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Abstract  

The work in this thesis is concentrated on studies of improving the functionality of 

electrolyte- gated thin film transistors with solution- processed semiconductors in 

order to provide a promising platform in particular for sensor as transducers and 

introduce sensitizer layer on the top of the devices to improve their response to 

specific analytes. Calixarenes, a family of organic macrocycles, were used to bind 

selectively to waterborne cations, making them an attractive sensitizer option for such 

species. Here, it is found that calixarenes deposited over the surface of semiconductors 

using the Langmuir trough also show a positive impact on the performance of TFTs in 

terms of reducing unwanted electrochemical doping, which often competes with field 

effect. Also, electron- transporting and electrolyte- gated thin film transistors were 

demonstrated using precursor- route zinc- oxide (ZnO) semiconductors with 

hydrophobic surface modifications. This avoids the well- known problem of electron 

trapping in organic semiconductors. ZnO also shows ambipolar behavior when gated 

by an ionic liquid (IL) at high applied voltages. Moreover, it is found some organic 

solvents may act as EDL gate media for TFTs, thus establishing a new family of gate 

media, in addition to the previously known options (water, ILs, solid electrolytes). 

This ability is a property of the solvent, not the semiconductor, and a criterion is 

identified to qualify an organic solvent to act as EDL gate medium. The organic nano- 

wire (NW) morphology is attractive for sensor applications, due to the high surface 

area of NWs. Here, both p- type and n- type organic NW films were gated by water. 

NW TFTs of the hole- transporting polymer P3HT, grown via different solution- based 

routes, showed lower drain currents, but also lower thresholds, compared to 

conventional P3HT film TFTs. Water- gated electron- transporting organic TFTs were 

demonstrated using nano- belts of the n- type organic semiconductor BBL. 

Performance was improved significantly when using an aprotic organic solvent as 

EDL gate medium for BBL nano- belt films.  
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CHAPTER 1 

1 Introduction 

Electronic devices have been and are still affecting positively on every aspect of 

our life, starting from small and simple devices such as an electronic timer and 

reaching more sophisticated and advanced devices such as computers and medical 

instrumentations. Demands on novel generation of electronics holding new 

functionalities that are not achievable using the traditional silicon technology are 

increasing. Examples for such demands are cheap, flexible, stable sensors; electronic 

artificial skins; smart fabrics; radio- frequency identification and e- heath monitors 

(measuring heart rate, level of blood pressure, for example) implanted under skin. 

Thus, the thin film transistors (TFTs) using organic semiconductors and metal oxides 

as active channels have attracted a remarkable attention in recent years. For large 

devices’ production of thin film transistors with different proposes (light- emitting 

diode LEDs display and solar cell, for example), solution- processable materials are a 

suitable choice. In recent years, an alternative has emerged to the gate dielectrics 

conventionally used in solution- processed thin film transistors (TFTs), in the form of 

(liquid or solid) electrolytes. These display exceptionally high capacitance due to the 

formation of an ultrathin EDL at the electrolyte/semiconductor interface, leading to 

low operating voltages (typically      compatible with battery- powered devices. 

Such TFTs have been proved to show adequate long- term stability.  

In this work, many ideas will be introduced to highlight the issues related to the 

use of electrolytes as gate media for thin film transistors. These include the control of 

parasitic electrochemical doping identifying a new family of EDL gate media, 

establishing n- type water gated TFTs, and introducing electrolyte- gating of 

unconventional (but practically attractive) organic semiconductor morphologies. 
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Chapter 1 gives the introduction and an overview of all relevant topics to this 

work. Chapter 2 reports, in more details, on devices fabrication and techniques used in 

this work. Chapter 3 shows the experimental methodology for the transistor 

characterization. Chapters 4, 5, 6 and 7 give a detailed account of my own work on 

electrolyte- gated TFTs. Finally, chapter 8 is a brief summary and outlook with 

suggestions for future work. 
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1.1 Basic concepts of atomic orbitals and energy levels in 

molecules and crystals 

Quantum mechanics is used to describe the behavior of a microscopic system such 

as atoms. The Hamiltonian operator is used to be applied to Schrödinger equation in 

order to find the energy of electron and nuclei constituting a molecule. Being Used to 

solve the Schrödinger equation, the wave function Ѱ(r,t), a dimensionless quantity, 

represents the probability to find a particle at location r at time t, once it is squared 

|Ѱ(r,t)|
2
. In an atom, Schrödinger’s equation leads to a discrete set of solutions for 

permitted electronic wave functions Ѱn,l,m (r,t), called orbitals, with discrete quantum 

numbers n,l,m. These numbers would determine the orbital’s shape and energy which 

are principle Quantum Number (QN)     , orbital angular momentum QN     and 

magnetic QN     . Electrons occupy these orbitals according to Pauli’s principle, 

which prevents any two electrons sharing the same set of quantum numbers (n,l,m). 

The energy level, also called electron shell, correspond with the principle Quantum 

Number QN    . The nearest shell to the nucleus is the first shell, also called 

“K shell”, the second shell is called “L shell”, and so on, as used in the X-ray notation. 

The valence shell represents the outermost shell of an atom. The atoms with complete 

valence shells, for example noble gas, are considered chemically non- reactive. The 

complete valence shells means that all possible orbitals for a given principle QN are 

filled, and all shells of the next principle QN are empty. In contrary, the atoms with 

incomplete shells tend to engage in chemical bonds, since the valence shell is partly 

completed. Each shell may include one or more sub- shells which may include one or 

more atomic orbitals, such as the second (L) shell having two sub- shells which are 

called 2s and 2p. 

The s and p orbitals especially in carbon are interesting atomic orbitals in 

understanding clearly the electrical conduction behavior of organic and inorganic 

semiconductors and any other physical and chemical phenomena.  

Once two atoms come closer, the electrons of incomplete atomic shell (valence 

electrons) start overlapping and forming molecular orbitals. This results in splitting 

original energy level. This so- called a linear combination of atomic orbitals is either 

constructive or destructive molecular orbital which form bonding orbitals and anti- 

bonding orbitals, respectively. The former possesses lower energy than original 

combined atoms with stable energy and help molecular to bond, but the latter is 

destabilized with higher energy, do not form chemical bonds and forces the molecule 

http://en.wikipedia.org/wiki/Atom
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to break apart. Anti- bonding refers to an excited state of π- orbitals in conjugated 

molecules (i.e. carbon based molecules).  

On organic semiconductors side, after attaching closely more and more organic 

molecules, this presents two different orbital levels which are the Highest Occupied 

Molecular Orbital (HOMO) by which is highest energy level occupied electrons, and 

the Lowest Occupied Molecular Orbital (LUMO) which is the lowest energy not 

occupied by electrons. Organic semiconductors are molecules where the HOMO-

LUMO energy gap is relatively small, approximately 3.5 eV or less. The only 

molecules with gaps even smaller are conjugated organic molecules, i.e. organic 

molecules with alternating carbon-carbon single- and double bonds along the 

molecular backbone. More details will be provided in section 1.2. 

In inorganic semiconductor crystals, the periodical arrangement of atoms in solid 

causes the energy level’s separation into bands (conduction CB and valence VB bands), 

as described from Kronig- Penney model in 1930. Electrons are described as waves, 

with a wave vector k. Electrons become delocalised, once Electrons are not associated 

with any single atom or one covalent bond, and its orbital extends over several 

adjacent atoms. The band structure of a solid is the discrete set of Eigenvalues of the 

Schrödinger- equation solutions as a function of k, En(k). In a semiconductor, there is 

the highest energy fully occupied band (the valence band) VB, and the highest energy 

level in the valence band is Ev. Similar concept is applied also to CB (completely 

empty band) and Ec. No net movement of electrons can take place, If all the states in 

the conduction band (valence band) are unoccupied (fully occupied). Thus, the band 

cannot contribute to conduct current (charge carriers), i.e. insulators and 

ceramics.  The energy difference between (Ec-Ev) defines band- gap Eg concept. If the 

highest occupied/lowest unoccupied state take place at the same quasimomentum 

(often=0), a momentum- like vector is related to the movement of electrons in a 

crystal lattice, the bandgap is called direct bandgap. If it is not the same value of 

momentum, it is called indirect bandgap. The Fermi level EF is, thus, located between 

occupied and empty states. By definition, in a semiconductor, the Fermi level must fall 

in between Ev and Ec, and is near enough to the bands to be thermally populated with 

either holes or/and electron. F(E) represents the Fermi-Dirac distribution which 

describes, at certain temperature, the distribution of electrons in energy levels. For 

example, at T=0 K, F(E) equal 1 which means all the energy level below Fermi level 

become fully occupied, and above Fermi level the energy level are completely empty 

[F(E)=0]. 

http://en.wikipedia.org/wiki/Momentum#Momentum_in_quantum_mechanics
http://en.wikipedia.org/wiki/Vector_(geometric)
http://en.wiktionary.org/wiki/electron
http://en.wiktionary.org/wiki/lattice
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 The electrical properties of materials are determined as semiconducting or 

insulating by verifying the size of band-gap Eg and the position of Fermi level EF 

related to the conduction band, once the materials are attached to metal contacts. 

Moreover, introducing impurities or/and defects in the crystalline structure leads to 

breakdown the symmetry which, therefore, produces more diverse band structure and 

more different electrical and optical properties. This breaking up of symmetry can also 

break up bonds which, in turn, induce more free electrons in a system. These free 

electrons contribute to the electrical conduction as well as holes which is the electron 

shortage in the atoms. Both are referred as charge carriers. More details will be 

provided in section 1.3. 

The HOMO and LUMO descriptions of the organic conjugated molecule are 

analogous to the VB and CB descriptions of inorganic semiconducting crystals. 

Consequently, the energy difference between LUMO and HOMO in a conjugated 

molecule is called the ‘bandgap’. There are different characteristics between 

conjugated molecules and inorganic semiconductors, as well as similarities.  

1.2 Organic semiconductors  

Even though, both semiconductors, organic and inorganic materials, have 

relatively similar features in terms of band- gap and energy bands, the charge carriers 

transport differently because the charge carriers in organic semiconductors are more 

localized in their original molecule than the counterpart, inorganic materials. Thus, 

this section and section  1.3 give a detailed description of the generation, and transport, 

of charge carriers in organic and inorganic semiconductors, respectively.  

Carbon element (C-H bond, strictly) is the major backbone in many organic 

materials. However, there are some exceptions for this definition, such as Fullerene 

and Carbonates. Despite containing Carbon, they are, therefore, not organic. In first 

glance, carbon binds to just two elements, since carbon atom possess only two 

unpaired valence electrons, as seen in the electron configuration of a carbon atom (1s
2
 

2s
2
 2p

2
 ≡ 1s

2
 2s

2
 2px

1
 2py

1 
2pz

0
). However, the situation is not as simple as it can be 

imagined, because the simplest alkane which is methane shows that carbon binds with 

four hydrogen (CH4). Therefore, the model of bonding of carbon is only clarified by 

vital concept that is so- called hybridization. One electron from the 2s orbital is 

transferred to the empty orbital of 2pz. This offers four unpaired valence electrons 

rather than two which are (2s
1
 2px

1
 2py

1 
2pz

1
). Thus, three possible combinations of 

hybrid orbitals can be introduced.  
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Firstly, the sp
3
 hybrid can form four bonds with the outer orbitals of its 

neighbouring atoms (CH4 example). Two Carbon with sp
3
 hybrids are coupled 

together by a strong bond (C-C), called sigma (σ) bond. The angle between four bonds 

is roughly 109.5° which forms tetrahedron shape, as seen in Table 1. 

Secondly, the three sp
2
 hybrid orbitals have only two of three p-orbitals mixing 

with s-orbital forming 120° angles between them. This hybridisation leaves the 

remaining p orbital to be perpendicular to the common plane of sp
2
 hybrid orbitals. 

For forming double- bond, two sp
2
 hybrid orbitals must be brought together. The two 

hybrids bind together by a strong σ bond, and a weaker bond because of the overlap of 

their remaining perpendicular p orbitals forming double- bond (C=C), as encountered 

in alkenes. This weaker bond is called π bond, and their shared electron is labelled as π 

electron. The orbitals of π bonds are more far away from their original nuclei 

comparing to the orbitals of σ bonds. This important phenomenon is called 

delocalisation, since π electrons are loosely bound to their original nuclei.  

Atomic 

Orbitals 
Hybrid Orbitals 

Bonding Electrons 

around Central 

Atom 

Geometry 

1 s Orbital 

& 1 p Orbital 

sp hybrid (2 orbitals) 

 

2 
 

 

Linear 

1 s Orbital 

& 2 p Orbital 

sp
2
 hybrid (3 orbitals) 

 

3 

 
Trigonal planar 

1 s Orbital 

& 3 p Orbital 

sp
3
 hybrid (4 orbitals) 

 

4 

 
Tetrahedral 

Table 1, the possible shapes of carbon in hybrid orbitals. 
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Lastly, sp hybrid orbitals have only one of three p-orbitals mixing with s-orbital 

forming 180° angle between them as linear shape. Also, this hybridisation leaves the 

remaining p orbitals, but this time two of p orbitals are perpendicular to the linear 

bound of sp hybrid orbital. The triple-bound containing one σ bond from sp hybrid 

orbital of two linked Carbons and two π bonds coming from two perpendicular p-

orbitals of same linked Carbons. This formation of bonds is recognized as triple-bond 

(C≡C), as found alkynes. Also, the orbitals of π bonds are delocalised, as well, over 

their original nuclei, but this delocalisation does not describe the delocalised of π 

electrons over the whole molecule, yet. This phenomenon leads to an important topic 

which is a benzene ring in order to understand how π electrons are delocalised over 

the whole molecule. 

1.2.1 Benzene ring 

This aromatic ring is formed as a regular hexagon with alternative Carbon-Carbon 

single- and double- bonds containing six sp
2
 hybridised Carbon atoms. Thus, the 

double-bond offers  electrons to be delocalized all over the ring (Figure 1, left). 

Therefore, the cloud of electron will cover the molecule containing benzene rings to 

some extent. Delocalised  electrons lead to molecules with smaller band- gaps Eg. 

The Benzene ring is an important example of a conjugated molecule, and it is, also, an 

important building block in many organic semiconductors (OSC). However, a single 

benzene ring is not yet large enough to bring the band- gaps Eg into the semiconductor 

regime. Nevertheless, when, for example, many benzene rings are fused at their edges 

(e.g. 5 rings fused into pentacene, Figure 1, right),  electrons can delocalise over a 

larger area. Since, the band-gap’s size depends on the delocalisation of  electrons 

and, in turn, on the conjugation of the molecule, the band -gap’s size decreases in few 

eV which is about (2.5 eV). By this band- gap’s size, Pentacene is considered an 

organic semiconductor. 

                   

Figure 1, left: the structure of Benzene ring, right: chemical structure of pentacene  

1.2.2 Thiophene ring 

Forming a regular pentagon shape, Thiophene is an example of what is called 

‘heterocycles’; conjugated rings with atoms other than just Carbon in them. But in this 
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case, the electron pairs of Sulphur atom induces  electron in the ring. Thus, there are 

six  electrons which are four from the double- bonds of Carbons and two from 

electron pairs on Sulphur, as seen in Figure 2. In the presence of Sulphur, the  

electrons delocalised over the thiophene ring. This ring can be found as building 

blocks in many organic semiconductors materials, such as P3HT and PBTTT 

(containing also two fused rings in its repeatable units). 

 

Figure 2, the structure of Thiophene ring. 

1.2.3 Charge injection into organic semiconductors 

Charge injection is one of essential factors for OSC device performance (even 

more important in organic light emitting diodes (LEDs)), since it determines how 

efficient the organic semiconductor devices perform especially in thin film transistors 

(TFT). Charge carriers need, therefore, to be injected by electrode into an organic 

semiconductor to mobilise and pass through channel until reaching another electrode. 

For achieving injection in case of n- type and p- type organic semiconductors, 

electrons and holes must be injected in LUMO and HOMO level of a molecule, 

respectively. In organic semiconductors, the charge carriers are called electron and 

hole polarons. Adding an electron into the LUMO level of molecule generates an 

electron polarons. Hole polarons are created, when an electron (hole) is removed 

(added) in HOMO level. In general, this action of injecting electrons and holes leads to 

change in nucleus positions and the molecular orbitals conformations which, in turn, 

respond by a relaxation to a new position of minimum energy. 

Because of the strong coupling between the charge carrier and the local lattice 

relaxation, removing an electron from its energy level requires slightly less in energy 

than the HOMO suggests, and adding an electron give the molecule slightly additional 

energy than the LUMO suggests. Instead, the required energies are called Ionisation 

potential (Ip) and electron affinity (Ea). They are required energies to take away the 

electron from HOMO level into vacuum level, which means injecting hole, and to 

inject the electron from a vacuum level into LUMO level, respectively.  

 In order to inject hole/electron efficiently in organic semiconductor materials, the 

injection barriers between the ionisation potential/electron affinity and the work 
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function of electrode; moving an electron from a metal, should be overcome, an 

example seen in Figure 3.  

 

Figure 3, This shows electron injection into P3HT, and the energy levels diagram of 

electron and hole injection barriers from metal electrodes into P3HT before applying bias. Also 

this shows how hole injection from Au works better than hole injection from Ag, since the Au 

contact is closer to ionisation potentials. 

The simple way of reducing the injection barriers is to use a deep LUMO of OSC 

which have such a high electron affinity or by choosing low work function values for 

electron injection and high work function metals for hole injection, as Marcus Ahles et 

al used Calcium contact (2.8 eV) for injecting electrons in order to have the n- channel 

operation of pentacene transistors (LUMO=2.5 eV)
1
. Once the voltage (potential) is 

applied at the sides of the organic semiconductor, the energy level of material 

becomes tilted that means the carriers are more preferable energetically at side than 

another side, seen in Figure 4. The gradient of tilted energy level is determined by the 

amount of applied voltage.  

 
Vacuum Level  

Ag 

(Silver) 
P3HT 

Φ = 4.73 eV 

 

Ea = 3 eV 

Ip = 5 eV Φ = 5.1 eV 

Au 
(Gold) Energy 

(eV) 

+ 

- 
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Figure 4, the energy level of organic semiconductor during applying bias potential. 

The injection from a metal into an organic semiconductor is described into two 

mechanisms. The idea of overcoming the injection barrier by gaining adequate energy 

of the potential barrier is described by the thermionic (Schottky) emission. Also, 

Fowler-Nordheim tunnelling describes the injection mechanism using the concept of 

quantum mechanical tunnelling in order to pass through the barrier. As seen in 

Richardson-Schottky equation (1-1), Schottky emission demonstrates that the rate of 

injection       depends highly on temperature and weakly on E-field. 

( 1-1)                                             
  

  
      

      

  
                                     

Where ΦB is the height of potential barrier and βRS is a constant.  

Conversely, Fowler-Nordheim tunnelling equation depends heavily on E-field and 

not in temperature. So, the probability of tunnelling can be increased by reducing the 

width, not the height of a potential barrier. 

( 1-2)                                              
  

  
     

    

 
 

 
                                             

Where γ is a constant. 

Another way of reducing potential barrier is to dope the semiconductor between 

electrodes and semiconductor itself which produces Schottky junction. This action 

would bend the tilted band after applying voltage. This is because the E-field 

 

Vacuum Level  

Ag 
 

P3HT Au 
 Energy 

(eV) 

+ 

- 
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concentrates on the doped areas beside the contact in which, in turn, result an 

effectively shorter tunnelling distance, as seen in Figure 5. 

 

 

 

Figure 5, Energy diagrams showing band tilting as voltage applied (left) and band bending 

as voltage applied in present of highly doped area next to contact (right). 

1.2.4 Charge carrier transport, Mobility 

For practical applications, carriers need to be mobile not only to across the size of 

conjugated molecule but also to travel over a longer distance to reach another contact. 

This is why the charge transport is fundamental to be determined in order to know 

how carriers pass through the neighbouring conjugated molecules. 

It is better to begin with the comparison between mobility in inorganic crystalline 

semiconductors, and organic semiconductors, which can be understood by explaining 

the concepts of the delocalisation vs. localisation. 

Delocalised carriers (band- like) are described by wave number k and are in 

motion, by default. The mobility is limited only by scattering by lattice defects or 

vibrations (phonons); as a result, the mobility is high, but decreases with increasing 

temperature (more phonons), more details in section 1.3.3.  

On another side, organic carriers are localised on a particular molecule and are not 

moving, by default. Motion is by ‘thermally assisted tunnelling’ between molecular 

sites (colloquially known as ‘hopping’); therefore, mobility is low but increases with 

increasing temperature. 
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Semiconductor 

- 

Metal 
Organic 

Semiconductor 

Highly 

doped 

ΦB 
CB 

- 

Metal 

ΦB CB 

EF EF 



30  

 

The consequences of the localisation of carriers (in organic semiconductors) lead 

to a strong coupling between charges and the local lattice, which deforms bond lengths 

and angles, and leads to a redistribution of electron density LUMO and HOMO, as 

mentioned before.  

In terms of trap sites, localised carriers are susceptible to being caught in trap sites 

(described in section 1.2.5); however, it is not an issue for delocalised (wave- like) 

carriers. A lattice defect may act as scattering site for wavelike carriers, which 

somewhat reduces mobility, but waves cannot be caught in a specific, localised site. 

For localised carriers, a localised defect can act as a trap and stop the carrier from 

moving permanently (or at least for a long time).  

Clearly distinguish between conventional crystalline semiconductors (i.e. Si and 

GaAs), with delocalised carriers, and molecular (organic) semiconductors. Even when, 

an organic semiconductor has crystallised into a molecular crystal; carriers are still 

localised on a single molecule because the overlap between neighbouring molecules is 

too weak to form bands, at least not at ambient T. This is because of many reasons 

including disorder and the weakness interaction of van der Waals inter-molecular.  

The magnitude of organic semiconductors’ mobilities varies widely from 10
-6

–10
-3

 

(cm
2
V

-1
s

-1
) in amorphous polymers to 10–10

2
 (cm

2
V

-1
s

-1
) in single crystal

2
. This is an 

obvious indication of how the chemical structure and purity of organic semiconductors 

strongly affects mobility.  

The mobility is defined as a quantity of the average velocity     of carriers 

generated per unit of electric field (E). The common unit of mobility is (cm
2
V

-1
s

-1
) 

( 1-3)                                                            

Various and developed models for the carriers transports’ concept either organic 

or inorganic semiconductors have been proposed to describe how parameters interact 

with each other in order to be fitted well with the experimental results.  

In organic semiconductors with well- ordered construction, for example, small 

molecules in polycrystalline films, the multiple trapping and release (MTR) model 

considers that the transport of charge carrier takes place in extended states as bands, 

and most of the charge carriers get trapped because of impurities or defects
3
. As 

described in equation (1-4), the model assumes that localised trap states are situated 

near the transport band edge, as holes and electrons trap states locates near HOMO 
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and LUMO levels, respectively. The charge carriers get seized in trap states, and the 

releasing process is only thermally controlled, as assumed by the model.   

( 1-4)                                                                                                       

Since    is the mobility, Ec and Et are the energy of the transport band edge and the 

trap states, respectively.   is the ratio of trap density of states (DoS) to effective DoS 

at the transport band edge. Also, the effective mobility equal µeff = Θµ0, and Θ is the 

ratio of trapped carriers to total carriers including trapped and free carriers. This more 

or less applies crystalline OSCs, as long as crystal boundaries are ignored. In reality, 

crystal boundaries often come with deep traps, and a few deep traps can dominate 

behaviour of charge carriers transporting. 

 In more disordered organic semiconductors, the charge carrier transport is 

considered as thermally activated hopping from localised states of a molecule to 

another. Poole-Frenkel model describes this activated hopping by the following 

equation, 

( 1-5)                                                                                                           

Where 
 

     
  

 

 
   

 

   , µ0 = µ(T=T*),    is the energy barrier required to be 

overcomed and β is the PF factor.  

There are two problem with this model in terms of the PF factor which does not 

fulfil the requirement predicted by PF theory
3
 and      which has no physical 

meaning. 

Bässler suggested that the localized density of states
4
, in the transport manifold, 

follow a Gaussian distribution. As described by equation (1-6), the applied field 

controls the direction of the random movement of carriers hopping from site i to site j. 

( 1-6)                                                                                                       

Where   is the frequency of hopping,    is the attempt-to-hop-frequency, ΔRij  is the 

distance between hopping sites, γ is the inverse localisation length and Δ    is the 

difference between energies of sites level.  

Moreover, Bässler describes the disorder in the position of hopping sites using a 

second Gaussian distribution which is called the off-diagonal disorder as variance Σ
2
. 
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Through Monte-Carlo simulation, Bässler created other equation in order to describe 

the behaviour of carrier mobility. 

( 1-7)                               
  

   
 

 
        

 

  
 

 
        

where C is an empirical constant,     is the disordered free mobility at the limit of 

infinite temperature and field equalling zero
5
 and Σ

2
 is replaced by 2.25 for all Σ ≥ 1.5.  

The key results of this model are that µ scales as ln(µ) α (T)
-2

 and ln(µ) α E
0.5

. The 

ln(µ) α E
0.5

 dependence of the Bässler model is supported by data that from Redecker 

et al
6
. At high E field, ln(µ) may depend linearly on E

0.5
, but the dependency may turn 

round at low field. Bässler's model suggests to plot ln(µ)  against a E
0.5

 scale, and this 

is expected to have a straight line. This is often approximately observed
7
; the straight 

line may have either positive or negative slope, depending on the comparison between 

diagonal and off- diagonal disorder.  

1.2.5 Traps  

Trapped carriers are defined as charge carriers that are immobilised in localized 

states. In principle, but not in TFT, two scenarios that can take place for trapped 

carriers are subject to two factors which are a retention period until it becomes 

released and a recombination rate; combining carriers with opposite charge carriers. 

The latter not usually in TFTs, as there are only holes, or only electrons. Once the 

recombination rate is lower than the release rate, this scenario forms Trap; otherwise, 

when the recombination rate becomes a dominant factor, the localised states are 

described as recombination centres.  The same localised states may have dual 

behaviours depending on temperature and the ratio of electrons and holes as charge 

carriers.  

Traps and its columbic charge influence strongly charge transport and electric 

field distribution in the bulk of a device. The delay in the release of charge carriers 

from traps leads to hysteresis effects in devices, when applying voltage is altered in 

different direction
8
. The localised state catching hole above the valence band and 

catching electrons below the conduction band are called hole trap and electron trap, 

respectively, in case of inorganic semiconductors. In contrast, localised states in 

organic semiconductors is situated below the ionisation potential level (for hole trap) 

or over the electron affinity level (for electron trap). To clarify this point, these traps 

are not present only at the interface to an insulator, but also in the bulk of the OSC. 
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Since, the semiconductor-insulator interface contains high densities of traps that 

capture selectively one kind of charge carriers, organic semiconductors are likely to be 

unipolar (transporting one type of charge carriers) and rarely to be ambipolar. When 

semiconductors transport both kind of nearly equal concentrations of charge carriers, 

this semiconductors are known as ambipolar semiconductors. Chua et al reveals that 

once the interface is freed from common electron traps which is a hydroxyl group 

(OH), the polymers of hole charge carriers (p- type) can confirm the presence of 

electron charge carriers (n-type), as well
9
. Even though, the trapped charge carriers 

become immobilised in localised trap states, the charge fields weaken electric field 

within the bulk of a semiconductor. Another reason of unipolar behaviour is that most 

of the conjugated organic semiconductors have large gaps bigger than 1.5 eV, so the 

injection of one carrier from a contact metal matches just one energy level of organic 

semiconductors not both. Organic transistors that operate under ambipolar behaviour 

can be accomplished by either having materials with small gaps
10

, blend of two 

different semiconductors
11

 or hetero-structure (bilayers) of two materials
12

. However, 

for sensing applications transistors with ambipolar behaviour are not desirable because 

of large off-current that may interfere with sensing action and large power 

consumption.  

The two reasons may explain the sources of traps including impurities and 

structural defects. Nicolai et al pointed out that, in different polymers tested, all share 

common Gaussian electron- trap distribution approximately around Etrap ~ 3.6 eV 

below the vacuum level
13

. Also, he proved that when the electron affinity is larger 

than 3.6 eV, the charge carriers transport in trap-free states, as indicated in Figure 6. 

The reason of the electron traps is because of bishydrated- oxygen, such as H2O-O2  

complexes, as proposed by Quantum chemical calculations
13

. Once the conjugated 

semiconductors are exposed to different air- borne species, such as oxygen and water, 

the materials get oxidized. For example, the hydrogen atoms in central benzene rings 

of pentacene are replaced by oxygen forming double- bonds with carbons. This means 

that the conjugation of central benzene rings is destroyed which, in turn, reduces the 

overlapping of π system over molecules.   
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Figure 6, the LUMO and HOMO level of materials used in this thesis, also including 

conduction (Violet line) and valence (Green line) bands of ZnO with the work function of gold 

contact (Black line) and traps at 3.6 eV
13

. 

1.3 Inorganic semiconductors  

Inorganic compounds are lack of carbon-hydrogen bonds. The inorganic 

semiconductor material that is commonly and heavily used is silicon. Silicon is the 

basis of the evolution of advanced transistor technology, such as CMOS integrated 

circuits. The heavily doped silicon can reach mobility of 1,450 cm
2
V

-1
s

-1
 (for 

electrons) and 500 cm
2
V

-1
s

-1
 (for hole) at 300 K

14
.  

The aim, in this section, is to present briefly the important concepts of an 

inorganic semiconductor starting with crystals arrangement ending to the charge 

carriers transporting.  

1.3.1 Crystals and energy bands  

In 3D space, the crystals are built initially by smallest block unit called a unit cell 

which may contain one or more than one atom. The atoms, silicon atoms, for example, 

in this sort of lattice are bound together by covalent bonding which means they share 

electrons in their outer shell of orbital with their close neighbours. These electrons are 

subject to the Bloch’s theorem which describes the propagation of waves, here 
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electrons, in a periodic structure. This overlapping of neighbouring atoms in a crystal 

would increase the number new allowed energy levels to be occupied by electrons 

following Pauli principle; no two electrons may share the same set of quantum 

numbers, otherwise the total wave function would not be anti- symmetric under 

exchange of these two electrons. Also, this overlapping would split the existing energy 

level into more closely spaced ones. The density of states (DoS) is defined as the 

number of allowed energy states of a given energy range per unit volume.  

As seen in the electron configuration of silicon atom (1s
2
 2s

2
 2p

6
 3s

2
 3p

2
 ≡  3s

2
 

3px
1
 3py

1 
3pz

0
), the outer shell consists of two degenerated energy level. At absolute 

zero (T=0K), two of four valence electrons are located in 3s and other two electrons in 

3p. However, in crystal case, a new energy level generated in 3s sub-shell and 3p, as 

well, (total of four quantum states each) because of overlapping of electrons; 

therefore, all four valence electrons occupy ground states in the valence band and 

leaving conduction band unoccupied. As described in section 1.1, the concept of band- 

gap and Fermi level are defined.  

In the ground state, the crystal does not display electrical conductivity. Only 

when, electrons are excited into the conduction band by heat or light which also 

produces electron deficiencies in valence band called holes. Both electrons and holes 

participate in charge conduction. 

1.3.2 Intrinsic and extrinsic semiconductors, and the transport 

of charge carrier  

The thermal activation at a given non-zero temperature is a capable mechanism to 

induce the electron- hole pair generation. The semiconductor is considered as an 

intrinsic, once the amount of impurities in a semiconductor crystal are little comparing 

to the amount of thermally- generated carriers. Otherwise, the addition of dopants to 

the crystal produces new energy levels below the conduction band and above valence 

band. This semiconductor material is called as extrinsic.  In Silicon case, the common 

n- type and p- type dopants are acceptors from Group III and donors from Group V in 

periodic table elements, respectively. In general, a doping agent being more 

electronegative than the main crystal element provides electrons to the crystal, so such 

dopants are called donors. The extra provided electrons are loosely bound to their 

original nuclei and can more be excited easily to become free electrons and contribute 

to the overall charge carriers. The ionisation energy is the required energy for exciting 

electrons. In the contrary, electropositive dopants provide holes to the crystal by 

occupying neighbouring electrons, so dopants are called as acceptors. Pentavalent 
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impurities (i.e. Arsenic and Phosphorous) having 5 valence electrons contribute extra 

electrons and make n- type semiconductors. Trivalent impurities (i.e. Boron, 

Aluminium and Gallium) having the fourth valence electron missing results in p- type 

semiconductors, and holes move without restraint in Silicon lattice. 

The total amount of electrons per unit volume in a semiconductor can be 

calculated using the following equation, 

( 1-8)                                        
 

 
            

 

  
                                         

where g(E) is the probability of an electron occupying each state of F(E) for a range 

which extends from the top of the conduction band to the bottom of the valence band, 

F(E) is known as Fermi distribution function. 

In the case of intrinsic semiconductors at room temperature, the Fermi energy is 

located about in the middle of the bandgap Eg. The electron density at the bottom of 

the conduction band alone is denoted by n, whereas the hole density at the top of the 

valence band by p. For an intrinsic semiconductor, the intrinsic carrier density is 

calculated by, 

( 1-9)                                                                            

In lightly-doped semiconductors, called as non-degenerate semiconductors, the 

electron or hole density is very small compared to the effective density of states in the 

conduction or valence band, respectively. In the case of donors, it is believed that all 

donors can be activated thermally, at room temperature, and their density is denoted 

by ND. This mechanism is well-known as complete ionisation
15

. The level of Fermi 

energy is changing because of this doping and moves towards the bottom of the 

conduction band and its value can be calculated by: 

( 1-10)                                               
  

  
                                            

Where    is the Boltzmann’s constant, and T is the absolute temperature. 

Also, once acceptors of density NA are available in the crystal, the level of Fermi 

energy moves nearer to the top of the valence band. Its value can be calculated by: 
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( 1-11)                                               
  

  
                                            

Since, the intrinsic Fermi level is referred to Ei, the charge carrier densities with 

respect to the intrinsic quantities is expressed as  ni and Ei; 

( 1-12)                                                
     

  
                                         

and  

( 1-13)                                                 
     

  
                                 

As in the case of intrinsic semiconductors, the product of n and p constantly 

equals ni
2
 at thermal equilibrium. This relationship is known as mass action law: 

( 1-14)                                                    
 

                                                    

When both donors and acceptors exist in the same crystal, the one of the highest 

concentration determines the kind of the conduction. The carriers that are present in 

higher/lower concentration are called majority/minority carriers, respectively. In an 

extrinsic semiconductor, once electrons are the majority carriers, the semiconductor is 

considered as n- type. Similarly, when holes are in the majority, it is called p- type. 

In the case of inorganic semiconductors, many factors contribute to the conduction 

and transport of charge carriers, such as carrier drift and diffusion, as main factors. 

Also, other conduction mechanism can have a big contribution to semiconductors, 

such as quantum tunnelling, electron hole pair generation and recombination and 

many other.  A brief description will be provided to just two main factors.  

1.3.3 Carrier mobility in crystals 

In the presence of impurities, crystal defects and the thermal vibration of the 

lattice, the moving of charge carriers described as waves with wave vector k may 

come across to collisions and scattering in their way. The thermal vibration is 

activated thermally at non-zero temperature, so the lattice vibrations supply kinetic 

energy to charge carriers. Thus, either impurities or scattering centres are effectively 

slow charge carriers down. The model employed to describe a band- like transport is 

called Drude model
16

, as described in equation (1-16). 
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Once a bias voltage is applied to a semiconductor, the free electrons in partially 

occupied conduction bands get affected by electrostatic force and carriers drift along 

the applied field. The drift velocity that is induced by the electric field in x-axis is 

calculated by following, 

( 1-15)                                     
 

  
     

 

  
    

 

 
                                          

Where,   the charge carrier,   
  is the effective mass on the charge carrier (electron in 

this case),   is the time between to collusion (mean free time) and E is the electric 

field produced by applied voltage. Steady state corresponds to 
 

  
      . Under such 

circumstances, the solution for the previews equation is written as, 

( 1-16)                                             
  

  
     

 
                  

The value of      
   represents electron mobility   . In same way,    is 

correspond to hole mobility. This model is valid under one condition which is that   is 

the mean distance between two collision (mean free path) is the distance between two 

atoms in crystals. The mean free path is taken from following equation, 

( 1-17)                                                                          

Where,            
  is electron thermal velocity (~105 m/s at room temperature. 

For both equations (1-16) and (1-17), the mobility is defined as, 

  

( 1-18)                                                
  

  
    

                                                      

The standard electron mass that used to be utilized in vacuum cannot be used in 

the crystal lattice, since the periodic forces affect the atoms
17

, and charge carriers 

move in the distance beyond the size of the unit cell. This would imply to introduce 

the effective mass of electrons and holes, and both depend on energy-momentum 

relationship      as mention in,  

( 1-19)                                            
   

   

          
                           

Since      is the energy of electon in band,    is the edge energy of the band,   is the 

Planck constant (~6.582 × 10
-10

 eV.s) and   is the wave vactor.  



39  

 

Turing back to an important parameter in both organic and inorganic 

semiconductors which is mobility, it usually suffers from different scattering 

mechanisms, while charge carriers pass through a semiconductor. Coulomb scattering 

and phonon scattering are due to deflection of charge carriers because of ionised 

impurities and thermal lattice vibration, respectively. Both mechanisms are 

temperature dependent. It is found that the dependence follows the next equation, 

( 1-20)                                                                                                    

In most cases, n is positive. When temperature is declined, the mobility increases. 

At low temperatures, coulomb scattering is dominant especially in highly-doped 

semiconductors. However, at high temperature, the phonon scattering dominates the 

mobility degradation leading to a higher probability of collisions and shorten the mean 

free time  . This effect is dissimilar to organic semiconductors, since temperature 

increase the mobility of materials because of different mechanisms involved (see 

section 1.2.3). 

The summation of electron and hole drift current gives the conductivity   because 

of the effect of electric field according to, 

( 1-21)                                                                                               

Where,   is the density of electrons and   is the density of holes. 

So far, drift current, as a result of the potential gradient, is the only transport 

mechanism assuming that the semiconductor is uniformly doped. However, this 

assumption is not true, since the semiconductor always possesses impurities that are 

not distributed uniformly. This moving from high to low concentration regions results 

in concentration gradients. The diffusion current is calculated as, 

( 1-22)                                   
     

 
      

  

  
   

  

  
                                  

Where    and    are the diffusion coefficients of electrons and holes, respectively, 

and       and       are the spatial derivatives of electron density for electrons and 

holes, as well. This sum up the components of current density for both electrons and 

holes including the drift current
18

 as following, 

            

  

  
   

http://solarwiki.ucdavis.edu/
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( 1-23)                                              
  

  
   

The diffusion constant and mobility are connected by the Einstein relation
17

 

describing the diffusion dependency on mobility,  

( 1-24)                                 
  

 
     and       

  

 
   

Where   is Boltzmann’a constant, (1.38 × 10
-10

 J K
-1

), and T is the temperature. 

1.4 History of transistor  

Although, the concept of metal-oxide-semiconductor field effect transistor 

(MOSFET) was filed as a patent credited to Lilienfeld in 1925, the bulky and 

electricity-consumed vacuum tube was used that time as a signal processing device. 

Since, the invention of first (bipolar) transistor in 1947 was attributed to John 

Bardeen, Walter Brattain and William Shockley, rewarded the 1956 Noble Prize later, 

the transistors have passed through other remarkable inventions in terms of building 

integrated circuit by Kilby and Noyce between 1958 and 1959, and constructed metal 

oxide semiconductor field effect transistor (MOSFET) by Atalla and Kahng in 1959
19

. 

Silicon based transistor technology was an excellent alternative to bulky, power-

consuming vacuum tubes. Nowadays, the transistor is the cornerstone beyond of all 

sophisticated electronics devices such as mobile phones and computers. Moreover, in 

the last decade going back to 1970s for inorganic – ISFET = ‘ion sensitive field effect 

transistor’, the ambition to develop sufficient devices for detecting and quantifying 

chemical and biochemical materials has been increasingly attracting scientists. Sensor 

applications include odour sensors for airbone analytes
20

  and environmental 

monitoring sensors for aqueous pollutants
21-22

.  

In spite of its flexibility, low cost and ease of fabrication, polymer materials were 

considered as insulating materials in the past. This sole application was, however, 

modified by the discovery of Alan J. Heeger, Alan G. MacDiarmid and Hideki 

Shirakawa, awarded the Noble Prize in 2000. By exposing to iodine vapour, 

polyacetylene became more conductive by several orders of magnitude
23

. This 

produced a new category of materials which are called as ‘synthetic- metals’= highly 

doped semiconductors. These newly invented materials have attracted a great 

interested in its electronic application such as light-emitting diode, photovoltaic cell, 

sensors and thin- film semiconductors. Since, the physical and chemical properties of 

organic materials can be modified by manipulating the chemical structure; this field of 

http://click.thesaurus.com/click/nn1ov4?clksite=thes&clkpage=the&clkld=0&clkorgn=0&clkord=0&clkmod=1clk&clkitem=ambition&clkdest=http%3A%2F%2Fthesaurus.com%2Fbrowse%2Fambition
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research can be located in the edge between physics and chemistry. Consequently, 

Organic semiconductors offer unique potential for selective and specific interactions 

with analytes, and thus selective and specific sensor response
24

. To be more specific, 

an electrolyte- gated organic field effect transistor (EGOFET) may have the ability to 

play this role for sensing these elements. In fact, water- gated transistor was proved by 

Kergoat et al
25-26

 that it possesses a stable electrical characteristic with very low 

voltage operation range comparable to voltage provided by regular batteries.  

1.5 Thin film transistors 

The useful transistors configuration for organic semiconductors in practical 

applications is the thin-film transistors (TFT). In the 1960s, Paul Weimer initially 

developed and proposed this concept in polycrystalline inorganic transistors
27

. In the 

1980s, an organic TFT was first reported
28-29

.  

 
Figure 7, the illustration for the structure of a TFT with channel width W, channel length L. 

the flow of charges in the channel is signified by the dashed line. 

From Figure 7, the organic semiconductor is deposited between two metal 

contacts (source, drain) and a gate insulator. The gate contact is deposited over a gate 

insulator. All layers are deposited at the surface of insulated substrates, such as glass 

and Silicon oxides. The first organic transistor containing an electrolyte rather than the 

metal gate contact was verified in 1984
30

, but that transistor operated as 

electrochemical transistors (ECT) not field-effect transistor (FET) which is clearly 

demonstrated later by Tsumura et al
28

. The accumulation regime of the field-effect 

describes transistors that usually are ‘normally off’, but the transistors become 

conductive between ‘Source’ and ‘Drain’ only when the voltage of appropriate 

polarity is applied to a third contact (the gate contact). Consequently, passing current 
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in channel (on- current) is controlled by applying a voltage to the gate. On contrary, 

the depletion regime is normally on and requires a gate voltage to be switched off. The 

later regime is not related to field effect transistor. The way of using an electrical field 

to control the resistance of a semiconductor was described by Oskar Heil in 1935
31

. 

More descriptions about transistor’s operation and configurations will be mentioned in 

next sections.  

The field effect transistor is adopting an accumulation regime rather than 

depletion, since organic materials induces just one type of charge carrier either 

electrons or holes and utilizes an undoped property of semiconductors. As a result, the 

depletion regime will not be mentioned. The important parameters of OFET, which 

can be used for many applications including sensing, are charge carrier mobility (µ) 

and threshold voltage (VTh) which means the required gate voltage to switch on the 

OFET.  

1.5.1 Structure of Organic and Inorganic FET  

The device’s performance differs significantly with various device architectures in 

terms of the sequence of deposited contacts and organic/inorganic semiconductors, 

and each one of four architectures has its own advantages and disadvantages and 

specific applications. Four main and possible architectures can be employed for FET.  

In any design, most importantly, the gate contact must be placed in front of the 

semiconductor’s channel separated by gate insulator or attached directly to 

semiconductor in order for the channel to build electric double layer efficiently. Also, 

the energy barriers must be small between a semiconductor material and contacts’ 

(source and drain) interfaces in order to reduce the hindrance of the charge carriers’ 

movement between contacts. 
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Figure 8, four different TFT configurations: the staggered structure consisting of (a) top- 

gate /bottom- contact structure and (c) bottom- gate/ top- contact structure, and other designs 

that are called coplanar that represented by (b) top-gate/top contact structure and (d) bottom- 

gate/bottom- contact. The flow of charge carriers is signified by dashed lines. 

Experiments and simulations demonstrated that the staggered structures (Figure 8, 

a and c) are less influenced by energy barriers comparing to the coplanar structures 

(Figure 8, b and d), and this is considered as an advantage of using the staggered 

structures. Moreover, the modifying by proper treatment (such as, thin metal oxide
32

) 

of contacts’ surface would reduce the energy barriers which, in turn, affects the 

contact resistance.  

1.5.2 Operation principle and equations of FET 

As seen in Figure 8, the stack of gate/insulator/semiconductor is capable of being 

considered as a capacitor. The capacitance of gate dielectric per unit area Ci is equal 

to: 

( 1-25)                                                  
   

 
                                                       

Where    is the vacuum permittivity,   is relative permittivity of gate insulator and d 

is the thickness of gate insulator.  

Once a sufficiently high voltage is applied to the gate contact, an accumulation 

layer builds up in the channel of transistors. A positive (negative) gate voltage 

introduces negative (positive) charge carriers in the channel. The built up charges are 

restrained in just few nano- layers of the semiconductors next to gate insulator.  

Usually, inorganic FET is depended on extrinsic (doped) semiconductors, for example 

MOSFETs; however, organic FET operates in the accumulation regime, since organic 
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semiconductor is based on intrinsic (undoped) semiconductors. The threshold voltage 

is generally nonzero because of dissimilarity in the energy barriers of the gate contact 

and the semiconductor and the presence of the remaining charges in the bulk of the 

semiconductor and traps at the interface between insulator-semiconductor. 

   A transistor is characterised by voltage-controlled (gate voltage) current induced 

in channel. Before explaining how the FET operates theoretically, a number of 

assumptions should be considered, and not all of these assumptions are correct in 

reality. Firstly, the transverse electric field that is induced by the gate voltage is bigger 

than the longitudinal one because of drain voltage. Secondly, the mobility assumed to 

be constant over the entire channel at different charge concentrations regions and 

electric field effect. Also, the thickness of insulator layers is smaller than the channel 

length. In addition, the bulk channel resistivity is higher enough than the resistivity of 

contacts. 

The operation of a TFT can be categorised into three regimes with regard to the 

applied gate-to-source (   ) and drain-to-source (   ) voltages. These regimes are the 

sub-threshold, the linear and the saturated regimes. 

Once the gate voltage is lower than    , the drain current becomes exponentially 

proportional on the gate voltage which is so-called subthreshold regime. The 

subthreshold swing is represented by this equation, 

(1-26)                             
 

 
                      

 

Where K is a constant related to the used materials and the structure of the device, k is 

the Boltzmann constant, T is the temperature, n ≥ 1 is called the ideality factor and q is 

the basic charge. 

The value of subthreshold is extracted from the plot of logarithm of drain current 

(    versus VG at constant maximum VD,max. The quantity is called subthreshold swing 

taken according to,  

( 1-27)                               
          

    
       

  

 
   

  

  
   

This is a measure of how fast the switch between off- state and on- state is. The 

low value of subthreshold swing means that the transistor switches between two states 

over a very small series of gate voltages. However, the high value means that a slower 

transition from two states over a large range of gate voltages. The typical unit of 
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subthreshold swing is (mV per decade). Also, equation (1-27) describes the trap 

density    and the gate insulator capacitance   . In order to minimise the value of 

subthreshold swing, the values of    and    must be minimise.  

Once a larger voltage than     is applied to    , a uniform accumulation 

‘rectangular’ layer of charge carriers is induced in the channel, as seen in Figure 9(a). 

This means that an accumulation layer that is (almost) equally strong near the drain as 

near the source. This operation defines the linear regime.  

The linear regime describes the drain current (   , since    is propostional to VD, 

in following equation: 

( 1-28)            
    

 
              

   
 

 
         for                         

Where     is the threshold voltage of the device,    is the carrier mobility,    is the 

capacitance per unit area of the gate dielectric, W and L are the width and length of the 

channel, respectively. 

The mobility can be calculated in this regime by the following equation, 

( 1-29)                                           
 

      

   

    
                    

Increasing the drain voltage higher reduces the drain-gate voltage (while source-

gate voltage remains the same), and therefore leads to a weaker accumulation layer 

near the drain. When VD = │VG –VT│, the TFT reaches co- called “pinch off”, as seen 

in Figure 9(c). Pinch- off limits drain current to a maximum even when drain voltage 

is further increased. This operation is called saturation regime.   

Therefore, in saturation regime, the drain current is given by the equation: 

( 1-30)             
    

  
                     for                                    

The mobility can be calculated in this regime by following equation, 

( 1-31)                                            
  

   
 

       

    
 

 

                                    

The transconductance    is another essential concept, since it defines how the    is 

altered and modulated by    .  
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( 1-32)                                 
   

    
                                         

The transconductance can be represented in linear and saturation regimes as following, 

( 1-33)                         
    

 
                 

    

 
                           

When the gate voltage is higher than    , these equations (above) can describe the 

operation of transistor.  

The electrical behaviour of field-effect transistors is evaluated by the plot of the 

drain current versus either the drain-source bias which is called the output 

characteristics or the gate-source bias which is called transfer characteristics. More 

details about characteristics will be mentioned in sections 3.1.1.1 and 3.1.1.2. 

Regardless of the considerable differences in the charge transport mechanism in 

inorganic and organic semiconductors, the operation of TFTs made of both 

semiconductors can be described by the same equations, above.  

 

 

Figure 9, illustrations of the different charge distribution and voltage-controlled current 

characteristics in the different operating of FET: (a) the linear regime (rectangular); (b) the 

start of saturation at pinch-off; (c) the saturation regime. 

1.5.3 Electrolyte as gate media 

Electrolytes are materials that contain mobile ions. Many electrolytes are liquids, 

but solid state electrolytes are also known. As an example, dissolving salt in a polar 

solvent leads to dissociation of the ions into positive (+) ions (cations) and negative (-) 
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ions (anions). Also, some materials may undergo through the self-ionisation reaction 

(autoprotolysis), for example water, 

                 
  

So, both dissociations contribute to build up electric double layers (EDLs). The 

exposure of water drops to atmospheric carbon dioxide  (CO2) increases    
 . 

The degree of dissociation determines, therefore, how strong or weak the 

electrolytes are, starting from a weak electrolyte (i.e. pure water) to an electrolyte in 

solid form. Electrolytes are electric conductors under alternating voltages, but under 

DC, Electrolytes become insulators due to the build- up of interfacial EDLs, as 

discussed in detail in section 1.5.3.5. To be used as liquid- medium- gated transistors, 

the essential property of an electrolyte is to tolerate an electrical voltage without 

electrochemical decomposition. In general, the specific capacitances’ values of all 

electrolytes are between 1-10 µFcm
-2

 which depend on an electrode in contact with 

electrolyte. In the following, all liquids- media used for gating transistors are 

described, here. 

1.5.3.1 DI Water 

The source of ions in pure water comes from the fact that small part of the water 

molecule (only one in million) dissociates into hydroxide ions (OH
-
) and hydrogen 

ions (H
+
), as mentioned in the previous section. Under AC voltage, pure water is less 

conductive than tap water because small amounts of acids and dissolved salts raise the 

conductance dramatically. Tap water conducts at about 1000 (S cm
-1

)
33

. Moreover, 

when pure water is exposed to air, this action allows carbon dioxide
34

 to dissolve and 

form carbonic acid which increases its conductance to 1 (S cm
-1

). Another problem 

that may arise is the limited electrochemical window of water, and this may interfere 

with sensing analytes. However, there is a small electrochemical window of water 

about (1.23 V)
35

.   

1.5.3.2 Ionic liquid 

An ionic liquid refers to a melting salt that has the melting point below or close to 

room temperature. Two ions with opposite charges constitute the ionic liquid 

(typically organic anions with bigger cations). Also, ionic liquid is a good solvent with 

no volatility and great stability thermally, chemically and electrochemically. In 

general, the ionic liquids are highly conductive reaching 0.1 (S cm
-1

)
36

, since the 

http://en.wikipedia.org/wiki/Carbon_dioxide
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concentration of ions is higher and rather larger size comparing to dissociated water 

molecules. EMI-TFSI is the ionic liquid used here which stands for 1-ethyl-3-

methylimidazolium-bis(trifluoromethyl-sulfonyl)imide (Figure 10) which has been 

used for gating TFTs before
37

. EMI-TFSI has large electrochemical window of 4.3 V 

and gives the capacitance about ~6.5 µFcm
-2

 at 1 Hz and ~5.17 µFcm
-2

 at 10 Hz
38

. 

Together, that means the maximum field we can go to (strictly, the maximum electric 

displacement,                 ) can be almost 10 times bigger than for pure water 

gating. Consequently, the IL- gating organic semiconductor is built to achieve low 

voltage and fast- switching FET without sacrificing mobility.  

 

Figure 10, the chemical structure of 1-ethyl-3-methylimidazolium-bis(trifluoromethyl-

sulfonyl)imide, (EMI-TFSI). 

1.5.3.3 Solvent 

It is a substance, usually liquid, that is used to dissolve a solute in order to have a 

solution. This solution must be homogenous not leaving any residuals of a solute. At 

the molecular level, such uniformly distributed solute in solvent is referred as 

miscibility; otherwise, it is called immiscibility. The solvent can give a mean to 

control temperature. Thus, it helps to increase the energy of collision of molecular 

(entropy) or to absorb the resultant heat from the reaction between solute and solvent. 

  For choosing the right solvent for solute, the simple rule is “like dissolve like” 

that means polar solvent will only dissolve the reactants with the same polarity which 

is polar reactants and vice versa. The polarity of solvent can be measured by three 

criteria: the solvent dipole moment; its dielectric constant and the miscibility with 

water. In general, the solvent possesses large dipole moment and high dielectric 

considered as polar; however, the one have small dipole moment and dielectric 

constant is categorized as non-polar. In more practical way, since water is polar liquid, 

it can be used to categorize polar and non-polar to evaluate the miscibility or 

immiscibility of solvent with water, respectively. Moreover, the polar solvent is 

divided into type: polar protic and polar aprotic. When a solvent contains a hydrogen 
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atom attached to an electronegative atom (i.e. oxygen), the solvent is called protic 

which is generally represented as R-OH (R is a chemical compound), such as Water 

(H-OH) and methanol (CH3-OH). Thus, the dipole moment of this solvent comes from 

this (OH) bond. The aprotic solvent represents the solvent not containing (OH). 

However, some aprotic solvents still have large dipole moment originating from 

multiple bond (i.e. Acetone (CH3)2 C═O and Acetonitrile CH3-C≡N). 

1.5.3.4 Conventional insulators 

In general, the transport of charge carriers in a TFT channel occurs at the 

semiconductor- gate insulator interface. The transistor characteristics get affected 

significantly by the properties of a gate insulator at the interface with the 

semiconductor
39

. The gate insulator with low- permittivity reduces the value of 

capacitance per unit area of gate insulator    as well as the transistor’s performance. In 

contrary, high-permittivity one produces extra energetic disorder in the channel which 

leads to reduce the transport of charge carriers. The typical gate insulator material is 

SiO2 which has electrons’ traps affecting electron carriers. Chua et al suggested to use 

polyethylene in the surface of SiO2 in order to reduce the presence of hydroxyls (-OH) 

(localised dipoles) which is thought to be a reason of trapping electrons
40

. It is usually 

suggested to treat the surface of a metal oxide with a self-assembled monolayer (SAM) 

(see section 2.2.4) as a buffer or a barrier layer between the gate insulator (or 

electrolyte) and the organic semiconductor. 

The work- function of gate metal is not the main requirement for affecting the 

FETs parameters; however, the saturated drain current depends on    of gate medium. 

When the capacitance of gate increases, the value of threshold would decreases 

because of the capacitance’s ability to accumulate a greater charge density. For having 

low-voltage operation, the used gate insulator should have a high capacitance whether 

by reducing the thickness of gate insulator or using gate insulator material having high 

permittivity or combining two ways, as showing in equation (1-25). Table 2 provides 

the values of relative permittivity   , thickness and specific Ci of some gate insulators 

including solution- processed insulators. The given values of    and Ci are applied to 

bulk (thick film), and these value may not agree with different thickness (low 

thickness) of the mentioned gate insulators.  

Insulator 
   relative 

permittivity 
Thickness (nm) Ci (nF.cm

-2
) 

PMMA 

 

3.5 

3.2 

160 

560 

19.4 

5.1 



50  

 

PVP 6.4 450 12.6 

PVA 10 500 17.7 

TiO2 

 

41 

21 

97 

7-8 

373 

2420 

Al2O3 

 

9-11 

9 

6.5 

4.8 

650-700 

1660 

Table 2, the relative permittivity values of common  solution- processed gate insulator. All 

values are taken from the review of Kim et al
41

 and A. Maliakal
42

. 

1.5.3.5 Electric double layers (EDLs)  

Assuming a pair of metal electrodes is separated by an electrolyte, forming a 

capacitor. When a voltage bias is applied to the electrode pair, mobile ions will 

migrate towards the electrodes with the respective opposite electric polarity, leading to 

the formation of a thin sheet or ‘cloud’ of ions with polarity opposite to the electrode’s 

polarity; such ions are known as ‘counter- ions’. The combination of a biased metal 

contact and the sheet of ions with opposite polarity is known as Electric Double Layer 

(EDL).  

Application of voltage bias to an electrolytic capacitor always leads to the 

formation of two opposing EDLs, an anionic EDL at the positively biased electrode 

(anode), and a cationic EDL at the negatively biased electrode (cathode). A number of 

ever more sophisticated models of the EDL have been devised over time to predict the 

precise distribution of ions, field, and potential, at the electrode/electrolyte interface, 

which will be briefly discussed below. However, all of these models qualitatively 

agree on a number of key properties of EDLs: 

1. The EDL is very thin, in the order 1 nm
43

. Within this thin layer, carrier 

density is very high, in the order (10
13

–10
14

) cm
−2

.   

2. The field associated with the EDL is concentrated near the interface, the bulk 

of the electrolyte remains field- free. Consequently, the potential makes near 

step- like changes at the interfaces but is constant inside the electrolyte. 

3. The build- up of the EDL after the application of a bias is much slower than 

the (almost instant) build- up of the field and potential distribution in a 

dielectric. 

Properties 1 and 2 are illustrated on the right of Figure 11, where they are 

compared to the behaviour of dielectrics. The properties 1 to 3 explain the observed 

behaviour of EDL capacitors, and their differences to dielectric capacitors. Property 1 
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explains the very high capacitance of EDL capacitors, and property 2 shows why a 

capacitance is largely independent of the capacitors’ bulk dimensions and also 

explains why electrolytes are DC insulators. Property 3 explains why they are AC 

conductors: If bias polarity is reversed faster than the characteristic time for EDL 

build- up, an electrolyte will be conductive.  

Figure 11, a diagram of the voltage (V)  profile and the distributions of electric field (E), 

once a negative gate voltage is applied in a dielectric and electrolytic gate medium.
44

 

To give a brief overview over the quantitative models that describe the EDL. 

Historically, the EDL was first discussed by Helmholtz. the Helmholtz model assumes 

that counter- ions are attracted to the surface of a biased electrode and formed a 

uniform thin sheet at distance (d) from the electrode until charge per area become 

balanced. From the electrical potential of surface, the potential drops linearly, reaching 

zero potential in the bulk of electrolyte at a limited distance. The distance between 

attracted counter-ions and an electrode is limited by the presence of the solvent 

molecules (i.e. water). This distance makes a boundary known as “outer Helmholtz 

plane”. This model fails to show the dependency of a measured capacitance on the 

electrical potential of electrodes and concentration of electrolyte especially at lower 

concentration, and the rigid layers of charges do not exist in reality. Considering the 

thermal motion’s effect on the distribution of attracted ions, the Goüy- Chapman- 

Stern (CGS) model suggests that the electrical potential falls exponentially away from 

the electrode forming two distinct layers which are the Helmholtz layer and the 

diffusing layer containing positive and negative charges. In spite of the prediction of 

the CGS model to the dependency of capacitance on the potential and concentration, 

the model does not match the experimental results, in particular the measured 

capacitance is much lower than that suggested from model. The Stern model combines 

the two previous models. Stern assumes that the attracted ions are not enough to fully 

balance the electrode by the Helmholtz layer alone, and the rest of surface charge of 
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the electrode is balanced completely by also a contribution of a diffuse layer. At the 

outer Helmholtz layer, the potential drops linearly followed by an exponential decay 

of the potential in the diffuse layer. Based on CGS model, the capacitance of a single 

electrode consists of contribution of two layers, as seen in following equation
45

, 

 1-34                                                
 

  
 

 

  
   

 

  
  

where   
   is the capacitance of Helmholtz layer which given by equation (1-25) with 

distance H representing a double layer distance between electrode and the centre of 

accumulative counter- ions, and   
  is the capacitance of diffuse layer that can be 

calculated
45

 by complex equation including many parameters, such as electrical 

potential in the diffuse layer (  ), z is the valency of electrolyte, e is the elemental 

charge molar concentration of the electrolyte in the bulk   , Debye length    with 

other constants (Avagadro’s number    and Boltzmann constant   ), as following, 

 1-35                                       
  

         

  
     

    

    
  

 However, neither of these theories gives an account of the practically important 

dynamics of EDL build- up, and its dependence on ion concentration and electrode 

distance except CGS model. Wang et al
45

 reported to the significant effect of the 

concentration of electrolyte to the capacitance of electrode using numerical 

simulations of electrochemical impedance spectroscopy, for example changing in 

concentration   = 0.01 mol/l to 0.001 mol/l give change in capacitance about   
 = 

12.7 µFcm
-2

 to 40.3 µFcm
-2

. As a result, the last fact must be considered, once the 

electrolyte- gated is used for sensor application in order to avoid misinterpretation of 

data coming from measurement.   

The voltage profile and the distribution of electric field changes, once the negative 

voltage is applied at gate contact for dielectric and electrolytic. Figure 11 shows a 

remarkable difference in a dielectric, and an electrolyte. In a dielectric insulator, the 

electrostatic potential drops gradually, so the gate voltage generates a uniform and 

constant electric field. In electrolyte as gate medium, the applied voltage drops just 

near the interfaces and build up the Electric Double Layers (EDLs); as a result, the 

high electric field is only concentrated near the interfaces which have the high value of 

the electric field on the order of 10
9
 (Vm

-1
)

46
, and the bulk will be a negligible field 

effect and a constant value of applied voltage. Thus, the redistributing of ions comes 

first, and then the different field distribution is a result. Mathematically, the smaller 



53  

 

capacitance value in electrolyte- semiconductors interface would be dominant in the 

total of two EDLs, capacitors, connected in series. Since the typical value of dominant 

capacitor is on the order of 10 µFcm
-2

, this would induce a large concentration of 

charge carriers about (~10
15

 cm
-2

)  in the channel of a transistor at low applied gate 

voltage (< 3 V)
47

. 

1.5.4 Electrolyte- Gated Organic FET (EGOFET) and operation 

principle 

Different materials are used as a mean to separate electrically the channel of a 

transistor from the gate contact and also produce an electric field at the 

medium/semiconductor interfaces, such as dielectrics, organic layers, oxides and 

electrolytes. Moreover, Kergoat et al
25

 reported a new approach to serve this by using 

pure water. Someya et al
21

 claimed that OFET works in both standing (drops) and 

flowing water and also mentioned that this will open a new field towards transferring 

or passing chemical information by changing of electrical potential at active 

material/electrolyte (pure-water) interfaces to electric signals through devices. Water 

as a gate medium is capable of forming a nano- scale of electric double layer (EDL) 

that induces high capacitance in order to let transistor operate in low threshold OFETs.  

Someya et al, Kergoat et al and others
21,25,48

 confirmed that the main phenomenon 

exists which is the coexistence between field effect (electrostatic field-operated) mode 

(FET) and electrochemical mode (ECT), once the organic semiconductor is gated by 

water or electrolyte, in general. The former mode takes place in the interfaces between 

active organic materials and electrolyte because EDLs, so the uniformed electric field 

is produced. The latter mode happens, once ions pass through the interfaces and 

moves inside organic materials bulk and dope it, as seen in Figure 13. Consequently, 

the electrochemical mode and field effect mode are considered as depletion and 

accumulation mode
48

, respectively. Kergoat et al believe that a water- gated OFET 

operates entirely at field-effect mode because of the present of high hydrophobicity 

and density materials. In contrast, Olle Inganäs et al prove that their transistors show 

both modes with high speed of switching, maybe, as they uses fiber-based electrolyte-

gated devices that are different to conventional field- effect one.  

Since WGOFET is considered, as well, as a capacitor where a channel with charge 

carrier is one of plates and the gate, above the channel, is another one, as seen in 

Figure 12. 
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Once the channel coated by layer that has an interactions with ions or molecules, 

the surface potential will change depending on these interactions
49

. This change of 

surface potential (electrical potential) can be realized or transferred to transistor 

characteristics and may be influenced either by threshold voltage
22

 (   ) or mobility
21

 

( ). Thus, this transistor may work as an electric transducer. 

 

  

Figure 12, A calixarene as protective layer against doping, water- gated transistor, shown 

schematically. 1) Si/SiO2 substrate and Au contacts; 2) P3HT layer; 3) Calixarene film; 4) 

Water sample; 5) Gate contact. The inset on the left is an enlargement of the calixarene interface 

under positive source voltage, showing a cationic EDL at the gate/water interface, an anionic 

EDL at the water/sensitiser interface, and a corresponding hole accumulation layer at the 

semiconductor/sensitiser interface. The inset on the right shows the electronic circuit we used to 

drive and measure water- gated transistors. 

 

Figure 13, a diagram of an electrolyte- gated OCS film in Field Effect status (left), and in 

Electrochemical status (right)
47

. 
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The source of signal transduction changing can be explained by two reasons. 

Firstly, an analyte interacts with organic semiconductors that, in turn, adsorb them in 

the grain boundaries seeding traps states inside the film. This leads to an increase in 

the resistivity of the charge transport between grains. Secondly, the accumulations of 

analytes on the dielectric layer above the conducting channel also cause electric field 

to be altered
50

.  

The transistor having electrochemical current can result in destroying
22,51

, slow 

responding (switch on/off) of transistor
52

 and may not have the capability to identify 

chemically the analytes. Chemical doping could increase the conductivity of bulk by 

electrochemical addition of ions from electrolytes to semiconductors. To reduce or 

even prevent this detrimental mode, immobile anions in polyelectrolyte in p- type 

OFET has been applied
53

.  

The field effect mode is desirable, since the phase transition from insulation stage 

of the organic material to conducting stage takes place so rapidly which just takes 

about < 10 (ms) to reach it.  

1.5.4.1 Contact resistance and parasitic capacitance  

For an ideal operation of transistors, the sheet resistance of contacts must be lower 

than the sheet resistance of the channel even in the presence of a strong accumulation 

layer, as seen in Figure 14. However, when contacts are formed by evaporated metals, 

this is not usually an issue. More critical is the demand that the transfer of carriers 

from the source electrode to channel (injection) and channel to drain electrode 

(extraction) shall also be of negligible resistance
54

, which is not always true. An 

injection barrier (mismatch between electrode work function, and semiconductor 

transport level) often leads to high contact resistance, although such barriers can still 

be overcome by an applied gate voltage, in particular when EDL gate media are used 

in the ’top contact’ geometry, as seen in section 1.2.3. Barrier- free contacts are called 

“ohmic contacts”, but even ohmic contacts still represent a contact resistance that 

typically is significantly larger than the resistance in the bulk of the metal contact. The 

presence of a large resistance at the injecting or extracting contact can be diagnosed 

with the help of the TFTs’ output characteristics, as discussed in section 3.1.1.1.  

Parasitic capacitances are capacitances that come from the overlap between 

contacts providing unwanted capacitance; however, parasitic capacitances do not 

affect mobility. The important capacitances between the contacts are the capacitance 

of CGS (gate-source) and CGD (gate-drain). One part of these capacitance is due to the 
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parasitic capacitance overlapping between gate and contacts source/drain, and another 

part is due to the capacitance between gate and channel which is necessary for 

transistor’s operation (Figure 14). Although, the channel is not considered as contact 

(terminal), the key capacitances are represented as following equation, 

( 1-36)                                                               

                                  

The overlap capacitances do not depend on the applied voltage that can be 

estimated as fixed parallel capacitances represented as following, 

( 1-37)                                                                

Where,          is the overlap length, and        is the specific capacitance of a gate 

medium (in our case here, water). 

The channel capacitance is voltage dependent. It is required to minimise the 

unwanted parasitic capacitance by reducing the length overlap, once fast switching of 

a transistor is necessary. Since we are limited in frequency anyway due to the slow 

build- up of the EDL, the parasitic capacitance is not that important. Anyway, we 

made a new design for contacts for reducing the length overlap, as seen in Figure 15.    

 

 

 

 

 

 

Figure 14, this shows the equivalent series resistance in source RS, drain RD and channel 

resistance. Also, it shows the gate-source (drain) capacitance CGS (CGD) and the parasitic 

capacitance due to the overlap between gate and source/drain. 
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Figure 15, the design and the gold contact deposition made by Cardiff University. 

1.6 Semiconductors materials used in this work 

1.6.1 Zinc oxide film (ZnO) 

ZnO film is the only inorganic material used in this work. ZnO can be found in 

nature as zincite mineral, but most of ZnO is produced synthetically, nowadays. It has 

been used for a range of potential applications including light emitting diodes (LEDs), 

field effect transistors (FET), spintronics
55

, sensors
56

 and piezoelectricity
57

.  

The common configuration structure of ZnO is wurtzite crystal structure in 

hexagonal form. The Zinc atoms are coordinated to 4 oxygen (O) atoms in tetrahedral 

sites, seen in Figure 16. As polycrystalline oxide semiconductors, ZnO is an n- type 

extrinsic semiconductor for two reasons. The n- type performance in ZnO refers to the 

result of oxygen (O) vacancies and/or Zinc (Zn) interstitials. There is still 

disagreement about which one is more dominant to identify n- type character
58

. 

Although, in undoped ZnO films, Hydrogen causes the n- type doping 
59

. All these 

reasons causing electron transporting located about 0.01-0.05 eV below the 

conduction band make ZnO not easy to be reproducible and reliable device in terms of 

electric performance. At room temperatures, the ZnO phase is stable; therefore, it is 

not required to be stored in vacuum such as organic semiconductors, because ZnO gets 

doped under vacuum providing more oxygen vacancies in its structure. It is nearly 

insoluble in water “0.005 g/l” at 25 
O
C.  
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Figure 16, a wurtzite crystal structure for ZnO, (yellow ball, Zinc atom), (grey ball, Oxygen 

atom). The valence band of ZnO is located at -7.7 eV, and the conduction band is located at -4.4 

eV. 

In different heating temperature, ZnO gives rise of two distinct behaviours. At 

high temperature, ZnO becomes semiconductors because of decreasing of band gap 

energy; however, more dielectric behaviour of ZnO can be taken place at lower 

temperature. As described in Ong et al article, placing coated substrates by precursor 

at pre- heated hot stage would increase carrier mobility rather than step- heating 

process. This is because of increasing in crystallites size in film
60

. ZnO valence band is 

located unfavourably for hole injection from Au (ZnO, VB = -7.7 eV vs. Au, work- 

function = 5.1 eV), whereas the conduction band at -4.4 eV is reasonably well 

matched for electron injection
61

.  

In 2003, the first transparent thin film transistor (TFT) of ZnO was revealed by 

works of Nomura at el 
62

. In terms of mobility, ZnO TFTs generates approximately 

~12 cm
2
V

-2
s

-1
 comparing to currently- used for liquid crystal display a-Si:H TFT 

which produces less than 1 cm
2
V

-2
s

-1 
at same conditions

63
. For more stable 

performance TFT of ZnO, Li- doped ZnO shows outstanding electrical properties in 

terms of high mobility, low threshold and more operational stability
64

. The previous 

transistors were designed in dielectric gate medium. Once the gate medium is replaced 

by solution- processed, for example ionic- liquid, the mobility increases dramatically 

with applying low voltage.  

The TFTs of ZnO is capable of meeting the different requirements for future 

flexible plastic electronics that comprise a high- performance and electrical stability 

with low- cost, low- temperature fabrication (~300 
0
C) and solution-processability.  
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1.6.2 Low molecular weight organic semiconductors 

In such molecular weight, they are relatively small molecules comparing to 

polymers. The electrical conduction (mobility) becomes high, when these low 

molecules are deposited by using thermal evaporation.  

1.6.2.1  N,N’-bis (n-octyl)- dicyanoperylene-3,4:9,10-bis(dicarboximide)   (PDI8-

CN2)   

This low molecular weight material is an n- type organic semiconductor with 

mobility around 0.1 cm
2
V

-1
s

-1
 

65
. PDI8-CN2 can be processed in order to make thin 

film using organic solvents or thermally evaporate it, and the chemical structure is 

shown in Figure 17. PDI8-CN2 has a remarkably low LUMO at 4.3e V which enables 

electron injection even from high work function metals (e.g. gold), and avoids electron 

trapping at 3.6 eV.  It was demonstrated first with other modified perylene 

tetracaboxylic diimide (PTCDI) by Jones et al
66

. 

 

Figure 17, a chemical structure of (N,N’-bis(n-octyl)-dicyanoperylene-3,4:9,10-

bis(dicarboximide)), for short (PDI8-CN2). 

1.6.3 Polymers 

A repeatable of many subunits (monomer unit) constitutes a high molecular 

weight which is the definition of a polymer. Many pathways have been done to 

synthesize polymers, and each one of which provides various length’s chains of 

polymer which is usually expressed as a molecular weight or as a degree of 

polymerization that computes the number of monomers integrated into one chain. The 

length of a polymer chain is a strongly essential factor to determine changes in 

physical properties of polymers, such as the increasing of the chain length would 

increase melting and boiling temperatures.   
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1.6.3.1  Poly(3-hexylthiophene-2,5-diyl), (P3HT) 

As hole transporting polymer, P3HT is constructed by a long series of conjugated 

thiophenes, a cyclic compound of 5 atoms containing one sulphur atom (described in 

section  1.2.2), that are attached each with a hexyl chain as a side group, as seen in 

Figure 18. In fact, the presence of the sulphur atom improves crystallisation of 

resultant materials. As a result, the charge transport is improved by increasing long 

chain ordering. Moreover, the main purpose of appending alkyl side-chains to 

backbones of P3HT is to improve the solubility of the polymer in order to process the 

polymer by solution form in spin-coating, for example.  

 

Figure 18, a chemical structure of P3HT (Poly(3-hexylthiophene-2,5-diyl)). 

Three ordering formats can be built for the location of the alkyl chains on 

thiophene rings which are 2-5’ (head to tail), 2-2’ (head to head) and 5-5’ (tail to tail). 

Mixture of ordering schemes is known as regiorandom. Consequently, twisting out of 

the plane of the thiophene rings leads to a decrease of the conjugation length. The 

longer conjugation length the polymers have, the better charge carrier mobilising 

throughout them. This applies, therefore, to scheme that have head to tail order which 

is identified as regioregular, and this enforces the thiophenes to be more rigidity in the 

structure and sitting in a plane. This scheme promotes for the polymer backbone to 

organised and constructs a lamella as sheet-like in two-dimensional. The Lamella 

ordering of polymers means that the individual polymer chains order themselves in 

such a way that the chain forms a parallel (ordered) section to several neighbouring 

chains and an unordered region above and below ordered section. The remaining 

spaces between ordered sections of lamella are filled with amorphous polymers. 

The improvements of Thiophene polymerisation were attributed to McCullough
67

 

in 1992 and led to a much higher regioregularity.  

1.6.3.2  (Poly(2,5-bis(3-hexadecylthiophen-2-yl)thieno[3,2-b]thiophene), 

(PBTTT) 

In 2006, McCulloch et al
68

 reported firstly on PBTTT and how the size of 

crystalline domains, after annealing, is bigger comparing to P3HT, while the hopping 
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action of charge over grains boundaries becomes more efficient in ordered domains 

rather than disordered ones
69

. This is because of the fusion of two aromatic units 

(thiophenes) which aids to extend π electron systems and allows charge carriers to 

pass through close π-π interaction between intermolecular in higher density.  

Moreover, the HOMO level of PBTTT becomes lower by 0.1 eV (seen in Figure 

6), since the delocalization over the polymer backbone is reduced as a reason of the 

fusion. The increase of ionization potential improves the polymers in terms of 

crystallization, self-assembly and high stability in the presence of oxidising species
68

.   

 

Figure 19, a chemical structure of  pBTTT, (Poly(2,5-bis 

(3-hexadecylthiophen-2-yl)thieno[3,2-b]thiophene).  

1.6.3.3  Poly(Benzimidazobenzophenanthroline), (BBL) nano-belts 

Poly(Benzimidazobenzophenanthroline) is another n- type organic material that is 

normally known as BBL, but it is considered quite a remarkable organic 

semiconductor. BBL is a very stiff planar polymer, and also it does not have any 

flexible side in its chains. The lack of flexibility of its side chains means that 

processing and synthesising of BBL is really a very hard work, since it does not 

dissolve in typical solvents (i.e chloroform). However, Methane Sulphonic Acid 

(MSA) must be used to dissolve BBL
70

. BBL dissolves in MSA due to a chemical 

reaction between the acid MSA and the BBL polymer that acts as a base. 

BBL was chosen, since its LUMO level is remarkably low. This distinctive feature 

gives BBL an ability to be very stable in ambient or humid conditions. Maybe, BBL’s 

insolubility in usual solvents may also contribute to its feature of significant stability. 

The group of Briseno et al managed to fabricate TFTs of BBL that have remained 

stable for about 4 years in ambient atmospheric conditions
71

. They pointed out that the 

robust qualities of BBL are a result to two important reasons which are the 

morphology with closely- packed crystalline structure and high electron affinity of 

BBL. Furthermore, the closely- packed feature builds a kinetic barrier which shields 
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BBL against the diffusion of extrinsic molecules, and the molecules of BBL are 

energetically stable against chemical/electrochemical reactions because of the high 

electron affinity of BBL.  

The structure with ladder shape of BBL (Figure 20) contributes to the more 

rigidity of the polymer than many other polymers. The rigidity strongly restricts the 

twisting motion and just allows continuing its rigid planar-shape contrasting its non- 

ladder cousin BBB. Moreover, this provides the two important purposes which are a 

decrease of the LUMO level and an assistance of the charge carrier transport
72

. Studies 

showed that chains pack of BBL is arranged as face-to-face perpendicular to the long 

axis of the nano- belt growth
73

, as seen in Figure 21. 

Although much research has been concentrated and done to investigate the BBL 

properties and applications
70,72-73

, the synthesis and properties of BBL were recognized 

before in 1969. Arnold and Van Deusen
74

 observed its thermal stability, and they also 

managed to produce films and fibre- forming properties. Unfortunately, their 

discovery and research were mostly forgotten until the late 90’s.  

 

Figure 20, a chemical structure of BBL, Poly(benzobisimidazobenzo-phenanthroline). 

 

Figure 21, an illustration of the paking of BBL in nanobelts, taken from reference
73

. 
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1.6.4 Nanowires (NWs) of Polymers  

Either inorganic or organic materials, 1-D nanostructures (such as, nano-wires, -

fibers, and etc.) have attracted a great interest. In this section, the focus will be about 

polythiophene nano- wires grown via the whisker method, and topics related to it, as 

seen in figure. 

 Ihn et al
75

 was the first group who used whisker method to grow organic nano- 

wires by dissolving the organic polymer in pre-heated marginal (between good and 

poor solvent) solvent and then allowing clusters or aggregates to grow as the solvent is 

cooled gradually to room temperature. They found that P3ATs crystallise to form 

nanowires with width and height of tens of nanometres and few micrometers lengths. 

They point out that the used solvent depends on the side chain length (alkyl- side), so 

polymers with longer side chain require a poorer solvent in order to form nano- wires. 

At higher temperature, specific solvents become good solvents, but the solubility 

becomes poorer at lower temperature. A dual- behaviour of solvent with different 

temperature is a key factor to form crystallisation.  

At same principle, Kiriy et al
76

 group showed another way of producing P3HT 

nano- wires. After dissolving polymer in good solvent, drops of poor solvent was 

added to solution, at room temperature. This allows crystallising the solution, as seen 

in Figure 22.  

After using whisker method, Oodterbaan et al
77

 group recommended an Anisole 

solvent as an excellent solvent in order to grow P3HT nano-wires. They studied a 

correlation between many parameters affecting the growth of P3HT nano- wires, for 

example, refractive index of solvent and side chain length of polymers.    

In 2007, a blend of P3HT nano- wires with [6,6]-Phenyl-C61-butyric acid methyl 

ester (PCBM) for used in photovoltaic application as demonstrated by Berson et al
78

.  

Another group found that the efficiency of organic photovoltaic becomes greatly 

optimised after 60 hours of forming P3HT nano- wires in dichlorobenze solution. 

However, ageing time after 60 hours from making new solution shows an increase of 

large aggregates which, in turn, affects charge transportation between NWs
79

. By 

fabricating organic field effect transistor (OFET) devices, the electrical properties 

have been studied, as well. Using whisker method for growing P3HT NWs, Merlo and 

Frisbie looked into the electrical properties for several and single NWs in Nitrogen 

atmosphere. Also, the alignment of the long axis of NWs can be rearranged to be 

perpendicular to the magnetic field’s directions
80

. 



64  

 

 

Figure 22, an illustration of P3HT nano-wires, taken from reference
81

. 

1.7 Calixarenes  

In fact, Calixarene can be used as a receptor sites in a layer to enhance the 

selectivity towards analytes in gaseous or aqueous medium. Their properties are 

modified, once they bind to ionic guest with different event of recognition, as seen in 

Figure 23(b). Consequently, the binding event may leads or translates to an electrical 

signal using suitable circuits. 

1.7.1 History 

  

  

 

Figure 23: (a) the example here is calix[4]arene similar to Cup or basket-shaped, and the arrows 

indicate to the upper and lower rims with cavity shape. It is convention to have hydrophobic 

upper rim and hydrophilic lower rim, (b) Detection of the recognition event. 
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Calixarene, which is in order of nano- scale with unique conformation shape, 

basket-shaped Figure 23(a), has ability to sense and detect materials, such as 

pollutants and solvent vapours. Also, Calixarene have been used in many researches 

and project works to sense and extract the target analyte from medium. Calixarene is 

divided into two words, “calix” which means that a resemble of molecules possess a 

shape similar to a vase, and “arene” stands for the aromatic  structure built by unit 

block, which is phenolic units connected by methylene group at othro-positions of 

phenol. What is interested in these basket- shaped macromolecules is that it can be 

tailored in such a way to get specific “man- made” receptor in order to be fit or sense a 

cations or molecular species
82

. The hydrophobic cavity sizes, functional groups at 

upper and lower rim are utilised as pre- prepared binding sites for varieties of cationic 

and natural guests for many previous uses
83

. 

The smallest calixarene that can be made is the one with four benzene rings which 

calix[4]arene. It has been used with ion selective electrodes
84

; however, the sensitivity 

was not that sufficient to sense low concentration of ionic species that usually present 

in real sample because of the problem related to electrode modifications
85

. For ion- 

selective field effect transistor (ISFET), the calix[4 and 6]arene have been evaporated 

thermally on the surface of gate insulator, and this work indicates that ion with small 

radius shows a clear interaction with cavity of calix[4]arene; however, bigger cavity, 

such as calix[6]arene, gives weak response
86

. Thus, even weaker response is expected 

for calix[9 and 11]arene
87

. 

In terms of the distribution of calixarene on the surfaces, the thermal evaporator is 

not the ideal choice because of the poor distribution coverage; however, films from 

Langmuir trough may play this role in order to provide us a well defined and a regular 

condensed array of calixarene on surfaces
88

.  

In this work, these Calixarenes will be utilized just as a buffer layer to blocks ions 

that could otherwise penetrate an organic material and dope it. 
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CHAPTER 2 

2 Device Fabrication 

This chapter describes the substrate preparation before deposition and the way of 

making thin film transistors of organic (including nano- wires of P3HT and nano- 

belts of BBL) and inorganic semiconductors. Also, the way of depositing 

semiconductors and the equipments used for this purpose are mentioned in more 

detail.  

2.1 Substrate preparation 

Uncleaned substrates result in poor adhesion of the deposited films, increasing off- 

current or even non- working devices. Thus, the cleaning procedures for substrates 

before depositing organic semiconductors are important steps to have the required and 

stable performance of deposited devices throughout the experiment. In the following 

section, the substrate cleaning techniques are explained. 

2.1.1 Cutting substrates  

Silicon substrates with a 100 nm thickness of thermally deposited oxide and glass 

substrates were cut manually. A cutter containing a diamond tip was used to carefully 

and deeply scratch the back of the polished side of wafer (non- polished side) or the 

pre-deposited-gold-contacts wafer. Finally, the remaining cracks from scratching were 

blown with dry nitrogen. The same step was done with glass substrates with the 

required size for both (1.2 X 2.4 cm
2
). The advantage of glass substrates over silicon-

oxide (SiO2) is that glass guaranteed the minimal or zero off-current, since there is no 

sort of leakage going from source and drain beneath a channel like what usually may 

happen for SiO2  after depositing Gold contact and diffusing towards Silicon layers. 
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2.1.2 Cleaning substrates 

SiO2 was cleaned in several steps, starting with acetone cleaning with clean- room 

wipe in order to get rid of any organic dirt of residuals, such as fingerprint. After 

drying substrates using dry nitrogen, they were cleaned by immersing them in a 

cleaned Petri dish with 1:100 diluted Hellmanex alkaline. After that, the Petri dish 

with diluted Hellmanex was sonicated in a sonic bath for 5 minutes. The next step is to 

remove Hellmanex alkaline and rinse substrates by de-ionised water. Finally, for 10 

minutes, dried substrates were placed in a cleaned Petri dish with preheated 

Isopropanol (IPA) at 70°C on a hot plate. The same Petri dish with substrates was 

placed and sonicated in the ultrasonic bath for 5 minutes and were rinsed with clean 

IPA and dried with the aid of dry nitrogen, afterwards. In all time, these cleaning 

procedures were always done in clean-room labs, and the edge of substrates was 

picked up or touched by tweezers to guarantee a high level of cleaning, in addition of 

using gloves. 

2.1.3 Ultraviolet-light-ozone cleaning (UV-O3 cleaning) 

The final step is cleaning all silicon and glass substrates with ultraviolet (UV) 

light ozone treatment (Bioforce Nanosciences Inc.) to remove the organic dirt that 

may still left behind on the surface of substrates. Usually, the substrates were held in 

ozone treatment up to 4 or 4.5 minutes. The principle of this treatment is to convert an 

organic compound on the surfaces into volatile substances (i.e. H2O, CO2 and N2) by 

two different mechanisms which are a decomposition action of UV rays and a strong 

oxidisation by ozone (O3) generated from ambient oxygen (O2) by UV. The low-

pressure mercury vapour lamp radiates two different wavelengths (184.9 nm and 

253.7 nm). First wavelength is absorbed by atmospheric oxygen and forms O3. Second 

wavelength decomposes O3 to its original elements. 

2.1.4 Reflux unit 

This cleaning process was done for glass substrates, and it can be used for SiO2, as 

well. The glass substrates were cleaned by immersing them in a cleaned Petri dish 

with 1:100 diluted Hellmanex alkaline and placing them in warm sonic bath for 5 

minutes. After rinsing of substrates by DI-water and drying them, they were placed in 

a reflux cleaner containing isopropanol alcohol for 3 hours, as seen in Figure 24. 

Finally, refluxed substrates were dried with nitrogen gas. Some substrates are required 

to be hydrophobic prior to Langmuir trough and spin- coating deposition; hence, a 

further procedure well- known as silanization by adding 3 drops of 
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hexamethyldisilazane (HMDS) (more details about self- assembly in section 2.2.4) 

into a sealed Petri dish containing the substrates, for 24 hours.  

 

Figure 24, the picture of Reflux unit. 

2.2 The deposition techniques 

In this section, various deposition techniques that are used for preparing a thin 

film of organic semiconductors, metal contacts and sensitizer layers of calixarenes are 

explained, in more detail.  

2.2.1 Langmuir Trough 

One of the simple and very useful deposition techniques to make monolayer film 

on the surface of the sub- phase (DI water in the trough) where the required material is 

deposited is called the Langmuir deposition. Then, the form and highly ordered 

monolayer is deposited on solid substrates.   
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Figure 25, illustration of surface pressure- area isotherms of a Langmuir film showing the 

target molecules in different phases, where the molecular behaviour represent in (i) a gaseous 

phase, (ii) a liquid phase, (iii) solid phase and (iv) collapse mechanism. This demo data is taken 

from NIMA technology software. 

For making Langmuir film, firstly, the required material, usually amphiphile 

materials (more details in section  2.2.1.1), is prepared by dissolving it with solvent 

(typically 0.1 mg/ml) that is not soluble in water and volatile after spreading on the 

sub- phase. The common solvent for that purpose is chloroform, but it is crucial to be 

a good solvent for the respective material. Then, a solution of material is spread over 

the sub- phase using a Hamilton micro- syringe. In inert and highly hydrophobic 

trough (Teflon), the barrier by same material of trough compresses the required 

monolayer on the surface of pure water. With the aid of Wilhelmy plate (a rectangular 

piece of a lab paper) measure, therefore, the surface pressure from the plot of (surface 

pressure– film area) as seen in Figure 25. Other phenomena related to surface can be 

extracted from surface pressure, such as effective dipole moment of molecules and 

area per molecules by knowing of the molarity of spread molecules and the surface 

area of the trough (typically 525 mm
2
). The transitions between different film 

morphologies can be identified from changes in the slope of the isotherm. 

Many forces affect on a Wilhelmy plate which are gravity, surface tension and 

buoyancy. The net force on the plate is represented by following equation
89

: 
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( 2-1)                                                                           

Where the density of the plate material and the density of the sub- phase liquid are 

represented by    and   , respectively, g is the constant of gravity, l,   and   are the 

length, width and thickness of the plate,   is the surface tension of the sub- phase,   is 

the contact angle of the sub- phase to the plate (  = 0 for filter paper in water) and h is 

the length of  plate that immerses in depth into the sub- phase. 

When organic material is added to the sub- phase surface, the surface tension 

decreases which is indicated by the change in the force affecting the plate. 

Consequently, the changes in the surface tension as a result of changes in the net force 

on the plate are indicated by using following equation:  

( 2-2)                                 
  

      
 

  

  
       for                                      

 The changing of surface tension (    is related to surface- pressure   (typical 

unit mN/m) that is given by following equation
90

, 

( 2-3)                                                       

Where    and   are the surface tension of sub- phase without deposited film and film- 

covered surface, respectively. Nima 611D Standard trough is utilized for making 

calixarenes layers, as seen in Figure 26.  

 

Figure 26, the picture of Nima 611D Standard Trough.   
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2.2.1.1 Amphiphiles 

The dipolar moment of water is a result of withdrawing electrons towards oxygen 

atom causing uneven distribution of charges in the water molecule, as seen in Figure 

27. 

 

Figure 27, the polarity of water molecular. 

Polar molecules are always attracted to the polar water, and they are called 

hydrophilic. Non- polar molecules that do not dissolve in water and repel the water are 

called hydrophobic. A typical monolayer molecule used in Langmuir trough should 

comprise a head group that possesses a polar molecular which is hydrophilic and a tail 

of molecular which is hydrophobic. This sort of molecule is called an amphiphile. The 

balance of hydrophobicity and hydrophilicity in an amphiphile leads the molecule to 

align and orient itself on the water surface in a well defined direction. 

As seen in Figure 28, a general example of amphiphile is the fatty acid or Stearic 

Acid (C17H35COOH). Stearic Acid processes hydrophilic chains of long hydrocarbon 

with a methyl (CH3) group at one end and a hydrophobic (polar) carboxylic acid group 

(CO2H) at the other. The tail of the chain and the strength of polarity of acid group are 

key factors and should be balanced. If the balance is not precise, the amphiphile 

dissolve in the water. 



73  

 

 

Figure 28, the Stearic acid molecule and approximate shape and size 
91

. 

2.2.1.2 Different Langmuir Trough techniques (Langmuir- Blodgett Films, 

Langmuir- Schaeffer deposition) 

After making the monolayer at target surface pressure that is in ‘solid’ phase but 

before collapsing of film on the trough, the monolayer can be transferred onto solid 

SiO2 or glass substrates in two different ways which are Langmuir- Blodgett 

deposition (LB) and Langmuir- Schaeffer deposition (LS), as seen in Figure 29. The 

monolayer is compacted to an optional surface pressure using software. Also, surface- 

pressure is kept constant by the barrier following through during dipping, controlled 

by software. The different arrangement of monolayers is achievable, since the 

substrate can be dipped into the sub- phase whether vertically (LB) or parallel (LS) 

to the surface. To widen our arrangement options, the substrate can be placed inside 

the trough before pouring DI- water and applying the monolayer. Therefore, the 

molecule in the surface of substrate is organized by head to head, or tail to head, as 

seen in Figure 29. 
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Figure 29, Comparison between Langmuir- Blodgett (LB) and Langmuir- Schäfer (LS) 

films. a)-c) and d)-f) depict the two steps for a two layer- deposition for LB and LS, 

respectively. The immersion (a) and emersion (b) of the substrate result in a LB film (c) in 

which the second layer of particles is disposed in the opposite way with respect to the LS film 

(f), obtained after two consecutive dips, (d) and (e). 

2.2.2 Spin Coating 

In this procedure, a thin film is deposited on the substrate by placing an amount of 

solution on it and rotating at high speed. The principle beyond this technique is 

spreading solution by centrifugal force. The volatile solvent is a good choice for 

leaving the thin film of organic material on substrates. However, the evaporation of 

solvent must leave enough time for organic material chain to crystallize and order 

themselves. Usually, polymer is spin- coated instead of low molecular weight, since 

polymers solutions are much more viscose. The used solvent has a strong effect on the 

thin- film quality (charge carrier mobility, for example) and thickness. The final film 

thickness can be calculated roughly using the following equation:  

( 2-4)                                                   
     

  
                                                

Where: d is the resultant thickness, c is the solution concentration,      is a viscosity 

which depends on the concentration and   is the spin speed.  
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Finally, the constant from this equation depends strongly on substrates adhesion, 

solvent and other factors.  

 

Figure 30, the different steps of spin coating. a) Applying solution. b) Start acceleration. c) 

Flow of fluid dominates.  d) Evaporation of solvent dominates. From:  

http://large.stanford.edu/courses. 

2.2.3 Thermal evaporation 

This technique is widely used because vacuum assists significantly to transfer the 

solid phase of materials to the vapor phase at lower temperature. Vacuum also 

prevents oxidation, and increases mean free path, explained below. Thus, the 

deposition of thin film of metals on the substrates as electrodes and low molecular 

weight organic molecules are easily made by this technique.  Evaporation from a hot 

source and condensation on a cool substrate are the two basic processes in thermal 

evaporation. High vacuum offers for evaporated particles a long mean free path which 

means that the vaporants travel towards the substrates without colliding with ambient 

or residual gas molecule inside vacuum chamber. The relation between pressure and 

the mean free path is given by: 

( 2-5)                                                    
 

      
                                             

Where d is the molecular diameter, n the number density of the molecules. From ideal 

gas law,           , here    is the absolute pressure of the gas,    is 

the Boltzmann constant  and T is the absolute temperature. 

At typical pressure, for example, 10
-6

 torr, a partical with 0.4 nm diameter travels 

60 m without collision, and the distance between substrates and hot source in our 

evaporation device is only around ≈15 cm.  

http://en.wikipedia.org/wiki/Pressure
http://en.wikipedia.org/wiki/Boltzmann_constant
http://en.wikipedia.org/wiki/Absolute_temperature
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 The hot source used here is heated tungsten boat for low molecular weight 

materials and Gold (Au) and coils for Aluminum (Al) to make electrodes, and both of 

which has to possess a high melting point in order to reduce contamination. A high 

current DC is passed through the tungsten to heat up (Joule heating or resistive 

heating), as seen in Figure 31.  

  

 

 

 

 

 

 

 

 

 

Figure 31, the configuration inside evaporator. 

The quartz microbalance is utilized to monitor the rate of deposition and identify 

the final thickness of thin film on substrates. This monitor employs thin slices cut 

from a complete crystal with metallic electrodes. Once the quartz slice is exposed to 

the evaporant, its mass will increase consequently, and its resonant frequency 

associated with electronic oscillator will drop. Thus, the deposited thickness will be 

estimated, when the frequency changes and the materials density is known.          

( 2-6)                                                 
  

  
                                                         

where, resonant frequency   , frequency changes   , mass changes    and constant 

for the system  .  

The Edwards E306 Belljar Evaporator is used for depositing metal electrodes, and 

low molecular weight materials, as seen in Figure 32. Also, a removable glass bell jar, 
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sealed by a rubber, lies on the base of the apparatus. All electrical, gauges and vacuum 

and cooling piping are located at the metal bottom of the evaporator. 

For the preparation of substrates inside the evaporator, the substrates were placed 

upside- down on two parallel steel frames. The magnetic sheet was placed on (rear) 

side of the suspended substrates. Thin shadow masks of ferromagnetic metals was 

positioned on the top side of each substrate, and shadow masks attached in place by 

the attraction action of the magnetic sheets. The whole collection including the frame, 

magnetic sheets and the substrates with the masks was placed on a stage inside the 

evaporator.  

 

Figure 32, the picture of Edwards E306 Belljar Evaporator. 

 

2.2.4 Self- assembly from solution 

This is even much simpler way of deposition compared with Langmuir trough 

depositions. Monomolecular layers are formed by dipping proper substrates into a 

solution containing organic materials. An example of this kind of deposition is 

organosilicon compound formed on hydroxylated surfaces, containing -OH group on 

their surfaces, (i.e. SiO2, Al2O3 and glass) depending on the idea of anchoring group 

(the head group of self- assembling molecule) interacting with substrates’ surfaces. 

This slow process usually takes a long time around hours or days depending on several 

factors, such as the substrates, self- assemble organic materials, concentration and 

temperature.  
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We used two different self- assembling organic materials in this study. Firstly, on 

an Al2O3 surface, octadecyltrichlorosilane (OTS) is used depending on the idea that 

one of Cl atoms attached to the silicon of OTS leaves the molecule and bonds to the 

hydrogen atom of one of the -OH groups at the surface of the Al2O3. This creates the 

silicon forming a bond to the oxygen remaining on the surface while a molecule of 

HCl stays in solution, as seen in Figure 33. The self- assembly of OTS was performed 

by immersing the substrates having Al2O3 contact into OTS solution with cyclohexane 

under a nitrogen atmosphere in a glove box for 30 min. Every sample was cleaned in 

fresh cyclohexane in order to remove any non- bonded OTS with Al2O3 surface 

material and then kept them over warm Petri dishes unit they become dry.  

 

Figure 33, a diagram of OTS on Al2O3/SiO2 with organic semiconductors. 

Secondly, the hexamethyldisilazane (HMDS)
92

 self assembly was achieved by 

placing the substrates (containing thin film of ZnO)  into spin- coating, after that three 

or four drops of HMDS are placed over the substrates creating monolayer of HMDS 

after spinning at 5000 rpm for 60 s, as seen in  Figure 34.  
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Figure 34, a diagram of HMDS on the surface of ZnO or SiO2. 

2.2.5 Metal Anodisation 

This cheap and fast approach to create an oxidised layer of a metal is prepared by 

using it as working electrode in a bath with a fixed Platinum counter electrode and 

weak acid solution. Anodisation works only on those metals (or semiconductors) that 

show adhesion for layers of their oxides on their surfaces. These are known as ‘valve 

metals’, including Aluminium, Titanium, and Tungsten. On valve metals, a thin 

adhering oxide layer forms spontaneously under atmosphere, this is known as ‘native’ 

oxide. Native oxides prevent further oxidation of the valve metal bulk; the native 

oxide is usually an insulator (e.g. Al2O3), but some also are large bandgap 

semiconductors (e.g. TiO2). Anodisation electrochemically grows a thicker layer of 

this oxide. After depositing a required metal to be anodised on the substrate, the 

deposited metal is connected as a counter electrode to fixed Platinum electrode in a 

bath of a weak acid, e.g. citric acid. Once a potential is applied across these electrode, 

the substrate must be more positive than the fixed electrode, as seen in Figure 35. 

Applied potential helps to dissociate the weak acid solution, and the flow of negative 

ions towards the anode (the substrate) oxidises the metal over the substrates 

(Aluminium, in our case here). Accordingly, the cathode (Platinum) receives the 

positive ions and converts H3O
+
 back into H2O. Anode reaction is represented as 

following, 

                        
   

The more oxidised layer grows, the more its resistance increases until no current 

will flow through acid. The growth speed and thickness of the oxidised layer get 

affected by the magnitude and length of the voltage applied. In this work, the 

anodisation ratio of aluminium oxide is (1.3 nmV
-1

)
93

 which means that a 5 V 

anodisation provides an oxidised film roughly 6.5 nm thick with a capacitance per unit 

area evaluated to be (640±30 nFcm
-2

)
94

.  
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Figure 35, the equipment is used to anodise Aluminium metal. 

2.2.6 Deposition of source and drain contacts 

Cleaned substrates are loaded inside thermal evaporator. The gold wire is placed 

in the middle of a small tungsten boat. Shadow masks with 10 µm×2 mm of width and 

length, respectively, is employed to form contacts. As mentioned in section  2.2.3, the 

thickness of gold on substrates is monitored utilizing quartz microbalance to reach 50 

nm thickness of source and drain contacts. Also, thermally deposited gold contacts 

over SiO2 wafer that were made in Cardiff University were also used in experiments in 

order to reduce the parasitic capacitance and leakage of contacts, as seen in Figure 15.  

2.2.6.1 Gold 

Gold has attractive properties (i.e. the non- reactive chemically to other elements, 

the resistance to corrosion...etc.). Also, it is the material of choice for p- type 

semiconductor devices, because the ionisation potential of most p- type semiconductor 

matches relatively well with gold’s work function which is around values from 5.0 to 

5.3 eV
95

. Thus, low potential barrier is required to be overcome in order to get an 

efficient injection of charge carriers. The gold wire is used in this work and was 

thermally evaporated using a tungsten boat as a heating element. Appropriate 

dimensions of shadow masks were used for the patterning of the deposited electrodes. 
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2.2.6.2 Chromium as adhesion layer 

The one major problem of using Gold is that Gold has low adhesion properties on 

glass or SiO2 substrates which might result in peeling off the deposited gold thin films 

from substrates. This difficulty can be solved by depositing a few- nm- thick adhesion 

promoting layers made of other metals that have better adhesion than Gold and help 

Gold electrodes to stick to the surfaces, such as Aluminium or Chromium, prior to 

gold deposition. For some of the electrode used for electrolyte- gated OFETs 

presented in this work, another layer (i.e. Aluminium or Chromium) were deposited 

first on the SiO2 surface before depositing gold electrodes. These layers were patterned 

following the pattern of specific shadow masks and have the same dimensions of the 

overlying gold electrodes.  

2.2.7 Deposition of thin- film and nanowires semiconductors  

In this thesis, we fabricated thin film transistor devices with a variety of solution 

processed semiconductors: one low- molecular weight organic semiconductor (PDI8-

CN2), and two semiconducting polymers (P3HT, PBTTT) as thin films; other devices 

were fabricated from nano- wires of P3HT, and nano- belts of BBL. Also, we studied 

thin- film devices using the inorganic semiconductor ZnO. The processing of all of 

these materials is briefly introduced now.  

2.2.7.1 Deposition of polymers OSCs 

Polymers are prepared as solution to be spin- coated on the substrates. The unit of 

mg/ml solution always is used here which means the weight of polymer powder (mg) 

dissolved in a volume of solvent (ml). Stirring the solution under 50°C heating helps 

to dissolve polymers completely. Before spin- coating, the solution must be filtered 

with pore size of the filter (0.2 to 0.45) µm. During the whole procedure, covering 

bottle from light avoids any chemical reactions between solvent and solute, especially 

for P3HT. Spin coating is applied to P3HT and PBTTT as described in section 2.2.2. 

The typical concentration of solution is about 10 mg/ml. The solvents used in these 

work were generally described in section 1.5.3.3. 

2.2.7.2 Deposition of low- molecular weight OSCs 

 On the other hand, low molecular weight OSCs, such as PDI8-CN2, were 

evaporated thermally, since casting of low molecular weight OSCs from solution 

results in poor quality films. A small amount of PDI8-CN2, say 6 mg, is placed in a 
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quartz boat and heated up to the vapor phase of used material until 50 nm thickness is 

achieved, as described in section 1.6.2.1. 

2.2.7.3 Growth and deposition of BBL nano- belts 

This section was done in collaboration with a project student, Mr. Richard Theo 

Grant. The preparation of BBL nano- belts films used as a semiconductor material in 

TFTs can be divided into two parts: growth and processing. Besides the extra safety 

precautions that must be taken into account when handling methyl sulfonic acid 

(MSA), BBL has no side- chains and, therefore, won’t be soluble in common solvents, 

but it does dissolve in an organic acid MSA. The processing of the nano- belts in such 

a way that would remain stable after casting demonstrated to be greatly more difficult.  

A solution concentration of BBL in MSA about 0.2 mg/ml was carefully measured 

and mixed and after that the solution is heated at 70°C for 10 mins to help the 

solubility of the BBL powder in acid. After dissolving the BBL, the solution’s colour 

has a distinctive colour which is red, as seen in Figure 36. Another solution was 

prepared that contained the 4:1 ratio of Chloroform and Methanol in which the nano- 

belts would be produced. This solution was mixed with magnetic stirrer with speed 

about 1200 rpm, while small quantities about a 5 ml of the BBL and MSA solution 

were added using a pipette. The self-assembling of BBL nano- belts was taken place 

and recognised immediately to the naked eye as the drops of BBL and MSA solution 

entering the chloroform and methanol solution which changes the colour from red to 

dark blue.  As the BBL molecules are forced by the poor solvents to self- assemble 

themselves and forming nano- belts of blue fibres. In such form, the nano- belts are 

very stable that can be kept in suspension for long time.  

 

 

Figure 36, a solution concentration of BBL in MSA about 0.2 mg/ml with red colour (left), 

and a same concentration of BBL nano- belts after a mixture of Methanol, Chloroform and 

MSA with dark blue colour (right). 
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Nevertheless, nano- belts in this form cannot be drop- casted directly upon 

substrates because the different constituents of the medium in which they were 

dispersed evaporate at different rates. Thus, the chloroform and methanol evaporate 

relatively quickly comparing to the MSA because of its high boiling point of 167°C 

that remains present on the substrates. Once the nano- belts drop- casted directly over 

substrates causes problems, such as dissolving Au contacts because the high acidity of 

MSA and the nano- belts changing back to red colour which means MSA redissolves 

the nano- belts.  

We, therefore, had to first ‘wash’ BBL nano- belt suspensions from residual MSA. 

So far, the growth process mentioned was done according to the process outlined in 

Briseno et al
73

. Attempts were done to execute the washing process for removing any 

traces of the MSA, but still a number of obstacles were observed.  

Using a pipette, the BBL nano- belts are collected, transferred to special vials of 

centrifuge, and then they are washed with pure methanol at 3000 rpm for 10 minutes. 

Then, the BBL clusters transferred again to new vials containing deionised water and 

washed twice. When attempting to repeat these processes, the BBL nano- belts stick to 

the wall of the vials after adding deionised water. 

 To avoid this problem, the better results were attained by avoiding the steps of 

using the deionised water. Instead, the BBL clusters were washed by the different 

solvent (i.e. methanol, ethanol, or isopropanol) three times at 5000 rpm for 10 

minutes, as seen in Figure 37. Variations of different washing media were tested to 

observe which one of solvent has a better performance when used as semiconductors 

in electrolyte- gated transistor.  

Removing any remaining excess solvent in samples needs great care in order to 

not lose any of the formed nano- belts and avoid disturbing the nano- belts using 

pipettes and syringes. 
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Figure 37 a) BBL nano- belts during washing in different agents to remove any remaining 

MSA, b) Concentrated clean samples of BBL nano- belts stored in Ethanol, Methanol and 

Isopropanol 

2.2.7.4 Growth and deposition of P3HT nanowires  

Two different routes of making P3HT nano- wires were used in this work. Firstly, 

the P3HT dispersion was prepared following the ‘whisker’ method. The P3HT 

(sourced from ADS dyes) was dissolved in anisole (5.2 mg/mL). The solution was 

heated to 90 °C until fully dissolved, and then the solution was allowed to cool down 

to room temperature. The solutions were kept in sealed vials and stored in the dark for 

3 days for the nanowires to be formed. NWs derived by this route are called ‘Anisole- 

P3HT’ NWs. This vials of P3HT nano- wires were prepared and provided by our 

collaborating partners, Mark Hampton and Dr. J Emyr Macdonald, in the University 

of Cardiff. 

Secondly, ‘CB- P3HT’ NWs route were grown from regioregular poly(3-

hexylthiophene), rrP3HT (sourced from Ossila) in 5 mg/mL chlorobenzene (CB) 

solution.  CB was initially heated to 80 °C and agitated to dissolve the solution, and 

the solution was then filtered through a 0.45 μm PTFE syringe mounted filter and then 

left to mature in the dark at ambient temperature for several weeks or months. This 

P3HT nano- wire was prepared and provided by Mr. Adam Hobson, in the University 

of Sheffield. 

2.2.8 Deposition of ZnO thin film 

 All the thin films of ZnO used here are formed from a liquid precursor routes. 

This precursor goes through a chemical change at a substrate surface after thermal 

treatment which, in turn, leaves a solid thin layer on substrates. Spin- coating is used 

to deposit the liquid precursor over substrates at spin speed around 1200 rpm, and then 

the substrates heated at 450°C for 15 min. Repeated depositions (up to three times) 
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can be carried out to raise the thickness of films at desired thickness which maybe 

around ~10 nm. 

Purchased from Sigma Aldrich, the precursor of zinc acetate dihydrate 

[Zn(CH3COO)2·2H2O] (Sigma Aldrich) is dissolved in Ethanol to make concentration 

about 20 mg/ml, and this is called as Ethanol route. The ammonia route is another way 

of making thin film of ZnO and prepared by dissolving 1 mMole of zinc oxide (Sigma 

Aldrich 99.999%) into 12 ml of ammonium hydroxide (aq) (Alfa aesar, 99.9%).  

2.2.9 Deposition of Calixarene layers 

The example is mentioned here to show how to make a nano- scale layer of 

different calixarenes. The nitro-ester calix[4]arene (5,17-(34-nitrobenzylideneamino)-

11,23-di-tert-butyl-25,27-diethoxycarbonylmethyleneoxy-26,28-dihydroxy-

calix[4]arene), shown in the inset of Figure 38, was used and known as Mat16, and it 

was manufactured as described by Supian. F. et al
96

. This calixarene contains a 

conjugated push- pull electron system at upper rim.  

 

Figure 38, Langmuir isotherm of the calixarene used as ultrathin interfacial layer, chemical 

structure in the right- side. 

 

Mat16 was diluted in chloroform (0.1 mg/ml), and about 350 µl of solution was 

spread on the water surface (sub- phase) of a Langmuir trough (Nima 611D Standard 

Trough) to form a monolayer. Langmuir isotherms (Figure 38) were recorded. The 

monolayer collapse takes place at a surface pressure of ~ 40 mN/m. We, therefore, 

always deposited calixarene films by either the Langmuir- Blodgett (LB) dipping, or 

Langmuir- Schaefer (LS) printing technique at slightly lower pressure, ~ 35 mN/m, to 

have dense monolayers on the surface of semiconductors. 
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2.3 Building liquid flow cell 

The need of flow cell increases, when one intends to study the sensing ability of 

TFTs with the presence of different concentrations of analytes in order to precisely 

record the transistor’s responses. The home- made flow cell is built to be sure constant 

stream of liquid (DI- water, usually used) flowing on certain channel area in order to 

have as much stability as possible and give a transistor channel chance to respond 

(recover) faster to (from) analytes. Two injecting syringes (NE-300, New Era Pump 

Systems, Inc.) are used, as seen in Figure 39. 

 First syringe contains a base liquid to mix it with second syringe which contains 

concentrated analytes but within their solubility. The sum of total flow rate for both 

syringes is fixed to be at 1 ml/min. Thus, Changing pump speeds of both pumps 

allowed access to a range of concentration spanning approximately 2.5 orders- of- 

magnitude. This flow cell was prepared and made by Mr. Saud A. Algarni, in the 

University of Sheffield. 

 

 

 

 

 

 

Figure 39, the home- made flow cell (left), and the NE-300 syringe from New Era Pump 

Systems, Inc. (above). 

2.4 Gate contact needle materials 

In the case of electrolyte- and water- gated OTFTs, the choosing the right gate 

electrode material is essential and has an influence on important device 

parameters
25,97

. On the other hand, in the case of conventional, let’s say “dry OFETs”, 

the material selection is nothing to do with functional considerations and just to 

connect to the Keithleys instruments or to I-V converter (measurement system). In this 

work, OFET examples are separated into two different architectures. In the case of 

electrolyte- gated OTFTs, the samples are made as top- gate architectures using 
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Tungsten contact needle to immerse in the electrolyte, but dry OFETs have a bottom- 

gate. Aluminium was used as a bottom- gate. The properties of these materials are 

briefly discussed in following sections.  

2.4.1 Tungsten  

Tungsten was used in electrolyte- gated OTFTs because it as lower off- current 

comparing with Gold and any other needle used
25

. Kergoat et al points out that the 

shift of threshold is related to the variation of work function of the gate contact needle 

immersed into a drop of water. During taking data, it is better to have no much effect 

on off- current which, in turn, would gives a correct and not misinterpreting result. 

Also, another reason of choosing tungsten is that it resists the attacks from 

oxygen, acids, and alkalis, but not chlorine.  

2.4.2 Aluminium 

For all bottom- gate OFETs, Aluminium was used as gate contact material, since 

Aluminium is anodised to form a thin film of the Aluminium oxide gate, as described 

in section 2.2.5. The Aluminium material came in wire form, and a tungsten coil was 

used to heat the Aluminium wires to evaporate over Silicon substrates. A 10 cm of 

aluminium wire was cut into small wires and fitted inside the coil which helps for the 

growth a thin film of aluminium up to 150 nm thick on the substrate. The coil is 

connected to a manually controlled current source. Before the thermal evaporation 

began, the evaporator chamber was pumped down to a high vacuum of < 5 x 10
-7

Torr.  
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CHAPTER 3 

3 Experimental Methodology 

3.1 Electrical characterisation of TFTs 

Once the devices were fabricated, they should be tested before they could be used 

for any application. Testing the devices is an essential step to find out the best 

fabrication procedures in order to reach a higher performance, stability and resist 

unwanted effects coming from gate leakage and other issues that will be explained 

later. Fabricated devices were characterised by two standard ways to reveal the output 

currents vs. voltages profiles of TFTs which are output and transfer characteristics. 

However, the alternative real- time characterisation of TFTs was made for measuring 

and extracting essential parameters during monitoring the presence of pollutant either 

in gas or liquid phase. The later characterisation would give more imperative 

information of how the target pollutants interact with a bulk of different TFTs or a 

deposited sensitiser layer. All of which will be explained in the next section. 

 

Figure 40, three Tungsten needles connected to TFT device. 
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3.1.1 Electric source- measure units  

We used electric source- measure units for the electrical characterisation of 

transistors. Such units were used to apply discrete different voltage values to source 

and gate terminals of a transistor device under test (DUT) and at the same time in 

order to measure the current responses. These measurements represent output 

characteristics and transfer characteristics, respectively, as will be explained in section 

3.1.1.1 and 3.1.1.2. These are most reliable instruments to provide precise results of 

electrical characteristics.  

Our measurement setup constitutes of two devices of Keithley 2400 source 

measure units connected to three Suss microtec PH100 probe- heads via coaxial 

cables, as seen in Figure 41. This instrument is controlled by a computer program 

written in test- point (Labview-code, Figure 43 and Figure 45) using two GPIB-PCI 

interfaces. During the test, the OFET device is connected to Keithley through three 

tungsten needles, as seen in Figure 40. Two of these needles are connected to 

electrodes (source and drain) and the third is immersed in electrolyte to act as gate 

contact.  

 

Figure 41, a picture of the Keithleys and probe- heads. 
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3.1.1.1 Output characteristics  

The output characteristic is measured by applying a set of discrete drain voltages 

(VD) at different fixed values of gate voltages (VG) which, in turn, produce a drain 

current (ID). The output characteristic is plotted between ID at Y-axis and VD in X-axis, 

as seen in Figure 42.  Under a fixed gate voltage, every sweeping of VD starts from 0 

to a maximum voltage and goes back to 0. The same sweeping at same steps is 

repeated, but the increased value of VG is applied until it reaches the maximum value 

of VG, as well. One important restriction for applying the gate and drain voltages is 

that the value of both voltages VG and VD do not exceed the electrochemical window 

of an electrolyte used for electrolyte TFTs or, in general, the dielectric breakdown of 

the gate insulator. The output characteristics do not provide the quantitative analysis 

as well as the transfer characteristics do. Still, its qualitative information can be 

utilised to diagnose the common problems that same TFT device suffering from. For 

example, the linear of the “ideal” output characteristics is not supposed to have any 

curvature. If such curvature is observed, this indicates a contact problem in terms of 

non- ideal injection. Also, when the saturation region of ID fails to stay at a fixed value 

for high VG values but keeps increasing gradually, this means that this TFT suffers 

from doping. Another example of these problems is the hysteresis (different values of 

ID between increased and decreased VD or VG) that indicating traps or impurities exist 

in bulk of TFT or at interfaces at the semiconductor and insulator.  

 

Figure 42, an output characteristic showing the linear and saturation regimes. 
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Figure 43, a screenshot of the test- point (Labview-code) of the output characteristic.   

3.1.1.2 Transfer characteristics  

For transfer characteristics, VG is swept for fixed VD. Linear and saturated transfer 

characteristics are recorded for a very small VD (VD << VG,max: linear transfer 

characteristic), and large VD (VD = VG,max: saturated transfer characteristic). The 

response of ID is plotted versus VG. For saturated transfer characteristics, ID is typically 

shown twice, on both a logarithmic, and a square root scale. An example of a saturated 

transfer characteristic is shown in Figure 44.  

The key TFT performance parameters (i.e. carrier mobility µ and threshold voltage 

VT) can be taken from such a plot of a saturated characteristic by simple fitting and 

extrapolation procedures. Working on the square- root of ID, extrapolating a line starts 

from the linear part of the transfer characteristic (blue- line) to the VG  axis (x-axis), 

and extrapolating a parallel line to x-axis starts from the lowest part of “off” current’s 

plot. The intercepted x-axis value at the intercept of the two extrapolations will give 

the value of VG (in Figure 44 case, VG = 0.31 V). By using Equation (1-31) with the 

slope of the extrapolated line (blue-line), µ can be calculated. The test- point controls 

the voltages applied to TFT, as seen in Figure 45, All other parameters can be 

calculated by using log(ID) scale (red-line) and given in following sections, as in 

Figure 44.  
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Figure 44, a saturated transfer characteristic with μ, VT, V0, S and the on/off ratio indicated. 

The value of VD = -0.6 V. 

 

Figure 45, a screenshot of the test- point (Labview-code) of the transfer characteristic 

3.1.1.3 OFET parameter calculation 

This section explains the ways of calculating all parameters of TFTs that were 

used in this study. 
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3.1.1.4 Saturated Drain Current and On/off- current ratio 

The saturated drain current (ID, Sat) is measured for all values of VG > VT in a 

saturated transfer, but whenever VD > VG – VT. This is the definition of saturation.  

The on/off ratio is a parameter defined as the ratio between the highest possible 

value of ID in the saturated regime with ID in the off- state. The bigger value of this 

ratio represents how effective the gate medium is to gate TFTs. The ratio depends 

strongly on doping levels. The on/off- current ratio is calculated as following,  

( 3-1)                                  
   

    
 

                  

                

 

 Usually, the plot of transfer characteristics is taken at log(ID) scale (red-line), as 

in Figure 44. On/off ratios are dimensionless (and ideally, large) numbers often 

expressed as a power of ten. 

3.1.1.5 Mobility 

As seen in Figure 44, the slope of the extrapolated line (blue-line) is used to 

calculate the mobility. By using equation (1-31), the slope is calculated as,  

( 3-2)                                                    
 

  
                      

After reordering the parameters, the mobility becomes as following equation, 

( 3-3)                                               
  

   
                  

Where,    is the capacitance per unit area of the gate dielectric and the device 

dimensions (Width and Length).  

3.1.1.6 Hysteresis 

This phenomenon may take place in both characteristics of TFTs, and hysteresis 

shows a shift of ID values in upwards and downwards sweeping either in gate voltage 

or drain voltage. Thus, the direction of sweeping voltages would affect the direction of 

shift. In the presence of hysteresis, the combination of the upwards and downwards 

shifting creates both curves as an open loop. In Figure 46, the values of downwards ID 
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(from the maximum voltage to zero) are noticeably higher than the values of upwards 

direction.  

The importance to this phenomenon is its relation to the existence of traps in the 

interfaces between semiconductor/dielectrics and mainly in bulk of the 

semiconductors
98

. The way of calculating this phenomenon is not clear after 

calculating TFTs parameters. Thus, from now on, all TFTs parameters will be 

calculated from data taken from upwards sweeping of voltage in order to have 

consistent results.  

 

Figure 46, an example of hysteresis. 

3.1.2 I-V Converter method 

The I-V converter circuit was used as another option for measuring the electrical 

characterisation of Organic Field Effect Transistors (OFETs) rather than Keithley 

instruments. This circuit has been developed by Lee Hague et al
99

. The unique 

advantage of this circuit is to measure saturated characteristics of transistors in real- 

time. Thus, the I-V converter can record multiple parameters with many continuous 

data- points, when the channel get affected by any external influences, such as toxic in 

gaseous and liquid form. Many modifications were made to develop the I-V converter 

unit and integrated to Labview program by Dr. Antonios Dragoneas. The electrical 

circuit, operation and the calculation of parameters of the I-V converter are discussed 

in following sections.  
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3.1.2.1 Circuitry and operation 

By applying a suitable alternating (sinusoidal) drive voltage to the TFT source 

contact from a signal generator, the circuit shown in Figure 47 delivers a saturated 

transfer characteristic parametric in time, thus providing an efficient tool to 

characterise instantly the changes of threshold and mobility almost instantly.  

 

Figure 47, a simplified schematic of the I-V converter measurement system. The model of 

operational amplifier is a high- voltage op-amp from Texas Instruments number (OPA445AP). 

The I-V converter and Keithley show a consistency in results in terms of FET’s 

parameters, so I-V converter is reliable, measuring parameters in real- time and such a 

portable device that can be taken to outside labs, supplied electrically by economical 

batteries. Figure 48 shows typical Water- gated OFET characteristics taken from 

Picoscope software. 

 

Figure 48, typical electrolyte- gated TFT of PBTTT, taken directly from picoscope software 

at frequency= 1 Hz and Rf =18 kOhm. Red sine- wave represents the voltage applied to a 

transistor (Vin) or (Vs), and blue sine-  squared-  wave represents the response of the transistor 

(Vout).  
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The drive voltage VS(t) (usually a sinusoidal) is applied into the source of the TFTs 

being tested using a programmable signal generator and voltage follower, the gate is 

linked to the electrical ground and the drain is connected to an op-amp through 

inverting input. This input of the op-amp is considered as a virtual ground as the op-

amp’s the non- inverting input is linked to the real ground. The op-amp’s output 

voltage VOUT(t) is fed back into the inverting input of the op-amp through a feedback 

resistance Rf. The value of Rf can be changed by using an external resistance box 

connected to the circuit. VOUT(t) of the op-amp was recorded, since it is proportional to 

the saturated drain current ISD(t) according to the following equation, 

( 3-4)                                                                  

 Together, Vout(t) and ISD(t) constitute the TFT’s saturated transfer characteristic 

parameters with time, as seen in Figure 50.  It is important to mention that a factor x10 

is applied because of the x0.1 attenuation of the drive signal, and minus (-) is applied, 

as well, because of the inverting of drive signal. For more explicit representation of 

the both voltages (input and output) signal on the oscilloscope screen, both voltage 

signals should appear at the same as the maxima at same time coordinate (x-axis) by 

adjusting the value of the feedback resistance, more detail about this system reported 

in Hague L. et al
99

. 

The main advantage of using sinusoidal signal as symmetrical bias is to make sure 

that the gate dielectric is exposed equally to positive and negative voltage bias in order 

to reduce the effect of bias- stress over the gate dielectric. The effect of gate- bias is 

demonstrated in several studies especially the effect on the threshold voltage
100

. There 

is no information about gate leakage, because the gate electrode is grounded. Thus, the 

system cannot notice the current flow between the source and the gate.  

Figure 49 shows an overall picture of the actual system being used in this work 

including resistance box, Picoscope (Pico Technology Picoscope 2204) and 

characterisation board (I-V converter). The portable system is using USB port to 

connect to PC containing a two- channel (A and B channels) digital oscilloscope and 

signal generator.   
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Figure 49, the complete system, from top to bottom, resistance box, Picoscope and 

characterisation board (I-V converter). 

 

Figure 50, ISD calculated from Figure 48 by applying value of Rf =18 kOhm in equation 

(3-5). 
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capacitance. This combination acts as low- pass filter which are connected in parallel 

to the I-V converter. Thus, at high frequencies, the oscilloscope detects sometimes the 

lagging and leading of Vout over Vin depending on the value of the feedback resistance 

and the parasitic capacitance. To control this issue, the taken measurements from this 

scheme were adjusted to have no phase- shift by applying a low frequency about (0.5-

1Hz). However, the dry transistors do not suffer from a phase- shift at high frequency 

reaching 100 Hz. Considering, as well, the slow building up of electric double layers 

(EDLs), the chosen frequency was very low about (f = 1 Hz). Also, the peak of the 

drive voltage VS was set to (0.6-0.9) V to remain within the electrochemical window 

of all the electrolytes used, thus avoiding electrolytic decomposition of the gate 

medium.     

3.1.2.3 Saturated drain current calculation 

The equation is used to calculate the saturated drain current, according to, 

( 3-6)                                                 
 

  

       
                                                    

where Vm is the peak output voltage. 

3.1.2.4 On/off ratio calculation 

The ratio of TFTs is simply calculated by dividing the positive (maximum) peak 

of output voltage over the negative (minimum) peak in case of an n- type 

semiconductor device. For a p- type semiconductor device, the ratio is inversely 

calculated, according to the following equations, 

( 3-7)                           
   

    
  

               

              
             For n- type                 

( 3-8)                            
   

    
  

               

               
              For p- type 

3.1.2.5 Threshold voltage and mobility calculation 

Two different ways to extracting threshold voltage and mobility using this scheme 

are discussed, here.  
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3.1.2.5.1 Conversion to conventional saturated transfer characteristics 

Data taken from the I-V converter are usually plotted as input (VS) and output 

(VOUT) voltages (Y-axis) versus time (X-axis), as seen in Figure 48. The same data can 

be plotted as conventional saturated transfer characteristics by eliminating the time 

parameter, and plotting the input voltage (x-axis) versus the output voltages (Y-axis), 

seen in Figure 51. The output voltage is converted into a drain current using equation 

(3-6), and the drain current square- rooted to be (ISD)
1/2

 as done by Hague et al
99

.  

From Figure 51, the threshold voltage and mobility can be calculated as the same 

way as the section 3.1.1.2 mentioned. There remains one difference between the 

converted saturated transfer data and the standard transfer characteristic. In the 

converted saturated transfer data, the applied value of VDS is continuous (not constant) 

while the VGS range is swept having the same value to VDS, so VDS=VGS is applied at all 

times. Generally, this means that I-V converter fulfils always the condition of 

saturation,                , and there will be no quantitative difference 

between I/V converter- and conventionally measured characteristics as long as we are 

dealing with a ‘normally off’ FET; i.e. one with negative (positive) threshold for p- 

type (n- type) semiconductor. 

 

Figure 51, shows the Saturated Transfer conversion from I-V converter’s data, for PBTTT 

water- gated TFT. 
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fitted the middle point of the rising flank of the output voltage. The intercept of this 

line on x-axis is projected on the input voltage in order to give the threshold. Since 

these data are taken in saturated regime, the mobility is calculated using the following 

equation, 

( 3-9)                                    
 

      
 

  

 
 

    

             
 

Where,    is the amplitude of the sinusoidal drive (input voltage) and    the peak 

of output voltage. They can be same value, once they are matched by adjusting 

feedback resistance.   

Using measurement data from I-V converter is considered as an advantage, 

because of the larger data points produced comparing to the standard transfer 

characteristic. This gives a high certification and accuracy for the values of TFT’s key 

parameters. Later, this advantage is used to build real- time measuring by integrating 

to Labview program (see section 3.1.2.7).   

 

Figure 52, a linear fit and extrapolation on the data taken from oscilloscope. 
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Figure 53, a square- wave signal applied on TFT, and the field effect and electrochemical 

operation regimes are indicated. 

3.1.2.6 IOECT/IOFET ratio calculation 

Applying square drive in an I-V converter assists to verify whether the field effect 

or electrochemical regimes operate in TFT. The field effect regime switches fast from 

off to on in (<msec.), but the electrochemical operates more slowly (typically reaching 

within sec.) depending on the rate of the diffusion ions going in or out the channel of a 

semiconductor
101

. Laiho et al point out that the semiconductor’s operation depends on 

the organic materials and the applied gate bias
101

. During the square- wave voltage, the 

constant voltage was applied to both drain and gate electrode (VDS=VGS which are 

same in I-V converter) in order to record the response of output voltage, as seen in 

Figure 53. Thus, the IOECT/IOFET can be measured by taking the height of the slow 

switching (IOECT) divided by fast switching (IOFET).  

3.1.2.7 Real time measurement of OFET parameters  

The advantage of I-V converter was used to develop the software that is able to extract 

automatically the parameters of transistors in real time, as seen in Figure 54. Labview program 

is connected to Picoscope by Microsoft Windows dynamic- link library. The applied signals and 

collected data are transferred between Labview and the I-V converter using a USB connection. 

A number of parameters (i.e. the capacitance of the gate dielectric   , the channel’s length and 

width, the type of semiconductors whether n- type or p- type, the frequency of signal, an 

amplitude and a shape of signal and the feedback resistance   ) must be identified before 
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starting measuring key parameters, such as mobility, threshold, on- current, off- current and the 

ratio between on/off. The saturated transfer conversion (section 3.1.2.5.1) and sinusoidal 

method (section 3.1.2.5.2) are used to calculate the mentioned parameters. The Labview code 

was developed by Dr Antonis Dragoneas. 
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Figure 54, a screenshot for real- time characterisation taken from Labview program. 
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3.2 Optical characteristics 

3.2.1 Contact angle 

Surface tension quantifies cleanliness and the hydrophobicity of substrate 

surfaces. In order to quantify surface tension between solid and liquid phases, the 

contact angle technique is the best choice because of its simplicity. The shape of a 

drop of water on a surface results from the balance between forces of three phase 

boundaries. Young’s equation
102

 is used to represent this balance, as following, 

(3-10)                                                       

Where,    ,     and     stand for the interfacial tension of the liquid- vapour, the solid- 

vapour and the solid- liquid interfaces, respectively. 

 

Figure 55, the geometry of the drop of water with different interfacial tension. 

The left hand side of the equation (3-10) can be taken from experiment, but the 

right hand side is unknown. As a result,     is required to obtain    . A mathematical 

method can be done to achieve that. To measure the contact angle, the (KSV 

instruments attension theta) was used and equipped with a high contrast camera that is 

connected to computer software that has a fitting option. 

3.2.2 Ellipsometry 

This optical technique has the ability to measure the thickness and the optical 

properties of thin transparent films on reflective substrates by computing the change of 

the polarization of light (amplitude ratio   and phase shift ∆). These changes take 

place once light gets reflected from the material coated on the substrate. Therefore, 

when the incident light beam is linearly polarized light (containing superposition of s- 

and p- polarization) and reflected from a thin film, this light beam is converted to 

elliptical polarization because of phase shift ∆ and amplitude ratio  , as seen in Figure 
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56. It is known that light has two components of electric field which are parallel (p) 

and perpendicular (s) of polarized light with the plane of incidence. 

 

Figure 56, the setup of an Ellipsometer experiment. 

Since, the wavelength of light is longer than the investigated thin layers, this gives 

access to vital information related to the sample morphology and the film’s thickness 

(d), and its refractive index (n) by measuring a complex quantity called the reflectance 

ratio ( ) between the amplitudes of    and    after being reflected and normalized, as 

written in following equation
103

, 

 (3-11)                                    
  

  
           

The model of Ellipsometer used is M2000V (J. A. Woolam) that is equipped with 

a fitting program with different fitting equations, and the wavelength range is applied 

between 370-1000 nm.  

3.3 Morphological characterisation 

3.3.1 Atomic- force microscopy (AFM) 

AFM works by sensing the atomic forces between a surface and tip in gentle 

contact with each other
104

, and AFM is, therefore, categorised as a scanning probe 

microscopy (SPM). The resolution of this type of microscope is about of a fraction of 

nanometer. It was developed in 1986 by Binnig and Gerber
105

 after building a 

scanning tunnelling microscope (STM) which was invented by Gerd Binnig and 

Heinrich Rohrer who both won the Nobel Prize in Physics later in 1986. In AFM, the 

feedback signal takes place from the atomic forces including, not limited, Van der 

Waals forces, electrostatic forces, magnetic forces, adhesive forces and even solvation 
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forces, in liquid, which means an interactions between the molecules of a solvent and 

a solute.  

Three basic components control the operation of an AFM, as seen in Figure 57. 

Firstly, piezoelectric elements are utilized to move the probe in three directions (X, Y 

and Z axis). For scanning sample, the probe move across the sample in two 

dimensions (X and Y), and Z direction is manipulated by a control system in order to 

maintain the desired forces or modes between probe and the sample. Thirdly, the 

cantilever on which probe is mounted is used to measure and detect the interactions 

between the sample and the probe, and the cantilever is excited into resonant 

oscillations. The photodiode records the illuminating laser’s reflections from the back 

of a cantilever as a sensitive force transducer seen in Figure 57.  

 

Figure 57, the principle of AFM. 

AFMs can be operated in three possible modes known as contact mode, non- 

contact mode and tapping mode. At molecular level, other forces are active; however, 

van der Waals forces are still a dominant force. From Figure 58, weak repulsive van 

der Waals forces takes place first on the probe and results in tip deflection, when the 

probe is in contact with the sample. Once the tip goes away from the surface, the non- 

contact mode increases attractive Van der Waals forces until electron clouds 

electrostatically repel each other. The former mode is the primary mode of operation. 

The surface tension force is used here to scan across the surface quickly with good 

topography of the rough samples. The latter mode depends on the oscillation of the 

cantilever to scan across the surface with low resolution, since the amplification’s 

response of electronics constituting AFM and lowest resonant frequency of system are 

usually the limiting factor to have high resolution scanning. The third mode is called 
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tapping mode, as it is the intermediate- contact mode between modes before. Tapping 

mode still provides high resolution scanning even with soft or fragile samples, such as 

organic semiconductors and biological samples. The imaging of AFM is produced by 

the feedback signal due to a change in the oscillation amplitude or phase of the 

cantilever. The change of oscillation’s phase is used to distinguish between different 

materials on the sample’s surface.  

 

Figure 58, Tip- sample interaction force (Y-axis) vs. distance (X-axis). 

For nano- wire AFM characterisation, a Veeco Dimension 3100 was used to 

obtain height and phase images of spin- cast P3HT NW films. The controller used on 

all AFM images was a Nanoscope IIIa controller with a Basic Extender. For all 

images, we used a standard tapping mode cantilever (Bruker TESPA, k=42 N/m, a 

resonant frequency 320 kHz). The full specifications for these cantilevers can be 

found at Bruker AFM Probes website
106

.  

 

3.3.2 X-ray photoelectron spectroscopy (XPS) 

In the middle of 1960s, XPS, known before as ESCA (Electron Spectroscopy for 

Chemical Analysis), was developed and introduced by Kai Siegbahn and his 

colleagues at the University of Uppsala (Sweden). In 1981, the Nobel Prize was 

awarded to Kai Siegbahn for his contribution to XPS. The law of the photoelectric 

effect discovered by Albert Einstein was behind the idea of XPS. The purpose of XPS 

is to identify the chemical state of elements constituting the surface of a thin film
107

.  
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The technique beyond XPS is to excite the surface of thin film with photons or 

ions in order to have a highly excited state of core electrons producing different 

decays, such as fluorescence (radiative) decay or Auger (non- radiative) decay. Thus, 

the kinetic energy of emitted core electrons due to the incident of X-ray beam is 

measured, as seen in Figure 59.  

 

Figure 59, photoelectric process to explain XPS principle. 

The core electron escapes from an atom that is on a sample’s surface, if the photon 

energy is bigger than the binding energy    of the core electrons. The kinetic energy 

of escaped electrons is correlated to the energy level of specific elements and is 

calculated by the following equation, 

(3-12)                                                                                                 

Where   is Planck’s constant,   is an exciting radiation frequency and   is the work- 

function of the spectrometer (not the sample). 

Theta Probe Thermo-VG Scientific instrument was used for executing the XPS 

measurements (from the University of Bari). A monochromatic source of Al K  with 

particular settings such as 15 kV, X-ray spot size 300 mm, taking off angle about 37
O
 

and base pressure 10
-9

 mbar was utilized. The wide- scan survey of binding energy 

around (0–1 200 eV, BE) were gained at the pass energy of 150 eV. Thermo Avantage 

software was used to analyse and produce a fitting for XPS data. 
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4 CHAPTER 4 

In following chapters, all results taken from fabricated TFTs are presented with 

discussions and conclusions for every chapter.   

4.1 The Water- gated Organic TFTs with interfacial layers of 

calixarene 

Using a drop of water as gate electrolyte in principle offers an attractive 

alternative for organic transistor- based water sampling, wherein the sample is a 

functional part of the sensor device. Water- gated TFTs thus offer themselves as 

transducers for the sampling of waterborne analytes, with applications to biomedical 

or environmental samples. However, two major challenges remain. Firstly, organic 

semiconductors are not themselves specifically sensitive to particular bio- molecules 

or ions
108

. Gating requires either an anionic, or a cationic, EDL, depending on the type 

of organic semiconductor (anionic/cationic for a hole/electron transporter), but is 

otherwise indifferent to the chemical identity of the ion. Secondly, in water- gated 

organic semiconductors, there may be a number of other currents competing with field 

effect, such as electrochemical effect
25,101

, as discussed in section 1.5.4 and Figure 13. 

This section reports on a technology platform designed to overcome these 

challenges related to the existence of the electrochemical current IOECT. We introduce 

an ultrathin interface layer of Langmuir- deposited calixarenes at the organic 

semiconductor/water interface. A wide range of calixarenes are known that can 

selectively bind e.g. to particular cations
109

, thus can specifically sensitise a water- 

gated transistor for the selective detection of cations. Crucially, we show that a small 

number of Langmuir- deposited calixarene layers result in films that do not 

compromise EDL gating, but can block the ionic doping currents that lead to OECT 

behaviour. We can delineate the field effect from the other currents observed in water- 
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gated devices, even when we use ordinary tap water rather than DI- water as gate 

medium, to simulate a realistic environmental sample.  

4.1.1 Experimental details 

The experimental part of this section was performed in collaboration with Dr. 

Delia Puzzovio. A water- gated organic transistor is a relatively simple device, 

comprised of gold contacts, an organic semiconductor film, and a droplet of water 

with a gate contact needle inserted into it. Source- drain gold contacts (channel length 

L=10 μm and width W=2 mm) were thermally evaporated on clean Si/SiO2 substrates 

(described in section 2.1.2) under 10
-6

 Torr vacuum through shadow masks (described 

in section 2.2.3). As organic semiconductor, we used two different batches of the 

common hole transporting organic semiconductor, poly(3-hexylthiophene-2,5-diyl) 

(P3HT): one was purchased from Sigma- Aldrich (electronic grade 99.995%, average 

Mn 15000-45000), the other from Ossila (regioregularity 96.6%, average Mn 32000). 

Both materials showed similar performances, and are, therefore, not discussed 

separately. We dissolved 10 mg/ml of P3HT in dichlorobenzene (DCB) under stirring 

and heating to 60˚C for about 15 min, and filtered through a PTFE membrane syringe 

filter. The reason of choosing DCB with P3HT is that the solvents having a low 

vapour pressure contribute remarkably to more ordered and close packed film in TFTs 

and increase the lifetime of produced device
110

.  We spin cast solutions (2000 rpm for 

1 min) onto the described substrates. Cast films were dried under dynamic vacuum at 

40˚C for 1h. The deposited calixarene (Mat16) was used as described in section (2.2.9) 

and shown in Figure 38. The reason of choosing this calixarene is that it was known to 

be specifically sensitive to Fe
3+

 as a cation
111

. 

To represent an environmental water sample, we used local tap water without 

purification. We placed a 2 μl droplet of tap water on the channel with the help of a 

micro- litre syringe, and inserted a tungsten (W) needle as gate contact. Source and 

drain were also contacted with W needles, avoiding direct contact with the droplet. 

Figure 12 shows the overall device architecture. Data may require some processing 

(filtering 50 Hz, subtraction of ‘off’- current) before they can be analysed, but 

processing, as well as extraction of mobility and threshold, are straightforward. 

4.1.2 Results and Discussion 

Figure 60(a) and (b) show the drive voltage, VS, and the drain current, ID, (derived 

from VOUT) under square- and sine- wave drive, respectively, of a water- gated OFET 

without any calixarene surface layers. Under square wave drive (Figure 60a), in the 
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positive VS half- cycle, we find ID initially ‘jumps’, then slowly increases further over 

time, until VS is reversed. This signal reveals contributions from both field effect and 

electrochemical transistor behaviour: the initial quick jump is a response to field effect 

(IOFET, which takes less than 10 ms to appear), and then electrochemical doping gives 

rise to a slowly increasing current, IOECT. These observations are very similar to those 

by Inganäs et al
48,101

. In the negative VS (‘off’) half- cycle, contributions from both 

field effect and electrochemical doping are zero; however, a small ID is nevertheless 

observed. This reveals contributions from either, or both, ionic leakage currents from 

source to drain across water (Ileak), and permanent doping of the organic 

semiconductor (Iperm), as mentioned in Table 3. These currents are also present during 

the positive (‘on’) half cycle, adding to the transistor currents; however this is 

unimportant as long as they are comparatively small. Under sine wave drive (Figure 

60b), characteristics look very similar to those observed for ‘dry’ transistors
99

. We 

extract the ratio of field- effect to electrochemical current (IOFET/IOECT), and the 

transistor’s on/off ratio, from Figure 60a, and threshold (VT) and μCi from Figure 60b 

and equation (3-9). All characteristics of this transistor are summarised in the first row 

of Table 3.  

Figure 61 shows the corresponding result for a water- gated OFET where the 

P3HT surface had first been coated by 4 LS layers of Mat16. Figure 61a shows that 

current on/off ratio is significantly reduced; this is not due to a significant increase of 

the off- currents (Iperm, Ileak), but due to a reduction of ‘on’ currents, note the different 

current scales in Figure 60 and Figure 61. We conclude that the application of the LS 

layers has significantly reduced carrier mobility in the accumulation layer, which 

affects the transistor currents, but not doping or leakage current. This reduction of 

carrier mobility is not due to an increase or decrease of the threshold, as seen in Table 

4. Figure 61a also shows that current in the ‘on’ half- cycle now no longer slowly 

increases with time. We conclude the 4 LS layers block the gate- driven flow of anions 

from the electrolyte into the semiconductor, hence IOECT is suppressed. To calculate 

threshold, and μCi, from Figure 61b, we have first subtracted the current observed 

during the ‘off’ (negative VS) half- cycle from the ’on’ current, to correct for 

contributions from Ileak and/or Iperm, before evaluating VT and μCi. 
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Figure 60. AC characterisation of a P3HT uncoated transistor: square- wave drive (a) and 

sine- wave drive (b). The blue signal is the input voltage, VS, and the orange is the drain current, 

ID, derived from the output voltage, VOUT. 

Type of 

current 
Carrier Caused by 

Gate 

driven? 

I(VS) or I(t) 

characteristic 

IOFET holes Field effect from electric double layer Yes ~ (VS - VT)
2
 

IOECT holes 
Electrochemical doping by anions from 

electrolyte 
Yes 

Slow increase with 

time 

(>10 ms to s) 

Iperm holes 
Permanent chemical dopants (e.g. 

catalyst residue) 
No 

~ VS 

(ohmic) 

Ileak ions 
Non- perfect insulation between source / 

drain contacts and electrolyte 
No 

~ VS 

(ohmic) 

Table 3. The different currents found in electrolyte- gated organic transistors with hole- 

transporting organic semiconductor, and their I/V or I(t) characteristics. VS is a drive voltage 

applied to source, with drain and gate grounded. Biased currents are only observed during the 

‘on’ half- cycle of the drive voltage, unbiased currents flow in the ’off’ half- cycle, as well.  
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Figure 61. AC characterisation of a P3HT transistor coated with four LS layers: square- wave 

drive (a) and sine- wave drive (b). The blue signal is the input voltage, VS, and the orange is the 

drain current, ID, derived from the output voltage, VOUT. FFT filtering was applied. 

Sample  IOECT/IOFET Ion /Ioff VT (V) µCi (CV
-2

s
-1

) *10
9
 

Uncoated P3HT 0.31±0.03 19.8±1.8 0.28±0.03 113±14 

4 LS- coated P3HT (1) 0 3.33±0.3 0.16±0.02 6.35±0.8 

4 LS- coated P3HT (2) 0 2.46±0.3 0.26±0.03 3.02±0.4 

4 LS- coated P3HT (3) 0 4.11±0.4 0.18±0.02 2.18±0.26 

2 LS- coated P3HT 0 2.5±0.25 0.14±0.01 5.74±0.7 

1 LS- coated P3HT 0.13±0.012 1.6±0.15 0.1±0.01 3.82±0.5 

4 LB- coated P3HT(1) 0.42±0.04 4.22±0.4 0.38±0.04 3.97±0.5 

4 LB- coated P3HT(2) 0.55±0.047 3.31±0.34 0.36±0.04 10.4±0.95 
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Table 4. Data read and derived from AC characterisation for uncoated and coated transistors. 

Columns 1,2 are read from transistor currents under square- wave drive. Column 1 gives the 

relative contributions to ‘on’ current from electrochemical doping. Column 2 gives the 

transistor’s on/off ratio. Columns 3,4 are read (VT, column 3), or calculated (μCi, column 4, 

using equation ( 3-9) from currents under sine drive. 

We find that threshold is in fact reduced as a result of applying 4 LS layers to the 

P3HT surface, which implies that 4 calixarene LS layers are thin enough not to 

compromise the high capacitance of the EDL. However, as we already concluded from 

comparison of Figure 61a to Figure 60a, mobility in the accumulation layer is 

substantially reduced, about 18- fold on the assumption that Ci is not affected by the 

LS layers. Data are summarised in the second row of Table 4. We carried out similar 

studies for transistors coated with two and one LS calixarene layers, instead of four. 

Resulting transistor characteristics looked similar to those shown in Figure 61, and 

were evaluated in the same way, to give the data shown in rows 3 and 4 of Table 4. 

Data and conclusions for 2 LS layers are very similar to those for 4 calixarene LS 

layers; for 1 LS layer we find that the blockade of electrochemical doping is no longer 

complete, although the IOECT/IOFET ratio is still smaller than without LS coating.  
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Figure 62. AC characterisation of a P3HT transistor coated with four LB layers: square- 

wave drive (a) and sine- wave drive (b). The blue signal is the input voltage, VS, and the orange 

is the drain current, ID, derived from the output voltage, VOUT.  

4.1.2.1 LB vs LS deposition 

When a transistor is coated with four layers of calixarene through LB deposition, 

rather than LS printing, we observe a different behaviour compared to the LS samples. 

Electric characteristics are shown in Figure 62 and are evaluated in the same way as 

before to give the final row in Table 4. Again, carrier mobility is significantly reduced, 

and threshold now is increased compared to the uncoated sample.  Also, even 4 LB 

layers cannot completely block electrochemical doping. The LB- coated transistors are 

also harder to work with practically, as the surface is rather hydrophilic, and the gating 

water droplet tends to wet the surface. This is explained due to the different 

orientation of calixarenes in LB films, compared to LS films
88

; LB films present the 

hydrophilic upper rim to the surface, while LS films present the hydrophobic lower 

rim (Figure 29c and Figure 29f). This was confirmed by contact angle measurement. 

After measuring 4 times, the average contact angel for one LS deposition on the 

surface of P3HT gives about      = (98.2±7.4)
0
, while one LB deposition gives      = 

(87.9±6.7)
0
. Also, it seems that the total dipolar moment in case of LS is enhanced and 

blocks the ions; however, the total dipolar moment in LB coating is cancelled out 

which, in turn, allows ions to penetrate and dope the semiconductor materials.  

4.1.3 Summary 

This section demonstrates a technology platform that enables the development of 

new organic transistor sensors. It shows that an organic semiconductor can still be 

water- gated within the electrochemical window of water even after the Langmuir 

deposition of up to four calixarene layers to its surface, because such layers are thin 
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enough not to compromise the high capacitance of an EDL. Since many calixarenes 

are known to selectively bind waterborne cations, this allows sensitising a 

conventional organic semiconductor with a physically deposited layer for the specific 

recognition of waterborne cations. Thus the functionalities required for transistor 

sensors, i.e. charge carrier transport and specific recognition, can be met by combining 

currently known materials by physical deposition methods, without the need for 

synthesis of new materials with dual functionality, or chemical grafting of sensitisers 

onto semiconductor films. When two or more LS (rather than LB) layers are 

deposited, these block the electrochemical doping of the organic semiconductor, 

which usually competes with field effect in water- gated organic transistors. Since 

electrochemical doping is not specific to the chemical identity of the doping ion, such 

doping is parasitic with respect to ion recognition, and the observed blockade is a 

desirable feature, which can be achieved by as few as 2 LS layers. This conclusion 

was proved by Cotrone et al
112

. After they used biological film, so- called 

phospholipids films, the impedance spectroscopy results indicated that phospholipids 

films helped to reduce the penetration of ions in OSC TFTs. Since LS films also wet 

better than LB films, we therefore recommend LS printing over LB dipping as the 

method- of- choice for the sensitising of organic semiconductors with cation- specific 

calixarenes.   
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5 CHAPTER 5 

5.1 Electrolyte- gated inorganic thin film transistors 

The next step will address the remaining drawback of the method developed, so 

far. The organic semiconductor P3HT we used here is a hole transporting material, 

and therefore turns ‘on’ under an anionic EDL, while most reported calixarenes 

selectively bind cations. Thus, it is required to replace P3HT with an electron- 

transporting material, which implies problems, because hydroxyl (-OH) groups are 

known as electron traps, and -OH groups are present both at the lower rim of the 

calixarene, and water. However, high electron affinity electron transporters (LUMO 

below 3.6 eV) have been reported to be not susceptible to such traps
13

, and such 

materials are now commercially available
113

. For such devices, it is expected to have a 

strong impact on the measured transistor characteristics when a ‘target’ cation binds to 

a sensitiser calixarene. For example, it is expected a change of hysteresis, mobility and 

threshold, as bound cations will continue to sustain a carrier accumulation layer at the 

semiconductor surface even after the applied voltage has dropped back below 

threshold.   

Currently, it is still difficult to immobilise suitable sensitisers for specific target 

analytes at the organic semiconductor/water interface, because commonly used 

organic semiconductors have apolar surfaces, means that organic semiconductor 

surfaces offer no specific binding sites for sensitisers. Polythiophenes (PTs) with 

carboxylic acid (-COOH) side groups have been used to bind to amine groups in DNA 

sequences, that perform as sensitisers
114

. However, DNA- sensitised water- gated PT-

COOH TFTs displayed poor electric performance, and the response to target analyte is 

tentative. Also, water- gated organic TFTs often display effects of electrochemical 

doping in parallel to field effect drain current modulation
115

, which may be difficult to 

separate, and no n- type water- gated organic TFT has been reported, as (-OH) groups 

strongly trap electrons in organic semiconductors. 
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In parallel to the development of water- gated organic TFTs, there is a current 

effort to develop electrolyte- gated TFTs with solution- processed inorganic (rather 

than organic) semiconductors, because these display higher carrier mobility, better 

environmental stability and other advantages. Fortunato et al
116

, among others, have 

manufactured transistors that in their architecture and electric characteristics closely 

resemble typical organic TFTs, but used magnetron- sputtered films of un- doped 

(intrinsic) ZnO as electron- transporting semiconductor (ZnO: CB = -4.4 eV, VB = -

7.7 eV, bandgap 3.3 eV
61

). This approach has been advanced by Ong et al.
60

, who 

prepared intrinsic ZnO in- situ on a TFT substrate by thermal conversion of a solution 

cast precursor, zinc acetate dihydrate. They reported electron mobility > 5 cm
2
V

-1
s

-1
. 

However, the high conversion temperature (500 
o
C for optimum results) makes 

precursor- route ZnO unsuitable for flexible substrates. Recently, there has been 

progress in materials and preparation procedures towards lower conversion 

temperature by combustion process
117

, heating under ultraviolet ray
118

 and oxygen 

plasma treatment
119

. Since, the surface of ZnO as an inorganic oxide has -OH groups, 

this may give an advantage over the organic materials in order to immobilise 

sensitisers for specific analytes. 

Here, it is demonstrated that ZnO films perform as high mobility n- type TFTs 

using precursor- route under water drops as EDL gate medium, establish an optimised 

gate electrode geometry for best results. Also, ZnO films that are produced from two 

different routes showed almost same results. 

5.1.1 Experimental details 

Onto the cleaned substrate with Au contacts, as described in sections 2.1.2 and 

2.2.6.1, we spun a solution of 20 mg/ml zinc acetate (Zn(OAc)2) (from Sigma Aldrich) 

in ethanol at 1000 rpm, and converted into ZnO on a pre- heated hotplate at 400 
o
C for 

30 minutes under ambient atmosphere. This route is called ethanol- route.  

Another used route that we called ammonium- route was done by dissolving 0.001 

mole of ZnO powder with purity 99.999% (from Sigma Aldrich) into 12 ml of 

ammonium hydroxide that was diluted in water with purity 99.9% (from Alfa aesar). 

25% of that solution, therefore, contained just ammonium hydroxide. To increase the 

solubility of this solution, it was refrigerated for 5 h. Then, we spun a solution at 1000 

rpm by spin- coating, and the film was converted into ZnO on a pre- heated hotplate at 

400 
o
C for 30 minutes under ambient atmosphere. This route was taken from Park et 

al
120

. The gradual- heated hotplate gave low performance with very small carrier 

mobility comparing to pre- heated hotplate
116

. 



119  

 

These processes of spinning the solution over the substrates and converting into 

ZnO by pre- heated hotplate were repeated at least three times for a thicker ZnO film 

(see section 5.1.2.3). We found the electrical resistance of such films was ≈ 500 kΩ, 

corresponding to a sheet resistance of 100 MΩ/square, which shows ZnO prepared as 

described here is largely an intrinsic semiconductor, just like sputtered ZnO
116

.  

However, films were hydrophilic, and low water contact angle hinders the 

application of a droplet for gating. We have therefore treated the ZnO surface of such 

samples to turn them hydrophobic. This was done in either of two ways: firstly, by 

spin casting neat HMDS (3000 rpm for 1 min.), as this couples to -OH groups on 

inorganic oxide surfaces and turns them hydrophobic
121

. HMDS effectively eliminates 

the –OH group from the hydrophilic surface of SiO2 and substitute them with –Si-

(CH3)3 which is more hydrophobic
122

. 

 Alternatively, we modified ZnO surfaces with one layer of stearic acid by the 

Langmuir- Schäfer (LS) technique. We spread 250 µl of 0.3 mg/ml stearic acid 

solution in chloroform on a Nima Langmuir trough filled with DI- water (15 MΩcm 

resistivity) as sub- phase, and compressed to 40 mN/m to form a dense layer. The 

resulting Langmuir isotherm, and LS technique are illustrated in Figure 63. This is 

similar to the work of Spijkman et al, who modified ZnO surfaces with a self- 

assembled octadecylphosphonic acid layer, a large molecule they chose to introduce 

an insulating layer
123

.  

For fabricating TFT device of PDI8-CN2, as described in section 2.2.7.2, a small 

amount of PDI8-CN2 (sourced from Polyera Corporation, well- known as ActivInk 

N1100), say 6 mg, was placed in a quartz boat and heated up to vapor phase of used 

material until 50 nm thickness is achieved. The evaporated film was deposited at 

substrates containing Au contacts. One of such substrates was surface- treated with 

spin- casting neat HMDS (3000 rpm for 1 min.), and another substrate had not such 

treatment for comparison.  

For water gating, we dispensed a drop of about 2 μl DI- water over the channel 

with the help of a microliter syringe.  As gate contacts, we used tungsten (W) needles, 

either with a straight tip, or bent into L- shape, with the foot of the L overlapping the 

width of the channel. To apply water as the gate medium, we either dispensed a drop 

of about 2 μl DI- water over the channel from a microliter syringe, or threaded the gate 

needle through a water reservoir in the shape of an upturned cone with its tip cut open, 

held a few millimeters above the ZnO surface, see Figure 64. In the latter case, 

evaporation was replenished from the reservoir, so there was no need to work in a 
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humid atmosphere
25

. Source and drain were also contacted with W needles, avoiding 

direct contact with the droplet. To record TFT output- and transfer characteristics, we 

used two Keithley 2400 source/measure units to control gate (VG) and drain (VD) 

voltage, and measure drain current (ID).  

For IL- gating, a 2 μl drop of EMI-TFSI (sourced from Sigma Aldrich) was placed 

over the channel with the help of a microliter syringe. The tungsten (W) needle was 

bent into L- shape and immersed in IL as close as possible to channel with avoiding 

touching of contacts or channel.  

 

Figure 63, compression isotherm of stearic acid Langnuir monolayer, and the insert shows 

the LS deposition. 

 

Figure 64: an illustration (not to scale) of the water- gating TFT, as described. Inset: 

applying positive bias on gate needle causes the accumulation layer of electrons at the ZnO 

surface. Also shown are the anionic EDL in the water near the gate needle, and the cationic EDL 

in the water near the ZnO surface. 
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5.1.2 Results and Discussion 

5.1.2.1 XPS results 

Figure 65 show XPS data proving the chemical state of elements constituting the 

ZnO surface. This data was taken by Mr. Mohammad Yusuf Mulla in The University 

of Bari in Italy. The sample’s data was for ZnO fabricated in ethanol- route without 

surface coating. The resulting percentages of individual atom were taken from three 

different points of the surface of samples. The carbon is considered as contamination 

detected on the surface of film at 290 eV. The main peak is assigned as O1s and can 

be fitted as the superposition of two peaks centred at 529.5 and 530.8 eV. The 

prominent peak at 529.5 eV represents metal cation- oxygen bond (ZnO). In many 

published papers, the binding energy located in 530.8 eV represents the oxygen 

vacancy (Ovac) or CO bond
124

. 

 

 

 

 

 

Figure 65, taken by XPS equipment with fitting that identify the binding energies of ZnO 

bond and the CO bond. 
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5.1.2.2 Contact angle study 

Using the contact angle as a quantitative tool gives a clear indication of forming 

the coupling between -OH groups on inorganic oxide surfaces and self- assembled 

techniques mentioned before to turn metal oxide surfaces hydrophobic.  

After fabrication of ZnO films made from ethanol- route, a small drop, about 2 μl, 

of DI water (15 MΩcm resistivity) was placed on the surface. The shadow of the 

droplet is projected to a high contrast camera, and then a computer with fitting 

program provides the contact angle. 

Figure 66 shows different hydrophobicity (wetting) that results from different 

surface treatments. For as prepared- ZnO, the value of average contact angle was 

     = (30.05±4.2)
0
. After coating with HMDS, the surface became more hydrophobic 

(less wetting) reaching about      = (66.7±4.6)
0
. Contact angle went up again 

reaching about      = (98.9±7.5)
0
 for 1 LS layer of stearic acid.  

 

Figure 66, screenshots of ZnO surfaces, (starting from left) as prepared- ZnO, ZnO coated 

with HMDS and ZnO coated with 1 LS stearic acid. 

5.1.2.3 Ellipsometer study 

The thickness of ZnO was taken by applying Cauchy dispersion model, since it 

gives the best fit and small root mean square error (RMSE). While, each layer is 

characterized by complex refractive index              , the model used for 

analysis is written as following
103

, 

( 5-1)                   
 

   
 

                                
    

 
      

where, A, B, C, a and b are fitting parameters, and    and    are the energy gap and 

the wavelength, respectively.  

The key requirement for best fitting is to build multilayer model containing, in 

series, SiO2, ZnO film, roughness layer and finally HMDS layer. The resulting fit 

parameters are shown in Table 5.  
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Since, ZnO films and HMDS deposited over SiO2 and Si, the optical constants for 

both silicon oxide and silicon was taken from Grundke et. al.
125

, while the refractive 

index of HMDS in the visible light range was set to      = 1.41, as suggested by 

Murray C. et al
126

 with the extinction coefficient      set to zero. 

sample  A  B C a b 

Ethanol- route ZnO 
1.982 -0.0653 0.019 0.01714 -0.002 

Ammonia- route ZnO 1.995 -0.0665 0.01788 0.021 -0.002 

HMDS- SiO2/Si 1.41 0 0 0 0 

Table 5, the fitted parameters of Cauchy model for different samples. 

As shown in Table 6, a different thickness of ZnO is formed over substrates with 

different routes that were used. There was no a certain value of HMDS thickness, and 

the values in Table 6 shows the indication of the thickness of HMDS over either 

silicon oxide or bare silicon.  HMDS certainly is very thin, as it should be. It is 

expected that the measurement using Ellipsometry becomes difficult at films that are 

only 1 nm or less thick. 

   Sample 1 Sample 2 Sample 3 

Ethanol- route ZnO 
11.66±0.65 nm 12.23±0.43 nm 10.36±0.75 nm 

Ammonia- route ZnO 15.30±0.62 nm 15.01±0.37 nm 16.20±0.75 nm 

HMDS- SiO2 1.17±0.1 nm 0.89±0.06 nm 1.02±0.063 nm 

HMDS-  Si 2.78±0.12 nm 3.02±0.24 nm 3.14±0.18 nm 

Table 6, the analysed data from Ellipsometer, every sample was measured three times at 

different positions. 

5.1.2.4 Output and transfer characteristics results 

Figure 67 shows the output (a) and transfer (b) characteristics of a water- gated 

HMDS- ZnO film (Ethanol- route) under positive gate voltages, using an L- shaped 

gate needle. The foot of the L was lowered as closely as possible to the TFT channel 

(approximately 0.1 mm), but avoiding direct contact. Figure 67a shows typical n- type 

TFT behaviour: For positive VG above threshold (VT) (here, at and above +0.4 V), ID 

first increases with increasing VD, and then saturates at high VD.  
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Figure 67: Ouptut (a)-and saturated transfer (b) characteristics of water- gated HMDS- ZnO 

TFTs. Gate voltage step between different output characteristics in Figure 67a was 0.2 V. In 

Fig. 2b, the source- drain voltage for the saturated transfer characteristics was 0.9 V. The dashed 

(solid) line in 2b refers to the ISD
1/2

 (log ISD) scale, respectively.  

We observe ‘hard’ saturation, just like for magnetron- sputtered ZnO with 

dielectric gates
116

. Hysteresis is small, which suggests the absence of electrochemical 

doping by ionic species
48

. Electron injection from the high work function gold (5.1 

eV) also is no major problem, probably because the high capacitance of the EDL gate 

across a very thin ZnO film gives field- assisted injection. For high gate voltage, 

saturated ID (ID,sat) reaches almost 1 mA, considerably more than commonly observed 

for water- gated organic TFTs of similar geometry
25,114-115

. For a quantitative analysis, 

we evaluated the saturated transfer characteristic (Figure 67b). The on/off ratio read 

from the log ISD vs. VG saturated transfer characteristic is rather low (<10
2
), albeit dry 

ZnO displayed very high sheet resistance, i.e. low doping. We believe on/off ratio is 
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somewhat compromised by a source- to- drain leakage current across the water 

droplet, which we intend to minimise in future by an optimised source/drain electrode 

geometry with low electrode/water overlap. We evaluated saturated transfer 

characteristics in the form  (ISD,sat)
1/2

 vs. VG in the same way as Kergoat et al.
25

. We 

find a threshold of VT = 0.36 V. Modulus of threshold is similar to those observed 

previously for water gated hole transporting organic TFTs with W gate contacts
25,115

, 

but with opposite sign due to the opposite sign of carriers. To evaluate mobility, we 

need to assume a specific gate capacitance Ci; Kergoat et al
25

 give alternative low- 

frequency water EDL capacitances of 20 μF/cm
2
 (for Au / DI water / Au capacitor) 

and 3 μF/cm
2
 (for Au / P3HT / DI water / Au capacitor), respectively (wherein P3HT 

is an organic semiconductor). They chose 3 μF/cm
2
 to evaluate mobility in their 

(P3HT / DI water / Au gate) TFT, but it is not clear which of these values applies to 

our (HMDS- ZnO / DI water / W gate) TFT. Assuming either 3 or 20 μF/cm
2
 for Ci, 

we find electron mobility μe = 8.8 cm
2
V

-1
s

-1 
or 1.32 cm

2
V

-1
s

-1
. Either way, electron 

mobility in water- gated HMDS- ZnO is considerably higher than hole mobility in 

water- gated polythiophenes
25,114-115

, but similar to the 5.25 cm
2
V

-1
s

-1 
that Ong et al. 

report for a ‘dry’ gated precursor- route ZnO TFT
60

. We conclude that electron 

mobility in ZnO is not compromised by water gating. When comparing TFTs made 

from different batches of ZnO films prepared in nominally the same way, we find 

some variation in ISD,sat (up to 50%); however, for a given ZnO film, ISD,sat is rather 

stable over time: When gating with a droplet, we observe drain current slowly drops 

by about 15% over 10 min., but this is due to the evaporation of the gate droplet, and 

ISD,sat fully recovers when water is replenished. When a gate water droplet is allowed 

to dry up completely, and then is replaced with a new droplet, we find ISD,sat within 5% 

of the prior value. 

5.1.2.5 The diverse performance for different protection layers and the distance 

between gate and channel 

For comparison, we have also gated HMDS- ZnO and stearic acid- ZnO films 

using the tip of a straight W gate needle, rather than the L- shaped needle. The tip was 

again positioned as closely as possible to the channel. Resulting output characteristics 

are shown in Figure 68a (HMDS) and Figure 68b (stearic acid). Compared to Figure 

67a, Figure 68a shows an output characteristic with reduced source- drain current, and 

stronger hysteresis. We believe these differences result from the dynamics of EDLs in 

different gating geometries. The original rationale for using electrolytes rather than 

dielectrics for gating was that the EDL is extremely thin (therefore, its capacitance is 

very high), independent of the geometric separation between gate electrode and TFT 
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channel
127

. Unlike for dielectric gates, there is therefore no need to work with ultrathin 

films to achieve high capacitance. However, note that here, electrode/channel distance 

was in the order 0.1 mm, considerably larger than a solid electrolyte film (100 nm)
127

, 

which is again much thicker than the thinnest dielectric gates (< 10 nm e.g. for SAM 

dielectrics
128

 or anodised valve metals
129

).  

At the 1 mm distance scale, EDL capacitance may be dominated by slow 

dynamics: From the study of ionomers, it is known that the time constant for build- up 

of ‘electrode potential’ (that is an EDL) scales linearly with electrode distances in the 

order (0.1 and 1) mm
130

. The distance between the tip and the edges of the channel is 

larger than 1 mm even when the tip itself is very close to the centre of the channel, 

while this is not the case for the L- shaped gate electrode. Kergoat et al
25 

observed that 

water EDL capacitance is strongly frequency dependant, with capacitance increasing 

with decreasing frequency even below 1 Hz- a water EDL builds up very slowly, and 

does not reach its ‘static’ (zero frequency) value even after applying a voltage for 1 

second; the ‘low frequency’ value of 3 μF/cm
2
 Kergoat et al use to evaluate mobility 

can therefore only be an estimate. Unfortunately, capacitor thickness is not reported by 

Kergoat et al., but is likely to be less than 1 mm.  We believe that here, EDL build- up 

may be incomplete even on the time scale of a source/measure unit voltage sweep 

when only the tip of a gate needle is used to contact the water droplet, thus leading to 

reduced ID,sat. 
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Figure 68: Ouptut characteristics of water- gated ZnO TFTs, using the tip of a straight 

tungsten needle. a), HMDS- ZnO. Note the smaller drain currents, lack of saturation and 

stronger hysteresis, compared to HMDS- ZnO gated with L- shaped needle (Figure 67a). b), 

stearic acid- ZnO. Source- drain currents are smaller still, and there is visible source- to- gate 

leakage. 

Figure 68b shows the output characteristics for a stearic- acid modified ZnO film 

gated by a water droplet. Compared to Figure 67a, and even Figure 68a, these 

characteristics show much reduced ISD, and stronger hysteresis. Also, we observe 

apparently negative ISD at low VD and high VG, which indicates source- to- gate 

leakage across the water droplet. Similar leakage currents would be invisible in Figure 

67a, due to the much larger current scale. We conclude the large stearic acid molecule 

at the water/ZnO interface introduces a serial capacitance smaller than EDL 

capacitance, and thus significantly reduces overall capacitance, similar to the 

observations of Spijkman et al
128

. The gating then is via a conventional dielectric film 

contacted by an electrolyte, like in an electrolytic capacitor, rather than via the EDL 

itself. This was not the case on surfaces modified with the much smaller HMDS. 

5.1.2.6 Ionic liquid- gated HMDS- ZnO 

As mentioned in section 1.5.3.2, ionic liquids (ILs) are the electrolyte gate media 

best suited for low threshold and fast- switching FET. ILs typically display near- zero 

volatility, and good thermal, chemical, and electrochemical stability, which makes 

them suitable for applications, gas sensors and ion selective sensors, for example
131

. 

Also, its biocompatibility with proteins and enzymes attracts interests towards using 

ILs in biosensors devices
131

. We have therefore applied an IL as gate medium to the 

same HMDS- ZnO films that were studied under water gating in section 5.1.2.4. 
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Figure 69, a measurement of I-V converter for a HMDS- ZnO IL- gated transistor: (a) 

different sinusoidal drive voltages VS (f = 1 Hz) with amplitude ranging from 1.6 V, 3.1 V and 

3.6 V and resulting saturated drain currents (ISD) for each one, b) same saturated transfer 

characteristics as in Figure 69a, but shown in non- parametric form, i.e., ID vs. Vs, after 

eliminating time for three applied voltages Vs=1.6, 2, 2.5 V, c) same saturated transfer 

characteristics in order to show the appearance of ambipolar behaviour for two highest applied 

voltages Vs=3.1 and 3.6 V. 

Figure 69a shows the resulting saturated drain currents for ethanol- route HMDS- 

ZnO under sinusoidal VS drive, when gated with IL at different applied voltages. For 

all used drive voltage amplitudes, The IL- gated ZnO TFTs turn “on” during the 

negative drive voltage half- cycle meaning that ZnO is an electron- transporting 

semiconductor
132

. The shape of the ISD is similar to a sin
2
 curve, as expected using the 

I/V converter- based electrical characterisation scheme described in section 3.1.2. 

When applying a very high gate voltage amplitude (Vs= 3.1 V or more), Figure 69a 

also shows another small sin
2
 curve of ISD in the positive drive voltage half- cycle 

suggesting that ZnO may also shows hole- transporting behaviour. Note that such high 

voltages are only accessible when gating with an IL with its exceptionally large 

electrochemical window. However, in principle, intrinsic inorganic semiconductors 

should be able to transport both holes and electrons, and ambipolar transport in “dry” 

ZnO TFTs has previously been reported
133

. Figure 69b and c shows the same saturated 

transfer characteristics as in Figure 69a in explicit form, after eliminating time as 

parameter. As seen in Figure 69c, the thresholds of electron- and hole- transporting are 

about VT= 1.6 V and VT= 2.8 V, respectively. The high threshold for holes probably 

comes from the mismatch of work function of Au = 5.1 eV and ZnO valence band 

about VB = -7.7 eV, while the conduction band at CB = -4.4 eV is practically matched 

-6E-4

-5E-4

-4E-4

-3E-4

-2E-4

-1E-4

0E+0

1E-4

2E-4

-4 -2 0 2 4

I S
D

(A
)

Vs (V)

Isd Vs=3.1 (A)

Isd Vs=3.6  (A)

c) 



130  

 

for electron injection
61

 providing lower threshold. However, the ionic liquid gating can 

force injection even against a huge barrier between the work function of Au and ZnO 

valence band about (~ 2.6 eV).  

5.1.3 Summary and conclusions 

We demonstrate the first electron- transporting water- gated TFT, using thermally 

converted precursor- route ZnO intrinsic semiconductors with HMDS hydrophobic 

surface modification. Water gated HMDS- ZnO TFTs display low threshold and high 

electron mobility. So far, no n- type water gated organic transistors have been 

reported: In organic semiconductors, carrier transport is by thermally activated 

hopping of localised charge carriers, and localised electrons in particular are often 

trapped by polar trap sites
40

, e.g. -OH groups. However, this does not apply to 

delocalised carriers in crystalline inorganic semiconductors such as ZnO. Also, the 

ZnO conduction band lies at 4.4 eV, well below the ‘critical’ LUMO of 3.8 eV below 

which -OH groups no longer trap electrons
134

. Despite the use of an electrolyte as gate 

medium, gate geometry is relevant for optimum performance of water- gated TFTs. 

We recommend the use of L- shaped electrodes that overlap the width of the TFT 

channel, and are held as close as practically possible, leaving a water gap in the order 

of 0.1 mm. In spite of having higher hydrophobicity in 1 LS stearic acid deposition, 

the HMDS- ZnO showed better performance in terms of the saturated ID (ID,sat) at high 

gate voltage. IL and its large electrochemical window help holes carrier injection to be 

forced against a large injection barrier and show ambipolar behavior of ZnO.  

This promises applications of ZnO TFTs as transducers for interface- sensitised 

sensor devices. The high saturated drain currents in ZnO TFTs will make electric read- 

out of the transducer easier than for organic TFT sensors. For the application of 

interfacial sensitisers, the polar (hydrophilic) ZnO surface (prior to HMDS 

application) may be an advantage over organic semiconductor surfaces. Electron- 

transporting TFT transducers would be particularly suited for the detection of cationic 

waterborne species, as a positive gate voltage will lead to a cationic EDL at the 

water/semiconductor interface, where sensitiser is located. Precursor- route ZnO films 

thus constitute an attractive alternative to organic semiconductors in TFT transducers 

for the sensing of waterborne analytes.  
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6 CHAPTER 6 

6.1 Organic solvent- gating TFT 

The properties of the gate medium, in particular its specific capacitances, and 

interfacial polarity, are crucially important to the performance of TFT
60,135,136

. 

Traditionally, the gate medium has been a solid dielectric material. Recently, however, 

electrolytes have also been used as gate media. Under an applied gate voltage, mobile 

ions form an EDL at the semiconductor/gate-medium interface; the EDL has a very 

high specific capacitance.  

Here, it is shown that some organic solvents can also act as EDL gate media for 

TFTs. We have tested a range of solvents to determine the physicochemical properties 

required for a solvent to act as an EDL gate medium. 

6.2 Experimental details  

Preparing samples: semiconductor films were prepared for electrolyte gating onto 

Au electrode pairs with W = 2 mm, separated by a channel with L = 20 μm; W/L = 

100. Gold contacts were prepared by photolithography onto insulating SiO2 substrates 

after depositing 5 nm of Cr, as an adhesion promoter. The contact geometry limits the 

overlap area between Au contacts and the applied solvent droplet to 0.4 mm
2
, while 

still allowing convenient contact at distant contact pads, as described in section 

1.5.4.1.  

 Preparing Semiconductors used for solvent-gating: as hole- transporting 

semiconductors, we used regioregular poly(3-hexyl)thiophene (P3HT), which has 

been widely used in organic TFTs
26,135

, and poly(2,5-bis(3-tetradecylthiophen-2-

yl)thieno [3,2-b]thiophene) (PBTTT); both were sourced from Ossila Itd
137

. As an 

electron transporting semiconductor, we used inorganic ZnO. P3HT films were 

prepared by spin casting at 2000 rpm from a 10 mg/ml solution in chlorobenzene, 
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while the PBTTT films were prepared by spin-casting a 7 mg/ml solution in 1,2-

dichlorobenzene at 4000 rpm. ZnO films were prepared by thermal conversion of 

solution- cast zinc acetate dihydrate films, using the procedure described before
138

. 

ZnO films were then treated with a self- assembled hydrophobic HMDS monolayer.  

Preparing Bottom- gated PBTTT transistor, we evaporated 100 nm thick Al 

contact by evaporation over insulating SiO2 substrates after standard cleaning process. 

The Al contacts were anodised as mentioned in section 2.2.5. To self-assemble OTS 

over Al2O3, the substrates went through the process mentioned in section 2.2.4. After 

that the Al2O3 coated by OTS devices were spin- coated with a 7 mg/ml solution of 

PBTTT in 1,2-dichlorobenzene at 4000 rpm. The final devices were annealed under 

dynamic vacuum at 110 
o
C for 1 hour. 

Potential gate media used for gating: we tested the following solvents: deionised 

water (H2O), methanol (H3C-OH), isopropanol (IPA, H3C-CHOH-CH3), acetone 

(H3C-CO-CH3), acetonitrile (H3C-C≡N), chloroform (HCCl3), toluene (H5C6-CH3), 

and cyclohexane (C6H12). The solvent categorise into polar aprotic, polar protic and 

non- polar depending on the dielectric constant values of solvent. All organic solvents 

were purchased from Aldrich in HPLC grade, most of the solvents contained only 

minute traces of water, as mentioned in Table 7. Only acetone contained up to 2% 

water. The solvents may also have contained trace amounts of dissolved salts, but 

these were not quantified. The selected solvents span a wide range of molecular dipole 

moments and autoprotolysis constants (Table 8). The ZnO sample was tested using all 

the solvents listed above, but P3HT and PBTTT are soluble in chloroform and toluene, 

so these were not used. Solvents were soaked into a tissue placed over the channel in 

order to keep the interface area fixed.  

For the electrical measurements: two Tungsten (W) needles were dropped onto 

the substrate’s contact pads using Karl Süss probeheads, so these could act as TFT 

source (S) and drain (D). As the gate contact, a third W needle was bent into an L- 

shape and dropped onto the soaked tissue, with the foot of the L overlapping the 

channel, as described before
138

. 
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Name 
Boiling Point 

(°C) 

Traces of water 

(%) 

Dielectric 

constant 

Categories of 

solvent 

Water 100 100 80 Polar protic 

Chloroform 61.2 0.011 4.81 Non- polar 

Methanol 64.6 0.03 33 Polar protic 

Isopropanol 82.5 0.0043 18 Polar protic 

Acetone 56 2 21 Polar aprotic 

Acetonitrile 81.65 0.001 37.5 Polar aprotic 

toluene 110 0.0039 2.38 Non- polar 

cyclohexane 80.73 0.0017 2.02 Non- polar 

Table 7, the list of solvent used for solvent- gated transistors including the percentage traces 

of water taken from solvent bottles of Sigma Aldrich and dielectric constant taken from CRC
139

. 

6.3 Results and Discussion 

 

-0.24 

-0.12 

0 

0.12 

0.24 

-1 

-0.75 

-0.5 

-0.25 

0 

0.25 

0.5 

0.75 

1 

0 200 400 600 800 1000 I S
D
 (

m
A

) 

V
s 

(V
) 

Time (ms) 

Vs 
Methanol-Gated 
Acetone-Gated 
Acetonitrile-Gated 
DI Water-Gated 
IPA-Gated 



134  

 

 

 

 

Figure 70, a) Sinusoidal drive voltage VS (amplitude 0.8 V, f = 1 Hz), and resulting 

saturated drain current (ISD), for ZnO TFTs gated with water, and several organic solvents. ISD 

under water- gating is downscaled 10-fold to fit on the same scale. b) Same saturated transfer 

characteristics as in Figure 70a, but shown in the conventional form, i.e., (ID)
1/2

 vs. V, after 

eliminating time. c) ZnO TFTs gated with water, IPA, and acetonitrile, under a step- like 

voltage drive. For easy comparison of rise times, the resulting ISD values are normalised to reach 

unity in a long- time- limit for all solvents. 
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Figure 70a shows the resulting saturated drain currents for ZnO films under 

sinusoidal VS drive, when gated with water and various organic solvents. The water- 

gated ZnO TFTs turn “on” during the negative drive voltage half- cycle, which is 

equivalent to apply a positive gate voltage, suggesting that ZnO is an electron- 

transporting semiconductor
132

. The shape of the ISD curve under the sinusoidal VS drive 

is similar to a sin
2
 curve. Figure 70b shows the same saturated transfer characteristics 

in the conventional presentation, (ISD)
1/2

 vs. V, after eliminating time from Figure 70a, 

as discussed
99

. The characteristics are as expected for saturated transfers (a flat line at 

a low current below the threshold and an approximately linear increase in (ISD)
1/2

 with 

increasing gate voltage at high voltages; the observed hysteresis will be discussed 

below). However, since TFTs can be evaluated directly from their parametric form, 

only this form will be shown in subsequent figures. ZnO favours electron- transport 

over hole transport, which is in agreement with some earlier observations
60,138

. Indeed, 

when gated with water, a small drain current is also observed during the positive drive 

voltage half- cycle (this is more clearly visible prior to downscaling). This is a 

characteristic of hole- transport
99

. Here, we believe that weaker hole current in ZnO is 

the result of poor injection rather than a lack of hole mobility.  

Figure 70a also shows electron drain currents when ZnO is gated with some 

organic solvents, however, the maximum saturated drain current is smaller than that 

for water- gating (the order is water > IPA > acetonitrile > methanol > acetone). For 

IPA, a small hole drain current can also be seen; for the other organic solvents, this is 

either absent, or too small to be resolved. In contrast, when gating was attempted with 

chloroform, toluene, or cyclohexane, no drain current was observed. The 

corresponding flat lines are omitted from Figure 70a. 

Figure 70a also shows that the ID peak lags slightly behind the VS  peak;  we also 

observe some hysteresis in Figure 70b. This is consistent with a slow build- up of the 

EDL, which can alternatively be interpreted as frequency- dependent capacitance, 

even at f = 1 Hz. A slow EDL build- up in water is well documented
25,130

 and has been 

described theoretically
140

. To investigate the time lag in more detail, we applied a step 

voltage drive, rather than a sinusoidal drive, as shown in Figure 70c (note that the 

drain currents in Figure 70c are normalised to reach unity in the long- time- limit). The 

drain currents rise to their final values approximately exponential, with time constants 

in the order water < IPA < acetonitrile, i.e., a gate medium that leads to a higher 

maximum current also gives a faster approach. 



136  

 

 

Figure 71, Sinusoidal drive voltage VS (amplitude 0.8 V, f = 1 Hz), and the resulting 

saturated drain current (ISD), for P3HT TFTs gated with several organic solvents. ISD under 

water- gating is downscaled 10- fold to fit on the same scale. 

 

 

Figure 72, Sinusoidal drive voltage VS (amplitude 0.8 V, f = 1 Hz), and resulting saturated 

drain current (ISD), for PBTTT TFTs gated with water, and several organic solvents. ISD under 

water- gating is downscaled 10-fold to fit on the same scale. 

Figure 71 and Figure 72 show the sinusoidal drive voltage, VS, and the resulting 

saturated drain currents, for TFTs using the semiconducting polymers P3HT (Figure 
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71) and PBTTT (Figure 72), gated with water, and other solvents. Chloroform and 

toluene had to be excluded because the semiconducting polymer film would dissolve 

in these.  

These TFTs are turned “on” during the positive VS half- cycles only, which agrees 

with the well- known hole- transporting properties of polythiophenes. Again, we 

observe a field effect not only when using water as the gate medium, but also for 

acetonitrile, IPA, methanol, and acetone. However, cyclohexane again fails to act as 

an EDL gate medium. Water again gives the highest drain currents, but the other 

solvents are now rank somewhat differently: acetonitrile ~ methanol > IPA > acetone.  

All else being equal, the hole currents in polythiophenes are lower than the electron 

currents in ZnO, this is explained by the higher electron mobility in ZnO
60

. 

Table 8, Summary of physicochemical properties of the solvents used, and results of 

attempts to gate different semiconductors with different solvents. pKa = -log Ka quantifies the 

tendency to undergo autoprotolysis, where Ka is the chemical equilibrium constant for the 

autoprotolysis reaction; data are for 25 
o
C (Rondinini et. al.

141
). Solvents that cannot undergo 

autoprotolysis formally have an infinite pKa. Molecular dipole moments (in Debye) from 

Riddick et. al.
142

. Solubility in water in grams of solvent per litre of water; misc. indicates 

miscibility in any ratio. Y- / Y+: electron/hole field- effect current was observed under applied 

gate voltage. (Y+): small hole current. N: no field effect current observed. X: impossible to 

determine because of solubility or lack of transistor action. VT is the TFT threshold voltage, 

evaluated directly from the parametric form of the saturated transfer characteristics. To account 

for hysteresis, VT has been averaged between the values at rising and falling flanks. 

 Water 
Meth-

anol 
IPA 

Acet- 

one 

Aceto- 

nitrile 

Chloro- 

form 

Tolu- 

ene 

Cyclo- 

hexane 

pKa 14 16.6 20.7 >32.5 ∞ ∞ ∞ ∞ 

Dipole[D] 1.85 1.7 1.66 2.88 3.92 1.04 0.36 0 

H2O sol. 

[g/L] 
- misc. misc. misc. misc. 8 0.47 - 0 

ZnO Y- (Y+) Y- Y- (Y+) Y- Y- N N N 

VT(V) 

(±0.02) 
-0.1 -0.11 -0.1 -0.14 -0.15 X X X 

P3HT Y+ Y+ Y+ Y+ Y+ X X N 

VT(V) 

(±0.08) 
0.38 0.48 0.4 0.35 0.44 X X X 

PBTTT Y+ Y+ Y+ Y+ Y+ X X N 

VT(V) 

(±0.05) 
0.44 0.56 0.43 0.55 0.59 X X X 

Imax [%] 100 13.2 6.6 5.1 14.3 X X 0 
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Qualitative and quantitative results of all the experiments shown in Figure 70a, 

Figure 71, and Figure 72 are summarised in Table 8, together with key 

physicochemical properties of the solvents used. Table 8 and Figure 73 show that 

some (but not all) organic solvents can act as EDL gate media for TFTs in a similar 

way as water, solid electrolytes, and ionic liquids. The ability to act as gate medium 

(or not) is a property of the solvent, not of the semiconductor used in the TFT. If a 

solvent can act as a gate medium, it will gate both n- type and p- type semiconductors; 

if it cannot, it will gate neither. We found that only organic solvents that are fully 

miscible with water can act as TFT gate media. A related indicator is the solvent’s 

dipole moment: solvents with no dipole moment or a small dipole moment 

(cyclohexane, toluene, and chloroform) cannot act as gate media, and also not fully 

miscible with water. However, a solvent does not need to undergo autoprotolysis (e.g. 

2CH3OH  CH3OH2
+
 + CH3O

-
, for methanol) to act as a gate medium: Even the 

completely ‘aprotic’ acetonitrile gives working TFTs. Also, the ability to form 

carbonic acid from atmospheric carbon dioxide (2H2O + CO2  H2O + H2CO3  

HCO3
-
 + H3O

+
) is not essential, as this is confined to water. 

 
Figure 73, Imax gives the maximum saturated drain current during the “on” half- cycle of VS 

as a percentage of the same semiconductor’s maximum saturated drain current under water- 

gating. 

We believe that the unintended, but inevitable, contamination of polar solvents 

with traces of dissolved salts supplies the ionic species required for the formation of 

an EDL. These contaminations will be present in solvents that are miscible with water, 
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but absent from less polar solvents such as chloroform, toluene, or cyclohexane. 

Alternatively, even in HPLC- grade solvents, minor traces of water may be present in 

all solvents (see the experimental section 6.2), or may be rapidly absorbed from 

atmospheric humidity during testing, particularly in case of water- miscible solvents. 

However, we consider this to be less likely, as water itself is not an ionic species, and 

would require dissolved ions to act as a gate medium. The contribution from 

autoprotolysis would be extremely low when water is present only in trace amounts. 

Also, the supplier quotes acetone as being the solvent with by far the highest 

contamination by water, but acetone gating does not give the highest drain currents.  

In all cases, water gave the highest maximum current, with most drain currents 

under gating with other solvents being around 10% of those observed under water 

gating. Unlike Helmholtz’s basic EDL theory
143

, more complex EDL theories predict 

that the EDL capacitance will increase with increasing ion concentration. This is 

supported experimentally
143

, although the quantitative dependence is highly 

complicated. Even in deionised water, the ion concentration resulting from 

autoprotolysis (and possibly carbonic acid) will be higher than the unintended 

impurity levels in other solvents, thus leading to a higher capacitance and higher 

currents. There is, however, no straightforward explanation for the different saturated 

drain currents obtained for gating with polar organic solvents. There is no clear 

correlation between the maximum current and the dipole moment, and solvents are 

ranked in different orders for n- type and p- type semiconductors. Different levels of 

unintended contaminants alone cannot explain the different current levels for different 

solvents. Different solvents may also be a different impacts on the carrier mobility in 

the semiconductor. It is well known that polar gate media lead to reduced mobility in 

organic semiconductors
5,135

, and hydroxyl groups are known to act as charge- carrier 

traps
144

. 

Table 8 shows the observed threshold voltages, VT. These do depend on the 

semiconductor, but are similar for different gate media.  

To support our hypothesis that EDL gating by polar solvents is the result of the 

present of unintended traces of dissolved salts as contaminations, we have conducted a 

final experiment, where we deliberately added a minute flake of NaCl to an 

acetonitrile- soaked tissue acting as the gate medium for a PBTTT film. Figure 74 

shows that the observed saturated drain current increased more than four-fold over ~ 4 

mins, as the NaCl flake dissolved in the acetonitrile. The deliberate addition of salt to 

acetonitrile led to an increased EDL capacitance, and therefore a higher saturated drain 
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current. Note that during the “off” half-cycle, the observed drain current remained very 

low, so we can exclude both the conductivity of the salt- containing acetonitrile and 

electrochemical doping of PBTTT as the origin of the observed drain current increase. 

When we added a minute droplet of water to HPLC- grade acetonitrile as the gate 

medium, the observed saturated drain current decreased, possibly as a result of 

trapping by hydroxyle groups. These observations further support our view that traces 

of dissolved salts, rather than contamination with water, are the origin of the gating 

abilities of polar solvents.  

 

Figure 74, Sinusoidal drive voltage VS (amplitude 0.8 V, f = 1 Hz), and resulting saturated 

drain current (ISD), for PBTTT TFTs gated with HPLC- grade acetonitrile prior to adding a flake 

of NaCl, 2 mins after adding NaCl, and 4 min. after adding NaCl. 

6.4 Performance between Water- gated and bottom gated 

transistors  

Finally, we compared the electrical characteristics between water- gated PBTTT 

transistors and bottom- gated Al2O3- OTS PBTTT transistors, and a conventional 

PBTTT transistor with a ‘dry’ dielectric gate medium on the example of a bottom- 

gated Al2O3- OTS PBTTT transistor. The different architectures are illustrated in 

Figure 75. 
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Figure 75, the graphical presentation of the overall structure for: a) water- gated PBTTT 

transistor and b) bottom- gated Al2O3- OTS PBTTT transistors. 

Figure 76a) and b) show transfer characteristics for both types of PBTTT 

transistors. Both show the typical shape of transfer characteristics for normally “off” 

p- type OFETs operated with on/off ratio around 300. Regardless of the lower 

maximum applied voltage of about 0.9 V comparing to 3 V for “dry” transistors, the 

on- current is higher about 5.5 µA with VT= -0.24 V, and low value of subthreshold 

swing about 174 mV/decade which means a faster transition from two states “on” and 

“off”. For “dry” transistors, the transfer characteristic provides values of the on- 

current about 0.9 µA with VT= -1.2 V, and The high value of subthreshold swing about 

667 mV/decade. The bottom- gated transistors show lower off- current about 3 nA. 

Section 1.5.3.5 explain why an electrolyte- gated transistor in general shows higher 

performance that gate insulator. This is because of the concentrated high electric field 

is near the interfaces in electrolyte- gated transistors which, in turn, help to build up 

higher EDLs and cumulate more charge carriers.    
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Figure 76, the saturated transfer characteristics measured by I/V converter for: a) water- gated 

PBTTT at Rf= 18 kΩ, f = 1 Hz and VSD= 0.9 V and b) bottom gated Al2O3 PBTTT OTS Rf= 400 

kΩ, f = 3 Hz and VSD= 3 V. 

6.5 Summary  

It is found that organic solvents that are miscible with water (i.e., polar organic 

solvents) can act as EDL gate media for TFTs, in a similar way to that previously 

reported for solid electrolytes
127

, ionic liquids
37,145

, and water
25

. Solvents of low 

polarity, which are not miscible with water, cannot act as EDL gate media. The ability 

to undergo autoprotolysis or to dissolve atmospheric CO2 is not essential for a solvent 

to act as a gate medium. The most likely explanation for the ability to act as an EDL 

gate medium is the inevitable presence of trace amounts of dissolved salts in such 

solvents. This is supported by the observation that the deliberate addition of salt to an 

organic solvent gate medium increases the observed saturated drain current, whereas 

the deliberate addition of water actually decreases the current. 

Possible applications of our observations are in the quality control of ultra- pure 

organic solvents. Also, aprotic acetonitrile in particular is an attractive alternative to 

water as a gate medium. Acetonitrile gating avoids hydroxyl groups in the gate 

medium, which are known to act as charge- carrier traps
144

, and offers a wider 

electrochemical window than water
146

. Ionic liquids are also aprotic media with large 

electrochemical windows
147

; however, unlike acetonitrile, they are good solvents for a 

wide range of organic substances, which limits their use as gate media to the most 

insoluble compounds
37,145

.    
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7 CHAPTER 7 

7.1 Electrolyte- gated nano- wire transistors 

This section brings together the progress of electrolyte- gated TFTs of organic 

semiconductors with another up to date area of organic semiconductors research 

which is the presence of organic nano- wires (NWs). As discussed in section 1.6.4, 

NWs are formed as long, needle- shaped crystals that may grow when some organic 

semiconductors materials (namely those that crystallise with a slip- stacked crystal 

motif)
148

 go through appropriate physicochemical treatment while in solution, for 

example, thermal cycles, aging or addition of non- solvent. Depending on many 

factors (i.e. the material itself and growth conditions), some variations on the NW 

morphology have also been reported, for instance, nano- belts with curved shapes
73

, or 

flat- shaped as nano- fibres
149

. In order to generalize, the terms ‘nano- wires’ will here 

be used generically for all the mentioned morphologies except when discussing a 

particular sample. After formation of NWs, they may form stable suspensions in their 

growth medium, and can be processed into films by spin- or drop- casting, analogous 

to the deposition of OSC solutions. However, the resulting films are noticeably 

different in terms of morphologies from the smooth, uniform films comparing to films 

casted from OSCs solutions. Depending on NW density and casting conditions, films 

may have isolated single wires, lightly overlapping wires, or a dense multilayer NW 

‘mesh’. The literature on organic NWs (and related morphologies) includes many 

reports on TFTs; these have been comprehensively reviewed by Briseno et al
148

. 

 The advantage of using the NW morphology is a large surface area that lead to 

significant sensitivity enhancement in chemi- resistor sensor devices that are utilized 

(PAni) Polyaniline nanofibres, compared to devices using smooth PAni films
149

. It is, 

therefore, tempting to employ organic NWs in electrolyte- gated TFTs as the active 

layer. However, no electrolyte- gated NW OSC field-effect TFTs have been reported 

previously. The work of Wanekaya et al.
150

, despite its title, reported on an organic 
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electrochemical transistor (OECT) not a field effect transistor, and required a strongly 

acidic medium to operate such device. The differences between OFETs and OECTs 

were discussed in section 1.5.4, for more details.  

Here, we show water- gated organic NW field- effect TFTs using NWs grown from 

both p- type, and n- type, OSCs. As p- type organic semiconductor, we have chosen 

regioregular poly(3-hexylthiophene), an OSC widely used for organic TFTs
135

. P3HT 

is also known for its ability to grow NWs
75

. As n- type organic semiconductor, we 

have selected poly(benzimidazobenzophenanthroline) (BBL). BBL can act as n- type 

material in organic TFTs with good mobility (μe = 0.1 cm
2
V

-1
s

-1
)

71
, and Briseno et al.

73
 

have reported on the growth of BBL ‘nano- belts’. BBL possesses a rather deep ‘lowest 

unoccupied molecular orbital’ (LUMO) of – (4.0 eV)
151

, which allows reasonable 

electron injection even from high work function metals, and may make BBL consistent 

with water- gating, despite the potential trapping of electrons by water and/or oxygen, 

details in section 1.2.5. 

7.1.1 Experimental details 

Nano- wire growth: NWs of P3HT were grown via two routes, which we will call 

‘CB route’, and ‘anisole route’, respectively. For CB route, we dissolved 5 mg/ml 

P3HT (from Ossila) in (CB) chlorobenzene solution. The solution was initially heated 

to 80 °C and agitated to allow dissolution, then filtered through a 0.45 μm PTFE 

syringe with mounted filter. Next, at room temperature, the solution was left in the 

dark for several weeks or months to grow nano- wires. For Anisole route, another way 

of growing NWs was by using Anisole- P3HT route that were prepared via the 

whisker method
75

. 5 mg of rrP3HT (sourced from ADS dyes) were dissolved in 1 ml 

of Anisole. Then, the solution was heated to 90 °C until fully dissolved and allowed to 

cool to room temperature over duration of approximately 1 hr, and then left to mature 

for three days. This is known as the whisker method
75

. 

Nano- belts growth: the details of nano- belts growth was mentioned in section 

2.2.7.3.  

BBL thin film preparation: many groups found out methods for producing thin  

films of BBL
151

. The way used to get the thin film was by dissolving an amount of 

BBL’s powder in MSA to get the range of concentration between 0.2 mg/ml to 10 

mg/ml in order to prepare films of different thickness for reason that will be 

mentioned later. The higher concentration required heating to about (150°C) for 13.3 

mg/ml to completely dissolve. Substrates were placed on spin-coater and we dispensed 
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about 100 µl of solution onto a spin coater rotating at 2000 rpm (‘dynamic spin 

coating’) for 60 seconds. In order to crystallize the BBL films, samples were gently 

rinsed by methanol for 30 seconds to drive out residual MSA, because it evaporates so 

slowly. After that, samples were immersed gently in reservoir of DI water in order to 

remove as much MSA as possible from samples. Unfortunately, the produced films of 

BBL did not adhere well to their substrates and often peeled of spontaneously in 

water, and most sample preparations failed. We only succeeded preparing films from 

solutions of 0.5 to 0.7 mg/ml BBL in MSA. 

TFT preparation: OSC NWs and thin films were prepared onto Au electrode with 

W = 2 mm, separated by a L = 10 μm channel (for P3HT samples), or 20 μm channel 

(for BBL samples, to account for the larger size of BBL nano- belts, see below);  W/L 

= 200 for P3HT; W/L = 100 for BBL. 100 nm thick gold contacts were prepared by 

photolithography onto insulating SiO2 substrates after depositing 10 nm of Cr as 

adhesion layer, as seen in section 2.2.3 and 2.2.6.2. The contact geometry, sketched in 

Figure 77, uses 0.1 mm thin wires to connect S/D contacts to distant contact pads. This 

design limits overlap area between Au contacts and the water droplet applied later to ~ 

0.4 mm
2
, thus minimising parasitic currents across the droplet, while still allowing 

convenient contacting. CB P3HT NWs were spun at 5000 rpm onto contact substrates 

without prior substrate treatment. Anisole P3HT NWs were spun at 2000 rpm, and 

BBL nano- belts were drop- cast by repeatedly applying ≈ 2 μl droplets of nano- belt 

dispersion onto substrates and allowing solvent evaporation, until contacts were 

completely covered with nano- belts.  

 

Figure 77, the contact geometry. Channels of length L = 10 or 20 μm, W = 2 mm, are linked 

to distant contact pads by thin (100 μm) connecting wires. 

Electrolyte- gating and electrical characterisation: For electric testing, two 

Tungsten (W) needles were connected to the substrate’s contact pads using Karl Süss 

probeheads, so these could act as TFT ‘source’ (S) and ‘drain’ (D). As gate media, we 

used deionised water, and acetonitrile (HPLC quality from Aldrich). For gating, a 

droplet of DI water or acetonitrile was applied over the channel region from a micro- 

 0.1 mm  2 mm 

 0.1 mm 
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litre syringe. A third W needle was bent into L shape and was dropped onto the droplet 

with the foot of the L overlapping the channel, to act as ‘gate’ (G) contact, as 

suggested
138

. Transistors were driven electrically by applying a sine drive voltage VS(t) 

to S, connecting G to ground, and D to the virtual ground of a current/voltage (I/V) 

converter with a dial- in feedback resistor, Rf, as described in 3.1.2.1.  Peak voltage of 

VS was 0.8 V for water / 1.1 V for acetonitrile, frequency was chosen very low (1 Hz 

or less) to account for the slow build- up of the EDL
25

. The chosen setup is ‘blind’ to 

gate leakage currents. Together, VS(t) and ISD(t) constitute the TFT’s saturated transfer 

characteristic, as described in 3.1.2. For the characterisation of subthreshold 

behaviour, and output characteristics, a conventional TFT characterisation setup with 

two Keithley source/measure units was used. 

 
 

Figure 78, a: AFM image of CB-P3HT NWs. 5 mg/ml rrP3HT in chlorobenzene solution 

was matured for 5 months to allow NW growth, then spun at 5000 rpm onto TFT substrate. 

Image shows an area in the channel (channel length 10 μm). b: AFM image of Anisole- P3HT 

NWs spun onto TFT substrate. c: Optical micrograph of BBL nano- belts cast from isopropanol, 

covering the channel completely. Parts of the connecting wires (Figure 77) are visible; these are 

100 μm wide. d: AFM image of the channel area of a P3HT film. 

 a) 

 d) 

 b) 

 c) 
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7.1.2 P3HT nano- wire TFTs: Results and discussion  

Figure 78a shows a film cast from P3HT NWs grown in chlorobenzene. NWs are 

rather rigid, typically a few μm long, and they do lightly overlap. Figure 78b shows 

‘Anisole- P3HT’ NWs, which display a rather different morphology: Several NWs 

radiate out from a central ‘seed’, NWs are longer than CB- P3HT NWs, and curved. 

Different NW growth protocols thus lead to different morphologies. Figure 78c shows 

the optical microscope of BBL nano-  belts cast from isopropanol. Figure 78d shows 

thin film of P3HT dissolved in chlorobenzene. 
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Figure 79, a.) Sine drive voltage, VS(t),  and resulting TFT source-  drain current ISD(t), for 

water-  gated CB- P3HT NW, and Anisole- P3HT NW, films (as shown in Figure 78a,b,d). 

P3HT film is also shown, note ISD for both NW TFTs is magnified tenfold. b.) Saturated transfer 

characteristics for CB- NW, and Anisole- NW films, in the form ISD
1/2

 vs. VS; derived from 

Figure 79a by eliminating time. Threshold, VT, is read as described in section  3.1.2.5. 

In Figure 79a, we show the saturated transfer characteristics parametric in time for 

CB- P3HT, and Anisole- P3HT, when gated with DI- water, and driven from the 

source. For comparison, we also include the characteristics of a conventional P3HT 

film under otherwise the same conditions. Figure 79a shows that both CB- P3HT and 

Anisole- P3HT NW films display low threshold voltage TFT characteristics, with a 

clearly distinct ‘on’- cycle for positive VS / ‘off’ cycle for negative VS, as it is typical 

for p- type organic transistors driven from the source contact
99

. The low current in the 

’off’ cycle shows that very little parasitic current flows across the gate droplet (rather 

than the semiconductor), thanks to the small overlap- area between contacts and water 

droplet. The saturated drain current is somewhat higher for CB- P3HT NWs than for 

Anisole- P3HT; however, both are significantly lower compared to conventional 

P3HT films under water gating (note the scaling used in Figure 79a, the NW device 

currents are shown 10x amplified). We note that the current observed for the 

conventional P3HT film agrees within 25% with the value reported previously by 

Kergoat et al
25

 after the different channel geometry is taken into account. 

The low currents observed for water- gated organic NW TFTs agree with similar 

observations on ‘dry’ organic NW TFTs, which despite of the high carrier mobility 
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along the axis of individual NWs typically display rather low source- drain currents, 

the examples shown in the review by Briseno et. al.
148

. This is due to the often 

incomplete filling of the channel width (W) with NWs (e.g. Figure 78a), and the 

contact problems between bottom contacts and NWs, which are evident in the NW 

TFT output characteristics shown in
148

. Nevertheless, Figure 79a shows that organic 

NW films can be gated within the electrochemical window of water to realise 

electrolyte- gated organic NW TFTs. In fact, the threshold voltage (VT) is lower for 

NW TFTs than for conventional P3HT films, as can be seen more clearly from the 

(ISD)
1/2

 vs. VS plots shown in Fig. 3b. This gives VT = (0.38 ± 0.02) V for conventional 

P3HT film, VT = (0.27 ± 0.02) V for Anisole- P3HT, and (0.22 ± 0.02) V for CB- 

P3HT. Note that attempts to calculate a carrier mobility for NW TFTs are ill- advised 

due to the unknown channel fill- factor.  

7.1.3 P3HT nano- wire TFTs as sensors 

The results presented in section 7.1.2 show that the NW morphology is therefore 

accessible in principle for water- gated p- type organic TFT sensor devices, to exploit 

the large surface area of NWs for sensitivity enhancement
149

. As an example to 

demonstrate this, we have gated both, P3HT NWs, and conventionally cast P3HT 

films, with dilute solutions of octylamine. An amine has been chosen as example 

because amines occur as a result of protein breakdown in foodstuffs, for example meat 

and fish
152

. Amine sensors are therefore of great interest for detecting food spoilage. 

We used real time measurements to record the responses of devices fabricated as 

explained in section 3.1.2.7. Hague et al. demonstrated previously that the exposure of 

octylamine vapour reduces the conductivity of pentacene as a p-  type organic 

semiconductor, because charge carriers get trapped by analytes of octylamine 

vapour
132

. Both Figure 80 and Figure 81 show that the on- currents’ responses of 

P3HT TFTs and conventionally cast thin films after applying ≈ 2 μl droplets of 

different concentration of octylamine dissolved in DI- water in the range 0.5 ppm to 

28 ppm, respectively. However, comparison of Figure 80 and Figure 81 shows that the 

NW morphology enhances the sensitivity of P3HT TFTs to dissolved amine, as the 

response to any given octylamine concentration is higher for the NW morphology (at 

small concentration 0.5 ppm). The recovery after applying DI- water at the end of 

experiment indicated to the slower recovery of NW morphology and to the faster 

recovery for conventionally cast thin films.  
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Figure 80, the recorded responses of NW'S CB- P3HT TFT after applying range of 

concentration from 0.5 ppm to 28 ppm of octylamine.  

 

Figure 81, the recorded responses of thin film CB- P3HT TFT after applying range of 

concentration from 0.5 ppm to 28 ppm of octylamine. 
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7.1.4 BBL nano- belt TFTs: Results and discussion 

Figure 78c shows the morphology of BBL nano- belts grown, purified, and 

processed along the somewhat more intricate procedure described in the experimental 

section. BBL grows into flat ribbons (‘belts’), rather than one- dimensional wires like 

P3HT, and ribbons are larger than NWs; these are hence adequately imaged by optical 

microscopy, rather than AFM. We did not observe any systematic morphological 

differences between the different solvents (methanol, ethanol, isopropanol) used to 

displace MSA. 

We have also attempted water- gating of n- type NWs. The option to use n-type, as 

well as p- type, TFTs, is generally desirable for organic electronics, as it allows to 

mimic ‘CMOS’ type devices like complementary inverters
153

. In the context of sensor 

technology, dry n- type OSC TFTs have been shown to be more sensitive to some 

odours than p- type TFTs
99

, and n- type electrolyte- gated TFTs are turned on by a 

cationic (rather than anionic) EDL, hence n- type OSCs have an advantage over p- 

types for the sensing of waterborne cations. Initially, however, we had no success with 

water- gating BBL nano-  belts, presumably due to electron trapping by -OH groups, 

despite the low LUMO. Therefore, we have used acetonitrile, as an alternative to 

water, as gate medium for BBL nano- belts. Acetonitrile (H3C-C≡N) is aprotic (free of 

-OH groups), yet highly polar. It is widely used in electrochemistry for its aprotic 

character, wide electrochemical window and ability to dissolve salts
146

. Figure 82a 

shows the saturated transfer characteristics of acetonitrile (HPLC grade)- gated BBL 

nanobelt TFTs. Note the maximum drive voltage can be selected somewhat higher 

than for water gating due to the bigger electrochemical window of acetonitrile. 

We find clearly distinct ‘on’- cycle for negative VS / ‘off’ cycle for positive VS, as 

it is typical for n- type organic transistors driven from the source contact
99

. These 

characteristics remained stable for 5 to 6 minutes. Thresholds can be evaluated 

similarly as for P3HT in Figure 79b, giving VT = (0.22 ± 0.02) V.  
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Figure 82, a.)  Sine drive voltage, VS(t),  and resulting TFT source- drain current ISD(t), for 

acetonitrile- gated BBL NWs, calculated from VOUT of the I/V converter by VOUT = -10 RfISD. 

Inset: TFT ‘on’ current at maximum drive voltage, ISD(VS = 1.1 V), for acetonitrile- gated BBL 

TFT over time, while a minute flake of NaCl dissolves in the gate droplet.  b.) Saturated transfer 

characteristics in the form ISD
1/2

, and  log ISD, vs VG, measured by a conventional setup. 

From Figure 82b, an inverse subthreshold slope was calculated about 285 mV/dec 

for HPLC- grade acetonitrile gating. The highest accessible saturated drain currents 

(limited by the electrochemical window of acetonitrile) range from ~ (200...400) nA 

for different samples, larger than for water- gated P3HT NWs, but similar to the 

maximum drain current observed for dry- gated BBL nano- belt TFTs (limited by the 

dielectric breakdown of the dry gate insulator) with similar nano- belt morphology, 

and device geometry (~ 360 nA)
73

. However, here we achieve this current with a gate 

voltage of only 1.1 V , while Briseno et al
73

 required 80 V to reach maximum current. 
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This confirms that electrolyte- gated n- type OSC NW TFTs are viable, as long as a 

suitable (i.e., aprotic) gate medium is used. Due to the high EDL capacitance, 

maximum current is reached at much lower voltage than for a ‘dry’ gate insulator. 

Also, unlike for P3HT, saturated drain currents in BBL nano- belt TFTs are similar to 

those found for solution- cast BBL film transistors of similar geometry (~ 300 nA)
151

. 

This indicates near- complete filling of the channel with nano- belts, which is not the 

case for P3HT nanowires, as seen in  Figure 78. 

In fact, when the HPLC acetonitrile gate droplet is allowed to evaporate, ISD at 

first somewhat increases, probably because trace salts become more concentrated (as 

the gate droplet dries up completely, the transistor eventually fails). We have therefore 

attempted to enhance maximum current in acetonitrile- gated BBL nano- belt TFTs by 

deliberately adding salt to acetonitrile. The inset to Figure 82a shows the ‘on’ current 

ISD(1.1 V) of the same BBL nano- belt TFT over time, while a minute flake of NaCl 

dissolves in the gate medium. As the salt slowly dissolves, ISD increases more than 5-

fold, eventually reaching almost 3 μA. 
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Figure 83, Output (a)- and transfer at (VSD=0.8V) (b) characteristics of BBL nanobelt film 

gated with water after acetonitrile dried up, immediately after applying the water gate droplet. 

c.) 2 min. after applying the droplet. Note the droplet has not evaporated. Output characteristics 

are shown for increasing and decreasing VSD.  

When we again attempted to gate a BBL nano- belt film with water, after it had 

first been gated with acetonitrile that was then allowed to dry up, we recognised a 

remarkable finding: After such prior ‘conditioning’, water gating now succeeded and 

led to TFTs with unusually high saturated drain current. Figure 83a shows the near- 

ideal output characteristics of such devices, displaying a saturated drain current of 

more than 70 μA at less than 1 V, which increases further over a few minutes (Figure 
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83c) to almost 200 μA, an almost 3 order- of- magnitude increase over the saturated 

drain current observed for the same film under prior acetonitrile- gating. Figure 83b 

shows the transfer characteristics of BBL nano- belt film at VSD=0.8 V gated with 

water after acetonitrile dried up. When data from Figure 83a are evaluated with the 

standard saturated drain current equation for a TFT (assuming completely filled 

channel), and assuming a gate capacitance of (Ci = 3 μF/cm
2
)

25
, we find electron 

mobility μe= 1.4 cm
2
V

-1
s

-1
, higher than reported previously for solution- cast BBL 

films (μe = 0.1 cm
2
V

-1
s

-1
)

151
, or dry- gated BBL nano- belt TFTs (μe < 10

-2
 cm

2
V

-1
s

-1
)

73
. 

Table 9 shows all data for samples of BBL TFTs. The reason for slowing down the 

frequency is to have as high building up of EDL as possible to archive the higher value 

of ISD. 

Sample 

No. 

Applied 

voltage 

(V) 

Rf 

(MΩ) 

Calc. ISD 

(µA) 

Freq. 

(Hz) 

Washing 

medium 

NW/Film 

VTh  

(V) 

0 1.2 3.20 0.375 1.00 Ethanol -0.83 

1 1.2 8.20 0.146 1.00 Ethanol -0.51 

2 1.2 3.40 0.353 0.40 Ethanol -0.55 

4 1.2 9.70 0.124 0.40 Ethanol -0.68 

5 1.2 1.70 0.706 0.30 Isopropanol -0.53 

6 1.2 2.10 0.57 0.30 Isopropanol -0.51 

7 1.2 4.00 0.30 0.30 Isopropanol -0.64 

8 1.2 4.00 0.30 0.30 Isopropanol -0.62 

11 1 1.82 0.55 0.30 Methanol -0.42 

0 1.1 0.90 0.122 0.30 Isopropanol -0.45 

2 1.1 2.30 0.48 0.30 Ethanol -0.37 

3 1.1 5.30 0.21 0.30 Ethanol -0.52 

0 1.1 1.60 0.688 0.30 Isopropanol -0.28 

2 1.1 6.55 0.168 0.30 Ethanol 0.32 
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0 0.86 9.00 0.10 0.30 Isopropanol -0.35 

1 1.1 0.22 0.52 0.30 Isopropanol -0.53 

2 1.1 2.20 0.50 0.30 Isopropanol -0.38 

5 1 0.15 6.67 1.00 Film -0.47 

6 1 0.10 10.0 0.30 Film -0.35 

7 1 0.07 14.3 0.30 Film -0.30 

Table 9, the data with transistor parameters from I-V converter (sine- wave) for 

Acetonitrile- gated BBL devices. 

At longer times, TFT properties deteriorate. Current remains high, but output 

characteristics become largely independent of gate voltage. The device behaves 

similar to a resistor, rather than a transistor. When the gate droplet is left to dry up 

completely, and then is replaced with fresh water, the characteristics shown in Figure 

83a can not be recovered. 

We believe the acetonitrile conditioning may leave a very thin acetonitrile layer on 

the surface of BBL nanobelts that later shields them from direct contact with water, 

and thus the -OH groups detrimental to electron transport- until the protective layer 

eventually dissolves into the water droplet. However, we cannot offer a full 

explanation for the remarkably high drain currents observed.  

7.1.5 Summary 

We conclude that both p- type, and n- type, organic NW films can be gated with 

the EDL that forms at the interface between NWs, and an electrolyte gate medium. As 

p- type NWs, we have grown NWs from P3HT solutions via two different routes, using 

different solvents (CB and Anisole) as growth media, and thermal cycling, or simply 

long- term maturing. Different growth media resulted in NWs with different 

morphologies. Films of both morphologies can be gated with water without prior 

conditioning, resulting in TFTs with very low threshold; even lower than for 

conventionally cast P3HT films. The resulting saturated drain currents are lower than 

for conventional P3HT films; however, this is similar to the observations in ‘dry’ NW 

transistors
148

. Reduced drain currents are probably due to the partial filling of the 

transistor channel, and injection problems at the metal/NW contacts. We propose 

water- gated NW TFTs for use in sensors for waterborne analytes, as the high surface 

area of NWs promises higher sensitivity than conventional organic semiconductor 
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films. As n- type NWs, we have grown ‘nano- belts’ from the n- type organic 

semiconductor, poly(benzimidazobenzophenanthroline) (BBL) by a solvent/non- 

solvent mixing route with later displacement of the solvent in favour of a non- solvent 

as dispersion medium. When gating of such films with water was attempted, we 

initially did not observe a resulting drain current. However, BBL nano- belts can be 

gated with an aprotic gate medium (acetonitrile), to give n- type EDL gated organic 

field effect nano- belt TFTs. Drain current was similar to that observed in dry- gated 

BBL nano- belt TFTs, and dry- gated TFTs using conventionally cast BBL films. 

However, this was achieved at substantially lower gate voltage, and could be further 

enhanced by adding salt to the gate medium. Remarkably, BBL NW films can also be 

gated by water (a protic gate medium) after first conditioning them with acetonitrile. 

Such TFTs display very high drain currents; however this remarkable behaviour is 

transient on a timescale of minutes. While we have no detailed explanation of this 

behaviour, we believe it may be related to a thin protective acetonitrile film on the 

nano- belt surface that remains from the prior conditioning. We propose to explore 

more permanent protective films.  
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CHAPTER 8 

8 Conclusions and future work 

In this thesis, the concept of electrolyte- gated thin films of solution- processed 

semiconductors was investigated. We used both organic and inorganic 

semiconductors, and a variety of different electrolytes as electric double layer (EDL) 

gate media. p- and n- type  thin- film transistors (TFTs) were fabricated and tested for 

their compatibility and performance with different EDL gate media to build a 

scientific foundation for their future applications. Furthermore, suggestions to improve 

the functionality of electrolyte- gated thin film transistors to be a promising transducer 

for sensors were offered. In fact, the typically low threshold voltages (below 1 V) of 

electrolyte- gated thin film transistors, which results from the high capacitance of EDL 

gate media, is a key asset of such devices, as ordinary batteries can therefore power 

such transistors.  

The key observations and results reported in this thesis are summarized as follows:  

1. Depositing layers of calixarenes over the surface of semiconductors using 

Langmuir trough shows a positive impact on the performance of 

semiconductors in electrolyte- gated TFTs by suppressing unwanted 

electrochemical doping often competes with field effect.  

2. Electron- transporting water gated TFTs were demonstrated. Previously, 

reports on water- gated organic TFTs had used p- type semiconductors only, 

probably due to the problem of electron trapping at –OH groups in organic 

semiconductors. Here, we sidestepped this problem by using precursor- route 

zinc- oxide (ZnO) as a semiconductor. Performance of such films as n- type 

TFTs relied in suitable hydrophobic surface modifications. 

3. We have shown that in addition to water- based electrolytes, ionic liquids, and 

solid electrolytes, some organic solvents may act as EDL gate media. The 
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ability for EDL gating is a property of the solvent, not the semiconductor. The 

criterion for a solvent to act as EDL medium is its ability to dissolve salts.  

4. Both p- type and n- type organic nano- wires (NW) films were gated by water. 

On the example of P3HT as semiconductor, resulting TFTs show lower drain 

currents, but also lower thresholds compared to conventional films.  

5.  Water gated organic NW TFTs were more sensitive to an analyte dissolved in 

water than TFTs made from a cast thin film of the same material.  

6. Using an ionic liquid (IL) as EDL gate medium for a thin film of ZnO shows 

ambipolar behaviour at high applied voltages. Such voltages are uniquely 

accessible to ILs, due to their exceptionally large electrochemical window.  

For future work, the next step will be to introduce sensitizers into water- gated 

TFTs for the detection of waterborne analytes, for example biomedically relevant 

molecules, or specific metal cations. A typical sensitizer family for the latter would be 

calixarenes the work reported in this thesis is a platform on which such efforts can be 

built.  

Another suggestion towards future development of these devices is to deposit 

newly synthesized material similar to calixarene but including in its lower rim 

polymer with polyelectrolyte chains, which are called ‘brush’. These materials can be 

deposited over thin- film transistors (ZnO or PBTTT) from the Langmuir trough. This 

‘calix-brush’ has an ability to expand and collapse in response to different pH values, 

and many studies have recorded this behavior using ellipsometry. Hopefully, our thin- 

film transistors can record this behavior by changing threshold because the expanding 

and collapsing brush changes the surface potential of the transistor’s channel.  
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9 Appendices 

9.1 Published papers and attended conferences  

1- Delia Puzzovio, Abdullah Al Naim, Lee Hague, Mary Deasy, James Ward, 

Tim Richardson, Martin Grell, "Technology Platform for Sampling Water with Electrolyte-

Gated Organic Transistors Sensitised with Langmuir-Deposited Calixarene Surface Layers," 

Journal of Surfaces and Interfaces of Materials (2012). doi:10.1166/jsim.2012.1007  

2- Abdullah F. Al Naim and Martin Grell, "Electron transporting water-gated thin 

film transistors," Applied Physics Letters 101 (14), 141603-141604 (2012). 

3- Abdullah F. Al Naim and Martin Grell, "Organic solvents as gate media for 

thin-film transistors," Journal of Applied Physics 112 (11), 114502-114505 (2012). 

4- Abdullah F. Al Naim, Adam Hobson, Richard T. Grant, Antonis Dragoneas, 

Mark Hampton, Chris Dunscombe, Tim Richardson, J. Emyr Macdonald, and Martin Grell, 

"Water-gated organic nanowire transistors," Organic Electronics 14 (4), 1057-1063 (2013). 

5- Abdullah F. Al Naim and Martin Grell, “Progress in electrolyte- gated thin 

film transistors”, poster presented in SID held in Imperial Collage, London, UK. (Sep. 

2012) 

6- Abdullah F. Al Naim and Martin Grell, “Progress in electrolyte- gated thin 

film transistors”, poster presented in NPL held in Surrey, London, UK. (Dec. 2012) 

7- Antonis Dragoneas, Abdullah F. Al Naim, Adam Hobson, Tim Richardson, 

Martin Grell, Mark Hampton, J. Emyr Macdonald, “Polythiophene nanowires thin-film 

devices”, poster presented in MRS Fall Meeting & Exhibit held in Boston, MA, USA. (Nov. 

2012) 
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