type. By changing the movement rule so that ‘unhappy’ characters

are selected and moved in a random order, Schelling produced a di↵erent final configuration

(Figure 3.4). At first glance Figure 3.4 does not seem segregated. Certainly Schelling has

to highlight the boundaries to emphasise his point. However, by using a neighbour count on

the initial and final configurations Schelling is able to argue the system is segregated. His

analysis suggests in the initial configuration the average of like neighbours was 53% for zeros,

and 46% hashes. The analysis of the final configuration (Figure 3.4) showed both average

values had jumped over 30%. Zeros were now in neighbourhoods that were 83% their own

type, whist hashes were 80%. His analysis of Figure 3.3 showed the value was 90% for both

with 66% having no neighbours of opposite colour at all [74]. So, Schelling argues, although

the particular outcome will be highly dependent on the movement order the character of the

outcome (i.e. the degree of segregation) will not. This result agrees with the findings from the

one dimensional model experiments earlier. As in the one dimensional environment, the two

dimensional system tends towards a more segregated setup as this is more stable. Although

it is possible he missed some of the nuances garnered from the one dimensional model, the

analysis of the two dimensional produced some quite unexpected results. By changing the

demand of one population to seek minority neighbourhoods, Schelling expected the degree of

segregation to reduce as a population became more tolerant. However he found it made no

significant di↵erence to the segregation [74]. If one population tolerance remains the same,

their level of segregation will remain the same. Since there are only two populations overall

the average degree of segregation should not change. The only change will be in the stability

of groups of the more tolerant population, which will be higher.

An interesting point Schelling found was that if both populations sought integration, and

one was a minority, the minority population became ‘shared out’ amongst the majority [74].
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Figure 3.5: Schelling’s Tolerance Schedule for the Bounded Neighbourhood Model setup [74]. R is the
ratio that can be tolerated.

Thus the segregation of the populations remained. Schelling admits that the small sample

of his analysis means there is little scope for generalisation. But, he argues, “comparisons

among them . . . such as the e↵ect of reducing or enlarging a minority, may be capable of some

extension to that world” [74]. It is this proclamation of real world relevance (and others like

it) that caused the harshest criticism of his model, the lack of socio-economic elements (see

Yinger [107] and Massey [58]).

3.2 Bounded Neighbourhood Model

Having explored the e↵ects of local preference, Schelling turns his attention to global pref-

erences with a Bounded Neighbourhood Model. Whilst there have been a number of papers

discussing Schelling’s Spatial Proximity Model (commonly referred to as Schelling’s segrega-

tion model) there is less work on his Bounded Neighbourhood Model. The confusion seems to

be over the spatial aspects of the model. In the Bounded Neighbourhood Model, characters

consider the proportions within the system (aspatial, Figure 2.12) rather than proportions

within a local neighbourhood of the system (homogeneous, Figure 2.12). Although the jump

from an individual level Spatial Proximity Model [74, p149] to a system level Bounded Neigh-

bourhood Model [74, p167] is well defined in the paper, there are still confusions about the

conventions of the two models. For example Axelrod discusses “Schelling’s tipping model”

[10, p16] when he actually means the segregation model. In the Bounded Neighbourhood

Model, Schelling looks at global population flows into and out of a bounded neighbourhood.

Characters are defined as black (b 2 B) and white (w 2 W ) suggesting a more ‘real world’

application. Now, rather than identical individual tolerance, the tolerance of each individual
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is defined by a straight line cumulative distribution schedule plotted against R, the ratio that

a character is willing to accept in the neighbourhood, with a maximum of R = 2 (i.e., a ratio

of 2:1) (Figure 3.5).

Thus, according to Schelling,

“for each number of whites along the horizontal axis the number of blacks whose

presence they will tolerate is equal to their own number times the corresponding

ratio [on Figure 3.5].”

The schedule is applied at a population level. That is, for a population of 100W ; 25W can

tolerate 37.5B (25⇥ 1.5), 50W can tolerate 50B, 75W can tolerate 37.5B (75⇥ 0.5) and the

most tolerant W is ‘happy’ with two Bs for each W . So long as the system configuration

lies below the curve, the population is ‘happy’. If the system lies above the line (i.e. W =

100, R = 1), there will be ‘unhappy’ members of the population. The tolerance schedule is

applied to both populations B and W irrespective of whether they are inside or outside of

the bounded neighbourhood. Thus, those outside the system will enter based on the current

make up of the system population.
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Algorithm 4 Bounded Neighbourhood Model Initialisation

Create population of m chars of type (b,w)
add n < m chars to neighbourhood
apply tolerance to chars
execute System Dynamics

Algorithm 5 System Dynamics

while System not at equilibrium do
for each char do

calculate neighbourhood ratio
calculate ‘happiness’

end for
if char ‘unhappy’ and char tolerance == min tolerance then

remove char
end if
for each char outside neighbourhood do

if # chars in neighbourhood < max # chars and char ‘happy’ with neighbourhood
configuration then
add char

end if
end for

end while

The system is initialised (algorithm 4) with n characters of both types up to a specified

maximum (100W and 50B in Figure 3.6) and set in motion (algorithm 5). The dynamics of

entry and exit of the populations are described in Schelling’s own words:

“if all whites present in the area are content, and some outside would be content

if they were inside, the former will stay and the latter will enter; and whites

will continue to enter as long as all those present are content and some outside

would be content if present. If not all whites present are content, some will leave;

they will leave in order of their discontent, so that those remaining are the most

tolerant; and when their number in relation to the number of blacks is such that

the whites remaining are all content, no more of them leave. A similar rule governs

entry and departure of blacks.”

This description is unclear as the word “some” can have di↵erent interpretations, which could

lead to di↵erent results. For example, there could be a di↵erence between characters leaving

en mass, rather than if they left one at a time. However, for most cases, the end result is

the same; the di↵erence lies in the number of iterations needed to reach equilibrium. Two
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Figure 3.6: Schelling’s Bounded Neighbourhood Model [74]. Schelling translates the straight line
tolerance schedule in Figure 3.5 into ‘population flows’ with distinct parabolas for the two populations.
The W population is represented on the x-axis and the B population on the y-axis.

approaches can be implemented by adding or subtracting a ‘for’ loop to contain the ‘remove

char’ instruction.

Using his figures Schelling plots a graph (Figure 3.6) with a W population measured

on the x axis and B on the y axis. Limiting the population of Bs to 50 and W s to 100

Schelling manually plots the flows of the populations onto the graph to produce Figure 3.6.

By applying his tolerance schedule to the initial populations of 100 W and 50 B the result

would be 50 ‘unhappy’ W s and 49 ‘unhappy’ Bs. This ‘unhappiness’ would cause a desire

to exit and is shown by the arrow furthest right on Figure 3.6. It is assumed that ‘some’ of

both populations leave at an equal rate (as indicated by the direction of the arrow), thus the

ratio remains unchanged. As the numbers of both populations fall, the system configuration

intersects the W parabola. This has two e↵ects; firstly, all the W s inside the system are

‘happy’, and, secondly, some W s outside the system would be ‘happy’ in the system and

begin to enter. The B population is still not ‘happy’, so some continue to leave, producing

the arrow pointing right and downwards (increasing whites, decreasing blacks). It seems clear

from this that the system is heading towards an equilibrium of 100 W s and 0 B. Similarly

an initial population of 50 Bs and 25 W produces the arrow pointing down and leftwards.

This flow intersects the B parabola first and drives the system towards the equilibrium of

50 Bs and 0 W . The intersection of the two parabolas is an area Schelling calls a statically

viable mixture of populations. It is characterised by increases in both populations up to

the meeting point of the two curves at around (20,30). At this point, the entry of the next

character becomes a defining characteristic of the system. Whichever type enters will drive
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Figure 3.7: Schelling’s Bounded Neighbourhood model setup with equal populations and 5:1 toler-
ance [74].

the system to their equilibrium. Thus, the point bears the hallmarks of an unstable fixed

point, whilst the parabolas can be considered null clines. However, the language of dynamical

systems was in its infancy at this time, and ‘unstable fixed point’ and ‘null clines’ were terms

Schelling may have been unaware of. The figures certainly have a similarity to the phase

portraits of non-linear systems. The arrows suggest the flow of the population and Schelling

talks of equilibrium points at (0,50) and (100,0).

Schelling now defines two parameters to explore, namely population size and the toler-

ance schedule. By levelling the population sizes and increasing the tolerance schedule to a

maximum of 5:1 he produces Figure 3.7. An analysis of the this configuration displays what

Schelling calls a “mixed equilibrium” [74] at (80,80). Schelling suggests the mixed equilibrium

is stable so long as “slightly over 40%” of both colours are present and the entry of one is

“not much more rapid” than the other. The arrows would suggest the point corresponds to

a stable fixed point.

In another experiment, Schelling explores the e↵ects of limiting the ratios by restricting

the entry of a population. So that, for example, if the ratio of white to black is exceeded

no more whites may enter (although blacks are free to leave). The result (with symmetric
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Figure 3.8: Schelling’s Bounded Neighbourhood model setup with limits on ratios [74]. When the
ratio limit is reached the dominant population can no longer enter, although both populations are free
to leave.

populations and tolerance) can be seen in Figure 3.8. The results show that, even though a

limit is placed on the dominant population, the final configuration is still complete segrega-

tion. This is mainly because, although no more of the dominant population can enter, the

ratio is still unacceptable for the minority. This causes them to leave even though no more

of the dominant population can enter.

From his experiments, it seems clear that the tolerance schedule has the largest e↵ect on

the final system configuration. Although his exploration of the schedule was limited, as he

stuck to variants of the straight line tolerance schedule, it o↵ers the opportunity to examine

other type of distributions.

3.3 Tipping Model

Schelling’s final model [74] can be considered a combination of his two earlier models. By

introducing a housing capacity into the environment and altering the rules governing entry of

populations, Schelling attempted to recreate the ‘tipping phenomenon’ which he claimed had

been observed in the real world by Mayer [60]. Mayer’s study focused on an all white neigh-

bourhood of 700 single family households. The sale of three houses “convinced everyone the

neighbourhood was destined to become mixed, within a year 40 households were black and
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Figure 3.9: Schelling’s Tipping Model diagram [74].The line is set at 45 degrees and thus intersects
both axes at the same value. The dotted line on the diagram indicates his statically stable mixture
whereby both populations are content with the makeup. The arrow again indicates the flow of the
population. The lack of an arrow on the dotted line indicates an equal flow in either direction (i.e
both populations are equally likely to enter)

within 3 years the number was above 50%” [60]. Schelling claimed the phenomenon is “oc-

casionally observed” [74] in groups such as church groups and is not only ethnically based,

pointing out the case of an ice-cream parlour that ‘tipped’ from a mothers and children

clientele to teenagers whose presence was seen as discouraging the mother/children group.

Schelling attempts to analyse the phenomenon by using case studies. He notes boundary

definitions are more than just that “the neighbourhood has a fixed and well defined [envi-

ronmental] boundary” [74]. He argues the definition should include individual boundaries,

asking “whether the new entrants are clearly recognizable.” [74]. Schelling assumes these new

entrants are clearly recognisable, which is reasonable enough for populations of whites and

blacks. He uses his Bounded Neighbourhood diagrams and implements a limit on numbers

in the form of a straight line representing the number of houses (Figure 3.9).

The line is set at 45 degrees and thus intersects both axes at the same value. The

dotted line on the diagram indicates his statically stable mixture whereby both populations

are content with the makeup. The arrow again indicates the flow of the population. The

lack of an arrow on the dotted line indicates an equal flow in either direction (i.e both

populations are equally likely to enter). Schelling was only able to produce this result by

assuming the minority entering the system had no preference towards the neighbourhood

makeup (shown by the B curve). This assumption is a two-fold driver towards tipping in

that, firstly, according to his entry rules, the demand from the no preference population
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Figure 3.10: Schelling’s second Tipping Model diagram [74] with additional preference parameter.
Note the final configuration can now be completely W .

is always maximal. Secondly, because of this phenomenon, as soon as one of these agents

arrived in the system, the demand from the no preference population will always be stronger

than the demand from those who have a preferred makeup.

Schelling then added a preference to both populations. Using the reasonable assumption

that the minority preference was not as strong as the majority he produced Figure 3.10. As

can be seen the statically stable mixture is reduced and a flow towards an all white population

has appeared. This would suggest that even slight preferences in a population are a driver

towards segregated communities. However, Schelling’s work shows there is no real ‘tipping

point’ as such. The flows are quite smooth and free from any form of jump that would

indicate a tipping of a population [74].

3.4 A critique of the Bounded Neighbourhood Model

Schelling’s tipping model was the first attempt to apply an ABM to a ‘real-world’ phe-

nomenon. However the basis of the model was the Bounded Neighbourhood Model. Although

the Bounded Neighbourhood Model produces some interesting results, there are a number of

problems that must be considered before attempting this kind of application.

1. As shown in §5.1.8, the (100,50) model implies that the di↵erence in the level of tolerance

between two adjacent individuals, ranked by tolerance, in the minority community is

twice that for two adjacent individuals in the majority community.
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2. Not surprisingly a su�ciently high tolerance ⌧ will ensure the existence of subsets of

the two communities that can coexist ‘stably’, in the sense that no-one wishes to leave.

3. The Bounded Neighbourhood Model can be seen as a deterministic model certainly once

the movement rule has been clearly defined it is quite simple to work out the results.

Whilst this allows stringent testing of the simulation accuracy against the model it is

so simplistic that it cannot be said to have any bearing on reality.

4. Although agents distinguish between type, there is no di↵erence within type (i.e., all

whites are the same and all blacks are the same).

3.5 Conclusions

The popularity of Schelling’s ideas led to criticisms most notably, Yinger [107], who argued

that there was no consideration of a number of factors such as economics and social mobility.

Similarly, Massey [58], argued that not accounting for environmental/spacial factors and using

a homogenous environment meant the model was too simplistic to have any relation to reality.

These were the main criticisms, suggesting that simplistic models cannot capture enough

information about what really drives segregation. Simple notions of preference, although they

probably exist, are superseded by the more important factors of economics and social mobility.

Today this could be a fair criticism since the input of experts in the field is an important

part of the modelling process. But what Schelling was suggesting with his models is a far

cry from the criticisms of Yinger and Massey. Schelling demonstrated that a simple desire

for non-minority status in a population could lead to highly segregated systems. However,

his attempts to apply his model to reality, by exploring the ‘tipping’ phenomena of a small

case study, was at best clumsy and certainly invited the criticisms. Although Schelling

seemed to cover a reasonable exploration of the tipping phenomena, the exploration was

limited by his adherence to the straight line tolerance schedule. His failure to explore any

other type of distribution could mean that the interesting tipping phenomenon is actually a

result of the distribution of the tolerance. Experimentation on the parameters with di↵erent

distributions might leads to some clarification. Certainly in Schelling’s model as soon as an

upper bound of tolerance is set, then it becomes a tipping point beyond which no other agent

of that type will enter the system. Because of the simplistic nature of his models Schelling

was able to isolate and explore abstract ideas of social interaction in Dynamical Models of

Segregation [74], a paper that has been cited over two thousand times [79]. Although cautious

in his conclusions, this paper was an important chapter in his later book ‘Micromotives and

Macrobehaviour’ [75]. Nevertheless his attempts to apply the model to real world situations
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by introducing Black and White types and then by applying the model to a single case

study, ignited debate and was both championed and derided across disciplines. As we have

seen, his critics mainly attacked the simplistic nature of his work, but it is this that allows

us to understand the underlying dynamics explicitly and so at least produce a primitive

framework for models, albeit inadequate, of social behaviour. Schelling acknowledges some

of the weakness of the model, highlighting its failure to allow “. . . for speculative behaviour,

for time lags in behavior, for organized action, or for misperception”[74, p 181]. It should

be noted that Schelling’s final conclusion is that the process of tipping is too complex to be

treated comprehensively in his paper. The analysis of which:

“. . . requires explicit attention to the dynamic relationship between individual

behavior and collective results. Even to recognize it when it occurs requires

knowing what it would look like in relation to the di↵erential motives or decision

rules of individuals.”

This is language not out of place in the analysis of complex systems.

3.6 Further work on Schelling

At the time of Schelling’s work computers were only able to run simple experiments that could

take days to execute and were notoriously fragile. By the mid 90s Epstein and Axelrood at

the Santa Fe Institute were using computers able to simulate much larger and more complex

systems. Although they never directly worked on Schelling’s segregation, their simulations

on Sugarscape [31] encouraged others to recreate Schelling’s experimentations. While much

attention has been given to Schelling’s Spatial Proximity Model, there has been less research

on what one might consider to be the richer dynamics of the Bounded Neighbourhood Model.

There have been a handful of recent attempts to apply some mathematical rigour, most

notably Zhang [108] and [109]. Although limited, they o↵er the beginnings of attempts to give

mathematical descriptions to social phenomena and suggest scientifically rigorous approaches

in an area that has for too long been unable to do so. The exploration of Schelling’s models

with new techniques should o↵er valuable insights into the dynamics of the system. From

this a greater understanding of the model and its utility is achieved. Table 3.1 gives a list of

authours and the techniques used to model Schelling’s segregation. A discussion of the work,

and the application of techniques can be found in Chapter 2).

These models are a small, but significant, sample of the current state of research into

Schelling’s models of segregation. Certainly the work of Stocia and Flache is an interesting
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Researcher Spatial Proximity Bounded Neighbourhood

Benenson et al. [15] ABM, GIS -

Laurie and Jaggie [53] ABM -

Stoica and Flache [85] ABM, Game Theory ABM, Game Theory

Zhang [108] Game Theory Game Theory

Table 3.1: Techniques used by researchers developing Schelling’s models of segregation.

combination of the two models. However, whilst they all build on Schelling’s work, there is

little investigation of the Bounded Neighbourhood Model itself.

3.6.1 Stoica and Flache

Stoica and Flache [85] apply Schelling’s ‘residential’ segregation to ‘school’ segregation. They

incorporate Zhang’s [108] utility (although here it is a measure of the distance from a school,

rather than price), into a combined segregation model. In their description two agent types,

A and B, compete over access to 25 schools. Each school has a ratio, initially dependent on

the residential ratio. The schools are modelled as points in a Voronoi diagram, with each

cell in the diagram considered the related catchment area. A Voronoi diagram is a way of

dividing space into a number of regions. A set of points (called seeds, sites, or generators) is

specified beforehand and for each seed there will be a corresponding region consisting of all

points closer to that seed than to any other. The regions are called Voronoi cells (for more

on Voronoi diagrams see [36]). The Voronoi diagram is combined with a Spatial Proximity

Model 1000⇥ 1000, with each cell considered a residence. The model is then populated with

8700 agents and tested over a number of di↵erent experiments.

Initially the utility remains a function of ‘ethnic’ (A or B) preference in the residential

areas. With these setting the model behaves as Schelling’s Spatial Proximity Model. This

shows the model can be considered a valid Schelling segregation model. Additionally, without

the distance preference settings, the schools exhibit Schelling’s “tipping process” [85, 4.1].

The author’s suggest the results show ‘unintended segregation’ within the schools. How-

ever, more integrated populations arose when agents were allowed into schools outside their

catchment area. The work is a simple example of producing a highly stylised ‘Schelling’

model, which can be used to ask questions about real world school segregation. However,

as the authors admit, there are a number of limitations. The tolerance of agents, although

varied across experiments, was fixed for the duration of experimentation. Following the Spa-
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tial Proximity Model, each agent had an identical tolerance, no ideas of a distribution of

tolerance were discussed. In addition the model has a deterministic choice function, which

the authors admit, should be replaced with a random utility function akin to Zhang’s [108].

The attempts of the authours’, to apply the model to ‘real world’ situations, is hindered

by the lack of understanding into some of the workings of Schelling’s model. In addition by

combining the two models, it is di�cult to analyse the e↵ects of space on the Bounded Neigh-

bourhood Model. To gain further insights, it will be important to build a valid simulation of

Schelling’s Bounded Neighbourhood Model. From this process, some of the mechanics that

drive to model should be exposed.



Chapter 4

Methodology

In examining and developing Schelling’s Bounded Neighbourhood model it is important to

build a solid, defendable framework in which simulations can be developed and run. The

simulations can then be used to test hypotheses about the model. Since models are unable

to capture all the information within complex systems, there is a need for some level of

abstraction. This abstraction will exclude information. In addition, since emergent properties

of the system are being sought and so not explicitly included in the simulation, it can be

di�cult to tell if an emergent behaviour is a result of the property being sought, or just

created by a bug in the code (or model).1 Therefore it is important that the development

follows a systematic and scientifically sound process. The CoSMoS process has been widely

used to model a number of real-world phenomena (see Section 4.3). However, the application

of the process to a social model is a novel approach. The CoSMoS process provides a rigorous

framework o↵ering a solid foundation necessary for methodological soundness.

4.1 Verification

Verification and validation of computer simulations are important ways of checking for cor-

rectness of computer code (in this case a software simulation). Despite thirty years of research

in the area, their use is far from widespread. This is possibly because software development

in science is typically ‘hacked’, rather than ‘engineered’in a formal sense. While the ideas

were not intended for complex systems, they are certainly a useful tool for improving models

and their simulations.

Ideas verification and validation of computational accuracy were first defined by Schlesinger,

1Whilst this can also be considered an emergent behaviour, we believe it is not the class of emergence we
desire.

49
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calling verification the: “. . . substantiation that a computerized model represents a concep-

tual model within specified limits of accuracy” [78]. This initial description was simplified by

Sargent who argues verification can be defined as: “. . . ensuring that the computer program

of the computerized model and its implementation are correct” [72]. Thus, the verification

process is designed to show that the software is internally consistent and correct. This is

usually achieved through rigorous testing, using procedures that have been developed and

refined in the software engineering field. As with any program there is a need for stringent

checks of protocols and structures, to make sure the language is correct; additionally, the

program needs to be as bug-free as possible. Tests are done using techniques such as correct-

ness proofs and structured walk-throughs [72]. Rigorous testing of software has developed a

number of techniques that can be implemented, including running a trace, entering variables

incorrectly, reprogramming critical components and many others [103]. The fact that the

verification process is an established knowledge based on years of research means that it can

be applied with some confidence.

4.1.1 Prediction

Popper suggests that the power of physics comes from verification through prediction [67].

This is almost impossible with complex systems and certainly not to the degree of accuracy de-

manded by physics and mathematics. For this reason the issue of prediction is contentious in

the field of complexity. Epstein [30] argues that prediction is not the only reason for modelling

complex systems and believes that an understanding of the system is much more important.

Thompson and Derr [87] counter that with this understanding there must be an ability to

predict, citing apparent abilities to predict earthquakes and tra�c jams. Troitzsch [88] o↵ers

a good summation of the arguments and suggests that without defining what is meant by

a prediction the argument is flawed. Using Thompson and Derr’s arguments about plate

tectonics, Troitzsch o↵ers three di↵erent types of prediction:

1. Which kinds of behaviour can be expected [from a system like this] under arbitrarily

given parameter combinations and initial conditions?

2. Which kind of behaviour will a given target system (whose parameters and previous

states may or may not have been precisely measured) display in the near future?

3. Which state will the target system reach in the near future, again given parameters and

previous states which may or may not have been precisely measured?

(a) Which are the expected value and the confidence interval around the expected
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Figure 4.1: Sargent’s framework from [72].

value of the state the target system will reach in the near future, again given pa-

rameters and previous states which may or may not have been precisely measured?

(b) Which exact value will the state of the target system have at a certain point of

time in the near future, again given parameters and previous states which have

been precisely measured?

Using the prediction type framework, Troitzch suggests that “the controversy between

Epstein and his critics is easily ended. Any kind of good explanation, under all circumstances

will yield a prediction of type 1 (and perhaps also of type 2), but not every good explanation

will yield a prediction of type 3.” [88]

4.2 Validation

The di�culty in the verification of the behaviour of complex systems means that, the vali-

dation of models and simulations is even more important. Sargent’s framework (Figure 4.1)

breaks down validation into three main components. Firstly, conceptual model validation

asks not only how well the model represents the held view of reality, but also if the model

is any use for the task at hand. Secondly there is internal validation, which determines if
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the output behaviour can be considered correct. One extreme, but well known, example of

internal validation is the Turing Test [89]. This is commonly expressed as the question “Can

a human tell the di↵erence between a human response and that of a computer?”. More for-

mally, this test utilises experts of a system and attempts to discriminate between the outputs

of the system and the model. Finally, there is data validity, which can often be overlooked

in circumstances that assume empirical information is ‘perfect’. Data validity tries to ensure

a number of things: how has the data been collected, has it been collated, normalised or

transformed. Are there possible confounds within the data gathering process? Is the vari-

ation statistically significant? It should be clear that verification and validation are vital

components when simulating complex systems. It is believed that techniques brought from

software engineering will help.

The process of verification and validation is inherently di�cult when modelling complex

systems. The problems are compounded by the absence of a universally accepted framework,

so the best course is to adopt a framework that is recognised. The advantages are three-fold.

Firstly, since there is no universal framework, a framework that has already been successfully

used should be used; since there will be useful information to be gleaned from previous

research. Additionally, this should mean a stronger understanding of the suitability for the

process. Secondly, by incorporating a personal perspective into the process, the framework

can be tailored to the task at hand. Finally, if well built and used, individual frameworks

could combine common factors, to produce the emergent framework Epstein [30] hopes for.

4.3 The Complex System Modelling and Simulation process

The Complex System Modelling and Simulation (CoSMoS) process [7] can be seen as a guide

for modelling and simulating complex systems, that incorporates verification and validation

throughout. The process has already been successfully used in a number of studies including

auxin transport canalisation [41], environment orientation [49], immunology [6] and cancer

systems biology [19].

The CoSMoS process has three phases that may be nested (from [7, p13]),

Discovery Phase: establishes the scientific basis of the project; identifies the domain of

interest, models the domain, and elucidates scientific questions. The phase is concerned

with science, not simulation.

Development Phase: produces a Simulation Platform to perform repeated simulation,

based on the output of the discovery phase.
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Figure 2.1: Relationships among products (rectangles) and the domain of interest. Ar-
rows give a sense of the information flow involved in development of products. The
Research Context is the central and unavoidable product, on which all other products
are dependent

Domain Model: encapsulates understanding of appropriate aspects of the domain
into explicit domain understanding. The domain model focuses on the scientific
understanding; no simulation implementation details are considered.

Platform Model: comprises design and implementation models for the simulation plat-
form, based on the domain model and research context.

Simulation Platform : encodes the platform model into a software and hardware plat-
form upon which simulations can be performed.

Results Model : encapsulates the understanding that results from simulation: the
simulation platform behaviour, results of data collection and observations of sim-
ulation runs. Note that the way that the domain model captures the relevant un-
derstanding of the domain is mirrored by the way that the results model captures
understanding of the simulation platform.

Figure 2.1 summarises the relationships among the CoSMoS products, showing how
information flows between the products.

The CoSMoS process iterates through the three phases until a stopping condition is
met. At each stage, the products may be updated, though it is also possible to simply

14

Figure 4.2: The Complex Systems Modelling and Simulation (CoSMoS) process from [7].

Exploration Phase: uses the Simulation Platform resulting from the development phase

to explore the scientific questions established during the discovery phase.

In recognition of the challenges involved in understanding and recreating complex behaviours,

these phases are not constrained; they can be used iteratively or alternatively, as best suits

the problem being considered.

The CoSMoS process identifies products that represent artefacts that are created and

modified during these phases. By separating out these artefacts, the process is able to clarify

the verification and validation of the model, simulation and results. This separation allows

problems to be identified at specific points in the process. The artefacts as defined in [7, p13]

are:

The Research Context: captures the overall scientific research context of the project. In-

cluding motivation for doing the research, the questions to be addressed by the Simu-

lation Platform, and requirements for validation and evaluation. The research context

is discussed in Chapter 2, as well as in the introduction to each experiment (Chapter

6, 7, 8 and 9).

The Domain Model: encapsulates understanding of appropriate aspects of the domain

into explicit domain understanding. The Domain Model focuses on the scientific un-

derstanding; no simulation implementation details are considered. The Domain Model
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is described in Chapter 5.1.

Platform Model: comprises design and implementation models for the Simulation Plat-

form, based on the Domain Model and research context. The Platform Model can

be UML, pseudo-code or any style that describes the model as it will be run, by the

Simulation Platform. This allows the highlighting of possible artefacts arising from the

code. The simplicity of Schelling’s Bounded Neighbourhood Model means it is easily

described using pseudo-code in Chapter 5.2.

Simulation Platform: encodes the Platform Model into a software and hardware platform

upon which simulations can be performed. This process is a straightforward process of

translating the pseudo-code in Chapter 5.2 into Netlogo [3].

Results Model: encapsulates the understanding that results from simulation: the Simula-

tion Platform behaviour, results of data collection and observations of simulation runs.

Note that the way that the Domain Model captures the relevant understanding of the

domain is mirrored by the way that the Results Model captures understanding of the

Simulation Platform. The results are analysed using the Wilcoxon-Mann-Whitney U

test. This nonparametric test is introduced in Chapter 4.4.

The problems discussed by Epstein [30] and Thompson & Derr [87] rather than being

systemic, can be addressed at di↵erent stages of the modelling process. Thompson and Derr’s

arguments of verification are based on a simple comparison of their Results Model with actual

results. This is problematic on at least a couple of levels. Firstly, if their results di↵er from

expected they will be unable to gauge where the ‘fault’ lies. Secondly, and more importantly,

if their results are as expected, they will still be unable to validate the model or the simulation

individually, since it is quite possible an inaccuracy in the model is nullified by an error in the

simulation and produces the ‘correct’ result. This holistic approach to modelling a complex

system renders one blind to where anomalies could lie. Without knowing where the problem

is, one might have to start again from scratch.

By following the CoSMoS process an important distinction is made, not only between the

model and the software that implements the model in the simulation, but also between the

results from the simulation and any results from the ‘real’ world domain. By breaking down

the process of modelling, it can be seen that the arguments of Epstein [30], Thompson &

Derr [87] and Troitzsch [88] have arisen from an attempt to move straight from the domain

to the simulation. Without considering a Domain Model one can see their problems are

exacerbated by the attempts to build simulations directly from the domain.
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4.3.1 Applying CoSMoS to Schelling’s Bounded Neighbourhood Model

As Easterly [28] points out, despite the fact that Schelling’s work is so well known, there has

been little in the way of empirical evaluation. One reason for this lack of research is due to

di�culties with data collection. Although empirical data exist, much of it is in the form of

census data. Whilst useful, this data has to be carefully checked and correlated. The process

is painfully slow, as great care is needed to make sure transformations (such as extrapolation

from sparse data) are applied correctly. There is a risk that alteration of the data can be a

subjective process and, as such, introduces bias into the results. More recent data collection

and data mining techniques have addressed and reduced the problem by automating many

of the processes [102]. However, with human social systems, the timescales involved often

means there is only sparse data available. Schelling’s models incorporated no external data

and he attempted to map his results directly onto actual social systems. It is important

to note that it is possible to model systems, even when the understanding of the system is

limited. Attempting to build models without following a methodical framework, leads to a

weaker understanding of the system, and, in many ways, nullifies any conclusions. There is a

risk that failure to adhere to good practice will lead to a plethora of invalid, and unverified,

models. Results from these experiments could tarnish the reputation of the field. The

Complex Systems Modelling and Simulation (CoSMoS) process is established and recognised

within complexity community as a reputable process. Building a rigorous model using the

CoSMoS process enhances our understanding, as well as o↵ering protection against weakness

resulting from poor validation and verification.

4.4 Hypothesis Testing

The analysis of the results is key evidence for any experiment. If there is to be a comparison

between the di↵erent model variations, the results must be analysed in a consistent manner.

The experiments presented in Chapters 6, 8, 7 and 9 are analysed using hypothesis testing.

In each case we present two results, static and dynamic. The results are used to provide

evidence towards refuting the null hypothesis (H0), that any changes in the results are not

significant.

4.4.1 Static result

The static result measures the final population configuration, M , of two populations, Orange

(O) and Blue (B), in an environment E (presented in detail in Chapter 5). Following work



56 CHAPTER 4. METHODOLOGY

Figure 4.3: Static results of Schelling’s Bounded Neighbourhood Model. The initial conditions of the
model are marked by the colour of the final population from that state. A clear boundary can been
seen along the 1.5O : 1B ratio suggesting the B population have to be a clear majority if they are to
survive.

by Freeman [38],

M =
2(|(O \ E)| ⇤ |(B \ E)|)

|(O [B)|(|(O [B)|� 1)
, (4.1)

where O \ E and B \ E are the two populations being measured. Values of M > 0 indicate

the system produces mixed populations. Taking O = 100 and B = 50, and using Schelling’s

movement rules (move in order of tolerance), the model runs through to a final population

configuration. By plotting the colour of the final population on the initial condition location,

a colour map is developed (see Figure 4.3). The calculation of M yields 0, meaning only

segregated populations are produced, correlating with Schelling’s results.
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Figure 4.4: Dynamic results of Schelling’s Bounded Neighbourhood Model. From initial conditions of
the model, population size is measured and plotted at each iteration. The results recreate Schelling’s
boundaries and flows.

4.4.2 Dynamic result

The dynamic result analyses the flows of the populations into (and out of) the neighbourhood.

The statistic I is a measure of the number of iterations taken for the system to reach a steady

state. A steady state is reached when no more agents wish to move. The results from the

dynamic measure can be presented in one of two ways. For example, plotting the path of

the populations on a two dimensional plane, from all possible initial conditions, recreates

Schelling’s flows (see Figure 4.4). A second option is a cumulative distribution of I. This

is a useful visualisation tool, as one can quickly see any changes in the results. Testing the

result means calculating the distribution of runtimes. Calculating all the initial conditions

possible with 100O, 50B, gives 5000 results, these can be plotted to produce a cumulative

frequency distribution (see Figure 4.5). Since Schelling’s model is deterministic, there is no
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Figure 4.5: Plotting the results as a cumulative frequency distribution allows easy visualisation around
the spread of results from di↵erent initial conditions.

distribution around runtimes of individual initial conditions. The introduction of stochastic

processes, creates the need for repetition of runs; each initial condition is repeated 25 times.

These repetitions guard against chance results, and strengthen the evidence provided. The

hypothesis, that changes to the model change I, is tested using the Wilcoxon-Mann-Whitney

U test, which will be referred to as the U test.

4.4.3 The Wilcoxon-Mann-Whitney U test

The U test is a nonparametric test used to analyse the result of the simulation. Unlike para-

metric tests, the U test allows analysis of populations when their distributions are unknown.

In addition, because the analysis uses the medians, the test is more robust against reporting

significant results due to outliers. A good discussion of parametric and nonparametric tests

can be found in [8]. In this case the advantages over parametric tests are:
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score 8 9 10 11 12 13 14 15 16 17 18 19

group Y X Y X Y Y X X X Y Y X

rank 1 2 3 4 5 6 7 8 9 10 11 12

Table 4.1: Results in ranked order

• The U test uses the median of samples rather than the mean, thus it is more robust

against outliers. However the U test does assume that the samples are independent.

• There is no assumption of any particular underlying distribution. Rather, the two

samples being compared are assumed to have the same distribution.

• When analysing large samples non-parametric tests are just as powerful as parametric

tests.

For example, suppose we draw two lots of sample data,

X = 9, 14, 15, 11, 16, 19

Y = 8, 10, 12, 13, 17, 18.

The null hypothesis (H0) is that the two samples X and Y are drawn from the same pop-

ulation. The alternative hypothesis (H1) is that X is stochastically larger than Y , (i.e.,

P [X > Y ] > 0.5). To test the hypothesis the U statistic is calculated, this is done by

arranging the results in ranked order (table 4.1).

For each observation in X, we count the number of data points in Y that have a smaller

rank, giving UX = 1 + 2 + 4 + 4 + 4 + 6 = 21. Similarly, for each in Y we count those in X

with a smaller rank, giving UY = 0+1+2+2+5+5 = 15. Consulting the significant tables

with #X = #Y = 6 and a 95% confidence level, shows that a significant results requires

5  UY  32. Since UY = 15, we are unable to refute the null hypothesis that the samples

are drawn from populations with the same medians.

4.4.4 Increasing sample size

One problem with statistical analysis arises when the number of data points increases to a

large number. For example, consider the case #X = #Y = 5000 (Figure 4.6. The results of

the U test give a significant result, refuting the null hypothesis. However this could easily

be an artefact of the number of data points. Indeed a comparison of the two distributions
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Figure 4.6: A comparison of the distributions of X and Y . Results of the U test show a statistically
significant di↵erence (p < 0.05), but a small e↵ect size (A = 0.54). This can be seen in the similar
distributions.

(Figure 4.6) actually shows similar distributions. To check the e↵ect size a second statistic

is needed.

4.4.5 Vargha and Delaney A statistic

The Vargha and Delaney A statistic quantifies the e↵ect size in comparing statistical data.

The e↵ect size is based on the measure of stochastic superiority equation [91, eq (2)]:

A12 = P (X > Y ) + .5P (X = Y ),

where X and Y are samples from populations 1 and 2 respectively. It can be seen that when

the two populations are stochastically equivalent, P (X > Y ) = (PX < Y ). By calculating

the di↵erence in these probabilities, Vargha and Delany classify three e↵ect sizes:
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• Small - A12 > 0.56 or < 0.44,

• Medium - A12 > 0.64 or < 0.36,

• Large - A12 > 0.71 or < 0.29.

Applying the A statistic to the results shown in Figure 4.6 returns a value of A12 = 0.54,

which indicates there is less than a small e↵ect size. This provides evidence that although

we reject the null hypothesis due to a di↵erence in the results, the di↵erence could just be

an error produced by the amount of data. Now consider X and a new data set Z; again the

U test returns a significant result. A comparison of the distribution indicates a di↵erence.

Applying the A statistic returns a value of A12 = 0.75 indicating a large e↵ect size. In this

case the null hypothesis is rejected and the A statistic provides evidence that the result is

interesting. A comparison of the distributions (Figure 4.7) shows a clear di↵erence. The U

test and the A statistic are used in the analysis of I later in this thesis.

4.5 Experimental structure

The work presented here explores some of the assumptions in Schelling’s Bounded Neigh-

bourhood Model, through a set of experiments. The work follows a cyclic path, as suggested

by the CoSMoS process. Initially, in a novel use of the CoSMoS process, Schelling’s social

model is made explicit and used as the Domain model, presented in Section 5.1. The formal-

isation is translated from Schelling’s original paper [74], and its development highlights some

assumptions in the model. Schelling makes four basic assumptions in his paper. A chapter

is devoted to each of these assumptions, directly quoted from Schelling’s paper, which are

subjected to computational experiments. Changes are made to the parameters and structure

of the domain model, derived from Schelling’s model, to enable a thorough testing of the

assumptions. Following the development of the Domain Model (and in line with the CoSMoS

process), a Platform Model is developed in Chapter 5.2, the Simulation Platform is described

in Chapter 5.3 and the Results Model in Chapter 5.4. The analysis of the results will be

undertaken using the U test and, where necessary, A statistic; the population flows and final

population composition are analysed in an identical manner. The statistical tests, used to

analyse the results, are described in Section 4.4, with ideas from the results of the tests com-

pared back to Schelling’s model and used to inform the direction of the next experiment. At

the end of each cycle, the results feed back into further experimentation and another iteration

of the process begins.
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Figure 4.7: A comparison of the distributions of X and Z. The clear di↵erences in the distributions
is shown by the U test returning a statistically significant di↵erence (p < 0.05), but now there is a
large e↵ect size (A = 0.75).



Chapter 5

Formalising the Bounded

Neighbourhood Model

Schelling’s Bounded Neighbourhood model [74, p167], discussed in Chapter 3.2, considers

heterogeneous population flows into and out of a neighbourhood or environment E (defined

in Chapter 5.1). It is aspatial, in that agents consider the composition of agents in E and

not of the total population.

Each agent calculates their ‘happiness’ (defined in Chapter 5.1.9), which is based on the

current ratio of the number of agents like themselves to those unlike themselves inside E. This

ratio is then measured against their individual tolerance of such a ratio, thus determining

their ‘happiness’. Sad agents inside E leave, while ‘happy’ agents outside E enter.

5.1 Developing the Domain Model

Schelling’s Bounded Neighbourhood model is used as the basis of a formal Domain Model,

bringing it up to the level of precision required for the CoSMoS process. Applying the process

to Schelling’s model (Figure 5.2) reveals the shortcomings in his model, theoretical simulation

and results.

Firstly, and most importantly, Schelling’s first step from the domain (Segregation) to the

Domain Model (informal Bounded Neighbourhood Model) is Schelling’s personal interpreta-

tion [74, p143]. Whilst this is acceptable (but not advised) for models in which the developer

is a domain expert, Schelling’s background was mathematical, rather than sociological. How-

ever Schelling’s model was developed at a time when cross-disciplinary approaches were rare

and, as such, this was a failure of the system rather than the authour. Secondly, Schelling’s

‘formalisation’ contains ambiguities that, if carried through to the simulation, could produce

63
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Figure 5.1: Schelling’s Bounded Neighbourhood Model: Tolerance schedule (left) and its realisation
(right) [74, fig. 18].

Figure 5.2: A diagram of Schelling’s process in developing the Bounded Neighbourhood Model.
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Figure 5.3: An application of the CoSMoS process in developing a simulation of Schelling’s Bounded
Neighbourhood Model. Note the outputs of the process feed back into the interpretation, rather than
the real world.

di↵ering results. Finally, it is clear that Schelling takes his results and then attempts to

apply them to a real world event (neighbourhood tipping) [74, p181]. Because of his failure

to collaborate in this first instance, it is di�cult to defend attempts to relate his results back

to reality. This argument is used by a number of authours, who attack his models as missing

vital components of reality (see Chapter 3 for further discussion).

In order to strengthen the model we adapt Schelling’s process so that it fits with the CoS-

MoS process (Figure 5.3). However, whilst this adaption is an attempt to improve Schelling’s

model, his interpretation is retained. Because of this, and the inherent di�culty of relating

models to reality, we make no attempt to relate the model back to reality. Instead, results

from the simulation are used to formulate questions about Schelling’s model. It’s important

to stress that, although at times wording is used that may be interpreted as anthropomor-

phic (e.g., Blacks and Whites or ‘happy or unhappy’ etc.) there is no claim that agents are

mirroring individuals. However, the fact that this needs to be highlighted indicates the ease

in which the lines between the model and reality can be blurred. The application of the

CoSMoS process should guard against this. The first step in this process is developing a

formalised Domain Model, the basis of this model will be Schelling’s own parameters.
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Neighbourhood. Schelling describes this as a particular bounded area that is preferred

to any alternative (where possible in this thesis we avoid terminology with spatial

connotations). He gives as examples membership of a club or participation in a job.

“A person is either inside it or outside it” [74, p167].

Colour Ratio. It is measured against agents’ tolerance to calculate the state of the agent.

“Absolute numbers do not matter, only ratios.” [74, p167]

Tolerance. A limit that, once reached, triggers agent movement.

“He will reside in it unless the percentage of residents of opposite color exceeds some

limit. Each person, black or white, has his own limit. (’Tolerance,’ we shall occasionally

call it.) If a person’s limit is exceeded in this area he will go someplace else” [74, p167].

Process of occupation. Population movement into and out of the system. This is the

process Schelling was most interested in,

“What we can do is look at the process by which the area becomes occupied” [74, p167].

Following these, Benenson [15] suggests some “standard settings” for a Schelling segrega-

tion model. Although based on Schelling’s Spatial Proximity Model (see Chapter 3.1), the set-

tings (set out below) are used as the basis for the formalisation of the Bounded Neighbourhood

Model. The major di↵erences between the models are the agents’ consideration/definition

of neighbourhood and their tolerance. Although both use the same concept of Neighbour-

hood Ratio to determine ‘happiness’ (defined below), the models explore di↵erent dynamics.

The Spatial Proximity Model looks at the dynamics within a neighbourhood, whereas the

Bounded Neighbourhood Model explores the e↵ects of agents’ movement into and out of a

neighbourhood. Agent ‘happiness’ is measured by comparing the tolerance of the agent with

the current ratio of the neighbourhood. If the neighbourhood ratio is above the level of the

agent’s tolerance then the agent is deemed ‘unhappy’ and will attempt to move.

The Bounded Neighbourhood Model parameter settings are described below:

The Environment. The environment is defined as a global neighbourhood, in which agents

are either inside or outside.

Neighbourhood Ratio. This is the number of agents of other type compared to the number

of own type inside the neighbourhood.

Agent Location. Agents are either inside or outside of the neighbourhood.

Agent Tolerance. Agents’ level of tolerance of the ratio of their neighbourhood. Unlike the

Spatial Proximity Model, where agents all have the same tolerance, here the agents’
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tolerance is defined as a cumulative straight line schedule (Figure 5.1). Individual agents

of the same type have a di↵erent level of tolerance. Two agents of di↵erent type could

have the same level of tolerance.

Agent Dynamics. The ‘unhappy’ Bounded Neighbourhood Model agents (within the neigh-

bourhood) remove themselves one by one, starting with the most ‘unhappy’ of the pop-

ulation. If there are agents outside the system who would be ‘happy’ to be inside, they

move in one at a time starting with the most ‘happy’.

By using an aspatial model, Schelling is able to extend the model beyond spatial grids. This

allows the encapsulation of groups that are not necessarily spatially linked. The model can

be described by the following characteristics.

5.1.1 The Environment

The model has two aspatial regions (sets of agents), the neighbourhood E (agents ‘inside’)

and its complement E⇤ (agents ‘outside’).

5.1.2 Agent Location

Agents are located in E or in E⇤. Agents’ decisions are based solely on the composition of

E.

5.1.3 Agent Type

Schelling’s model explores ideas of segregation with two distinct populations distributed inside

the neighbourhoods E. The populations consist of two types or sets W and B (it is natural

to think that B represents the set of ‘blacks’ and W the set of ‘whites’):

TYPE = {B,W}. (5.1)

Clearly this can be generalised to any number of types:

TYPE = {T1, T2, . . . , Tn} ; n � 2. (5.2)

5.1.4 Agent numbers

The set of all agents is B[W = E[E⇤ (all agents are either inside or outside); their number

is |B| + |W |. The number of agents in B and in E (the number of black agents inside)
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is |(B \ E)|, the number of agents in W and in E (the number of white agents inside) is

|(W \ E)|. In his initial experiment Schelling [74, fig.18] chooses |B| = 50, |W | = 100.

5.1.5 Ratio of the two populations

Schelling defines the Ratio RWB for B to be the number of white agents inside compared to

the number of black agents inside. This can be formalised as

RWB =
|(W \ E)|

|(B \ E)|
(5.3)

and the ratio RBW for W is the reciprocal of RWB,

RBW =
|(B \ E)|

|(W \ E)|
, (5.4)

provided that the denominators do not vanish. The case when they do vanish is discussed in

Chapter 5.1.6.

In the general case, Rij is the ratio of the number of all agents of type j to the number

of type i:

Rij =
1

|(Ti \ E)|

X

j 6=i

|(Tj \ E)|, (5.5)

provided Ti \E 6= ;. Here we also assume that all other types are equally weighted (equally

disliked); a more complicated model could include a weighting factor zij(i 6= j) for each type

relative to each other type.

5.1.6 The tolerance schedule and definition of ⌧

Schelling assigns each agent a tolerance, which we denote by ⌧ . The tolerance of an agent

w is thus w(⌧) and that of an agent b is b(⌧). These tolerances are defined by a schedule

comprising a straight line cumulative frequency distribution1 (see equations (5.6) and (5.7)

below). Here we quote the relevant passage from [74, p.168], with our parenthetical additions

of specific model parameters and values:

We can take the total of whites to be 100 [|W | = 100]. Suppose that the median

white [w50] is willing to live with blacks in equal numbers [has ⌧ = 1], so that 50

among our 100 whites [w1 to w50] will abide a ratio of black to white of 1.0 or

greater. The most tolerant white [w1] can abide a black-white ratio of two to one

1Strictly speaking a cumulative distribution function must be monotonic increasing; and would be if the
axis was “intolerance”.
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Figure 5.4: The straight line tolerance schedules of the W (top) and B (bottom) populations. The
horizontal axis represents agents w1 to w100 (top) and b1 to b100 (bottom). The pronounced di↵erence
in the angle of the slopes is clear.
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[has ⌧ = 2], that is, is willing to be in a one-third minority; and the least tolerant

white [w100] cannot stand the presence of any blacks [has ⌧ = 0]. The cumulative

distribution of tolerances for a white population will then appear as in the top

of Figure 18 [our Figure 5.1]. It is a straight line with intercept at a ratio of 2.0

on the vertical axis and intercept on the horizontal axis at the 100 whites who

comprise the white population.

In other words, the W population is ordered according to tolerance, and giving them a

numerical identification according to its position in the line. The first (most tolerant) agent

(w1) has ⌧ = ⌧max = 2, the last (least tolerant) agent (w100) has ⌧ = 0, and the intermediate

agents have ⌧ values defined by a linear interpolation. This is shown in Figure 5.4. The hor-

izontal axis represents the numerical identification w1 �w100 of agents, in order of tolerance.

The vertical axis ⌧ represents the maximum ratio an agent will tolerate. The mathematical

formulation gives the linear equation

wn(⌧) = 2�
wn

50
, (5.6)

so that, for instance, w100 has tolerance ⌧ = 0 (Figure 5.4). However there is a problem

concerning the origin. It is clear from Schelling’s sentence

“The most tolerant white . . . is willing to be in a one-third minority;” [74, p.168],

he assumes that w1 has a tolerance ⌧ = 2 in contradiction to (5.6), where when w0(> w1) has

tolerance ⌧ = 2. The formula can be reconciled with the above sentence either by altering

the end points or the slope. For instance the linear schedule can be chosen to pass through

the points (1, 2) and (100, 0) in which case the slope is �2/99 and the tolerance ⌧ is given by

wn(⌧) = �

2wn

99
+

200

99
.

Nevertheless we will continue to use equation (5.6) for ease of comparison with Schelling’s

paper (noting that the relatively small discrepancy does not a↵ect the conclusions drawn).

Schelling’s initial model also uses a similar tolerance schedule with the same maximal

tolerance ⌧ = 2 but with |B = 50| and with slope �1/25. This gives the lower of the two

diagram shown in Figure 5.4. The mathematical formulation gives the linear equation

bn(⌧) = 2�
bn
25

, (5.7)

so that, for instance, agent b50 has ⌧ = 0 (again, the same problems with the origin, as

mentioned earlier, arise and are ignored).
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Schelling also explores variations of the tolerance schedule, including ⌧max = 5 with

|W | = |B| [74, fig.19], and other values of ⌧max and other total population ratios IWI/IBI.

He also discusses a non-linear (but still monotonic) tolerance schedule [74, fig.25]. Stably

integrated populations can be obtained by simply increasing the tolerance of agents to extreme

levels. In this thesis, Schelling’s original numbers and ratios are addressed in an attempt to

produce integrated populations without significant changes in the tolerance (or numbers) of

agents.

5.1.7 Translation of the tolerance schedule into population numbers

We follow Schelling in the translation of the linear tolerance schedule (5.6). By his definition

of tolerance a white agent wn has a tolerance ⌧

wn(⌧) = 2�
wn

50
. (5.8)

However it is also the case that the tolerance of an agent wn can also be calculated as

wn(⌧) =
bn
wn

, (5.9)

where bn is the number of corresponding blacks. This implies

wn(⌧) = 2�
wn

50
=

bn
wn

. (5.10)

Hence solving (5.10) we get the parabola

bn = wn

⇣
2�

wn

50

⌘
, (5.11)

which passes through the origin (wn, bn) = (0, 0) and the point (100, 0), with a maximum at

the point (50, 50) (Figure 5.1).

Similarly, if we consider the tolerance bn(⌧), the tolerance schedule implies that the tol-

erance at bn is given by

bn(⌧) = 2�
bn
25

=
wn

bn
, (5.12)

by Schelling’s definition of tolerance, where wn is the number of corresponding whites. Hence

solving (5.12) we get the parabola

wn = bn

✓
2�

bn
25

◆
(5.13)
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which passes through the origin (wn, bn) = (0, 0) and the point (0, 50), with a maximum at

the point (25, 25) (Figure 5.1).

5.1.8 Agent Tolerance

According to Schelling [74, p.168]

[An individual] will reside in [the Neighbourhood] unless the percentage of res-

idents of opposite colour exceeds some limit. Each person, black or white, has

[their] own limit. (‘Tolerance,’ we shall occasionally call it.)

Thus Schelling defines individual ⌧ . To make Schelling’s notion of tolerance clearer, consider

the tolerance wn(⌧) of the individual wn. The next individual at wn+1 will have tolerance

wn(⌧ � 1/50) (Figure 5.4). For the B population, bn+1(⌧) = bn(⌧ � 1/25) (Figure 5.4). We

assume that each agent has a single tolerance ⌧i for other agent types Tj (i 6= j); a more

complicated model could include a di↵erent tolerance for each type.

5.1.9 Agent Happiness

The ‘happiness’ of an agent wn is dependent on the Neighbourhood Ratio RBW and on the

agent’s tolerance wn(⌧) for that ratio. An agent is ‘happy’ precisely when RBW  wn(⌧),

i.e.,

wn(happy) () RBW  wn(⌧). (5.14)

Similarly, the ‘happiness’ of an agent bn

bn(happy) () RWB  bn(⌧). (5.15)

Note that the ‘happiness’ depends only on the ratio inside the neighbourhood; what happens

outside the neighbourhood does not e↵ect agent ‘happiness’. Also, the model does not allow

agents to specify a minimum ratio: “there are no minority-seeking individuals” [74, p.167].

Therefore the model is already biased towards segregation.

5.1.10 Agent Dynamics

The parameters above give the properties of the agent populations; the movement rules

define the dynamics, i.e., define how the agents move into and out of the neighbourhood

(what Schelling calls a “process of occupation” [74, p170]). The movement is decided by the

agents’ location and ‘happiness’ (itself a function of the agent’s tolerance and the relevant

Neighbourhood Ratio). Agents can either enter the neighbourhood, stay where they are,
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or leave the neighbourhood. If an agent is inside the neighbourhood and ‘unhappy’ it can

leave; those outside who would be ‘happy’ to be inside will enter. Agents who are inside and

‘happy’ will stay, and those outside who would be ‘unhappy’ inside will remain outside. The

agent movement rules are described by Schelling [74, p.170] (again, with our parenthetical

additions of specific model parameters) as:

if all whites present in the area are content [@wn 2 (W \E) with wn(⌧) < RWB],

and some outside would be content if they were inside [9wn 2 (W \ E⇤) with

wn(⌧) � RWB], the former will stay and the latter will enter in order of tolerance

[highest ⌧ first]; and whites will continue to enter as long as all those present are

content and some outside would be content if present. If not all whites present

are content [9wn 2 (W \E) with wn(⌧) < RWB], some will leave; they will leave

in order of their discontent [lowest ⌧ first], so that those remaining are the most

tolerant; and when their number in relation to the number of blacks is such that

the whites remaining are all content [@wn 2 (W \ E) with wn(⌧) < RWB], no

more of them leave. A similar rule governs entry and departure of blacks [agents

of type B].

This needs further refinement to make it a properly defined algorithm. We assume from

the phrase “they will leave in order of their discontent” that one agent enters or leaves per

iteration, and that R is recalculated each iteration. The questions of the handling of di↵erent

agent types and the movement of agents after each iteration, are unexplained2.

The movement of a single agent of a given type is illustrated in Figures 5.5 and 5.6. Here

we assume that all the agents inside have a higher tolerance than all the agents outside. Then

it cannot be the case that there are simultaneously ‘unhappy’ agents inside and ‘happy’ agents

outside: either (a) all inside are ‘happy’, or (b) all outside are ‘unhappy’. Once achieved, the

movement rules maintain the order. Having developed the formalisation the next step is to

develop the Platform Model and simulation to test the e↵ect of the movement rule.

5.2 Platform Model

With the Domain Model formalised, and the parameters identified, we can now develop a

Platform Model. The Platform Model is an abstract representation of the dynamics of the

parameters, and their interactions. This representation is abstract enough to be applicable to

2Testing these questions in the simulation shows no change in final outcomes. However, as expected I is
larger for single movement compared to interleaved. The di↵erence in the population flows suggests Schelling’s
model used interleaved movement.
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Figure 5.5: Movement rules for the W population derived from Schelling’s description (see Chapter
5.1.10). ‘Happy’ agents lie below the hatched area. The ratio RBW causes one agent (wn+1) outside
to be ‘happy’, so wn+1 enters the neighbourhood E. This increases W \E by one, thereby decreasing
RBW so potentially making more W agents ‘happy’, and so on. The B population behaves in an
identical manner.
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Figure 5.6: Movement rules for the W population derived from Schelling’s description (see Chapter
5.1.10). ‘Unhappy’ agents lie to the right of the hatched area. The ratio RBW causes one agent (wn)
inside to be ’unhappy’, so wn leaves the neighbourhood E. This decreases W \ E by one, thereby
increasing RBW so potentially making more W agents ‘unhappy’, and so on. The B population
behaves in an identical manner.
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Algorithm 6 Bounded Neighbourhood Model I Initialisation/Iteration Operator

Create population of agents B [W
apply ⌧ to agents
set W \ E and B \ E agents state = [in]
execute Algorithm 7

Algorithm 7 Agent wn ‘happiness’ calculation: one timestep

calculate neighbourhood ratio RBW

for each agent w 2 W do
if wn(⌧) < RBW then

set wn [happy]
else

set wn[unhappy]
end if

end for
execute Algorithm 8

any number of simulations, yet specific enough to be easily reproduced. In addition, by laying

out the dynamics of the model, a deeper understanding of the model workings is gained. Here

we present the Platform Model of Schelling’s Bounded Neighbourhood Model in pseudo-code,

consistent with algorithms 4 and 5, which are used as the basis for algorithms 6 and 8. The

simulation initialises by creating the agents, applying a type and a tolerance, then sorting

them into neighbourhoods (algorithm 6). Following this, agents calculate the ratio according

to equation (5.3). By checking their tolerance against the ratio, agents are able to calculate if

they are ‘happy’ and set their state appropriately. Once calculated the simulation selects the

most tolerant ‘happy’ agent in E⇤ and moves them to E. If there are no ‘happy’ agents in E⇤,

the simulation selects the least tolerant ‘unhappy’ agent in E (algorithm 8). The movement

rule is shown in algorithm 8.

5.3 Simulation Platform

The Simulation Platform is implemented in Netlogo [3], a widely used simulation language

developed at Northwestern University. Netlogo is one of the platforms used by the Com-

putational Social Science Society of the Americas (CSSSA). Netlogo’s language is based on

Java and is universally compilable. It allows a simple translation of pseudo-code into ma-

chine readable code. The code is structured around agents called turtles, patches or links.

These can be interconnected in a number of ways to produce a vast array of models. To

simulate Schelling’s Bounded Neighbourhood Model, Netlogo can be coded to represent the
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Algorithm 8 Agent wn movement rule: one timestep

if 9wn 2 (W \ E⇤) with wn(⌧) � RBW then
move wn with max ⌧ to E {(a) happiest outside moves in}

else
if 9wn 2 (W \ E) with wn(⌧) < RBW then

set wn with min ⌧ to E⇤
{(b) unhappiest inside moves out}

end if
end if

model using turtles (for agents) and patches (for location). The code is translated from the

Platform Model and implemented producing the Simulation Platform. The use of the Netl-

ogo commands max-one-of and min-one-of allows the selection of agents in order of their

tolerance.

Changes to the model parameters are tested using the BehaviourSpace tool. This tool

automates the variation of system parameters, allowing the simulation to systematically run

through vast numbers of initial conditions. This means the testing of Schelling’s model over all

5000 initial population configurations (from (wn = 1, bn = 1) to (wn = 100, bn = 50)) can be

done easily, and without the need for extra code. Because Schelling’s model is deterministic,

it is unnecessary to run each initial condition more than once, since the same initial condition

will return the same result. The outputs are presented in a spreadsheet which submits easily

to analysis. Once the model reaches a steady state (ı.e no more agents wish to move) the

number of iterations (I) is recorded and the simulation terminates. However a significant

drawback of the BehaviourSpace tool is the results from the simulation are not outputted

until the entire experiment has finished. This causes two major issues: firstly, if the simulation

crashes before the experiment ends, all the data is lost. Debugging and verifying the code

becomes even more vital. Secondly, as the experimental data increases with each run, the

simulation begins to struggle with the load. This means that if the experiment is too big the

system will freeze. For this reason the number of iterations allowed in each simulation run

was limited. This limit created artefacts in Chapters 7 and 8 by halting runs which had not

reached equilibrium. These were eventually resolved by increasing the limit but reducing the

number of runs. It is important to note that the limitations of Netlogo are outweighed by

the usefulness of the tools it provides. The BehaviourSpace environment, although limited,

can be adjusted to cope with heavier workloads.
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5.4 Results Model

In keeping with the CoSMoS process described in Chapter 4.1, the results of the simula-

tion will be measured and analysed using hypothesis testing (see Chapter 4.4). To recover

Schelling’s flows, the population level will be recorded at each iteration and plotted on a

two dimensional diagram, identical to Schelling’s results. One iteration is defined as the

movement of one agent, as described in Chapter 5.1.10. A run terminates when no more

agents wish to move, with I being the number of iterations taken to reach that point. The

configuration of the final population is calculated using M (see Equation (4.1)). In later

experiments, these results will be used to test the hypothesis, that changing the parameters

of the model changes the results.

5.4.1 Validation

By comparing the results of the simulation with Schelling’s results, evidence is provided

towards validation of the simulation. Because Schelling’s movement rules were imprecise,

we are unable to measure the number of iterations the model takes to reach a steady state.

Instead the flows of the populations are plotted from each initial condition. Figure 5.7 shows

a comparison of these simulation flows, against Schelling’s diagrammatical flows. The flows of

the simulation mimic Schelling’s results, the parabolas clearly identify identical boundaries.

5.5 Summary

This chapter has presented a formalisation of Schelling’s Bounded Neighbourhood Model

within the CoSMoS framework (Section 5.1), from which a Netlogo simulation has been

developed (Section 5.2). The formalisation and development of a simulation allows for the

testing of the e↵ects of a number of possible parameter values of the system. This initial

work has focused on the formalisation of the model and the development of a simulation. The

analysis of results (Section 5.4) show that the simulation replicates Schelling’s population

dynamics. However there is a small ambiguity, the B population in Schelling’s model appear,

from his diagrams, to exit the neighbourhood more slowly than the simulation results. This

is an interesting point, and is explored further in Chapter 8.

Schelling’s Bounded Neighbourhood Model can be considered a highly simplistic first

step in the understanding of how prejudices can e↵ect the movement of populations into

and out of ‘neighbourhoods’. The simplicity of the model allows a full understanding of

the dynamics that are driving it but, unfortunately, those dynamics are unable to produce

any ‘interesting’ results. However it is possible to use this model as a basis for a more
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Figure 5.7: To validate the simulation a comparison of the simulation output (top) and Schelling’s
results (bottom) is made. Schelling’s boundaries can be seen in the simulation results with the flows
following Schelling’s results. However, the two right most arrows suggest that Schelling calculates a
much slower exit of the B population.
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complex model by modifying or adding appropriate features which allow the modified model

to be tested systematically. Indeed, by developing a valid simulation of Schelling’s Bounded

Neighbourhood model, it is now possible to ask questions of the model, such as the existence of

stable equilibria, that have previously been di�cult to answer. This is done for the formalised

Bounded Neighbourhood model to test the robustness of the assumptions made by Schelling

(listed below) and carried out in Chapters 6, 7, 8 and 9.

Whose move is it anyway? The movement of the agents depends on their knowledge of

every other agent’s ‘happiness’. By changing the movement rule, Chapter 6, explores

the e↵ect of randomly choosing agents who wish to move, rather than moving by order.

Who do you know? The fact that agents have complete knowledge of the neighbourhood.

This is tested in Chapter 7, in which agents sample the neighbourhood to calculate

their ‘happiness’.

Should I stay, or should I go? This refers to the assumption that agents move as soon

as they are ‘unhappy’. This is tested in Chapter 8, where it is assumed their decision

to move is based on a level of ‘happiness’ derived from the neighbourhood ratio.

Friends and neighbours. The fact that all agents are treated equally within type. By

recasting Schelling’s Bounded Neighbourhood Model as a network in Chapter 9, we

explore the e↵ects of social ties within the neighbourhood.

At each step the formalisation of Schelling’s Bounded Neighbourhood Model is adjusted

to develop a simulation to test these assumptions. The work begins with the movement of

the agents and what e↵ect their order of movement has on the results.



Chapter 6

Whose move is it anyway?

“It is the least tolerant whites that move out first, and the most tolerant that

move in first, and similarly for blacks.” [74, p168]

6.1 Introduction

The formalisation of the Bounded Neighbourhood Model has highlighted a testable assump-

tion. The movement of the agents is dependent on their complete knowledge of the ‘happiness’

of every other agent, as the least ‘happy’ inside (or the most ‘happy’ outside) moves first. By

removing this knowledge, we can test the hypothesis that the movement of agents, ordered

by their level of tolerance, has no significant e↵ect on the results. In this chapter, we apply

a variation to the agents’ movement rule, and test it against Schelling’s rule. Thus, we have

two movement rules:

1. Agents move one at a time according to level of tolerance (as described by Schelling).

2. Agents wishing to move are chosen randomly.

6.2 Hypothesis

The hypotheses tests the e↵ects of changing the movement rule on the model. We o↵er the

null hypothesis (H0) that changing the movement will have no e↵ect on the outcome of the

simulation. This is tested using two measures, static and dynamic (discussed in Section 4.4).

81
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Figure 6.1: An application of the CoSMoS process in testing the e↵ect of movement in Schelling’s
Bounded Neighbourhood Model. The movement rules are implemented in the Domain model. The
e↵ects of the two rules are tested using the tests described in Section 4.4. The results from the analysis
feedback into Schelling’s Segregation Model o↵ering further insights into its mechanics.
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6.2.1 Static measure

The static measure of the final population inside the neighbourhood, shows whether the

alteration to the model produces stable mixed populations. Following equation (4.1), M

is used to measure the final population configurations. The hypothesis, that changing the

movement rule will produce mixed populations, is tested by comparing M to Schelling’s

findings of M = 0. A result of M > 0 suggests mixed populations have arisen, counter to

Schelling’s model.

6.2.2 Dynamic measure

The analysis of the population flows focuses on I, which is the number of iterations taken to

reach a steady state. The system has reached a steady state when no more agents wish to

move. The results are analysed using the Mann-Whitney-Wilcoxon U test and the Vargha-

Delaney A-statistic, described in Section 4.4.

6.3 Domain model: changing the movement order

The Domain Model has two changes from Section 5.1. The major di↵erence is that agent

movement can be either stochastic or deterministic. The change to the agent movement rule

is shown in the Platform Model (Section 6.4).

6.4 Platform Model

Using the parameters defined in Chapter 5, a Platform Model is developed using pseudo-

code. Rule 1 is unchanged from algorithm 8. Rule 2, that agents move at random, can be

accommodated with a small change to algorithm 8 to give algorithm 9. A minor change is

made to the colour of the agents. The reason for this change is that some results are displayed

using a colour code, using black and white colours would be di�cult to display. Agents are

now either orange on 2 O or blue (remains bn 2 B), with the ratios similarly adjusted giving

ROB and RBO.

6.5 Simulation Platform

The Simulation Platform follows the same process as Section 5.3, with 5000 initial conditions

covered. Since a stochastic process has been introduced, each initial condition is run using

25 di↵erent seeds. This helps protect against artificial results, that could be produced by the
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Algorithm 9 Agent type o movement rule: one timestep

if 9on 2 (O \ E⇤) with on(⌧) � ROB then
move on with on(⌧) � ROB {(a) random ‘happy’ outside moves in}

else
if 9on 2 (O \ E) with on(⌧) < ROB then

move on with on(⌧) < ROB to E⇤
{(b) random ‘sad’ inside moves out}

end if
end if

randomness in the model. The Netlogo command one-of allows the random selection of a

single agents from a group. Thus, the change in the movement rule is a simple alteration to

the movement algorithm.

6.6 Results Model

The results of the static analysis, M , is calculated from each initial condition (see equa-

tion (4.1)). The colour of the final populations from each initial condition, is mapped onto

a two dimensional plane (as described in Section 4.4). This means that each point returns

either orange or blue, depending on the final population configuration, giving a much clearer

visual indication as to the more dominant population. Since Schelling’s model is deterministic

the results display a clear boundary for the populations. The random movement produces 25

di↵erent results, which are collated onto a single colour map (bottom Figure 6.2). In this case,

the results from each seed show that, Schelling’s clearly defined boundary has blurred into a

‘region of uncertainty’, insofar as it is unclear which population will dominate from the initial

condition. In addition there is an increase in the dominance of the Orange population. Initial

conditions that previously were ending with Blue populations, are now Orange. This can be

seen by the change in the boundary on the random results. However, all the final populations

are all still segregated, shown by M = 0. The dynamic results, are again displayed on a two

dimensional chart identical to Schelling’s. However, the results from the random movement

are highly chaotic (see Figure 6.3). The flows that were clear in the original simulation, have

all but disappeared.

By focusing on four initial conditions and comparing di↵erent seeds, we get a clearer

indication of the population flows given by the random movement rule (Figure 6.5).
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Figure 6.2: Colour coded comparison of deterministic (top) and random (bottom) movement. Co-
ordinates correspond to the initial condition, whilst the colour represents the final population config-
uration. The deterministic results show a clear division between the populations, and that no mixed
population steady states appear. The stochastic results are collated onto the colour map. The previ-
ously clear division is now a region of uncertainty. However the uncertainty does not lead to mixed
populations.
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Figure 6.3: The population flow of the random movement rule, plotted on a two dimensional plane
(bottom). The stochastic nature of agent movement partially obscures the parabolas that are clearly
shown in the deterministic model (top).
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Figure 6.4: Cumulative frequency distribution of I from deterministic (black) and 25 random (red)
results. The shift of the distribution to the right suggests that, random movement takes longer to
reach a steady state. This evidence is supported by the results of the U -test, which calculates a
significant di↵erence p < 0.005 between the median of the deterministic model (I median = 42) and
the random (I median = 49.
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Figure 6.5: An edited version of the random movement rule. By focusing on four initial conditions,
(10O, 10B), (50O, 25B), (25O, 50B) and (100O, 50B), a clearer picture of the population flows can be
seen. Even with stochastic movement the agents still follow the population flows of Schelling’s model.
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6.6.1 Testing the hypotheses

The results from the simulation, are used to test the hypothesis that, changing the movement

rule changes the results of the model. The null hypothesis H0, that there is no change in the

model, is tested using two measures, static and dynamic.

Static analysis

The static results are tested by measuring the value of M (see equation (4.1)). Since M is

calculated for each initial condition, each seed returns 5000 values of M . By simply averaging

the results across the seeds, a value of 0  M  1, for each initial condition is returned.

Values of M > 0 means that the simulation has produced mixed populations. However, the

analysis of the final population levels shows M = 0. This means that none of the final states

contained mixed populations. Thus, we cannot reject the null hypothesis, that randomising

the movement of the agents has no e↵ect on M . What the results fail to show is the change,

from Schelling’s clear boundaries, to the creation of a ‘region of uncertainty’ along the former

boundary. Within this area the population could end up as either O or B, but not both.

Dynamic analysis

The dynamic results are tested using the U test. This is used to analyse I, the number

of iterations taken for the simulation to reach a steady state. The deterministic nature of

Schelling’s model, means each initial condition produces a single value for I. This is compared

to the corresponding value from the 25 random results. The results are then used to test

the null hypothesis, H0, that the compared samples are drawn from the same population.

The test calculates a statistic U that measures the rank of the data in the two samples. If

Uobs > Ucritical the null hypothesis H0 can be rejected. However, the sheer number of samples

in this experiment increases the likelihood of a significant result. By measuring the e↵ect

size using the A test, it is possible to guard against this. In addition, the failure to reject

H0 does not imply proof of H0; rejection is merely a proof by contradiction [84]. The results

from the statistical analysis, with n = 5000, indicates a significant di↵erence in I, between

the deterministic (median I = 42) and random (median I = 49) results. Calculating the A

statistic (see Section 4.4.3) shows a small e↵ect size with A12 > 0.56. This can be clearly

seen in Figure 6.4 and, thus, we can reject H0.

The e↵ect of the random movement rule can be further explored, by comparing values of

I from the results of the 25 seeds. By focusing on four initial conditions (see Figure 6.5), and

plotting their distributions we are able to see the variation in I (see Figure 7.9). The large
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Median I p A12 M

Deterministic 41 1 - 0

Random 49 0 0.5717 0

Table 6.1: Results from the analysis of the Bounded Neighbourhood simulation.

Figure 6.6: Cumulative frequency distribution of I from 25 di↵erent seeds. Populations (10O, 10B)
(blue), (50O, 25B) (red), (25O, 50B) (green) and (100O, 50B) (black) are initialised and run 25 times
to produce a distribution of runtimes. For the (100O, 50B) and (50O, 25B) results, there is little
variation in I, meaning the populations always segregated into the same colour. However there is a
much larger variation in the (10O, 10B) and (25O, 50B) results. This is due to the final populations
being either all O or all B, depending on the seed.
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variation in the distributions, for the initial conditions (10O, 10B) and (25O, 50B), can be

attributed to the di↵erence in the number of iterations taken to reach one of the two final

states. Since there are less iterations to reach 50B, compared to 100O, initial conditions

that reach both have a wider distribution. Since the random movement of an individual in a

smaller populations has more of an e↵ect, this result is unsurprising for the initial population

(10O, 10B). What is more interesting is the final population configuration, this is O around

80% of the time, as opposed to the expected 66%1. More surprising is the initial population

(25O, 50B). This population initialises at the maximum ⌧ for the O population and, as

such, should segregate to B. However the results indicate that, around 5% of the time the

population segregates to O. Both these results highlight the increased dominance of the O

population. However, when compared to results from the original simulation, none of the

results returned a significant di↵erence (see Table 6.2).

6.7 Conclusions

The work presented here, explored the e↵ect of Schelling’s deterministic movement rule. The

results show that changing the the movement rule in the Bounded Neighbourhood Model,

from ordered to random movement, causes a significant di↵erence in the number of itera-

tions (I) taken to reach stability. By applying the Vargha-Delaney test, we have shown the

di↵erence is not just a consequence of the number of samples used in analysis. However,

the changes have no e↵ect on the final population configuration of the model, as the only

stable populations are totally segregated (M = 0). The ability to a↵ect, what Schelling

would call, “the process of occupation” [74, 170] but not the final segregation, highlights the

model’s resistance to change. In addition the change in the movement rules increased the

dominance of the Orange population. In the original model, there was a definite divide of

RBO = 2 : 1 for B < 25. Any population initialising above that ratio would end up Blue,

those below ended up Orange. However, the ratio steadily decreases as B increases, meaning

when B = 50, RBO = 1.5 : 1. In the random model, the divide becomes blurred and changes

shape, so that, RBO ⇡ 2 : 1 8B. This is because it is no longer the most unhappy moving

(which, when RBO > 1, is an Orange), instead one is chosen at random. This means that,

when B > 25 and RBO ⇡ 2 : 1, although a Blue is more likely to be ‘happy’, they are twice

as likely to be chosen.

The distribution of the Schelling model shows a disjoint in the curve. The distribution

suggests that, by the time 50 iterations have been reached the model has reached a steady

1which is expected because the O population is twice that of B. This means the population would be
expected to dominate, from an equal initial condition, two-thirds of the time (or 66%).
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10O, 10B

Median I p A12 M

Deterministic 91 1 - 0

Random 95 0.444 - 0

50O, 25B

Median I p A12 M

Deterministic 51 1 - 0

Random 55 0.111 - 0

25O, 50B

Median I p A12 M

Deterministic 26 1 - 0

Random 33 0.111 - 0

100O, 50B

Median I p A12 M

Deterministic 51 1 - 0

Random 64 0.08 - 0

Table 6.2: Results from 25 di↵erent random seeds, taken from four initial condition. Although the
results from all 5000 initial conditions returns a significant di↵erence, there is no significant di↵erence
between the rules, from these initial conditions.
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state 66% of the time. This is due to the disparity in population sizes, since by 50 iterations

the entire B population will have made their moves, but only half of the O. This means

that, although the majority population dominate the final mix, the minority population

reach their steady state more quickly. This can be seen when exploring the results from

di↵erent seeds from certain initial conditions. Here the distributions of I, for certain initial

conditions, were stretched by the final configurations being either all O or all B. Further

examination suggests that randomising the movement of the agents, increases the dominance

of the majority population. However, no significant di↵erence was found in the runtimes

from the four selected initial conditions. This suggests that the significant di↵erence in the

original results was an artefact of the sample size. However, the results of the distributions

(Figure 7.9) show a similar increase compared to the cumulative results in Figure 6.4. This

means none of the random results reach stability before the expected result. Whilst this is

not completely unsurprising, it highlights the simplicity of the model. Since, with a more

complex model, one could expect a random results to perform at least as well at least once,

compared to the control. The overall results suggest that, whilst the ordered movement of

agents quickens the process of segregation, there is no discernible e↵ect on the segregation

of the populations. This can be seen as altering the kinetics of physical processes, but not

the thermodynamics. It is clear that, a much more significant alteration to the movement of

agents is necessary to change the stability of the system. Simply randomising those who are

leaving is not enough to change the results of segregation the model, however the random

movement can change the colour of the final population.

Further work could explore increasing the uncertainty in the model, by choosing from all

the agents at random, rather than from those who wish to move.. Even so, the experiment has

shown that the segregation is not driven simply by the order of agent movement. Although

this might seem an obvious statement, it is important to be able to provide evidence for

it. In addition, this has been a successful application of the CoSMoS process to Schelling’s

model. Continuing the process, the results from the simulation are fed back into the Schelling

Segregation model, increasing understanding, and raising new questions.
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Chapter 7

Who do you know?

“Information is perfect: everybody knows the color ratio within the area at the

moment he makes his choice.” [74, p168]

7.1 Introduction

In Schelling’s Bounded Neighbourhood Model, agents have a precise knowledge of the colour

ratio of the neighbourhood. From this knowledge they make a decision about moving. Pre-

vious work (Chapter 6) has shown that, although changing the order of movement increases

the number of iterations taken to reach a steady state, the final outcome is always complete

segregation. In this chapter, rather than calculating the ratio from the neighbourhood in its

entirety, agents select a sample of other agents in the neighbourhood, and use that to calculate

their ratio. This means that agents no longer have a uniform response to the environment.

7.2 Hypothesis

Consistent with Chapter 6, the null hypothesis (H0) is that changing the agents’ perception

will have no e↵ect on the results of the simulation. This is tested using the two familiar

measures, static and dynamic.

7.2.1 Static measure

The static measure M is used to analyse the mix of the final population. M is calculated

according to equation (4.1), and compared to the mix of M = 0, resulting from Schelling’s

model. Values of M > 0 indicate mixed populations and highlight a change in the results.

95
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Figure 7.1: An application of the CoSMoS process in testing the e↵ect of agents’ exact knowledge of
the ratio in Schelling’s Bounded Neighbourhood Model. Movement based on the ratio of a sample
of the neighbourhood is added to the Domain Model. The size of the sample becomes an adjustable
parameter, with the e↵ects of the adjustment tested as previously. The results feed back into Schelling’s
segregation model, this time o↵ering di↵erent insights.
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7.2.2 Dynamic measure

The dynamic measure tests whether the changes in the model, e↵ects the population flows.

This is tested by measuring the parameter I (described in Section 5.4), and comparing it to

the results from the original simulation. The results are analysed using the Mann-Whitney-

Wilcoxon U test and (if necessary) the Vargha-Delaney A statistic (described in Section 4.4.5).

7.3 Domain model: sampling the neighbourhood

The language of the Domain Model is retained from the formalisation presented in Chapter

5. Two populations of agents on 2 O and bn 2 B, calculate the ratio of the neighbourhood E

(RBO and ROB respectively). Agents compare R against their tolerance ⌧ . If the comparison

is unfavourable, on(⌧) < RBO or bn(⌧) < ROB the agent leaves the neighbourhood.

7.3.1 Changes to the Domain Model

In this extension agents take a random sample (S) of the neighbourhood (E) and use it to

calculate a sample ratio. This gives the ratio for on 2 O population as

RBOS =
#(B \ S)

#(O \ S)
, (7.1)

with an equivalent equation for bn of

ROBS =
#(O \ S)

#(B \ S)
. (7.2)

It is useful that, as S approaches E, the model tends to Schelling’s Bounded Neighbourhood

Model, since this can be used to validate the simulation.

7.4 Platform Model

The implementation of the alteration to the model is shown in algorithms 10 and 11. The

algorithms show the process for an agent on, an equivalent process governs the bn agents. The

only change to the algorithms presented in Section 5.2 is the calculation of R in algorithm 8.

Creating a sample ratio from the total neighbourhood is a simple change in how the variables

used to calculate the ratio are ascertained. Now agents take a random sample (S) of the

neighbourhood and use it to calculate a sample ratio ROBS or RBOS . This new ratio calcu-

lation propagates through the Platform Model, changing ROB and RBO to ROBS and RBOS
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Algorithm 10 Agent type o ‘happiness’ calculation: one timestep

calculate sample ratio RBOS

while on(⌧) < RBOS do
for each agent o 2 O do

if on(⌧) < RBOS then
set on [happy]

else
set on[unhappy]

end if
end for
execute Algorithm 11

end while

Algorithm 11 Agent type w movement rule: one timestep

if 9on 2 (O \ E⇤) with on(⌧) � RBOS then
move on with max ⌧ to E

else
if 9on 2 (O \ E) with on(⌧) < RBOS then

set on with min ⌧ to E⇤

end if
end if

respectively. However, in other respects, the movement rule is unchanged from Schelling’s

original model, meaning agent’s still move in order of tolerance (see algorithm 11).

7.5 Simulation Platform

The Platform Model is simulated using Netlogo (see Section 5.2). Using this tool maintains

a consistency that is important for valid comparisons of results. In addition, Netlogo has

a number of useful environments that help facilitate the experiment. For example, the Be-

haviourSpace environment automates the testing of a number of di↵erent parameters, over

a range of values. This is useful for testing across all initial conditions, with varying values

of S. For consistency, the initial population values are retained from previous experiments.

This gives 5000 data points for each value of S. These are analysed to test the hypotheses

using the techniques set out previously (see Section 4.4). The values of the sample size S

are 150 (for validation) 75, 50, 25 and 10. These values, whilst arbitrary in some aspects,

nonetheless, o↵er a good sample representation of a range of possible sample sizes. Since

each sample is chosen randomly, 25 di↵erent runs of each initial condition are performed,

identical to Section 6.5.
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7.6 Results Model

The results from the simulation are validated and analysed, using the static and dynamic

measures. The results of which provide evidence towards accepting, or refuting, H0.

7.6.1 Validation

The simulation is validated by setting S = 150 (the total number of agents). This makes

the sample the complete neighbourhood. As with the previous validation (Section 5.4.1)

the output is measured against Schelling’s results. The analysis of the static results shows

M = 0, whilst the colour maps are identical (Figure 7.2). The population flows are compared

in Figure 7.3 and show identical dynamics.

Following the validation of the simulation the remaining values of S are analysed. The

results are analysed using the static and dynamic measures. This allows testing of H0, that

the reduction of agents’ knowledge has no e↵ect on the model. For the analysis of the static

results, M is calculated from the steady state, reached by each initial condition. The value

of M is then compared to Schelling’s findings of M = 0. The final populations from each

of those initial conditions, are displayed as colour maps (Figures 7.4 and 7.5). The dynamic

measure (I) is used to test for changes in the number of iterations the system takes to reach

a steady state. To give a visual comparison to Schelling’s work, the results are displayed as

flows (Figures 7.3, 7.6 and 7.7). The dynamic results are tested using the U test (described

in Section 4.4.3).

7.6.2 Static analysis

To test H0, a comparison of the final population configurations is made. Results can be seen

in Figures 7.4 and 7.5, as well as in Table 7.1. Final populations are represented by their

colour, with their location on the grid representing the initial condition. As can be seen, as

S is reduced the dominance of the O population is increased.

7.6.3 Dynamic analysis

The dynamic test of the hypothesis argues that changing S will have no e↵ect on I. The

population flows in Figures 7.6 and 7.7 show that, as the sample size is reduced, the flows of

the populations are disrupted (see Figures 7.5 and 7.5).

A comparison of the number of iterations (I) to reach a steady state is shown in Figure 7.8,

with a full analysis of results presented in table 7.1.
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Figure 7.2: Comparison of the population colour maps from the validation results, for S = 150 (top),
against the results from the Schelling Segregation model from Chapter 5 (bottom).
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Figure 7.3: Comparison of the population flows of the validation results for S = 150 (top), against
Schelling’s results from [74] (bottom).
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Figure 7.4: The colour coded comparison of final population configurations. Here a comparison is
made between S = 75 (top) and S = 50 (bottom). Co-ordinates correspond to the initial condition,
whilst the colour represents the final population configuration. The results show a clear division
between the populations and no mixed populations.
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Figure 7.5: Colour coded comparison of final population configurations. Here a comparison is made
between S = 25 (top) and S = 10 (bottom). Co-ordinates correspond to the initial condition, whilst
the colour represents the final population configuration. The results show a clear division between
the populations, and that although mixed populations appear (shown as circles), they have already
‘tipped’ (i.e., have a ratio above 4 : 1) and are in the process of segregating.
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Figure 7.6: Comparison of the population flows for S = 75 (top) and S = 50 (bottom). When the
population is larger than the sample size, the parabolas begin to distort. However, as the population
numbers in the neighbourhood reduce, the simulation reverts to Schelling’s results.
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Figure 7.7: Comparison of the population flows for S = 25 (top) and S = 10 (bottom). When S = 10
the model is only able to replicate Schelling’s flows for populations below 10.
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Figure 7.8: Comparison of the distribution of I for di↵ering values of S. As S decreases, I increases,
shown by the movement of the distributions to the right. The di↵erence between S = 150 and S = 75
in negligible, shown by the almost overlapping distributions. There is a marked di↵erence with S = 10,
with only 85% of populations stabilising by 100 iterations. Indeed some populations took up to 300
iterations to stabilise.
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S Median I p A12 M

150 41 1 - 0

75 42 0.82 - 0

50 43 < 0.05 0.518 0

25 45 < 0.05 0.559 0

10 50 < 0.05 0.604 0

Table 7.1: Results from di↵erent S values. The dynamic results show an increase in the median of
I, which is significant for S  50. However, only the smallest value of S produces a noticeable e↵ect
size, according to the Vargha-Delaney A statistic.

The results, displayed in Table 7.1, shows the disruption increases I as S is reduced;

however, there is only a significant e↵ect for S = 10. This can be seen in Figure 7.8, where

the distribution of S = 10 is noticeably larger than the other values of S.

Focusing on a number of di↵erent seeds, allows further exploration of the results (dis-

played in Table 7.2). The results show that when S = 10 and the population initialises with

(50O, 25B) the value of I dramatically increases. Further exploration of I shows that, the

system maintains a mixed population of around 25O and 35B for up to 700 iterations (see

Figure 7.9). However, eventually, the system segregates to an all O population.

7.7 Conclusions

The work presented in this chapter introduces a di↵erent ‘noise’ into the system. Unlike

Chapter 6, where the movement of the agent was randomised, here the random element was

in their calculation of the ratio. For each sample size parameter change, the simulation was

run 25 times to counter any possible artefacts from the stochasticity. The movement order

remained unchanged, with the agents moving in order of their tolerance assuming they are

‘sad’. As expected, when S was larger than the population in the neighbourhood, the results

replicated Schelling’s original model, with M = 0 and the median of I = 41. It was hoped

that reducing the size of the sample size used to calculate the ratio might ‘trick’ agents into

remaining, even when the actual ratio was above their tolerance. Unfortunately, results from

the static analysis showed that M = 0. The results of the colour maps (Figures 7.4 and 7.5),

show an interesting parallel with results from Chapter 6. Once again the, previously clear,

division changes shape. The location of the change, however, is di↵erent for di↵erent sample

sizes. When S = 75 the change is hardly noticeable, because most of the initial conditions
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10O,10B

S Median I p A12 M

150 91 1 - 0

75 91 1 - 0

50 91 1 - 0

25 91 < 0.05 0.5001 0

10 97 < 0.05 0.53 0

50O,25B
S Median I p A12 M

150 51 1 - 0

75 51 1 - 0

50 51 1 - 0

25 51 < 0.05 0.5 0

10 65 < 0.05 0.68 0

25O,50B
S Median I p A12 M

150 26 1 - 0

75 26 1 - 0

50 26 1 - 0

25 46 < 0.05 0.53 0

10 428 < 0.05 > 0.71 0

100O,50B
S Median I p A12 M

150 51 1 - 0

75 51 1 - 0

50 52 0.3 - 0

25 52 0.114 - 0

10 57 < 0.05 > 0.71 0

Table 7.2: Results from 25 di↵erent random seeds, for the di↵erent values of S, are taken from four
initial conditions. The results suggest that e↵ects of the sample are only noticeable when the initial
population is larger than the sample size. The largest variation is when S = 10 and the initial
populations is 25O, 50B. These conditions cause a dramatic increase in I, further investigation of
the initial condition indicates, the system sustains mixed populations for hundreds of iterations (see
Figure 7.9).
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Figure 7.9: Three dimensional flow of di↵erent seeds, from initial condition (25O, 50B). Di↵erent runs
are initialised at (25O, 50B), the trajectory of the system is plotted onto a three dimensional graph.
When the population reaches approximately (25O, 35B) the flow slows enough to maintain a mixed
population for up to 700 iterations. However, the instability of the state, and the fact that only the
B population leaves, means all the populations eventually segregate (M = 0).
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a↵ected have populations less than the sample size (i.e., they revert to the Schelling model).

By S = 50 the change is noticeable for initial conditions with a population above 50. When

S = 25 the results are most similar to the random movement change, with the divide blurring

along RBO ⇡ 2 : 1. By S = 10, whilst the divide is broadly the same shape, the region of

uncertainty has increased. The dynamic result provided evidence that reducing S increased

I, with a significant increase (median of I = 50) when S = 10. Further exploration has

shown the increase is due to the system sustaining mixed populations for hundreds of it-

erations (see Figure 7.9). Whilst, this is a promising result, only the B population would

only leave. Once they had left, they would not return and the O population begins to dom-

inate the neighbourhood. These results o↵er evidence that H0 can be rejected. Although

mixed populations arose, and were briefly maintained, the populations would all eventually

segregate. The results from the experiment show that reducing the knowledge of the agents

increases the number of iterations taken to reach a steady state. Indeed, for S = 10 unsta-

ble mixed populations appeared; however, eventually, all the populations segregated. This

highlights the precariousness of mixed populations, compared to the segregated populations.

Once segregated the sampling has no e↵ect, since no matter what the sample will always be

the same. When the population is mixed the ratio of the sample can change, displacing the

balance. This is something that could be explored further as, it would appear, the system

is beginning to sustain mixed populations. It is possible that the slowing of the population

dynamics, could be a route towards increasing the stability of mixed populations. If agents

were prevented from leaving the moment ⌧ < R, it is possible that the flow of other agents

could alter R enough such that ⌧ � R.



Chapter 8

Should I stay, or should I go?

“If a person’s limit is exceeded in this area he will go someplace else–a place, pre-

sumably, where his own color predominates or where color does not matter..” [74,

p167]

8.1 Introduction

In Schelling’s model, the moment an agent can no longer tolerate the ratio of the neigh-

bourhood, they leave. Previous results (Section 6.6) have shown that, although changing

the order of movement can slow the population dynamics, the model is unable to produce

anything other than complete segregation. In the Bounded Neighbourhood Model, agents in

the population move as soon as they are ‘sad’, to any place that is more tolerable. However,

movement should have a cost. If agent movement was restricted, the system might change

enough for the agent to remain.

In this modification, we define a ‘sadness’ parameter. Now, the movement of the agents is

based on a probability derived from their level of ‘sadness’ relative to the second neighbour-

hood. Agents attempt to minimise their ‘sadness’ by switching to the other neighbourhood.

By considering the problem in terms of energy minimisation, a friction parameter F is defined

to indirectly ‘control’ the flow of the system. These characteristics are added to the Domain

model in Section 8.3, and from there (following the CoSMoS process) the Platform Model

is adjusted. The Simulaton Platform is used to run the model and produce results that are

used to test the hypothesis described below.
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Figure 8.1: An application of the CoSMoS process in testing the e↵ect of agents’ instantaneous
movement. A ‘friction’ parameter (F ) is added to the domain model. The parameter can be adjusted
to explore the e↵ects, with systematic testing constant with previous experiments.
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8.2 Hypothesis

The null hypothesis (H0) argues that, increasing F will have no e↵ect on the results of the

model. The static and dynamic measures (M and I) are used in the analysis of results, and

testing of the hypothesis.

8.2.1 Static measure

The static measure analyses the final population configurations. Using Equation (4.1) the

mix of the population M is measured and compared to the results from Schelling’s model,

where M = 0. Values of M > 0 indicates mixed populations have arisen.

8.2.2 Dynamic measure

The dynamic measure analyses the flows of the populations into and out of the neighbourhood.

The U test (described in Section 4.4.3 is used to analyse the results of the number I of

iterations, testing the e↵ects of the changes of the model. Results that return significant

results undergo further analysis using the A statistic (described in Section 4.4.5).

8.3 Domain model: adding friction

The parameters and language of the Domain Model are retained (see Section 5.1). The

‘sadness’ of an agent (on 2 O)1 is calculated thus

on(u) = RBO � on(⌧) (8.1)

where on(⌧) is the tolerance of the agent on and RBO is the ratio inside the neighbourhood (see

(5.3)). However, problems arise with agents who find themselves ‘‘outside” the neighbourhood

(on 2 (O \ E⇤)), but are calculating their ‘sadness’ based on the ratio inside (RBO, see

equation (5.5)). Agents that are inside (on 2 (O \ E)) now have di↵erent behaviours from

those outside (i.e., if an agent is ‘sad’ inside they move but if they are ‘sad’ outside they stay

outside).

8.3.1 Changes to the model

In the extension considered in this chapter, agents now utilise the ratio of a second neigh-

bourhood E⇤. Introduced in Section 5.1, E⇤ was simply (in Schelling’s words) “someplace

1As with the previous Domain Model the agent on 2 O has an equivalent agent bn 2 B.
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else” [74, p168]. In this extension, E⇤ is defined as the neighbourhood where the agent is

considering moving to. Thus, the ratio of E⇤ is needed to allow a comparison and (for the O

population) is given by the ratio

RBO⇤ =
(B \ E⇤)

(O \ E⇤)
. (8.2)

The agents on use this ratio in the equation

on(u
⇤) = RBO⇤

� on(⌧), (8.3)

to calculate their ‘sadness’ if they switch neighbourhoods. By comparing this value with u,

the ‘sadness’ di↵erence �u is calculated,

�u = u� u⇤. (8.4)

The same equations are used to calculate the �u of the B population. It is reasonable to

assume that smaller �u is, the more likely an agent will move. This can be modelled as

follows. Substitute �u for x into the exponential function e�x and dividing the exponent

��u by a friction parameter (F ) to obtain a function e��u/F that decreases steeply to 0 as

�u decreases and increases up to 1 as F increases. The movement of agents, can be modelled

by a probability derived from �u and ‘controlled’ by F :

P (stay) = min{1, e��u/F
}. (8.5)

This means that, as �u increases, the probability of staying decreases; as F increases the

probability of staying increases (Figure 8.2). Thus, instead of agents moving as soon as they

are sad, their movement is controlled by a probability, based on the di↵erence between the

ratio of populations. If �u < 0, agents will not move, since it implies that R⇤ > R, where R

and R⇤ are the respective neighbourhood ratios.

8.4 Platform Model

Using the structure and language developed in Section 5.2, the Platform Model is presented

using algorithms 12 and 13. Agent movement is based on the calculation of P [stay], shown

in the movement calculation algorithm 13. Now the question remains as to the order of

movement. In Schelling’s model, agents moved “in order of their tolerance” [74, p167],

if agents are moving into, and out of, two neighbourhoods, both of which are now being
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Figure 8.2: Probability distributions derived from eq (8.5) with F = 0, 1, 5, 10 and 20.
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Algorithm 12 Probabalistic Bounded Neighbourhood Model I Initialisation/Iteration Op-
erator
Create population of agents O [B
apply ⌧ to agents
set O \ E and B \ E agents state = [in]
while on(⌧) < RBO or bn(⌧) < ROB do
execute Algorithm 13

end while

Algorithm 13 Agent type o movement calculation: one timestep

for each agent o 2 O do
set �u
if selected? = false then

set selected? true
if e��u/F < URD[0, 1] then
move on

end if
end if
if @on with selected? = false then

set agents o 2 O selected? = false
end if

end for

considered, the agent with the minimum ⌧ will be the first to have the opportunity to move

(least tolerant moves first). If their ‘sadness’ is not strictly decreased, the agents will not

move but will be immediately selected again. This can be overcome by adding a selection

flag to algorithm 13, which will only allow re-selection of an agent once all other agents have

been selected. Note that whilst not all agents selected will move, those that choose not to

move are still flagged. This technique means (for the deterministic model F = 0) I will have

a minimum value of 150 (the number of agents in the model).

8.5 Simulation Platform

Netlogo is used to implement the modified segregation model. The platform is discussed in

Section 5.3 and is used for two main reasons. Firstly, it is important to keep the process as

consistent as possible. Since there is no reason to change the Simulation Platform, it is sensible

to retain it. Secondly, Netlogo has a number of useful tools that facilitate experimentation.

One of these (BehaviorSpace) is able to run a number of simulations across a range of

parameters. Whilst this is an extremely useful tool, there is a major drawback. The output
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of (BehaviorSpace) is cached in Netlogo until the entire parameter space has been explored.

This means that as the number of runs increases the system slows exponentially. Whilst a

solution to this problem would be an interesting aside, time pressure dictates capping the

maximum number of iterations to 1500.

8.6 Results Model

The simulation is used to test the hypothesis from Section 4.4. The null hypothesis (H0)

is that changing F will have no e↵ect on the outcome of the simulation. The parameter

F is run at five values: 0 (for validation purposes), 1, 5, 10 and 20. The probabilistic dis-

tributions of these values are shown in Figure 8.2. These values, whilst arbitrary in some

aspects, nonetheless, o↵er a good sample representation of a range of possible values. It is

believed that, as F increases, the flow will decrease and, possibly, create new stable mixed

populations. The simulation is tested over all possible initial population conditions, from

(o1, b1) to (o100, b50), returning 5000 samples. In addition each initial condition is run 25

times. Whilst this dampens the possible e↵ects from using a stochastic process, such a large

sample size means a significant result is probable. To check for an e↵ect size on significant

results, the Vargha-Delaney test is applied. As stated earlier, because of memory constraints,

the maximum number of iterations is capped at 1500.

8.6.1 Validation

The validation of the model is achieved by setting F = 0, thus (from equation (8.5))

P (stay)= 0 when an agent is ‘sad’. With this setting the movement parameter of the model

reverts to a deterministic model. Whilst it was hoped this would replicate Schelling’s Bounded

Neighbourhood Model, the addition of a second neighbourhood has an e↵ect on the results.

In this adaption, agents switch neighbourhoods only if R⇤ > R. The symmetry of the neigh-

bourhoods means that the population flows diverge along the 2 : 1 ratio (Figure 8.3). If an

initialisation has both neighbourhoods with an equal ratio, the system freezes. This is shown

by dots, representing the unchanging populations flows, along the diagonal in Figure 8.4. This

causes the results of the simulation to return M = 0.005 compared to Schelling’s M = 0.

However, this result is an artefact of the populations that initialise with �u = 0, meaning no

agents will move. In addition, the flows of the population indicate that the entire majority

population has to be present before the minority population begin to leave. This causes the

median value of I to jump from 41 to 149. The results from the validation show that the

flows do not replicate those of Schelling, suggesting a significant change to the model. Whilst
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Figure 8.3: A colour map of the adapted segregation model with F = 0. The addition of a second
neighbourhood means the populations clearly divide across the 2 : 1 ratio. Blue crosses represent
final configurations of the entire B population and none of the O. Whilst orange crosses represents
final configurations of all O and no B. Populations that initialise on the boundary have symmetrical
neighbourhoods. This means �u = 0 and no agents will move.

this does mean it is di�cult to compare the results to the other experiments presented, it

does not render the experiment meaningless.

8.6.2 Static analysis

The results of the static measures can be seen in Figures 8.5 and 8.6, and are displayed in

Table 8.1. AlthoughM returns non zero values for all values of F , the majority of these results

are populations initialising with equal neighbourhoods. This initialisation causes �u = 0 and

means no agents will move, in e↵ect the system is frozen. Knowledge of this artefact means

we can discount values of M  0.005. Although initial results returned values of M > 0.005

for F > 5, these were just artefacts from the capping of I. Increasing the value of I leads
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Figure 8.4: The population flows of the adapted segregation model. The addition of a second neigh-
bourhood means the populations clearly divide across the 2 : 1 ratio. Note the unchanging populations
along the divide, seen as single dots. These represent populations with �u = 0, meaning no agent
will move (P (stay) = 1). Since for each of these populations M > 0, the artefact is carried through
to the results causing M = 0.005.
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F Median I p A12 M

0 149 1 - 0.005

1 220 0 > 0.71 0.005

5 588 0 > 0.71 0.005

10 1088 0 > 0.71 0.005

20 2214 0 > 0.71 0.005

Table 8.1: Results from di↵erent F values. The dynamic results show a significant result, with a large
e↵ect size for even the smallest value of F . Although the results for M indicate mixed populations
they are actually artefacts of the simulation. The M value is a result of the populations that initialised
with perfectly balanced neighbourhoods (i.e., �u = 0), meaning no agents will move.

to M = 0.005 (see Table 8.1). As figures 8.7 and 8.8 show, the populations are still clearly

segregated along the 2 : 1 boundary.

8.6.3 Dynamic analysis

The results from the dynamic analysis are displayd in Figures 8.7 and 8.8. They show that as

F increases, the flow of the population is disrupted (i.e., the number of iterations I increases).

This can be seen in a comparison of the population runtimes shown in Figure 8.9. When

F = 0 the median I = 149, setting F = 1 increases the median I = 220. This increase

is due to the system having to iterate through the population twice more, before reaching

stability. This can be seen by the plateaus in the distributions every 150 iterations. As F

increases further, increase between plateaus is reduced, suggesting less systems stabilising

at each round of iterations. It is noticeable that when F > 5 the maximum I is reached

before the system reaches stability. Although for F = 5 this only happens in 5% of cases,

for F = 10 it has increased to 35% and, by F = 20 around 66% of populations have failed

to reach stability. This artefact means the median I for F = 20 is 1500. By increasing the

maximum I the results for F = 20 return a median I = 2214. However, adjusting F had no

e↵ect on populations initialised with identical neighbourhoods. This is because of �u = 0

so, no matter the value of F , P (stay) = 1.

8.7 Conclusions

The work presented in this chapter has explored the e↵ect of restricting agent movement.

This has been tested by introducing a parameter F to control the ease of movement in the
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Figure 8.5: Colour map of the final population configurations for F = 1 (top) and F = 5 (bottom).
As previously, the location on the map relates to the initial condition of that final population config-
uration. When F = 1 the results are identical to F = 0. When F = 5, some populations have failed
to reach a steady state. Here orange triangles are populations that contain no Bs, but not all of the
Os have entered. Whist orange circles are populations with ROB > 4.
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Figure 8.6: Colour map of the final population levels. Increasing F = 10 (top) and F = 20 (bottom)
produces even more populations failing to completely segregate. However, once again, this is due to
the limit of I. By increasing the limit, the populations eventually segregate. As with the previous
mapping, crosses indicate fully segregated populations, triangles indicate an absence of the ‘other’
population whilst circles show populations R > 4 but still contain a mixture of agents. In addition
blue stars indicate populations with RBO > 3.
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Figure 8.7: The population flows of the adapted segregation model with F = 1 (top) and F = 5
(bottom). The unchanging populations along the 2 : 1 ratio diagonal are consistent with the F =
0 results and are una↵ected by varying values of F . The increase in F disrupts the flows of the
populations, but is unable to maintain stable mixed populations.
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Figure 8.8: The population flows of the adapted segregation model with F = 10 (top) and F = 20
(bottom). The increase in F further disrupts the flows of the populations, but is still unable to create
any stable mixed populations.
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Figure 8.9: Distribution of population runtimes for the di↵erent values of F . Because of the selection
process, when F = 0, I is always the number of agents in the population (here 150). This is shown by
the straight vertical line at 150 iterations. When F = 1 the distribution clearly plateaus at 300 and
600, with less obvious plateaus at 150 and 450. These plateaus indicate the system cycling through
the population of agents. As F increases further, increase between plateaus is reduced, suggesting
less systems stabilising at each round of iterations. It is noticeable that when F > 5 the maximum I
is reached before the system reaches stability. Although for F = 5 this only happens in 5% of cases,
for F = 10 it has increased to 35% and, by F = 20 around 66% of populations have failed to reach
stability.
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model. The adjustment has meant a second ‘comparison’ neighbourhood has been defined.

The validation of the model has provided evidence that the model produces di↵erent results

in both static and dynamic analysis. However the static results returning M > 0 have been

shown to be artefacts created from the calculation of �u. The failure of the validation means

the model cannot be considered a valid replication of Schelling’s Bounded Neighbourhood

Model. This makes the results di�cult to compare to either Schelling’s model, or the results

of other experiments. However, the results of the experiment are interesting, since they show

that even heavily restricting the movement of the agents is unable to prevent total segregation.

The experimentation on varying values of F , did initially suggest that the model maintained

mixed populations (M > 0). However, further analysis highlights two artefacts causing the

result. Firstly, when the system initialises with the two neighbourhoods having equal ratios,

no agents move. This is shown by the single dots, signifying unchanging populations, along

the diagonals of Figures 8.4, 8.7 and 8.8. The agents in these populations will not move,

because the identical ratio means �u = 0, leading to P (stay) = 1 and M = 0.005. Secondly,

as F is increased I also increases; however, since the maximum of I = 1500, the remaining

mixed populations are merely in the process of segregating. By increasing the maximum

value of I, the second artefact disappears. The results indicate that, the change in the model

produces a large e↵ect on the dynamic results but, even though stable mixed populations are

maintained, they are shown to be just an artefact of the model. The increase in I is a result

that is to be expected, since the adjustment to the model is the first time the movement of

the agents has been restricted. However, the failure of the validation test makes a comparison

between these results, and those from Chapters 6 and 7 di�cult. This means that, although

the change in the model shows a significant increase in I, it cannot be known if the results

are due to the change in the movement parameter, or the change in the environment. The

adjustment means that, although the model is able to replicate Schelling’s segregation, it is

unable to recreate Schelling’s flows. This reduces its defendability as a model of Schelling’s

Bounded Neighbourhood. However, the fact that a second neighbourhood can cause such an

e↵ect on the model is an important result. This suggests that the environment ‘outside’ the

model needs much more careful consideration before being applied, something that is often

disregarded in social interaction models.



Chapter 9

Friends and Neighbours

9.1 Introduction

Networks have been widely used to model social systems, such as group membership [42] and,

interestingly, segregation [38]. Networks are described in Section 2.4, so here we provide a

brief introduction to the additional concepts and terms needed for this chapter. Networks are

described in terms of nodes and their connections to other nodes. They are often characterised

in terms of distances between nodes (path length), connectivity (degree) and density ⇢. It is

natural to interpret nodes connected to a network being agents inside a neighbourhood, and

vice-versa. By describing Schelling’s Bounded Neighbourhood Model as a network, we can

exploit network techniques. As with the previous Bounded Neighbourhood Model, the ratio

of the neighbourhood network changes over the time of the run. As the ratio changes, nodes

(which, for consistency, we call agents) connect and disconnect from the neighbourhood,

until no more change their connection. Implementing a social network creates a subset of

agents in each of the population types. Those inside the social network alter the calculation

of the neighbourhood network. This allows the investigation of the e↵ect, if any, of the

di↵erentiation by type alone (i.e., there is no di↵erence between agents other than their

type).

9.2 Hypothesis

The hypotheses tests the e↵ects of recasting the model. We o↵er the null hypothesis (H0)

that recasting the model will have no e↵ect on the outcome of the simulation. This is tested

using two measures, static and dynamic (discussed in Section 4.4).

127
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Figure 9.1: Using the CoSMoS procecss to build a network model and simulation of Schelling’s
Bounded Neighbourhood Model.

9.2.1 Static measure

The static measure of the final population inside the neighbourhood, shows whether the

alteration to the model produces stable mixed populations. Following equation (4.1), M

is used to measure the final population configurations. The hypothesis, that changing the

movement rule will produce mixed populations, is tested by comparing M to Schelling’s

findings of M = 0. A result of M > 0 suggests mixed populations have arisen, counter to

Schelling’s model.

9.2.2 Dynamic measure

The analysis of the population flows focuses on I, which is the number of iterations taken to

reach a steady state. The system has reached a steady state when no more agents wish to

move. The results are analysed using the Mann-Whitney-Wilcoxon U test and the Vargha-

Delaney A-statistic, described in Section 4.4.
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Figure 9.2: Translating Schelling’s Bounded Neighbourhood model as a network. Agents are nodes.
At left, an agent forms a single node; in the centre, two agents inside the neighbourhood are connected
(an edge). On the right, three connected agents form a triangle.

9.3 Domain model: Schelling’s Bounded Neighbourhood Model

as a network

Following the formalisation presented in Chapter 5, the Domain Model is constructed as a

network model and, from there, a Platform Model is built and simulated. To validate the

simulation, results are measured against the results from the original Bounded Neighbourhood

Model simulation. The validation is followed by an experiment, testing the assumption of

binary di↵erentiation by type. This experiment implements a social network between the

nodes.

A simple translation of the model into a network is illustrated in Figure 9.2. The network

consists of n = 150 agents, with 100 orange (o 2 O) and 50 blue (b 2 B). Agents are

considered as nodes with two variables: a type (here o or b) and a tolerance ⌧ , drawn from

the distribution shown in Figure 3.5. Inside the neighbourhood component, n0
 n agents

are connected by m links, with the distribution

pk =

8
<

:
1 for all agents inside the neighbourhood

0 for all agents not inside the neighbourhood.
(9.1)

The adjacency matrix

Following Section 2.4 an n⇥ n adjacency matrix is constructed from

Aij =

8
<

:
1 if there is a link between nodes i and j

0 otherwise;
(9.2)
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where i and j are i and jth agents in the network. This gives the matrix

A =

0

BBBBBBB@

0 A1,2 . . . A1,149 A1,150

A2,1 0 . . . A2,149 A2,150
...

...
. . .

...
...

A149,1 A149,2 . . . 0 A149,150

A150,1 A150,2 . . . A150,149 0

1

CCCCCCCA

(9.3)

Agents connected to the neighbourhood are defined as in E, and are fully connected to

all other agents in E. If |E| ⌘ n0, where |E| is the cardinality of E, then the number of

connections m can be calculated thus,

m =
n0(n0

� 1)

2
. (9.4)

The ratio for the O population, RBO, is derived from equation (5.3) giving:

RBO =
n0(B)

n0(O)
. (9.5)

Similarly for the B population,

ROB =
n0(O)

n0(B)
. (9.6)

Agents that are connected with ⌧ < R, disconnect from the network. They disconnect

from smallest to largest, in order of ⌧ and one at a time. When an agent disconnects from the

network (i.e., removes all links) they become completely disconnected, and become a node (or

component of one node). Amongst these components, if R changes enough such that R � ⌧ ,

the agent with largest ⌧ reconnects. Thus, the network is made up of one major component

(the neighbourhood), where all nodes are fully connected, whilst the rest are components of

single nodes. The number of components in the network can be calculated by (n � n0) + 1;

and can be used to verify the density of the network.1

9.4 Platform Model

The dynamics of the model are formalised in algorithms 14 and 15. The advantages of this

approach are discussed in Chapter 5. Briefly, the pseudo-code description is a useful stepping

stone from the model to the simulation. It gives an accurate representation of the model that

is easily translated into code.

1Since, as n0 ! n, the number of components ! 1.
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Algorithm 14 Bounded Neighbourhood Network Model Initialisation

create population of n = 150 agents
apply type to agents
apply ⌧ to agents
fully connect n0

 n agents
while any n 2 n0

^ n [sad] or n /2 n0
^ n [happy] do

execute algorithm 15
end while

Algorithm 15 update: one timestep

calculate neighbourhood ratio R {see equation (5.5)}
for each node n do
if R  n(⌧) then

set n [happy]
else

set n [sad]
end if

end for
if 9n /2 n0

^ n [happy] then
fully connect n with max ⌧ to network ! n 2 n0

{(a) happiest outside connects}
else
if 9n 2 n0

^ n [sad] then
fully disconnect n with min ⌧ ! n /2 n0

{(b) unhappiest inside disconnects}
end if

end if
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Figure 9.3: A simple run of the Platform Model, showing the resulting networks (top), adjacency
matrices (middle) and distributions of pk (bottom).

9.5 Simulation Platform

The pseudo-code is translated into Netlogo. Figure 9.3 is the output of two iterations of

algorithm 15. Nodes outside the network are completely disconnected (left). If R is below

the ⌧ of a disconnected node, they connect (centre). If R is above the ⌧ of a connected node,

they disconnect (right). The initial (left) and final (right) distributions are identical, whilst

the intermediate network (centre) is connected to one more agent. The network initialises

with n = 6, n0 = 4,m = 6 and ⇢ = 2/5 (left). The zeros on the first and last rows of

A1 correspond to the disconnected agents. Since the R of the network is acceptable for a

disconnected agent (and since they have the max ⌧ of their type) they connect. The network

now has n = 6, n0 = 5,m = 10 and ⇢ = 2/3. The addition leaves only one disconnected
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agent, highlighted in A2. In addition R has increased for the blue agents and decreased for

the orange. Since no ‘happy’ agents exist outside the network, the removal of ‘sad’ agents is

activated, leading to the final configuration (right). In this configuration, no agents change

their connection to the network, and the run is terminated. In this case the network has an

identical makeup to the first network with n = 6, n0 = 4,m = 6 and ⇢ = 2/5. However the

di↵erence betweenA1 andA3, highlights the di↵erent nodes connected to the neighbourhood.

9.6 Results Model

To check the validity of the model, the results of the simulation are measured against the

results from the original Schelling simulation (see Chapter 5). As with previous experiments,

the same initial conditions are used (see Chapter 6). In network terms, each possible adja-

cency matrix is constructed. This gives 5000 matrices, which are run until a steady state

is achieved. When the network reaches a steady state (defined as the point where no more

nodes wish to connect or disconnect), the number of iterations is recorded (I) and the pop-

ulation configuration is measured (M). Since the model is deterministic, there is only need

for a single run across all the initial conditions. As previously, due to memory constraints,

the maximum value of I is capped to 1500.

The simulation results of the population dynamics, are measured against the results from

the original Bounded Neighbourhood Model simulation (see Chapter 6). The comparison

of flows (shown in Figure 9.4) suggests they are identical. However, to provide statistical

evidence, the U test is applied. This is a non-parametric test that evaluates two di↵erent

samples and estimates a probability that two samples are drawn from the same population.

The use of the test is discussed in Section 4.4.3. The test is normally used to measure

di↵erences in samples rather than similarities; however, since there is no test to test for

similarities, here we use it by inferring the failure to refute the null hypothesis provides

evidence towards the similarities of the results. The test returns a p value of 1, meaning from

the evidence presented, the hypothesis cannot be rejected. Although this does not prove the

null hypothesis, it is felt the evidence is enough to validate the model.

9.7 Adding a social network

With the network implementation validated, a social network is added, allowing investigation

into the e↵ect of in-group homogeneity. In Schelling’s model, agents can decipher between

type but are unable to further di↵erentiate, i.e., all agents of the same type are given equal

weighting. This assumption of binary di↵erentiation is apparent in all Schelling models,
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Figure 9.4: Comparing the dynamic results of the network implementation against the results from
Schelling [74].



9.7. ADDING A SOCIAL NETWORK 135

Figure 9.5: Testing binary di↵erentiation in Schelling’s Bounded Neighbourhood Model with the
addition of a social network

and yet remains to be tested. To test the e↵ect of this assumption, a social network is

added, adjusting the e↵ect of individuals connected. The addition of a social network means

the creation of a new set of connections. Following Section 2.4, m defines the connections

between n agents inside the neighbourhood; initially agents inside a social network (ns) are

connected by ms links. For convenience, the social network is initialised with n nodes on a 1

dimensional lattice, with periodic boundary conditions (i.e., a circle). Agents are connected

to their ms nearest neighbours, creating an initial network of ns agents, with ms connections.

The agents are arranged along the lattice by type but not, necessarily, by tolerance. There are

many possible networks that could be applied, but work here focuses on two: the Erdős-Rényi

(or random) network [32] and the Watts-Strogatz (or small-world) network [96]. The random

network is chosen as the simplest form of network to generate. In the random network, agents

rewire each of their ms connections, with probability p = 1, to randomly chosen other agents

in the network. So, in this case, agents, who were mainly connected to their own type, are

now connected with the distribution

pk =

8
<

:
0.67 link to o

0.33 link to b.
(9.7)

The small-world network is chosen as it is an interesting variation of the random network.
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For the small-world network, the initial connections are rewired according to a probability

p = 0.33. Thus the initial bias in the social networks is maintained, but one third of the

agents’ connections will be randomly distributed as described previously. Simple examples

of the initialisation and implementation of the two types of networks and their resulting ms

are shown in Figure 9.6. The small world network retains more of the order, with agents

more likely to be connected to their own type. The random network connections follow the

random distribution, with agents more likely to be connected to an agent of type O.

9.8 Hypothesis

The hypotheses tests the e↵ects of adding a social network to the model. We o↵er the

hypothesis that changing the movement will have an e↵ect on the outcome of the simulation.

This is tested by attempting to refute the null hypothesis (H0), that the change has no e↵ect,

using two measures, static and dynamic (discussed in Section 4.4).

9.8.1 Static measure

The static measure of the final population inside the neighbourhood, shows whether the

alteration to the model produces stable mixed populations. Following equation (4.1), M

is used to measure the final population configurations. The hypothesis, that changing the

movement rule will produce mixed populations, is tested by comparing M to Schelling’s

findings of M = 0. A result of M > 0 suggests mixed populations have arisen, counter to

Schelling’s model.

9.8.2 Dynamic measure

The analysis of the population flows focuses on I, which is the number of iterations taken to

reach a steady state. The system has reached a steady state when no more agents wish to

move. The results are analysed using the Mann-Whitney-Wilcoxon U test and the Vargha-

Delaney A-statistic, described in Section 4.4.

9.9 Domain model: adding a social network

The addition of a social network necessitates a change in the calculation of R. Agents of

the same type inside a social network are counted double, if and only if they are connected

to the neighbourhood component. Agents of the other type, inside a social network and

connected to the neighbourhood component are negated. As with Schelling’s model, agents
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Figure 9.6: Comparison of social networks and their resulting ms. Networks are initialised with n = 12
(8 orange and 4 blue) and with ms = 2 (top). Connections are then rewired, with p = 1 for a random
network (bottom left) and p = 0.33 for a small world network (bottom right)
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Algorithm 16 Bounded Neighbourhood Network Model Initialisation

Create population of n agents
apply type to n agents
apply ⌧ to n agents
for each agent n do
Create ms social connections with nearest neighbours
rewire ms with probability p

end for
fully connect n0

 n agents with m links
while any n 2 n0

^ [sad] or n 3 n0
^ [happy] do

execute agent update (Algorithm 15)
end while

not connected to the neighbourhood network are ignored. The ratio calculation for the O

population changes from equation (9.5) to

RBO =
n0[B]� n0[B ^ friend]

n0[O] + n0[O ^ friend]
. (9.8)

Similarly the calculation for the B population is

ROB =
n0[O]� n0[O ^ friend]

n0[B] + n0[B ^ friend]
. (9.9)

All agents are initialised with a specific social network, containing ms links to other agents.

Unlike the neighbourhood network, once rewired, the social network remains unchanged for

the duration of the run. The dynamics of the model, once initialised, are unchanged (see

Figure 9.7).

9.10 Platform Model

The Platform Model is described using the pseudo-code in algorithm 16, from which the

simulation is constructed. Figure 9.7 gives an edited example of a simulation run of the small

world network from Figure 9.6.

9.11 Simulation Platform

Since a network model has already been developed, the Simulation Platform is retained from

the original network experiment. This means the addition of a social network is a simple step

of creating a set of ‘social’ links, that will sit alongside the ‘neighbourhood’ links.
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Figure 9.7: An example run of the small world social network from Figure 9.6. The social network
(red links) remains unchanged over the life of the run. The changes in the neighbourhood links (grey)
follow Schelling’s rules. Those inside the neighbourhood (n0) are connected by grey links. Those
inside the social network (ns) are connected by ms red links. As agents connect and disconnect from
the neighbourhood, the ratio changes. This leads to a final state (bottom right) where no agents are
willing to change their connection to the network with, n = 12, n0 = 8,m = 28 and ⇢ = 7/12. The pk
distribution of the social network is shown in the bottom right of Figure 9.6. At the end of the run,
only the orange agents remain connected to the neighbourhood network; the social network has failed
to stop segregation in this instance.
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Figure 9.8: The distributions of six of the networks used to test the e↵ect of social networks.Three
small world (top) and three random (bottom). With (from left) initial ms = 10, 30 and 50.

9.12 Results Model

This experiment tests the dynamic hypothesis that the social network makes no di↵erence

in the number I of iterations taken to reach a steady state. Again, this is tested using the

U test (described in Section 4.4.3). The initial conditions of the neighbourhood network

remain the same as the validation test in Chapter 6. Several values of ms are tested, ms 2

{10, 20, 30, 40, 50}. The social network rewires according to p, with p = 1 for the random

network and p = 0.33 for the small world. For each value of ms and p, three specific networks

are constructed and tested over a number of runs. Consistent with the previous experiment,

all 5000 possible initial conditions are tested using these parameters. Figure 9.8 shows the

ms values for a selection of the networks used. The static analysis measures the configuration

(M) of the population, to check for stable mixed populations, with the results displayed in

Table 9.1. The number of iterations taken to reach a steady state is also recorded, with the

resulting distribution analysed against the validated results. The results are used to test the

null hypothesis, that the addition of a social network has no e↵ect on the distribution of I.

This is tested using the U test described in Section 4.4.
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Figure 9.9: Comparing runtime distributions of di↵erent size small world social networks. The distri-
butions of I in the small world networks appear similar. There is little noticeable di↵erence between the
validation results (in black), when compared to the results from small world networks with ms < 40.
The di↵erence becomes more noticeable when ms � 40, results which are confirmed by the U -test (see
Table 9.1).
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Figure 9.10: Comparing runtime distributions of di↵erent size random social networks. Here the
di↵erence between the random network and validation results are more pronounced. Indeed the
results for ms = 50 are noticeably di↵erent, a fact highlighted in the results of the analysis.
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Figure 9.11: Comparing final neighbourhood network configurations of small world (left) and random
(right) networks, with ms = 10 (top) and ms = 50 (bottom). Blue and orange results show the system
has completely segregated. Crosses (x) indicate the entire population (blue or orange) has entered the
neighbourhood. Circles (o) indicate the population is entirely blue or orange but there are still agents
of that type outside the neighbourhood. Triangles show mixed populations; however, R > 2. But the
black crosses (x) (bottom left) indicate final mixed populations with R < 2 for both populations.
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9.12.1 Appearance of mixed populations

Following work by Freeman [38], we define m⇤
n as neighbourhood links connecting agents of

di↵erent type (i.e., blue with orange and vice-versa). The measure M of the segregation of

the population is now given as

M =
m⇤

n

mn
, (9.10)

thusM = 1 implies an equal mix andM = 0 complete segregation. Summing all theM values

and dividing by the number of samples in each run returns the mean M value. The results are

displayed in Table 9.1. Positive values of M imply that mixed populations exist; using their

initial conditions these points are mapped onto Figure 9.11. Since previous results of M > 0

were simply artefacts of the system reaching the maximum allowed number of iterations, it

is important to show that these populations are not in the process of segregating. This is

refuted by showing all the populations reaching a steady state (whereby no agents wishes to

move), before the number of iterations reaches the maximum. As Figures 9.9 and 9.10 show,

none of the runtimes come close to the maximum value of I. The population flows show

mixed population that have arisen not as an artefact of, either, an initial condition, or the

maximum I (as with Chapter 8).

The analysis of the runtime distributions highlights a di↵erence for both network sizes and

types (figures 9.9, 9.10). Statistical analysis suggests that, whilst the null hypothesis can be

rejected for social networks initialised with ms � 10; there is no e↵ect size until ms � 20 on

the random network, and none for the small world. While this suggests that the significant

results for ms < 20 are caused by the sample size, we have to reject the null hypothesis.

However the A statistic shows no e↵ect size for the small world networks and only appears

when ms � 20. A representative sample of results are displayed in table 9.1. Results with an

e↵ect size are displayed in bold.

Although the social networks have to reach a relatively large size before having a no-

ticeable e↵ect on the simulation runtime, both types of social networks are able to maintain

stable mixed populations (M > 0) for smaller values of ms. This is the first time the Bounded

Neighbourhood Model has produced stable mixed populations using Schelling’s original pa-

rameters. These results are shown in red in Figure 9.11.

In addition, the density ⇢ of the mixed neighbourhood networks gives an indication of the

stability of the network. A network with a higher density is less likely to be a↵ected by the

changes caused by a single agent moving. Plotting M against ⇢ gives a clearer picture of the

neighbourhood network. As can be seen in Figure 9.12, the highest value of ⇢ corresponds to

the lowest value of M . When M = 0, ⇢ = 0.66 or 0.33, corresponding to the neighbourhood
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ms p(rewire) Median I U-test A12 M

0 - 42 1 - 0

10 1 47 p < 0.05 0.51 0.0006

10 0.33 42 p = 0.31 � 0.0011

20 1 48 p < 0.05 0.53 0.0015

20 0.33 47 p = 0.06 � 0.0039

30 1 50 p < 0.05 0.55 0.0022

30 0.33 48 p < 0.05 0.52 0.0042

40 1 50 p < 0.05 56 0.0038

40 0.33 49 p < 0.05 0.54 0.0047

50 1 55 p < 0.05 0.61 0.0071

50 0.33 50 p < 0.05 0.56 0.0063

Table 9.1: Results from the di↵erent networks. Significant results from the analysis of I are shown
in bold. Although significant results are returned for all but two of the networks, the A-test provides
evidence that these results are caused by the number of data samples. In this case, the only measurable
e↵ect size was from the random network with ms = 50. However all the networks initialised were able
to maintain stable mixed populations (i.e., mixed populations in which all members have ⌧ � R),
with M > 0 for all networks.
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network either being all orange or all blue respectively. It is interesting to note that ⇢ increases

as the size of the social network increases, however M gets smaller. This suggests that larger

networks are able to sustain populations with higher levels of segregation.

9.13 Conclusions

By translating the Bounded Neighbourhood Model as a network, we have been able to add

a social network, allowing investigation into the e↵ect of binary di↵erentiation. The results

show that integrated populations are possible within the Bounded Neighbourhood Model. In

addition, according to the Vargha-Delaneytest results the random social network significantly

changes the time taken for the simulation to reach a steady state (although the e↵ect size

is small). As ms increases, fewer runs terminate with the minority population inside the

neighbourhood. In fact when ms = 50 and p = 1, the minority population are unable to

maintain a segregated population, even when the initialisation is heavily their favour (lower

right diagram in Figure 9.11). The majority population manages to maintain itself. This is

because, when the social network is the size of the minority population (i.e., 50), the majority

population will be able to ignore them completely (50 � 50 = 0). In contrast, the minority

population can, at best, ignore only half of the majority population (100� 50 = 50).

9.13.1 Appearance of integrated populations

A number of mixed populations remained unchanged over the runtime. Although these fixed

points existed, no other populations flowed into them. This suggests they are fixed points

that are di�cult to reach from other initial conditions. The fact that the small world network

was unable to match the e↵ect of the random network, suggests the bias of type in the social

network has an e↵ect and is certainly an area for further exploration. The creation of mixed

steady states (M > 0) is a novel result from the Schelling model. This provides evidence

that the model can support mixed populations without explicitly altering the tolerance or

population parameters. It is interesting to note that, although the small world network does

not cause a significant di↵erence in the runtime, it results in more integrated populations

than the random network (Ssw > Sr). The density of the final networks has a maximum

of ⇢ = 0.66, which corresponds to a network with 100 out of 150 agents connected. Thus,

although the social network is able to produce mixed populations, it is unable to create

mixed neighbourhood networks with a density higher than 0.6. However, the fact that the

simulation produces mixed populations at all is an important result, since this is the first

time Schelling’s Bounded Neighbourhood Model has produced stable integrated populations.
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Figure 9.12: Comparing final neighbourhood network configurations (M) against density (⇢). Small
world (left) and random (right) networks, withms = 10 (top), 30 (middle) and 50 (bottom). Note that
as ms increases, ⇢ increases and M decreases. The number of neighbourhood networks with M > 0
increases however, the majority of neighbourhood networks still segregate (M = 0). The segregated
populations are highlighted with a red circle, with ⇢ = 0.33 equating to the Blue population, and
⇢ = 0.66 the Orange. It is interesting to note that as the network size increases, it is able to sustain
populations with higher levels of segregation.
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Chapter 10

Conclusions and Further work

Schelling’s seminal segregation models helped to found the field of Computational Social

Science. With well over 2000 citations, the influence of the models is matched only by Sug-

arscape [4]. However, the majority of work on his models has focused on the Spatial Proximity

Model, where the environment is represented as a grid of cells (discussed in Chapter 3.1).

This thesis has explored the less well known, but no less interesting, Bounded Neighbour-

hood Model. Schelling himself asked why there has been so little research into the Bounded

Neighbourhood Model [76]. Claims by Hatna et al. that the Bounded Neighbourhood Model

has been “analytically investigated” [46, p6], by Schelling [75] and Clark [23], [24] may be

the explanation. However the investigation by Clark was limited to discussing the Bounded

Neighbourhood Model as a variant of the Spatial Proximity Model. Indeed in [24], the model

developed is an exploration of the “Schelling segregation model”, with no consideration of

the Bounded Neighbourhood Model. His argument, that the model has been mathematically

solved, is based on Zhang’s game theoretical description of the Spatial Proximity Model, in

which the tolerance is the same for all individuals in a particular population, and so does

not apply to the Bounded Neighbourhood Model. It is also possible that there is confusion

over the models that has arisen from the terms ‘Schelling segregation’ and Spatial Proximity

Model being used interchangeably. Fossett [37] claims his simulation “SimSeg” is a simula-

tion of a combined Spatial Proximity Model and Bounded Neighbourhood Model. Although

adjusting the spatial parameters can result in a bounded neighbourhood on the system, the

agents’ tolerance remains identical, as required by the Spatial Proximity Model. Although

Fossett’s model can vary the tolerance between groups (i.e., blacks are more tolerant than

whites), there is no variation within the groups (i.e., all blacks have the same tolerance).

However one of the defining characteristics of the Bounded Neighbourhood Model is individ-

ually variable tolerance, in which each agent within a group has a unique level of tolerance

149
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(see Section 3.2).

The analyses presented here have shown that the behaviour of the Bounded Neighbour-

hood Model exhibits a remarkable resistance to changes in the parameters. For many (e.g.,

[15], [37], [23]) this is a vindication of the strength of the model. However, applying the model

to real world segregation requires a much greater understanding of the model (not to mention

reality). Nevertheless, taken as a tool to explore ideas of segregation, Schelling’s model has

been widely used as an example of how even relatively low levels of intolerance, in a simple

population, can create highly segregated populations. Attempts to apply Schelling’s model

to real world areas has, rightly, created much debate. Benenson and Hatna [15] and [46]

use Schelling’s model to explain segregation in certain Israeli cities. However, as with many

segregation models that use Schelling’s model, some of Schelling’s assumptions are ignored.

Indeed more assumptions are added in [15] (see Section 2.6). In addition there is rarely any

consideration of individual adaption in the models. Thus, even though the system changes

over time, the agents can only change their location. An obvious comparison is Sugarscape

where, a simple inheritance rule allows adaption, such as the aggregation of wealth. However,

Schelling’s segregation models involve no adaption of the agents’ behaviour at all.

10.1 Summary of Results

The work in this thesis has examined Schelling’s Bounded Neighbourhood Model. No at-

tempt has been made to relate it to any ‘real-world’ social system. Instead, following the

CoSMoS process, experiments have been performed to first understand, and then probe cer-

tain key aspects of the model. This process eventually led to the development of the network

model (chapter 9) which exhibited the emergence of stable mixed populations. The develop-

ment of the formalisation brings out some hitherto unexplored assumptions in the Bounded

Neighbourhood Model (Chapter 5) and the results from the simulation were used to validate

further variations of the model. Schelling’s four basic assumptions, namely movement order

(Chapter 6), perfect knowledge (Chapter 7), perfect response (Chapter 8) and homogeneous

populations (Chapter 9) are set out and their analysis briefly reviewed below.

For each experiment, two measures were used to test the model. One static, analysing

final population mixtures, and one dynamic, analysing population movement over time. The

static measure calculated the final population configurations of Schelling’s model, using a

parameter M that defines the mix of the population (where M = 1 indicates a 50/50 mix).

This type of final state measure is often used when analysing Schelling segregation models

(for example [15],[17] and [53]). However, in reality, systems are in constant flux, making an

analysis of the dynamics of the system desirable. By measuring the number of iterations the
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system took to reach equilibrium, the dynamics of the model can be analysed (see Section

4.4). In addition, taking two perspectives in the analysis gives a better understanding of the

model.

10.1.1 Changing the movement order: Whose move is it anyway?

In Chapter 6, Schelling’s assumption that agents moved in order of their tolerance was exam-

ined. Using the formalisation and simulation developed in Chapter 5, a validated change to

the movement rule was implemented. By choosing the agents in order of tolerance, the sim-

ulation replicated Schelling’s flows; while choosing at random produced more chaotic flows

(Figure 6.3). The e↵ects of the change were measured and analysed using a U test (see

Section 4.4) on the hypotheses:

Static measure M

The static measure analysed the robustness of segregation in the model, in response to changes

in the movement order. In this experiment, changing the order of the movement had no

discernible e↵ect on the final population mix, all populations ended with complete segregation

(M = 0).

Dynamic measure I

The dynamic hypothesis tested the number I of iterations taken for the simulation to reach a

‘steady state’ (as defined in Section 4.4). When agents were chosen to move at random, the

number of iterations increased. The U test returned a significant result with the follow up A

statistic returning a large e↵ect size. This confirms the expectation that the time taken to

reach a steady state can be increased by randomising the movement of the agents.

Results of the simulation: M = 0, but increased I.

Although the median value of I for the random movement was larger than the deterministic

model, for both cases, every steady state was completely segregated with M = 0. The

results from the experiment (summarised in table 10.1) show that the final populations always

segregate regardless of the order of movement, although the number of iterations to reach

segregation is increased.
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I M

Deterministic 41 0

Random 49 0

Table 10.1: Summary of results from changing the order in which agents move. I represents the
median number of iterations the system has taken to reach a steady state. M represents the mix of
the populations in the steady state. Randomising the order of movement significantly increases I,
however there is no change in the outcome of the final mix.

10.1.2 Sampling the neighbourhood: Who do you know?

In Chapter 7, the e↵ect of the assumption that agents had perfect knowledge of the ratio R

was tested. The adjustment to the model limited the number of agents S used to calculate

a sample ratio R⇤. By reducing S, the response of the agents is no longer perfect which,

it is believed, could alter the results of the simulation. The change was implemented using

the formalisation developed in Chapter 5. The modified formalisation was used to develop

a Platform Model and then a simulation. The results were analysed using the parameters I

and M .

Static measure M

The mix of the final populations was resistant to the changes in the model. Although mixed

populations arose within the timescale, further analysis showed they were simply in a state of

transition to total segregation. Increasing IMAX removed the artefacts, with all populations

eventually segregating.

Dynamic measure I

The number of iterations I increased as S decreased. The U test returned a significant result,

providing evidence that the time taken to reach a steady state is increased when the sample

size is reduced. This increase resulted in a number of results failing to reach a steady state

when S  25 (discussed below).

Robustness of the model: M > 0 and increased I, but final mixed populations

M > 0 are artefacts of the length of the simulation

The results (summarised in table 10.2) demonstrate that the model reverts to Schelling’s

original results when R⇤
! R (S = 150). As R⇤ decreases, I increases, but no mixed
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S I M

150 41 0

75 42 0

50 43 0

25 45 0

10 50 0

Table 10.2: Summary of results from sampling the neighbourhood. S is the size of the sample, I is
the (median) number of iterations and M is the (mean) final population mix. As expected, reducing
S increases I. However for all cases M = 0.

populations appear (M = 0).

10.1.3 Slowing agent movement: Should I stay, or should I go?

In Chapter 8, the assumption that agents leave the neighbourhood the moment they were

‘sad’ was tested. Using ideas from simulated annealing, agents were programmed to attempt

to minimise their ‘sadness’ u. This parameter was based on a comparison of a second neigh-

bourhood. The system dynamics are ‘controlled’ by a parameter F , used to slow the dynamics

of the model. The change was implemented following the CoSMoS process, with the new for-

malisation developed in Chapter 8.3. The results from the simulation were analysed using

the same techniques as previously, but the addition of a second neighbourhood meant that

the validation run did not replicate Schelling’s flows.

Static measure M

The final population was robust to changes in the perfect response of agents. Again, al-

though mixed populations arose within the simulation timescale, all populations eventually

segregated.

Dynamic measure I

As expected, the number of iterations I increased with increasing F . The U test returned a

significant result providing evidence that increasing F slows the population flow. This was

supported by the A-test calculating a large e↵ect size.
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F I M

0 149 0.005

1 220 0.005

5 588 0.005

10 1088 0.005

20 2214 0.005

Table 10.3: As the friction parameter (F ) increases, the number of iterations (I) significantly increases.
The appearance of mixed populations (M � 0.005 8 F > 0) is an artefact of the model. The
value M = 0.005 is an artefact caused by the symmetry of the neighbourhoods (see Section 8.6.1).
Although populations with M > 0.005 did appear, they were simply in the process of segregating (see
Chapter 8.7), and vanished when the maximum I was increased.

Results of the simulation: M > 0 and increased I, but final mixed populations

M > 0 are artefacts of the length of the simulation and the ratio calculation in

the model.

The results from the experiment are summarised in Table 10.3. The symmetry of the neigh-

bourhoods means that initial conditions that have equal neighbourhood ratios, prevent the

agents from moving. This means that M � 0.005 for all values of F is simply an artefact

of the model and does not indicate the existence of stable mixed populations. The higher

results for F � 5 are caused by the process of segregation being incomplete. This is most

obvious with the median value of I for F = 20, which is the maximum number of iterations.

Increasing the maximum value of I leads to the mixed populations eventually segregating.

10.1.4 Creating a social network: Friends and Neighbours

In Chapter 9 the assumption that agents were only discernible by type was tested. The

change introduced into Schelling’s Bounded Neighbourhood model exploits the idea that

social networks influence behaviour, an idea of are growing interest within social modelling

(for example [18] and [66]). By treating the Bounded Neighbourhood Model as a network,

it is possible, indeed natural, to overlay the original network with a social network ms and

analyse the segregating of the two populations. The social network has two parameters:

a size, ms, relating to the number of nodes in the network, and a rewiring probability p.

Social networks are initialised with nodes, arranged by type, connecting to their ms nearest

neighbours. Once all nodes have connected, they rewire with probability p. By choosing

certain values of p, we create random and small world networks. By initialising the social
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network with ms = 0, Schelling’s original model is replicated. Other choices of assigning the

connections of nodes are clearly possible and it is hoped to pursue this research in due course.

Static measure M

In previous experiments, mixed populations appeared as artefacts of the simulation finishing

before the system had reached a steady state. This was reflected in large values of I. However,

in this case, stable mixed populations appeared before the system has reached a steady state

and remain mixed in the steady state. The small world networks were able to produce more

integrated populations than the random networks, until ms = 50. When ms = 50, the

random network produces more integrated populations.

Dynamic measure I

The number of iterations I increased as the network size increased. Random networks had a

larger e↵ect on I than the small world networks. However, the increase in I is the smallest

across the experiments. This suggests that the networks have little e↵ect on the flows of the

populations in the model.

Robustness of the model: M > 0 and increased I

The results (summarised in table 10.4) indicate that random networks can sustain an in-

creasing number of iterations without segregating and still retain mixed populations. On the

other hand, small world networks (when ms < 50), produced more integrated populations.

Since the small world networks were more likely to contain agents of the same type (see

Chapter 9), the results provide evidence that increasing the number of agents of a di↵erent

type in a social network is less e↵ective in maintaining mixed populations than increasing

the number of ‘same’ agents.

10.2 Summary of contributions of this thesis

The work presented in this thesis has explored one of the seminal models in Computational

Social Science. We have highlighted some of the possibilities computational processing brings

to social science. However, importantly, we have highlighted the need for caution in these

approaches. One of the biggest criticisms levelled at computational models is their lack of

validity. CoSMoS provides a process that can help improve the quality of these models.

By applying the process retrospectively to Schelling’s Bounded Neighbourhood Model, the

dynamics that drive the model have been laid bare. The results of the experiments show,
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Network ms I M

- 0 42 0

Random 10 47 0.0006
Small World 10 42 0.0011

Random 20 48 0.0015
Small World 20 47 0.0039

Random 30 50 0.0022
Small World 30 48 0.0042

Random 40 51 0.0038
Small World 40 49 0.0047

Random 50 56 0.0071
Small World 50 50 0.0063

Table 10.4: Highlighted results from the di↵erent networks, ms is the size of the network. There was
an increase in I as the size of the network increased. More importantly all the networks were able to
maintain stable, mixed (M > 0) populations.

only the implementation of a large social network can the system maintain stable mixed

populations. The success of applying CoSMoS to a social system, highlights the strength and

flexibility of CoSMoSand extends the CoSMoS domain of applicability.

Formalisation of the Bounded Neighbourhood Model. The thesis presents the first

formalisation of Schelling’s Bounded Neighbourhood model. The application of a rig-

orous process to the model highlighted a number of hitherto unstated assumptions.

Development of a Bounded Neighbourhood Model simulation. The simulation de-

veloped from the formalisation is the first to reproduce Schelling’s original flows (see

Figure 6.3). The simulation was then used as the basis for a thorough investigation of

the Bounded Neighbourhood Model.

Analysis of static and dynamic behaviours of the model. Analysis of the results fo-

cused on both the final population mix (M), and, the number of iterations taken to

reach steady state (I). The analysis on these two levels showed that, although chang-

ing the population flows was a straightforward process, the production of stable mixed

populations required more substantial changes to the model.

Demonstration of the robustness of the model. The results of the model are ‘robust’

to changes in the parameters. However, a more careful examination suggests that the
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results are by construction, rather than by emergence. The parameters drive the model

to segregation rather than allowing segregation to emerge. This hardwiring of the model

is not immediately obvious and it has taken a thorough investigation to highlight the

issue. This result has important implications for the use of the Bounded Neighbourhood

Model in discussions of the determinants of segregation in social studies.

Demonstration of e↵ect of social networks on segregation in the model. The demon-

stration that the addition of a social network produces stable, integrated, populations is

more evidence of why not to apply the model blindly to real world situations. However

Schelling’s Bounded Neighbourhood Model still has utility and is an excellent segrega-

tion model.

10.3 Further work

Clearly Schelling’s models have a plethora of possible future research ideas, some of which

were examined in Chapter 3.6. The work presented in this thesis is a first step in a systematic

exploration of Schelling’s Bounded Neighbourhood model and related models. Further work

could develop some of the questions raised in this study. For example:

Heterogeneous populations. Further work could use the model developed in Chapter 9

and explore the e↵ects of di↵erent types within populations.

Space. The network model is a first step in the introduction of space into the Bounded

Neighbourhood Model. The treatment of space is an important aspect of social science

(especially urban studies). However, Schelling’s models have a complete disregard for

anything other than uniform space. It would be interesting to examine if changing the

perceptions of space in the model would e↵ect the outcomes.

Timescales. Further exploration of the movement rule could explore the e↵ect of agents

moving at di↵erent timescales, either individually or by type.

Time decay for social bonds. Linked to timescales, would a social bond that decayed

over time e↵ect the results of the network model?

Ratio calculations Although Chapter 7 explored ideas of agents calculating di↵erent ratios

from the same population, further work could explore ideas of agents retaining their

calculated ratio for a period of time, rather than recalculating at each iteration?

Population adaption. The character of the members in the populations undergoes no

change in Schelling’s models and the Bounded Neighbourhood Model in particular.
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This is a serious limitation and leads one to ask what e↵ects an evolutionary model

could have on a Schelling segregation model?

These are just a few of the many questions the formalisation and testing of Schelling’s

Bounded Neighbourhood Model has promted. The thorough examination presented here

has given an insight into the key drivers of the model. The further work described is merely

the beginning of what is sure to be a rich field of research.
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1997.

[69] S. Railsback, S. Lytinen, and S. Jackson. Agent-Based Simulation platforms: Review

and development recommendations. Simulation, 82(9):609–623, Sep 2006.

[70] P. Rendell. Collision-based Computing, pages 513–539. Springer-Verlag, 2001.

[71] N. Saam and A. Harrer. Simulating norms, social inequality, and functional change in

artificial societies. Journal of Artificial Societies and Social Simulation, 2(1), Jan 1999.

[72] R. G. Sargent. Verification and Validation of Simulation Models. In Proceedings of

1996 Winter Simulation Conference, pages 55–64, 1996.

[73] R. Sawyer. Social Emergence, Societies as Complex Systems. Cambridge University

Press, 2008.

[74] T. C. Schelling. Dynamic Models of Segregation. Journal of Mathematical Sociology,

1:143–186, 1971.

[75] T. C. Schelling. Micromotives and macrobehavior. W. W. Norton and Co., 1978.

[76] T. C. Schelling. Some fun, thirty-five years ago. Handbook of Computational Economics,

2:1639–1644, 2006.

[77] F. Schiller, A. Skeldon, T. Balke, M. Grant, A. S. Penn, L. Basson, P. Jensen, N. Gilbert,

O. D. Kalkan, and A. Woodward. Defining relevance and finding rules: An Agent-Based

Model of biomass use in the humber area. Advances in Social Simulation, 229:373–384,

2014.



BIBLIOGRAPHY 165
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