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Abstract  

 

Aerodynamic optimisation plays an increasingly important role in the aircraft industry. In 

aerodynamic optimisation, shape parameterisation is the key technique, since it 

determines the design space. The ideal parameterisation method should be able to provide 

a high level of flexibility with a low number of design variables to reduce the complexity 

of the design space. In this work, the Class/Shape Function Transformation (CST) 

method is investigated for geometric representation of an entire transport aircraft for the 

purpose of aerodynamic optimisation. It is then further developed for an entire passenger 

transport aircraft, including such components as the wing, horizontal tail plane, vertical 

tail plane, fuselage, belly fairing, wingtip device, nacelle, flap tracking fairing and pylon. 

This work presents the parameterisation of these components in detail using the CST 

methods for the reference of future aerodynamic optimisation work. The intersection line 

calculation method between CST components is presented for future entire aircraft 

optimisation. The performance of the CST has been tested as well, and it found a few 

drawbacks of the CST methods; for example, it cannot provide some key intuitive design 

parameters and can lose the accuracy in the wing leading edge area. Therefore, two 

derivatives of the CST method are proposed: one is called the intuitive CST method 

(iCST), which is to transform the CST parameters to intuitive design parameters; the 

other is called the RCST method, which is able to increase the fitting accuracy of the 

original CST method with fewer design variables. Their performances are studied by 

comparing them regarding their accuracy in inversely fitting a wide range of aerofoils. 

Finally, the CST method is also developed to represent the shock control bump, which 

has better curvature continuity than cubic polynomials. 

 

The aerodynamic optimisation study based on adjoint approaches is carried out using the 

above parameterisation methods. Optimisation was performed on two-dimensional cases 

to make a preliminary investigation of the performances of the above parameterisation 

methods. The results showed that all of CST, iCST and RCST parameterisation methods 

are able to successfully reduce the drag. The results of the CST methods showed the 
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lower order CST is able to provide fast convergence, and the high order CST is able to 

provide more flexibility and more local control of the shape to reach better optimal 

solution. The iCST providing intuitive parameters is improving the process of setup 

constraints, which is useful for aerofoil optimisation. The RCST showed good 

performance in aerodynamic optimisation in terms of convergence rate, number of design 

variables, low order of polynomials and smoothness of the shape. This work provides a 

reference to designer for choosing suitable parameterisation method in these three 

methods regarding specific requirement. The shock control bump optimisation on 2D 

aerofoil is performed to compare three shock control bump parameterisation methods. 

The results showed the CST parameterisation method is promising for shock control 

bump optimisation. 

 

Three-dimensional optimisation tests, including wing and winglet drag minimisation, 

were performed using the above parameterisation methods. The results showed that the 

CST methods are able to handle three-dimensional wing optimisation. It also investigated 

the effect of the order of CST method in optimisation. The results showed the lower order 

CST already performed well in optimisation in terms of optimal results and convergence 

rate. The optimisation also discussed the importance of using Cmx constraint in 

aerodynamic optimisation. In the winglet test cases, it showed the CST methods and 

adjoint approach are able to perform winglet optimisation. The drag of four winglets are 

successfully reduced. The downward winglet showed the potential benefits in terms of 

lower wing root bending momentum. At the end, the shock control bump optimisation 

using CST method on 3D wing has been performed. The results showed the mesh adjoint 

methods is able to identify the sensitive area for deploying shock control bumps and the 

CST shock control bump successfully reduced the wave drag. 
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Chapter 1 Introduction 

 

1.1 Background  

Computational aerodynamics has been employed to assist aircraft design for more than 

six decades. With the development of high performance computers, computational 

aerodynamic flow solutions have become much less expensive than large-scale 

experiments for the right Reynolds and Mach numbers. Therefore, computational 

aerodynamics has been widely employed in the aircraft industry, and is playing an 

increasingly important role in aircraft design.  

 

Computational aerodynamics tools have developed from the simple low-fidelity panel 

method to the more complex high-fidelity Reynolds averaged Navier-Stokes (RANS) 

solution methods. Nowadays, the low-fidelity methods are able to provide results in a 

very short time and are used for the concept design process; they are effective for 

assisting the designer in the analysis of technical and economic feasibility for future 

projects. The high-fidelity methods, such as the Euler equation, RANS and large eddy 

simulation (LES), are able to provide more accurate results and are normally used in the 

preliminary and detail design stages.  

 

The pursuit of excellent design is invariably the goal for aircraft designers. Based on 

Figure 1.1, it has been estimated that the fuel efficiency of a current civil jet transport 

aircraft, e.g. Airbus A330-300, has been reduced by 70% from the Comet 4 of the 1950s, 

with 30% coming from advanced airframe design and 40% due to improvement of aero-

engines (Mann and Elsholz 2005). The Strategic Research Agenda (ACARE 2002; Mann 

and Elsholz 2005), prepared by ACARE (Advisory Council for Aeronautical Research in 

Europe), set the direction for European research to reduce the environmental impact of 

aircraft and to improve safety and operational efficiency. ‘Vision2020’ requires a step 

change in aircraft performance, such as 50% CO2 emission reduction and perceived noise 

reduction (ACARE 2002). This is a huge challenge to aircraft designers, since modern 

aircraft comprise a large number of highly complicated systems. The traditional manual 
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approach would find it very hard, if not impossible, to satisfy future design requirements. 

Hence, numerical optimisation techniques based on computational flow solutions have 

become a critical tool for the aircraft industry to help designers to meet future design 

challenges. 

 

Figure 1.1 Transport aircraft fuel efficiency (from Penner 1999) 

 

Optimisation is a well-established topic, and its essence is to find the maximum or 

minimum value of the objective function, which mathematically represents the 

relationship between the input variables and the objective values. Aerodynamic 

optimisation requires an automatic design process which is able to take geometric 

parameters to modify the geometry, to run numerical methods to obtain an objective 

value and to search for the best design shape. Rapid aerodynamic solution methods such 

as the penal methods and the lifting surface methods are normally employed for 

conceptual design and multi-disciplinary optimisation (MDO). The high-fidelity CFD 

methods are used for the detailed design stage; however, they can result in unaffordable 

computational cost when applied to aerodynamic optimisation. Therefore, although high-

fidelity aerodynamic optimisation was proposed at almost the same time as CFD, high-

fidelity aerodynamic optimisation has developed slowly along with the increase in the 

performance of digital computers. Jameson (1988) successfully applied a method, called 
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the ‘adjoint’ method, to aerodynamic optimisation. With this method, the computational 

cost was dramatically decreased and this considerably improved the feasibility of high-

fidelity aerodynamic optimisation for the aircraft industry. At present, aerodynamic 

optimisation is widely employed as an automated tool, from the two-dimensional aerofoil 

to complex three-dimensional configurations (Anderson 1997; Jameson 2004).  

 

For aerodynamic optimisation, the objective values are normally the aerodynamic 

performance parameters obtained from the numerical methods, such as lift and drag 

coefficients, pressure distribution, pitching/bending momentum and others. The input 

variables are also called design variables and normally represent the geometry using 

various parameterisation methods. Consequently, the parameterisation methods used have 

a profound effect on the design space, determining the complexity of the design space 

and the optimum geometries obtainable. Therefore, the shape parameterisation method is 

a key technique for the designer in the numerical optimisation process. 

 

The two main objectives of this thesis are to find and develop a parameterisation method 

for the entire modern civil transport aircraft and to apply it to high-fidelity aerodynamic 

optimisation using the adjoint approach. 

 

The first task is to develop a geometric parameterisation method for the entire modern 

civil transport aircraft. There are already many geometric parameterisation methods 

implemented in aerodynamic optimisation. However, most parameterisation methods can 

only be applied to individual aircraft components rather than the entire aircraft. A few 

methods, such as computer-aided-design (CAD) and free form deformation (FFD) 

parameterisation, can potentially be used to parameterise the entire aircraft. However, 

these are either too complicated to build into the optimisation framework or they struggle 

to satisfy some designers’ preferred requirements, such as intuitiveness and generality. 

Therefore, the author of this thesis has further developed a parameterisation method for 

the entire civil transport aircraft based on Kulfan’s Class/Shape function transformation 

methods (CST). This method is able to represent most aircraft aerodynamic components 

in a universal and efficient way.  
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The second task is to build an aerodynamic optimisation framework and apply this 

parameterisation method in an adjoint-based optimisation for industrial application. Both 

two-dimensional aerofoil section and three-dimensional geometry optimisation are 

conducted in the thesis. The performance of this geometric parameterisation will be 

examined in the aerodynamic optimisation investigation. 

 

1.2  Outline of thesis 

This thesis is split into two parts based on the two main tasks, the first focusing on 

geometric parameterisation and the second on aerodynamic optimisation using the adjoint 

approach.  

 

In Part I, current geometric parameterisation methods are reviewed and investigated in 

Chapter 2. This presents the ideal properties of a parameterisation method which is good 

for aerodynamic design and optimisation, and gives a review of the most common 

geometric parameterisation methods employed in aerodynamic optimisation and design. 

This will also explain why the CST method has been selected for this study.  

 

The following chapters, Chapters 3 and 4, present two new geometric parameterisation 

methods, iCST method and RCST methods, for two-dimensional aerofoils and the 

development of the CST methods for the entire aircraft. The PARSEC method, CST 

method, iCST which is able to parameterise aerofoil with full intuitiveness, and RCST 

which employs the Rational Bernstein polynomials to improve the accuracy of standard 

CST methods are presented, and their performance according to accuracy in representing 

existing aerofoils is also discussed in Chapter 3. The CST method is then extended to 

parameterise three-dimensional civil transport aircraft components, including wing, 

horizontal tail plane (HTP), vertical tail plane (VTP), winglet, fuselage, belly-fairing, flap 

tracking fairing (FTF), pylon and nacelle. The parameterisation methods for each 

component are discussed in detail in Chapter 4. The performance of CST and RCST 

methods for 3D wing are investigated in Chapter 4. The CST method for shock control 
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bump is then presented. At the end of Chapter 4, the intersection line calculation method 

is presented for future entire aircraft optimisation. 

 

In Part II, Chapter 5 presents the flow governing equation and the numerical solver for 

high-fidelity CFD optimisation based on the RANS equations. The optimisation method 

is presented in Chapter 6 with a literature review of related aerodynamic optimisation 

methods, the discrete adjoint methodology, the mesh deformation strategy and the 

optimisation framework. The review focuses on current optimisation techniques applied 

in aerodynamic optimisation. Chapter 7 shows the two-dimensional optimisation test and 

results, and includes aerofoil optimisation and aerofoil with bump optimisation for 

transonic conditions. It examines the performance of the CST parameterisation methods 

in optimisation, leading to the later three-dimensional optimisation. Chapter 8 shows the 

three-dimensional optimisation results, including optimisation for the F6 wing, the F6 

wing with different types of winglets and shock control bumps on 3D wing optimsiation. 

Finally, Chapter 9 gives the conclusion of this thesis and provides some suggestions for 

future work.  

 

 

  



6 

 

Chapter 2 Literature Review of Geometric 

Parameterisation 

 

This chapter presents the various typical geometric parameterisation methods and their 

application in aerodynamic optimisation by previous researchers. This gives a 

background of current state-of-the-art geometric parameterisation methods and an 

understanding of the basic methodology of parameterisation. The advantages and 

disadvantages of the various methods will also be discussed.  

 

‘Parameterisation’ is the representation of the specifications of a model as a set of 

parameters. In aerodynamic optimisation, parameterisation is usually applied to the 

representation of geometry. These geometric parameters are then employed as design 

variables for the designer or as input of an optimisation to find a desirable geometry 

which satisfies required performance.  

 

Samareh (2001) and Kulfan (2006) have pointed out that a well-behaved parameterisation 

method should have the following properties:  

 

1) To provide high flexibility to cover the potential optimal solution in the design 

space,  

2) To give as small number of design variables as possible,  

3) To produce smoothness and realisability of the shapes,  

4) To provides intuitiveness of the design parameters for geometrical and physical 

understanding by the design engineers in exploring the design space and setting 

up optimisation constraints, 

5) To provides grid sensitivity derivatives of grid respect to design variable, which is 

important for gradient-based optimisation. 

 

In actual applications, a balance needs to be struck for parameterisation, as it is unlikely 

that all the requirements can be satisfied. For example, parameterisation methods with a 
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high number of design variables are normally able to provide a highly flexible design 

space; however, the high number of design variables will increase the complexity of the 

design space and will require that the optimiser makes an extra effort to find the optimum 

solution. In general, the cost of optimisation based on high-fidelity CFD computation is 

still very high; it will cause unaffordable computational expense. Even if the adjoint 

method is applied to be numerically efficient in calculating the sensitivities in gradient-

based optimisation (Jameson 1988; Jameson et al. 1997; Le Moigne and Qin 2004; 2006), 

finding global optimum from a highly complex design space is still a challenging issue. 

On the other hand, for example, the NACA 4-series aerofoil definition only uses three 

parameters (maximum camber, position of maximum camber and maximum thickness) to 

represent an aerofoil (Ladson et al 1996),  which are unable to provide sufficient design 

space to satisfy the desired aerodynamic performance.  

 

Samareh (2001) reviewed and compared some of these methods and classified the shape 

parameterisation methods into the following eight categories: the basis vector, domain 

element, partial differential equation, discrete (mesh point), polynomial and spline, 

analytical, CAD-based and free-form deformation (FFD) methods. Among these methods, 

the discrete, analytical, polynomial, spline, CAD and FFD are the most common. They 

are studied and reviewed in the following sections. Another two methods, the parametric 

aerofoil section method (PARSEC) and the class/shape function transformation method 

(CST), are presented at the end. 

 

2.1  Discrete methods 

The discrete approach, which is the simplest way to do parameterisation, uses the mesh 

points as design variables. The discrete methods are able to provide a large design space 

since there is not any natural limit of design space, and theoretically it is possible to 

represent any shape. It is also easy to set up for any kind of geometry. Therefore, many 

researchers have tried to use discrete methods in aerodynamic optimisation (Jameson 

1988; Campbell 1992; Jameson et al. 1997; Mousavi et al. 2007; Wu et al. 2003; 

Castonguay and Nadarajah 2007).  
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However, there are two main drawbacks of discrete methods. The first is that it is hard to 

maintain smoothness of geometry since each surface point is moved individually. 

Therefore, a smoothing algorithm is required to maintain the smoothness if the geometry. 

Moreover, in gradient-based optimisation, the gradients along grid points are normally 

not smooth. As a consequence, a smoothing algorithm will also be required to obtain a 

smooth gradient (Jameson 1988). 

 

The most important drawback of the discrete method is that it results in a large number of 

design variables. As stated at the beginning, this will generate a very high dimensional 

design space. As a result, the complexity of the design space could reduce the efficiency 

of the optimiser in searching for global optimum and lead to unaffordable computational 

cost in the aerodynamic optimisation, although local optimum can be obtained efficiently 

with the adjoint method. Additionally, another drawback of discrete methods is difficult 

to provide intuitive parameters, for example, sweep angle, thickness, twist and so on.  

 

2.2   Analytical methods 

As presented above, although the discrete method is able to provide the most flexible 

design space, it is not good for reducing the complexity of design space as a large number 

of design variables are used. A parameterisation method with a small number of design 

variables that produces a smooth shape is preferred for aerodynamic optimisation. The 

most efficient way is to put a set of mathematical functions on the geometry surface, 

which is defined as Equation 2.1: 

                           

 

   

 2.1 

where    is used as design variable, n is the number of design variables and       is the 

shape function.  

 

The shape functions could be Hicks-Henne functions, Wagner functions, Legendre 

functions, Bernstein functions or NACA series aerofoil functions. The method is able to 

support direct representation function without adding any initial geometry.  
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The most common analytical method is called the ‘Hicks-Henne’ shape function method. 

It was first introduced by Hicks and Henne in 1978. It employs a set of bump basis shape 

functions, as defined in Equation 2.2: 

 

                 

where                                           
     

     
 

2.2 

    defines the position of maximum peak point of the i-th bump function, and w 

controls the width of the bump function. 

 

Khurana et al. (2008) conducted a study of analytical parameterisation methods by 

comparing five different shape functions, including the Hicks-Henne, Wagner, Legendre, 

Bernstein, and NACA normal modes. In order to examine their impact on design space. 

The first work was to carry out an aerofoil geometric fitting study using these five 

functions, with the NACA 0015 aerofoil being used as a baseline shape. The NASA LRN 

(1)-1007, NASA LS-0417, NASA NLF (1)-1015 aerofoils were employed as target 

aerofoils. Five shape functions were used to fit three target aerofoils under a Particle 

Swarm Optimisation (PSO) algorithm and a linear search method. The speed of 

convergence and accuracy of the approximation were compared and the design variables, 

from 4 to 20, were examined for each method. The results showed that the optimisation 

could converge very fast when using four variables. However, the accuracy with four 

variables was less than that with 20 variables. The results which were obtained using the 

five functions were compared. The Hicks-Henne function provided the highest fitting 

accuracy of all the types of function within relative convergence speed. Thus, the Hicks-

Henne function was found to be a better aerofoil shape representation method than the 

others. The performance of the Hicks-Henne shape function in aerodynamic optimisation 

was also examined in the second part of this work by carrying out an inverse design 

process. The results demonstrated that the Hicks-Henne function would provide good 

results when it is applied to an inverse design for an aerofoil at high Reynolds number 

condition.  However, it generated some oscillations on a Cp distribution for the case at a 

low Reynolds number due to unsmooth shape. Eyi and Lee (1997) employed the Hicks-

Henne and Wagner functions as smooth perturbations to the initial geometry in a two-
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dimensional aerofoil inverse design optimisation. The test showed that both the Hicks-

Henne and Wagner methods could achieve the target aerofoil and the convergence speed 

of the Wagner functions is slightly faster than the Hicks-Henne functions.  

 

The Hicks-Henne method has been widely employed in aerodynamic optimisation studies. 

Sung and Kwon. (2001) employed 15 Hicks-Henne functions to modify an aerofoil, and 

used 5 sections with 10 Hicks-Henne functions on each section to modify a wing shape. 

Kim, Sasaki et al. (2001) carried out a wing-body-nacelle and a wing-body aerodynamic 

optimisation study with Hicks-Henne functions. The wing is defined as 5 sections with 20 

Hicks-Henne functions for each section plus planform height parameters. The total 

number of design variables is only 106 for this three-dimensional configuration. After 

optimisation, the shock wave was greatly reduced. Kim et al. (2002) performed an 

aerodynamic optimisation test for a high-lift device. A two-dimensional multi-element 

aerofoil was represented by 157 design variables, of which 50 were Hicks-Henne 

functions for each master element, three rigging variables for the slat and flap element, 

and one for angle of attack. Nakayama et al. (2006) carried out a similar two-dimensional 

multi-element aerofoil optimisation. The total number of design variables was decreased 

to 71, of which 65 were design variables for aerofoil, slat and flap, eight variables for 

position of slat and flap and two variables for slat and flap angle. Kim and Nakahashi 

(2005) carried out a high-lift device optimisation with the unstructured adjoint method. A 

multi-element aerofoil with vane and flap was modified and the Hicks-Henne shape 

functions were employed to parameterise the geometry. The total number of design 

variables was 37, with 10 functions for vane upper and lower surfaces and flap leading 

edge area respectively. More Hicks-Henne applications can be found in Hageri et al. 

(1994), Kim and Alonso (2002a, 2002b), Zuo et al. (2006), Reuther et al. (1996; 1999), 

Elliott and Peraire (1996), Kim et al. (1999), Nadarajah and Jameson (2000), Eyi et al. 

(1996) and others.  

 

2.3  Polynomial, spline methods, CAD-based and free-form deformation 

Other techniques to represent geometry shapes with reduced number of design variables 

are polynomials and splines. The polynomial method is the basic method to represent 
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curves with an easy mathematical power form function and high computational efficiency. 

The polynomial curves can be written as: 

        

 

   

   2.3 

where the polynomial of n-th order, R(u), is the value of the polynomial function, Ai are 

coefficients of polynomials and normally used as design variables to control curves.  

It can be in either implicit or explicit form. The low order polynomial form performs well 

for representing a simple curve. For a complex curve, a high order polynomial is required 

to provide move flexibility. However, high order polynomials will easily produce 

oscillations and cause numerical instability issues. In addition, the power form basis 

polynomial provides less intuitive information to the designer, such as starting and 

ending point positions and tangential values. Therefore, it is normally employed to 

parameterise simple curves in aerodynamic components, such as leading edge and twist 

distribution function (Le Moigne 2002). 

 

For more complex curves, Bezier and B-spline curves are preferred. The Bezier curve 

was originally used in the design of automotive bodies and has been widely employed in 

the aerospace industry. A Bezier curve in n-th order for a single segment is described as:  

        

 

   

        

      

2.4 

where n is the order of Bezier curve (thus the total number of control points is n+1), R(u) 

is the vector value of the polynomial function,    are the control point vectors which are 

normally used as design variables in optimisation and         is the i-th term of an n-th 

order Bernstein polynomial, which is defined as: 

 

              
          2.5 

where     is the binominal coefficient defined as: 

 

      
 
 
  

  

        
 2.6 
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Once the control points are determined, the Bezier curve can be established. The Bezier 

curve is bounded by a ‘control polygon’ which is formed of all the control points: see 

Figure 2.1. The first and last lines of the control polygon coincide with the tangential 

direction of this Bezier curve at starting and ending points. The details can be found in 

Appendix A (Piegl and Tiller 1997).  

 

Figure 2.1 Bezier curve with control points 

 

The three-dimensional Bezier surface can be defined by a tensor product form, and 

shown as: 

             

 

   

 

   

               

               

2.7 

 

where m, n is the order of Bezier surface in i and j direction, R(u) is the vector value of 

the polynomial function, and ,      are the control point vectors Many researchers have 

used the Bezier curve in shape optimisation (Cosentino and Holst 1986; Désidéri et al. 

2004) and have presented the Bezier curve as efficiently representing an aerofoil-like 

curve and providing designers with more interactive control. However, for very complex 

curves, the Bezier curve is less efficient and more control points are required, as more 

control points will increase the order of the polynomial. Similarly for the power basis 

form, higher order polynomials will produce oscillations and cause numerical instability 

issues. Thus, it is inefficient for representing a very complex curve. Furthermore, any 

coefficient or control point could affect the entire curve and, therefore, it lacks local 

control. To overcome these shortages, piecewise polynomials are employed. The ‘B-
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spline curve’ is developed based on this and can be considered as a curve which 

comprises a few Bezier curves. A p
th

 order B-spline curve can be written as: 

 

        

 

   

        

      

2.8 

where p is the order of the B-spline curve, R(u) is the coordinate of geometry vector, Pi is 

the B-spline control points vector and         is the B-spline basis function, which is 

normally obtained by a recurrence formula, from Boor (1972 and 1977) : 

 

      
                                        
                                                

  2.9 

and 

     
    

       
          

        

           
            

2.10 

 

 

where ui are the breakpoints, so called ‘knot’ in B-spline methods. For a p-th order B-

spline curve with n control points, m=n+p+1 knots are required. A detailed description 

and background of B-spline is given in Piegl and Tiller (1997).   

 

B-spline is able to provide an excellent overall shape control, and it also can provide a 

high capability for local shape control, because the control points only affect the curve on 

local zone [ui , ui+p+1]. Like the Bezier methods, it can also be extended to represent a 

three-dimensional surface, defined as  

             

 

   

 

   

               

               

2.11 

Therefore, B-splines have been widely employed in curve and surface design and 

aerodynamic optimisation research. It provides very high flexible design space with a 

relatively low number of design variables. Furthermore, because the B-spline has 

excellent performance in interpolating dataset, it could be employed to interpolate 
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through a few key points on a curve or surface to provide intuitive control of curve or 

surface.  

 

However, there is a shortcoming of the Bezier and B-spline curves: they are essentially 

still polynomial-based and cannot naturally accurately represent implicit conic shapes, 

such as circles, ellipses and hyperbolas. Therefore, there is a special modification, namely 

‘rational curves’, which is introduced to overcome this issue by employing another 

polynomial, the so-called weights. In the B-spline curve, the non-uniform rational B-

spline (NURBS) has been developed (Versprille 1975; Tiller 1983; Piegl and Tiller 1997). 

The NURBS form is written as:  

     
   
 
            

          
 
   

 

      

2.12 

where, similarly with B-spline,  p is the order of NURBS curve, R(u) is the coordinate of 

the geometry vector, Pi is the NURBS control points vector and Wi are the weights. 

        is the B-spline basis function that is the same as the above B-spline curve basis 

function.  

The design variables could be selected either from Pi or Wi. Therefore, the NURBS 

inherits the benefits of B-spline, and overcomes B-spline’s shortcomings. The NURBS is 

capable of accurately representing the quadratic primitives; it is also able to represent the 

three-dimensional surface, and the definition is:   

                          

 

   

 

   

 

            

2.13 

where 

         
                  

                    
 
   

 
   

 

      

2.14 

Because of B-spline, NURBS have very good performance for curve manipulation; most 

CAD systems have employed them as a key tool to generate curves and surfaces. The 

CAD system has a powerful capability for handling complex geometry and has been 

widely used in the design process. Therefore, using commercial CAD software directly in 
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the optimisation design process as parameterisation, in so-called CAD-based methods, is 

increasingly interesting for industrial designers and researchers. The benefits of CAD-

based methods are stated as: 

 

1) The CAD software is powerful for manipulating very complex geometries, which 

reduces the researchers’ development time for complex geometries, 

2) CAD can provide many intuitive parameters, such as camber, thickness, slots, 

twist, etc. (Samareh 2001), 

 CAD has become a standard design tool in different areas, including aerodynamic, 

structure and system design. Thus, CAD software is also able to provide 

connectors for different purposes. This would be significant for multi-disciplinary 

optimisation (MDO).  

 

However, it is still a challenge to embed CAD in an optimisation loop; the main 

difficulties are: 

 

1) For the most part, CAD can provide accurate and smooth geometry, but it is not 

perfect. Normally, there are some blemishes, such as gaps, unwanted wiggles and 

free edges, in the CAD surface model. These may be ignorable in solid design, 

but are not acceptable for update or regenerate CFD (Samareh 2001). 

2) In the gradient-based optimisation technique, the sensitivities of surface points 

with respect to design variable are required. However, this information is not 

provided in most current CAD tools (Townsend et al. 1998). Hence, gradient-

based high-fidelity optimisation is hardly applied in CAD-based methods. An 

alternative way is to calculate surface sensitivities by finite difference (He et al. 

1998). However, this requires that the surface topology does not change. Another 

promising method is developed by Armstrong et al. (2009) using design velocity. 

3) The surface topology may be changed when the design variable is updated 

(Samareh 2001; Fudge and Zingg 2005). This could cause failure when updating 

surface CFD mesh and calculating surface sensitivities.  
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4) As a practical issue, the number of CAD licences will be a hurdle for parallel 

optimisation processes. 

Many researchers have used Bezier, B-spline, NURBS and CAD-based methods in 

aerodynamic optimisation (Lambert 1995; Tang and Désidéri 2002; Li and Krist 2005; 

Painchaud-Ouellet et al. 2006; Grasso 2012; Nelson et al. 2005; Fudge and Zingg 2005). 

Samareh (2001) asserted that B-spline and NURBS are best suited for the two-

dimensional optimisation case, because the three-dimensional complex geometry requires 

a large number of control points.  

 

Sasaki and Obayashi (2003) used the B-spline and Bezier surface to represent the wing-

fuselage configuration with a total number of 131 design variables. Nemec and Zingg 

(2002) performed a study of a multi-point and multi-objective aerodynamic optimisation 

for the design of a two-dimensional single-element and multi-element aerofoil. Fifteen 

control points were employed to represent a simple NACA 0012 aerofoil, and 10 of 15 

control points were employed as design variables. The RAE 2882 aerofoil was 

represented as 25 control points and 19 control points were used as design variables. 

Later on, Nemec et al. (2004) carried out an aerodynamic optimisation study based on a 

CAD system. In order to address the issues of CAD parameterisation methods, a non-

commercial CAD library, called Cart3D, was employed rather than using commercial 

CAD software directly. This CAS library employs the B-spline curve and surface to 

represent two-dimensional and three-dimensional geometries. A gradient-based 

optimisation method was used, and the gradient was calculated by finite-difference. A 

two-dimensional aerofoil optimisation and a complex configuration (fuselage, wing and 

canard) optimisation were tested. They showed B-spline methods have successfully 

provide optimal solutions on both 2D and 3D cases and also presented an alternative way 

of implementing CAD-based parameterisation. 

 

Song and Keane (2004) made a comparative study of two parameterisation methods, 

which are the basis function derived by Robinson and Keane (2001) and B-spline 

interpolation methods. Three aerofoils, NACA 0406, NACA 0610 and RAE 2822, were 

chosen as the target aerofoils. Inverse design optimisation was carried out to examine the 
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performance of two parameterisation methods. The difference of the B-spline method 

here is that it employed 34 points on the aerofoil surface as the design variable. B-spline 

was used to generate the entire surface by interpolating through all design points. The 

study shows that the B-spline methods provided enough accuracy to inverse design all 

tested aerofoils; however, it would require more computational cost. The basis function 

dramatically reduced the number of design variables to five; but it was not able to 

provide a high level of flexibility and obtained low accuracy results.   

 

Zingg and Elias (2006) and Zingg and Billing (2007) tested a two-dimensional multi-

point aerodynamic shape optimisation using  B-spline curves. The B-spline employed 15-

25 control points for representing an aerofoil. One control point was frozen at the leading 

edge and two were frozen at the trailing edge, while the rest of the control points were set 

as design variables. The results showed that the B-spline was able to provide very high 

flexible design space to satisfy the wide range of multi-point optimisation. Driver and 

Zingg (2007) investigated a two-dimensional aerofoil shape optimisation incorporating 

laminar-turbulence transition prediction using the Newton-Krylov gradient-based method. 

The research tried to find a good performance aerofoil with maximum lift-to-drag ratio, 

maximum endurance factor and maximum lift coefficient. The NACA 0012 was selected 

as an initial aerofoil. The aerofoil was represented using B-spline curve with 15 control 

points, of which 12 were used as design variables. The results demonstrated that the B-

spline had excellent performance for obtaining a new laminar flow aerofoil. Truong et al. 

(2008) employed a similar method in an aerodynamic optimisation in conjunction with a 

discret adjoint with Newton-Krylov optimisation algorithm. The NACA 0012 was chosen 

as the initial aerofoil with 15 control points, of which 13 were used as design variables. 

The results demonstrated that the performance of B-spline was good enough to provide a 

reasonable and smooth shape under restricted geometric constraints. 

 

Giammichele and Trépanier (2007) performed a test of multi-resolution B-spline control 

shape optimisations with constraint. A novel B-spline control shape method was 

investigated, which decomposed the curve representation to a multi-level type. At the 

highest level, the high number of control points resulted in high accuracy. It also allowed 
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local shape modification. At the lowest level, the low number of control points resulted in 

low accuracy. The purpose of using low level is to give a good global shape modification. 

Two studies were carried out to investigate this method. Firstly, a geometric fitting test 

was run to examine the capability of this method to represent existing aerofoils. It was 

found that the multi-resolution B-spline provided more accuracy than the direct B-spline 

with the same number of control points. This indicated that this method gives a good 

compromise between the efficiency of low number of control points and the high 

flexibility of a high number of design variables. The aerodynamic simulation and 

optimisation test demonstrated that this method was also able to smooth shapes in the 

design space, and the efficiency of the optimisation method could be improved.  

 

Lepine et al. (2001) offer an excellent presentation of the NURBS method in geometric 

representation and aerodynamic optimisation. The properties of NURBS for shape 

representation in aerodynamics were investigated. In the first step, the method was used 

to approximate several existing aerofoils. In the second step, NURBS was applied in an 

inverse aerodynamic design. To approximate to an aerofoil, the process of which could 

be defined as an optimisation issue to minimise the approximate L2 norm error, a second 

order quasi-Newton method, Broyden–Fletcher–Goldfarb–Shannon (BFGS), was selected 

to search a minimum cost function. Five aerofoils, NACA 2412, RAE 2822, Bombardier-

Canadair (BC), Boeing A4 and Boeing A8, were employed in this test as target aerofoils. 

The results demonstrated that NURBS was able to accurately represent most of the 

aerofoils using 13 control points or fewer. The approximate error could reach below 

8x10
-5

, which is lower than the normal tolerance. This means that NURBS was able to 

provide an excellent curve control and gave a precise curve fitting; it also impressively 

reduced the number of control points without losing flexibility. In addition, the original 

target aerofoil data are given by discrete points data; the noise normally appears in 

curvature space, especially in the area of high curvature. The first experiment showed 

that the NURBS approximation was able to filter these noises.  

 

In the second test by Lepine et al. (2001), inverse aerodynamic design with a target 

pressure distribution was performed using the quasi-Newton BFGS method. The gradient 
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of the objective function was obtained using finite differences. Eleven design variables 

were employed to control each side of the aerofoil surface. In order to compare the 

performance of parameterisation methods, the Hicks-Henne parameterisation method 

with a maximum of 11 design variables was selected for comparison. The results showed 

that the Hicks-Henne method could reach convergence faster than NURBS. However, 

because some non-physical shapes were generated by the Hicks-Henne method, it 

required manual intervention to restart the optimiser; otherwise, it was difficult to obtain 

the ideal shape. Furthermore, Hicks-Henne had very high noise compared with the result 

of the NURBS method; the obtained unsmooth shape could lead to aerofoil failure at off-

design conditions. In a three-dimensional wing optimisation case, a wing was represented 

as seven control sections, each section being controlled by NURBS with 13 control points. 

The total number of design variables was up to 77. The results showed that NURBS had a 

faster convergence rate than the Hicks-Henne method, the reason being that the three-

dimensional optimisation was highly sensitive to surface noise. The optimised shape and 

final pressure distribution showed that NURBS significantly reduced the shock strength 

and provided a smooth shape. The research demonstrated that NURBS has three main 

advantages. Firstly, NURBS is able to efficiently reduce the number of design variables; 

secondly, it could provide a wide range of design spaces for a small number of design 

variables; thirdly, it could provide a natural smooth and noise-free shape, which is 

important for aerodynamic performance.  

 

Bentamy and Guibault (2005) used NURBS for parameterisation in a realistic aircraft 

wing. The aircraft wing was divided into five sections, namely: root section, mid-section 

between root and break section, break section, mid-section between break section and tip 

section and tip section. Each section was parameterised by a NURBS curve with 24 

control points. The three-dimensional surface is then generated by interpolation of five 

control sections using NURBS surface. An inverse design case and direct aerodynamic 

optimisation were performed to test the performance of the NURBS. The results showed 

that NURBS was able to efficiently represent a smooth and complex geometry of a wing 

within a restricted number of design variables in aerospace design work.  
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Fudge and Zingg (2005) developed a CAD-free and a CAD-based system for 

aerodynamic optimisation. In the CAD-free system, the B-spline patch method was 

employed to represent the fuselage-wing geometry, and the B-spline surface control net 

was used as design variable; furthermore, the design variables were divided into three 

layers: control net, drive nodes and global variables. The control nets implemented 

geometry control; the driving nodes constrained the control net; and the global variables 

were used to drive the control net displacement. In the CAD-based system, they 

successfully integrated CATIA V5 into an optimisation loop by utilising the 

Computational Analysis Programming Interface (CAPRI), which is an application 

programming interface (API) whose purpose is to provide a seamless bridge between 

CAD systems and computational engineering analysis (such as CFD). They posited that 

the CAD-based variables are generic and may be applied to any CAD loft created with 

the appropriate parameters. The CAD-free system is able to calculate the surface point 

perturbation in a straightforward manner compared with the CAD-based system. In their 

work, Fudge and Zingg (2005) made extra effort to overcome this issue in the CAD-

based system by employing an internal representation of geometries. Both methods have 

been applied to a DLR F6 wing-fuselage geometry and prepared for future optimisation 

work. 

 

A few more recent studies using CAD-based methods have been done by DLR. 

Ronzheimer et al. (2010) have employed CATIA V5 to parameterise a transonic transport 

aircraft, and applied a comprehensive MDO process to maximise the range of this aircraft. 

A limited number of design variables, including wing aspect ratio, sweep angle and twist 

of four-wing control section, were employed. In the MDO process, the geometry was first 

updated from CATIA V5. The Euler CFD was then run to provide aerodynamic load data 

for the structure sizing process. Afterwards, the CFD-CSM coupling process was 

performed repeatedly to obtain correct drag and mass under aero-elasticity. The Breguet 

range was then calculated as an objective value of optimisation. The optimisation method 

employed a gradient-free Simplex method. This work showed the potential ability of 

CAD-based methods in a practical case, and demonstrated that CAITA had the capability 

to provide an interface between CFD surfacing and CSM processing. Brezillon et al. 
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(2012) subsequently extended this work to optimise the rear-fuselage and engine position, 

and applied MDO to include aero-acoustic analysis. However, they maintained that the 

use of CAD in optimisation is still a challenge because of the costs of complexity (IT 

infrastructure, coupling with CFD mesh), stability (Windows operating system) and 

extendibility (number of design parameters). 

 

More recently, researchers are increasingly interested in free-form deformation methods. 

These FFD methods are based on a powerful surface morphing technique which was 

originally applied in industrial animation motion and deformed of solid models (Watt and 

Watt 1992; Barr 1984; Sederberg and Parry 1986). In design optimisation, the small 

perturbation may lead to a significant change in the design object’s performance. The 

idea of FFD is to parameterise the geometric perturbation with small number of design 

variables instead of parameterising the entire geometry. The basic idea of FFD is first to 

map the geometry into a square control box, as Equation 2.15. 

                                2.15 

where                 is the coordinate vector of initial/baseline geometry with Cartesian 

coordinates and                 is the vector of initial/baseline shape on coordinate 

inside control box. 

 

The FFD methods is then modifying          using Bezier, B-spline or a NURBS basis 

function to get the new coordinates(Ronzheimer 2005; Yamazaki et al. 2008; Lamousin 

and Waggenspack 1994). The vertices of control box are the control points. The FF 

formula using Bezier polynomial functions (Yamazaki et al. 2008) is presented below: 

                                 

 

   

      

 

   

 

   

 2.16 

Because the technique is based on Bezier and spline techniques, the author included FFD 

in this subsection. The control points Pi,j,k, forming a lattice box, also called ‘control box’, 

are used as design variables to generate new surface (see Figure 2.2). 
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Figure 2.2 The control box of FFD for ONERA M6 wing (Widhalm et al. 2007) 

  

Generally, the FFD process can be split into the following steps (Widhalm et al. 2007; 

Samareh 2004): 

1) Selecting the region that needs to be modified or optimised,  

2) Set up control box surrounding the design region and map all grid points on initial 

surface into this control box, 

3) Change the control points of the control box and apply the perturbation over the 

control volume space to obtain a new surface. 

The FFD methods have a major impact on the number of design variables and provide 

high flexible surface deformation at the same time. The second benefit of FFD methods is 

a mathematically algebraic scheme to perturb every point within the control volume, so 

that it is possible to provide analytical sensitivities of surface mesh points with respect to 

design variables. The details can be found in Samareh (2004) and Yamazaki et al. (2008). 

This is significant for gradient-based optimisation. The third advantage is that, because 

FFD methods directly perturb the original geometry, it could be applied in complex 

geometries. Another advantage is that FFD can maintain the grid topology. Therefore, 

FFD can be linked with mesh deformation or can regenerate the mesh when the 

deformation is not too great. (Additionally here, the reason and benefits of using mesh 

deformation rather than mesh regeneration in optimisation and mesh deformation 

methods will be discussed in chapter 6.) 

 

However, there are some main disadvantages, which have been presented by Samareh 

(2005). FFD hardly provides the parameters with physical meaning. This would mean 

that designers would have less intuitive control of geometry surface, and it would be hard 

to specify design and optimisation bounds and constraints.  



23 

 

 

A few researchers have employed the FFD methods in aerodynamic optimisation or 

MDO. Samareh (2004) applied FFD based on NURBS in aerodynamic optimisation using 

Trivariate Volume-Based Deformation to provide more intuitive control for designers, 

and used it for many different configurations such as wing-fuselage leading edge fillet 

and blended-wing-body drone. Widhalm et al. (2010) embedded the FFD methods into 

gradient-free and gradient-based adjoint optimisation frameworks; M6 wing and a wing-

body configuration were successfully tested. Yamazaki et al. (2008) developed the FFD 

methods for 2D aerofoil optimisation with physics-based direct manipulation where 

designers could have more freedom to specify the location of control points. The FFD 

method was then extended to deform flow field mesh, and results showed that FFD could 

efficiently preserve the mesh quality, better than spring analogy-based mesh deformation 

methods.  

 

Ronzheimer (2006) presented a few examples of applications of the FFD methods in 

aerodynamic optimisation and successfully applied FFD in belly-fairing optimisation 

with a gradient-free suplex method. He also presented the potential capability of the FFD 

method to extend to the computational structure mechanics (CSM) model and CFD 

coupling design, where the FFD method is employed to deform the structure model and 

aerodynamic surface model simultaneously. Furthermore, Ronzheimer et al. (2010) 

further developed the FFD method and applied it to optimise a passenger transport 

aircraft’s aerodynamic components, including fuselage tail part, pylon and nacelle, with 

only 20 parameters. The gradient-free optimisation method was employed, and results 

showed that the total drag was successfully reduced about 5 drag counts.  More details 

can be found in Nielsen and Park (2005), Anderson et al. (2008; 2009), Andreoli et al. 

(2003), Désidéri et al. (2004), Duvigneau et al. (2006), Ronzheimer (2005). 

 

2.4  PARSEC parameterisation methods 

The PARSEC method was originally developed by Sobieczky (1998). In his work, 

explicit mathematical functions were introduced to represent a two-dimensional aerofoil. 

Intuitive parameters were used in this method. The purpose of the method is to find a 
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minimum number of variables to address the special aerodynamic, geometric and flow 

features. Sobieczky posited that the aerofoil curvature distribution is strongly linked to 

the desirable pressure distribution. Therefore, some parameters of curvature were 

employed to represent an aerofoil. In this method, two sixth order polynomials were used 

to control the upper and lower surfaces of the aerofoil, respectively: 

Eleven intuitive parameters were employed to explicitly represent an aerofoil, as 

illustrated in Figure 2.3.  

 

Figure 2.3 PARSEC method parameters definition 

 

The parameters are: the leading edge radius (Rle), upper crest position (Xup, Zup), upper 

crest curvature (Zxxup), lower crest position (Xlo, Zlo), lower crest curvature (Zxxlo), trailing 

edge position (Zte), trailing thickness (∆Zte) and trailing edge angle and trailing edge 

wedge angle (αte and βte). The relationships between the parameters and polynomials are 

shown as: 

        
  

 
 

 

   

 
2.17 

        
  

 
 

 

   

 
2.18 

    

 
 
 
 
     

  
  
 
 

 

   
    

 
 
 
 

  
       

 

 
  

2.19 

                     
2.20 



25 

 

Two linear systems of equations for the upper and lower surfaces are then established:  

where 
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and 

The coefficients can then be obtained by solving these two systems of equations: 

Once the vectors Vup and Vlo are solved, the polynomials for PARSEC are defined. The 

aerofoil coordinates are then calculated from the polynomials. The coefficients need to be 

updated as soon as any PARSEC intuitive parameter is changed. 

 

Sobieczky also presented that the PARSEC method was able to modify the trailing edge 

in order to enhance the aerodynamic efficiency. For an aerofoil with blunt trailing edge, a 

convex upper surface contour shape and a concave lower surface were generated by 

increasing and decreasing the curvature. This resulted in a minimum thickness change of 

the aerofoil a few percent upstream of the TE. This modification was called ‘divergent 

trailing edge’ (DTE). Modification based on a hodograph was employed in the PARSEC 

na

 

2.27 

    

 
 
 
 
 
 
  
  
  
  
  
   
 
 
 
 
 

     

 
 
 
 
 
 
 
      
        
   

        

 

 
   

   
 
      

 
 
 
 
 
 
 

     

 
 
 
 
 
 
  
  
  
  
  
   
 
 
 
 
 

     

 
 
 
 
 
 
 
       
        
   

        
 

 
   

   
 
      

 
 
 
 
 
 
 

 

2.28 

 
2.29 

1 3 5 7 9 11

2 2 2 2 2 2

1 3 5 7 9 11

2 2 2 2 2 2

1 1 3

2 2 2

         1      0        0           0           0         0

                           

                          

1 3 5
    

2 2 2

TE TE TE TE TE TE

LO LO LO LO LO LO

lo
TE TE TE

X X X X X X

X X X X X X

A X X X


5 7 9

2 2 2

1 1 3 5 7 9

2 2 2 2 2 2

3 1 1 3 5 7

2 2 2 2 2 2

7 9 11
 

2 2 2

1 3 5 7 9 11
    

2 2 2 2 2 2

1 3 15 35 53 99

4 4 4 4 4 4

TE TE TE

LO LO LO LO LO LO

LO LO LO LO LO LO

X X X

X X X X X X

X X X X X X



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1

1

up up up

lo up lo

V A B

V A B





 

 



27 

 

method. A few parameters were used to control the DTE shape, which are shown in 

Equation 2.30 and Figure 2.4.  

 

 

Figure 2.4 PARSEC parameters for DTE (Sobieczky 1998) 

 

where the range of L was limited between 20 and 50 percent for upper and lower surfaces, 

respectively. The exponent n=3 and μ is between 1.3 and 1.8.  

 

Modern civil transport aircraft normally fly in high subsonic conditions where the flow is 

transonic. The shock wave is usually generated on the upper (suction) surface. There 

have been many attempts to reduce the shock wave in order to improve the aerodynamic 

performance. Tai et al (1988) developed a humped aerofoil, which placed a compression 

ramp to decelerate the local Mach number before the shock wave. Ashill et al. (1993) 

presented a two-dimensional bump placed at the foot of the shock wave to achieve 

isentropic compression, which significantly weakens the shock strength and hence 

reduces wave drag without the significant viscous drag penalty. Sobieczky and Seebass 

(1984) introduced two suitable bumps on the aerofoil to weaken the shock wave. The first 

bump near the leading edge induced a set of expansion waves, and the second bump 

absorbed recompression waves which blended near the sonic recompression.  

 

Local surface bump design has become more and more interesting in high subsonic wave 

drag reduction design. This design requires local curvature modification in the critical 
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areas; therefore, the parameterisation methods have to be capable of local surface control. 

As above mentioned in Samareh’s review (2001), some of the parameterisation methods, 

such as the discrete method, domain element, B-spline and FFD, are able to produce the 

local shape variation. In the PARSEC method, this issue is considered as an extra bump 

function to be added on to the original shape. The definition of this bump function is 

shown in Equations 2.31-2.33 and Figure 2.5 presents the definition of PARSEC local 

surface bump control. 

 

 

Figure 2.5 PARSEC parameters for local control bump (Sobieczky 1998) 

 

The chordwise coordinate is converted to a local coordinate controlled by variable  . Xm 

and Zm describe the position of the bump crest which is controlled by the coefficients a 

and b. The bump crest curvature ZXX,m and the bump ramps curvature are controlled by P, 

Q and c in function     .  

 

Thus far, PARSEC for 2D aerofoil design has been presented. For 3D real wing 

optimisation, two strategies could be employed to describe the wing surface. One way is 

to utilise many aerofoils as control sections (also called support sections or master 

sections) located along the wing in the spanwise direction. Each control section is 

                     2.31 

            2.32 

                              2.33 
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parameterised by the PARSEC method. The surface grid could be then calculated either 

using linear interpolation between these control sections or B-spline surface to lifting. 

This strategy is normally employed in wing optimisation work; however, it always 

requires many support sections for complex wing configurations. Otherwise, inaccuracy 

and non-smoothness in the spanwise direction could occur. 

 

The other way is to analytically define the wing as a distribution of aerofoils in the 

spanwise direction. Therefore, each PARSEC parameter is then replaced by a distribution 

function along the spanwise direction. This strategy could overcome the drawback of 

using a control section and provide smoothness with only a few parameters. In 

Sobieczky’s work, an Oblique Flying Wing design was carried out using both of these 

wing parameterisation strategies and the results showed that PARSEC with spanwise 

distribution for wing surface could be a promising method.  

 

Many researchers have employed the PARSEC method in their work. Fuhrmann (2005) 

employed PARSEC to investigate a low Reynolds number, high Mach number aerofoil 

under Martian atmosphere conditions. Many test cases were performed to find the key 

parameters. It was found that the location of the upper crest position Xu was related with 

lift-to-drag ratio and the upper crest curvature Yxxu and trailing edge angle had an effect 

on lift-to-drag ratio, but not as significant as the upper crest position Xu. The results 

showed that PARSEC was able to provide flexibility and robust results. However, 

Fuhrmann also pointed out that the PARSEC aerofoil definition is good for a slight 

modification of an existing aerofoil, but not good for generating a new aerofoil by 

randomly combining the parameters, since rippling and the intersection of the upper and 

lower surfaces could be occurred. 

 

Khurana et al. (2008) studied characteristics of the PARSEC method. The design 

variables sensitivity analysis was performed to investigate the effect of each design 

variable. In this sensitivity analysis, the test started at a basic arbitrary aerofoil with 11 

PARSEC variables. One variable was then perturbed while the rest of the variables were 

fixed. The perturbation was limited within a defined test domain to generate a series of 
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aerofoils. The geometric features and aerodynamic characteristics, such as thickness, 

camber, trailing edge angle, lift coefficient and drag coefficient, were calculated. Four 

independent aerofoils were used as a basic aerofoil. In order to visualise the process 

information, a self-organising map (SOM) technique was employed to reduce the results 

from high to low dimensional space. The results showed that the leading edge radius had 

a slight effect on aerofoil camber, and had no effect on thickness and trailing edge angle. 

Aerodynamic characteristics of the leading edge radius were tested as well, under 

subsonic flow condition. Results showed that the leading edge radius had a high effect on 

lift and drag coefficients, but not on moment coefficient. The crest position variable yu 

had an effect on thickness and camber, but not on trailing edge angle. Aerodynamic 

performance of yu indicated that it greatly affected the lift and drag coefficients. The 

SOM analysis was carried out over all PARSEC parameters and the test showed that the 

PARSEC parameters were able to provide independent one-to-one control over aerofoil 

geometry. The crest positions Xu and Xl were sensitive and needed to be limited carefully 

within an appropriate domain, otherwise an un-realistic geometry would be generated. In 

general, the PARSEC variables satisfied the requirement for parameterisation in 

aerodynamic optimisation. By this variable sensitivity study, the design limit bounds 

were discovered corresponding to geometric constraints; these constraints could assist in 

improving the optimiser efficiency. In the later work of Khurana et al. (2009), PARSEC 

was employed to take part in aerofoil shape optimisation. A test was carried out to search 

for a feasible design bound which would have a minimum number of un-realistic shapes. 

Four different aerofoils with disparate flight performances were used as test samples. An 

inverse fitting of PARSEC variables was implemented to find the design variables of 

each aerofoil. A particle swarm optimisation algorithm was employed to carry out this 

process with L2 norm as an objective function. Then, the design bound was determined 

using a certain map technique. This design bound was proofed in order that it could 

provide enough flexibility with minimum non-feasible aerofoils in a subsequent 

optimisation experiment. 

 

Another similar research study was performed by Jeong et al. (2005) under transonic 

flow conditions. A transonic aerofoil design was parameterised using 11 PARSEC 
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variables. Analysis of variance (ANOVA) and SOM were employed to investigate the 

effect of each variable. The results of ANOVA showed that the crest position Yu and Yl 

had a large effect on the lift coefficient, and a similar effect on drag coefficient; it also 

presented that the leading edge radius could affect the drag coefficient. The SOM test 

gave the same conclusion. It found that Yu was related to the drag coefficient, and Yl was 

related to the lift coefficient. The small leading edge radius could decrease the drag 

coefficient. The conclusion was similar to the previous work of Khurana et al. (2008). 

The effect of each variable was identified and they also emphasised that some parameters 

should be limited in an appropriate region to avoid unrealistic geometry. 

 

Padulo et al. (2009) tried to run a conceptual design under geometry uncertainty 

conditions, aiming to model geometry variability due to manufacturing or environmental 

variants. In this research, shape parameterisation played a very important role in 

determining the quality of the design space. The PARSEC-11 parameterisation method 

was selected to parameterise the aerofoil because it could provide intuitive geometric 

parameters. In their review work, they found there are some regions with flawed aerofoils 

in the entire design space provided by the PARSEC method. Some inherent problems of 

the PARSEC method were examined in further research. PARSEC used 11 parameters to 

solve a linear algebraic system of 12 equations. Subsequently, the coefficients of the 

polynomial were obtained; however, high order polynomials could lead to the appearance 

of more than one local maximum in the curve. In other words, although crest position 

parameters, such as Xu, Xl, Yu, Yl,, can be employed to control crest position, they cannot 

guarantee that the crest position is absolutely maximised. The other drawback is that 

there was no constraint imposed in PARSEC to guarantee avoiding the intersection 

between upper and lower surfaces. To identify the erroneous region of the PARSEC 

method, a parameterisation study was carried out on a large LP-Tau design of experiment 

(DOE) to screen the design space in a large initial search domain. In this study, LP-Tau 

sampling of 131072 points was used, and SOM was employed to visualise the data 

information. Finally, 2052 poor-condition profiles were identified in the design space. 

The results demonstrated that the erroneous profiles were related with values of Xu, Xl 

and high values of Yxxu, Yxxl and Zte and inappropriate trailing edge angle. The reduced 
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region was then established, which could guarantee that the parameterisation method 

provided robust and meaningful results. The technique could also increase the efficiency 

of the optimisation. Thus, this work demonstrates that the crest position and curvature 

value should be selected extra carefully.  

 

Winnemöller and van Dam (2007) performed a design and optimisation study on a thick 

aerofoil with blunt trailing edge. The blunt trailing edge has been shown to be good for 

the aerodynamic performance and structural cost of thick aerofoils; the blunt trailing edge 

could be able to decrease the sensitivity of lift to premature boundary-layer transition, but 

on the other hand it could contribute to the drag at the same time. In order to reduce the 

drag penalty, the PARSEC method was employed in aerofoil design work. Results 

showed that PARSEC was able to handle the thickness and trailing edge very well and 

provided enough flexibility to address the Paraeto front for later aerodynamic 

performance study.  

 

Pehlivanoglu (2009) performed a representation method effect study. PARSEC and 

Bezier parameterisation methods were compared using a vibrational genetic algorithm in 

a two-dimensional aerofoil design. Two test cases were implemented: an inverse 

optimisation was carried out to test two parameterisation methods in low speed flow 

conditions, and the second case was to test the performance of two parameterisation 

methods on drag reduction in transonic flow conditions. In the first case, PARSEC-11 

provided better results than Bezier methods with 22 control points. PARSEC also 

attained convergence faster than Bezier methods. The second case also showed that the 

Bezier method provided slightly more drag reduction than the PARSEC method. The 

study concluded that the PARSEC method is more efficient than the Bezier method; 

however, the PARSEC method has less flexibility. 

 

In Vavall and Qin’s (2007) work, an improved response surface based optimisation for a 

two-dimensional aerofoil design under transonic flow conditions was carried out. 

PARSEC method was employed because it has low number of design variables. Two test 

cases were investigated to validate this response surface method. The results showed that 
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the PARSEC method was able to provide a large design space; however, unconventional 

profiles may be included. Shahrokhi and Jahangirian (2007) studied the effect of the 

PARSEC parameterisation method for viscous transonic flows. In their work, the original 

PARSEC method was exposed, in that it was unable to offer good control over the 

trailing edge area. To overcome this disadvantage, the Sobieczky DTE trailing edge 

method, which has been introduced earlier in this section, was used to increase the local 

curvature towards the trailing area. However, Shahrokhi and Jahangirian demonstrated 

that the Sobieczky DTE trailing edge could generate the intersection between upper and 

lower surfaces. Thus, a modified Sobieczky DTE trailing edge was introduced to avoid 

the intersection. Moreover, increasing the upper surface curvature in the trailing edge 

area may cause unfavourable pressure gradients on the upper surface, which could reduce 

the aerodynamic performance. Therefore, a new method was developed to overcome 

shortage by flattening the upper surface and, to compare this method, three test aerofoils 

with different methods were set up. In the first, the Sobieczky DTE trailing edge was 

used for both surfaces. In the second one, the new method was used for both surfaces. In 

the last one, the Sobieczky DTE trailing edge was used for the lower surface, and the new 

method was used for the upper surface. The results showed that the first aerofoil obtained 

the highest lift; however, the highest drag was obtained as well, and the lift-to-drag ratio 

was the lowest in all of the test cases. The second aerofoil could make a maximum 

reduction in the drag coefficient; however, the lift coefficient was decreased at the same 

time, because of the decrease of the trailing edge curvature on the lower surface. The 

third aerofoil could give a reasonable result with high drag reduction and slight lift 

reduction. This achieved the highest lift-to-drag ratio of the three aerofoils. Some further 

aerodynamic optimisation tests were carried out using genetic algorithm. The first case 

was to test the effect of the original PARSEC and the Sobieczky DTE trailing edge 

methods under transonic viscous flow conditions. RAE 2822 was employed as initial 

aerofoil, and the objective was to find the maximum lift-to-drag ratio. The results showed 

that both methods were able to weaken the shock wave. However, the Sobieczky DTE 

could provide further modification near the trailing edge area and therefore, the 

Sobieczky DTE trailing edge method could obtain more lift and more drag reduction. The 

second test case involved the new parameterisation method. The results showed that the 
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new method provided better pressure distribution on the upper and lower surfaces than 

the other methods, and the shock was almost eliminated. The highest lift-to-drag ratio 

was obtained by the new method as well. The convergence rate of the new method was 

much faster than the other methods. This demonstrated that the new method, based on the 

PARSEC method, provided more flexibility than the conventional PARSEC method in 

the aerofoil optimisation. 

 

2.5  Class/shape function transformation (CST) methods 

As stated at the beginning, an ideal parameterisation method is required which is able to 

provide a high level of flexibility and be compact in number of design variables and also 

provide physically meaningful design variables. The above reviewed methods either 

focus on the first two properties, such as Hicks-Henne, Bezier and B-spline, or focus on 

providing intuitive parameters, like PARSEC. Therefore, a universal method is desired 

which could not only satisfy most ideal properties of the geometric parameterisation 

method but also specifically represent aircraft aerodynamic components.  A new 

approach, the so-called ‘class/shape function transformation’ method proposed by Kulfan 

(2006 - 2010), is increasingly used in aerofoil/aircraft optimisation. The purpose of this 

method is to develop a universal parameterisation method for complex aircraft 

configurations which is not limited just to aerofoils.  

 

The CST method is initially derived from a mathematical representation of an aerofoil 

with round leading edge and aft-end. For this type of aerofoil, the difficulties in 

representing it mathematically are due to the infinite slope and second derivative 

requirement at the leading edge and large variations of curvature over the shape. The 

CST method was intended to overcome these limits and represent the different type of 

geometries in a generic way. It starts at a general mathematical expression for a two-

dimensional aerofoil as: 
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where  
 

 
 describes the round nose,    

 

 
 describes the sharp trailing edge, 

    

 
 presents 

the trailing edge thickness and       
 

 
    

    is a general function to describe the 

detailed shape.  
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  and 

    

 
 terms are associated with the basic characteristics of 

aerofoils.  

Therefore, this representation form can be rewritten as: 

where the    
      is the class function, N1 and N2 are called class parameters,       the 

shape function and  the trailing edge thickness ratio.  

For the general aerofoil with a round nose and an aft-end trailing edge, the class 

parameters N1 and N2 are set to 0.5 and 1.0, respectively. In Kulfan’s paper, the class 

function has been demonstrated to have a powerful capability in representing a large 

number of geometrical types. Table 2-1 illustrates the different types of geometries that 

are represented by the class function using various class parameters when the shape 

function       . 
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Table 2.1 Various types of geometries using different class parameters 

N1 N2 Shape N1 N2 Shape 

0.5 1.0 
 

1.0 1.0 

 

0.5 0.5 

 

0.75 0.75 

 

1.0 1.0001 

 

0.75 0.25 

 

Table 2.1 shows that the supersonic aerofoil with sharp leading and trailing edges can be 

represented by using the class parameters, both of N1 and N2 , equal to 1.0. The circle and 

ellipse type of geometries could be represented when the class parameters both of N1 and 

N2 are set to 0.5. The wedge and bullet types of geometry could also be represented. 

These shapes are the most common shapes appearing in aerodynamic design. 

 

Any kind of algebraic polynomial can be employed as the shape function. In the CST 

methods, the Bernstein polynomial is preferred for use as the shape function, since 

Bernstein polynomials have the mathematical property of ‘partition of unity’ and are 

more numerical stable than power form polynomials. The form of Bernstein polynomials 

is shown as: 

where K is the binomial coefficient which is defined as 

            
         

 

   

 2.38 

      
 
 
  

  

        
 2.39 



37 

 

The aerofoil shape can be represented using the Bernstein polynomial with different 

weight coefficients. These weight coefficients are then employed as design variables in 

optimisation. The total number of design variables depends on the order of the Bernstein 

polynomial, i.e. n+1. Eventually, the completed mathematical equation of the CST 

aerofoil could be written as: 

The first weight coefficient of the Bernstein polynomial A0 corresponds to the leading 

edge radius: 

The last weight coefficient of the Bernstein polynomial corresponds to the trailing edge 

angle and trailing edge vertical position:  

The details of the derivation of this relation can be found in Kulfan (2006). Therefore, the 

CST method for aerofoils includes two intuitive parameters; the other coefficients in the 

CST method are non-intuitive. Some properties of the CST method for representing 

aerofoils have been summarised in Kulfan’s paper (2006), as follows: 

a) Any aerofoil can be represented; 

b) This aerofoil representation technique provides a large design space of smooth 

aerofoils; 

c) Every aerofoil in the entire design space can be derived from the unit shape function 

aerofoil. 

The convergence characteristics of the CST method were carried out to investigate the 

relationship between the CST method order and approximation accuracy in Kulfan’s 

research. The CST method was firstly employed to inverse fit existing aerofoils with 

increasing Bernstein order (BPO) of the shape function; the convergence characteristics 
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of fitting accuracy of the CST method for various aerofoils were studied. A CFD solver 

called TRANAIR was secondly employed to test the convergence characteristics of 

fitting accuracy for aerodynamic performance. Three aerofoils, namely NACA 0012, 

RAE 2822 and NASA 02-714, were reported in the paper.  

 

For the convergence studies of a symmetric NACA 0012 aerofoil, the geometric and 

aerodynamic characteristics of an approximate aerofoil were investigated, with 14 

approximations obtained with Bernstein Polynomial Order (BPO) 2 to 15. The results 

showed that the approximated aerofoil with low BPO order was very close to the actual 

aerofoil. The error reduced rapidly with increasing BPO order, and almost vanished when 

BPO was greater than 9. The investigation of aerofoil 1
st
 and 2

nd
 derivatives demonstrated 

that the CST shape function provided strong smoothing control over the aerofoil shape. 

The TRANAIR flow solver was then employed to test the convergence of aerodynamics 

of the approximated aerofoil. Results showed that there was a significant error of the 

approximated aerofoil with the low BPO order, even if the geometric difference was 

slight. The approximated aerofoil with at least 6
th

 order Bernstein polynomial could 

satisfy the error requirement in aerodynamics.  

 

The convergence studies of the RAE 2822 cambered supercritical aerofoil indicated that 

it was similar to the NACA 0012 case, in that the aerodynamic and geometric 

characteristics were tested with 14 approximations obtained with different BPO orders. 

The results demonstrated that, for the approximated aerofoil with 6
th

 order or greater, the 

Bernstein polynomial could make a very accurate fitting for this aerofoil. The 

aerodynamic test presented that the results of pressure distribution obtained with BPO 4 

were very close to the results obtained by the original aerofoil; however, a BPO order of 

8 or more is required to eliminate the difference of lift and drag coefficients between 

approximate and original aerofoils.  

 

A NASA 02-714 cambered supercritical aerofoil was also presented in their report. As 

with the above two cases, the NASA 02-714 aerofoil was represented using BPO 2 to 15. 

The results of geometric fitting accuracy showed that BPO orders of 8 or higher were 
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required to accurately approximate geometric 1
st
 and 2

nd
 derivatives distribution of this 

aerofoil within wind tunnel tolerance. The results of the aerodynamic test showed that  

BPO 10 or higher was required to accurately capture the aerodynamic characteristics of 

this aerofoil. Kulfan’s test clearly showed that for the CST to be able to represent the 

aerofoil very accurately. The BPO is normally required to be around 9.  

 

Ceze et al. (2009) performed a further study to investigate the characteristics of the CST 

parameterisation method. The geometric representation error analysis was studied first; it 

was found that the L2 norm which described the difference the CST approximation and 

original shape decreased with increasing BPO order. The conclusion was the same as 

Kulfan’s, in that BPO 9 was required to fit the existing aerofoil -. Afterwards, the 

numerical uniqueness of the CST parameterisation method was investigated: this was to 

check whether the set of parameters represent a unique shape and also whether perturbing 

an input parameter within a defined domain will result in a perturbed shape within a 

required domain. This is a significant influence on the efficiency of optimisation, since 

non-uniqueness parameterisation methods could generate noise in the design space. In 

order to investigate the numerical uniqueness, the CST method with n-th order BPO was 

re-written in matrix form when passed through n+1 control points on an aerofoil.  

 

0 0 1 0 0 0 0

0 1 1 1 1 1 1
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The matrix with S function on the left was specified as matrix M. The spectral condition 

number of matrix M was employed to examine the numerical uniqueness. The large value 

of spectral condition number presents the wide eigenvalues, which indicates the matrix M 

is ill-conditioned. If the matrix M is ill-conditioned, a small variation of y could cause a 

large variation of b. In other words, it implies that similar geometries could be 
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represented by widely different variables. The test of numerical uniqueness of the CST 

method demonstrated that the spectral condition number becomes large when increasing 

the BPO order. The matrix M approaches to be virtually singular when the BPO order is 

over 30. Another test for numerical uniqueness was to check if a shape could be 

represented by two different sets of variables. A 36
th

 order BPO shape function was 

employed to fit an aerofoil with a unit shape function. For a large dimensional matrix, the 

exact inversion of the matrix would be hardly obtained or eventually non-existent. Thus, 

an approximate inverse with least-square sense was utilised to solve this linear system. 

The solved parameters showed that the two sets of parameters were largely different. 

However, the results of geometric error showed that there were small differences for both 

geometric shapes, and the L2 norm was 7.7545x10
-7

, which is extremely small. The study 

concludes that high order shape function leads to shape numerical non-uniqueness, which 

should be avoided in optimisation. The results suggested that the BPO should not be 

greater than 15. Thus, care is needed to choose the order of CST parameterisation in 

optimisation. 

 

Ceze et al. (2009) also performed an aerodynamic optimisation based on the adjoint 

method to validate the CST method. The pressure distribution of a NACA 0009 aerofoil 

was employed as target, and the NACA 0012 was used for initial geometry. For the first 

two test cases, the geometries were parameterised by the CST method with 2-parameters 

and 6-parameters respectively. The results showed that both tests could achieve the target 

geometry for a given tolerance. The comparison of the convergence rate demonstrated 

that low order parameterisation was faster than high order parameterisation. The second 

case employed the RAE 2822 as target aerofoil using higher order CST parameterisation 

with 11 parameters. The results showed that the high order CST method could converge 

to the target, and match the shock position. However, there were still differences, in the 

vicinity of the leading and the trailing edge areas, between the approximated and original 

aerofoil. The reason could be the steep descent method and inaccurate sensitivities solved 

by adjoint solver in those areas. The results demonstrated that the CST method was a 

promising parameterisation method in aerodynamic optimisation. Similar tests were done 

by Lane and Marshall (2010), who performed inverse aerofoil design to find an aerofoil 
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which could match the target pressure distribution using the CST methods. The results 

showed that the CST method could achieve the target aerofoil in accuracy and 

smoothness. Some other works which employed the CST method can be found in Bogue 

and Crist (2008), Haderlie and Crossley (2009) and Lane and Marshall (2010). 

 

2.6  Comparison of parameterisation methods 

Some researchers have carried out comparison studies of the different geometric 

parameterisation methods. Some of the more interesting works are summarised in this 

subsection in order to compare the characteristics of different parameterisation techniques.  

 

Mousavi et al. (2007) performed a study of the effect of shape parameterisation 

techniques on three-dimensional aerodynamic optimisation. Three parameterisation 

methods, which were the mesh points, B-spline and CST methods, were employed. 

Inverse design and drag minimisation optimisation were performed for the study. The 

effects of the number of design variables and convergence rate were also investigated. 

The gradient-based optimiser with an adjoint approach was employed for optimisation. 

The first case was an inverse design with target pressure distribution taken from an 

ONERA M6 wing section. The aerofoil from M6 wing has high curvature at the leading 

edge, which is a challenge to parameterisation methods. For the mesh point methods, the 

smoothing algorithm was necessary to smooth the gradient. The low order CST method 

could be considered as a free ill-condition and high smooth shape; thus, there was no 

smoothing algorithm for the CST method. The results of B-spline showed that at least 32 

control points were needed to achieve the high level of accuracy area. The highest level 

of accuracy was obtained by the mesh point method. The CST method started from the 

5
th

 order, and the results showed that increasing the order could improve the level of 

accuracy; however, the level of accuracy would be decreased with increasing order when 

the order is greater than 11. This is because the high order of polynomial developed high 

frequency and generated oscillations. For this case, the CST could not provide a good 

agreement with target geometry, especially in the leading edge area, although it could 

still capture the location of shock. The convergence showed that the most accurate result 

was obtained by the mesh point method. B-spline could provide a high level of accuracy, 
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which was close to that of the mesh point. However, the level of accuracy of the B-spline 

was independent of the number of control points. For the CST method, the best result was 

obtained by the 11
th

 order. Although the level of accuracy of the CST method was lower 

than other methods, it employed quite a small number of design variables: in other words, 

the CST method could reach the higher level of accuracy with a lower number of design 

variables. The second case was to perform two-dimensional drag minimisation. The 

initial geometry was NACA 0012, and the objectives were to minimise the drag 

coefficient and maintain the current lift coefficient. The results showed that all three 

methods were able to reduce the drag coefficient from current 0.0153 to an average value 

of 0.0092. The best result was obtained by B-spline with 16 control points. The CST 

method also provided the similar amount of drag reduction as the other methods, but the 

number of design variables is much lower than the others. The third case was a three-

dimensional drag minimisation. The M6 wing with NACA 0012 aerofoil was used as 

initial geometry. The results of B-spline showed that the shock was almost eliminated 

close to the root region. Although the shock still appeared close to the tip region, the 

strength was reduced. The drag coefficient obtained by B-spline was as low as the mesh 

point method. The results of the CST method showed that the shock wave was reduced 

close to the tip region. However, the shock wave close to the root region was not 

successfully eliminated. Improved shock reduction could be obtained by increasing the 

order of polynomial in the spanwise direction since more flexibility is provided using 

higher order. A further test was carried out to test the performance of the CST method on 

an unswept wing to ignore the effect of spanwise surface variation. The results showed 

that the CST method had a good performance for the unswept wing with reduced weak 

shock drag. Comparing all results, the mesh point method could provide the most drag 

reduction. However, the B-spline and the CST methods could dramatically reduce the 

number of design variables and obtain acceptable results in reduced design space even if 

the drag reduction was not as high as the mesh point method. It is noteworthy that the 

CST method could only use five variables to reduce the shock wave in the 2D drag 

minimisation case. Although the CST method could not successfully reduce the shock 

wave for a three-dimensional swept wing, it could successfully remove the shock wave 
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for a three-dimensional unswept wing and therefore it is a promising parameterisation 

method and some further investigation is necessary.  

 

Another comparison study was carried out by Wu et al. (2003). In their study, the Hicks-

Henne shape function method, the mesh-point method and the PARSEC parameterisation 

method were compared. Three transonic two-dimensional test cases were performed to 

investigate the performance of each parameterisation method. Adjoint method was used 

to obtain sensitivity information for a gradient-based optimiser. An inverse design test 

was carried out at first. Three pressure distributions from NACA 0015 cascade, 10
th

 

standard configuration compressor blade and the VKE turbine nozzle blade were used as 

targets. For the NACA 0015 cascade, all three parameterisation methods were able to 

handle its case. The Hicks-Henne had a very fast convergence compared with other 

methods. The mesh-point method had the highest accuracy. For the second and third test 

cases, both the Hicks-Henne shape function and the mesh point method were able to 

achieve the target aerofoil. Although the accuracy of the Hicks-Henne was slightly lower 

than the mesh-point method, the Hicks-Henne method could provide a fast convergence. 

The high accuracy of the Hicks-Henne method could be reached by increasing the 

number of variables. Compared with the mesh-point method, the Hicks-Henne method 

could provide smoothness without any smoothing algorithm. The results showed that the 

PARSEC method was good for processing the NACA 0015 cascade. However, the 

convergence rate was slower than the Hicks-Henne method even though the number of 

variables of the PARSEC method was lower. The results also clearly showed that the 

PARSEC method completely failed to achieve the target of blade cascade cases. This test 

demonstrated that there are some limitations of the PARSEC methods.  

 

Castonguay and Nadarajah (2007) studied four parameterisation methods: the mesh point, 

the Hicks-Henne shape functions, B-spline and PARSEC. An inverse design was carried 

out with a target pressure distribution obtained from an ONERA M6 wing section. A 

NACA 0012 aerofoil was employed as initial aerofoil for each method. The test showed 

that B-spline was able to achieve the target aerofoil; however, at least 32 control points 

were required to expand the design space to provide sufficient flexibility. However, the 
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results also illustrated that the B-spline method could cause unrealistic results when a 

very high number of control points were employed. The results of the Hicks-Henne 

functions demonstrated that at least 30 functions were needed in order to provide high 

accuracy, but the level of accuracy was still lower than the mesh-points and B-spline 

methods. The reason was that the Hicks-Henne functions are not orthogonal. 

Orthogonality guarantees that each aerofoil shape corresponds to a unique set of input 

parameters. This property is particularly relevant to the parameterization methods which 

construct an aerofoil by combining existing sets of aerofoils or other types of base 

functions. This in turn can lead to spurious modality which arises where similar aerofoil 

geometries are created by different combinations of the base functions and is considered 

undesirable for optimisation processes.  

 

The effect of the smoothing gradient algorithm was tested as well in Castonguay and 

Nadarajah’s work (2007): it was able to accelerate the convergence rate of the B-spline 

and the Hicks-Henne. The highest inverse accuracy results were still obtained by the 

mesh-points method, but the efficiency of the mesh point method was lower than other 

methods. The B-spline and Hicks-Henne functions successfully performed drag reduction 

optimisation and reduced the drag to the same level using a similar number of design 

variables. In general, B-spline provided slightly smoother results than the Hicks-Henne 

functions. The PARSEC method was tested in an inverse design case. The final pressure 

distribution demonstrated that the PARSEC method was able to move the shock wave to 

match the target pressure distribution; however, the final pressure distribution at the 

leading edge area failed to match with the target. Convergence history of L2 norm showed 

that the PARSEC method only gave a slight improvement; this means that the PARSEC 

intuitive method is unable to perform in the inverse design case. 

 

Furthermore, Antunes et al. (2009) implemented an aerodynamic optimisation study and 

three parameterisation techniques, Bezier, PARSEC and CST, were used to test the effect 

of parameterisation on optimisation. All of the parameterisation methods could provide 

excellent optimal solutions. It was obvious that the obtained optimal aerofoils were quite 

different due to the different parameterisation methods. Thus, the parameterisation 
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method has a profound effect on the optimisation results although the same geometry is 

contained in their design space. The results showed that the CST method provides more 

drag reduction than the other two methods. Sripawadkul and Padulo (2010) studied and 

compared five aerofoil parameterisation methods, namely Ferguson’s curves, Hicks-

Henne bump functions, B-Spline, PARSEC and class/shape function transformation 

(CST) methods, in terms of compact number of design variables, geometric fitting 

accuracy, orthogonality, realisticness and intuitiveness. The five parameterisation 

methods were scored to assist in selecting the best method in respect of a specific issue. 

Silisteanu and Botez (2012) compared mesh points, polynomial, Bezier curve, B-spline 

and CST methods for low speed aerofoil design. They came to the conclusion that B-

spline could always get a better optimum result than the other methods. However, the 

Bezier curve has a better global property as it changes the entire aerofoil. 

 

The most common parameterisation methods have been reviewed in this chapter. As 

stated at the beginning of this chapter, parameterisation is fundamental to optimisation 

since it has a profound effect on design space. It inherently determines if the optimal 

solution is discovered in the design space and affects the optimisation efficiency. The 

ideal parameterisation method should provide high flexibility on design space; provide a 

compact number of design variables; and provide a smooth and realistic shape and 

intuitive physical meaningful design variables.  

 

The discrete method is the simplest method which directly uses the grid points as the 

design variables. The literature showed that the discrete method could provide the highest 

flexibility. However, it lacks natural smoothness and, therefore, an additional smooth 

algorithm is required. The main disadvantage of the discrete method is that it requires a 

large number of design variables, which is not expected in aerodynamic optimisation. 

The other methods, such as Hick-Henne, Bezier polynomial and B-spline methods, are 

therefore preferred. The Hick-Henne method is a simple method which employs various 

shape functions with weighted numbers and adds them to an initial shape, the weighted 

numbers being used for the design variables. The main advantage of the Hick-Henne 

method is that the number of design variables can be reduced compared to the discrete 
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method. However, these shape functions are not orthogonal; large numbers of design 

variables are required to provide high flexibility. Furthermore, this method is only 

suitable for aerofoil and wing design; it is hard to be applied in complex 3D 

configurations. The Bezier curve and B-spline methods are the common parameterisation 

methods in aerodynamic design. These methods can greatly reduce the number of design 

variables and provide high flexibility. Various published research has presented results 

showing that the B-spline methods have a very good performance for aerodynamic 

optimisation. B-spline has more flexibility than Bezier curve, since piecewise function is 

employed; therefore, it is more popular than the Bezier curve methods, especially in a 

complex geometry case. B-spline is also able to handle a three-dimensional surface: thus, 

B-spline methods are normally preferred in complex configuration optimisation. 

However, B-spline could not accurately represent an implicit conic. A modified version 

of B-spline, NURBS, has been developed and it has been performed very well in recent 

research and has become an interesting method. B-spline and NURBS are normally 

employed in a CAD package to handle surface geometry. Using CAD software as a 

parameterisation method is promising for a complex industrial case. However, several 

shortcomings of the CAD parameterisation method, such as lack of sensitivity, closure 

geometries, change of geometry topology, etc. are challenging tasks for optimisation of 

practical cases. Therefore, the CAD method is not considered in our work. 

 

In general, the traditional methods have been widely used for aerodynamic optimisation. 

These methods still find it hard to satisfy all the requirements for an ideal 

parameterisation method. For example, Bezier and B-spline methods are unable to 

provide the intuitive parameters to assist the engineers and are difficult for applying 

geometry constraints. Thus, two promising methods, namely PARSEC and CST methods, 

are studied. 

 

The PARSEC method was developed by Sobieczky (1998). The impressive 

characteristics of the PARSEC method are that it could provide the intuitive design 

variables and reduce the number of design variables. The basic aerofoil with a round nose 

could be represented by only 11 variables. The key parameters, such as leading edge 
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radius, crest position of upper and lower surfaces, trailing edge angle, etc., appear 

explicitly in the parameterisation method which could directly assist the engineers to 

improve their design. Many researchers have employed the PARSEC method in their 

work. However, some of the literature has reported that PARSEC could not provide as a 

high flexibility as other common parameterisation methods, and could generate 

unrealistic shapes. Thus, further development of the PARSEC method could be carried 

out. 

 

The CST method was developed by Kulfan (2006). The impressive feature of the CST 

method is that it could provide a universal way to parameterise the most common aircraft 

geometries. It provides high flexibility and the number of design variables is reasonably 

small. Some intuitive design variables, such as leading edge radius, trailing thickness etc., 

appear explicitly in the parameterisation. Some published work has asserted that CST is a 

promising parameterisation method. It could provide a good result in aerodynamic 

optimisation, and is very robust in providing a realistic shape. Kulfan (2006) also 

presented the potential capability of the CST method to represent three-dimensional 

geometries. 

 

Therefore, the PARSEC and CST methods are selected for the starting-point of this 

project. The PARSEC method is more on the physical side and the CST method is more 

on the mathematical side. Some further developments of PARSEC and CST are carried 

out in this study to overcome their disadvantages. Later on in this research, the CST 

method is extended to represent different three-dimensional aerodynamic components of 

an entire civil transport aircraft. 
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Chapter 3 Development of CST and PARSEC Methods 

in Two-Dimensional Aerofoils 

 

In this chapter some further developments of the CST and PARSEC methods are 

demonstrated. In the first part, a new aerofoil parameterisation method is proposed, 

which tries to combine the flexibility and accuracy of the CST method and the 

intuitiveness of the PARSEC parameterisation method. The proposed new intuitive CST 

(iCST) method has been evaluated by comparing it with the CST and PARSEC methods 

regarding their accuracy in inversely fitting a wide range of aerofoils. In the second part, 

a further development of the CST method is proposed. In this development, the CST 

method employs the Rational Bernstein Polynomial to further improve the accuracy of 

the CST method and reduce the number of design variables. 

 

3.1 Combination of CST and PARSEC: the intuitive CST method 

As mentioned in Chapter 2, the PARSEC method is a full intuitive parameterisation 

method for aerofoils. However, it is unable to provide enough flexibility. The reason is 

that the standard PARSEC-11 only employs 6
th

 order polynomials which are not 

sufficient to represent some modern complex aerofoils. The advantages of the PARSEC 

method are obviously its intuitiveness and the small number of the design parameters. 

Nevertheless, some other key geometrical features between the leading edge and the crest, 

and the crest and the trailing edge, are uncontrolled, which can impact on the aerofoil’s 

performance. For example, for natural laminar flow aerofoils, the crest position is related 

to the transition point, and the slope and curvature between the leading edge and crest are 

important for keeping the flow accelerating and giving a favourable pressure gradient 

(Paul and Ruxandra 2012). For the supercritical aerofoil, the shock strength and position 

are very sensitive to the upper surface curvature in order to maintain a near constant 

pressure over a large part of the surface to be terminated by a weak shock or compression 

wave. The slope and curvature on the upper surface between crest and trailing are 
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significant for the pressure recovery to avoid a large adverse pressure gradient and flow 

separation (Harris 1990). 

 

Based on the above argument, it is proposed in this work to introduce the gradient and 

curvature at two x-positions between the leading edge and the crest, and between the 

trailing edge and the crest with their independent z-positions, for the upper and lower 

surfaces, respectively. This is in addition to the original PARSEC parameters. Note that 

the upper and lower leading edge radii can be different in the present parameterisation to 

give more flexibility. This extra set of 16-intuitive design variables gives more intuitive 

control of the aerofoil curves, with a total number of design variables of 28. Making use 

of the flexibility of the CST parameterisation, this set of intuitive parameters is mapped 

into the CST polynomial coefficients, which correspond to a 10
th

 order CST.  

 

The 16 intuitive design parameters, as shown in Figure 3.1, are therefore: 

(X1,up,Z1,up,Zx,1,up,Zxx,1,up),  

(X2,up,Z2,up,Zx,2,up,Zxx,2,up), 

(X3,lo,Z3,lo,Zx,3,lo,Zxx,3,lo),  

(X4,lo,Z4,lo,Zx,4,lo,Zxx,4,lo). 

Figure 3.1 The intuitive CST parameterisation method 

 

Different from the standard PARSEC-11 (Figure 2.3), in this method, two different 

leading edge radius parameters for the upper and lower surface are allowed to provide 
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more flexibility. Ceze et al. (2009) demonstrated the influence of leading edge radius on 

the geometric property of the entire curve including the leading edge region. Due to the 

different requirements for the upper and lower surfaces for the aerofoil from the physics 

flow point of view, independent upper and lower leading edge radii are more beneficial. 

The importance of the leading edge on aerodynamic drag was analysed theoretically for 

subsonic and transonic aerofoils with parabolic noses by Rusak (1993; 1994).  

 

Indeed, for some practical aerofoils, the leading edge radii of the upper and lower 

surfaces are actually different. For example, the NASA phase 3 supercritical aerofoil is 

obtained by undercutting the lower leading edge surface of the phase 2 supercritical 

aerofoil, resulting in different leading edge radii between upper and lower surfaces 

(Harris 1990). The new full intuitive parameters are schematically illustrated in Figure 

3.1 (Zhu and Qin 2013). 

 

The total number of design variables is increased to 28 for the aerofoil. We need to build 

up the transformation between the intuitive parameters and the PARSEC mathematical 

equation with 11 coefficients. In PARSEC, simple sixth order polynomials, Equations 

2.17 and 2.18, are employed. However, these simple polynomials are unstable for higher 

orders. However, for the CST polynomials with aerofoil class parameters, we can 

naturally limit the curve to be an aerofoil-like shape, and use the Bernstein polynomials, 

which are systematically more stable than the power form. Moreover, some intuitive 

parameters, such as leading edge radius, trailing edge thickness and tangential value of 

trailing edge angle, have already been included in the CST polynomial equation.  

 

Kulfan and Bussoletti (2006) and Ceze et al. (2009) illustrated that the CST 

parameterisation methods are able to represent most aerofoils with high accuracy when 

the Bernstein polynomial order is higher than 9. Ceze et al. (2009) also pointed out the 

non-uniqueness issue of the CST parameterisation methods when the Bernstein 

polynomial is higher than 15 orders. In order to build up the linear system for mapping 28 

intuitive parameters to the CST parameters, an 11x11 square matrix is required. Here, the 

10
th

 order CST polynomials with 24 parameters, 11 weighting coefficients and a trailing 
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edge position parameter for upper and lower surfaces, respectively, are employed to 

describe the shape: 

The linear equations are then established for the upper and lower surfaces as: 

where 

and 
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The linear system of equations for the lower surface can be similarly derived. The 

coefficients of the polynomials can then be obtained by solving the two linear systems of 

equations: 

3.2  Geometric inverse fitting test and results of iCST methods 

A well-behaved parameterisation method should be able to represent a wide range of 

existing aerofoils with high accuracy, indicating the flexibility of the parameterisation. In 

this work, a range of aerofoils, including natural laminar flow aerofoils, supercritical 

aerofoils and wind turbine aerofoils, have been employed to test the inverse fitting 

performance of the CST, PARSEC and the proposed iCST methods. 
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3.2.1. Geometric inverse fitting 

The inverse curve fitting is an optimisation problem in itself, defined by minimizing the 

difference between the approximated and the original curves. The L2-norm employed to 

describe this difference is given by: 

 

An SLSQP (Nocedal and Wright 2006) optimizer from the Python program library is 

employed to minimize the L2 norm which is the objective function. In order to make 

comparisons, PARSEC-12 is used, allowing different upper and lower leading edge radii. 

A 12
th

 order CST method is employed, which has 28 parameters, 14 parameters for upper 

and lower surfaces, respectively, to make a fair comparison with the same number of 

design variables as for the iCST method. The tolerance for wind tunnel geometries, 

namely 5x10
-4

 relative to the chord length, is employed to examine their fitting accuracy 

(Kulfan 2006). 

 

3.2.2.  Inverse fitting test results 

Three types of aerofoils are employed for comparing the inverse fitting of three 

parameterisation methods. The supercritical aerofoils are used for the first test. They were 

designed to delay the shock wave on the upper surface and reduce wave drag, and have 

been widely applied in high speed subsonic aircraft, which fly at a Mach number ranging 

between 0.6~0.85. Performance of shape parameterisation for supercritical aerofoils is 

significant in aircraft aerofoil design and optimisation. Three typical supercritical 

aerofoils, RAE 2822, RAE 5214 and NASA SC-20714 (Harris 1990), are chosen for this 

study, and the results of geometric fitting by three methods and the error distributions are 

shown in Figure 3.2 to 3.4. 
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Figure 3.2 Geometric fitting for RAE 2822 using iCST, CST 12 and PARSEC 12 
 

 

Figure 3.3 Geometric fitting for RAE 5214 using iCST, CST 12 and PARSEC 12 
 

 

Figure 3.4 Geometric fitting for SC-20714 using iCST, CST 12 and PARSEC 12 
 

The second types of aerofoils tested are the Natural Laminar Flow (NLF) aerofoils. The 

NLF aerofoils were designed to delay the flow transition from laminar to turbulent 

boundary layer, and as a result, the skin friction could be dramatically reduced. It is an 

increasingly interesting topic for aerodynamic designers since it could potentially give 
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further drag reduction and improve the aircraft performance to satisfy demanding 

economic and emission requirements in the future. Therefore, the suitability of the shape 

parameterisation methods for NLF aerofoils is practically important. Three traditional 

NLF aerofoils, namely NASA NLF-414F, NLF-416 and HSNLF-213, are employed for 

this study (Viken 1986; Viken et al. 1987). NLF-416 is a relatively simple NLF aerofoil 

but NLF-414F and HSNLF-213 are more complicated with more variation of curvature 

near the trailing edge area to avoid flow separation. The results of fitting the NLF 

aerofoils by the three parameterisation methods are shown in Figure 3.5 to 3.7. 

 

 

Figure 3.5 Geometric fitting for NLF 414F using iCST, CST 12 and PARSEC 12 
 

 

Figure 3.6 Geometric fitting for NLF 416 using iCST, CST 12 and PARSEC 12 
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Figure 3.7 Geometric fitting for HSNLF 213 using iCST, CST 12 and PARSEC 12 

 

Some wind turbine aerofoils are employed for the last test. Wind turbines are used to 

convert wind energy to electrical power and play an increasingly important role in 

generating clean and renewable energy (Mohammed et al. 2012; Timoleon et al. 2012). 

Improvement of the efficiency of wind turbine blades is crucial for the design of wind 

turbines in the future. Many researchers have employed a numerical optimisation method 

for wind turbine aerofoils (Fudge and Zingg 2005; Timoleon et al. 2012; Wang et al. 

2009). An effective shape parameterisation to represent wind turbine type aerofoils with 

high accuracy would be helpful for design. Three wind turbine aerofoils, S805A, S809 

and S825, from NREL (Tangler and Somers 1995) are used in this study and the results 

are shown in Figure 3.8 to 3.10. 

 

 

Figure 3.8 Geometric fitting for S805A using iCST, CST 12 and PARSEC 12 
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Figure 3.9 Geometric fitting for S809 using iCST, CST 12 and PARSEC 12 

 

 

Figure 3.10 Geometric fitting for S825 using iCST, CST 12 and PARSEC 12 

 

The results for supercritical aerofoils show that all methods are able to fit the RAE 2822 

aerofoil within the tolerance. The 12
th

 order CST and the iCST methods are able to fit 

RAE 5214 and NASA SC-20714 to a higher accuracy. However, PARSEC-12 cannot fit 

RAE 5214 and NASA SC-20714 as well as RAE 2822, and a large error occurs at the 

leading edge. 

 

For the NLF aerofoils, the 12
th 

order CST can fit all three within the tolerance. The iCST 

can fit the NLF 416 as well as the 12
th

 order CST. For NLF-414F and HSNLF-213, there 

are some slightly larger errors in the leading edge area and in the region between 60% 

and 80% chord on lower surface, where a large curvature change occurs. PARSEC-12 is 

able generally to fit NLF-416 on the upper surface, but very large error is observed on the 

entire lower surface and at the leading edge area on the upper surface. Moreover, 

PARSEC-12 fails to fit the NLF-414F and HSNLF-213, and in the region between 60% 
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and 80% chord on the lower surface the error is more than twice the tolerance. In general, 

the PARSEC-12 method shows poor performance in fitting NLF aerofoils. 

 

For the wind turbine aerofoils, the 12
th

order CST is able to fit all three aerofoils. 

Although a slightly larger error is found in leading edge area on the upper surface of 

S805A and the lower surface of S825 within the tolerance, the iCST method also fits the 

three wind turbine aerofoils very well. PARSEC-12 is able to fit the S805A aerofoil 

within reasonable error. However, it fails to fit the S809 and S825 aerofoils and huge 

errors are found on both upper and lower surfaces. 

 

The results show that the 12
th

 order CST and iCST are able to represent all test aerofoils 

with high accuracy. In the case of NASA SC20714, NLF 416, S805A and S809, the 

magnitude of the fitting errors of iCST and the 12th order CST are almost the same.  

 

3.3  CST method with rational function (RCST) 

The results of the test comparison study of the CST, PARSEC and iCST methods found 

that CST with a 12
th

 order Bernstein polynomial is generally able to fit all aerofoils 

within allowable tolerance. However, there are still some areas that could not be 

represented very well, for example, the leading edge of RAE 5214, NLF 414F and NLF 

416, the curvature change area of NLF 414F and HSNLF 213 and the lower surface of 

S825 aerofoils. Increasing BPO could certainly improve the fitting accuracy and provide 

large flexibility. However, in the previous test case, the BPO has already reached 12
th

 

order, which has approached the limitation of BPO 15. Therefore, continually increasing 

the BPO is not a solution for the CST methods. This means that the CST method with 

Bernstein polynomials has an inherent drawback for accurate representation of a complex 

aerofoil in its design space. In certain engineering work, such as preliminary and detailed 

design, the intuitiveness could be considered as secondary. Therefore, the high accuracy 

parameterisation method with a low number of design variable methods is still desired. 

 

In order to improve the CST method, Powell and Sóbester (2010) have tried to employ 

genetic programming, which is a technique used to optimise and design a new formula to 
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satisfy the target objective. In their work, genetic programming is employed to optimise a 

new class function to minimise the fitting L2 norm error for an existing aerofoil. However, 

implementation of genetic programming is not easy. The other issue is that it requires 

changing the class base function each time when applying to a different aerofoil. This 

negated the idea of using the class function. Straathof and van Tooren (2011) have 

applied the B-spline piecewise basis function into the shape function of the CST methods, 

which is so called the class-shape-refinement-transformation (CSRT). They demonstrated 

that this could bring a capability of local control to the CST methods and make CST able 

to provide more flexibility. They also showed the capability of CSRT to control volume 

constraints. However, using a local control B-spline basis function will make the issue 

more complicated, for example the knot position will be considered as an input condition. 

Furthermore, the local control capability will also bring more local optimal in the design 

space and has potentially negative effects on optimisation efficiency.  

 

Therefore, a further development of the CST method, but keeping its properties, is 

desired. The standard CST method employs Bernstein polynomials. In Chapter 2, it has 

been reviewed that the Bernstein polynomials are unable to accurately present the conic, 

circle, ellipse and hyperbola curves (Versprille 1975; Tiller 1993; Samareh 2001). The 

rational Bernstein polynomials could overcome this drawback of the standard Bernstein 

polynomials (Forrest 1968; Farin 1983; Piegl and Tiller 1997). Therefore, the CST 

method has been developed to couple with rational Bernstein polynomials here, and 

noted as ‘RCST’. The form of RCST for an aerofoil is written as below: 

 

        
                   

where 
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where the    
      is the class function,  the trailing edge thickness ratio (they are the 

same as with standard CST methods),      is the shape function with rational Bernstein 

polynomials, Wi is the weights, Ai are the coefficients of polynomials.  

 

For the round nose and aft-end aerofoils, the class parameters are still set to N1 = 0.5 and 

N1 = 1.0. Furthermore, the employment of rational Bernstein polynomials will not affect 

the ability of the first and last coefficients to represent their physical meaning. The details 

can be found in Appendix B. 

 

3.4  Geometric fitting results of RCST 

RCST with 6
th

 order rational Bernstein polynomials is then applied to inverse fitting for 

all of the aerofoils which are employed in the previous test. The coefficients Ai and 

weights Wi are the design variables to be changed by optimiser to find the minimum L2 

norm error. The results of RAE 2822, RAE 5214 and NASA SC 20-714 are shown in 

Figure 3.11 to 3.13. The results of NLF 414F, NLF 416 and HSNLF213 are shown in 

Figure 3.14 to 3.16. The results of S805A, S809 and S825 are shown in Figure 3.17 to 

3.19. 

 

 

Figure 3.11 Geometric fitting for RAE 2822 using 6th order RCST 

 

te
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Figure 3.12 Geometric fitting for RAE 5214 using 6th order RCST 

 

 

 

Figure 3.13 Geometric fitting for NASA SC-20714 using 6th order RCST 

 

 

 

Figure 3.14 Geometric fitting for NLF 414F using 6th order RCST 
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Figure 3.15 Geometric fitting for NLF 416 using 6th order RCST 

 

 

 

Figure 3.16 Geometric fitting for HSNLF 213 using 6th order RCST 

 

 

 

Figure 3.17 Geometric fitting for S805A using 6th order RCST 
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Figure 3.18 Geometric fitting for S809 using 6th order RCST 

 

 

 

Figure 3.19 Geometric fitting for S825 using 6th order RCST 

 

The results show the impressive improvement of fitting accuracy of RCST. First, the 

fitting errors of all aerofoil shapes are completely controlled under the allowed tolerance, 

even if in the curvature change area of the NLF 414F and HSNLF 213. Compared with 

standard CST 12
th

 order, these areas were not able to be fitted accurately by the standard 

CST method. Second, the fitting errors of the leading edge areas of all aerofoils are 

controlled within       . Compared with standard CST methods, the leading areas of 

RAE 5214, NLF 414F and NLF 416 are much improved. Considering the sensitivities of 

leading edge to aerodynamic flow, this improvement is significant. 

 

Furthermore, the results only show the 6
th

 order rational polynomials. High accuracy has 

been already achieved. Therefore, higher order RCST has not been shown since it is able 

to theoretically increase the accuracy. In optimisation, only the coefficients Ai will be 
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employed as design variables in order to avoid non-linear effects. This means that the 6
th

 

order RCST will only have seven parameters plus one trailing edge parameter on each 

side of the aerofoil. This is equivalent to the standard CST with 12
th

 order BPO. However, 

the accuracy of RCST is even higher than the standard CST with 12
th

 order. Therefore, 

RCST has improved the standard CST and further reduced the number of design 

variables. 

 

3.5  Conclusion 

In the first part of this chapter a new parameterisation method is proposed to combine the 

features of high flexibility from the CST method and full intuitiveness from the PARSEC 

method. This new method introduces eight extra intuitive parameters at two x-positions 

between the crest and the leading edge and between the crest and the trailing edge on 

each surface of the aerofoils based on the original PARSEC-12 method. Therefore, 28 

design variables are used to parameterize the entire aerofoil. The power form 

polynomials used in PARSEC have been replaced by the 10
th

 order CST equation for 

curve representation. Its performance is examined by checking the accuracy of inverse 

fitting for a range of aerofoils in comparison with the 12
th

 order CST and PARSEC-12 

methods.  

 

The results show that the 12
th 

order CST and the iCST methods with the same number of 

design variables are able to represent supercritical and wind turbine aerofoils with a high 

level of fitting accuracy, while the representation of complex NLF aerofoils is also 

acceptable but it shows a slightly higher error after the half chord position. With 

insufficient number of control parameters, the standard PARSEC-12 fails to fit most of 

the aerofoils tested here, and is particularly problematic for NLF and wind turbine 

aerofoils.  

 

The iCST method can be viewed as an extension of the PARSEC method with full 

intuitive parameters. It can also be viewed as a transformation of the originally non-

intuitive parameters in the CST method to a full set of intuitive parameters through a 

transformation matrix.  
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In comparison with the CST method, the proposed iCST method provides opportunities 

for the aerodynamic designers to understand the relationship between the aerodynamic 

properties and the geometric features and to guide the exploration of the design space by 

selecting proper design variables and setting proper bounds/constraints in the 

optimisation process.   

 

In the second part, a further modification of the CST method has been developed for 

application when intuitiveness is not desired. In the new developed version of CST, the 

rational Bernstein polynomials are employed to replace the standard Bernstein 

polynomials in standard CST methods, and notated as RCST.  

 

The performance of RCST is examined by inverse fitting a range of aerofoils and 

compared with the standard CST method from a previous test case. The results clearly 

showed the significant improvement obtained by the RCST method. All aerofoils can be 

fitted within tolerance. Especially, the representation of the leading edge area is 

significantly improved. In addition, the lower 6
th

 order RCST could obtain higher 

accuracy than the standard CST 12
th

 order. However, in optimisation, the number of 

design variables of 6
th

 order RCST will be half of the standard CST 12
th

 order. This 

demonstrated that RCST could significantly reduce the number of design variables.  The 

performance of iCST and RCST will be further tested in later optimisation test work.  
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Chapter 4 CST Parameterisation Method for the Entire 

Aircraft 

 

In this chapter, the CST method is investigated for geometric representation of an entire 

transport aircraft for aerodynamic optimisation purposes. As studied in Chapter 2, a class 

function of the CST methods is employed to define the fundamental geometry, and a 

shape function is used to describe in detail the shape of the geometry. In this chapter, the 

inverse fitting accuracy of the CST method for a three-dimensional wing has been 

examined to investigate firstly the effects of varying the order of the Bernstein 

polynomials. The new RCST method is extended from a two-dimensional aerofoil to a 

three-dimensional wing. The performance of inverse fitting accuracy of the RCST 

method is then examined.  

 

An investigation of the CST method for an entire passenger transport aircraft is then 

presented, including such components as the wing, horizontal tail plane, vertical tail 

plane, fuselage, belly-fairing, blended wingtip device, nacelle, flap tracking fairing and 

pylon. The CST method for local shock bump parameterisation is also developed and 

presented in this chapter. At the end of this chapter, the methodology for calculating the 

intersection line is briefly presented. This method employs the Newton-Raphson method 

based on direct differentiation of the CST geometries.  

 

4.1  Parameterisation for wing type geometries   

4.1.1. Standard CST for wing type geometries 

Kulfan and Bussoletti (2006) presented the capability of the CST method to represent a 

three-dimensional wing. They define the wing as a distribution of the aerofoils along the 

spanwise direction. The CST functions for 2D aerofoils can be directly employed to 

define the wing aerofoil section. However, because the planform of a realistic wing has 

dihedral and twist, two extra parameters for wing section height installation position and 

twist are introduced to the 2D aerofoil CST function, as shown in Figure 4.1.  
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Figure 4.1 Wing aerofoil section definition in the CST method 

 

To define the wing twist, the rotation coordinate transformation function is applied to an 

aerofoil. Equations 4.1 and 4.2 show the rotation coordinate transformation of an aerofoil 

on the x-z plane with     nose up: 

                           4.1 

                           4.2 

if the non-dimensional chord length of the aerofoil projected onto the x-coordinate is 1. 

After the rotation coordinate transformation, the leading edge position and non-

dimensional chord length will be changed. Therefore, in the proper wing definition, the 

new leading edge should be found, and the aerofoil should be then re-scaled to keep the 

non-dimensional chord length on the projected x-coordinate to maintain the wing 

planform.  

 

In order to fix the non-dimensional length that the section aerofoil projected onto the x-

coordinate, the value of the tangent of the twist angle is subtracted directly from the CST 

equation rather than applying the rotation equation in Kulfan’s definition. Although the 

camber distribution along the chordwise direction is changed, the shape function will be 
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applied to compensate for this. The CST equation of a wing section in non-dimensional 

form is written as: 

1

2 ,( ) ( ) ( ) [ tan[ ]]
n

N

U n N i i TE upper Twist

i

C Au S              4.3 

1

2 ,( ) ( ) ( ) [ tan[ ]]
n

N

L n N i i TE lower Twist

i

C Al S              4.4 

where ( ) /n n localZ C   is the non-dimensional local wing section height installation position, 

T is the local wing section twist angle, Au and Al are the control parameters for the 

aerofoil and TE is the non-dimensional trailing edge position.       is the shape function 

which is the same as in Equation 2.37.  

 

In order to extend the 2D aerofoil to a 3D non-dimensional wing surface, 3D Bernstein 

Shape function which is similar to Equation 2.7 is applied. The CST equations for the 3D 

non-dimensional wing surface could be obtained as:  
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4.6 

where   are non-dimensional spanwise coordinates. The entire wing in Cartesian 

coordinates is then represented as the following set of equations:  

)()(  LElocal xCx   4.7 


2

b
y  4.8 

)(),(  localUU CZ 
 4.9 

)(),(  localLL CZ 
 4.10 
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where b is the length of span of the full wing, ( )localC  is the local chord distribution, and

( )LEx  is the leading edge coordinates distribution in the spanwise direction. 

 

Different from the other parameterisation methods for wing representation, the CST 

method does not describe the wing in various control sections. It represents the entire 

wing surface by one set of equations. This can avoid the unsmoothness caused by 

interpolation between control sections, and can reduce the number of design variables. 

The order of the Bernstein polynomial that controls the geometry in the chordwise 

direction is denoted as ‘BPOX’, and the order of the Bernstein polynomial controlling the 

geometry in the spanwise direction is denoted as ‘BPOY’. Depending on the complexity 

of wing, the number of planform design parameters is flexible. In modern civil transport 

aircraft, the wing normally has a crank near the wing root. Therefore, piecewise functions 

with respect to crank are used to represent the distribution of planform parameters along 

the spanwise direction. Equations 4.11 and 4.12 show the Bernstein polynomial for a 

twist distribution function for inner and outer wings: 

                                           
            

    

      

   

 4.11 

                                               
             

    

       

   

 4.12 

where  

                
4.13 

                         4.14 

In order to maintain the geometric continuity and at least 1
st
 order geometric derivative 

continuity, the following constraints should be applied during optimisation: 

                       
4.15 

                             

      
 
                  

              
 

4.16 
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Horizontal Tail Plane (HTP) and Vertical Tail Plane (VTP) are two relatively smaller 

surfaces located at the empennage of civil passenger transport aircraft. The geometries of 

VTP and HTP are slight different, but can be defined in the same way since they are both 

‘wing-type geometry’. The CST wing equations can be applied to represent HTP without 

alteration. Since the VTP is a symmetric geometry along the aircraft’s symmetric plane, 

there is no twist and dihedral installation position term in the VTP equations. The CST 

equations for VTP are then rewritten from Equations 4.17 to 4.21: 

1

2 ,( , ) ( ) [ ( ) ] [ ( )]
NyNx

N

N i j j i T

i j

C B Sy Sx             4.17 
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4.19 

- ( , ) ( )L localy C    

 
4.20 

2

b
z  

 
4.21 

At the first stage of the optimisation process, the baseline geometry needs to be 

parameterised. Therefore, it requires the parameterisation methods to have good 

capability to fit to the baseline geometry. In the previous chapter, the CST method was 

employed for representing a 2D aerofoil and it was concluded that CST has good fitting 

accuracy for this purpose when the higher order Bernstein polynomial is applied. 

Similarly, the performance of the CST method fitting for a 3D wing is examined in this 

work.  

 

4.1.2. Fitting accuracy of the standard CST method for a wing 

To parameterise an existing wing using the CST method, the process of inverse fitting 

could be divided into two steps. The first step is to extract the wing planform parameters 

at the local section, such as twist, leading edge coordinates, leading edge height, local 
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chord length and trailing edge thickness, from the wing surface point dataset. Any curve 

fitting technique, such as Bezier curve, polynomial, B-spline etc., could be applied to 

obtain the planform parameter distribution function which will be employed in 

aerodynamic optimisation. The second step is to determine the parameters of class and 

shape equations by minimising the mean of the ‘least-square error’, where the error is 

measured by the L2 norm of the difference between the original geometry and the CST 

approximation. The results from the test case using a pure F6 wing will be presented here. 

The F6 wing is a realistic wing and has been used for CFD validation for many years 

(Brodersen 2002; Brodersen et al. 2008; Sclafani et al. 2008).
 
Various approximations, 

obtained by different order BPOX and BPOY, of the CST wing will be shown. Afterwards, 

the CFD calculation will be carried out on the original geometry and approximated 

geometries. The effect of BPOX and BPOY on geometric and aerodynamic change will be 

examined. 

 

High order polynomials are used to fit the installation height, trailing edge thickness and 

tangential value of twist angle distribution functions. Figure 4.2 to 4.6 show the results of 

planform parameter distribution functions: 

  

Figure 4.2 Leading edge x coordinates distribution and error 
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Figure 4.3 Leading edge height distribution and error 

 

  
Figure 4.4 Non-dimensional trailing edge thickness distributions leading edge and error 

  
Figure 4.5 Tangential value of twist angle distributions and error 
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Figure 4.6 Local chord distributions and error 

As the above figures show, most planform parameter distribution functions can be 

addressed accurately. The leading edge x coordinates can be fit exactly. The trailing edge 

thickness and locad chord can be fitted within error lower than 4x10
-5

. The maximum 

error is occurred at tangential value of twist angle with 3x10
-4

 which is much lower than 

the tolerance. Therefore, this fitted distribution could be kept. The next step is to find the 

class and shape parameters to fit the entire wing surface. Because this wing has standard 

aerofoil with round nose and sharp trailing edge, the class parameters are fixed to N1 = 

0.5 and N2 = 1.0. As with the demonstration of the results of the CST method for the 2D 

aerofoil test case, different orders of the Bernstein polynomial could provide various 

levels of accuracy, and using the different leading edge radius parameters on upper and 

lower surfaces could increase the accuracy of inverse fitting.  

 

As presented above, two Bernstein polynomials control the entire wing surface. The 

effects of different Bernstein polynomials order in the chord-wise direction BPOX and in 

the span-wise direction BPOY on fitting accuracy are studied. Table Table 4.1 shows the 

maximum error of inverse fitting against BPOX and BPOY. In Ceze et al.’s (2009) paper, 

the effect of the Bernstein polynomial order of the CST method on the numerical 

uniqueness was studied, and it is undesirable to use a very high order Bernstein 

polynomials. Therefore, the range of BPOX and BPOY is limited between 6 and 12. The 

number of design variables of the CST wing is                    . 



74 

 

Table 4.1 Total L2 norm error of inverse fitting (x10
-2

m) 
BPOY 

BPOX 
6 7 8 9 10 11 12 

6 5.2816 4.0285 3.9978 3.4832 3.2066 3.1271 2.8129 

7 5.0620 3.7356 3.7025 3.1396 2.8296 2.7392 2.3740 

8 5.0387 3.7038 3.6704 3.1017 2.7875 2.6957 2.3237 

9 5.0046 3.6574 3.6235 3.0461 2.7255 2.6315 2.2489 

10 4.9741 3.6154 3.5812 2.9955 2.6688 2.5727 2.1798 

11 4.9605 3.5967 3.5623 2.9729 2.6434 2.5464 2.1487 

12 4.9517 3.5845 3.5500 2.9582 2.6268 2.5292 2.1282 

Table 4.1 demonstrates that increasing BPOX and BPOY can apparently decrease the 

error of inverse fitting. Therefore, using higher order BPOX and BPOY can effectively 

improve the geometric fitting and expand the design space. Furthermore, the total L2 error 

is more sensitive to BPOY since very high BPOY can result in a relatively low L2 error, 

even if BPOX is kept at low order. Hence, BPOY should use a higher order for 

representing the wing. Some test case results of the error distribution contour are shown 

in Figure 4.7 to 4.10.  

  

Figure 4.7 The error contour of wing inverse fitting with BPOX 6-BPOY 6 (left figure in 

metre) and BPOX 6-BPOY 10 (right figure in metre) 



75 

 

  

Figure 4.8 The error contour of wing inverse fitting with BPOX 6-BPOY 12 (left figure in 

metre) and BPOX 10-BPOY 6 (right figure in metre) 

  

Figure 4.9 The error contour of wing inverse fitting with BPOX 10-BPOY 10 (left figure 

in metre) and BPOX 12-BPOY 6 (right figure in metre) 

  

Figure 4.10 The error contour of wing inverse fitting with BPOX 12-BPOY 10 (left figure 

in metre) and BPOX 12-BPOY 12 (right figure in metre) 
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From the above error contours, it is apparent that the maximum approximated error 

decreases for increasing order of BPOX or BPOY. The largest error is at the leading edge 

of the upper surface near the wing root and the lower side of the wing around the crank 

area. The reason is that there is a large curvature change in the leading edge of the upper 

surface, and inverse approximation is difficult to address this curvature change. In the 

crank area, the original wing shape has curvature discontinuity and the CST 

approximation will automatically smooth the shape in this area. Moreover, a slight 

oscillation on the error contour is observed, which means that the approximated wing is 

oscillating around the original wing. More oscillation is presented when a higher order 

polynomial is employed. This is because the Bernstein polynomial lacks an orthogonal 

basis within that interval which, in least-squares approximation problems, complicates 

the assembly of convergent sequences of approximation terms (Ceze et al. 2009; Farouki 

2000). Although the approximated geometry is around the original one, it does not mean 

that the approximated geometry is not a smooth shape. This can be seen in the 

comparison study on the CFD results. 

 

Further study of the effect of the order of the Bernstein polynomial is made by comparing 

the CFD results on the original geometry and approximated geometries. The flow 

condition is Mach=0.75, Re=5x10
6
, angle of attack 0.0 and the turbulent model uses 

Spalart-Allmaras according to Sclafani et al. (2008). The meshes of all geometries are 

using a hexahedral dominant hybrid mesh which is generated by Solar, developed by the 

Aircraft Research Association, BAE Systems and Airbus (Leatham et al. 2000) and the 

total number of mesh points is around 3 million. Figure 4.11 shows the hybrid mesh of 

the F6 wing for the CFD study. The flow solver uses TAU developed by DLR (Gerhold 

et al. 1997), which is a hexahedral dominant multi-grid solver. Due to the CFD 

calculation time, not all of the approximated geometries shown in Table 4.2 are included 

in the CFD comparison study.  
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Figure 4.11 The hybrid mesh of F6 wing for CFD study 

 

Table 4.2 lists the lift coefficient of the original and approximated geometry, and Table 

4.3 lists the drag coefficients of the original and approximated geometry. 

Table 4.2 Lift coefficient of original geometry and approximated geometry 

Original 0.56056 
  

            BPOY 

BPOX 
6 10 12 

6 0.54962 0.54980 0.54978 

10 0.55984 0.56002 
 

12 0.55898 0.55912 0.56015 

 

Table 4.3 Drag coefficient of original geometry and approximated geometry 

Original 0.02383 
  

BPOY 

BPOX 
6 10 12 

6 0.02371 0.02372 0.02373 

10 0.02419 0.02420 
 

12 0.02417 0.02419 0.02421 



78 

 

The above results clearly show that the approximated models with lower order of 

Bernstein polynomial will provide high errors on lift coefficients. The approximated 

model with BPOX 6 will has error about 2 lift counts. By fixing BPOX 6 and increasing 

BPOY, the error is only reduced slight. By fixing BPOY 6 and increasing BPOX, the lift 

coefficient is approaching to original model. By increasing both of BPOX and BPOY to 

higher than ten, the lift coefficient error will be reduced to 0.05 lift counts. The drag 

coefficient of approximated models is a bit more complicated. The approximated model 

with BPOX has error about 2 drag counts. However, the approximated model with BPOX 

10 and 12 has error about 3 drag counts. This is because the drag coefficient is more 

sensitive on pressure distribution. Although drag coefficients cannot show convergence 

with increasing Bernstein order, it still can notice that the BPOY does not affect the drag 

coefficient, and the BPOX has more impact on drag coefficient. 

  

The pressure distributions of the original geometry and the approximated geometries are 

studied for further understanding of the characteristics of approximated models. Eight 

sections along the spanwise direction are taken to carry out this study. Figure 4.10 shows 

the sections index and position. Figure 4.13 to 4.20 show the pressure distribution 

obtained from the original F6 wing and parametric approximated wing models and their 

wing profile on each section. 

 

 

Figure 4.12 The sections index and position on the wing 
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Figure 4.13 Comparisons of pressure distribution and wing shape on section 1 
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Figure 4.14 Comparisons of pressure distribution and wing shape on section 2 

  

  

Figure 4.15 Comparisons of pressure distribution and wing shape on section 3 
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Figure 4.16 Comparisons of pressure distribution and wing shape on section 4 
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Figure 4.17 Comparisons of pressure distribution and wing shape on section 5 
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Figure 4.18 Comparisons of pressure distribution and wing shape on section 6 

  

 
 

Figure 4.19 Comparisons of pressure distribution and wing shape on section 7 
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Figure 4.20 Comparisons of pressure distribution and wing shape on section 8 

 

The above figures illustrate that the pressure distribution on the lower side of the 

approximated models with any BPOX and BPOY can match well with the original model 

at every section, even in the crank area and leading edge near wing tip where there is a 

relatively higher geometric fitting error. This is mainly because the flow on the lower 

side is not very sensitive, so the lower surface of the wing can be well fitted in both 

geometric and aerodynamic cases using any BPOX and BPOY.  

 

However, fitting the upper side is a crucial issue, and the figures show that the pressure 

distributions on the upper surface are not matched as well as that on the lower surface, 

because the flow is highly sensitive in the leading edge area. The error of pressure on the 

upper surface is high in the area between leading edge and the 20% chord length. Before 

section 4, the pressure distributions on the upper surface can still be matched with 

reasonable error. However, after section 5 the error of pressure distributions becomes 

larger. It can be noticed from the comparison of wing profile figures that the surface 

geometric fitting error, especially in the leading edge area, is getting larger along the 

spanwise direction towards the wing tip. 
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From each section, the pressure distribution error could be decreased when using CST 

with higher BPOX, especially when BPOX is higher than 10. However, only increasing 

BPOY with fixed BPOX in a lower order cannot improve the pressure distribution error. 

BPOX obviously dominates this error, consequently, when using the CST method for the 

wing, higher order BPOX should be considered.  

 

However, even if the high BPOX 12 is applied and the value of peak pressure in the 

leading edge could be approached, the position of peak pressure of the approximated 

model does not match with the original model. The main reason is that the current CST 

parameterisation is hard to fit accurately to the leading edge, and another reason is a 

slight error occurring in planform parameter distribution fitting should be considered as 

well. Further study is needed to improve the CST parameterisation fitting in the leading 

edge. 

 

A similar conclusion can be obtained in HTP and VTP, which will not be shown here. 

Figures 4.19 and 4.20 show the HTP and VTP models which are generated using the CST 

methods. 

  

Figure 4.21 The HTP model using the CST methods 
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Figure 4.22 The VTP model using the CST methods 

 

4.1.3. RCST method for wing type geometries 

From the test of performance of fitting accuracy of the standard CST method, it can be 

clearly seen that even if high order Bernstein polynomials are applied in both streamwise 

and spanwise directions in the standard CST, the value and position of peak pressure in 

leading edge area of the approximated model do not match with the original model. 

Therefore, modification of the CST method is desired.  

 

In Chapter 3, RCST with rational Bernstein polynomial function has been proposed for 

the two-dimensional aerofoil. The test results showed that RCST is able to significantly 

improve the fitting accuracy. Therefore, RCST is extended here to represent a three-

dimensional wing. There is no change in the basic definition of the CST wing. The 

standard Bernstein polynomials are replaced by the rational Bernstein polynomials in 

Equations 4.3 and 4.4 RCST for a non-dimensional wing surface is then written as:  

           
         

                         

                   
 

  

 

  

 

                           

4.22 

           
         

                         

                   
 

  

 

  

 

                           

4.23 
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where      and       are the weights for upper and lower surfaces respectively. The 

non-dimensional wing surface coordinate function is then applied to dimensionalise the 

wing surface with Equations 4.7 to 4.10.  The wing surface in Cartesian coordinates is 

then established.  

4.1.4. Fitting accuracy of the RCST for a wing 

The performance of the RCST is examined also by inverse fitting an F6 wing. BPOX 6 

for streamwise and BPOY 6 for spanwise are selected to try to perform inverse fitting. 

The least-square error L2 norm is employed as the target objective value. The coefficients 

     ,      ,       and       are used as design variables to be determined by optimiser. 

For RCST with BPOX 6 and BPOY 6, the total number of design variables is 196. 

The L2 norm is the error of the RCST with BPOX 6 and BPOY 6 which is 7.1389x10
-3

.  

The fitting error of the standard CST with BPOX 6 and BPOY 6 is 5.2816x10
-2

. Therefore, 

RCST is dramatically reduced by the L2 norm error. The error distribution contour is 

shown in Figure 4.23. 

 

 

Figure 4.23 The error contour of wing inverse fitting with RCST BPOX 6-BPOY 6 (in 

metre) 
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The error distribution contour shows that the maximum occurs in the leading edge around 

crank area. However, the value of maximum error is around 1.1x10
-3

. This value is much 

lower than the standard CST with BPOX 6-BPOY 6 where this value was around 3.5x10
-3

, 

and it is even lower than the standard CST with BPOX 12-BPOY 12.  

A CFD study is performed for RCST as well. The flow condition is kept the same as with 

the previous test case, Mach=0.75, Re=5x10
6
, angle of attack 0.0. The lift and drag 

coefficients of original geometry and approximated geometry are listed in Table 4.4. 

Table 4.4 Lift coefficient of original geometry and RCST approximated geometry 

 
Lift Drag 

Original 0.56056 0.02383 

RCST with BPOX6-

BPOY6 
0.56065 0.02392 

 

Table 4.4 shows that both the lift coefficient error and the drag coefficient error are 

reduced to within 1 drag count using RCST with BPOX 6-BPOY 6. This demonstrated 

that RCST with fewer design variables is able to accurately represent a wing shape which 

satisfies the aerodynamic requirement.  

 

Furthermore, the pressure distributions of the original geometry and the approximated 

geometries are plotted to examine the details. Nine sections evenly distributed along 

spanwise are taken to carry out this study. Figure 4.24 to 4.32 show the pressure 

distribution obtained from the original F6 wing and RCST approximated wing models 

and their wing profile on each section. 
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Figure 4.24 Comparisons of pressure distribution and wing shape at 10% span 

 

  

 

Figure 4.25 Comparisons of pressure distribution and wing shape at 20% span 
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Figure 4.26 Comparisons of pressure distribution and wing shape at 30% span 

  

Figure 4.27 Comparisons of pressure distribution and wing shape at 40% span 

  

Figure 4.28 Comparisons of pressure distribution and wing shape at 50% span 
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Figure 4.29 Comparisons of pressure distribution and wing shape at 60% span 

  

Figure 4.30 Comparisons of pressure distribution and wing shape at 70% span 

  

Figure 4.31 Comparisons of pressure distribution and wing shape at 80% span 
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Figure 4.32 Comparisons of pressure distribution and wing shape at 90% span 

 

The above figures illustrate that the pressure distribution on the lower side of 

approximated model using RCST matches very well. This is because the flow is less 

sensitive to geometric variation on the lower surface and the improvement of fitting 

accuracy with the RCST method.  

 

Impressive improvement could be found on the upper surface. The figures show that 

significantly better pressure distribution on the upper surface are obtained by the RCST 

method. At 10% and 20% span sections, the pressure distributions are almost the same 

for the original and RCST approximated model. At 30% and 40% span sections, there is a 

slight error in the pressure suction peak. However, the value of the pressure suction peak 

is addressed correctly. The section profile figures show that the fitting leading edge area 

is significantly improved; the error is even much smaller than the standard CST method 

with BPOX 12 and BPOY 12. 

 

The largest error occurred at 50% span section. From the geometric error distribution 

contour, it is found that the largest geometric error happened around this area. However, 

despite of the largest error in the leading edge, the value of the suction peak is slightly 

overestimated. After 50% span, of the remainder of the section, from 60% to 90% span, 

only slightly mis-matches the position of the suction peak. The value of the suction peak 

for all of the other sections is addressed accurately. 
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As a reminder here, this RCST  only employs 6
th

 order in streamwise and 6
th

 order in 

spanwise direction. It has already reached the high accuracy which the standard CST with 

BPO 12 and BPO 12 could not obtain. However, if RCST is employed in optimisation, 

the number of design variables will be only half of that of the standard CST with BPOX 

12 and BPOY. This is an impressive improvement on both accuracy and small number of 

design variables. The performance of RCST will be further studied in later optimisation 

work. 

 

4.2  CST parameterisation method for wing tip device 

As presented in Chapter 1, step changes in aircraft performance, such as 50% CO2 

emission reduction, are set for European aeronautic research. In order to achieve this 

objective, advanced wingtip device design has been identified as a key technology to 

provide benefits in drag reduction, reducing emissions and improving the performance of 

aircraft take-off and landing. Another important feature of the wingtip device is that it is 

able to retrofit to existing aircraft to provide significant improvement at relatively low 

cost. Therefore, design and optimisation of the wing tip device is interesting for the 

aeronautic industry and research. 

 

Wing tip devices, such as winglets, intended to reduce the induced drag, have been 

applied to aircraft for many years, leading to various types being designed, such as 

conventional winglet, blended winglet, smoothly blended winglet and Spiroid winglet 

(Guerrero et al. 2012; Hantrais-Gervois et al. 2009).  The investigation of various types 

of wing tip device can be found in the literature (de Mattos et al. 2003; Reneaux 2004; 

Mann and Elsholz 2005; Hantrais-Gervois et al. 2009; Gerontakos and Lee 2006; 

Takenaka et al. 2008; Meheut et al. 2009;  Rajendran 2012). Previous literature 

demonstrates that all types of wing tip device are effectively able to reduce aircraft 

induced drag. However, the design of a wing tip device is a complex issue, as not only 

aerodynamic effects but also other constraints such as structure, manufacture, stability 

and weight penalty should be considered. Hantrais-Gervois et al. (2009) and Reneaux 

(2004) summarised the properties of the most common wing tip devices. They pointed 
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out that conventional winglet is still the most feasible option for the aircraft industry due 

to high aerodynamic drag reduction and relatively low structural penalty. 
 
 

 

De Mattos et al. (2003) investigated the winglet design and application in many historic 

aircraft and modern aircraft. In their work they pointed out that there is no smooth 

transition between wing and winglet on the conventional winglet; therefore it is inevitable 

that an intersection between the wing and wing tip device, extra interference drag and 

more wave drag could be generated and counteract some benefits of the winglet.   

 

Therefore, a novel winglet, which provides a smooth transition between wing and winglet 

to give a reduction in the interference drag in this area and provide better aerodynamic 

performance, has recently been preferred in the aircraft industry (Gratzer 1994). From the 

point of view of geometric parameterisation, the conventional winglet could be 

considered as a simple wing that is attached at the wing tip. Therefore, only a few design 

parameters, such as cant angle, toe angle, taper ratio are needed to describe the entire 

winglet   ( Falcão et al. 2010; Weierman and Jacob 2010). 

 

Compared with conventional winglets, the novel winglet is a non-planar surface and has 

more degrees-of-freedom. Therefore, the simple planform parameters used to define the 

conventional winglets are not sufficient to define this type of winglet. The novel winglet 

is normally designed using a CAD system. Therefore, CAD-based parameterisation 

methods are an option, and have been employed in many researchers’ work, such as in 

Takenaka et al. (2008), Minnella et al. (2010), Pfeiffer (2004) and Rajendran (2012). 

However, as studied in Chapter 2, a few issues, such as sensitivities and robustness in 

topology, are still challenging for use of a CAD-based parameterisation method, 

especially in high-fidelity CFD optimisation. Therefore, a parameterisation method, 

which is independent of the CAD-system, is desired to describe the novel winglet.  

The other promising method is the free-form deformation method (FFD) (Ronzheimer 

2005; Anderson et al. 2012).  However, the FFD method lacks of intuitive control, which 

would make it difficult to apply constraints to winglet design. Thus, a parameterisation 
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method with intuitive planform parameters is needed. Furthermore, Gerontakos and Lee 

(2006) demonstrated that the winglet with negative dihedral cant, which means the 

winglet points downward, is more efficient in reducing induced drag than the normal 

winglet with positive dihedral. Therefore, the downward winglet is interesting to the 

aircraft industry for future aircraft (Hantrais-Gervois et al. 2009; Mann 2007; Hicken 

2009; Minnella et al. 2010). Therefore, a robust parameterisation method is required to 

represent both upward and downward novel winglets.  

 

In addition, the smooth winglet for large aircraft has been proposed by Felker (2002). The 

smooth winglet is intended to generate aerodynamic loading at wing tip and to approach 

to an elliptical distribution. Therefore, Minnella et al. (2010) compared the winglet and 

smooth winglet regarding payload contribution, de-strengthening of vortices, positive 

traction component, wing flutter, retrofitting capabilities and manufacturing. They 

concluded that the smooth winglet is more efficient than conventional winglet. Therefore, 

in this work, the new parameterisation method is also required to be able to represent the 

smooth winglet. 

 

As mentioned above, the novel winglet has a high degree-of-freedom. The three-

dimensional Bezier or B-spline curves are normally employed to directly control the 

leading edge and trailing edge of winglet (Hantrais-Gervois et al. 2009; Meheut et al. 

2009). However, with direct control of the leading edge in three-dimensions it would be 

hard to apply constraints and maintain the geometric continuity. Therefore, another way 

to define winglet is applied. The winglet is considered as a transition mapping from a 

wing tip extension (Minnella et al. 2010). 

 

As shown in the previous section, CST parameterisation has been successfully employed 

to represent the wing. Therefore, it is extended to parameterise the winglet. In a brief 

description of the CST method for winglet parameterisation, the CST method is first 

employed to parameterise the wing tip extension part, and then a transition mapping is 

applied to translate the wing tip extension part to the winglet. The detailed procedures are 

presented below. 
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Two types of winglets have been employed in this thesis. The first type of winglet 

(winglet-1) composes two parts: the transition part and winglet part, as in Figure 4.33. 

The transition part is to link between wing and winglet. The winglet in a winglet-1 is a 

small wing with straight leading edge.  

 

Figure 4.33 The wing with winglet-1: wing in blue, transition part in green, winglet in red 

 

Then, the parameterisation of the winglet-1 is carried out in the following steps: 

1) The position of the leading edge end point of transition part P2(y,z) and the 

position of the leading edge end point of winglet part P1(y,z) are set with respect 

to the end point of the wing leading edge P0(y,z), as in Figure 4.34. The reason for 

using the control point position on the y-z plane rather than cant angle or winglet 

length is that the most concerned constraint for winglet optimisation in practical 

design is the actual winglet span and height. In this way, the span and height 

constraints could be set up immediately by limiting P1 and P2.  
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Figure 4.34 The leading edge lines control points 

 

2) This step is to set up the leading edge lines of the transition part and winglet 

projected on the y-z plane.  First, P1 and P2 are linked linearly as the leading edge 

line of the winglet. A third order Bezier curve is employed to control the leading 

edge line of the transition part. Therefore, 4 control points are required for the 

Bezier curve. P0 and P1 are employed as the first two control points. The third 

control point P3 is on the extension line of the wing leading edge with respect to 

the tangential value at the wing tip. The fourth control point P4 is on the extension 

line of P1P2. The lengths of P0P3 and P1P4 are employed as design variables. In 

order to avoid a non-physical condition, the lengths of P0P3 and P1P4 are a percent 

of the length of P0P1. These constraints are aimed at keeping the tangential 
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continuity between wing and transition, transition and winglet. The leading edge 

line of the transition part on the y-z plane is then established and notated as 

P0P3P4P1. The leading edge lines and control polygons are shown in Figure 4.35. 

 

Figure 4.35 The leading edge lines of transition part and winglet on the y-z plane 

 

3) In this step, the arc length of leading edge lines on the y-z plane of transition part 

P0P3P4P1 and winglet P1P2 are calculated at first as L1 and L2. A straight line is 

then extended from the wing tip with respect to the tangential value on the y-z 

plane. The straight extension line is then cut at the position with arc length L1 and 

L2. The span of the wing extension, bwinglet, btransition, btotal is then taken from the 

projection of the extension line on the y axis, as in Figure 4.45. 
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Figure 4.36 The extension of the wing on the y-z plane 

 

4) Once the extension line of the wing on the y-z plane is established, the view is 

changed to the x-y plane. The planform parameters, such as sweep angle of 

leading edge of transition part         , sweep angle of trailing edge of transition 

part         , sweep angle of leading edge of winglet             and sweep angle 

of trailing edge of winglet            , are employed to calculate the positions of 

the control points    ,    ,   ,    of the leading edge and trailing edge of the wing 

extension on the x-y plane, as shown in Figure 4.35. 
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Figure 4.37 The planform parameters for wing extension on the x-y plane 

 

5) The leading edge and trailing edge lines of the winglet can be then established by 

connecting        and     . Two fourth order Bezier curves are then employed to 

control the leading edge and trailing edge of the transition part on the x-y plane. 

Similar with the leading edge line on the y-z plane, the position of control points 

       and      are located on the extension lines of wing and winglet, and the 

lengths of the control polygon are employed as design variables. This step is 

shown in Figure 4.36. 
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Figure 4.38 The leading and trailing edge lines and control point and polygon for wing 

extension on the x-y plane 

 

6) Once the leading edge and trailing edge lines of the wing extension are generated, 

the CST parameterisation of the wing is then applied to represent the wing 

extension part. The definition is same as for the CST wing definition, as in 

Equations  4.24 to 4.26: 

1

2 , ,( , ) ( ) [ ( ) ] [ ( ) tan( ( ))]
NyNx

N

U N i j j i TE Up Twist

i j

C Bu Sy Sx              
 

4.24 

1

2 , ,( , ) ( ) [ ( ) ] [ ( ) tan( ( ))]
NyNx

N

L N i j j i TE Lo Twist

i j

C Bl Sy Sx                
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4.26 

where   
 

      
 is with respect to the total span of wing extension btotal = bwinglet + 

btransition, and the local chord distribution is calculated from trailing edge and leading edge 

                               . 

 

In order to maintain the geometric continuity and geometric first order derivative 

continuity between wing and wing extension, a few constraints are introduced. The first 

condition is the wing and wing extension should be represented with the same BPOX. 

Therefore, the geometric continuity for the CST equation would be easily derived, as in 

Equations 4.27 to 4.30: 

,0, , _ ,i winglet i BPOY wing wingBu Bu  
4.27 

,0, , _ ,i winglet i BPOY wing wingBl Bl  
4.28 

                                         

                     

 
                                                 

     
 

4.29 

                                         

                     

 
                                                 

     
 

4.30 

where BPOY_winglet is the Bernstein polynomials order for winglet on spanwise, 

BPOY_wing is the Bernstein polynomials order for winglet on spanwise. Equations 4.27 

and 4.28 are for keeping geometric continuity at upper and lower surfaces. Equations 

4.29 and 4.30 are for maintaining the 1
st
 order C

1
 continuity. If the second order 

continuity C
2
 is required, the constraints condition could also be easily derived. Similar 
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with the CST wing, the planform parameters, such as twist distribution           and 

trailing edge thickness distribution       , employ the Bernstein polynomials. Equation 

4.31 shows the Bernstein polynomials for twist distribution          : 

                                     
           

 

   

 
4.31 

Similar constraints as with Equations 4.15 and 4.16 should be applied to maintain 

planform geometric continuity between wing and wing extension. Examples of twist 

distribution are shown in Equations 4.32 and 4.33: 

                                
4.32 

                                           

              
 
                      

                     
 

4.33 

 

Similar constraints for trailing edge thickness distribution can be easily derived and 

applied. Therefore, the surface of wing extension part on the x-y plane is generated, as in 

Figure 4.39. 
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Figure 4.39 The surface of wing extension 

 

7) The last step is to translate the surface of the wing extension part from the x-y 

plane to the y-z plane. The translation is to maintain the same length of leading 

edge of wing extension and arc length of the leading edge of the winglet-1 on the 

y-z plane. For example, at the spanwise position  , the leading edge points 

( )leadingy   and  ( )leadingz   can be calculated. The length of the leading edge is 

then calculated from                                              . 

Following this, the position   
       

   ,              with same arc length L1 on 

the leading edge line P0P3P4P1 of the winglet-1 on the y-z plane, in Figure 4.36, is 

searched out. The ( )leadingy  , ( )leadingz  of the surface of the wing extension in 

Equation 4.26 are replaced by   
       

   ,             . 
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4.34 

The rotation translation equation is then applied. The rotation angle is with respect to the 

tangent of the leading edge line P0P3P4P1        
          

          
  and the tangent of the 

leading edge at wing tip,           .  

3 2

3 2 2

3 2 2

cos( ( )) sin( ( ))

sin( ( )) cos( ( ))

x x

y y z

z y z

   

   



   

   

 4.35 

where 

           
             

   
       

   
            

4.36 

The translation relationship is illustrated in Figure 4.40 to 4.42.  

 

Figure 4.40 The translation relationship between wing extension and winglet-1 
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Figure 4.41 The rotation relationship 

 

Figure 4.42 The translation view on the x-y plane 
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Therefore, the CST method for the winglet-1 has been presented completely. For the case 

of winglet 1 with BPOX 6, BPOY 6 and 4
th

 order Bernstein polynomials for twist and 

trailing edge thickness, the number of design variables is up to 114. Most of the design 

variables are differentiable to provide surface mesh point sensitivities. However, because 

the translation mapping is employed in this winglet definition, the planform parameters, 

P1, P2 , length P0P3 and P1P4, are not differentiable at the moment since they will change 

the span of the wing extension which is fundamental to this transformation. In 

optimisation, the sensitivities of these parameters can be calculated by finite difference.  

 

The second type of winglet (winglet-2) is smooth winglet, which could be defined in a 

similar way to that of the winglet-1. It could be as considered as the winglet-1 with the 

winglet part removed. Therefore, the control point P2(y,z) in the winglet-1 is removed in 

winglet-2 and replaced by the winglet tip dihedral angle                  . The sweep 

angle of the leading edge of the transition part          and the sweep angle of the 

trailing edge of the transition part          are replaced by the sweep angle of the leading 

edge of the winglet             and the sweep angle of the trailing edge of the winglet 

           .     

 

The sweep angle of the leading edge of the winglet             and the sweep angle of 

the trailing edge of the winglet             are replaced by the sweep angle of the leading 

edge at the winglet tip         and the sweep angle of the trailing edge at the winglet tip 

       , respectively. The definition and and planform parameters are shown in following 

Figure 4.43 to 4.47. The CST equations are applied in the same way as Equations 4.24 to 

4.36. 
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Figure 4.43 The winglet-2 leading edge on the y-z plane and planform parameters 

 

Figure 4.44 The planform parameters of wing extension for winglet-2 on the x-y plane 
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Figure 4.45 The surface of wing extension for winglet-2 on the x-y plane 

 

Figure 4.46 The translation of wing extension to winglet-2 
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Figure 4.47 The surface of winglet-2 

 

Furthermore, the downward winglet (winglet-3) and smooth winglet (winglet-4) can be 

generated if the control points P1, P2 are located below the wing. The Figures 4.46 to 4.47 

show the winglet-3 and winglet-4. 

 



111 

 

Figure 4.48 The winglet-3 

 

 

Figure 4.49 The winglet-4 

 

4.3 CST Parameterisation for fuselage (simplified forward, mid and tail cone parts) 

The fuselage has a typical ‘body-axis type’ geometry in which one CST equation is 

employed to define the cross-section profile and another is used to define the distribution 

of cross-section along the body axis. Table 2.1 has shown the capability of the CST 

method for representing symmetric cross-section profiles. In the conventional modern 

civil passenger transport aircraft, the fuselage could be divided into three parts, namely 

forward part, mid-part and tail cone (these could be notated as nose fuselage, cylinder 

fuselage and rear fuselage) as in Figure 4.50. Each part will be discussed in the following 

sections.  
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Figure 4.50 The three main parts of the fuselage 

 

4.3.1  Cylindrical fuselage 

The mid-part of the fuselage is the cylindrical fuselage with a constant cross-section 

along the aircraft body axis. In most civil passenger aircraft, the cross-section profile of 

this component is a smoothly blended cross section. Consequently, a CST function with 

class function and unit shape function is employed to represent the cross-section. The 

profile function of the upper lobe is then written in the following form: 

                 
( ) lengthX T  

                                    
10 

 4.37 

                 FuselageWY )(
                                    

10   4.38 

5.05.0 )1(2)(   FuselageU HZ
                       

10     4.39 

where Ttength is the total length of mid-part fuselage, HFuselage is the length from the peak 

of the upper lobe to the profile centre and WFuselage is the width of the section profile. The 

cross-section is then constantly extruded along the fuselage body axis, and the mid-part 

fuselage is established. Figure 4.51 shows the CST parametric mid-part fuselage and 

profile parameters HFuselage and WFuselage.  

 

 

 

 

Figure 4.51 The CST parametric mid-part fuselage component 

 



113 

 

4.3.2  Nose fuselage 

For a realistic aircraft forward part fuselage the geometry is highly complex, due to the 

presence of the cabin and window shield, which are designed following many constraints. 

In general, the cabin and window shield are not smooth surfaces and can be decomposed 

into many sub-components, and the curvature discontinuity appears at the intersection 

between each sub-component. Therefore, it is extremely difficult to specify a generic 

definition to represent the forward part fuselage with a real cabin. Figure 4.52 shows the 

forward part fuselage geometry with cabin from an aircraft model. 
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Figure 4.52 The forward part fuselage of an F4 aircraft with cabin 

 

Because of the complexity of a realistic forward part fuselage and the lack of generic 

definition, the parameterisation for a realistic forward part fuselage is difficult to 

implement. However, because the aerodynamic optimisation of the nose fuselage is 

normally carried out in the preliminary design, so a simplified nose fuselage without 

cabin and window shield can be used as an initial design. The cabin and window shield 

would be modified manually later based on this initial design. The simplified nose 

fuselage could be defined as an elliptic cross-section distribution along crown, keel and 

width line. The CST parametric model for the simplified nose component could be 

established. 

            4.40 

                4.41 

                   
                        4.42 

                    
                        4.43 

where 

        is the total length of forward part fuselage 

 
is centre of cross-section, which is also notated with centre line 

 is width of cross-section, which is also notated as side line 

 
is the length from peak of upper lobe of profile to the centre of profile 

( )centreZ 

( )noseW 

( )noseH 
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is the length from peak of lower lobe of profile to the centre of profile 

 

Because the nose fuselage of modern civil transport aircraft has an apparently round nose, 

the CST equations that could be employed to represent it are: 

                                  
 
                    4.44 

                                 
 
                     4.45 

                                                
 
      4.46 

where 

              

                                

4.47 

This could maintain the geometrical continuity at the interface between nose fuselage and 

mid-part fuselage, and also maintain 1
st
 order derivative continuity.  

 

Therefore, the CST parametric nose fuselage can be obtained and connected to the 

parametric mid-part fuselage. Figure 4.53 shows the parametric nose fuselage and 

illustrates the crown, keel and side lines. 

  

      Figure 4.53 The CST parametric forward part fuselage 

 

( )noseK 
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4.3.3  Rear fuselage 

The tail cone (rear part fuselage) is defined similarly to the simplified nose fuselage. 

Figure 4.54 shows a CAD tail cone model. 

  

Figure 4.54 A CAD tail cone model 

 

The tail cone is an important aerodynamic component for the fuselage. It contributes 

importantly to the flow separation in this area and to viscous drag increase. In addition, 

the HTP work area is also presented on the tail cone. Hence, the cross-section profile of 

tail cone design is a bit more complex than simple elliptic. It requires the different class 

parameters NC to fit the cross-section profile of the tail cone. Some tests have found that 

only a class function with unit shape function is unable to represent the profile of the tail 

cone of a realistic aircraft. Consequently, the non-uniform shape function could be 

employed if it is necessary. 

 

The CST parameterisation for the tail cone is then derived and written as Equations 4.48 

to 4.54. Because the tail cone has a symmetric geometry, the CST parameterisation  only 

represents half of the part to ensure its symmetry. Figure 4.55 shows the CST parametric 

tail cone model. 
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where 

 
 

                                                                                                   

                                                                                                   
4.50 

 lengthTx
 

4.51 

( )taily W   
   4.52 

( , ) ( ) ( )U U tail Centrez H Z          4.53 

( , ) ( ) ( )L L tail Centrez K Z          4.54 

  

Figure 4.55 The CST parametric tail cone 

 

4.4 CST parameterisation for belly-fairing 

In the modern civil passenger transport aircraft, belly-fairing is normally employed at the 

wing root to reduce interference drag between wing and fuselage, and cover some 

equipment, for instance the landing gear, air-conditioning, etc., which is exposed outside 

the fuselage.  

 

The aerodynamic drag would be dramatically reduced if the belly-fairing was well 

designed, or would be increased if the belly-fairing were designed improperly. The 

current design methods in industry are still based on manual CAD work. The numerical 
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optimisation technique for belly-fairing design is interesting. To understand the shape of 

the belly-fairing, its cross-section profile has been shown in Figure 4.56. 

  

Figure 4.56 Belly fairing model and its profile 

 

This figure illustrates that the cross-section profile of the bell-fairing would be a multi-

value function if the analytical function is directly applied to this profile with respect to 

the x-axis in Cartesian coordinates. Furthermore, it is inconvenient to split the belly 

fairing to upper and lower parts, especially at its leading and rear areas. Therefore, the 

best way to manipulate the belly fairing is to transform its coordinates from Cartesian 

coordinates to cylindrical coordinates.   

 

The belly-fairing is then described by the angle and radius in cylindrical coordinates, and 

a one-to-one mapping function could be obtained. The origin point of the cylindrical 

coordinates is set up to be at the centre point of the fuselage. The bounding line of the 

belly-fairing is the intersection line of belly fairing and fuselage, and it changes as soon 

as any variant of belly-fairing is applied. Consequently, the belly-fairing must be 

extended to a larger surface, and two bounding lines which are keel and width lines are 

employed to control this surface.  

 

In addition, the belly-fairing has a symmetric geometry with respect to the x-z plane. 

Therefore, the first derivative at the keel line is zero, as 
  

  
  . In the cylindrical 
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coordinate, it is equivalent to require  
  

  
  . Therefore, in the new CST equation, this 

condition must be provided naturally. 

 

 Eventually, the CST parameterisation for the section profile of the belly fairing could be 

written as: 

1.0

1.0( ) ( ) ( ) ( )keel widthR C S f R g R            = 0 1
0.5








，  4.55 

where    is non-dimensionalised angle coordinate,      points to width line, and       

points to keel position.        is the shape function using Bernstein polynomials: 

The class parameters are selected as N1=1.0 and N2 =1.0, because it is then able to 

provide the following conditions: 

    
                        

           4.57 

     
        

  
             

     
        

  
               

The details can be found in Appendix C. Therefore,   and    are set to zero, which will 

guarantee that the CST equation goes through the boundary value at keel and width, and 

will keep the derivatives to be zero. Furthermore, in order to provide the boundary 

condition at keel line and width line, the function       and       are defined as below. 

                   4.58 

                    4.59 

These two polynomials have following conditions: 

        guarantees that the keel line value will not affect the width line 

        guarantees that the profile will go through the keel line 

                  
            

 

   

 
4.56 
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        guarantees that the profile will go through the width line 

        guarantees that the width line value will not affect the keel line 

        and         guarantee that the derivative of the profile at the keel is zero. 

 

Similar to the CST parametric wing, the each shape function parameter is a distribution 

function along the body axis. Therefore, the entire CST parametric model for belly 

fairing can be written as below: 

1.0

1.0 ,( , ) ( ) ( ) ( ) ( ) ( ) ( )
NyNx

i j j i keel width

i j

R C B Sy Sx f R g R                  4.60 

lengthTx 
   4.61 

( , ) cos( )y R        4.62 

( , ) sin( )z R        4.63 

where ( )keelR   is a distribution function of radius at keel position 0.5   , ( )widthR   

is a distribution function of radius at width position 0  , which is normally represented 

by lower order polynomials or cubic splines. In order to satisfy the boundary condition at 

keel and width line,      and      are set to zero. To ensure that non-physical geometry 

will not be generated, the following constraints should be added on during the 

optimisation process: 

)()0,(  FuselageRR 
   4.64 

)()1,(  FuselageRR 
   4.65 

( ( ))width FuselageMax R W     
4.66 

The entire belly fairing surface represented by the CST method is then shown in Figure 

4.57.  
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Figure 4.57 The CST belly-fairing parametric model 

 

The accuracy of belly-fairing is also quickly studied by inverse fitting an existing belly-

fairing model with total length of about 14 metres. The BPOX here implies the Bernstein 

order for controlling the belly-fairing profile, and the BPOX implies the Bernstein order 

for controlling streamwise (x direction). The error distribution contours regarding radius 

are shown in Figure 4.58 and Figure 4.59. 
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Figure 4.58 The error contour of belly-fairing inverse fitting with BPOX 6-BPOY 6 (left 

figure) and BPOX 8-BPOY 8 (right figure) 

 

  

Figure 4.59 The error contour of belly-fairing inverse fitting with BPOX 10-BPOY 10 

(left figure) and BPOX 12-BPOY 12 (right figure) 

 

The error distribution contour illustrates that the maximum error is always occurring at 

the curvature change area. The maximum fitting error using BPO 6 in both directions is 

around 0.02 metres, equivalent to a non-dimensional value of 1.5x10
-3

. However, the 

maximum error is dramatically reduced by a half by increasing the BPO to 8 in both 

directions. When the BPO is increased to 10, the maximum error is reduced to about 

6x10
-3

 metre, about 4x10
-4

 in non-dimensional form.  However, the BPO 12 in both 

directions only reduced the maximum error to 5x10
-3

 metre, about 3.5x10
-4

 in non-

dimensional form. It shows that the fitting accuracy could be improved by increasing the 
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Bernstein polynomial order. However, after using 10
th

 order Bernstein polynomials, the 

fitting error could not be reduced significantly. Therefore, the BPO could be selected 

between 8 and 10 when using the CST method to represent belly-fairing. 

 

4.5 CST parameterisation for the nacelle 

The nacelle could be defined in two ways: one is to define the longitudinal profile for 

crown line, maximum half-breadth, keel line and then distribute these profiles 

circumferentially around the longitudinal axis; and the other is to define the cross-section 

profiles and then distribute the profiles along the longitudinal axis. In this work, the 

second method is employed to keep the consistency with previous components.  

 

Since Kulfan
 
(2006 to 2010) has demonstrated in detail the CST parameterisation 

methods for representing the nacelle, it will not be repeated here. However, in Kulfan’s 

paper the inlet of the nacelle is defined using four parameters, namely throat station, 

throat area, end of inlet station and end of inlet area. However, the CST methods only 

have leading edge radius, and lack the intuitive control for other parameters, such as 

throat station, throat area, etc., which are not explicitly involved in CST methods. These 

parameters are very important for the nacelle design, and are required to be constrained 

directly. Therefore, the theory of PARSEC parameterisation is studied and employed to 

represent the longitudinal profile of the nacelle inlet. Figure 4.60 shows the nacelle inlet 

definition using the PARSEC approach.  
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Figure 4.60 The nacelle inlet using PARSEC intuitive parameters 

 

Similar to PARSEC, 12 design variables are introduced to represent the inlet longitudinal 

profile. These variables are: the leading edge radius on upper lobe and lower lobe (Rle,upper, 

Rle,lower), upper throat position (XUP, ZUP), upper throat curvature(ZXXUP), lower throat 

position(XLO, ZLO), lower throat curvature (ZXXLO), upper and lower end of inlet station 

(XEnd, up, ZEnd, up, XEnd, lo, ZEnd, lo ), and tangential value of upper and lower end of inlet 

(TEnd, up and TEnd, lo). A sixth order polynomial, as follows, was used to control the curve: 

                     
  

 

  
    4.67 

In order to determine the coefficients of polynomial, the following equation system is to 

be solved:  
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Once the coefficients of equations are solved, the non-dimensional coordinates of the 

inlet can be established. It is then scaled with respect to the length of nacelle, and 

translated to the correct position with respect to the leading edge of the outlet cowl of the 

nacelle. Figure 4.61 shows the CST parametric nacelle model in this work. 

 lengthTx
 

4.70 

, ,inlet upper length up leading upperZ T Z    4.71 

, ,inlet lower length lo leading lowerZ T Z    4.72 

 

  

Figure 4.61 The CST parametric nacelle model 
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4.6 CST parameterisation for flap tracking fairing (FTF) and pylon 

The flap track fairing is a pod located at the wing flap lower surface used to cover the 

flap track and hydraulic equipment and reduce wave drag. The FTF can be decomposed 

into three parts, namely, a bottom cowl and two straight side walls. The flap track fairing 

has a symmetric geometry with respect to its own body symmetric plane. Therefore, the 

bottom cowl could be defined as a type of body cross-section geometry.  

 

The cross-section profile of the bottom cowl of FTF is a half circle represented using the 

CST class function with unit shape function. The longitudinal distributions of the section 

profile for keel and side lines of FTF could be represented using a Bernstein polynomial. 

The mathematical expressions are similar to those of the simplified nose fuselage in 

Equations 4.40-4.43.  

 

Once the bottom cowl geometry is established, two side walls can be linearly extruded 

from the side lines. Moreover, although the cross-section of the bottom cowl is a half 

circle in most FTF cases, a different shape could be applied to the cross-section profile. If 

needed, the modifications could be applied and could be referenced as a tail cone 

definition in Equations 4.48-4.54. Figure 4.62 shows the CST parametric FTF. 
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Figure 4.62 The CST parametric model of FTF 

 

The pylon is an important aerodynamic component which is located on the wing to carry 

the aero-engine for the civil passenger transport aircraft. Pylon design and optimisation is 

a crucial problem for modern transport aircraft. A well designed pylon could provide 

significant interference drag reduction between nacelle and wing.  

 

A practical pylon CAD model is shown in Figure 4.63, which illustrates the complex 

shape of a pylon. The pylon can be decomposed as four basic sub-components, namely, 

pylon fairing, root fairing and two side walls.  
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Figure 4.63 A pylon CAD model 

 

The pylon fairing is a part to link the nacelle upper lobe and wing leading edge, which 

has a significant contribution for reduction of aerodynamic drag. The root fairing is 

located at the interface between pylon and wing lower surface, and which is designed to 

reduce the interference drag between pylon and wing. Due to structural requirements, a 

straight side wall is employed to link the pylon fairing to the nacelle. A trapezium side 

wall is applied to make the flow converge smoothly at the trailing edge of the pylon 

behind the straight side wall.  

 

Because the nacelle/wing interference drag contributes mainly to the aerodynamic drag in 

this area and the pylon root fairing is relatively complex, it is temporarily abandoned to 

involve the root fairing in parameterisation, and assumes pylon is a symmetric geometry. 

Therefore, a simplified pylon is shown schematically in the following Figure 4.64.  
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Figure 4.64 A simplified pylon model without root fairing 

 

As the above figure shows, the pylon could be described as having 9 points and 4 lines. 

Points 1 and 2 are the vertices of the crown line of the pylon fairing. These two points 

correspond to the pylon relative position between wing and nacelle. Similarly, points 3 

and 4 are the vertices of the side line 1 of the pylon fairing. The side line 1 in Figure 4.64 

also controls the curve on the upper side of the straight side wall surface. Point 5 is one of 

the vertices of the straight side wall. Point 6 is the vertex of the pylon on the upper side of 

the trapezium side wall. The curve between points 5 and 6 is notated as side line 2 which 

controls the upper side of the trapezium side wall. Point 7 is the ending vertex of the 

pylon on the lower side of the trapezium side wall. Point 8 is the starting vertex of the 

lower side of the trapezium side wall. The curve between points 8 and 7 is notated as side 

line 3 which controls the lower side of the trapezium side wall. Point 9 is the starting 

vertex of the lower side of the straight side wall. The Point 8 and 9 are then linearly 

connected to setup the bottom bounding straight line. 

 

Once these points and lines are set up, the three main surfaces could be generated. The 

CST parameterisation could be employed for the pylon fairing in similar way to the FTF 

bottom cowl. Similarly, the class parameter of the cross-section profile of the pylon 
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fairing is a variable. The straight and trapezium side walls could be generated by linking 

the upper and lower side lines linearly.  The CST parametric pylon could be established 

and is shown below in Figure 4.63. 

  

Figure 4.65 CST parametric model of a simplified pylon 

 

For the inverse fitting, the procedure is to extract these points and lines from original 

surface data and identify the type of cross-section profile of the pylon fairing. Following 

this, the curve fitting techniques could be applied to represent these side lines. Finally, 

the side wall surfaces could be generated based these side lines.  

 

Although most types of pylon in civil transport aircraft could be defined by this 

procedure, it is still a low-fidelity representation for the pylon. For example, in some 

practical pylons, the side wall could not be represented as a linear link between upper and 

lower side lines. Furthermore, the real constraints should be added to ensure no ill-

conditioned shape appears during optimisation.  

 

4.7 CST parameterisation for three-dimensional shock bump local modification 

The shock control bump and local modification has been proposed by Fulker et al. (1993). 

The basic idea of a shock control bump is to employ the concave part of the bump 

upstream before the primitive shock to induce a pre-compression. This pre-compression 
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thus decreases the Mach number before the primitive shock and reduces the strength of 

the primitive shock.  

 

The design and optimisation of the 2D shock bump has been widely performed by 

academic researchers (Zhu 2000; Lutz et al. 2004). More details could be found in 

Wong’s thesis (2006). The literature has asserted that the shock control bump is able to 

provide significant shock wave drag reduction for 2D aerofoils. Qin et al (2005) have 

presented the 3D bump is able to effectively reduce wave drag as well. Later on, Qin et al. 

(2008) have successfully extended the shock control bump to a 3D un-swept NLF wing. 

The results show that the three-dimensional bump is able to reduce wave drag more than 

two-dimensional case. Therefore, they have applied the control bumps in a three-

dimensional blended-wing-body (Wong et al. 2007). In their work, the capability and 

feasibility of a shock control bump for shock wave drag reduction in a three-dimensional 

practical case has been proven. In recent years, the shock control bump technique is of 

more and more interest to industry since it is able to be applied to modify existing 

configurations and provides significant drag reduction with slight modification.  

 

The design parameterisation used before for shock bump control is generally simple. In 

Wong’s work (2006), the bump is split into a two piece-wise curve with respect to the 

shock crest position. Each is represented by third-order polynomials, see Equation 4.73 

and Figure 4.66: 

         
     

                                           

         
     

                               
4.73 
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Figure 4.66 Parameterisation for 2D shock control bump using piecewise polynomials 

(Wong  2006) 

 

The boundary condition of this bump is:  

        4.74 

         4.75 

                   4.76 

              4.77 

                   4.78 

              4.79 

              4.80 

               4.81 

For this parameterisation, all intuitive parameters, such as bump height         and bump 

crest relative position       , are explicitly presented. However, these bump 

parameterisation equations only guarantee the first derivative continuity at the start, crest 

and end position of the bump. For practical industrial manufacture, the second derivative 

continuity C
2
 is required. In order to satisfy C

2
 continuity, the order of piecewise 

polynomials has to be increased to 5. However, higher order polynomials will lead to a 

high degree-of-freedom and contain more than one peak in the curve; this will cause 

uncontrollable waviness in the bump. Another parameterisation uses PARSEC bump 

equations, which have been studied in Chapter 2. The PARSEC bump function has 

natural C
1
 and C

2
 continuity at the crest position, and it provides some parameters, such 

as P, Q, c, related to curvature at the start and end position of the bump. However, these 
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parameters for controlling curvature are not equal to curvature value. The relationship of 

curvature and parameters is difficult to derive. Therefore, the CST methods have been 

used to try to represent the shock control bump.  

 

As presented in Chapter 2, the CST methods have two parts: the class function and the 

shape function. Therefore, if the class parameters N1 and N2 are set to 3, and the shape 

function        is used, as in Equation 4.82, a bump like curve with 1
st
 and 2

nd
 

derivatives of zero at start and end is obtained. The curve and 1
st
 and 2

nd
 derivative 

distribution are shown in Figure 4.67 to 4.69.  

3.0 3.0( ) -    （1 ）  4.82 

  

 

Figure 4.67 The bump curve using the CST methods 
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Figure 4.68 The 1
st
 derivative distribution of bump curve using the CST method 

 

 

Figure 4.69 The 2
nd

 derivative distribution of bump curve using the CST method 

 

The above figures clearly show that the geometry, 1
st
 and 2

nd
 derivatives are all zero at 

the start and end position of the bump. In addition, because the class parameters are 

exponential parameters of the class function, if N1 and N2 are set to 3, the bump peak 

value reduces to 1/64. Therefore, it is better to multiple by 64 in the CST equation to 

amplify the peak value back to 1. This would be convenient for the user when setting up 
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their design parameter range. For modification of the CST bump, the shape function is 

involved. The full description of the CST bump is: 

3.0

3.0( ) 64 ( ) ( )
n

i i

i

C A S        4.83 

            4.84 

            4.85 

The two-dimensional bump could be easily extended into a three-dimensional bump 

using a similar transformation to that for the wing. Finally, the boundary of the 3D bump 

may not be strictly square. The sweep angle of the leading and trailing edges of the bump 

may be needed when deployed on the wing to match the flow direction due to the wing 

sweep. The definition of a three-dimensional bump with sweep angle is shown in the 

following equations: 

   3.0

3.0 ,( , ) 64 ( ) [ ( ) ]
NyNx

i j j i

i j

C Bu Sy Sx H             
4.86 

where                                 3.0

3.0( ) 64 ( ) ( )
n

i i

i

H C A S       4.87 

                                       4.88 

           4.89 

               4.90 

                                                         4.91 

 

where          and            are the leading edge and trailing edge sweep angles of the 

bump.       is the bump length at the start boundary side    . This can provide higher 

flexibility of a local bump, and generate symmetric or asymmetric bumps in three-

dimensional space. The orders of BPOX and BPOY are recommended to be below 4, 
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since the Bernstein polynomials are not orthogonal. The performance of the CST bump 

will be studied in a later optimisation test. 

 

4.8  Calculation of intersection line 

The intersection line of two surfaces is an important issue in complex geometric 

modelling. CFD computation requires watertight geometric modelling for meshing. 

Furthermore, the aerodynamic flow is very sensitive to the geometry. Therefore, it 

requires that the surface intersection line must be calculated with high accuracy, 

robustness and efficiency.  

 

Nowadays, most CAD software packages are able to calculate the surface intersection 

line. The reason that we still present an intersection line calculation method is based on 

the following reasons.  

 

First, the CST parameterisation method is a relatively new method which has not been 

used in any CAD software. Therefore using CAD software or library, an extra process is 

needed to import the CST parametric model into CAD software and export to CFD 

meshing after the intersection line has been calculated. Second, if CAD software or 

library is involved, the challenge for the CAD based parameterisation returns, especially 

regarding license issue. The third is that the accuracy and robustness of CAD software 

are out of the user’s control. For example, many of the commercial CAD systems employ 

the polyhedral approximation for the intersection line (Krishnan and Manocha 1997). 

This method is normally not accurate enough. For example in industrial surface design 

and CFD processes, extra work between the CAD surface and CFD mesh is normally 

required to clean up the incorrect intersection line and connectivity and generate 

watertight surface. These processes are all subject to human intervention and it is desired 

that they do not happen during an automatic optimisation process. Therefore, an efficient, 

accurate and robust algorithm is required for calculating the intersection for the CST 

parametric model. 
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In general, the methods for calculating the surface intersection line are classified into 

analytical methods and numerical methods (Li et al. 2004; Krishnan and Manocha 1997). 

Analytical methods are used to find the explicit exact mathematical function to represent 

the intersections curves (Chandru and Kochar 1987; Sarraga 1983; Heo et al. 1999).  

Analytical methods are exact and robust; however, the exact mathematical function is 

derived from a mathematic representation of two intersected surfaces. Therefore, it 

depends on the complexity of intersected surfaces. In general, the surfaces in aircraft are 

complicated, and so analytical derivation of the intersection is very complicated and may 

not exist. Therefore, numerical methods are preferred. Patrikalakis (1993) classified 

numerical methods into three main categories: subdivision methods, lattice evaluations, 

and marching methods. 

 

Subdivision methods decompose the geometry recursively into much simpler, similar 

problems which can be solved easily (Hohmeyer 1992; Aziz and Bata 1990). In general, 

geometries are subdivided continuously until a desired level, such as the flatness sub-

piece with linearity of each edge, is attained. Then, the corresponding intersection is 

calculated from each sub-piece. This method is dependent on the properties of control 

polytopes of geometries (Lane and Riesenfeld 1980; Lasser 1986). These methods are 

generally robust; however, the efficiency is dependent on the requirement for accuracy. If 

high accuracy is required, more steps of the subdivision decomposition will be carried out, 

which leads to very slow implementation and large data storage.  

 

The lattice evaluation methods take a set of curves from one of the two intersected 

surfaces. The problem of surface to surface intersection is then degenerated to a lower 

complexity curve to surface intersection problem (Patrikalakis 1993; Limaiem and 

Trochu 1995; Rossignac and Requicha 1987). Finally, the discrete points calculated from 

the curve/surface intersection will be connected to compose intersection curves. This 

method is simple to implement since it avoids solving a large number of uncertain non-

linear equations. However, the discrete step size for decomposing a surface to curves is 

hard to decide on, and it is difficult to discover the intersection curves of small loops and 

singular points, especially in the complex case with multiple intersection curves. 
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The marching methods generally have two steps: finding starting-points on each 

intersection line and tracing the intersection curve from a starting-point along a certain 

direction which is determined by local geometry properties (Baja and Hoffmann 1988). 

When both of the intersected surfaces can be represented mathematically, the intersection 

line between two surfaces can be described as an algebraic set from a surface 

representation function where the intersection line is a curve with zero distance between 

two surfaces. The marching methods have been widely used in calculating the 

intersection line (Aziz and Bata 1990; Patrikalakis 1993; Wu and Andrade 1999; 

Krishnan and Manocha 1997; Li et al. 2004). This method is high efficient, and the 

accuracy can be controlled by the user. The robustness depends on two points. First, in 

the high free-form surfaces, the number of intersection lines of two surfaces could be 

more than one, and include an open component and loop, as in Figure 4.70. Therefore, it 

requires a robust method to find starting-points for the intersection lines. Second, it 

requires a good scheme to perform the marching process. Newton iterations and local 

geometry differentiation information are normally employed in marching processing.  

 

Figure 4.70 The intersection lines of two high free-form surfaces 

 

In calculating the intersection line of the parametric model for the CFD process, the high 

precision is input first since the CFD mesh, especially in the boundary layer region, is 
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very small. Therefore, the subdivision method is not selected because of its drawback. 

The lattice evaluation methods could be useful for certain cases. For example, in the 

wing/belly-fairing intersection, if the non-dimensional coordinate   in Equation 4.5 is 

fixed, a line could be obtained along the spanwise direction. The intersection point of this 

spanwise line and the belly-fairing surface could be easily searched out as an 

optimisation issue. Then, the next intersection point is obtained by changing the non-

dimensional coordinate  , and the process is repeated. This is shown in Figure 4.71.  

 

Figure 4.71 The intersection line between wing and belly-fairing 

 

However, in other cases, for example the belly-fairing/fuselage intersection, the loop 

intersection line occurs and the lattice evaluation is not suitable. Because multiple 

numbers of intersections between two aerodynamic component surfaces occurs rarely, 

and the CST parametric geometric model is fully described in algebraic mathematic 

equations, so it is fully differentiable. Therefore, the marching method is selected to 

calculate the intersection line between different CST parametric models. 

 

The marching algorithm employed here follows Huang and Zhu’s (1997) work. In their 

work, the Newton-Raphson iteration is employed to calculate the local intersection point. 

The process for this method is summarised below: 

1) Calculate the exact starting-point for the intersection line, 

2) Approximate the next marching point location based on local surface properties, 

3) Employ the Newton-Raphson iteration convergence to ‘exact’ local intersect point, 
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4) Detect if the important points, such as turning point and cusp point, exist and if so 

calculate them, 

5) Repeat steps 2 to 4 until the intersection point returns to the starting-point or hits 

the boundary, 

6) Employ the NURBS curve to fit all discrete intersect points and obtain the 

mathematic NURBS representation of the intersection line (Piegl and Tiller 1997). 

 

For example, for the CST parametric mid-part fuselage model in vector field          

and the CST parametric belly-fairing in vector field         , the intersection line X(t) 

could be described as: 

                         
4.92 

In this case, the intersection points of the keel line of the fuselage and belly-fairing are 

used as starting-points. The starting-points can be calculated exactly because the keel line 

of the fuselage is a straight line and the keel line of the belly-fairing is a low order 

polynomial, and both are on the x-z plane. This could be easily solved as a line-line 

intersection issue. For other cases, for example the wing and belly-fairing, the lattice 

evaluation method could be employed to calculate the starting-points. Once the starting-

point is selected, non-dimensional coordinates on each surface are calculated and notated 

as                       and                      . 

 

Step 2 is to approximate the next marching point position. To approximate this, the 

direction and step length need to be determined. The direction is defined by the local 

differential geometry. The step length is crucial because a large step length may lead to 

an incorrect approximated intersection point and the Newton-Raphson iteration in step 3 

may fail to converge, but the small step length could cost more computational time and 

decrease the efficiency. Huang and Zhu’s (1997) suggested the step length can be 

specified manually or calculated based on local approximated curvature.  
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At first, the surface units normal    at the fuselage              and    at the belly-

fairing              are calculated as:  
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Where, the partial differentiation of geometry of fuselage and belly-fairing could found in 

appendix D. The approximated marching direction T is then calculated by the cross 

product of two surface normals.  

        
4.95 

Once the marching step direction is obtained, the step length d is evaluated based on the 

approximate local curvature and chord tolerance  . The definition is shown in the 

following equations and Figure 4.72.   

         
4.96 

where 

                  
4.97 

  
         

                
 

4.98 

where,    and      are the current intersection point and previous intersection 

point, respectively,    and      are the unit marching direction vectors at the 

current and previous intersect points. At the first iteration, because    is the 

starting-point and there is as yet no      , therefore a specified step length is given 
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by the user.  

 

 

Figure 4.72 The approximation of step length 

 

Finally, the next approximate intersection point location for fuselage                    

and belly-fairing                    is calculated by solving following equation: 

       

   

, , , ,

, , , ,

, ,

, ,

, 1 ,

, 1 ,

0 0

, , , ,
'

'

', ,

f f i f f i g g i g g i

f f i f f i g g i g g i

f f i f f i

f f i f f i

f f f f g g g g

f i f i
f f g g

f i f i

g
f f f f

f f

F F G G

F F
T T

       

       

   

   

       
 

   
 

   

 


   

    

 

 

    
    

    
 

 
  
  

  
 





, 1 ,

, 1 ,'

0

0

0

i g i

g i g i

d



 





 
 
 
 
 
  

 
 
 














 
4.99 

where, at the starting-point:  
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After the approximate marching location is obtained, the Newton-Raphson iteration is 

employed to solve Equation 4.92 with initial condition               and              and 

converging to a local ‘exact’ intersection point. The Newton-Raphson iterative equation 

for this case is shown below: 
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where, the initial condition is defined as: 

                

                

                

                

4.102 

The Newton-Raphson equation is solved iteratively until                  

                          . Then, the intersection point at     is employed either 

                      or                      . 
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In order to increase the robustness and local convergence efficient, the Newton-Raphson 

iteration equation could be solved by fixing a parameter to be constant. For example, if 

             is fixed, the Newton-Raphson iteration equation is written as: 
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In the intersection line, the important points such as turning point and cusp point are 

crucial for geometry topology, see Figure 4.73.  

 

Figure 4.73 The important points on intersection line (Huang and Zhu 1997) 

 

In order to identify if there is an important point between the current intersection point 

     and the previous intersection point     the following conditions are applied:  
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If      
   

    or     
   

    or     
   

    or     
   

    is detected, there is a turning 

point or cusp point between      and   . If     
   

    and     
   

    and     
   

    

and     
   

    are all satisfied, there is a cusp point between      and   . In the regular 

aircraft component, the cusp conditions do not normally occur. If the turning point is 

detected between      and   , the interval should be subdivided gradually to search out 

the turning point. Finally, an NURBS curve representation is employed to fit the discrete 

intersection points. Therefore, NURBS is able to redistribute the number of points on 

intersection lines and maintain the geometry topology. This is significant for providing 

information for mesh deformation.  

 

The intersection calculation using marching strategy based on the Newton-Raphson 

iteration and direct CST local differential has been developed. The tests have shown that 

the error of the equation                                   for each intersection 

point is less than 10
-9

, which is much lower than the normal CAD toolbox. Figure 4.74 

shows the example of the fuselage and belly-fairing intersection line.  
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Figure 4.74 The example of intersection line between fuselage and belly-fairing 
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Chapter 5 Governing Equation and Numerical Solver 

 

As mentioned at the beginning of this thesis, with the development of computational 

capability, the CFD technique is playing an increasingly important role in engineering 

design and it is becoming a standard engineering tool in industry. In numerical 

optimisation, CFD is employed to calculate the objective and constraints values, such as 

lift, drag and momentum, for optimisation. 

 

In this thesis, the CFD solver is provided by DLR, so called ‘TAU’, which is an 

unstructured finite volume Navier-Stokes solver, which – will be only briefly introduced 

in this chapter. Since TAU has been widely used in industry and research and has been 

well validated (Gerhold et al. 1997; Rudnik et al. 2004; Kroll and Fassbender 2005), the 

comparison of numerical and experimental results will not be repeated here.  

 

For the aerodynamic design of aircraft under subsonic conditions, the fluid is assumed as 

a continuum in which the fluid quantities vary continuously from one point to another 

away from the shock wave, and the fluid is compressible where the density is variable 

rather than constant, and it is assumed to be Newtonian flow where the stress is 

proportion to local strain rate. This fluid is governed by Navier-Stokes equations. It will 

be introduced at first in this chapter.  

 

The physical domain is subdivided into finite control volumes by grids. The finite volume 

method is then applied to grid elements to discrete the governing equations in space, and 

marches in time. This will generate a system of numerical equations which can be solved 

with various numerical schemes. The central scheme in spatial discretisation and the 

implicit scheme in time discretisation will be introduced. One-equation turbulence model 

equation, Spalart-Allmaras, is employed in this work, and is also presented in this chapter. 
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5.1  Governing equation 

The Navier-Stokes equations are generally derived from three conversation laws, which 

are mass continuity, momentum and energy conservation, applied to an infinitesimally 

small fluid element. The details of the derivation of these equations have been presented 

in many literatures (Anderson 2007; White 2008), and therefore they will not be 

presented in this thesis. The full Navier-Stokes in conservation form is written as below: 

or in integral form  

where W is the conserved state vector 

  is the fluid density  u,v,w are the velocity component in x,y,z directions in Cartesian 

coordinates.   is the total energy per control volume and   is the integral form for a 

bounded domain with bound surface   .    and    are the convective and viscous flux 

tensors and can be written as below with respect to three directions: 

where   
 ,   

 ,   
  are the convective flux components in x,y,z directions in Cartesian 

coordinates and   
 ,    

 ,    
  are the viscous flux components in x,y,z directions in 

Cartesian coordinates.  

The details of convective and viscous fluxes are given below:  
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where p is the static pressure,     is the viscous stress tensor and q=(qx, qy, qz) is the heat 

flux vector. In addition, the Euler equations  are re-produced from the Navier-Stokes 

equation by neglecting the viscous terms .  

 

The total energy per control volume E, for an ideal gas, is defined as: 

where γ is the constant specific heat ratio and is defined by the relation of Cv and Cp 

which are the specific heats at constant volume and constant pressure, respectively:  

For air the constant γ is typically equal to 1.4.  

 

H is the total enthalpy and is expressed as: 

The viscous stresses, due to the fluid’s molecular viscosity, are defined as: 

  
  

 
 
 
 
 

  
   

     
   
    

 
 
 
 

                    
  

 
 
 
 
 

 
   
   
   

                  
 
 
 
 

 
5.6 

  
  

 
 
 
 
 

  
   
   

     
    

 
 
 
 

                    
  

 
 
 
 
 

 
   
   
   

                  
 
 
 
 

 
5.7 

2 2 2( )
1 2

p
E u v w




   


 

5.8 

/p vC C 
 5.9 

    
 

 
 

5.10 

      
  

  
   

  

  
 
  

  
 
  

  
  

5.11 

      
  

  
   

  

  
 
  

  
 
  

  
  

5.12 

      
  

  
   

  

  
 
  

  
 
  

  
  

5.13 



150 

 

Furthermore, the molecular viscosity coefficient   depends on the variation of air 

temperature T and is characterized by Sutherland’s law 

where T0 is the reference temperature in degrees K and the reference viscosity is         

                      for air. 

The viscosity   and second coefficient of viscosity   are related via the bulk viscosity 

coefficient which is 
 

 
   . This can be assumed to be zero so that 

The heat flux q is defined by the thermal conductivity relation (Fourier’s law) 

where   is the thermal conductivity coefficient. This can be expressed in terms of the 

Prandtl number    : 

because the ratio 
  

  
 is approximately constant for most gases.  The Prandtl number is 

taken as 0.72 for air at standard conditions, and is assumed to be constant everywhere.  
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To close the above equations, an equation of state is introduced. For the ideal gas, which 

neglects inter-molecular forces, the equation of state is written as: 

where R is the gas constant with, for air, a value of                  . 

 

5.2 Reynolds-averaged Navier-Stokes (RANS) simulation and turbulence model 

The Navier-Stokes equations embody sufficient physics to represent turbulence down to 

the smallest scales, at which dissipation to heat takes place. The equations can be solved 

to capture these turbulent motions, by means of direct numerical simulation (DNS). In 

this, it is necessary to resolve all scales of the turbulence in space and time. In order to 

discretise the governing equations sufficiently in space and time, the computational grid 

and time step must be fine enough. Although it does not employ any turbulence model 

and provides the most accurate numerical results, the computational cost is too expensive 

to be feasible for Reynolds numbers of industrial interest. Thus, a method which aims to 

reduce computational cost has been developed by time-averaging of the governing 

equations. This results in the Reynolds averaged Navier-Stokes equations (RANS) which 

is a practical method for solving the engineering problem.  

 

In the time averaging of the Navier-Stokes equations, the flow variables are decomposed 

into a mean component plus a fluctuating component and the equations are then 

statistically averaged over time to eliminate the fluctuating component. This averaging 

process results in a set of equations for the mean component that are of the same form as 

the original Navier-Stokes equations, but with the appearance of  additional terms, the the 

Reynolds stresses and heat fluxes, in the equations. The Reynolds stresses can then be 

expressed using various turbulence models. This modelling process has to represent the 

full effects of the turbulence on the flow, but cannot be fully universal and is thus likely 

to be a major source of inaccuracy in the ability of the RANS approach to represent 

complex turbulent flows. In the Tau code, the particular time averaging process used is 

Favre, or mass-weighted, averaging in order to better represent the compressibility in the 

RANS equations. 
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In the Favre averaging process, the conserved variable W is expressed as the sum of a 

steady average    and a fluctuating component     

where    is the vector of mass weighted time-averaged conserved quantities defined as: 

where    is the conventional statistically averaged density. By applying this mass 

weighted-averaging to the original Navier-Stokes equations, the Favre averaged Navier-

Stokes equations are obtained. These equations are identical to the 

 instantaneous Navier-Stokes equations, with instantaneous variables replaced by the 

averaged mean components, except for an additional two turbulence correlation terms.  

 

The first correlation term is in the momentum equations and is referred to as the 

Reynolds stress tensor: 

These are added to the molecular stresses in the momentum equations,  

The second correlation term is a turbulent heat flux which is added to the molecular heat 

flux   : 

In order to closure this system of equations, a mathematical model has to be developed to 

approximate these terms. Many RANS models are based on the Boussinesq eddy 

viscosity assumption (Boussinesq 1877). As a result, the Reynolds stress tensor is 

modelled as: 

where    is the turbulent viscosity, to be obtained from the turbulence model, and k is the 

turbulent kinetic energy.  

 

Similarly the turbulent heat flux appearing in the energy equation is approximated as 
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with turbulent thermal conductivity    which is normally defined as:  

where     is the turbulent Prandtl number, usually assumed to be a constant value of 0.9, 

although in reality it may have a variation through the boundary layer. 

 

Therefore, the purpose of the turbulence model is to model    and k. In one-equation 

models such as Spalart-Allmaras (Spalart and Allmaras 1992), a transport equation is 

employed to model eddy-viscosity and the kinetic energy is ignored. In two-equation 

models, such as the     model (Wilcox 1998), two transport equations are used to 

approximate k and the second turbulence variable representing the turbulent length scale 

or dissipation. The turbulent viscosity is then derived from these two transported 

variables. The Spalart-Allmaras model has been widely used in aerodynamic external 

flow simulation, having good performance in the case of external aerodynamic flow with 

small and mild separation. Because the problem in this thesis will be mainly concerned 

with aerofoil/wing design under cruise conditions, no large separation will be presented. 

Therefore, the Spalart-Allmaras model is employed in most cases.  

 

5.2.1 Spalart-Allmaras Turbulence Model 

 

The Spalart-Allmaras method employs a one-equation model which is a single transport 

equation to solve the turbulence viscosity μT. Spalart and Allmaras developed the 

algebraic model which removed the incompleteness and the turbulence viscosity is based 

on k. Thus, the Spalart-Allmaras model is simpler than the two-equation model, and its 

performance is better than the other one-equation model. In the Spalart-Allmaras model, 

the turbulence viscosity is calculated by: 

where  
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Then the governing equation can be gained: 

Where   is molecular kinematic viscosity, the other relative formulas are given by: 

where     
 

 
 
   

   
 

   

   
  is the rotation tensor and d is the minimal distance to the body 

surface. 

 

Furthermore, the close coefficients are also given: 

The Spalart-Allmaras method is designed for aerodynamics flow and especially it has a 

good performance for flow around an aerofoil and wing. It can predict the separation 

region more accurately than the Baldwin-Lomax model. However, generally it is only 

applied to the homogeneous flow without irrotational mean straining.  

 

5.3  Finite volume method 

The finite volume method is the most versatile discretisation method employed in many 

CFD solvers. There are two steps to implement this method. The first step is to divide the 

computation domain into a large number of small control volumes  . No grid 
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transformation is required in the finite volume method. Therefore, it could be employed 

to treat complex geometries.  

 

The next step is to apply the integral form of the governing equation to each control 

volume  . As mentioned in section 5.1, the integral form of the governing equation is 

derived from the conservation law which states that the rate of change of the flow 

quantity within the control volume must be equal to the flux of each through the 

boundaries of the control volume . For the momentum and energy equations these fluxes 

include forces acting on the boundaries. For the control volume i in Figure 5.1, the finite 

volume discretisation of the Navier-Stokes equations takes the form: 

where the vector of conserved variables W is assumed to be uniform over the control 

volume i with value   . 

 

Figure 5.1 The control volume i in the finite volume method 

 

The residual Ri is evaluated as the sum of all the fluxes across the boundary of the control 

volume i: 

where nfaces is the number of faces surrounding the control volume i and    
  and    

  are 

the inviscid and viscous fluxes between cells i and j, as shown in Figure 5.2. 
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Figure 5.2 The flux between cells i and j  

 

In this thesis, a second order method is considered. The flux between cells i and j can be 

approximated by:  

 

where     is the face normal between cell i and j. 

 

However, this simple second order scheme is not numerically stable (Jameson 1995; 

Dwight 2006). Therefore, it is necessary to add some artificial dissipation, or the flux 

could be approximated by Riemann solver (van Leer 1979; Roe 1986; Toro 2009). In this 

work, the artificial dissipation is mainly employed and presented in the next section. 

 

Furthermore, the computational discretisation grid of the TAU solver is generated by the 

software SOLAR which is developed by the Aircraft Research Association (ARA) 

(Leatham et al. 2000). It is an unstructured mesh and contains grid topology of tetrahedra, 

triangular prisms, pyramids and hexahedra. The grid generated by SOLAR is called 

primary grid in TAU. TAU uses the cell-vertex finite volume method, where the flow 

variables are stored on the nodal point of the primary grid. The control volume is then 

generated surrounding the nodal point of the primary grid. This results in a secondary 

grid; which is called daul grid, as shown in Figure 5.3.  
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Figure 5.3 The cell-vertex finite volume: black nodal points and grey lines form the 

primary grid, black lines form the secondary grid 

 

One of the advantages of the finite volume method is the excellent performance for 

discontinuities especially in flows near or above sonic speed since the flow quantity 

discontinuity is allowed at the interface. Therefore, the flow discontinuity phenomena, 

such as shock, could be addressed naturally in the finite volume method. However, for 

normal 2
nd

 or higher order accurate methods in space, the order may be reduced near 

shocks by introducing limiters to avoid solution oscillations and numerical convergence 

issues. 

 

5.4 Central convective fluxes 

As mentioned above, artificial dissipation is required to achieve a stable numerical 

scheme. Therefore, Equation 5.39 is rewritten with an artificial dissipation term: 

where      is the artificial dissipation term.  

 

The TAU solver employs the blended 2
nd

 and 4
th

 order artificial dissipation which is the 

well-known Jameson-Schmitt-Turkel (JST) scheme (Jameson et al. 1981) In this scheme, 

a 4
th

 order dissipation is used across the entire main flow field, and a 2
nd

 order dissipation 

is used near the shock region instead of 4
th

 order since 4
th

 order is not stable at a 

discontinuity. The discontinuity is detected by a pressure gradient.  

 

The scalar artificial dissipation is presented here, which is defined as:  
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where          and          control the weights of two dissipations, which are defined as: 

where         and         are the switchers for the shock,        
  and        

  control the level of 

dissipation independent of the number of surrounding cells and      is to control the 

amount of dissipation to be increased when it crosses the larger faces of cells.  

 

Furthermore,        
  and        

  are presented as below to remove dependence on the 

number of faces of the control cell:  

where    is the number of faces of the control cell i.  

        defined as:  

   
   

 is defined as  

where    
  is the maximum eigenvalue between the face of cells i and j , which is defined 

as:  
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where  (
    

 

  
) is the eigenvector of 

    
 

  
, and   

    is the sum of the maximum convective 

eigenvalues over all faces of control volume i . Therefore, the value of      changes with 

respect to the cell size and adjusts the amount of dissipation. 

 

The switchers         and         are defined as:  

where      and      are the constant values, which are normally 0.5 and 1/64 respectively. 

   is to approximate the pressure gradient, which is defined as:  

where  

Finally,       is the 3
rd

 difference and defined as:  

The construction of the central convective flux has been presented. Furthermore, the 

viscous flux is not as problematic as the convective flux since it is not related to the 

stability problem. Therefore, artificial dissipation is rarely used in diffusion terms. The 

details of construction of the viscous flux and further information on construction of flux 

for turbulence model of TAU can be found in the Dwight’s thesis Chapters 2.8 and 2.11 

(2006). 
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5.5 Construction of gradient 

The gradient of the flow variables is required in order to construct the viscous flux and 

turbulence sources. The TAU solver offers two ways to obtain the gradient, which are 

Green-Gauss and least square methods. The most efficient way is use the Green-Gauss 

method which is based on the Gauss integral theorem:  

Therefore, the gradient at the control cell i in finite volume is given by 

The least square method was first proposed by Anderson and Bonhaus (1994). Different 

from the Green-Gauss method, the least square method employs a Taylor expansion 

from a local point to its surrounding point rather than the metric terms as face normals or 

volumes of a local control volume in Green-Gauss methods. Consider an arbitrary 

function   expressed by a Taylor expansion at a local point using its neighboring point:  

For a control cell i, the Taylor expansion could be written for every point surrounding 

cell i (see Figure 5.4). Therefore, a system of linear equations can be derived from all 

neighbouring points.  
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Figure 5.4 Surrounding points used for the least square algorithm 

 

The system of linear equations is  

The linear equations are then rewritten as:  

where  

W is the matrix with a weighting factor which is related to the geometry and allows the 

computation at very high cell aspect ratios.  
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In order to solve this linear equation, QR decomposition strategy is employed with a 

Gram-Schmidt orthogonalization. Q is an orthogonal matrix        and R is an upper 

triangular matrix R     . The process is presented below: 

The computation of gradients with the least-square approach has shown much more 

accurate gradients in comparison to the Green-Gauss theorem. In addition, it achieves 

better robustness and more accurate solutions than the Green-Gauss approach. This viable 

algorithm reconstructs linear functions exactly on any type of mixed grids. 

 

5.6 Temporal discretisation 

In this thesis, all cases are the time-independent steady state case. For the steady state 

condition, the time rate of the conservative change is zero: 

Therefore, the flow residual         . However, the practical and efficient way is to 

employ the corresponding time-dependent problem with fictitious pseudo-time   to drive 

the solution towards a steady state convergence solution: 

The temporal discretisation of Equation 5.60 could be: 

where    is a time step. This could result in a simple explicit method where the residual is 

only dependent on the last time step value. The update of the next time step is:  
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Furthermore, the low-storage K-step Runge-Kutta scheme could be employed to further 

discrete the temporal space and it is available in TAU. However, for numerical stability 

reasons, the time step    must be smaller than unity for the one-dimensional convection 

equation (Le Moigne 2002). For the viscous and turbulence cases, the CFL number has to 

be even smaller. This results in the explicit method having less efficiency. Therefore, the 

implicit method is desired.  

 

In the implicit method, Equation 5.60 is discretised with respect to the future time level: 

The implicit scheme is more complicated than the explicit scheme since Equation 5.63 is 

a non-linear algebraic system. In order to solve it, the residual vector needs to be 

linearised around its time level n+1: 

where the term 
  

  
   is:  

Applying Equation 5.65 into Equation 5.64 and substituting it into the right hand side of 

Equation 5.63 results in the establishment of a linear algebraic system: 

 

Therefore, the aim of the implicit method is to solve this linear algebraic system to obtain 

    and update it to the next time level            until the solution converges. 
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     is the left hand side (LHS) of the linear system which contains a Jacobian matrix 

      

  
. The right hand side (RHS) contains all elements of the spatial discretisation. In 

the exact solution, the flow residual will be zero and hence     will be zero and 

independent of     . Therefore, the matrix      has no effect on the converged 

solution and can be solved by various methods. In the TAU solver, the LHS is solved by 

the Lower-Upper Symmetric-Gauss-Seidel (LUSGS) method. The details of LUSGS can 

be found in Yoon and Jameson (1988) and Dwight’s thesis (2006) Chapter 3.2.1. The 

construction of the Jacobian matrix is also key to the implicit method. Because the 

structure of the Jacobian matrix is complex and not related to this thesis work, the details 

of its construction, which includes a Jacobian of a convective, diffusion, artificial 

dissipation and turbulence model, can be found in Dwight’s thesis (2006). 
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Chapter 6 Discrete Adjoint Approach and Numerical 

Optimisation 
 

The parameterisation methods and CFD numerical solver have been presented in 

previous chapters; in this chapter the numerical optimisation methods are presented and 

studied.  

 

Numerical optimisation methods can be classified as gradient-based and gradient-free. 

The gradient-free methods obviously do not require any gradient information of the 

objective function and normally purely depend on the evaluation of the value of the 

objective function. They are also divided into local and global. The typical local gradient-

free methods are the simplex and subplex methods (Nelder and Mead 1965; Rowan 1990). 

Numerical optimisation builds a simplex model which is a convex hull of n+1 points (n is 

the dimension of design space). The algorithm moves the simplex model through design 

space and automatically shrinks the size of the simplex model. This type of method has 

been successfully used in aerodynamic optimisation, for example in the work done by 

Sturdza (2007) and Widhalm and Rozermier (2008). However, this type of method 

requires evaluating at least n times the value of the objective function to build up the 

simplex model. Therefore, it is only efficient for a case with a small number of design 

variables and is limited to use for 3D large cases.  

 

Global gradient-free methods, for example the response surface method, genetic 

algorithm and particle swarm optimisation method, have been widely used in 

aerodynamic optimisation. The genetic algorithm and particle swarm optimisation 

methods are the typical heuristics methods which have been widely employed in 

engineering optimisation problems.  

 

The genetic algorithm is one of the evolutionary algorithms which is completely different 

from the gradient-based methods. This method was first proposed in the 1950s and 

applied to computer-aided simulation to research natural evolutionary and genetic 

processes; it was later applied to the function optimisation area. In genetic algorithm, the 
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optimisation employs the theory of natural selection. Each design variable is represented 

as a chromosome to identify an individual as a design. The optimisation starts from a 

large number of individuals (populations) which are randomly distributed in design space. 

The fitness value of each individual can be calculated based on the objective function at 

each generation. The reproduction is then carried out with a selection of the parents based 

on the fitness value. The individual’s high fitness value can be selected with high 

probability using the roulette wheel rule. Afterwards, the selected individuals can be 

made a pair as the parents. The reproduction of new individuals can be then carried out 

using crossover and mutation of chromosomes between parents. The all new individuals 

are formed and replace the old individuals as the new generation. The process of genetic 

algorithm is running as a cycle, and the process will converge towards an individual with 

high fitness value after many generations. Although the genetic algorithm does not 

require any calculation of gradient, the efficiency of optimisation depends on the number 

of initial populations. For a case with a large number of design variables, more 

individuals are needed. In aerodynamic optimisation using high-fidelity CFD, each 

individual indicates one CFD calculation and this could make computation unaffordable 

when the number of populations is too high. Therefore, this method is mainly used in 

two-dimensional cases or for optimisation using a low-fidelity and quick CFD tool.   

 

In order to reduce the computational cost, the surrogate model methods, such as response 

surface model and kriging model, are preferred, which could represent the entire design 

space. Once the surrogate model is built up, the standard global optimisation technique 

can be employed to search the optimal solution on the surrogate design space. This 

technique contains two steps. The first step, called ‘design of experiment’, is to sample 

the design space. The Latin hyper cube algorithm is normally selected to determine the 

location of samples in the design space under the required number of sample points 

(Forrester et al. 2006). The objective function is then evaluated at each sample point. The 

second step is to build up the surrogate model with respect to the sample points. The 

construction of the surrogate model is similar to data fitting interpolation, and many 

techniques could be applied. The most common method is to employ a quadratic surface 

which is calculated by the least-squares method through all sample points. The more 
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advanced technique is to use the kriging model which is developed based on the field of 

spatial statistics and geostatistics (Forrester et al. 2008). It is much better than the 

polynomial-based interpolation and is able to handle the sample data with stochastic 

processes (Jeong et al. 2005).  

 

These methods have been widely used in aerodynamic optimisation. However, the quality 

of the surrogate model depends on the number of sample points: for a case with hundreds 

of design variables, a huge number of sample points are required and this could cause 

large computational expense and difficulties in building up the model. Therefore, the 

methods have been mainly used in two-dimensional cases or cases with a number of 

design variables not exceeding 40. There are a number of works using the surrogate 

model in the literature, for example Madsen et al. (2000), Simpson et al (2001), Jouhaud 

et al. (2007) and Kanazaki et al. (2006). Obayashi et al. (2005) have successfully 

employed the kriging model for a simple 3D wing optimisation; however, the number of 

design variables is only 35. 

 

The gradient-based methods, such as steepest descent and quasi-Newton, require the 

sensitivity derivatives of the objective function. In these methods, the optimisers are able 

to reduce the objective function value by searching the design space along the gradient 

information. Compared with the other optimisation methods presented above, the 

gradient-based optimisation method is the only efficient and feasible method for large 

dimensional optimisation cases, although it only guarantees to find a local optimal 

solution. However, in aerodynamic optimisation, the calculation of the sensitivity 

derivatives for aerodynamic coefficients is a challenge. Therefore, the common methods 

for calculating sensitivities are first briefly reviewed in the first sub-section of this 

chapter, and the discrete adjoint method is then presented. At the end, the mesh 

deformation techniques and optimisation framework are introduced. 

 

6.1 Common methods to calculate sensitivities 

As presented in the introduction, the calculation of gradient       for the objective 

function I with design variables D is the key for employing a gradient-based optimisation 
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method. In Le Moigne’s thesis (2002), an excellent review of the calculation of gradient 

has been provided.   

 

There are four main ways to calculate the gradient, which are the finite-difference method, 

complex variable method, automatic differentiation method and direct differentiation 

method. The simplest method to calculate the gradient is the finite-difference method, 

which is derived from the basic numerical method for calculating the derivatives. The 

main forms of this method are the forward or backward differencing scheme which is 

defined as: 

or central differencing scheme which is defined as: 

where    is the perturbation step for the k-th design variable, ‘+’ is for forward difference 

and ‘-’ is for backward difference.  

 

The finite-difference method could be easily set up since it only requires the value of the 

objective function at design variable points and each perturbed design variable location. 

Therefore, it does not require any additional solver or modified CFD solver. In the early 

research, it was employed for aerodynamic optimisation. More details can be found in 

Hicks et al. (1974) and Hicks and Vanderplaats (1975).  

 

However, there are two main shortcomings of finite-difference methods. The first is that 

the method requires calculating the value of the objective function at every perturbed 

design variable location. This means, for the forward or backward differencing scheme, it 

needs run a number of design variables (NDV)+1 times flow simulation to obtain the 

gradient of the objective function. For a central differencing scheme, it requires 2xNDV. 

With the current computational resource, each flow simulation takes up to a few hours for 

large 3D cases. Thus, the finite-difference methods are very time consuming. The second 

main shortcoming is the issue of perturbation step size. As we know already in 
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mathematics, the finite-difference method requires a small perturbation set up size since a 

large perturbation step will bring in an error of gradient. However, the small step could 

cause a round-off error. Kim et al. (1999), Hou et al. (1995) and Green et al. (1993) 

indicated that the perturbation step size is linked to the convergence criterion of the flow 

solution. It means the flow solver must converge at each perturbed design location and be 

lower than the perturbation step size. It would be unaffordable for the high-fidelity flow 

solver. Moreover, although there are many shortcomings, the finite-difference methods 

are still employed for aerodynamic optimisation. For example, Destarac and Reneaux 

(1993) and Reneaux (1984) employed the finite-difference method to evaluate the 

gradient based on the low-fidelity flow solver. Eyi et al. (1996; 1997) used the finite-

difference method for calculating the gradient based on the Navier-Stokes flow solver. 

Cliff et al. (2002) employed the finite-difference method for aerodynamic optimisation 

based on the Euler equation.  

 

Due to the drawbacks of the finite-difference method, it is hard to be employed in 

optimisation directly. Therefore, it is normally employed to check the accuracy of other 

methods. Because the exact sensitivities are almost impossible to be obtained for a 

complex case, the finite-difference method could be considered as the exact solution.  

 

The second method to calculate the gradient is called the complex variable method. 

Similar to the finite-difference method, it was derived from the Taylor series expansion. 

The form of the complex variable method is written as: 

where    is the perturbation step and Im[] is the imaginary part of this function.  

 

In this method, the gradient is independent of the unperturbed function value      . A 

small incremental step is still required to be used for increasing the accuracy; however, 

the requirement of convergence of the flow solution is not as much as in the finite-

difference method. However, it still requires the NDV flow solution to calculate the 

gradient. In addition, the flow solver must be modified to allow for using complex 
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variables, which is a very difficult development and the complex variables flow solver 

could take twice the memory and computing time as the original flow solver. Hence, it 

could be much slower than the forward or backward finite-difference method. In 

Nadarajah and Jameson’s (2001) work, they employed complex variable methods to 

check the accuracy of other methods.  

 

Keane and Nair (2005), Mohammadi and Pironneau (2001) and Barthelemy and Hall 

(1992) presented another way for the automatic differentiation method. The basic idea of 

automatic differentiation is that a computer program implementing a numerical algorithm 

can be decomposed into a long sequence of a limited set of elementary arithmetic 

operations. It then applies the chain rule of differentiation to the original source code to 

create an extra computer program which calculates the gradients of the outputs. The 

automatic differentiation methods have two main modes, which are forward mode and 

reverse mode. The forward mode calculates the differentiation starting from the input to 

the output. The reverse mode works in the reverse way to the forward mode, and could be 

faster for a small number of outputs. More details can be found in Keane and Nair (2005) 

and Gauger et al. (2007). It requires some modification of the initial program by inserting 

an automatic differentiation code. There are various automatic differentiation codes 

which can be found on-line. The common codes are ADIFOR, TAMC, DAFOR, GRESS, 

Odysse and PADRE2 (Keane and Nair (2005) p. 197). Furthermore, the automatic 

differentiation methods are normally used for calculating the derivatives which are 

required in the direct differentiation methods. This could help to maintain the efficiency 

of the direct differentiation methods while reducing the cost of calculating complicated 

derivatives by hand . Detailed information about this can be found in Hou et al. (1995), 

Korivi et al. (1994) and Oloso and Taylor (1997).  

 

Because the above methods to calculate the sensitivity derivatives are not normally 

feasible, other methods, which are called direct differentiation methods, were proposed 

by Sobieszczanski-Sobieski (1986). The direct differentiation method aims to obtain the 

sensitivity derivatives by analytically deriving them from differentiation of the governing 

equation.  
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The detailed definition of direct differentiation can be found in Le Moigne’s thesis (2002), 

Keane and Nair (2005) and Dwight (2006). For the aerodynamic numerical optimisation, 

the objective function could be written as: 

 

where W is the flow variable, X indicates the grid variable and D is the design variable. 

Because I, W and X depend on the design variable D, the sensitivity derivatives of the 

objective function I could be written as: 

In Equation 6.4, the calculation of 
  

  
, 
  

  
 and 

  

  
 is relatively simple and depends on the 

class of the objective function.  
  

  
 is the grid sensitivity and could be solved in a finite 

difference or analytical way. The sensitivities of flow field 
  

  
 term is difficult to solve.  

 

In Chapter 5, the governing equation and numerical solver have been presented. The flow 

residual is related to the flow variables, grid and design variables. For a steady state flow, 

the flow residual is equal to zero: 

The derivatives of the governing equation can be derived with respect to the design 

variables: 

 

Equation 6.7 could then be written as: 

Therefore, the 
  

  
 term could be solved based on Equation 6.8. Furthermore, the right 

hand side of Equation 6.8 could be simplified. Depending on the type of the design 
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variables, the grid sensitivity 
  

  
 could be zero when the design variables are flow field 

parameters, such as Mach number or far-field angle of attack, and the  
  

  
 could be zero 

when the design variables are the shape parameters. On the left side of Equation 6.8, the 

  

  
 term is the Jacobian matrix of the flow field. It could be taken directly from the 

implicit flow solver. Practically, the LHS could be solved only once, but the RHS has to 

be constructed for each design variable. This means that this linear system has to be 

solved NDV times.   

 

Although the direct differentiation requires an exact Jacobian matrix solution and most 

flow solvers provide the approximate version, the Jacobian matrix provided by most flow 

solvers still could be employed for the sensitivities of the direct differentiation method. 

For the two-dimensional Euler equation, direct inversion of the Jacobian matrix is 

possible. So Equation 6.8 could then be solved quickly. However, it is hard to converge 

for the three-dimensional case or viscous flow. The calculation of the Jacobian matrix is 

complex and requires much memory. Finally, Equation 6.8 requires treating the boundary 

condition if it solves accurate sensitivity derivatives. Moreover, if the flow governing 

equation is numerically discretised before it is differentiated, the direct differentiation is a 

so called discrete approach. In the other way, it is called a continuous approach.  

 

Due to the difficulty of construction of an exact Jacobian matrix, the direct differentiation 

method is mainly employed in the Euler problem, especially on an unstructured mesh. 

This method was employed in the early aerodynamic optimisation research. In the 

references Baysal and Eleshaky (1992), Korivi et al. (1994) and Taylor et al. (1992), the 

hand-differentiating method has been introduced. Oloso and Taylor (1997) and Clyde et 

al. (1999) introduced the direct differentiation method using automatic differentiation 

which has been presented above. Svenningsen et al. (1996) and Eleshaky and Baysal 

(1992) presented some examples for viscous laminar flow.  

 

Because the calculation of sensitivity derivatives using the direct differentiation method 

still depends on the number of design variables, it is computationally expensive for a 
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large number of design variables. Therefore, a method with computational cost reduction 

is desirable, and adjoint methods have been developed. 

 

6.2  Discrete adjoint methods 

Adjoint methods are similar to the direct differentiation method and apply control theory 

to the aerodynamic optimisation process. They were first proposed by Pironneau (1973) 

in Stokes flow. Jameson (1988) successfully developed this methodology to the Euler 

equation. An excellent presentation of adjoint methods can be found in Jameson (2004) 

and Le Moigne (2002). As above mentioned, the residual of the governing equation is 

zero. The basic idea of adjoint methods is to multiply the variation of the governing 

equation by a Lagrange multiplier  , and add it to the variation of objective function, 

Equation 6.8.  

 

6.2.1 Discrete adjoint equation 

Therefore, a new equation with adjoint operator   is then obtained as: 

The derivative of this new equation is:  

It could be rewritten as: 

If an appropriate adjoint operator which satisfies the adjoint equation 6.12 could be found, 

the Equation 6.11 could be simplified. 

Similar to the direct differentiation method presented in the previous subsection, the 
  

  
 

term is the Jacobian matrix of the flow field and the calculation of 
  

  
 and  

  

  
 for each 
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design variable could be simplified depending on the type of design variable. The 

computational cost could be apparently decreased. 

For the shape design parameters, 
  

  
 and  

  

  
 are zero. The function is then written as: 

It only requires to solve the adjoint equation once to obtain the sensitivity derivatives for 

each objective function. Thus, the calculation of the sensitivity derivatives of the 

objective function could be independent of the number of design variables. Similar to the 

direct differentiation method, grid sensitivities 
  

  
 could be calculated analytically or 

using finite difference, and which are:  

The whole system for sensitivity derivatives could only be solved NCON+1 times, where 

NCON is number of constraints which includes aerodynamic coefficients. For the 

aerodynamic optimisation, most constraints could be provided from the flow solver. Thus, 

the adjoint methods are more efficient than the direct differentiation method.  

 

Furthermore, they are similar to the direct differentiation method. If the flow governing 

equation is discretised before it is differentiated, the method is the so called discrete 

adjoint method. In the reversed way, the method is called continuous adjoint method. The 

adjoint equation 6.12 is shown in discrete form because the flow governing equation is 

already discretised in flow solver. The continuous adjoint equation is a bit more complex 

than the discrete adjoint method since it requires more theoretical derivation. The 

continuous adjoint method for aerodynamic optimisation was first proposed by Pironneau 

(1973; 1974). However, the first successful application was done by Jameson (1988). For 

the theoretical analysis, both the discrete adjoint method and the continuous adjoint 
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method should provide the same results. The development of the discrete adjoint solver is 

relatively simpler than for the continuous adjoint method since the Jacobian matrix term 

could be taken as 
  

  
 from the flow solver. However, the discrete adjoint solver requires 

keeping numerical consistency. For example, if the artificial dissipation and turbulence 

viscous term are employed in the flow solver, the Jacobian matrix should include these 

terms. However, the continuous adjoint solver has no restricted consistency requirement. 

 

In Le Moigne’s (2002) thesis, a comparison of continuous and discrete adjoint methods 

was made. He mentioned that Nadarajah and Jameson (2000) and Nadarajah and Jameson. 

(2001) had compared the effect of both methods on performance and accuracy of the 

sensitivity derivatives on an unstructured grid. They found that both methods could 

provide similar results. The discrete method could provide a better result than the 

continuous method since the discrete method is able to provide the exact numerical 

gradient. In addition, the continuous method could be improved by increasing the mesh 

size. The discrete method requires much more memory than the continuous method. 

Furthermore, Giles and Pierce (1998) presented that the continuous method could suffer a 

problem for the shock wave case. However, neither of the two methods has apparent 

advantages compared to the other, which is concluded by Giles and Pierce (2000). Thus, 

the choice between discrete and continuous methods is more dependent on personal 

preference and tool availability.  

 

The adjoint methods nowadays have become a mature tool for aerodynamic optimisation. 

There are some enormous works for aerodynamic optimisation which have already 

employed the adjoint methods. Due to the difficulty with the viscous term in adjoint 

methods, especially for the continuous method, continuous adjoint methods were applied 

to aerodynamic optimisation mainly based on the Euler equation, for example in  

Jameson (1988), Jameson (2003; 2004), Reuther and Jameson. (1995), Giles and Pierce 

(1998), Iollo et al. (2001) and Brezillon and Gauger (2004). In recent years, the 

continuous adjoint method for viscous laminar flow and turbulent flow has been 

developed (Nguyen 2008; Anderson and Venkatakrishnan 1997; Anderson and Bonhaus 
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1997; Kim et al. 2002; Soto et al. 2004; Leoviriyakit et al. 2003; Widhalm and 

Ronzheimer 2008).  

 

As the above have mentioned that the discrete adjoint method is simple to be developed 

compared to the continuous adjoint method, especially when considering viscous flow 

and shock wave, many researchers prefer to use the discrete adjoint method in their work. 

Qin et al (2004) have successfully performed aerodynamic optimisation for blended wing 

body configuration based on discrete adjoint solver with full turbulence model. Other 

works for the discrete adjoint method could be found in Vitturi and Beux (2006), Kim et 

al. (2001), Kim and Sasaki (2001), Nielsen and Anderson (2002), Nielson and Kleb 

(2006), Thomas et al. (2005), Mavriplis (2007), Le Moigne and Qin (2004), Wong et al. 

(2007) and Castonguay and Nadarajah (2007). All these works have shown that both 

methods could provide good results for aerofoil, wing or wing body aerodynamic 

optimisation. Because the development of the adjoint solver is not part of this thesis work, 

the details of construction of the Jacobian matrix for the adjoint solver and construction 

of RHS of adjoint equation can be found in Dwight (2006) and Le Moigne (2002).  

 

In this thesis, TAU offers a discrete adjoint solver. It is solved by an Incomplete Lower-

Upper GMRES algorithm (Saad and Schultz 1986; Jameson and Yoon 1987; Sharov et al. 

2000; Saad 2003). Therefore, the discrete adjoint solver is employed in this thesis 

(Brezillon and Dwight 2005; Brezillon et al. 2012). The TAU adjoint solver provides the 

discrete adjoint approach with a full turbulence model (one equation SA model) and 

laminar viscous flow. The validation of the TAU adjoint solver has been made by 

Widhalm et al. (2010) through comparing the gradient obtained by finite-difference, 

laminar viscous adjoint and full turbulence adjoint methods. The results showed that the 

gradient obtained by the full turbulence adjoint solver matches excellently with the finite-

difference method. The gradient of lift calculated by laminar viscous adjoint method is 

matched with the full turbulence adjoint solver; however, the gradient of drag is different. 

This means that the adjoint solver with the full turbulence model is essential for accuracy 

of gradient. This point needs to be borne in mind.  
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6.2.2 Discrete adjoint solver with mesh deformation 

As presented in subsection 6.2.1, the grid sensitivities 
  

  
 could be calculated by finite 

difference or analytically. Le Moigne (2002) shows the grid sensitivities for algebraic 

structured mesh deformation. However, the analytical solution of entire grid sensitivities 

would be hard to obtain for an unstructured mesh deformation algorithm such as spring 

analogy. Therefore, the finite-difference method is required. However, the mesh 

deformation could also be time consuming. An additional issue, which is the same with 

any finite-difference approach, is that it is hard to determine the perturbation step size to 

obtain accurate sensitivities. Therefore, Nielsen and Park (2005) proposed to employ 

another adjoint equation to eliminate the grid sensitivities. Therefore, the objective 

function     X ,I I W D D D ，  will be subject to:  

where T is the residual vector of dependency of mesh coordinates on design parameters 

(the mesh deformation function).  

Then, the two residual functions are added into the objective function with two adjoint 

operators       and      : 

The derivative of Equation 6.17 is:  

This is then rewritten as:  

Therefore, if appropriate       and       have been found to satisfy the following 

equations, we have: 
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After solving Equations 6.20 and 6.21, the derivative of the objective function could be 

written as:  

For the shape design parameters, the terms 
  

  
 and  

  

  
 are zero. Therefore, the derivative 

is: 

Therefore, the derivatives will be dependent on the mesh adjoint operator solved by 

Equations 6.21 and 6.22 and 
  

  
. For the       , the spring analogy or linear elasticity 

would be considered (Dwight 2009; Illic et al. 2012). The simplified form of the 

deformation is then written as: 

where K is the stiffness matrix of the mesh deformation system,    and    indicate 

surface mesh points and volume mesh points respectively.  

Therefore, the derivatives in Equations 6.21 and 6.23 are corresponding to:  

Therefore, the mesh adjoint        is related to the sensitivities of the objective function 

on the surface. The derivative of the objective function then depends on the production of  

      and the surface sensitivities with respect to the design variables 
   

  
. 
   

  
 that have 

been presented in Chapter 2. This approach has been implemented in the TAU 

development version (Widhalm et al. 2010; Ilic et al. 2012). Figure 6.1 and 6.2 show the 

vector of       over the surface of an RAE 2822 aerofoil solved under Mach 0.73 with 

the SA turbulence model. Figure 6.3 is the pressure distribution of this aerofoil for 

comparison. 
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Figure 6.1 The vector of       over the surface of RAE 2822 aerofoil for drag 

 

Figure 6.2 The vector of       over the surface of RAE 2822 aerofoil for lift 
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Figure 6.3 The pressure distribution of RAE 2822 

 

Figure 6.1 and 6.2 imply that if the surface points move along the vector direction, the 

value of the objective function will be increased. In the shock region, it clearly shows the 

gradient changed in drag and lift. Therefore, this approach could also be employed for 

guidance for the designer to identify the key region on the surface which is needs to be 

modified. A quick gradient validation has been performed by comparing the sensitivities 

obtained by the finite-difference method, adjoint with grid sensitivities using finite 

difference method, which is denoted as ‘Volgrad’, and the mesh adjoint method, which is 

denoted as ‘Surfgrad’. The adjoint method with frozen turbulence viscous, that is keeping 

the turbulent viscosity constant, is also tested. The results are shown in Figure 6.4 and 6.5. 
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Figure 6.4 Validation of gradient of Cd for RAE 2822 using CST 7
th

 order 

 

Figure 6.5 Validation of gradient of Cl for RAE 2822 using CST 7
th

 order 
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The comparison results firstly show that the gradients obtained by the adjoint method 

with full turbulence model are much closer to the finite difference results. However, there 

are slight errors in the first two parameters. These may be caused by perturbation step 

size and flow solver convergence in the finite difference method. Hence, the gradients 

obtained by full turbulence adjoint are considered as accurate. The gradient obtained by 

the frozen turbulence model is very different from the finite difference case; the signs of 

the gradient of some parameters are even opposite to finite difference results. This 

illustrated that the turbulence model could significantly affect the accuracy of gradient of 

adjoint methods. Therefore, in this thesis, all adjoint solvers must use the full turbulence 

model. 

 

Secondly, the results illustrate that Volgrad and Surfgrad in general have good agreement. 

This proves that the adjoint method with mesh deformation adjoint is able to provide 

corrected gradient without using volume mesh point sensitivities. There is a slight 

difference at the 17
th

 parameter, which is the trailing edge thickness. For this parameter 

Surfgrad is closer to the finite difference result than Volgrad. This error on Volgrad may 

because of the perturbation step size of the finite difference method in mesh deformation. 

This demonstrates that the gradient obtained by Surfgrad would be even more accurate 

than the Volgrad method, because Surfgrad could avoid the error occurring in the finite 

difference method from round-off error and step size uncertainty. Therefore, the Surfgrad 

method is preferred in this thesis when the surface mesh sensitivities could be obtained 

inexpensively.  

 

6.3  Numerical optimisation 

The calculation of gradient of the aerodynamic objective has been reviewed and studied 

in the above sections. In gradient optimisation, once the gradient has been obtained the 

search direction in the design space can be given and the design variable can be then 

updated through numerical optimiser. In this section, the non-linear gradient based 

optimisation approach is presented.  

 

An unconstrained optimisation could be presented as:  
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where x is the design variable vector  

The most gradient optimisation methods use the line search strategy (Nocedal and Wright 

2006) in which the algorithm finds a direction    and searches along this direction from 

the current iteration    to the next iteration with lower objective function value. The 

update of the design variables is: 

where    is the search direction in the design space and    is a coefficient which is to 

control the step size.  

The search direction could be evaluated using a zero-order method which is only based 

on the objective function value. This method is not efficient since it requires many 

evaluations of the objective function. A more efficient method is based on the gradient of 

the objective function      , which is a first-order method. The steepest descent method 

is a kind of first order method and has been used in aerodynamic optimisation, in which 

the search direction is: 

In order to further improve the efficiency of optimisation, a second-order method could 

be used such as quasi-Newton. In this method, the objective function information will be 

employed to construct a local model function around   . The local model is restricted in 

some region around   . In the other words, the search direction will be approximated by 

solving a sub-problem. The typical quasi-Newton method is sequential quadratic 

programming (SQP). In SQP optimisation, the search direction is approximated by 

solving a sub-problem with a quadratic model. In addition, SQP optimisation is able to 

handle non-linear inequality and equality constraints. Therefore, this quadratic model for 

an optimisation case with inequality and equality constraints could be presented as: 
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where   
   is the i-th inequality constraint function and   

  is the j-th equality constraint 

function. The design variables are the components of s and the optimum is the search 

direction   .    is the matrix which is a positive definite matrix. This matrix is the 

identity matrix at the first iteration of the optimisation and is updated during the 

optimisation. The matrix   is obtained at the end of previous iteration. Once the gradient 

of the objective function is evaluated, the search direction can be calculated using:  

In addition, it is declared here that the constrained optimisation process should be 

simplified by defining a pseudo-objective function in which the penalty function is added.  

   is determined by a one-dimensional search since it has to be able to reduce sufficiently 

the objective value. This is done by polynomial approximation.  

 

 The    matrix is updated using an Broydon-Fletcher-Goldfarb-Shanno (BFGS) update 

formula. In this method,      for the next iteration is defined as: 

where 

       is the Lagrangian function: 

and  
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6.4  Mesh deformation 

In aerodynamic optimisation, the geometry surface will be modified during optimisation 

iteration. Therefore, the computational grid needs to be updated with the surface change. 

Mesh update is key in aerodynamic optimisation, and is required to be robust and fairly 

cheap. 

 

One option is to regenerate the entire computational grid with a mesh generator. However, 

this requires that the new generated mesh has the same topology and number of nodes as 

the previous mesh, because the meshes that have different topologies and number of 

nodes have different discretisation errors, and this will affect the accuracy level of the 

CFD solver and bring numerical noise into optimisation space. Otherwise, the mesh must 

be sufficiently fine. Under this requirement, this method is only feasible for a structured 

mesh with simple geometry. Since the unstructured method mesh is used in this thesis, 

the mesh deformation technique will be considered.  

 

For the structured mesh, the most common mesh deformation method is based on an 

interpolation method. For example, Le Moigne (2002) used the structured mesh 

deformation where the volume mesh is considered individually with every grid line 

originating from the internal surface grid already updated and linking the outer far field 

boundary. Because this method depends on the grid connectivity information, it only can 

be applied on a structured mesh. Since we are not interested in structured mesh in this 

thesis, the details can be found in Allen (2002), Le Moigne (2002), Pandya and Baysal 

(1997) and Burgreen et al. (1994).  

 

For the unstructured mesh, the most common method is the spring analogy method. It 

was first proposed by Batina (1991). In spring analogy method, a spring stiffness     

model is applied between two adjacent grid nodes with a spring as: 

where      is the length of the grid node i to grid node j.  

    
 

      
 6.37 
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A large equilibrium system will be obtained by applying stiffness to the entire mesh 

domain. The deformation of surface will be applied as boundary movement and 

propagated to the entire equilibrium system. Jacobian iteration is normally employed to 

solve this equilibrium until the converged state. The original spring analogy method is 

not efficient, has convergence difficulty and could cause mesh quality problems when the 

boundary movement is large. The reason is that the original stiffness model only 

employed the length, which is able to prevent the adjacent nodes from approaching each 

other but is unable to prevent any edge-edge, edge-face and face-face intersection. 

 

Therefore, an enhanced spring tension model is proposed by Farhat et al. (1998) to 

prevent cell intersection. Xia and Qin (2005) suggested a simple and robust stiffness 

tension model, which includes the cell volume surrounding the edge ij. The stiffness 

tension model is then defined as: 

where   is the set of cells surrounding the edge ij,   
 
 is the cell volume of cell k and p,q 

are the constants and normally set to p=2 and q=1.  

Since the cell volume is involved in the stiffness model, the negative volumes of cell 

could be prevented. Liu et al. (2006) proposed a method based on the Delaunay graph 

mapping technique. This method is significantly cheaper, faster and more efficient than 

spring tension analogy methods. However, it has problem when the large rotation 

deformation is involved since the Delaunay topology may be changed. 

 

Because the spring tension method lacks robustness for large deformations, Nielsen and 

Anderson (2002) proposed another method based on modified linear elasticity theory in 

which the mesh cell is considered as an elastic solid. Dwight (2009) has presented a 

robustness linear elasticity method. In linear elasticity, the small displacement vector 

             is subject to body forces and surface tractions. The governing equation 

is defined as:  

where f is body force and   is the stress tensor.  
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The governing equation is introduced into the entire computational domain. The stress 

tensor relates to the strain tensor  , which is defined as  

where Tr is the trace,   is the linear kinematic law and   and   are the lamé constants 

with respect to the elastic material. They are defined in terms of Young’s modulus E and 

Poisson’s ratio  : 

E is defined as a large positive number for stiffness of the material. Poisson’s ratio   is 

selected between -1 and 0.5 due to material shrinkage. The linear kinematic law is 

defined as: 

The linear elasticity governing equation is discretised on CFD mesh using finite element 

methods. Nielsen and Anderson (2002) and Dwight (2009) demonstrated that the linear 

elasticity method is a very robust method compared with the spring tension method and 

allows for very large mesh deformation.  

 

However, these methods are computationally expensive, since it is necessary to solve a 

large linear system. In recent years, a new method based on interpolation is becoming 

more interesting in research. The radial basis function (RBF) interpolation function is 

derived to satisfy the translation, rotation invariant and linear displacement in 

displacement.  The RBF method was first employed by Beckert and Wendland (2001) in 

fluid-structure interaction applications. de Boor et al. (2007) have presented and tested 

the RBF mesh deformation methods for 2D and 3D unstructured mesh. In their test, the 

RBF mesh deformation has been found to only require the solving of a small system of 

equations and no grid-connectivity information is needed. In addition, the C
2
 continuous 

surface could be obtained by using thin plate spline RBF function. Therefore, it is a fairly 

robust and efficient method for unstructured mesh deformation. Jakobsson and 

Amoignon (2007) have successfully applied the RBF method in Euler adjoint 

optimisation methods, and have proved that RBF is significantly efficient and robust in 

aerodynamic optimisation processes.  

              6.40 

  
  

           
             

 

      
 6.41 

  
 

 
         6.42 



188 

 

 

Furthermore, the RBF deformation is controlled by the base points. It is not necessary for 

these base points to be surface grid points. In the above presented methods, the 

deformation information must be located on all CFD surface grid nodes. This is 

significant for the fluid-structure interaction issue, because the deformation information 

in fluid-structure interaction is given by the finite element solver, in which the locations 

of deformation nodes are normally different from CFD surface grid. To interpolate this 

deformation information from finite elements to every CFD surface node is very difficult 

and errors may occur. In aerodynamic optimisation, the problem is similar since the 

deformation may be given by the CAD system or the different coordinates from 

parameterisation methods. If the above mesh deformation techniques are employed, the 

deformation information must be interpolated into every CFD surface node, or the 

deformation information must be generated directly respect to the CFD surface node 

coordinates in which the coordinate transformation is normally needed. Errors could 

occur during interpolation and coordinate transformation. However, the RBF method is 

able to avoid this problem. 

 

The radial basis functions approach is a well-established interpolation method for gridded 

and scattered data, whereas the most natural context for function approximation is given 

for scattered data (Beckert and Wendland 2001; Buhmann 2003). In the field of 

computational fluid dynamics (CFD) it is often used for coupling CFD-grids to finite 

element structure grids. 

 

The input data in d dimensions consists of data locations   , merged into the dataset: 

and the corresponding function values: 

The data locations    are called centers or ‘base points’. The goal is to interpolate the 

function values between the base points by an approximant s:       to satisfy the 

condition: 
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In this specific case s is a linear combination of shifted radially symmetric basis functions 

 . Radially symmetric means that the value of       depends only on the distance of the 

argument to the origin, hence it is often written as       . The distance norm is usually 

the Euclidean norm: 

     has the general form: 

Setting       equal to    for all           leads to the linear system: 

with 

where  

 

A unique interpolation is usually (for most f) guaranteed if the base points are all distinct 

and there are at least two of them (Baxter 1992). A few examples for the radial basis 

functions are given in Table 6.1 (Rendall and Allen 2009). 

 

Table 6.1 Common radial basis function 

Radial Basis Function      

Volume Spline        

Gaussian           

Thin plate spline           

Wendlands C0             

Wendlands C2                   

Euclid’s Hat         
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Rendall and Allen (2009) pointed out that the radial basis functions can be classified as 

global, local and compact. The global functions have zero or non zero value at radial 

point and the value of function grows moving away from radial point; examples are 

volume spline, thin plate spline. The local functions have non-zero value at radial point 

and decay moving away from radial point; examples are Wendlands functions and 

Gaussian. The compact function shares the properties of local functions, however, its 

value can reach to zero at certain distance from radial point in terms of additional 

parameters; example is Euclid’s Hat. Global function can handle large deformation, 

however, it could affects the far field boundary surface. The local function is normally 

able to provide smooth shape.  

 

An important attribute of this interpolation method is the possibility to expand the 

approach of Equation 6.47 by adding a polynomial to the definition without losing the 

uniqueness of the coefficients. For function values   , which show a polynomial character, 

the appended polynomial improves the interpolation quality and handle the rotation 

deformation. The only restriction is that the polynomial must have a degree     and is 

non-zero at all base points. This leads to: 

The coefficients can be computed by solving: 

The extra equation takes up the extra degrees of freedom given by the polynomial 

coefficients to allow a unique interpolation. The uniqueness can be guaranteed if   is 

‘conditionally positive definite’. More details on the theory of this topic can be found in 

Buhmann (2003). 
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Again, the requirements on X are not very strong. For a linear polynomial, X must only 

contain four base points, which do not lie on a plane. Furthermore, if the function values 

   at the base points were generated by a linear function, they would be reproduced 

exactly by the linear polynomial (Beckert and Wendland 2001). 

 

In the following, the dimension is set to d = 3 in this document. Since             , 

the polynomial is linear and can be written as: 

So Equation 6.51 can be abstracted to matrix notations: 

with  

Given that the interpolation matrix A is invertible, we can solve for y and b to obtain: 

and 

where  
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Only one-dimensional function values have been presented so far, while in this case the 

function values are three-dimensional. Therefore each coordinate of the mesh nodes has 

to be interpolated separately. Now we apply this type of approximation to the 

displacements    ,     and     in each coordinate direction: 

In addition, in the basic RBF, the deformation of different boundaries could influence 

each other since the base point could control the entire domain. Therefore, an extra 

algorithm is employed to prevent this, which is called group-weighting and deformation 

blending. 

 

A group-weighting approach is used to allow the independent movement of different 

model parts/boundaries in the grid. Otherwise the deformations of different boundaries 

could influence each other and unintentional surface deformation would be the result. 

Separating the interpolation by a group protects the shape of the different bodies. 

Therefore, the interpolation matrix    of each group g has to be computed and applied to 

the grid nodes separately. Finally, the deformation result for each grid point is calculated 

by a weighted average of each group-deformation result. 

 

The deformation-blending approach supports the protection of boundary layer cells and 

the usage of radial basis functions        with limits           for      . These 

radial basis functions, which increase with increasing distance from the base point of a 

deforming body, need to be restricted further away from the surface of this body. 

Otherwise local deformations would influence the whole mesh. Additionally, the added 

              6.63 

             
          

 

   

   
    

     
     

   6.64 

             
 
         

 

   

   
 
   

 
    

 
    

 
  6.65 

             
          

 

   

   
    

     
     

   6.66 



193 

 

polynomial of the interpolation approach would deform the whole volume mesh. 

Consequently, this approach, which is implemented to recover linear deformations 

exactly, cannot be used without the blending of deformation values. 

 

Hence, the notations are expanded by an elevated group index g for    groups. As input 

data there are   
 

 base points     
 
    for each group g merged into the datasets: 

The function values that are going to be interpolated are the deformation vectors: 

the interpolation matrix    in equation 6.55 has to be computed only once for each 

boundary group instead of computing it for each dimension separately, since the matrix 

depends only on the base points     
 

 and the chosen radial basis function  . So the 

interpolation matrices   for each group can be stated as: 

For each dimension          , the interpolation coefficients 

        
   
   

   
    

  
 
   
   and         

   
   

   
     

   
   can be calculated by 

inverting Equation 6.69: 

where 

The actual interpolation algorithm calculates the deformations of the grid nodes:  

For the volume mesh grid node     , the governing equation for the displacement is: 
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Two new functions have been introduced: the blending function blend and the weighting 

function weight. The weighting function averages the individual group deformations. 

Because its limit for d goes to zero, it needs a small value cut-off for numerical reasons: 

where   
 

 is the distance from grid node      to the nearest surface of group g,      is 

Radius Zero Weight and      is Radius Full Weight, which are controlling the 

deformation of the grid nodes. Therefore, the final displacement value for      is defined:  

The blending function is sketched in Figure 6.6. If a grid node is close to a boundary of 

group g with a distance less than     , it will move approximately like the boundary. 

This functionality can be used to conserve the sensitive boundary layer part of a grid. 

Further away from the boundary with a distance   
 
       the deformation is zero. 

 

Figure 6.6 Blending function for grid node deformation computation, including the 

parameter radius full weight (RFW) and radius zero weight (RZW) 
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After presenting the RBF methodology, the other benefit of using RBF mesh deformation 

could be found. The calculation of the inverse of the interpolation matrix      is the 

most time consuming process in RBF methods. However, the interpolation matrix    

only depends on the location of base points. If the base points are not changed during 

optimisation iteration, the interpolation matrix needs only to be calculated once at the 

start of optimisation. This could significantly save on computational time for mesh 

deformation and accelerate the optimisation processing time. 

 

In this thesis work, the TAU solver package provides the RBF mesh deformation. The 

details of the algorithm of RBF mesh deformation and validation in TAU can be found in 

Kroll et al. (2008). Therefore, further validation will not be provided in this thesis. 

Furthermore, the performance of TAU deformation has been improved by an algorithm to 

reduce the number of initial base points. The details can be found in Rendall and Allen 

(2009). 

 

6.5  Optimisation framework 

The optimisation framework using Surfgrad adjoint strategy is schematically presented in 

Figure 6.7.  
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Figure 6.7 Adjoint optimisation framework of Surfgard 

 

This optimisation process is built up by linking different modules using Python 

programming. The process starts at the initial geometry, and it is then parameterised 

using CST parameterisation methods to obtain initial design variables. Considering the 

mesh deformation could generate a slight error due to the mesh deformation algorithm, in 

order to avoid error accumulation during optimisation the mesh deformation will always 

use the mesh of the initial geometry. As presented in the mesh deformation subsection, 

the RBF interpolation matrix can then be kept and used throughout the entire 

optimisation.  

 

After case is initialised, the optimisation could be run iteratively until its convergence or 

it hits the stop criterion. In each optimisation iteration step, the process will start at the 

design variables which are given by the optimiser (at first iteration, these are the initial 

design variables). The new geometry will be generated and subtracted from the initial 
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geometry to obtain the deformation base control point, which is the deformation field in 

Figure 6.7, for RBF mesh deformation. Once the deformation field is obtained, the 

second module will be called on to carry out RBF mesh deformation, based on the mesh 

of the initial geometry, to obtain the new mesh.  

 

The next module will then employ the new mesh and run flow solver to simulate the flow 

field and calculate the objective values. Once the flow solver has finished, the objective 

values will be sent to the optimiser and the flow residual will be sent to the next module 

for running the flow adjoint solver due to the requirement of a discrete adjoint solver. In 

Surfgrad strategy, the solution of the flow adjoint solver will be sent to last module to run 

mesh adjoint. As presented in Chapter 2, the CST method is differentiable. The analytical 

surface mesh sensitivities can be obtained and used with the solution of the mesh adjoint 

solver to calculate the gradient. The gradient information is then sent to the optimiser, 

which will check the optimisation convergence based on the objective value and gradient. 

If the optimisation has not yet converged, the optimiser will update the design variables 

using the algorithm presented in sub-section 6.3 and start a new iteration. In addition, if 

Volgrad strategy is used, the module for running mesh adjoint solver will be replaced by 

a module to run NDV times mesh deformation and calculate volume mesh sensitivities 

using finite difference.  

 

In addition, this optimisation framework is able to record the results at each design 

iteration and build up a database for future use. Moreover, the failures of the CFD solver 

and unrealistic geometry are difficult to avoid. When these situations occur, the 

optimisation framework will give the optimiser a large value to prevent it continually 

searching in that region. 
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Chapter 7 Optimisation in Two-Dimensions  

 

The geometric parameterisation, numerical solver, adjoint approach and mesh 

deformation have been presented in previous chapters. Therefore, the test of optimisation 

methods can be carried out. The optimisation test cases in two-dimensions were 

performed at first to examine the optimisation process and compare the different 

parameterisation methods.  The aerofoil with bump optimisation was then tested.  

 

In the first part, three parameterisation methods presented in Chapter 3, including CST, 

iCST and RCST, have been employed to perform drag reduction optimisation. In the 

second part, the performance of three parameterisation methods for bump optimisation, 

including standard polynomial, CST and PARSEC, have been investigated. 

 

7.1 Two-dimensional aerofoil optimisation 

In two-dimensional optimisation, the RAE 2822 aerofoil is selected as the test case since 

it has been widely employed in the aerodynamic research area. The flow condition of this 

test case is set to           and           . The optimisation is the constrained 

drag reduction. Therefore, the optimisation is described as: 

where V is the torsion box volume which is the area of the aerofoil between 20% and 60% 

chord. The initial angle of attack is set to       , which corresponds to Cl=0.7. 

Therefore, this optimisation is to minimise the drag and increase the lift while 

maintaining the torsion box volume to no less than that of the initial aerofoil. The angle 

of attach will be employed as an extra design variable to adjust the lift coefficient. 

  

Three parameterisation methods, which are CST, iCST and RCST, have been tested. Two 

CST methods, which are 7
th

 order and 10
th

 order, are employed to investigate the effect of 

the CST polynomial order on optimisation results. Because the geometric fitting results 

              

                           

                             

7.1 
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of the RCST methods presented in Chapter 3 show that it is possible to represent the 

aerofoil in high accuracy with very low order, the 6
th

 order RCST is employed to carry 

out this test. In order to reduce the complexity of optimisation, the weight rational 

parameters are fixed during optimisation. 

 

The design variables are obtained from the results showed in Chapter 3. The bound value 

of each design variable has to be set up. As introduced in Chapters 2 and 3 for all three 

parameterisation methods, the first design parameter on each surface corresponds to the 

leading edge radius. Therefore, the lower bound of the first design variable on the upper 

surface must be positive, and the upper bound of the first design variable on the lower 

surface must be negative to avoid illness geometry. In the CST and RCST methods, for 

the upper surface, the lower bounds of design variables are set to about 20% of their 

initial value and the upper bounds are set to a relatively high value. Similarly, for the 

lower surface, the upper bounds are restricted to about 20% and the lower bounds are set 

to a relatively low value. Furthermore, for the i-th design parameter on the upper surface, 

the lower bound of this parameter must be greater than the upper bound of the i-th design 

parameter on the lower surface. The purpose of this extra setting is to avoid upper and 

lower geometry intersection. 

 

Since iCST is an intuitive method, the bounds of design variables can be set up easily. 

The range of the leading edge radius can be 80% and 160% of initial value. The x 

locations of control points   ,    and crest        are allowed to move up and down by 10% 

of chord length. The height of control point   ,    is allowed to move 10% of the initial 

value and the crest point        is allowed to move 2% of the initial value towards to the 

centre line of the aerofoil and 40% in the opposite direction. The rest of the design 

variables are allowed to move by 10% of their initial value, positively and negatively.  

 

The torsion box volume is calculated by numerical integration, and the gradient of the 

torsion box volume is provided using the finite difference method with a very small step 

         at low computational cost.  
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Furthermore, the number of grids of RAE 2822 is about 90,000 and      with 1.1 

growth rate on the surface normal direction, as shown in Figure 7.1.  

 

Figure 7.1 Mesh of RAE 2822 

 

The influence of flow solver convergence has been discussed in Le Moigne (2002) and 

Widhalm et al. (2010). The convergence level of the flow solver significantly affects the 

accuracy of the gradient of adjoint solver.  The flow solver is required to converge as 

much as possible. From their studies, the 10
-8

 order convergence will provide a 

reasonable high accuracy of gradient. Therefore, in this work, all flow results are 

converged at least to 10
-8

. The convergence of the adjoint solver obviously affects the 

accuracy of gradient. Hence, the adjoint solver must to be converged to at least 10
-6

. 

Figure 7.2 shows the optimisation convergence history of Cd and Cl of the 7
th

 order CST. 

Figure 7.3 shows the optimisation convergence history of Cd and Cl of the 10
th

 order 

CST.  

 



201 

 

  

Figure 7.2 Cd (left) and Cl (right) optimisation history of 7
th

 order CST 

 

  

Figure 7.3 Cd (left) and Cl (right) optimisation history of 10
th

 order CST 

 

At the start of optimisation, a large spike is occurred which has an unexpected drag 

increase. During optimisation, there are also some large spikes before iteration 10. This is 

because the optimiser lacks information to build up a sequential model at the first 

iteration. The other reason is that the lift coefficient in this case is 0.7, and it is not 

satisfied constraint. Consequently, the optimiser perturbs the design variables with a large 

step in order to reach the lift constraint, and this large step will generate unexpected 

aerofoil with large drag and low lift. Once the spike is occurred, the SQP optimiser will 

be restarted with a smaller step. Therefore, the objective value will be back to normal 
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after spike. After about 5 iterations, this is mitigated. The convergence history shows that 

the 7
th

 order CST reaches convergence after 20
 
iterations. The 10

th
 order CST shows that 

the value changes periodically after 20 iterations and the minimum value will not be 

reduced. This may be because the parameterisation has more local control which requires 

long optimisation iterations so that all design variables converge. Therefore, the lower 

order of the CST methods could be more efficient in optimisation convergence. Table 7.1 

shows the values of aerodynamic coefficients and volume constraints of the initial 

aerofoil and optimal results. 

Table 7.1 Aerodynamic coefficients and constraint values 
 Cl Cd Cl/Cd Volume 

Initial 0.6982 0.01909 36.57 0.0453 

7th order CST 0.7414 0.01135 65.30 0.0453 

10th order CST 0.7487 0.01143 65.48 0.0453 

 

Both optimum aerofoils satisfy the volume geometry constraints. However, both cases do 

not exceed 0.75 lift coefficient constraints. The optimum aerofoil of 10
th

 order CST for 

Cl is 0.7487 which is higher than the 7
th

 order CST. Even if its Cd is 1 drag count more 

than the 7
th

 order CST, the 10
th

 order CST still obtains a higher lift-to-drag ratio. 

However, both cases achieve a 40% drag reduction which is considered as a significant 

improvement. Figure 7.4 and 7.5 show the Cp contour of the flow field of initial and 

optimal aerofoils obtained by 7
th

 order CST and 10
th

 order CST methods, respectively.  

  

Figure 7.4 The contour of pressure coefficients of initial aerofoil (left) and optimum 

aerofoil (right) obtained by 7
th

 order CST 
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Figure 7.5 The contour of pressure coefficients of initial aerofoil (left) and optimum 

aerofoil (right) obtained by 10
th

 order CST 

 

The Cp contour figures illustrate that both methods are able to eliminate the shock. This 

is also proven in Figure 7.6 which shows the Cp distribution of both cases. In addition, 

the Cp contour shows there is a little unsmooth Cp distribution in the optimal aerofoil 

obtained by 7
th

 order CST method. This phenomenon should be investigated by checking 

the Cp distribution.  

 

Figure 7.6 Cp distributions of initial aerofoil and optimal aerofoil obtained by 7
th

 order 

CST and 10
th

 order CST 
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Figure 7.6 clearly shows that there is unsmooth Cp distribution between 40% and 55% 

chord length of the optimal aerofoil obtained by the 7
th

 order of CST. The result of the 

10
th

 order of the CST is much smoother. The reason for this could firstly be the accuracy 

of gradient since a small error in gradient could make the optimisation approach a real 

optimal point but not be able to reach it. Especially, the shock region is extremely 

sensitive to surface smoothness, so the accuracy of gradient in this region is important.  

 

The second reason is local control of the 7
th

 order CST is less than the 10
th

 order CST. 

This region is just before the shock and requires good surface control to eliminate shock, 

and the geometric volume constraint is applied in the region between 20% and 60% chord 

length. Therefore, the parameterisation methods have to have a large flexibility in this 

region to achieve shock free and smooth conditions. Obviously, the flexibility of the 10
th

 

order CST is higher than the 7
th

 order.  Therefore, the 10
th

 order CST obtained a better 

aerofoil than the 7
th

 order in two-dimensions. A comparison of the aerofoils will be 

shown at the end of this study. Figure 7.7 shows the optimisation history of Cd and Cl 

when using the iCST method.  

 

  

Figure 7.7 Cd (left) and Cl (right) optimisation history of iCST 

 

Similarly with the 10
th

 order CST method, the optimisation shows periodic variation after 
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considered as converged. Table 7.2 shows the aerodynamic coefficients of initial and 

optimal aerofoils.  

Table 7.2 Aerodynamic coefficients and constraint values 
 Cl Cd Cl/Cd Volume 

Initial 0.6982 0.01909 36.57 0.0453 

iCST 0.7300 0.01166 62.63 0.0453 

 

The aerodynamic coefficients show that although iCST effectively reduced the drag, 

however the lift is not increased by as much as with the CST methods. The drag is also 

higher than the 10
th

 order CST method by about 2 drag counts. The geometric volume 

constraint is still well satisfied. Figure 7.8 shows the Cp contour of flow field and Figure 

7.9 shows the Cp distribution.  

 

  

Figure 7.8 The contour of pressure coefficients of initial aerofoil (left) and optimum 

aerofoil (right) obtained by iCST 
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Figure 7.9 Cp distributions of initial and optimal aerofoils obtained by iCST method 

 

The Cp contour and distributions clearly show that the shock is eliminated at the optimal 

aerofoil. This demonstrates that the iCST method is able to deal with drag reduction 

optimisation. In addition, at the leading edge of the upper surface, a high pressure suction 

peak is obtained with the iCST method, which did not appear in the CST test. This shows 

the capability of local control of the iCST method. However, the Cp distribution is not 

very smooth. The reason is because the iCST method uses second order curvature control 

over the surface. Because the aerodynamic flow is very sensitive to the curvature, the 

design parameters of second order curvature have to be converged very well with the 

requirement of high level of accuracy of gradient. This is a demanding requirement to be 

achieved. Therefore, care should be taken in the setting of the curvature parameters. 

 

Finally, the RCST method has been tested. Figure 7.10 shows the optimisation history of 

the RCST method.  
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Figure 7.10 Cd (left) and Cl (right) optimisation history of RCST 

 

The optimisation history shows that RCST converges smoothly without periodical change. 

Both Cd and Cl are converged after 20 iterations. This is due to the lower order 

polynomial. Table 7.3 shows the aerodynamic coefficient and constraint values of the 

RCST method.  

Table 7.3 Aerodynamic coefficients and constraint values 
 Cl Cd Cl/Cd Volume 

Initial 0.6982 0.01909 36.57 0.0453 

RCST 0.7491 0.01091 68.65 0.0453 

 

Table 7.3 shows RCST achieves the more drag reduction than the other three test cases; it 

is reduced by about 42%. The lift increase is almost equal to the required 0.75. Therefore,  

RCST with lower order polynomials is able to search out a better design point than the 

CST method using higher order polynomials. This achieves a balance between a lower 

number of design variables and a higher flexibility of design space. Figure 7.11 shows the 

Cp contour of flow field and Figure 7.12 shows the Cp distributions.  
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Figure 7.11 The contour of pressure coefficients of initial aerofoil (left) and optimum 

aerofoil (right) obtained by RCST 

 

Figure 7.12 Cp distributions of initial and optimal aerofoils obtained by RCST method 

 

This shows that the RCST method obtained the smoothest Cp distribution of all test cases. 

Because the rational equation is employed, RCST has better local control than the CST 

method of the same order. Therefore, even if the lower order polynomial is used, RCST is 

still able to well control the surface to achieve the convergence condition in optimisation. 

Finally, the aerofoil shapes obtained by the above four different approaches are compared 

in Figure 7.13. 
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Figure 7.13 Comparison of the initial aerofoil and optimal aerofoils obtained by various 

parameterisation methods 

 

From Figure 7.13, the 7
th

 order CST provides the largest variety on the aerofoil. This is 

because it attempts to flatten the entire upper surface to eliminate the shock wave. At the 

same time, the geometric volume constraint has to be satisfied. The 7
th

 order CST then 

pushes the lower surface to the outer bound to maintain volume constraint. Therefore, the 

7
th

 order CST provides the largest modification.  

 

The 10
th

 order CST and RCST achieve almost the same optimal aerofoils. As shown in 

the optimisation history, RCST has better convergence performance on optimisation by 

employing a 6
th

 order polynomial and is able to provide very smooth geometry. Therefore, 

RCST shows excellent performance on both geometry representation and aerodynamic 

drag optimisation. 
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iCST shows a smaller change on the aerofoil. This is because the design parameters of 

iCST are limited and are more restricted than other methods. For example, the crest x 

location is not moved down as far as with the other methods. However, iCST already 

effectively eliminates the shock wave. The intuitive parameters are helpful to understand 

the design space. Although the curvature parameter of the iCST method affects the 

optimisation convergence, it is still a useful parameterisation method for drag 

minimisation optimisation.  

 

7.2  Shock bump optimisation in the two-dimensional aerofoil 

Shock control bump optimisation is performed to investigate the performance of three 

different parameterisation methods. In this case, the RAE 2822 is still employed for this 

test since Wong (2006) has successfully performed shock bump optimisation on it. The 

flow condition is          ,           ,        .  

 

In the aerofoil drag minimisation test case, it is noticed that even if the hard constraint 

has been employed for lift coefficient, it is still possible that the optimal solution of 

optimisation does not satisfy the required lift. In addition, the angle of attack has to be 

employed as an extra design parameter to adjust the flow field to match the target lift. 

However, the author here considers that it might not be very efficient to employ angle of 

attack as a design parameter and put lift into the constraint condition in optimiser. TAU 

solver offers a function, the so-called target-lift-iteration, which is to adjust the angle of 

attack during the CFD solver iteration to match the required target lift. If this function is 

employed, the target lift could be automatically matched within flow solver rather than in 

optimisation. Theoretically, it could be able to reduce one constraint in optimisation and 

improve the efficiency of optimisation.  

 

If this strategy is used, the objective function must be modified since the optimisation is 

working at target lift          rather than at the pre-existing lift   . The modified objective 

function is defined as: 
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where 
   

  
 is the derivative of drag respect to angle of attack, and  

   

  
 is the derivative of 

lift respect to angle of attack.  

In a well converged flow simulation, the resulting Cl will be equal or very close to 

        . Therefore, the second term of the objective function could be neglected. The 

derivative of the objective function is then: 

Therefore, the gradient of the lift is still important to the optimisation. This objective 

function has been successfully employed in multi-point optimisation (Reuther et al. 1999; 

Kim et al. 2001; Dwight 2006; Illic 2012). The detail of the derivation can be found in 

Appendix E.  

 

The length of shock bump is limited to be a maximum of 20% of chord length of aerofoil. 

The starting location of the bump is bounded between 35% and 55%. The bump crest 

position is bounded between 10% and 90% with respect to bump length. The height is 

limited to be a maximum 0.5% of chord length. For the PARSEC bump, the parameters P 

and Q are set to constants 1 and 0 to keep the curvature of bump ramp to zero. The 

parameter c is variable between -1 and 1.  

 

The parameters of the length and position of the CST bump on the aerofoil are set up 

with the same standard cubic polynomial and PARSEC bump. However, there is no 

intuitive parameter in CST bump to control the height and position. Therefore, the 2
nd

 

order polynomial is used with 3 shape parameters. Each shape parameter is bound 

between 0 and 0.007. Figure 7.14 to 7.16 show the optimisation history of drag from 

three parameterisation methods.  
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Figure 7.14 Optimisation of drag using CST bump 

 

Figure 7.15 Optimisation of drag using PARSEC bump 

 

Figure 7.16 Optimisation of drag using standard cubic bump 
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The optimisation history shows that the CST bump and cubic bump achieve convergence 

after 10 iterations. Although a small oscillation occurs at the start of optimisation in 

PARSEC bump, it still reaches optimal results after 15 iterations. This shows that there is 

not much difference in their performance with respect to optimisation efficiency. Figure 

7.17 to 7.19 show the Cp contour of flow over of the initial aerofoil without bump and 

the aerofoil with optimal bump obtained by three methods. 

 

  

Figure 7.17 Contour of pressure coefficient of aerofoil without bump (left) and aerofoil 

with optimal CST bump (right) 

  

Figure 7.18 Contour of pressure coefficient of aerofoil without bump (left) and aerofoil 

with optimal PARSEC bump (right) 
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Figure 7.19 Contour of pressure coefficient of aerofoil without bump (left) and aerofoil 

with optimal standard cubic bump (right) 

 

The Cp contour plot figures show that all three methods are able to weaken the normal 

shock on the initial aerofoil. This is proven in the Cp distribution plot in Figure 7.20.  

 

Figure 7.20 Comparison of Cp distribution  
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the CST bump and cubic bump start reducing pressure earlier than the PARSEC bump. In 

addition, all methods effectively push the shock downstream. The CST and cubic bumps 

push the shock slightly more than the PARSEC bump. Further information could be 

checked from the aerodynamic coefficients in Table 7.4. 

Table 7.4 Aerodynamic coefficients 
 Cdtotal Cdpressure Cdviscous Cl L/D 

Initial 0.013786 0.008141 0.005645 0.75 54.40 

CST 0.011774 0.006087 0.005687 0.75 63.70 

Parsec 0.011974 0.006275 0.005699 0.75 62.64 

Cubic 0.011816 0.006135 0.005681 0.75 63.47 

 

Table 7.4 shows the total drag is reduced by about 20 drag counts in all three cases. The 

drag reduction is mainly from the pressure drag which indicates the wave drag reduction. 

The viscous drag is only increased within 1 drag count. The CST bump achieves the 

lowest drag of the three cases; however it is only 1 drag count lower than the PARSEC 

and cubic bumps. Figure 7.21 shows the bump shape on the aerofoil.  

 

Figure 7.21 Comparison of bump shape 
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All optimal bumps achieve the maximum limit length 20% chord. The maximum heights 

of three bumps are all close to 0.4% chord. The bump location of the CST and cubic 

bumps are slightly more upstream than the PARSEC bump. In general, there is no 

significant difference between the three bumps. They all converge to a similar design 

shape.  

 

Hence, it can be concluded that the different bump parameterisation methods have no 

significant effects on optimisation results. The CST and cubic methods are slightly better 

than the PARSEC methods in terms of the optimisation convergence. However, the CST 

method could maintain the curvature continuity at the transition area between bump and 

aerofoil. This could be useful for practical engineering design in terms of manufacturing 

issues.  
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Chapter 8 Optimisation in Three-Dimensions  

 

After the two-dimensional optimisation has been carried out, the three-dimensional 

optimisation is then performed in order to examine performance of parameterisation 

methods on optimisation.  

 

The first test case is to perform a wing drag optimisation case. Because the iCST method 

is proposed for a two-dimensional aerofoil design, it cannot generate a three-dimensional 

surface directly. It needs to be allocated various design stations along spanwise, and an 

extra interpolation algorithm is then required to generate the three-dimensional surface. 

This methodology will increase the number of design variables and bring other issues, 

such as the calculation of the surface sensitivities with respect to the control aerofoil and 

interpolation algorithm. Therefore, the iCST method is not employed in the three-

dimensional study. CST is employed in wing drag optimisation. The CST methods with 

various different order polynomials are also examined. This test case is carried out using 

flow adjoint and mesh adjoint ‘Surfgrad’ strategy. The wing drag optimisation using the 

RCST parameterisation method is then carried out to investigate its performance.  

 

The second test case is winglet aerodynamic optimisation in which a winglet will be 

retrofitted onto an existing wing and then optimised. Two types of winglet, winglet 1 and 

winglet 2, are employed and parameterised by the CST methods. The planform 

parameters are also involved in optimisation. Due to a certain issue which is explained 

later, this optimisation only used adjoint ‘Volgrad’ strategy with mesh sensitivities 

calculated by finite difference. At the end, the shock control bump optimisation using the 

CST method is tested to examine the performance of this new bump model in the 3D case. 

 

In addition, the current mesh adjoint in Tau is only supported in its sequential mode. This 

means it cannot be applied to the complex case with a large number of grids due to the 
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memory limit. The ‘Volgrad’ is an option. However, the mesh deformation could be time 

consuming for large number of grids. For example, to deform a mesh with 3 million 

nodes, the current RBF mesh deformation employing a pre-existing inverted interpolation 

matrix still requires 5-6 minutes. For a case with 100 parameters, it requires 100 times 

more mesh deformation which requires 5x100 minutes. Even if this could be done in 

parallel on HPC, it still could be time consuming due to HPC queuing. So unfortunately, 

three-dimensional entire aircraft optimisation with complex intersection is not carried out 

at present.  

 

8.1 Wing optimisation using CST methods 

The wing drag optimisation is studied at first. The F6 wing is selected to carry out this 

test since it has been parameterised in Chapter 4 using CST with different orders. In order 

to test a case with a stronger initial shock wave, the Mach number is increased and the 

flow condition of this test case is set to:          , Cl     and         . The 

computational mesh is the same mesh as employed in Chapter 4. In the practical case, the 

pitching momentum is hard to decide on since increased pitching momentum will affect 

the longitudinal stability; however, decreased pitching momentum will increase trim drag 

in conventional aircraft. Therefore, the pitching momentum constraint is not considered 

in this work.  

 

8.1.1 Influence of different order of the CST methods on wing optimisation 

The first study is to investigate the influence of the order of the CST methods. Due to the 

computational expense, only 4 CST parametric models are selected, namely BPOX 6-

BPXY 6, BPOX 6-BPOY 8, BPO 6-BPO 10 and BPO 10-BPOY 10. In Chapter 7 the two-

dimensional test cases show streamwise higher order polynomials could provide more 

local control on the surface; however, the optimisation convergence could be worse. 

Therefore, the first three selected orders are aimed to test the influence of the polynomial 

order on spanwise. Then, CST with BPOX 10-BPOY 10 is employed to test the influence 

of streamwise higher order polynomials in the three-dimensional case.  
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The planform parameters, including wing span, crank position, leading edge sweep angle, 

chord length distribution and leading height distribution, are fixed in three-dimensional 

wing optimisation. This is because these parameters are normally defined at an early 

conceptual design stage in practical engineering processes. They are not allowed to be 

changed in the detailed aerodynamic design stage. Therefore, the surface design 

parameters, parameters of twist distribution and trailing edge thickness distribution are 

allowed to be changed.  

 

In order to avoid the non-linear behaviour in optimisation, the twist angle at wing root 

should be fixed since it also indicates the angle of attack (Smith et al. 2013). If it is 

employed as a design variable, it could potentially affect optimisation efficiency. 

Therefore, the first design variable of twist is frozen.  

 

As presented in Chapter 4, a piecewise Bernstein polynomial is employed in twist and 

trailing edge thickness distribution functions. In order to avoid a non-smooth surface, the 

orders of polynomials are chosen to be as low as possible with relatively high flexibility. 

Therefore, a 3
rd 

order polynomial is used to represent twist distribution in the inboard 

wing, and a 4
th

 order polynomial is used to represent twist distribution in outboard wing. 

In trailing edge thickness distribution, a 4
th

 order polynomial is used in the inboard wing 

and a 3
rd

 order polynomial is used in outboard wing. The smooth condition, which has 

been presented in Chapter 4 with Equation 4.16, has to be applied at piecewise break 

points. The number of design variables of twist and trailing thickness are 7 and 8, 

respectively. Therefore, the total number of design variables of CST with BPOX 6-BPXY 

6, BPOX 6-BPOY 8, BPO 6-BPO 10 and BPO 10-BPOY 10 are 113, 141,169 and 257, 

respectively.  

 

The bounds of each surface parameter are limited to move 50% from their initial value 

positively and negatively for allow large flexibility. In this case, the distribution function 

is employed to represent the tangential value of twist rather than twist angle value. 

Therefore, the bounds of each twist design variable are set up to [-0.1,0.1] which 

corresponds to [          ]. The trailing edge thickness is a non-dimensional thickness 
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with respect to the local chord length. Hence, the bounds of each trailing edge thickness 

parameter are set up to [0.003, 0.005].  

 

The target lift iteration is still employed in this case. The optimisation is then described as: 

 

 

where 21 aerofoils are cut and extracted averagely along spanwise, which are at 0%, 5%, 

10% up to wingtip, to control geometric thickness constraint. The torsion box volume 

calculated between 20% and 60% chord length is still employed and    indicates the 

torsion box volume of the i-th section. The torsion box volume of the initial geometry is 

shown in Table 8.1.  

 

Table 8.1 Torsion box volume of initial geometry 
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Figure 8.1 Optimisation history of drag (left) and the 10
th

 torsion box volume (right) 

using CST with BPOX 6-BPOY 6 

 

 

  

Figure 8.2 Optimisation history of drag (left) and the 10
th

 torsion box volume (right) 

using CST with BPOX 6-BPOY 8 
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Figure 8.3 Optimisation history of drag (left) and the 10
th

 torsion box volume (right) 

using CST with BPOX 6-BPOY 10 

 

  

Figure 8.4 Optimisation history of drag (left) and the 10
th

 torsion box volume (right) 

using CST with BPOX 10-BPOY 10 
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slightly faster than 10
th

 order which achieves the convergence after about 15 iterations. 
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The history of the 10
th

 torsion box volume shows all optimal solutions obtained by four 

methods satisfy the required constraint, although their initial values are slightly different 

due to different initial parametric models. Compared with the 2D test case, there is no 

oscillation at the beginning of optimisation. The efficiency of three-dimensional 

optimisation is high. The higher streamwise order polynomial will require slightly more 

iterations to reach convergence. Figure 8.5 to 8.9 show the Cp contour on the wing 

surface of initial and optimal solutions. Although the initial geometries are slightly 

different, there is not much difference on the flow field. Hence, only the initial flow field 

obtained by BPOX 6 and BPOY 6 is shown.  

 

  

Figure 8.5 The Cp contour plot of initial wing surface, lower (left) and upper (right) 

  

Figure 8.6 The Cp contour plot of optimal wing surface, lower (left) and upper (right), 

obtained by CST with BPOX 6 and BPOY 6 
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Figure 8.7 The Cp contour plot of optimal wing surface, lower (left) and upper (right), 

obtained by CST with BPOX 6 and BPOY 8 

  

Figure 8.8 The Cp contour plot of optimal wing surface, lower (left) and upper (right), 

obtained by CST with BPOX 6 and BPOY 10 
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Figure 8.9 The Cp contour plot of optimal wing surface, lower (left) and upper (right), 

obtained by CST with BPOX 10 and BPOY 10 
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Figure 8.10 Cp distribution (left) and aerofoil shapes (right) at 10% span of wing 

  

Figure 8.11 Cp distribution (left) and aerofoil shapes (right) at 30% span of wing 

  

Figure 8.12 Cp distribution (left) and aerofoil shapes (right) at 50% span of wing 
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Figure 8.13 Cp distribution (left) and aerofoil shapes (right) at 70% span of wing 

  

Figure 8.14 Cp distribution (left) and aerofoil shapes (right) at 80% span of wing 

  

Figure 8.15 Cp distribution (left) and aerofoil shapes (right) at 90% span of wing 
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The Cp distribution plots in Figure 8.10 and 8.12 show the aerofoil at the inboard and 

near crank areas. The strong shock wave is clearly presented in the initial geometry. In 

the optimal geometries, this shock wave has been almost removed. A higher leading edge 

pressure suction peak appears at locations 30% and 50% of wingspan. The pressure on 

the lower side shows the pressure at about 30% chordwise on optimal geometries, which 

is lower than the initial geometry. This is because the optimisation modifies the upper 

surface to be flatter than the initial geometry. In order to maintain the torsion box volume, 

the lower surface is pushed to the outside direction of the initial geometry, which will 

give more flow acceleration and reduce the pressure. This can be seen by comparison of 

aerofoil shapes. In addition, comparing the optimal aerofoil shapes obtained by four 

parameterisation methods, there is almost no difference between the CST using the same 

order on streamwise. The CST with BPOX 10 and BPOY 10 obtained a slightly higher 

pitching up twist angle.  

 

Figure 8.13 and 8.14 show the sections and Cp distributions at 70% and 80% of wingspan. 

The results are similar to the previous three locations. Although the reduction of the 

shock wave is not as much as in the previous three cases, they are all effectively 

weakened. The higher pressure suction is still presented, but it is reducing with increase 

of the span. On the lower surface side, the pressure of optimal geometries is lower than 

the initial geometry, but the change is getting smaller. This can be understood from 

aerofoil comparison figures. The curvature of the geometry on the lower surface side has 

not changed too much. The twist angle is larger than the initial geometry and the CST 

with BPOX and BPOY 10 still provides larger twist.  

 

The most noticeable difference is achieved at location 90% closer to the wingtip. The 

shock wave still remains in the optimal results obtained by the CST with 6
th

 order in 

chordwise direction. The shock wave has been moved downward to the trailing edge. The 

strength of shock wave is slightly weakened. Therefore, the drag is still reduced. 

However, the CST with BPOX 10 and BPOY 10 effectively weakens this shock wave and 

provides a smoother pressure gradient in the leading edge area. In addition, all trailing 
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edge thickness parameters are the final value at the lower bound. This means the trailing 

edge will be always become thin.  

 

Figure 8.16 shows the twist angle distribution of initial and optimal wings. Table 8.2 

shows the aerodynamic coefficients of initial and optimal wings. In order to further 

understand the optimal design, the drag is decomposed into induced drag and wave and 

viscous drag using the Nearfield/Farfield balance drag decomposition tool called FFD70, 

based on Destarac (2003). The spurious drag is not shown, since it is very small and not 

important. Because the initial geometries are slightly different due to the different order 

CST, the aerodynamic geometry is slightly different. Therefore, we will focus more on 

the proportion of coefficient variation.  

 

Table 8.2 Aerodynamic coefficients (drag units in drag count) 
 Cl Cd_total Cd_wave Cd_induced Cd_vis Cl/Cd Cmx 

 CST with BPOX 6 and BPOY 6 

Initial 0.6 308.9 33.32 133.53 134.97 19.42 1.29 

Optimal 0.6 249 7.02 122.99 113.77 24.1 1.37 

  -19.39% -78.93% -7.89% -15.71% 24.12% 6.60% 

 CST with BPOX 6 and BPOY 8 

Initial 0.6 312.17 33.01 133.27 134.63 19.22 1.288 

Optimal 0.6 255.82 6.14 123.4 115.02 23.45 1.365 

  -18.05% -81.40% -7.41% -14.57% 22.03% 6.01% 

 CST with BPOX 6 and BPOY 10 

Initial 0.6 312.31 32.3 133.36 134.76 19.21 1.288 

Optimal 0.6 255.86 5.77 123.1 114.98 23.45 1.368 

  -18.07% -82.14% -7.69% -14.68% 22.06% 6.16% 

 CST with BPOX 10 and BPOY 10 

Initial 0.6 306.06 31.22 133.45 134.6 19.6 1.29 

Optimal 0.6 248.81 5.09 122.93 114.26 24.11 1.381 

  -18.71% -83.49% -7.88% -15.11% 23.01% 7.08% 
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Figure 8.16 Twist distribution 

 

Table 8.2 shows that all parameterisation methods are able to reduce the total drag by 
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momentum coefficients Cmx are increased in all optimal geometries by about 6%, and 

induced drag is decreased by about 8%. This indicates that the lift distribution along 

ETA

T
w

is
t(

a
n

g
le

)

0 0.2 0.4 0.6 0.8 1

-2

-1

0

1

2

3

4

5

Initial

Optimal CST 6- 6

Optimal CST 6- 8

Optimal CST 6- 10

Optimal CST 10- 10



231 

 

spanwise is changed by optimisation. Hence, the lift coefficient distribution along 

spanwise is plotted in Figure 8.17.  

 

Figure 8.17 The spanwise lift distribution 

 

The lift distribution illustrates that the initial lift distribution is close to a triangular 

distribution, and the lift distribution of all optimal geometries approaches an elliptical 

distribution. Due to the wave drag presented in this case, the lift distribution of optimal 

geometries is not a perfect elliptical distribution (Le Moigne 2002; Qin et al 2004, Le 

Moigne and Qin 2006). This phenomenon was found and discussed by Qin et al (2005). 

The centre of lift position is located at 40.10% of wingspan in the initial geometry. 

Consequently, in the optimal geometries, the centre of lift position is moved to 42.72% of 

wingspan. This implies a heavier structure is required to support this aerodynamic 

loading (Jupp 2001). Therefore, an extra constraint is needed to make a more practical 

optimisation.  

 

8.1.2 Wing optimisation with rolling momentum constraint 

As presented in the last test case, the CST methods with lower order polynomials can 

efficiently reduce the drag in optimisation. However, the optimisation results in shifting 

the centre of lift to the outer board to reduce induced drag. Therefore, the lift distribution 

has to be constrained to achieve a practical solution.  
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The current TAU adjoint solver only supports the objective values, such as Cl, Cd and 

Cm, which are with respect to entire surface integration. Therefore, it is hard to directly 

use lift distribution as a constraint. However, as mentioned above, the rolling momentum 

Cmx implies the lift bending momentum. Therefore, the optimisation with Cmx 

constraint is tested. The Cmx is applied into the equality constraint.  

 

The optimisation is then described as: 

 

Because the target lift iteration strategy is employed, Cmx is replaced by      where: 

 

In the last test, although the CST with high order polynomials on spanwise could get 

slightly better wave drag reduction, the CST with lower order polynomials has better 

convergence rate and is able to provide decent optimal solution. Therefore, in this test, 

CST with BPOX 6 and BPOY 6 is employed. All the settings of bounds are kept the same 

as for the last test. Figure 8.18 and 8.19 show the optimisation history of this test.  
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Figure 8.18 Optimisation history of drag (left) and Cmx (right) using CST with BPOX 6-

BPOY 6 

 

Figure 8.19 Optimisation history of the 10
th

 torsion box volume using CST with BPOX 6- 

BPOY 6 

 

Figure 8.18 shows the optimisation history of drag and Cmx. Similar to the previous test 

case, the optimisation achieves convergence very fast in about 13 iterations. The Cmx 

constraint is maintained during optimisation. Figure 8.19 shows the history of torsion box 

volume and illustrates that geometric constraints are also satisfied in the optimal solution.  

Figure 8.20 shows the Cp contour on the surface of optimal geometry.  
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Figure 8.20 The Cp contour plot of optimal wing surface, lower (left) and upper (right), 

obtained by CST with BPOX 6 and BPOY 6 in optimisation with Cmx constraint 

 

The Cp contour plot shows that the optimal solution is very similar to the previous test 

case. The shock wave is significantly reduced with a higher pressure suction peak 

presented at the inboard wing, and a lower pressure area appears on the lower surface. As 

with the previous test case, six sections at the spanwise locations 10%, 30%, 50%, 70%, 

80% and 90% are extracted and the Cp distributions and aerofoil shape are compared 

with the results of optimisation without Cmx constraint, as shown in the following figures. 

 

  

Figure 8.21 Cp distribution (left) and aerofoil shapes (right) at 10% of wingspan 
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Figure 8.22 Cp distribution (left) and aerofoil shapes (right) at 30% of wingspan 

 

  

Figure 8.23Cp distribution (left) and aerofoil shapes (right) at 50% of wingspan 
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Figure 8.24 Cp distribution (left) and aerofoil shapes (right) at 70% of wingspan 

  

Figure 8.25 Cp distribution (left) and aerofoil shapes (right) at 80% of wingspan 

  

Figure 8.26 Cp distribution (left) and aerofoil shapes (right) at 90% of wingspan 

x

c
p

2 2.2 2.4 2.6

-1

-0.5

0

0.5

Initial

Optimal no Cmx Constraint

Optimal with Cmx Constraint

x

z

2 2.2 2.4 2.6
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
Initial

Optimal no Cmx Constraint

Optimal with Cmx Constraint

x

c
p

2.2 2.4 2.6 2.8

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Initial

Optimal no Cmx Constraint

Optimal with Cmx Constraint

x

z

2.2 2.4 2.6 2.8
0.2

0.25

0.3

0.35

0.4

0.45

0.5
Initial

Optimal no Cmx Constraint

Optimal with Cmx Constraint

x

c
p

2.5 2.6 2.7 2.8 2.9 3 3.1

-1

-0.5

0

0.5

Initial

Optimal no Cmx Constraint

Optimal with Cmx Constraint

x

z

2.6 2.8 3
0.25

0.3

0.35

0.4

0.45

0.5

0.55
Initial

Optimal no Cmx Constraint

Optimal with Cmx Constraint



237 

 

 

The Cp distribution shows that the results of optimisation with Cmx constraint are very 

similar to the results without Cmx constraint. The structures of the Cp distribution are 

very similar to each other. The shock wave is almost removed at 10% and 30% of 

wingspan, and weakened at 50%, 70% and 80% of wing span. At 90% of wingspan, the 

shock is moved downwards to the trailing edge.  

 

At 10% of wingspan, the optimal Cp distribution on the upper surface of optimisation 

with Cmx constraint has a higher pressure suction peak than in the previous case, and at 

70%, 80% and 90% the optimal Cp distribution on the upper surface of optimisation with 

Cmx constraint has a lower pressure suction. The twist distribution is shown in Figure 

8.27. The lift distribution is plotted in Figure 8.28 and aerodynamic coefficients are 

shown in Table 8.3. 

 

Figure 8.27 Twist distribution 
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Figure 8.28 The lift distribution along span 

 

 

Table 8.3 Aerodynamic coefficients of optimal results (drag units in drag count) 
 Cl Cd_total Cd_wave Cd_induced Cd_vis Cl/Cd Cmx 

Initial 0.6 308.9 33.32 133.53 134.97 19.42 1.290 

Optimal 0.6 255 6.39 128.6 114.84 23.53 1.289 

  -17.45% -80.82% -3.73% -14.91% 21.14% -0.01% 

 

The twist distribution shows that the twist angle of the optimal geometry with 20% of 

wingspan is almost equal to that of the initial geometry. Between 20% and 90% of 

wingspan, the twist angle is larger than in the initial geometry but smaller than the 

optimisation without Cmx constraints. After 90% of wingspan, the twist angle is smaller 

than for the initial geometry.  

 

Figure 8.28 shows that the optimal solution has a different lift distribution from the initial 

geometry. However, it is much closer to the initial geometry compared with the previous 

result of optimisation without Cmx constraint. The centre of lift of the new results is 
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40.11% and in the initial geometry is 40.10%. Therefore, in this optimisation, the centre 

of lift has been constrained successfully.  

 

Furthermore, the aerodynamic coefficients show that the optimisation with Cmx 

constraint reduces the total drag by 17.45%. This is smaller than the previous 

optimisation which was 19.39%. This is because the induced drag is not reduced as much 

as in the previous case. However, when using Cmx constraint, the wave drag is reduced 

by 80.82% which is more than in the previous case. This means that the Cmx constraint 

makes the optimisation more focused on wave drag. The optimal geometry could be 

considered to be more practical than in the previous case.  

 

 

8.2 Wing optimisation using RCST methods  

The RCST method for the three-dimensional wing has been proposed in Chapter 4. In 

Chapter 7, the performance of the RCST method on 2D aerofoil optimisation has been 

examined. Hence, the performance of RCST method on the 3D wing is investigated in 

this section.   

 

The test case of CST has shown the importance of Cmx constraint. Therefore, the 

objective function of optimisation in this case is same as with the previous test case in 

Equation 8.2, and the Cmx constraint is employed. 

 

The order of RCST is set to BPOX 6 and BPOY 6 since it is proven in Chapter 4 that this 

order is able to represent original the F6 wing model with high accuracy. Similar to the 

test of RCST on 2D, the weight parameters are fixed during optimisation to avoid a non-

linear effect. All the bounds of design parameters are kept the same as for the previous 

test case. Figure 8.29 and 8.30 show the optimisation history of this test.  
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Figure 8.29 Optimisation history of drag (left) and Cmx (right) using RCST with BPOX 6 

-BPOY 6 

 

Figure 8.30 Optimisation history of the 10
th

 torsion box volume using RCST with BPOX 

6- BPOY 6 

 

Figure 8.29 shows the optimisation history of drag and Cmx. As with CST cases, the 

optimisation achieves convergence in about 13 iterations. The Cmx constraint is satisfied 

during optimisation. Figure 8.30 shows the history of torsion box volume and proves that 

geometric constraints are also satisfied in the optimal solution. However, the Cd is not 

reduced as much as in the CST method. Figure 8.31and 8.32 show the Cp contour on the 

surface of initial and optimal geometries.  
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Figure 8.31 The Cp contour plot of Initial wing surface, lower (left) and upper (right), 

which is represented by RCST with BPOX 6 and BPOY 6 

 

  

Figure 8.32 The Cp contour plot of optimal wing surface, lower (left) and upper (right), 

obtained by RCST with BPOX 6 and BPOY 6 in optimisation with Cmx constraint 

 

The Cp on initial geometry represented by RCST is generally similar to the initial 

geometry of the original CST method with the same order. On the upper surface, the 

lambda shock on the initial geometry of the RCST method is slightly weaker than on the 

initial geometry of the original CST method. The Cp contour on the optimal geometry 

shows a similar result to the CST test case. However, the leading edge suction area is 

larger than the result of the original CST method, and the shock wave on the upper 

surface is not weakened significantly. In addition, no low pressure area is generated in the 

optimal geometry of the RCST method, which is different from the test of the original 
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CST method. Six sections at the spanwise locations 10%, 30%, 50%, 70%, 80% and 90% 

are also extracted to compare the Cp distributions and aerofoil shape of initial and 

optimal solutions. 

 

  

Figure 8.33 Cp distribution (left) and aerofoil shapes (right) at 10% of wingspan 

  

Figure 8.34 Cp distribution (left) and aerofoil shapes (right) at 30% of wingspan 
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Figure 8.35Cp distribution (left) and aerofoil shapes (right) at 50% of wingspan 

 
 

Figure 8.36 Cp distribution (left) and aerofoil shapes (right) at 70% of wingspan 

 
 

Figure 8.37 Cp distribution (left) and aerofoil shapes (right) at 80% of wingspan 
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Figure 8.38 Cp distribution (left) and aerofoil shapes (right) at 90% of wingspan 

 

As regards the above figures, firstly the high pressure suction appears at 10%, 30%, 50% 

and 70% of the wingspan. Secondly, they illustrate that the Cp distribution of the optimal 

geometry on the lower side of the wing is modified slightly compared with the Cp 

distribution on the original geometry.  

 

Finally, the Cp distributions on the upper surface show that the shock wave is almost 

removed only at 30% of wingspan, and significantly weakened at 10%, 50% and 80% of 

wingspan. At 70% of wingspan, although the shock wave has been weakened, its location 

has move forward to the leading edge direction, which is not good for drag reduction. At 

90% of wingspan, the shock is weakened and moved downward to the trailing edge.  

 

The twist distribution is plotted in Figure 8.39 and compared with original CST method. 

The lift distributions of optimal results of RCST and CSR are plotted in Figure 8.40 and 

aerodynamic coefficients are shown in Table 8.4. 



245 

 

 

Figure 8.39 Twist distribution 

 

Figure 8.40 The lift distribution along span 
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Table 8.4 Aerodynamic coefficients of optimal results using RCST (drag units in drag 

count) 
 Cl Cd_total Cd_wave Cd_induced Cd_vis Cl/Cd Cmx 

Initial 0.6 312.71 30.84 133.69 136.35 19.19 1.287 

Optimal 

RCST 
0.6 268.39 10.32 128.89 119.53 22.36 1.286 

 - -14.17% -66.54% -3.59% -12.34% 16.51% -0.05% 

 

The twist distribution shows that the twist angle distribution of optimal geometry of the 

RCST method is similar to that with optimal geometry of the CST method. However, the 

RCST method obtains about 1 more degree of pitch down the twist. The twist distribution 

curve is smoother than in the original CST.  

 

The results of lift distribution obtained by RCST and CST are very similar to each other. 

The centre of lift of the new results is 40.05%, and of the initial geometry is 40.02%. 

Therefore, in this optimisation, the centre of lift has been constrained successfully in the 

RCST method. The aerodynamic coefficients show that the optimisation using RCST 

only with Cmx constraint reduces the total drag by 14.17%, compared with 17.45% in 

optimisation using the CST method. The wave drag is reduced by 66.54% in RCST, 

which is much less than the CST method. The induced drag is reduced to 128.89 drag 

counts, which is similar to the optimal result of CST method. The viscous drag is only 

reduced by 12.34%, which is also less than the 14.91% of the CST method.  

 

The results show that RCST in 3D wing optimisation does not reduce the wave and 

viscous drag as much as in the original CST method. The reason is that the weighting 

coefficients take more local control to improve the inverse fitting accuracy due to the 

complexity of 3D wing geometry. However, although the fitting accuracy is improved, 

this could reduce the surface control capability of the original design parameters. 

Therefore, if the weight coefficients are fixed during optimisation, the capability of 

RCST for drag reduction is not as good as the original CST method. However, using the 

weight coefficients in optimisation is not recommended since this will significantly 

increase the number of design variables and bring non-linear effects into optimisation. 
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Therefore, in the 3D case, RCST is suitable for the case which requires only slight 

modification of initial geometry. 

 

8.3 Winglet optimisation 

As presented in Chapter 4, the winglet is an important aerodynamic component for future 

aircraft. Also, industry is interested in retrofitting the winglet to existing wings. Therefore, 

winglet optimisation is performed in this thesis. 

  

The F6 wing is still employed in this case. Four types of winglet, namely winglet-2, 

winglet-2, winglet-3 and winglet-4, are employed to retrofit to the F6 wing. The 

definitions of four winglets are consistent with Chapter 4. The winglet-1 and winglet-2 

are upward winglets, and the winglet-3 and winglet-4 are downward winglets. The flow 

condition is kept the same as in previous cases.   

 

However, there are two limitations to using mesh adjoint in this case. The first is that the 

CST winglet parameterisation method defines the parametric model along the wing 

extension. The wing extension is respect to the arc-length of the winglet leading edge 

which is decided by winglet planform parameters. However, the arc-length of the 

complex curve is only calculated numerically and hard to be differential analytically. 

Therefore, it is hard to directly calculate analytical surface sensitivities. The second 

reason is due to the limitation of mesh adjoint solver presented in the introduction of this 

chapter. Therefore, this test is carried out by ‘Volgrad’ strategy. However, using ‘Volgrad’ 

requires performing NDV times of mesh deformation, which is time consuming. Hence, 

only the winglet is optimised in this case; the wing shape is fixed.  

 

The initial winglet is considered as a direct extension of the wingtip with respect to the 

winglet planform parameters. Therefore, the initial surface parameters of the winglet are 

same as for the F6 wingtip parameters. In order to reduce the number of design variables, 

the winglet is parameterised by CST with 6
th

 order in chordwise and 6
th

 order in spanwise. 

The twist angle and trailing thickness of the initial winglet and the F6 wingtip are 
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constants. The twist and trailing edge thickness distribution is controlled by 3
rd

 order 

Bernstein polynomials. The twist is limited between -5.7° and 5.7° for high flexibility, 

and the non-dimensional trailing edge thickness is limited between 0.003 and 0.005. The 

other initial design parameters of four winglet planforms and their bounds are listed in 

Tables Table 8.5 to Table 8.8.  

 

Table 8.5 Planform parameters of winglet-1 
 Lower bound Initial value Upper bound 

P0P3/P0P1 0.2 0.4 0.6 

P1P4/P0P1 0.2 0.4 0.6 

           29 35 40 

            29 40 50 

P’0P’3/P0P1 0.2 0.4 0.6 

P’1P’4/P0P1 0.2 0.4 0.6 

            19 30 35 

          19 25 30 

PTE_wingP5/PTE_wingP7 0.2 0.4 0.6 

P6P5/PTE_wingP7 0.2 0.4 0.6 

P1y 0.1 0.3 0.42 

P1z 0.1 0.25 0.5 

P2y 0.05 0.12 0.32 

P2z 0.1 0.734 1.5 
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Table 8.6 Planform parameters of winglet-2 
 Lower bound Initial value Upper bound 

P0P3/P0P1 0.1 0.26 0.3 

P1P4/P0P1 0.2 0.5 0.6 

            29 45 50 

        29 60 80 

P’0P’3/P0P1 0.2 0.4 0.6 

P’1P’4/P0P1 0.2 0.3 0.6 

        19 35 40 

            19 30 35 

PTE_wingP5/PTE_wingP7 0.2 0.4 0.6 

P6P5/PTE_wingP7 0.2 0.4 0.6 

                  -89 89 89 

P1y 0.1 0.42 0.42 

P1z 0.1 0.8 1 
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Table 8.7 Planform parameters of winglet-3 
 Lower bound Initial value Upper bound 

P0P3/P0P1 0.2 0.4 0.6 

P1P4/P0P1 0.2 0.4 0.6 

           29 35 40 

            29 40 50 

P’0P’3/P0P1 0.2 0.4 0.6 

P’1P’4/P0P1 0.2 0.4 0.6 

            19 30 35 

          19 25 30 

PTE_wingP5/PTE_wingP7 0.2 0.4 0.6 

P6P5/PTE_wingP7 0.2 0.4 0.6 

P1y 0.1 0.3 0.42 

P1z -0.3 -0.425 -0.01 

P2y -0.38 0.12 0.32 

P2z -0.4 -0.367 -0.01 
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Table 8.8 Planform parameters of winglet-4 
 Lower bound Initial value Upper bound 

P0P3/P0P1 0.1 0.26 0.3 

P1P4/P0P1 0.2 0.5 0.6 

            29 45 50 

        29 60 80 

P’0P’3/P0P1 0.2 0.4 0.6 

P’1P’4/P0P1 0.2 0.3 0.6 

        19 35 40 

            19 30 35 

PTE_wingP5/PTE_wingP7 0.2 0.4 0.6 

P6P5/PTE_wingP7 0.2 0.4 0.6 

                  -89 -89 89 

P1y 0.1 0.42 0.42 

P1z -0.5 -0.4 -0.01 

 

The total number of design variables is 114 for winglet-1 and winglet-3 and 113 for 

winglet-2 and winglet-4. The optimisation is to minimise the total drag under the 

constrained lift. Therefore, the optimisation setup is same as Equation 8.1, and described 

as Equation 8.4. 

 

For winglet-1 and winglet-3, 12 sections along the winglet on the wing extension are 

extracted to be constrained with torsion box volume. The total span of winglet-1 and 

winglet-3, which are        , is constrained between 0.30 and 0.42 which is 7.8% of 

the wing span length. The height of winglet-1, which is        , is constrained 

                
 
   
  

 

 
   
  
 
              

                                                         

                             

                                               

8.4 
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between 0.6 and 1.0. The height of winglet-3, which is         is constrained between 

-0.5 and -0.4.  

 

For winglet-2 and winglet-4, 6 sections are extracted since they are only composed of one 

part. No extra constraints are employed to limit the total span since the total span has 

been limited in the bound of design parameters.  

The optimisation is then carried out. The computational meshes in this case are more than 

4 million. Considering the computational cost, the optimisation is stopped at around 15 

iterations.  The optimisation history is shown in Figure 8.41and 8.42. 

  

Figure 8.41 Optimisation history of drag of winglet-1 (left) and winglet-2 (right) 

  

Figure 8.42 Optimisation history of drag of winglet-3 (left) and winglet-4 (right) 
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The optimisation history shows that the drag has been significantly reduced. The winglet-

3 reaches convergence after 10 iterations. The other cases provide about 10 drag counts 

reduction. The geometric volume constraints are all satisfied during optimisation. The 

aerodynamic coefficients of the initial and optimised winglet-1 are shown in Table 8.9, 

and those for the initial and optimised winglet-2 are shown in Table 8.10. 

 

Table 8.9 Aerodynamic coefficients of winglet-1 (drag unit in drag count) 
 Cl Cd_tot Cd_w Cd_i Cd_v Cl/Cd Cmx 

Wing  no 

winglet 
0.6 308.95 33.32 133.53 134.97 19.42 1.288 

Initial 

winglet 
0.6 281.22 24.63 107.31 140.6 21.33 1.403 

Optimised 

winglet 
0.6 274.27 22.39 105.79 137.9 21.88 1.418 

Initial/ 

Optimised 
 -2.47% -9.09% -1.42% -1.92% 2.59% 1.07% 

Wing/ 

Optimised 

winglet 

 -11.21% -32.80% -20.77% 2.15% 12.68% 10.09% 

 

Table 8.10 Aerodynamic coefficients of winglet-2 (drag unit in drag count) 
 Cl Cd_tot Cd_w Cd_i Cd_v Cl/Cd Cmx 

Wing  no 

winglet 
0.6 308.95 33.32 133.53 134.97 19.42 1.288 

Initial 

winglet 
0.6 278.6 24.58 108.89 137.2 21.53 1.398 

Optimised 

winglet 
0.6 272.91 22.83 107.32 135.7 21.99 1.41 

Initial/ 

Optimised 
- -2.04% -7.12% -1.44% -1.11% 2.14% 1.14% 

Wing/ 

Optimised 

winglet 

- -11.65% -31.48% -19.63% 0.56% 13.24% 9.78% 
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The aerodynamic coefficients show that retrofitting the winglet on the wing could 

significantly reduce the drag. The winglet-1 reduced the total drag by 27 drag counts in 

which wave drag and induced drag are reduced by about 8 drag counts and drag 26 

counts, respectively, and the viscous drag is increased by about 6 drag counts. In the wing 

with winglet-2, total drag is reduced by about 30 drag counts, which includes 8 drag 

counts for wave drag, 25 drag counts induced drag reduction and 3 drag counts viscous 

drag increase. It is noticed here that the winglet-2 could effectively reduce the wave drag 

and induced drag by amounts similar to the winglet-1. However, the viscous penalty of 

the winglet-2 is smaller than for the winglet-1.  

 

The optimised results show that the optimisation further reduces the total drag by about 7 

drag counts on both winglet-1 and winglet-2. The contribution is mainly from the wave 

drag reduction. In the optimised winglet, both winglet-1 and winglet-2 reach the 

maximum span of 0.42; however, their height is reduced by about 0.1 to compromise the 

viscous drag. This could be noticed from the Cp contour and skin friction Cf line on the 

surface in Figure 8.43 to 8.46.  

 

  

Figure 8.43 The Cp contour and zoomed in view with Cf lines of initial design of 

winglet-1 
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Figure 8.44 The Cp contour and zoomed in view with Cf lines of optimised design of 

winglet-1 

 

  

Figure 8.45 The Cp contour and zoomed in view with Cf lines of initial design of 

winglet-2 
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Figure 8.46 The Cp contour and zoomed in view with Cf lines of optimised design of 

winglet-2 

 

The Cp contour figures show that both of the initial winglets have a shock in the junction 

area between wing and winglet. This shock also causes reattachment flow behind it. In 

the optimised winglet, this shock wave is weakened and flow reattachment is removed. 

However, a large pressure suction has appeared in the optimised geometry near the 

winglet tip. This causes a weak shock in the leading edge. The Cl distribution and Cd 

wave drag distribution along the span are plotted in Figure 8.47 andFigure 8.48. 

  

Figure 8.47 Cl (left) and Cd wave drag (right) distribution along span of winglet-1 
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Figure 8.48 Cl (left) and Cd wave drag (right) distribution along span of winglet-2 

 

The Cl figures illustrate that the lift is slightly increased at the optimised winglet. 

Therefore, the induced drag is further reduced a little. The Cd wave drag distribution 

shows that the optimisation successfully reduced the wave drag at the junction area in the 

initial geometry. However, Cmx is increased by about 10% with respect to the clear wing. 

The wing root bending is the key factor in winglet design. This requires multi-

disciplinary constraints in future work.  

 

The aerodynamic coefficients of the wing without winglet, initial and optimised winglet-

3 are shown in Table 8.11, and initial and optimised winglet-4 are shown in Table 8.12. 
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Table 8.11 Aerodynamic coefficients of winglet-3 (drag unit in drag count) 
 Cl Cd_tot Cd_w Cd_i Cd_v Cl/Cd Cmx 

Wing  no 

winglet 
0.6 308.95 33.32 133.53 134.97 19.42 1.288 

Initial 

winglet 
0.6 280.1 25.65 113.26 135.2 21.41 1.357 

Optimised 

winglet 
0.6 271.56 21.61 113.85 129.22 22.09 1.360 

Initial/ 

Optimised 
- -3.05% -15.75% 0.52% -4.42% 3.20% 0.23% 

Wing/ 

Optimised 

winglet 

- -12.10% -35.14% -14.74% -4.26% 13.77% 5.60% 

 

Table 8.12 Aerodynamic coefficients of winglet-4 (drag unit in drag count) 
  Cl Cd_tot Cd_w Cd_i Cd_v Cl/Cd Cmx 

Wing  no 

winglet  
0.6 308.95 33.32 133.53 134.97 19.42 1.288 

Initial 

winglet  
0.6 279.92 24.98 114.12 133.01 21.43 1.355 

Optimised 

winglet  
0.6 271.75 21.47 110.87 131.15 22.08 1.372 

Initial/ 

Optimised 
- -2.92% -14.05% -2.85% -1.40% 3.03% 1.25% 

Wing/ 

Optimised 

winglet 

- -12.04% -35.56% -16.97% -2.83% 13.69% 6.51% 

 

In the initial design, both winglet-3 and winglet-4 are able to reduce the total drag about 

28 drag counts, which is slightly less than winglet-1 and winglet-2. The wave drag is 

reduced by a level similar to the upward winglet. The downward winglet reduced the 

induced drag by less than the upward winglet. However, the downward winglet could 
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maintain the viscous drag compared to the clear wing. Similarly, the winglet-4 has less 

viscous drag than the winglet-3. In addition, Cmx of the initial downward winglets are 

much less than that of the upward winglets. This is because the direction of aerodynamic 

force on the downward winglets may point to outer of the wing and then generate a 

slightly negative bending momentum. This could be a benefit for overall aircraft design. 

 

The optimisation results show that the total drag is further reduced by about 8 drag counts. 

The total drag of the optimal solutions obtained by both of the downward winglets is 

about 271 drag counts, which is smaller than the upward winglets. For the winglet-3, the 

main drag reduction is the contribution from wave drag and viscous drag. The induced 

drag is not changed since the height of the winglet-3 has only increased from -0.4 to -0.45. 

The contribution to drag reduction of the winglet-4 is from wave drag and induced drag, 

and viscous drag is only reduced by about 2 drag counts. For the winglet-4, because the 

height is increased from -0.4 to -0.5, the induced drag is reduced by about 3.3 drag counts 

but the viscous drag is only reduced by 2 drag counts. Cmx is increased by 5.6% and 6.51% 

with respect to the clear wing in winglet-3 and winglet-4, respectively.  This is much less 

than for the upward winglet. The Cp distribution on the surface is plotted in following 

figures.  

 

 

  

Figure 8.49 Cp Contour of initial and optimised winglet-3  
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Figure 8.50 Cp Contour of initial and optimised winglet-4  

 

The Cp contour plots show that the both of the optimal downward winglets are larger 

than their initial design. This shows that the optimiser tries to increase the area of winglet 

to carry more loads to reduce the induced drag and angle of attack. As a results the wave 

drag is reduced on the wing. 

 

Moreover, another phenomenon is observed from the Cp distribution figures: there is no 

shock wave on the downward winglet. This property is much better than for the upward 

winglet.  

  

Figure 8.51 Cl (left) and Cd wave drag (right) distribution along span of winglet-3 
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Figure 8.52 Cl (left) and Cd wave drag (right) distribution along span of winglet-4 

 

The above Figure 8.51 and 8.52 show the Cl and Cd wave drag distribution along the 

spanwise direction. The Cl distribution figures prove that the local lift on the optimised 

downward winglet has been increased. The downward winglet has more smoothness lift 

distribution at the junction of wing and winglet than the upward winglet. The Cd wave 

drag distribution of optimal downward winglets show that no wave drag is detected at 

both of the downward winglets, and there is slight wave drag reduction on the wing due 

to the variation of angle of attack.  

 

  

Figure 8.53 Cd pressure drag (left) and friction drag (right) of optimal results of four 

types of winglet 
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Figure 8.53 compares the pressure drag and skin friction drag distribution along 

wingspan of the optimal results of four types of winglet. It clearly shows that both of the 

upward winglets have huge amount of pressure drag at the junction area of wing and 

winglet, and both downward winglets obtained a fairly small pressure drag. The skin 

friction is mainly related to the height of winglet. Therefore, the optimal winglet-1 is the 

highest, 0.85, and obtained the highest skin friction drag. The optimal winglet-2 and 

winglet-4 have heights 0.65 and 0.5, hence their skin friction drag is medium level. The 

optimal winglet-3 has 0.45 height which causes the lowest skin friction drag. 

 

This research shows that the CST parameterisation is able to handle winglet optimisation 

successfully. It could be used in future winglet optimisation research. The good 

properties of the downward winglet have been investigated. First, the downward winglet 

has less wave drag and pressure drag than the upward winglet due to the open junction on 

the upper surface. Second, the downward winglet is able to achieve similar level of total 

drag reduction as the upward winglet but with less Cmx, which is significant for overall 

aircraft design. Therefore, the downward winglet is worth further study in the future. 

 

 

8.4 Shock bump optimisation on the wing 

In Chapter 7, three types of shock control bumps, which are CST, PARSEC and cubic 

polynomials, have been tested on 2D aerofoil shock reduction optimisation. Although the 

test shows that the type of bump does not have a significant effect on shock reduction, the 

CST bump could theoretically provide C2 continuity at the boundary between aerofoil 

and bump. In Chapter 4, the CST for a three-dimensional bump has been described. 

Therefore, the CST bump on a 3D wing is tested. The F6 wing is still selected as the 

baseline wing. The flow condition is kept same as with previous cases.  

 

As demonstrated in Chapter 6, the mesh adjoint is able to directly provide the sensitivities 

of objective to surface points for design guidance. Hence, the surface sensitivity of the F6 
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wing is plotted to assist to deploy the bumps. Based on the work of Wong et al (2007), 

the bumps could be deployed without gap between bumps’ edge. Therefore, 12 bumps 

are deployed one by one in the area with negative sensitivities from the wing root along 

wingspan. The sensitivity of Cd to surface point z direction and bump position is plotted 

in Figure 8.54. 

 

 

Figure 8.54 Sensitivities of Cd to surface point Z direction and boundaries of bumps  

 

The first 6 bumps are at the inboard wing with indexes 1 to 6. Bump 1 starts at x=1.25 

and y=0.01 and has length 0.6 and width 0.3. The leading edge sweep angle of bump 1 is 

8.60° and the trailing edge sweep angle is 2.24°. Bumps 2 to 6 consistently follow bump 

1 with the same width, leading edge and trailing sweep angle. The lengths of bumps 2 to 

6 are continually reduced with respect to the leading edge and trailing edge of the bumps. 

Bumps 7 to 12 are at the outboard wing with same width, 0.3. The leading edge sweep 

angle of bumps 7 to 12 is 23.35° and their trailing edge sweep angle is 20.37°.  

 

Each bump has 3
rd

 order on chordwise, 3
rd

 order on spanwise, and 3
rd

 order to control 

height distribution polynomials. Wong (2006) found the length and width of bumps are 

not sensitive in optimisation. Hence, the length and width are fixed during optimisation. 
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The total number of design variables is 12x((4x4)+4) = 240. The flow condition is the 

same as for the previous test case with          , Cl     and          . The 

target lift iteration is still employed, so the objective function is shown in Equation 8.5, 

and no extra constraint is applied.  

 

The initial bump parameters are set to zero, the parameters of height distribution are 1.0. 

The bound of each bump parameters is between 0.0 and 0.02, the bound of height 

distribution parameters is between 0.0 and 2.0.  

 

Figure 8.55 Optimisation history of Cd 

 

Figure 8.55 shows the optimisation history of Cd. The optimisation is stopped at 12 

iterations. The overall drag has been significantly reduced during optimisation. Optimised 

12 bump on wing is shown in Figure 8.56. The surface Cp contour plot with range 

between -1.2 and -0.4 and are shown in Figure 8.57. The Cp contour plots and skin 

friction lines are shown in Figure 8.58.  
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Figure 8.56 Optimised 12 bumps on wing 

 

  

Figure 8.57 Surface Cp contour in range -1.2 to -0.4 of initial wing without bump(left) 

and optimised bumps (right) 
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Figure 8.58 Cp Contour and Cf lines plot on upper surface of initial wing without bump 

(left) and optimised bumps (right) 

 

Figure 8.56 clearly shows 12 bumps have been growth up after optimisation. The Cp 

contour plot in Figure 8.57 shows that the strong shock of lambda shock structure has 

been weakened by the bumps. The skin friction Cf lines in Figure 8.58 show that there is 

a large shock induced flow separation at the outboard wing. After a bump is deployed, 

this flow separation is reduced and the detachment line is pushed downward to the wing 

trailing edge. More information is shown by Cp distribution and aerofoil section cut from 

the wing at Y = 0.16, 1.36, 2.56 and 3.46, which are the middle points of bumps 1, 5, 9 

and 12 (see Figure 8.59 to 8.62).  

  

Figure 8.59 Cp distribution and aerofoil section cut at middle of bump 1 
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Figure 8.60 Cp distribution and aerofoil section cut at middle of bump 5 

  

Figure 8.61 Cp distribution and aerofoil section cut at middle of bump 9 

  

Figure 8.62 Cp distribution and aerofoil section cut at middle of bump 12 
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The section cut figures show that the height of a bump increases along spanwise. With 

increasing bump height, the shock strength decreases, in particular at bumps 9 and 12. 

This because the surface sensitivities obtained by mesh adjoint at the outboard wing are 

more than at the inboard wing. The aerodynamic coefficients and Cd wave drag 

distribution along spanwise are shown in Table 8.13 and Figure 8.63. 

 

Table 8.13 Aerodynamic coefficients (drag units in drag count) 
 Cl Cd_total Cd_wave Cd_induced Cd_pressure Cd_friction Cl/Cd 

Initial 0.6 308.95 33.32 133.53 75.23 59.74 19.42 

Optimal 0.6 287.83 20.18 132.31 68.19 60.00 20.85 

 - -6.84% -39.44% -0.91% -9.36% 0.44% 7.34% 

 

 

Figure 8.63 Cd wave along span of initial wing and optimal bumps 

 

Figure 8.63 shows that the CST bump has effectively reduced the wave drag in the 

deployed area. Although the height of the bump is not large as at the inboard wing, the 

wave drag is significantly reduced at the inboard wing. The total drag is reduced by 6.84% 

which includes about 40% wave drag reduction and 9.36% pressure drag reduction. The 

penalty of friction drag is only increased by 0.26 drag counts. Therefore, this test proves 

that CST bump parameterisation is efficient for shock control bump optimisation, and 

could be an option for future research. 
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Chapter 9 Conclusion and Future Work 

 

9.1  Summary 

There were two main objectives in this thesis: the first was to develop parameterisation 

methods for aircraft components, and the second was to apply parameterisation to 

aerodynamic optimisation with an adjoint approach.  

 

In the first part of the thesis, the current common geometric parameterisation methods 

were presented. The CST and PARSEC methods were selected as starting-points after a 

literature review. Two parameterisation methods were proposed, which were the iCST 

and RCST methods. The iCST method aimed to combine the high flexibility from the 

CST method with the full intuitiveness from the PARSEC method. This method 

introduced eight extra intuitive parameters at two x-positions between the crest and the 

leading edge and between the crest and the trailing edge on each surface of the aerofoils 

in relation to the original PARSEC-12 method. Therefore, 28 design variables were used 

to parameterise the entire aerofoil. The power form polynomials used in PARSEC have 

been replaced by the 10
th

 order CST equation for curve representation. Its performance 

was examined by the accuracy of inverse fitting for a range of aerofoils in comparison 

with the 12
th

 order CST and PARSEC-12 methods. The RCST was to introduce rational 

Bernstein  polynomials into the original CST methods to provide more flexibility and 

local control with lower order polynomials.  

 

The comparative study of CST, PARSEC, iCST and RCST was done by comparing their 

inverse fitting accuracy over various aerofoils. The results showed that the 12
th 

order CST 

and the iCST method with the same number of design variables are able to represent 

supercritical and wind turbine aerofoils with a high level of fitting accuracy, while the 

representation of complex NLF aerofoils is also acceptable but shows slightly higher 

error after the half chord position. With an insufficient number of control parameters, the 

standard PARSEC-12 failed to fit most of the aerofoils tested here, and was particularly 
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problematic for NLF and wind turbine aerofoils. The RCST showed excellent accuracy in 

representing all aerofoils with only 6
th

 order polynomials. The iCST method can be 

viewed as an extension of the PARSEC method with full intuitive parameters. However, 

it can also be viewed as a transformation of the originally non-intuitive parameters in the 

CST method to a full set of intuitive parameters through a transformation matrix. This 

provided opportunities for aerodynamic designers to understand the relationship between 

the aerodynamic properties and the geometric features and to guide the exploration of the 

design space by selecting proper design variables and setting proper bounds/constraints in 

the optimisation process. To look at it in another way, although RCST did not provide 

any intuitive parameter, it increased the flexibility of the original CST method with 

reduction of the number of design variables. These were also favourite properties of 

parameterisation which are pursued in geometric parameterisation development. 

 

Afterwards, the CST parameterisation method has been successfully developed to 

parameterise an entire passenger transport aircraft for aerodynamic optimisation. The 

eleven main components of a civil passenger aircraft are used for this research, including 

wing, HTP, VTP, winglet, forward part fuselage, mid-part fuselage, tail cone, belly-

fairing, nacelle, flap track fairing and pylon.  

 

The wing, HTP, VTP and winglet were defined as wing type geometry. The tests of 

inverse fitting of original CST and RCST parameterisation for wing have been carried out 

to examine the capability of representation of wing type geometry of the original CST 

parameterisation methods. Using the higher order Bernstein polynomial can obviously 

improve the accuracy of inverse fitting. A CFD simulation has been run to investigate the 

difference between original and approximated models on aerodynamics. It showed that 

the pressure distributions on the lower side of surface will not be affected on 

approximated models. However, the pressure distributions on the upper surface were 

more sensitive and difficult to match, especially in the leading edge before 20% chord 

area. This drawback has been improved by RCST; the results of the RCST showed 

significant improvement in capturing the pressure suction peak in the leading edge area.  
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The CST method for representing the wing tip device is developed by topology 

transformation of wing extension with respect to winglet planform parameters. To keep 

the geometric continuity between wing and winglet, a few constraints were introduced.  

 

The fuselage and nacelle were defined as the ‘body cross-section’ type geometry. 

Because of the complexity of the realistic nose fuselage with cabin and window shield, a 

simplified nose fuselage without cabin window shield was used in this work. The 

simplified nose fuselage, cylindrical fuselage and tail cone can then be easily established. 

In some case, the profile shape of tail cone was more complicated, so the shape function 

was involved to assist to represent the cross-section profile. The extra constraints should 

be introduced to ensure the geometric continuity between three parts. The representation 

of nacelle inlet has been slightly modified, in which the theory of PARSEC 

parameterisation methods was used to provide intuitive parameters. The CST for belly 

fairing was developed by applying coordinate transformation of Cartesian coordinate to 

Cylindrical coordinate. The flap tracks fairing and simplified pylon model were treated in 

a similar way to the fuselage. Furthermore, CST was also developed for bump design to 

obtain C
2
 continuity between bump and initial geometry. 

 

Finally, an intersection line calculation algorithm based on the New-Raphson method has 

been presented. The purpose was to calculate the intersection line directly from the CST 

parametric model without using an additional CAD package and to improve the 

intersection line accuracy. The results showed this intersection line algorithm is able to 

calculate the intersection line between different CST models with very high accuracy. 

 

In the second part of this thesis, the optimisation methods for aerodynamic design have 

been reviewed. The adjoint approach was selected to carry out the optimisation study. 

The optimisation framework was developed based on python programming. The radial 

basis function was employed to perform mesh deformation.   

 

The two-dimensional optimisation was performed at first, which was mainly to test the 

drag reduction using CST with 7
th

 order and 10
th

 order, and iCST and RCST with 6
th

 



273 

 

order methods. The optimisation results showed that all four methods were able to 

successfully reduce the drag and eliminate the shock wave. The original CST with lower 

order polynomials has better convergence than the CST with higher polynomial order. 

However, the original CST with lower order may lack local control and experiences 

difficulty in the shock region. The RCST showed the best optimal aerofoil with shock-

free performance. At the same time, the RCST achieved the fastest convergence of all 

methods, due to its lower number of design variables. The iCST method was also able to 

effectively eliminate the shock wave. Because of the specific intuitive constraint and 

curvature parameters, the optimal aerofoil presented a some non-smoothness in the 

pressure distribution; however, it presented the highest pressure suction peak at the 

leading edge, which demonstrates that iCST is capable of better local control. It can be 

concluded that all of the methods were successful parameterisation methods for handling 

drag reduction. The selection of one of the three geometry parameterisation methods 

could depend on the specific requirement.  

 

The two-dimensional shock control bump optimisation has been carried out to test the 

performance of CST, PARSEC and cubic polynomial bump parameterisation methods. 

The results showed that all three methods are able to significantly reduce the total drag. 

There was no obvious difference between the three methods in terms of their optimal 

solution and optimisation convergence. However, the CST bump was able to offer better 

C
2
 continuity. Therefore, the CST bump could be employed in future shock control bump 

studies. 

 

Three-dimensional optimisation of wing drag reduction has been implemented. The first 

case was to compare the influence of the order of the CST methods. The optimisation 

demonstrated that higher order CST will require a little more optimisation iterations to 

reach convergence; however, there was no significant difference. The optimal results 

showed that all CST with different orders achieve very similar geometries with successful 

drag reduction. The spanwise high order could slightly improve the shock wave drag 

reduction. However, the lower order CST guaranteed the smoothness of wing surface. 

Furthermore, the overall drag reduction optimisation would cause the shift of the centre 
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of lift to reduce induced drag which was not desirable in practical engineering design. 

Therefore, the second optimisation was then carried out employing Cmx constraint to 

mitigate the shift of the centre of lift. The results showed that the optimisation of Cmx 

constraint could successfully reduce drag while maintaining the position of the centre of 

lift. Although the lift distribution may have changed slightly, the optimal result is still 

more practical for engineering design application than the previous test. Therefore, it 

suggested that the Cmx constraint should be employed in the future for wing optimisation. 

Subsequently, RCST parameterisation method has been tested, and the results showed 

that it was able to reduce the drag. However, the drag reduction of RCST was not as good 

as for the original CST, because of the complexity of the 3D wing. The weight 

coefficients could improve geometric fitting accuracy, but they reduced the surface 

sensitivities of control parameters and allow geometry only to be modified near the initial 

design. 

 

The second test case of three-dimensional optimisation was to optimise the winglet. Four 

types of winglet, namely, winglet-1, winglet-2, winglet-3 and winglet-4, were employed 

to retrofit on the F6 wing. The optimisation of upward winglets showed successful drag 

reduction. In the initial design, both retrofitted upward winglets achieved the same level 

of total drag reduction with respect to the clean wing. The winglet-2 had less viscous drag 

than the winglet-1. The optimisations for both upward winglets were then successfully 

performed to reduce the shock wave drag presented in the transition area between the 

wing and the initial winglet. The total drag reduction obtained by two types of retrofitted 

initial downward winglets was slightly less than upward winglets, due to the smaller 

induced drag reduction. However, it had less viscous drag and Cmx bending momentum, 

both of which are essential for aircraft design. Optimisation of the downward winglet 

gave a higher drag reduction. The total drag of both of the optimal downward winglets 

was slightly lower than for the optimal upward winglets. Comparison showed that the 

optimal winglet-3 had the lowest pressure drag and skin friction drag of the four optimal 

winglets. Although the Cmx of optimal downward winglets was slightly increased too, 

they were still much less than for the upward winglet.  
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Finally, 12 shock control bumps represented by CST methods were deployed onto the F6 

wing surface and optimised. The optimisation has successfully driven the bumps to 

weaken the shock strength in their deployed area and effectively reduced the wave drag. 

Therefore, the CST bump is also successful in the 3D case and could be used in future 

work. 

 

9.2  Future work 

Two parameterisation methods, iCST and RCST, have been developed and tested in this 

thesis. The optimisation results show that iCST is able to effectively reduce the shock 

wave drag. However, the curvature parameters may generate some non-smoothness in the 

pressure distribution. Therefore, in future work, it would be worth trying the lower order 

iCST method with removal of some curvature parameters. Furthermore, the iCST method 

is so far only presented for two-dimensional aerofoils: in the future, it could be further 

developed for the three-dimensional aerodynamic components. 

 

The optimisation has been successfully performed in this thesis: the wing and winglet 

have been successfully optimised by the adjoint approach. However, the winglet 

optimisation in this thesis only considered the aerodynamic factor. The improvement of 

aerodynamic-induced drag will normally bring more loading in the winglet area, where 

the structure penalty must be considered in practical engineering. Therefore, future work 

on winglet optimisation study should involve multi-disciplinary constraints. Moreover, 

all the optimisation work in this thesis is done only under single flow conditions. The 

optimal results may not be robust with respect to variation of design conditions. 

Therefore, if computational resource allows, the optimisation should be carried out under 

multi-point design conditions in future work. 

 

Unfortunately, the entire 3D aircraft optimisation was not implemented due to the 

limitation of the TAU adjoint solver, although all 3D parametric models are ready. This 

could be overcome in the near future with the development of the TAU mesh adjoint 

solver. Even if this is ready for large cases in the future, there is still one issue remaining, 

which is the sensitivity of the surface mesh points. Although the CST method is able to 
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provide analytical surface sensitivities for each component, it would be difficult when 

they are assembled into an entire aircraft after the intersection line is presented. The 

intersection line would change the geometry topology and make the actual sensitivities 

different from the analytical solution. Therefore, the other way to calculate surface 

sensitivities, such as that using design velocity proposed by Armstrong et al. (2009), 

could be employed and coupled with current parameterisation methods for  entire aircraft 

optimisation with all its components parameterised. 
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Appendices 

Appendix A: Derivatives of Bezier curve 

 

The Bezier curve is described as: 

        

 

   

        

      

A.1 

with Bernstein polynomials 

              
          A.2 

Then, the derivative of the Bezier curve function is: 
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The derivative of the Bernstein polynomials is: 
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where  
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Therefore, the derivative of the Bezier Curve function is: 

 

  
     

 

  
   

 

   

           

 

   

 

  
        

                             

 

   

 

                      

   

   

 

A.3 

The derivatives of the Bezier curve at beginning     and end points     are: 

               A.2 
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Hence, the first and last polygon control lines of the Bezier curve are parallel to the 

tangent direction at the beginning and end points.  

 

 

Appendix B: Value of rational shape function of RCST method at the trailing edge 

The RCST method is written as:  

The first derivative of RCST with        and        is then written as: 

At the trailing edge,    , the derivative of RCST is given by: 

where  

Therefore,  

Therefore, the last coefficient is still equal to the sum of the tangential value and trailing 

edge thickness position, which is same as with standard CST methods. The weight of the 

rational equation will not affect the physical meaning of the last coefficient.  

 

 

Value of rational shape function of RCST method at the leading edge 
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The second derivative of RCST with        and        is written as: 

The general equation for radius of curvature of the surface is: 

Equations B.4 and B.8 are substituted into Equation B.0: 

At the leading edge,    , and Equation B.10 could be simplified by omitting the term 

with   . 

Then     is substituted to complete Equation B.11. The radius of curvature at the 

leading edge is then equal to:  
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Therefore, the first coefficient still implies the leading edge radius 

This shows that the rational equation will not affect the physical meaning of the first 

coefficient. 

 

 

 

 

 

Appendix C Value at boundary of CST function with class parameters N1 =1.0 and 

N2=1.0 

The CST method with class parameters N1 =1.0 and N2=1.0 is written as:  

Therefore, it is obvious that the values at     and     are zero.  

         
                             

           C.2 

The first derivative is then written as: 

Therefore, the first derivatives at beginning and ending points     and     are: 

 

Appendix D Partial differentiation of geometry of fuselage and belly-fairing 

 

The CST method for belly-fairing is written as:  

1.0

1.0 ,( , ) ( ) ( ) ( ) ( ) ( ) ( )
NyNx

i j j i keel width
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lengthTx 
   

D.2 

( , ) cos( )y R        D.3 

( , ) sin( )z R        D.4 

The partial differential of belly-fairing with respect to    are: 
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The partial differential of belly-fairing with respect to   are: 
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                              D.11 

                   D.12 

                  D.13 

 

The CST method for belly-fairing is written as: 

                 
( ) lengthX T  
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The partial differentials of belly-fairing with respect to    are: 
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The partial differentials of belly-fairing with respect to    are: 
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Appendix E Objective function using target lift iteration 

 

In order to remove the Cl constraint, the target lift iteration is employed in flow solver to 

output results which automatically satisfy the target required lift. However, the link 

between Cl and the angle of attach   have to be exploited to modify the objective 

function.  

The flow solver must perform an internal fix-point iteration on the angle of attach   to 

simultaneously solve: 

           
 

E.1 

                      E.2 

where          is the target required lift coefficient and    represents the iterated angle of 

attack. The flow simulation starts at       , and after flow simulation is converged, the 

   has to reach    which indicates         .  

The gradient 
   

  
 computed by adjoint approaches in Equation 6.23 is then corrected with 

respect to E.1 and E.2. The modified cost function    , (   could be Cd, Cm) depends on D 

and   , and    depend on D. 

                             
E.3 

It should satisfy:  
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and it is then derived by: 
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 could be derived from Equation E.5 and substituted into E.6. Therefore, the final 

equation of the modified gradient is: 
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where 
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 are the sensitivities with respect to angle of attack, which could be 

calculated after solving the adjoint equation and obtaining      
  as well. 
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E.9 

The terms 
   

  
 and 

  

  
 are calculated analytically in TAU.      

  is solved by the flow 

adjoint equation. The sensitivities of cost function with respect to angle of attack are then 

computed.  

 

 

 

 

 

 

 

 


