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NOMENCLATURE 

a  Area, m
2 

c   Acoustic velocity, m/s 

D   Diameter, m 

d  Distance, m 

E  Elastic (Young’s) modulus, Pa 

E0  Reduced elastic modulus, dimensionless 

F      Nominal, measured friction during sliding, N, 

FL  Full length from the back wall echo, metres, m or time, t 

Fs  Focal spot size (diameter), m
 

f  Frequency of ultrasound, Hz 

fc,  Centre frequency, fc, 

h  Thickness, m 

K  Interfacial stiffness, GPa μ/m 

N  Near field distance, m 

Pnom   Nominal contact pressure, Pa 

pm   Mean contact pressure, Pa 

p0   Maximum contact pressure, Pa 

R  Reflection coefficient, dimensionless 

R0  Reduced radius of contact, m 

R1,2  Radius of curvature of two contacting parts, m 

Ra  Centre-line average surface roughness, m 

RL  Reference reflection length, metres, m or time, t 

r  Radius, m 



x 

 

L  Length, m 

M  Frequency dip count, dimensionless 

P     Normal force, N 

T  Temperature, K 

t   Time, s 

TL   Temperature compensated length, metres, m or time, t 

u   Deflection, m 

Vw,  volumetric wear, m
3 

v  Velocity, m/s 

v1,2    Poisson’s ratios of the two materials, dimensionless 

W   Load, N  

x  Coordinate along the length of the surface 

Z  Height of measured surface, m 

z  Acoustic impedance of medium, Kgm
2
s x 10

6 

α   Thermal expansion coefficient, dimensionless 

θ1  Incident wave angle, º 

θ2  Refracted wave angle, º 

λ   Wavelength, m
 

     Coefficient of friction, dimensionless 

  Density, kg/m
3 

    Stress, Pa 

   Angular frequency of pulse, radians 
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1 INTRODUCTION 

 

1.1 Statement of the Problem 

Studies estimate that as much as one third of all purposefully produced energy is lost 

to friction and wear. For example friction at the interface between a piston ring and 

liner in an internal combustion engine is one of the major influential factors of 

operating efficiency, [Mang et al. 2010]. The estimated potential savings that could 

be made from the correct use of tribological knowledge are substantial and have been 

estimated as an average of 1.6 % GDP. Tribology is defined as the science of 

interacting surfaces of different components in relative motion. For two components 

to be in contact they must be physically touching, and if two solids are touching, the 

contact is by definition inaccessible. How can one develop an understanding about a 

contact if it is inaccessible? One way scientists have overcome this challenge to use 

transparent materials; something that has been done with varying degrees of success 

in the laboratory, but this approach is rarely feasible in real life applications. Some of 

these interfacial relationships can be characterised using post processing techniques 

which are inherently difficult to achieve in real-time with real components in a 

dynamic situation. Mathematical models have been developed to predict these events 

with varying degrees of success, but all require assumptions to be made and some 

form of validation to be carried out.  A non-invasive measurement technique is 

required to really understand these interfaces without disturbing them. 

 

1.2 Seeing with Our Ears 

The concept seems fundamentally flawed, but by using sound, it is possible to 

visualise things in places that our sight could never access. Sound is not particular as 

to the opacity of a material enabling it to probe deep into solid matter and partially 

reflect when it experiences a change in material properties. It is these reflections that 

can be sensed and used to form a multi-dimensional image of the area in which the 

sound is being reflected from. Bats and dolphins successfully utilise this technique 

and it is termed ‘echolocation’. The medical industry use this method as a diagnostic 

imaging technique for visualising subcutaneous body structures such as muscles and 
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internal organs. The most common medical use is obstetric sonography, which is 

when sound is used to create an image of an unborn foetus in the womb [Novelline, 

1997]. This process of actively creating an inaudible sound wave and sensing the 

reflected signal is known as ultrasonic reflectometry and is widely used in 

engineering in the field of non-destructive testing. If a sound wave travelling through 

a material reaches a point of different material properties, the wave will be partially 

reflected. The most common use for this in engineering is to detect cracks and 

imperfections.  

 

This aim of this work is to utilise ultrasonic reflectometry to measure and monitor 

tribological contacts in real-time. By using permanently embedded sensors, modern 

digitising techniques and detection algorithms, it is possible to detect the most 

miniscule of changes in the reflected sound wave that can not only lead to the 

imaging of the interface between machine element components, but can give us 

quantifiable measurements of various important parameters.  

 

1.3 The Use of Ultrasonic Reflectometry in Tribology 

A substantial amount of work has been carried out investigating the use of ultrasound 

to measure lubricant films, see Dwyer-Joyce et al. [2003] and Reddyhoff et al. 

[2005]. The technique has been successfully applied to numerous engineering 

applications including journal bearings, [Dwyer-Joyce et al. 2004a], theoretical 

mixed lubrication contacts, [Dwyer-Joyce et al. 2011], rolling element bearings, 

[Dwyer-Joyce et al. 2004b; Reddyhoff et al. 2004], and combustion engine piston 

ring and liner, [Dwyer-Joyce et al. 2013]. Kendal and Tabor [1971] first used 

ultrasound to investigate dry contacts. They determined that the transmission of 

ultrasound was a function of the interfacial stiffness. This work has been continued 

and numerous static ultrasonic contact measurements have been carried out using a 

scanning system to investigate machine element interfaces, such as Marshall et al. 

[2010] investigating the contact between bolted plates, interference fits [Marshall, 

2004] and the static contact pressure and area between a railroad vehicle wheel and 

rail [Marshall et al. 2006]. These studies proved successful in the analysis of dry 

static contacts, but in order to apply these methods to industrial use, dynamic contact 
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measurements must be achieved. In achieving dynamic contact measurements, it will 

allow multiple conditions to be changed and the resultant behaviour to be monitored 

in real-time.  

 

Lubrication is used to separate dynamic sliding contacts, but if this fluid film breaks 

down, wear is often the result. Ultrasonic reflectometry has been used to measure 

thickness of components so it is proposed that it is possible to measure wear using 

the same method. Birring and Kwun [1989] conducted an investigation into the 

measurement of wear using ultrasound and discovered the substantial affect that 

temperature has on the measurement. Ahn & Kim [2001] also investigated this 

concept and established the ability to assess the severity of the worn surface. They 

also established the qualitive relationship between FFT echo-amplitude and the 

roughness of the wear face. No temperature effects were considered. 

 

The work presented in this thesis will develop the techniques needed to investigate 

dynamic contact conditions and wear rates using a mix of fundamental and applied 

studies. 

 

1.4 Outline of Thesis 

Chapter 1 of this document gives the reader the fundamental knowledge of 

engineering surfaces and their behaviour when they are brought into contact with one 

another. This information is beneficial as it supports the experimental work which is 

covered in the later chapters. Analytical models are introduced that can predict the 

behaviour of materials as they interact with one another. Other contact and wear 

measurement techniques are described and critiqued. The second chapter is a 

reference of the relevant fundamental theory of ultrasound that have been utilised in 

order to achieve the measurement techniques used in the latter chapters. The third 

chapter describes the physical equipment that enables the ultrasonic measurements to 

be taken. This includes a number of test rigs and instruments that have been 

developed by the author to achieve the required measurements. 
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The first applied study in Chapter 4 investigates the use of ultrasound to measure 

wear in-situ in real-time using a pin-on-disk test configuration. The method is 

critiqued and conclusions are drawn. In Chapter 5, a second method of measuring 

wear is hypothesised which uses the frequency content of the reflected wave to 

measure wear. Experiments are undertaken to test the method. Again the process is 

critiqued and conclusions are drawn. Industrial applications of both methods are 

discussed.  

 

A lower speed dynamic contact is investigated in Chapter 6. A metal-to-metal 

swaged seal arrangement is characterised in terms of contact pressure and area as it is 

a critical tribosystem that experiences minimal wear but very high contact pressures 

spread over a relatively substantial area. In Chapter 7, the measurement technique is 

applied to a number of rolling contacts to assess its viability to characterise a railroad 

vehicle wheel and rail in contact. Discussions are made and conclusions are drawn in 

Chapter 8. 

 

1.5 Engineering Surfaces 

All real engineering surfaces are imperfect, and even if they may appear smooth, 

they are inherently rough consisting of peaks (known as asperities), troughs (valleys) 

and waves. These features become evident when the surface is inspected on a 

microscopic scale and have great influence on contact conditions and wear 

behaviour. 

 

There are many ways to characterise the surface topography of a component but it is 

widely recognised that there is no single numerical parameter that can be used to 

describe it completely. Ra or the centre-line average value of roughness is commonly 

used and can be calculated from Equation 1-1. 
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If a mean line is drawn so that the material above is equal to that of the voids below, 

z is the height of the surface measured from the mean line. x is the coordinate along 

the length of the surface and L is the measurement length. This can be seen in Figure 

1-1 below from Williams [2005]. This method of categorising surface roughness 

does not consider the shape of the asperities which often influence a tribosystem. 

 

 

Figure 1-1. A diagram showing the method of calculating Ra, from Williams [2005]. 

 

The Ra values are critical factors determining the tribological behaviour at an 

interface. Some example Ra values from various manufacturing processes can be 

seen in Figure 1-2 from Degarmo et al. [2011]. 

 

 

Figure 1-2. Example Ra values from various manufacturing processes, from 

Degarmo et al. [2003]. 

 

  

Ra (µm) 
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Other definitions of surface roughness include Rmax; the measurement of maximum 

peak-to-valley calculated from 5 adjoining sample lengths, Rq; the root mean squared 

(RMS) roughness, Rt; the separation of the highest peak and lowest valley and Rz; the 

average of single Rt values over five adjoining sample lengths. 

 

1.6 Contact Analysis 

When two surfaces are loaded together, deformation will always occur to some 

extent as the surface features of the two materials are pressed together and the 

localised asperities begin to conform to one another. This can happen on both a 

macro scale, for example when using a centre punch there will be obvious visible 

deformation of the material. This also happens on a micro scale, for example when 

placing a pencil carefully on a table this will cause displacement on an atomic level. 

When two surfaces come into contact, it is only the asperity peaks, described in the 

previous section, that engage with one another, so the actual or real area of contact is 

far smaller than the apparent area of contact. Leonardo da Vinci documented that the 

areas in contact have no effect on friction and this was popularised by Guillaume 

Amonton in his second law; that the force of friction is independent of the apparent 

area of contact, [Williams, 2005]. The micro-deformation is due to the point loading 

of the asperities as they experience large contact stresses as seen in from Equation 

1-2. 

 

   
 

 
 1-2 

 

where σ is stress, F is force and A is area. This stress causes the asperities each to 

deform and this can be entirely elastic, which is when the material returns to its 

previous shape after loading. More commonly there is a mixture of elastic and plastic 

deformation, which is when the shape of the material is permanently altered after 

reaching its elastic limit. As deformation occurs, more asperities come into contact 

until the load is spread across enough material to prevent further distortion and 

equilibrium is reached. This results in an increase in the real area of contact. 
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Often occurring at the same time as this micro-deformation is the macro scale 

deformation which is when the apparent shape and apparent area of contact change 

due to high stresses. This behaviour is usually attributed to non-conformal contacts 

such as two spheres or two parallel cylinders see Figure 1-3.  

 

(a)                                                                           (b) 

Figure 1-3. Two spheres loaded together resulting in a circular contact (a) and two 

cylinders loaded together resulting in a line contact (b), from Williams [2005]. 

 

Heinrich Hertz described a method to calculate these contact areas in 1881, known as 

Hertz’ theory of elastic contact. The theory assumes that the size of the contact is 

small compared to the size of the curved bodies, the contact is smooth and 

frictionless and that the deformation is elastic [Bhushan et al, 2000]. The model has 

been successfully applied to relate contact area, a, to contact force, W  which is 

dependent on the reduced elastic modulus E0 and the relative or reduced radius of 

contact R0, [Timoshenko & Goodier, 1951]. Equation 1-3 can be used to calculate the 

contact area for two loaded spheres. 

 

   (
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The reduced elastic modulus can be found from Equation 1-4. 

 

 
 

  
 
 

 
(
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where E1 and E2 are the elastic (Young’s) modulus of material 1 and 2 respectively 

and v1 and v2 are Poisson’s ratio of material 1 and 2 respectively. The relative or 

reduced radius of curvature can be found from Equation 1-5. 
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where R1 and R2 are the radius of curvature of material 1 and 2 respectively. For a 

flat surface, the radius should be set to infinity. Equation 1-6 can be used to calculate 

Hertzian stress in a circular point contact; for example, the contact between a ball-

on-flat where pm is the mean contact pressure and p0 is the maximum contact 

pressure, w is the normal load, a is the contact area. 

 

 
2

0

3

2

a

Wp
pm


  1-6 

 

Comparisons can be drawn between a ball-on-flat contact and the contact between 

the microscopic asperities, so much of the contact theory holds true for both macro 

and micro contacting conditions.  

 

For more complex shapes, second degree polynomials must be employed to represent 

bodies in the vicinity of the contact, [Rovira et al. 2012]. Numerical Hertzian 

modelling is a useful method and if the assumptions are reasonable for the particular 

application, a suitable analytical solution can often be found. In reality, the 

assumptions can be substantial and often lead to extensive inaccuracies in the results. 

One limiting factor is that the model assumes purely elastic deformation. Several 
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models have been developed that consider elasto-plastic deformation, for example 

Change et al. [1987] and Polycarpou & Etsion [1999]. These and some other models 

are described by Jackson & Green [2005]. Finite element analysis software is a 

powerful tool to carry out complex contact models, but great care must be taken to 

control the input parameters. A common term used to describe this dependency is 

‘rubbish in, rubbish out’.  

 

There are a number of assumptions with the aforementioned contact models that 

have to be made to simplify the calculations. Some examples include assuming that 

the contacting bodies are frictionless and that the contacts are continuous and are not 

made up of sharp edges. These assumptions are quite bold and are often a significant 

cause of inaccuracy. Due to these potential errors, models therefore require 

validation of some form and this is often achieved through experimentation. 

 

Contact modelling is of fundamental importance across a wide range of industries as 

it can help engineers optimise design to reduce stresses and component damage, 

minimise maintenance, maximise grip, ensure safe operation and increase 

understanding of component interaction. 

      

1.6.1 Contact Measurement Techniques  

Numerous methods exist to measure the contact conditions of interacting surfaces. 

These can vary from the simplest solution to the most complex network of automated 

sensing devices. Take for example ‘engineer’s blue’, a non-drying blue coloured oil 

based substance that is commonly used throughout the engineering world. When one 

is told to ‘blue it up’, the surface of one object is painted blue and contact is made 

with the mating element. The paint is transferred at the points of contact and these 

are then clearly visible when the materials are separated, [Chapman, 1964]. This 

provides accurate contact position information, but no information regarding the 

contact pressure distribution. This is only a more advanced version of the first 

recorded contact measurements being taken by applying a moist chalk to one surface, 

[Johnson & Marston, 1894].  
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Many argue that by introducing a third body you are inherently changing the 

tribological conditions and potentially changing the resultant contact shape. An 

example would be that the engineers blue could lower the friction coefficient of the 

interface and the component could slip resulting in a different contact position. A 

slightly more advanced method is to use pressure sensitive film. This is a thin 

laminate film that can be placed between contacting surfaces that when compressed, 

the film changes colour relative to the magnitude of the pressure applied. As before, 

the introduction of a third body inherently changes the contact conditions but in this 

case, adding a relatively thick film can lead to a larger contact area being measured 

than the actual size. These methods are only effective in static conditions thus 

limiting the application, [Pau et al. 2001]. Dynamic measurements on a rolling 

contact have been obtained using a modified rail section with a grid of small holes 

passing low pressure air through the surface of the railhead. As the wheel moves over 

the rail, some of the holes will stop the flow of air and by monitoring this, it is 

possible to derive low resolution contact area evolution data, [Poole, 1987]. Some 

information can be extracted by measuring the capacitance across the interface as 

this is proportional to the contact conditions, [Chiang et al. 2011]. However, the 

requirement for electrical isolation means that this method is usually confined to the 

laboratory.  

 

Strain gauges and load cells are commonly used to measure loads and displacements 

and this can greatly increase the understanding of a tribosystem. Mukesh et al, 

[2013] have developed a technique using strain gauges that involves measuring the 

movement of the inner surface of a piston ring that can infer the lubricant film 

thickness of the piston/liner contact. They cannot, however, give direct information 

regarding contact shape or wear characteristics, although they are very useful to 

measure frictional forces. Photoelastic stress measurements such as those carried out 

in the 1950’s by Hetenyi & McDonald [1958] can be a powerful tool in the 

measurement of resultant stress distributions from contacts but are largely defined to 

laboratory conditions. 
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1.7 Friction and Wear 

Amontons law states that the friction force F between a pair of loaded sliding 

surfaces is proportional to the normal load P that they carry: in other words, the 

tangential force F required to slide a metal block along a surface is proportional to 

the weight of the block, [Williams, 2005]. For a pair of materials, the relationship is 

termed the coefficient of friction, μ. 

 

 PF   1-7 

 

Wear is the progressive damage involving material loss which occurs on the surface 

of a component as a result of its motion relative to the adjacent working parts as 

defined by Williams, [2005]. Wear is synonymous with dry dynamic contact 

conditions and it is notorious for being very difficult to predict due to the large 

number of influential parameters. There are numerous different types of wear that are 

classified by the different mechanisms in which materials are removed. These have 

been defined clearly in numerous texts such as Hutchings et al., [1992] and Williams 

[2005]. Bhushan et al. [2011] states that these numerous different mechanisms can 

be grouped into four first order classifications; adhesive wear, abrasive wear, wear 

caused by surface fatigue, and wear due to tribochemical reactions when different 

oxide layers are developed during sliding. 

 

These different mechanisms often occur concurrently and are often quantified in 

terms of wear rate, which is the material lost in terms of sliding distance or time. 

Moving components brought into contact with one another for the first time 

experience an initial running in period when the two surfaces conform to one another 

on a microscopic level. During this initial breaking-in period, the components 

usually experience high levels of wear. As the surfaces become smoother, the wear 

rate decreases and often settles to somewhat of a steady state. This state is 

maintained until either an external parameter is introduced to the tribosystem or until 

fatigue processes in the materials lead to a rapid increase in material loss often 

leading to catastrophic wear and seizure. Figure 1-4 shows the typical wear 

behaviour over the life of a component, [Williams, 2005]. 
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Figure 1-4. The trend of wear rate over the life of a component, from Williams 

[2005]. 

 

As a component experiences wear, energy is released in the form of heat known as 

surface conjunction temperatures and flash temperatures that for a steel on steel 

contact can be approximately 200-250 ºC. This can affect the behaviour of the 

tribosystem by localised melting and alteration of the molecular structure, see 

Stackiowack & Batchelor [2005]. 

 

1.7.1 Wear Measurement Techniques  

The traditional method to understand wear behaviours is to conduct laboratory based 

experiments with similar materials and representative contact conditions. Analysis of 

wear then takes place post experiment. The traditional method of quantifying wear is 

the mass-loss measurement, the procedure of measuring the mass before and after the 

test and reporting the overall mass removed. This method has been successfully used 

for many applications, although not always feasible when material transfer takes 

place or when testing porous materials in lubricated environments. The 

understanding of wear behaviour is paramount to material selection and machine 

element design. 
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Another post-test measurement method is surface profilometry. This is the procedure 

of ‘measuring the surface of a material’, usually using optical or stylus based 

method. These tools are very useful to characterise surface detail and deep grooves, 

but cannot measure wear of some geometries such as a pin, as the entire contacting 

face will wear down with no datum point for reference. In some cases, i.e. wear on a 

ball; it is possible to estimate wear from geometrical wear scars. The drawback is 

that none of these methods actually give a value for wear rate, only absolute wear 

post-test. It is possible to intermittently halt the test, remove specimen and take 

measurements, but this can interfere with the experiment.  

 

Eddy current, linear potentiometers and laser displacement sensors are all devices 

that are used to measure position and displacement. By mounting a sensor on a fixed 

position measuring the displacement of the moving wearing component, it is possible 

measure a change in component thickness and thus infer a measurement of wear. 

Some tribometers have this feature fitted as standard or as an optional extra, for 

example the Plint TE99 Universal Wear Testing machine has the option of having a 

transducer to measure the vertical movement of the pin relative to the fixed datum 

during the test. In the product literature, this is described as ‘giving an indication of 

wear’, but factors such as to thermal expansion, wear debris and the transfer of 

material can also lead to displacement. These displacement systems measure the net 

wear of both components.  

 

1.8 Aims 

The aim of this work was to investigate the application of ultrasonic reflectometry to 

analyse dry dynamic tribological contacts in real-time, in-situ, by monitoring the 

reflected sound waves from the surface of interest. It has been established that the 

contact pressure at an interface is a critical parameter to understand because often if 

this is kept within the design tolerances, failure should not occur. The work aims to 

show how it is possible to measure this important parameter in real-time on actual 

engineering components. If the contact pressure is too large, the lubrication fails or a 

sacrificial component is used, the result will be wear. This work also aimed to 

describe two new methods of measuring wear again in real-time on real machine 
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element components. By describing the important aspects of both the hardware that 

creates the sound wave and the theory that transforms a reflected pressure wave into 

a mechanical unit, the reader will have a complete understanding of the new 

measurement methods introduced with enough information to replicate the work in 

any measurement or monitoring application. To achieve this, the following 

objectives have been defined: 

 

 To provide a clear definition of the problem 

 To explain why measurement and monitoring is important and the limitations 

of current techniques 

 To describe the fundamentals of ultrasonic wave theory 

 To introduce the theory behind the proposed technique of ultrasonic wear 

measurement 

 To explain the ultrasonic contact pressure measurement technique 

 To provide a review of appropriate hardware solutions for ultrasonic 

measurements 

 To introduce the new hardware devices that have been developed for this 

work 

 To describe the important aspects learned about the use of permanently 

embedded ultrasonic monitoring 

 To carry out wear tests to prove the hypothesised ultrasonic wear 

measurement concepts 

 To carry out contact pressure measurements on a sliding contact condition 

 To carry out contact pressure measurements on a rolling contact condition 

 Conclude on the findings 
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1.9 Objectives 

By describing the important aspects of both the hardware that creates the sound wave 

and the theory that transforms a reflected pressure wave into a mechanical unit, the 

reader will have a full understanding of the new measurement methods introduced. 

This leads onto the authors’ main objective; to provide a reference text for anyone 

wishing to carry out dry dynamic tribological contact measurements using ultrasonic 

reflectometry in terms of the contact distribution and wear. This includes all 

necessary information regarding the appropriate hardware selection options, pitfalls 

and tips for permanent sensor installation, signal processing techniques, the things to 

consider when measuring of a long period of time and various calibration procedures 

that have been developed whilst conducting this research. The new methods 

introduced in this text will provide the foundations that will lead to new discoveries 

in the field and other applications that fall beyond the scope of this work.  
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2 ULTRASONIC THEORY 

 

Ultrasound is the name given to sound waves of a frequency higher than those 

audible by the human ear. This varies from person to person but 20 kHz is 

understood to be the lower end of the ultrasonic scale, [Kräutkramer & Kräutkramer, 

1969]. Sound waves in this range are created naturally in mechanical equipment and 

by monitoring these acoustic emissions with passive sensors, information about the 

running conditions of the system can be extracted. This work is not concerned with 

naturally occurring sound in the ultrasonic range, rather the case when an ultrasonic 

wave is purposefully introduced and the behaviour of this wave monitored. The 

sound wave penetrates through a material and when it reaches a change in material 

properties, part of the sound wave is reflected.  

 

The reflection/transmission signature can be analysed revealing sub-surface details. 

This is called ultrasonic reflectometry and is the basic principle facilitating the work 

in this document. The most well-known application of ultrasonic reflectometry is its 

use in medical sonography to produce pictures of foetuses in the womb, [Novelline, 

1997].  The non-destructive nature of ultrasonic testing allows it to be used in-situ 

and because it does not permanently alter the article being inspected, it is a highly-

valuable non-destructive technique that can save both money and time in product 

evaluation, troubleshooting, and research, [Cartz, 1995]. 

 

2.1 Wave Propagation 

Sound is a travelling wave which is an oscillation of pressure propagating through a 

host medium. The host medium is made up of particles held together by elastic 

forces. Assuming the body is not stressed beyond its elastic limit, these forces can be 

analogised as springs and the particles as individual masses. As one particle is 

displaced (oscillated), this force is transmitted onto the adjacent particle and so on, 

[Kräutkramer & Kräutkramer, 1969]. Due to the elasticity of the bonds, a delay is 

introduced resulting in a phase lag, thus creating zones of both expansion and 

compression which propagate through the medium.  

 



17 

 

Details of new and exciting modes of wave motion are constantly being reported. All 

kinds of wave particle velocity motion (e.g. a guided wave made up of a Lamb wave 

and a surface wave) are just superpositions of the traditional longitudinal or 

compression waves and transverse or shear waves, [Rose, 2004].  

 

2.1.1 Longitudinal Waves 

In longitudinal waves, the particles oscillate in the same plane as the direction of 

wave propagation. This can be seen in Figure 2-1 adapted from Kräutkramer & 

Kräutkramer [1969]. 

 

 

Figure 2-1. Instantaneous picture of a longitudinal wave, from Kräutkramer & 

Kräutkramer [1969]. 

 

This represents an instantaneous picture of a section of a body through which a 

longitudinal wave is propagating. Parts of the body can be seen to be in compression 

whilst adjacent parts are in tension and the distance between cycles is the 

wavelength, λ. The waves will travel at a constant velocity with uniform intervals 

towards the right. This represents a longitudinal elastic wave. These are also known 

as pressure or compression waves.  

 

2.1.2 Transverse or Shear Waves 

Transverse waves, also known as shear waves are the second type of elastic body 

waves that support sound wave propagation through solid media. The motion of the 

particles is perpendicular to the direction of wave propagation, a diagram of which 
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can be seen in Figure 2-2 from Kräutkramer & Kräutkramer [1969]. Shear waves can 

be created directly using an ultrasonic shear transducer, but are also created from 

angle beam transducers and refraction due to dissimilar materials as discussed further 

in Section 2.1.8.  

 

 

Figure 2-2. An instantanious picture of a transverse or shear wave, from 

Kräutkramer& Kräutkramer [1969]. 

 

2.1.3 Wave Velocity or ‘The Speed of Sound’ 

If one is asked to quote the speed of sound, many will respond with an approximate 

answer of around 340 m/s. This is actually a trick question as the speed at which a 

disturbance propagates is entirely dependent on the host medium, and the answer 

most people will quote will be the speed of sound in air. The rate at which the waves 

propagate through a medium is determined by the elastic forces between particles. 

The wave therefore will travel different speeds through different materials and this is 

also dependant on the wave type. Bulk longitudinal wave velocity, c, is generally 

thought of as being proportional to the square root of the elastic modulus, E, over 

density, ρ, shown in Equation 2-1.  

 

 


E
c   2-1 
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Likewise bulk shear wave velocity is proportional to the square root of the shear 

modulus G over velocity, [Rose, 2004]. The speed of sound in an ideal gas can be 

found using the adiabatic index, the molar gas constant and the temperature. 

The sound velocities for standard materials are readily available in reference tables, 

but c can also be obtained by a simple time-of-flight measurement discussed in 

Section 2.2.1. This is the process of measuring the time taken for a sonic pressure 

wave to propagate through a known distance.  

 

The wave velocity, c, is also related to frequency, f¸ and acoustic wavelength,, by 

the following relationship: 

 fc   2-2 

 

If the speed that sound travels through a material is known, it is possible to calculate 

the thickness of said material from the speed, distance and time relationship using an 

ultrasonic pulse. This is known as a time-of-flight measurement and is the basis of 

many of the numerous ultrasonic thickness gauges available on the market today. 

This is discussed in detail in Section 2.2.1. 

 

2.1.4 Acoustic Impedance 

The acoustic impedance is a measure of the acoustic pressure generated by the 

oscillatory movement of the particles within the host medium. The acoustic 

impedance, z, is defined as the multiple of density, ρ, and sound velocity, c, as seen 

in Equation 2-3. 

 

 cz   2-3 

 

The units of acoustic impedance are pressure per velocity per area: commonly 

referred to as rayls per square metre.  
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The reflection coefficient, R, is the term given to the proportion of the wave reflected 

at an interface. For an atomically perfect interface between two dissimilar materials, 

R is defined as: 
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where z1 and z2 are the acoustic impedances of the upper and lower materials 

respectively.  This relationship describes the maximum possible proportion of sound 

that can be transferred between two materials at an interface. David & Cheeke [2002] 

have created a list of acoustic impedance values for common engineering solids and 

fluids can be seen in Table 2-1 and Table 2-2. 

Medium Longitudinal 

Velocity 

(km/s) 

Shear 

Velocity 

(km/s) 

Density 

(g/m
3
) 

Acoustic 

Impedance 

(MR/m
2
) 

Acrylic, Plexiglas MI-7 2.61  1.18 3.08 

Aluminium 6.42 3.04 2.7 17.33 

Bacon P68 4 2.17 1.9 8.25 

Bearing babbit 2.3 N/A  10.1 23.2 

Brass - yellow 4.7 2.1 8.64 40.6 

Concrete 3.1 N/A  2.6 8 

Copper, rolled 5.01 2.27 8.93 44.6 

Epoxy glue, EPX1 2.44 N/A 1.1 2.68 

Glass - Pyrex 5.64 3.28 2.24 13.1 

Gold - hard drawn 3.24 1.2 19.7 63.8 

Inconel 5.7 3 8.28 47.2 

Iron 5.9 3.2 7.69 46.4 

Iron - cast 4.6 2.6 7.22 33.2 

Lead 2.2 0.7 11.2 24.6 

Molybdenum 6.3 3.4 10 63.1 

Neoprene 1.6 1.31 2.1 N/A 

Nylon, 6/6 2.6 1.1 1.12 2.9 

PVDF 2.3 N/A  1.79 4.2 

Silicon carbide 13.06 7.27 3.217 42 

Steel - mild 5.9 3.2 7.8 46 

Tin 3.3 1.7 7.3 24.2 

Titanium 6.1 3.1 4.48 27.3 

Table 2-1. A table showing the relevant acoustic and material properties of some 

commonly used engineering materials, from David & Cheeke [2002]. 
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Medium Longitudinal 

Velocity 

(km/s) 

Density 

(g/m
3
) 

Acoustic 

Impedance 

(MR/m
2
) 

Air - dry at 0°C 0.33145 1.293 0.0004286 

Alcohol, isopropyl, 2-

Propanol, at 20°C 

1.17 0.786 0.92 

Diesel 1.25 0.832 N/A 

Gasoline/Petrol 1.25 0.803 1 

Honey, Sue Bee Orange 2.03 1.42 2.89 

Oil - SAE 30 1.7 0.88 1.5 

Sonotrack couplant 1.62 1.04 1.68 

Water - liquid at 25°C 1.4967 0.998 1.494 

Water - sea, at 25°C 1.531 1.025 1.569 

Table 2-2. A table showing the relevant acoustic and material properties of some 

commonly used engineering fluids, from David & Cheeke [2002]. 

 

From Equation 2-4, when a sound wave travels from a solid, such as steel, to a gas 

(air), 99.998 % of the energy of the sound wave will be reflected at the interface. It is 

this premise that is the foundation of ultrasonic crack detection. 

 

2.1.5 Attenuation in Solids 

Ultrasonic attenuation is the term given to the reduction in magnitude of a sound 

wave as it travels through the host medium. Many of the methods used in this body 

of work rely on the measurement of sound wave magnitude to obtain results. It is for 

this reason that attenuation has to be considered in detail as its effects will influence 

the results. This is especially true when a single measurement of sound wave 

magnitude is used as a comparative reference over a longer period of time. 
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In an ideal material, the sound pressure reflected at an interface would only reduce in 

magnitude due to the spreading of the sound wave explained by Huygens’s principle, 

see Section 2.1.7. Real polycrystalline solids are made up of many crystals of 

varying size and orientation. This introduces discontinuity of elastic moduli at grain 

boundaries thus resulting in reflections at these boundaries due to a variance in 

acoustic impedance. The magnitude of this affect is dependent on the grain size, the 

wavelength, and the degree of anisotropy, [Blitz, 1963].  This effect, along with 

reflections caused by micro-cracks in the material, is generally referred to as 

scattering.  

 

The wave magnitude is reduced due to the conversion of sound energy to heat; this 

process is known as absorption. Absorption occurs from intermolecular action, 

molecular rearrangement, thermal conduction and viscosity. In most cases, energy in 

molecules is made up of translational, rotational and vibrational energy. As a sound 

wave passes through a material, the molecules transfer this energy via translational 

energy. As a result of molecular collisions, part of this energy is converted into 

internal energy, rotational and possibly vibrational energy, before equilibrium 

between the three states is gradually restored, [Vigoureux, 1950b]. This 

intermolecular action is the primary reason for absorption in solids.  

 

From Equation 2-2, it can be concluded that the higher the frequency, the shorter the 

wavelength. Attenuation increases approximately as the square of frequency. It is for 

this reason that that high frequency signals cannot be transmitted long distances 

through highly attenuative materials, [Vigoureux, 1950]. This is one of the main 

factors that prohibit the use of ultrasound as a measurement tool in some applications 

such as rubber components. Figure 2-3 is a time domain waveform plot known as an 

A-Scan, showing the magnitude of consecutive ultrasonic reflections decreasing with 

time from the first reflection. The initial excitation wave has been removed from the 

graph. 
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Figure 2-3. A diagram showing the magnitude of consecutive ultrasonic reflections 

decreasing over time. 

 

2.1.6 Near-Field Affect 

The sound wave generated by the transducer does not emanate from a single discrete 

point, but rather the entire active face of the element as described in Huygens 

principle, see Section 2.1.7. The wave interference or diffraction effect results in 

fluctuations in signal amplitudes as they go through a series of peaks and troughs 

near the face of the element culminating in a final peak in amplitude as shown in 

Figure 2-4, from NDT Resource Centre [2012]. These fluctuations are caused by 

constructive and destructive interference of the multiple waves which originate from 

the transducer face.  
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Figure 2-4. A diagram showing the cross sectional profile of a transducer beam 

showing the near field effect, from NDT Resource Centre [2012]. 

 

This area is known as the near field range and measurements in this range can be 

problematic and considerations must be made when designing the measurement 

configuration. As the sound wave propagates further through the host medium, the 

wave becomes more stable and uniform. The near field distance, N, is a function of 

element size; diameter D, frequency, f, and the sound velocity of the host medium, c, 

and can be calculated from Equation 2-5 from NDT Resource Centre [2012]. 

 

   
   

  
 2-5 

 

For a common ultrasonic sensor arrangement using a 10 MHz transducer with a 7 

mm diameter element, the near field length in steel is 20 mm. 
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2.1.7 Huygens Principle and the Measurement Window 

For a theoretical point source of acoustic energy, radiation is emitted equally in all 

directions with a spherical wave front, [Blitz, 1963]. Figure 2-5 shows an energy 

source of finite length to represent an ultrasonic transducer. The front face has been 

divided into 8 nodes on which spherical wave fronts have been drawn at three stages 

of propagation with respect to time.  

 

 

Figure 2-5. The 2D ultrasonic wave propagation in a solid body modelled as a linear 

array of points located on the face of the source. 

 

If the number of nodes increases, the resultant wave front tends towards a flat line 

that is equal to the length of the emitting body. As this flat propagating wave front 

meets a parallel interface, it will be reflected perpendicularly directly back to the 

sensor. Either side of the emitting body, the wave front is curved, the radius of 

curvature increasing with time-of-flight. Arrows have been drawn to show the 

direction of sound wave propagation. It can be seen that either side of the emitting 

body, the energy is reflected elsewhere and will therefore not be detected by the 

sensor.  
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In reality, as the wave energy strikes the interface outside of the ‘measurement area’, 

a new series of spherical waveforms are generated scattering energy in all directions, 

shown in the diagram Figure 2-6. It can be seen that some of this energy will 

theoretically be reflected back to the sensor. The diagram also shows how the 

sideways travelling wave energy can meet other incident interfaces that can result in 

erroneous echoes which will appear as a second echo in the time domain plot. 

 

 Robin Mills from The University of Sheffield devised a method of measuring the 

energy profile of a sound wave at an interface. This was achieved by exciting a 

transducer, causing a sound wave to travel through a section of material and using a 

traversing secondary receiving sensor attached to a finite point, measuring the 

magnitude of the wave at discrete points across the interface. The measured profile 

of a 6.2 mm 10 MHz transducer pulsing through a 5 mm block of EN24 steel can be 

seen in Figure 2-6. It shows that there is very little in the way of beam spread in this 

particular arrangement. From Equation 2.1.6, we can see that the measurement is in 

the near-field region. The amount of beam spread will be a function of frequency, the 

lower the frequency, the greater the spread. 

 

 

 

Figure 2-6. A diagram showing the new spherical wave fronts being generated at an 

interface. 

  

Distance (mm) 

D
is

ta
n
c
e
 (

m
m

) 



27 

 

The assumption can therefore be made that as long as the two surfaces are parallel, 

the area that is sensed by the transducer or the ‘measurement window’ is the same 

size as the active element. This also shows that the magnitude of the energy is not 

linear across the face of the element and is larger in the centre. If the measurement 

window contains partial contact, the result is often an increase in the reflected 

amplitude, resulting in a reflection coefficient greater than one. Previous work has 

not been able to explain this phenomenon so the results when this happens have thus 

far been ignored.  

 

2.1.8 Snell’s Law 

Ultrasonic wave paths follow many of the same laws of reflection and refraction seen 

with light. When an oblique wave reaches an interface of dissimilar materials, the 

wave is partially reflected and partially transferred. The speed of the wave will 

change as it reaches the new material. This differing acoustic velocity causes the 

beam to ‘bend’. A schematic diagram can be seen in Figure 2-7 showing a bending 

beam. If Huygens theory is applied to this concept, the concept is easier to explain. 

This has been achieved by annotating the wavelength of the path and the spherical 

wavelets. It can be seen that as the wavelength’s change between the dissimilar 

materials, the resultant wave-front will change direction. 
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Figure 2-7. A schematic diagram showing a bending beam due to Snell’s laws of 

refraction. 

 

Snell’s Law states that the ratio of sound velocities of material 1 and 2 (c1 and c2) is 

equal to the ratio of the sine’s of the incident wave (θ1) and the refracted wave (θ2) as 

shown in Equation 2-6.  

 

 
  
   
 
     
     

 2-6 

 

 

This relationship is particularly important when using immersion transducers as 

discussed in Section 3.3.5 as it affects the focal length of the beam. 

 

A further point to note is that when a wave hits an interface at an angle, the energy in 

the wave can cause the particles to move in the transverse plane resulting in a shear 

wave being generated. This is known as mode conversion. More information can be 

found in Rose [2004] but it is important to note as it can be the reason for unexpected 

reflections in the measured signal.  

θ1 θ1 

θ2 

λ 

λ 

c1 

c2 

Material 1 

Material 2 
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2.1.9 Acoustoelastic Effect 

The acoustoelastic effect is the term given to the effect that stress has on a sound 

wave travelling through solid media. The velocity in which a sound wave travels is 

governed by the elasticity of the material and the elasticity is altered by stress. If the 

material is in tension, the sound propagation is slower and if the material is in 

compression, the wave propagates faster, see Toupin & Bernstein [1961] and 

Tverdokhlebov [1983]. 

 

2.2 Ultrasonic Thickness Measurement 

The ultrasonic time-of-flight measurement is commonly used in ultrasonic thickness 

gauging. Other methods also exist for measuring thin layers that will also be 

discussed. 

 

2.2.1 Time-of-Flight Measurement 

If both the speed, c, that sound travels through a host medium and the time, t,  that 

the journey takes is known, it stands to reason that the distance, d, can be established 

from the relationship between speed, distance and time, shown in Equation 2-7. The 

distance, d, that the sound wave travels is twice the thickness of the material as it has 

to travel there and back. This is the premise behind ultrasonic thickness gauging. 
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Equation 2-7 implies that material sound velocity is a constant material parameter 

that can be either looked up from material tables or measured directly. A list of the 

speeds that sound travels through common materials can be found in Table 2-1. 
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There are numerous ways to extract time information from an A-Scan. The analogue 

sing-around and pulse-overlap methods have been traditionally used with varying 

degrees of success; more information can be found in Mason & Thurston [1976]. 

With digitised waveforms, a number of options are available to calculate the time-of-

flight. The zero-crossing time-of-flight cross correlation measurement is evaluated as 

the distance between the zero crossing points of two successive echoes. A few data 

points either side of the zero crossing point are fitted by a linear function, then the 

zero crossing point is calculated as the intersection of the linear function and the 

horizontal zero line as shown in Figure 2-8, from Thompson & Chimenti [1995]. 

This increases measurement accuracy as it is not as dependant on the digitising clock 

speed as discussed in Section 3.2.1. 

 

Figure 2-8. A diagram showing the zero-crossing method, from Thompson & 

Chimenti [1995]. 

 

With this method, it is important to capture at least two consecutive reflections and 

use the distance between the two reflections to calculate the time-of-flight. It is 

important to use the same zero crossing point in each reflection. It is not suitable to 

use the excitation pulse or ‘initial bang’ because the waveform is not of similar 

shape. In many ultrasonic applications, the same transducer that generates the sound-

wave also receives the signal after it is reflected from an interface, this is known as 

pulse-echo mode. If this is the case, it is vital to remember that the time-of-flight 

refers to the path of material in which the ultrasound travels which is twice the 

thickness of the material so the sound has to travel there and back. Figure 2-9 shows 

two consecutive echoes from a 10 mm thick block of steel corresponding to 3.4 µs. 
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This would be the expected time-domain response from the instrumented block seen 

in Figure 2-5 

  

 

Figure 2-9. The time-domain plot showing two echoes from a 10 mm thick block of 

steel. 

To increase robustness of the measurement, multiple zero-crossings measurements 

can be extracted from each reflection and the different measurements compared in as 

they all should give the result. There are arguments against using this method as in 

some applications; there can be substantial system noise at the zero crossing that can 

affect the results. 

 

The zero-crossing method is only applicable for non-dispersive media. Another 

method uses a Hilbert transform and an appropriate parabolic interpolation on the 

echo, then taking the peak value for the time-of-flight datum Kažys [1996]. This is 

commonly used with air-coupled transducers as the method effectively eliminates the 

noise in the received signal reportedly accurate to within 1 mm at a distance of 1 m, 

[Namas & Dogruel, 2008]. Other cross correlation methods exist including cubic 

spline, [Svilainis & Dumbrava, 2008] and parabolic interpolation, [Queiros et al, 

2006]. 

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Dogruel,%20M..QT.&newsearch=partialPref
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2.2.2 Resonant Dip Technique 

When measuring thin materials, the two pulse echoes can become so close to one 

another that they begin to overlap. If this occurs, it can be difficult to differentiate 

each reflection in the time domain and thus it becomes impossible to perform a zero 

crossing measurement.  

 

To demonstrate this, a 5 MHz commercial ultrasonic transducer was used to pulse a 

sound wave through a series of steel test blocks of different thicknesses. Figure 2-10 

(a), (b), (c), and (d) are time domain A-Scans showing two subsequent reflections for 

steel blocks of thickness 10 mm, 5 mm, 1.5 mm and 0.9 mm respectively. Plots (b), 

(d), (f) and (h) are frequency domain plots obtained by taking a Fast Fourier 

transform (FFT) of the adjacent A-Scan time-domain windows. 
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                             (a) 10 mm                                                     (b) 

 
                              (c) 5 mm                                                          (d) 

 
                             (e) 1.5 mm                                                        (f) 

 
                             (g) 0.9 mm                                                        (h) 

Figure 2-10. (a), (c), (e), and (g) are time domain A-Scans showing two subsequent 

reflections for steel blocks of thickness 10 mm, 5 mm, 1.5 mm and 0.9 mm 

respectively. (b), (d), (f) and (h) and frequency domain plots of the adjacent A-Scans. 

Dips 

Dips 
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With the 1.5 mm and 0.9 mm material, it can be seen that the waveforms overlap and 

it becomes difficult to take a zero crossing on each echo. If both echoes are viewed 

in the frequency domain, it can be seen that destructive interference occurs in the 

form of ‘resonant dips’, labelled in Figure 2-10 (b), (d), (f) and (h). These are 

destructive interferences that occur due to their being an odd integral number of half 

wavelengths between the two pulses, while constructive interference occurs at an 

integral number of wavelengths, [Silk, 1984]. This distance is a function of material 

thickness, h, and the dips occur when the thickness is a multiple of the wavelength, λ. 

It can be seen that the thicker the material, the smaller the gap between the dips. The 

relationship between material thickness, h, and frequency, f, is shown in Equation 

2-8; 
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where c is the acoustic velocity and m is the dip count starting from 1. Difficulties 

can arise when obtaining the dip count but it is possible to take the differential of two 

dips and the formula then becomes; 
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This method has been used to measure lubricant films in a number of publications, 

see Dwyer Joyce [2005] and Zhang e al. [2005]. The author has applied this method 

to the thickness measurement of solid structures. 
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2.3 Using Ultrasound to Measure Contact Pressure 

2.3.1 The Spring Model 

Engineering surfaces have an inherent surface roughness irrespective of how smooth 

they may appear as discussed in Section 1.5. As two solid surfaces are pressed 

together, the asperity peaks come into contact with one another and many 

microscopic air gaps are formed. The actual area of contact is very small relative to 

the apparent area. Assuming the asperities undergo elastic deformation, the interface 

can be analogised as a series of springs with stiffness, K per unit area, where an 

increase in nominal contact pressure, Pnom, results in a unit increase in deflection, u, 

of the two materials, described by Equation 2-10. 
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Figure 2-11 (a) shows the real engineering surface interface and (b) is the system 

analogised as a series of springs. The surface topography of the left image is that of 

ground EN24 steel Ra =0.47 μm with the scale shown on the diagram for 

visualisation purposes. 

 

 

Figure 2-11. (a) is a diagram showing to scale the surface asperities coming into 

contact and (b) how the interface behaves as a series of springs of stiffness K. 
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As discussed in Section 2.1.4, an ultrasonic wave travels well through dense 

material, but does not propagate through  materials of sparse particle density, such as 

air. and is therefore reflected back due to its low acoustic impedance, [Tattersall, 

1973]. Figure 2-11 (a) shows two real engineering surfaces lightly loaded together. 

When an ultrasonic wave strikes this interface, almost 100 % of the wave will be 

reflected. As the nominal load Pnom is increased, the number of asperities in contact 

increases and for identical materials, 100 % of the wave will be transmitted at these 

contact points. For dissimilar materials, the proportion of wave that is transmitted is 

governed by Equation 2-4. As the load is increased, the interfacial stiffness increases 

resulting in an increase in ultrasonic transmission and a reduction in the measured 

reflection coefficient. There is still 100 % of the wave being reflected where there 

are air gaps, only they now make up a smaller proportion of the measured window. 

Kendall & Tabor [1971] discovered that if the length of the ultrasonic wave is long 

in comparison with the air gaps, the whole interface behaves as a single reflector 

therefore the ultrasonic reflection is dependent upon the spring behaviour of the 

interface. The reflection coefficient R can be defined in terms the interfacial stiffness, 

K (GPa μ/m) from the relationship; 
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where  is the angular frequency of the wave ( f 2 ) and z the acoustic 

impedance of materials 1 and 2 for the upper and lower materials respectively. 

Equation 2-11 is known as the quasi-static spring model of reflection [Marshall et al. 

2004]. If similar materials are used, this equation reduces to: 
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In practice, the reflection coefficient, R, is obtained from ultrasonic measurements 

and from this, the interfacial stiffness can be calculated. 
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2.3.2 Air Referencing to Obtain Reflection Coefficient 

In order to calculate the proportion of the magnitude wave reflected from an 

interface (the reflection coefficient, R), a reference measurement of (assumed) 100 % 

reflection from a solid-air interface must be taken prior to contact. The phase of the 

wave is not considered when using this technique. When contact occurs, some of the 

wave will be transmitted and the magnitude of the reflected wave will decrease. A 

division of the measured reflected wave by the reference reflection results in a value 

of R, accounting for any mismatch in acoustic impedance of the materials. This 

division can take place in the time or frequency domain. Numerous external factors 

can influence the referencing process as discussed in Section 3.9. 

 

2.3.3 Frequency Independence of Measurement 

The interfacial stiffness values, K, are independent to frequency, f. By plotting K 

against f, the result should be a flat line through the usable frequency range as 

Equation 2-1 contains a frequency term. This is often used as a checking procedure 

to ensure the process has been completed. This can be seen in Figure 2-12, from 

Dwyer-Joyce [2005]. 

 

 

Figure 2-12. (a) a plot of frequency against reflection coefficient, R, showing how R 

is frequency dependant and (b), a plot of intrerfacial stiffness, K, against frequency 

showing how K is frequency independent, from Dwyer-Joyce [2005]. 
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2.3.4 The Relationship between Interfacial Stiffness and Contact Pressure 

The work of Kendal & Tabor [1971] clearly determined that the reflection 

coefficient, R, is not dependant on the real area of contact, A, but rather the 

interfacial stiffness of an interface which is determined by both the diameter of the 

asperities in contact and the asperity distribution. It is therefore impossible to 

determine an analytical relationship between R and A without an in-depth knowledge 

of the surface topographies of the contact. 

 

Interfacial stiffness measurements are, however, a good indication of areas of 

conformity and can be used to infer contact pressure distribution. This alone can be 

an extremely useful tribological tool, but far more useful than this is the ability to 

extract contact pressure distribution from the reflection coefficient. Dwyer-Joyce et 

al. [2001] determined that the relationship between contact pressure and interfacial 

stiffness can be approximated as linear for low contact pressures (MPa). 

 

2.3.5 Calibration 

By performing a calibration procedure with like for like materials and surface 

topographies, it is possible to obtain contact pressure from measuring R. A known 

load is applied to a known contact area and from this, a linear relationship can be 

determined between the interfacial stiffness and the contact pressure that holds true 

for that particular contact pair. This calibration procedure takes places in a loading 

frame, the load and therefore known contact pressure is applied using a hydraulic 

actuator. The ultrasonic sensor is mounted above. This can be seen in Figure 2-13, 

from Marshall et al. [2005]. 
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Figure 2-13. Diagram of the calibration specimens and loading equipment, from 

Marshall et al. [2005]. 

 

An example loading relationship for two polished EN24 steel specimens can be seen 

in Figure 2-14, Marshall et al [2005]. 

 

Figure 2-14. An example calibration curve relating interfacial stiffness to contact 

pressure, from Marshall et al. [2005]. 

 

This calibration process has allowed numerous authors to characterise contacts using 

ultrasonic reflectometry. Pau et al. [2001] have proven ultrasound as a tool for 

measuring the contact pressure at the wheel/rail interface with great success. Rovira 

et al. [2012] have shown excellent relationships between ultrasonic contact 

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0 200 400 600 800 1000

Contact Pressure (MPa)

In
te

rf
a
c
ia

l 
S

ti
ff

n
e
ss

 (
G

P
a
/m

ic
ro

n
)



40 

 

measurements of the wheel/rail interface and analytical models based on Hertz 

model. Stancu-Niederkorn et al. [2000], investigated the use of ultrasound as a 

measurement tool of the real area of contact of metal forming. They carried out a 

large body of work successfully using ultrasound to characterise the contact pressure 

distribution of bolted joints [Marshall et al. 2010] and interference fits [Marshall et 

al. 2004]. 

 

2.4 Dynamic Issues 

As previously discussed, even when surfaces seem to be smoothly sliding against 

one another, the asperity contacts are constantly breaking apart and re-forming 

together. During a dry sliding condition, the asperity interfaces are getting ripped 

apart and a result of this is vibration, juddering and chattering. There is a higher 

initial requirement to start sliding than there is to continue sliding, hence the static 

coefficient of friction is higher than the dynamic coefficient of friction. These 

dynamic conditions are too hostile for a contact pressure to be obtained as the 

interface is changing so much, it can no longer be analogised as a spring and 

therefore the spring model cannot be applied. Work was carried out to investigate a 

sliding contact by Kendall & Tabor [1971], although this work was never officially 

published. Hodgson [2002] carried out some interfacial stiffness measurements of 

numerous materials. Of those tested, it was PTFE and Copper sliding on Steel that 

proved to be successful as these contact pairs did not experience much wear. The 

results indicate that the contact stiffness drops by as much as 80 % once sliding 

occurs, this is due to the time dependence of asperity contacts. In some material 

combinations, the results showed an increase in contact stiffness with sliding. This 

was explained via a phenomenon known as junction growth which is a combination 

of both compressive and shear stress acting upon the asperity contacts. 

 

Due to the high rate at which the ultrasonic measurements can be made (up to 200 

KHz depending on thickness and path length), it is possible to detect a single 

moment of contact separation due to vibration as the measured reflection coefficient 

will momentarily revert to one. This ability to measure vibration and contact 

separation is a powerful tool in the characterisation of dynamic interfaces. 
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The ultrasonic measurement is in most cases highly affected by temperature as this 

affects the coupling between the transducer and the interface (see Section 3.4) and 

the acoustic properties of the material. This can be controlled in laboratory based 

static measurements but can be problematic with dynamic tribological tests as they 

often generate heat. There are numerous methods to factor for this, discussed in 

detail in Section 2.4. 
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3 ULTRASONIC APPARATUS 

 

Due to the increasing demand for high quality products and asset protection, non-

destructive testing (NDT) ultrasonic equipment is becoming more and more 

commercially available. With all exploratory work, it is crucial that the hardware 

used is optimised for each measurement application and there is no one device that 

suits all applications. This ranges from the hardware requirements such as transducer 

selection and portability, to the hardware settings such as excitation pulse rise time 

and filters.   

 

This Section will serve as a reference, enabling the appropriate selection and 

assembly of a complete ultrasonic system based on specific requirements. Figure 3-1 

is a flow diagram showing the fundamentals of the ultrasonic measurement process. 

 

 

 

 

 

 

 

 

 

 

 

  

 

Figure 3-1. A flow diagram showing the fundamentals of the ultrasonic measurement 

process. 

From this flow diagram, it can be seen that the ultrasonic measurement requires five 

crucial elements, a pulse generator, a transducer, an amplifier, a digitiser and a 

device to process the signal, most commonly a PC. A further important factor is the 

interconnecting cables that have not been included in the diagram. The pulser and the 
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amplifier usually come as a single device known as an ultrasonic pulser/receiver or 

UPR, which both sends the signal to, and receives the response from the transducer. 

The transducers are usually piezoelectric and the digitiser is an analogue to digital 

converter. The timing of the pulser and digitiser have to be in sync with one another 

so usually the pulser will act as a master and have a trigger output signal that sends a 

square wave pulse at the same time as the transducer is excited. This signal is then 

input into the digitiser which has a trigger/sync input so that it can display the echo 

waveform in the correct time. This is a far more stable option than triggering off the 

RF echo signal. 

 

3.1 Pulser/Receiver 

The ultrasonic pulser/receiver (UPR) is the backbone of any ultrasonic system and 

appropriate hardware selection is crucial. Numerous pulser/receivers exist on the 

market catering for a wide variety of applications and budget. The device is 

responsible for generating the excitation pulse and amplifying the received signal as 

described in the flow diagram Figure 3-1. These devices usually have the ability to 

pulse and receive from the same transducer, known as pulse-echo configuration, or to 

pulse one element and receive on the other, known as pitch-catch. Pulse-echo 

configuration requires the UPR to have a switch near the transducer connection that 

can direct the low voltage received RF signal to the amplifier. Photographs of some 

different UPR’s can be seen in Figure 3-2 below. 

 

  

Figure 3-2. Examples of some UPR’s. 
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3.1.1 Excitation pulses 

The shape of the excitation pulse is a governing factor of the vibrational response of 

the transducer that determines the shape of the resultant sound wave. The optimum 

excitation pulse shape will be dependent on the transducer characteristics. The 

recommended voltage should always be checked from the manufacturer’s guidelines. 

As a rule of thumb, the applied voltage should not exceed 50 V/mm as shown in 

Figure 3-3. 

 

 

Figure 3-3. A plot showing the maximum spike excitation voltage of the piezoelectric 

element in terms of thickness. 

 

When using ultrasonic elements bonded directly to the material, the required voltage 

is reduced due to the high level of coupling that can be achieved. The voltage and 

pulse width determine the amount of energy transmitted to the transducer and should 

be tuned so that the transducer vibrates at its natural frequency. Care must be taken 

to ensure the transducer does not overheat by subjecting the transducer to too much 

power, so attention must be paid to the applied voltage and duty cycle. The most 

common excitation pulse shape is a spike as it is relatively easy to create in hardware 

and is suitable for driving high frequency transducers for use in NDT where a 
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broadband response is required. The negative square wave or inverted ‘top-hat’ pulse 

is also popular as the user has control over the pulse width. The rise time is the time 

taken for the excitation pulse to reach maximum amplitude. A fast rise time (< 5 ns) 

is required for high frequency transducers.  

 

3.1.2 Pulse Repetition Frequency 

The pulse repetition frequency or PRF (pulses/sec) is the frequency of measurement 

and can be limited by a number of things. Modern ultrasonic hardware is capable of 

pulsing and receiving at a rate of 10’s of thousands of pulses per second with some 

capable of pulsing up to 100,000 pulses per second. The pulse rate is often limited by 

the thickness of the host medium. If the pulse repetition rate is too high, the second 

pulse will interfere with the subsequent reflections of the first. A method to check 

would be to calculate the time for the subsequent reflections to attenuate until no 

longer visible and this will be the minimum delay between pulses. 

 

3.1.3 Signal Amplification 

The low voltage (in the order of 1 mV) output from the transducer must be amplified 

before digitisation. This is usually performed in two steps; an initial low noise 

amplifier raises the voltage to the order of 1 V and then a variable gain amplifier is 

employed to increase the voltage to a level specified by the user, [Harper 2008]. This 

should be done to ensure the maximum range of the digitiser’s vertical resolution is 

being utilised. In pulse-echo mode, the same cable is used to send and receive the 

signal so the UPR must have switching circuitry to direct the received signal through 

the low noise amplifier after the generation of the excitation pulse. In pitch-catch 

mode the circuitry is less complicated and an external preamplifier may be 

employed. 
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3.1.4 Band Pass Filters 

The returned signal can be subjected to band pass filtering that can decrease the band 

width of the RF signal. Low pass filters can be used to improve the signal to noise 

ratio for applications that do not require the full receiver bandwidth. High pass filters 

can be used to eliminate unwanted low frequency energy from the signal and can be 

used as a way of increasing receiver recovery time from strong signals such as the 

excitation pulse, [Imaginant, 2011]. Filtering can occur before or after amplification. 

 

3.2 Digitisers 

A digitiser is a device that converts an analogue voltage into a digital number in 

terms of magnitude, known as an analogue-to-digital converter (ADC). Once the 

signal has been digitised, it is no longer subject to the common forms of radio 

frequency (RF) attenuation or noise that is common in ultrasonic hardware and is 

therefore relatively well maintained for processing in real-time or at a later date if 

stored. Digital signals are still subject to noise depending on the transfer bus, but this 

is usually insignificant compared to analogue signals. An example of a modern 

digital storage oscilloscope can be seen in Figure 3-4 (a). These devices store and 

analyse the signal digitally and enable the user to view the signals on screen in real-

time, similar to the traditional cathode ray oscilloscopes. Stand-alone digitisers are 

often PCI cards used in conjunction with a PC and make use of the latest high 

performance processors allowing the configuration and real-time processing in 

software. An example of a PCI digitiser can be seen in Figure 3-4 (b).  

 

The main factors to consider when selecting an ADC are sampling rate, number of 

channels. amplitude resolution, bandwidth, on-board memory, noise, over sampling, 

data transfer rate and communications bus. 
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(a)                                                               (b) 

Figure 3-4. (a) shows a LeCroy Waverunner digital storage oscilloscope and (b) 

shows an Ultraview PCI card digitiser. 

 

3.2.1 Sample Rate 

The sample rate is the number of samples per second that the analogue signal is 

digitised to. This is often referred to as the ‘clock speed’ and is measured in Hz.  

Most applications require the shape of the waveform to be maintained for processing 

and as a rule of thumb this requires a sample rate 10 times higher than the resonant 

frequency of the transducer to prevent aliasing. For example, if using a 10 MHz 

transducer, a 100 MS/s digitiser should be used to accurately retain the information 

in the signal (assuming a constant clock speed).  

 

3.2.2 Amplitude (Vertical) Resolution 

The amplitude resolution determines the number of voltage steps in which the signal 

can be divided, for example a 14 bit digitiser will split the signal into 2
14

 (=16384) 

vertical steps. This higher resolution is particularly important when looking at small 

magnitude changes in the waveforms. For the majority of applications, a 12-bit 

digitiser is sufficient resulting in 4096 vertical steps. Many digitisers have multiple 

input voltage options. The output from the digitiser will be in bits so it is important 

to understand the input voltage range to convert bits to volts. 
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3.2.3 Bandwidth 

The bandwidth characteristics of a digitiser determine the range of frequencies the 

hardware is built to accommodate. The manufacturer will describe a frequency range 

of the input signal that can pass through the input with minimal amplitude loss. As a 

rule of thumb, it is recommended to use a digitiser with bandwidth at least twice as 

high as the highest frequency content of your signal to preserve the true shape of the 

signal. 

 

3.2.4 On Board Memory 

When operating a high speed digitiser, the data transfer rate can be in the order of 

GS/s. Due to this high volume of data, it is not always possible to stream the data 

directly to a PC as the amount of data transfer is limited by the bandwidth of the 

connecting bus. Data is therefore often collected in blocks and stored in a buffer on 

the on-board memory on the digitiser. This can then be read by the PC. 

Consideration must be given to ensure the net read rate is higher that the net write 

rate to ensure no data is lost. Some systems have the capability to perform on-board, 

real-time signal processing, allowing the processed signal to be transferred over the 

communication bus. 

 

3.2.5 Number of channels 

This is the number of different signals that can be recorded concurrently. High 

channel count digitisers can be useful to synchronise multiple signals such as those 

from encoders. Care must be taken as the number of channels can affect the 

individual channel sample rate. This apparatus has been miniaturised and presented 

in numerous forms from multi-channel PC based systems to handheld devices, but 

the principles of operation have stayed the same. 
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3.3 Ultrasonic Transducers 

A transducer is a term describing any device that converts one form of energy into 

another, [Gallego-Juarez, 1989]. In terms of ultrasonic transducers, it is the 

transformation of electrical energy into mechanical energy in the form of sound and 

vice-versa. There are numerous different types and configurations of transducer but 

they all rely on the same principle. Most commonly in ultrasonic transducers, a 

piezoelectric (but sometimes ferroelectric) ‘active’ material is sandwiched between 

two electrodes and when electrically excited, the element vibrates in such a way that 

a sound wave is created which propagates through any adjacent material. The active 

element is polarised with electrodes attached to opposite faces. When an electric 

field is applied across the electrodes, the molecules align resulting in a deflection of 

the material. Often with ultrasonic transducers the same element is used to both 

transmit and receive the signal. Any reflected waves will in turn deflect the active 

material creating a low voltage signal. 

 

3.3.1 Piezoelectric Materials 

The piezoelectric effect is displayed by a large number of materials but only a few 

are of practical use for ultrasonic reflectometry. Vigoureaux & Booth [1950a] have 

come up with the following criteria to determine if the piezoelectric material is 

suitable to become a transducer: 

 

 The material should display satisfactory piezoelectric characteristics for the 

modes of vibration required 

 It should be homogenous throughout 

 It must be capable of being worked to the desired shape and size 

 The material should only display small variations of its properties with 

temperature 

 Internal friction should be minimal 

 It should be physically and chemically stable 
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Materials that fall within the above criteria include quartz, barium titanate, lead 

meta-niobate and lead zirconate-titanate (PZT), [Blitz 1963]. PZT in its pure form 

and PZT with various additives have been the most common material for use in 

ultrasonic transducers because of its strong and stable piezoelectric characteristics 

and its wide range of operating parameters, [Gallego-Juarez, 1989].  

 

New advances in piezoelectric polymers and composites are being used more 

commonly. An important factor to consider when choosing a material is the 

sensitivity which dictates the resultant voltage from an applied electrical field (m/V) 

and vice-versa (V/m). Attention must also be paid to the curie temperature of the 

material. This is the temperature at which piezoceramic begins to lose its polarity and 

the sensitivity will be permanently reduced. 

 

3.3.2 Element size 

The thickness of the piezoelectric element determines its resonant frequency. The 

active elements are often disk shaped and the thickness is the dominant vibratory 

mode. These elements vibrate with a wavelength that is twice its thickness, [NDT-

Resource Centre, 2012]. The relationship between thickness, t, and centre frequency, 

fc, is as follows: 

 

 
t

c
f c   3-1 

 

where c is the sound velocity in the material. For a common piezoceramic material 

PZT5A1, the sound velocity is approximately 2000 m/s.  Therefore to have a 10 

MHz sensor, the element must be 0.2 mm thick. Figure 3-5 is a logarithmic chart 

relating element thickness to centre frequency. 
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Figure 3-5. A logarithmic graph showing various elemental thicknesses and the 

associated centre frequency. 

 

The element size, often referred to as element diameter if a disk shape, affects the 

amount of energy created by the transducer and also affects the near-field range 

explained in Section 2.1.6. A larger receiving element will also be more sensitive. 

Element size is limited because if the element is made too small, the resonant 

vibrational behaviour of the element will be changed by edge effects of the crystal. 

As a rule of thumb, the width of a material should be at least 3 times the thickness to 

prevent the transducer oscillating the perpendicular plane resulting in a secondary 

frequency mode in the transducer response. 

 

3.3.3 Transducer Waveforms and Frequency Response 

The shape of reflected waveforms can be affected by a number of external factors 

such as the material composition and the interface. Generally speaking the waveform 

shape is determined by the frequency of the element and the damping applied. The 

damping of the transducer determines the frequency response of the element by 

affecting the duration of vibration after excitation, known as transducer ‘ringing’. 

Damping is controlled by bonding various backing materials to the rear face of the 

active element. By attenuating the energy behind the active element, it is possible to 

control the duration of the sound-wave in the time domain.  
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Transducers are often characterised in terms of bandwidth (%) which can be 

calculated as follows: 

 
uencyCentreFreq

Bandwidth
Bandwidth (%)  3-2 

 

A highly damped transducer will result in a very short pulse and a broadband signal 

as shown in Figure 3-6 which has a bandwidth of 92 %. The bandwidth of a 

transducer is characterised as the bandwidth value at 50 % (or -6 dB) of the signal in 

the frequency domain. Figure 3-7 shows a lightly damped or un-damped transducer 

which results in a wide pulse with a narrowband signal of bandwidth 14 %. 

 

 

Figure 3-6. A heavily damped time-domain signal with a resultant broadband 

frequency spectrum. 

 

 

Figure 3-7. A lightly damped time-domain signal with a resultant narrowband 

frequency spectrum. 
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Bonding the transducers directly to the surface limits the amount of ringing that can 

occur as the vibration of the element is easily transferred to the adjacent material. 

This results in a relatively well damped signal without the need for bonding backing 

material to the rear of the active element.  

 

3.3.4 Commercial NDT Contact Transducers 

Numerous types of commercial contact transducers are available to cater for different 

types of measurement and have intensively been developed for non-destructive crack 

detection and medical diagnostics. Traditional commercial probes have an 

acoustically matched backing layer to control signal damping. On the underside of 

the element, it is common for the transducer to be finished with a wear plate which 

protects the active element when moving it across a surface. It is important to match 

the acoustic impedance of the wear plate to the material to maximise the amount of 

energy transferred at the interface as shown in Figure 3-8 (not drawn to scale). 

 

 

 

 

Figure 3-8. A cross sectional diagram of a commercial ultrasonic transducer. 
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3.3.5 Commercial NDT Immersion Transducers 

Immersion transducers are those designed to be coupled with a liquid. They can be 

unfocused but by using a concave lens, it is possible to focus the sound wave on to a 

point in space, the size of which is determined by element diameter D, the acoustic 

velocity of the host material(s) and the focal length Fl. These transducers are used 

with a liquid medium so that is it possible to move the element closer or further away 

to achieve a focus at the area of interest, but also to scan in multiple dimensions. 

Figure 3-9 is a diagram showing two focussed immersion ultrasonic transducers. The 

focussed wave paths have been included. The transducer of the left is focussed onto 

the upper interface. The transducer of the right is focussed onto the middle interface 

between the two solid materials. It can be seen that the wave path is refracted due to 

the different acoustic impedances of the liquid and the solid. This phenomenon is 

explained by Snell’s law, see Section 2.1.8. Consideration therefore must be given 

when calculating the gap between the transducer and the solid material. 

 

 

Figure 3-9. A diagram showing two focussed immersion ultrasonic transducers. The 

focussed wave paths have been included. 
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Immersion transducers can either be a linear focus or a point focus. The focal spot 

size, Fs, (diameter) can be calculated from Equation 3-3 from the 

Panametrics/Olympus technical notes [2006]. 

 

 
fD

cF
dBF l

S

02.1
)6(   3-3 

 

where c is the sound velocity in the host material and f is the centre frequency. 

 

3.3.6 Shear Sensor 

Shear waves are a result of refracted wave mode conversion produced by angled 

wedges discussed in Section 2.1.8 Snell’s Law, but they can be created using a 

transducer polarised in the direction parallel to the mating face. Shear transducers are 

commonly used to measure shear stiffness and Young’s modulus of elasticity. It is 

important to note that liquid cannot support a shear wave therefore shear sensors 

only exist as contact transducers and a special highly viscous couplant must be used. 

 

3.3.7 Piezo-Coatings 

It is possible to deposit a piezoelectric film directly onto the component. It is an 

expensive process and is only suitable for high volume applications such as 

ultrasonic bolt monitoring. These films are thin (10’s of µm) and thus are only 

available in high frequency. Progress is being made in the field of piezoelectric paint 

such as the sol-gel spray technique that will reduce the cost of application making it 

viable for non-destructive testing, [Kobayashi et al. 2007]. 
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3.4 Coupling 

Ultrasonic coupling is the term given to the medium that facilitates the transmission 

of a sound wave between two media, most commonly from the transducer to the host 

material of interest. This is achieved by the minimisation or removal of air gaps, thus 

creating the constant path of elastic particles required for the pressure wave to 

propagate sufficiently. The coupling of a transducer can radically affect the shape of 

the waveform and particularly affects the damping of the signal. Water based viscous 

liquid couplants are most commonly used in NDT contact probe applications as they 

are safe, low cost and simple to administer. As sound waves propagate well through 

water, it is possible to have the transducer at a remote location and scan the work-

piece in multiple dimensions, all the time relying on the liquid to support the 

pressure wave.  

 

With shear sensor applications, ultra-high viscous couplants are required; 

alternatively honey can be used successfully to achieve a similar result. The liquid 

couplant acts as a thin film and when conducting tests over a long period of time. 

This thin lubricant film can change and affect the magnitude of the signal over time. 

This is particularly apparent when the materials are under load. Solid rubber 

couplants can be used instead as they are less affected by this but they are highly 

attenuative. By bonding the transducer to the surface of the material, the adhesive 

becomes the couplant and allows for excellent sound wave transmission and an 

unparalleled degree of repeatability. This is covered in detail in Section 3.9 titled 

Permanently Embedded Sensors and the Measurement Process. This repeatability has 

facilitated many of the measurements described in this thesis. 
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3.5 Ultrasonic Array Systems 

An ultrasonic array transducer is a device with a number of separate elements 

mounted together in a single housing. They typically have between 16 and 256 

elements and are traditionally in a linear arrangement, although they can be built to 

any specification and are sometimes mounted in an annular arrangement or in a 

matrix grid. Figure 3-10 is a photograph of a 5 MHz 64 element ultrasonic array 

transducer. 

 

 

Figure 3-10. A 5 MHz 64 element ultrasonic array transducer. 

 

Phased array systems are named as such because they have the ability to pulse and 

received from each element separately in a programmable pattern allowing a great 

amount of control in the form of beam angle, focal distance and spot size. By pulsing 

a group of elements simultaneously with a slight delay, starting with the central 

element and diverging out, it is possible to create a focused beam in that plane. This 

can be done at high speed resulting in a two dimensional image where each pixel has 

had the beam focused on to it. Phased array systems and controllers are used 

extensively in medical diagnostics as they have the ability to rapidly scan in two 

dimensions through tissue and organs. Phased array systems require individual 

pulsing circuitry for each element and therefore are very expensive. 
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3.5.1 Manual Array Switching System 

A novel, low cost solution has been created to enable an 8 channel ultrasonic system 

to take measurements using all 64 channels on a linear ultrasonic array transducer. 

To achieve this, it was necessary to develop an intermediate switching system to 

allow independent control of any of the 64 individual elements in the array 

transducer. A photograph of the switching box can be seen below in Figure 3-11 that 

was manufactured in conjunction with Tribosonics ltd. 

 

 

Figure 3-11. The ultrasonic array switching box. 

 

This apparatus is only suitable for static or highly repeatable dynamic contacts. The 

switching system is based on eight individual single-pole-octal-throw (SPOT) rotary 

switch configurations to relay the signals from the 8 channels on the pulser/receiver 

to the 64 elements on the array transducer. This low speed manual switching system 

can be set to any preconfigured pattern limited by the hard-wired SPOT 

configuration. These limits are described in Table 3-1 where the top row signifies the 

pulse/receive channel on the system and the numbers below detail the elements 

which the signal can be relayed to. It is possible to have any configuration of 

elements, one from each column, but not more than one from each column at the 

same time. 
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 Channel 

1 

Channel 

 2 

Channel  

3 

Channel  

4 

Channel  

5 

Channel  

6 

Channel  

7 

Channel  

8 

Set 1 1 2 3 4 5 6 7 8 

Set 2 9 10 11 12 13 14 15 16 

Set 3 17 18 19 20 21 22 23 24 

Set 4 25 26 27 28 29 30 31 32 

Set 5 33 34 35 36 37 38 39 40 

Set 6 41 42 43 44 45 46 47 48 

Set 7 49 50 51 52 53 54 55 56 

Set 8 57 58 59 60 61 62 63 64 

Table 3-1. Possible sensor configurations of the array switching system. 

 

3.5.2 Automatic Array Switching System 

To enable a dynamic measurement, it was necessary to speed up the array switching 

and acquisition system. A Pickering PCI based multiplexer was used in an eight 

individual SPOT configuration to automatically relay the signals from the 8 channels 

on the pulser/receiver to the 64 elements on the array transducer. This enabled high 

speed automatic switching in any preconfigured pattern limited by the hard-wired 

SPOT configuration. The switches were configured in the same way as the manual 

switching systems described in Section 3.5.1. The multiplexer is capable of 

measuring on each of the 64 channels at a rate of 750 Hz. If the number of active 

channels decreases, the measurement rate of each individual transducer increases. 

For example, it is possible to measure on 24 channels at 2000 Hz. The maximum 

possible pulse repetition frequency that can be achieved with a set amount of 

channels can be seen in Figure 3-12. A photograph of the multiplexer connector and 

array transducer adaptor can be seen in Figure 3-13 manufactured in conjunction 

with Tribosonics ltd. 
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Figure 3-12. The maximum possible pulse repetition frequency achievable as a 

function of the number of active channels. 

 

 

 

Figure 3-13. Pickering multiplexer connector and the adaptor to fit the array 

transducer. 
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3.5.3 Permanently Embedded Array Transducers 

Section 3.4 highlighted the influential effect that the coupling has on the 

measurement conditions. This is particularly important when measurements are 

required over a long period of time or when relating to any reference measurements 

previously taken. Attempts were made to use a traditional array system to take a 

series of measurements over a period of days, but it proved impossible to recreate the 

same coupling condition once the transducer had been moved. These results have not 

been presented. Traditional systems are also at risk of being moved whilst taking 

measurements resulting in the entire measurement process failing due to the reliance 

on a reference measurement. 

 

To overcome these issues, an array transducer that can be permanently installed was 

created, allowing the bonding of the transducer to the component resulting in 

unparalleled repeatability and a robust measurement. The piezoelectric elements 

were cut to size and positioned equidistantly in a linear array. Ultra-thin coaxial 

cables were soldered on to each element, all having a common ground. An 

aluminium housing was manufactured and positioned around the transducers and 

then filled with epoxy backing. The transducers are manufactured in such a way that 

the elements stand proud of the assembly ensuring optimum transmission when 

bonded onto the component. A schematic diagram and photograph of a 12 channel 

permanently installed array transducer can be seen in Figure 3-14 (a) and (b) 

respectively. 

 

 

    

(a)                                                          (b) 

Figure 3-14. (a) a schematic cross section of a 12 channel permenantly embeddable 

ultrasonic array and (b) an example of one installed. 

Housing 
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3.6 Multi-dimensional Scanning System 

Scanning systems are used to move an immersion transducer to build up a multi-

dimensional profile of the component under inspection. The position information of 

the scanning system is logged alongside ultrasonic data and then processed into an 

intensity plot. In the field of ultrasonics, this is commonly referred to as a C-Scan. 

Scanning systems are often used in NDT to automatically cover large areas. It is 

particularly useful for characterising static components but cannot be used for 

dynamic measurements due to the slow acquisition time. 

 

3.7 Cabling 

The transmission of high frequency signals requires careful consideration to ensure 

signal integrity is maintained. This is often achieved by using coaxial cables. Coaxial 

cables are termed as such because the different layers share the same geometric axis. 

The voltage is applied to the centre core and the metallic shield is the ground. This 

design minimises noise and attenuation. All connectors used in an ultrasonic system 

should also be coaxial. Most commonly used types include BNC, SMB, SMA, 

LIMO, MICRODOT and MMCX, a selection of which can be seen in Figure 3-15. 

 

 

Figure 3-15. Various coaxial cables and terminations. 

 



63 

 

3.8 Measurement Set-up 

The following factors must be considered when configuring an ultrasonic 

measurement. 

 

3.8.1 Voltage 

This is the amplitude of the excitation pulse. For commercial transducers, a pulse 

voltage as high as 30 V to 400 V is not uncommon. Lower frequency transducers 

often require a higher excitation pulse. Manufacturers usually recommend a pulse 

voltage value for each transducer. When bonding transducers directly to the material, 

much lower pulse voltages can be used, i.e., 2 V to 30 V. 

 

3.8.2 Pulse Width 

If using a square wave excitation pulse, the pulse width is the duration of the square 

wave in nanoseconds (see Section 3.1.4 for more information). 

 

3.8.3 Pulse Repetition Rate/Frequency 

This is the rate at which the transducer is excited per second, (see Section 3.1.2 for 

details). 

 

3.8.4 Pulse Train Length 

Some hardware allows the use of a pulse train which is a series of repeated excitation 

pulses that will affect the magnitude of the response of the transducer. The spacing 

between pulses is important and has to be in the same phase as the resonant 

frequency of the transducer to result in maximum amplitude response of the 

transducer. 
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3.8.5 Range 

The range is the length of the measurement window for visualisation and data 

storage purposes. With ultrasonic reflectometry, it is common to only save the 

reflection of interest to save disk space and maximise writing speed. 

 

3.8.6 Delay/Window Start 

This is the initial start point of the measurement window. 

 

3.8.7 Band Pass Filters 

Filters must be adjusted according to sensor type and materials (see Section 3.1.4 for 

more information). 

 

3.8.8   Gain 

The gain is the amplification of the signal (dB) from the variable gain amplifier. 

Increasing the gain will amplify the noise as well as the signal of interest.  

 

3.9 Permanently Embedded Sensors and the Measurement Process 

The tribological applications of ultrasound discussed in this thesis have pushed the 

limits of standard ultrasonic apparatus and methods. Through a process of trial and 

error, the investigations have resulted in the development of new methods, the most 

influential of which is the use of permanently embedded ultrasonic sensors. 

Traditionally, NDT based ultrasonic probes have been used to generate the required 

signals. These devices, as discussed, require very careful development to control the 

damping and are therefore expensive. Another issue is the mounting of the sensors. 

Great care must be taken to ensure the sensors are secure and that the coupling 

medium stays constant throughout the duration of the measurement. Material 

characterisation, attenuation, contact pressure and lubricant film thickness 

measurements are based on a change in the magnitude of the signal. These 

measurements require taking a reference and then calculating a reflection coefficient, 
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R, as outlined in Section 2.3.2. This relationship is fed into the equations to calculate 

contact pressure.  

 

In any situation when a comparison needs to be made between a reference and a 

measurement, consideration must be given to all external factors that may affect the 

measured signal. It is the experimentation and investigation into the use of 

permanently embedded sensors that has facilitated all of the work presented in this 

thesis. By bonding a sensor onto a surface, both the position of the sensor (the 

measurement window) and the coupling (the adhesive bond line) stay constant 

throughout the test. This means it is possible to take a reference measurement on one 

day and return at a later date to take the necessary real-time measurements. The 

stability of the sensor conditions allows for much smaller changes in the signal to be 

measured and processed, thus facilitating these new technologies and approaches. It 

is therefore important to fully understand what factors influence the ultrasonic signal 

so that they can be accounted for.  

 

 

If a single reference measurement is to be used over a long period of time, these 

external factors can change the ultrasonic response of the measured signal thus 

making the reference invalid. The author devised a calibration method to account for 

this. It requires the instrumentation of a section of similar material referred to as a 

calibration sample. This sample is placed with the measured component, but it is not 

experiencing the changes that are trying to be measured, i.e. contact pressure or 

wear. By monitoring the response of the calibration sample it is possible to monitor 

the changes in the reflected wave (magnitude or time) and use this to adjust the 

reflection coefficient accordingly. It is also possible and preferential to perform this 

calibration by bonding a sensor onto a part of the measured component itself in a 

position that does not undergo change from the parameter being measured 
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3.9.1 How Temperature Can Affect the Measurement 

Temperature can affect the measurement in numerous ways. Some adhesives change 

properties at certain temperatures and care must be taken to observe the glass 

transition temperature of the adhesive which is when the normally brittle material 

begins to turn into a molten rubber-like state which will result in higher signal 

attenuation. Figure 3-16 shows the measured changes in peak-to-peak magnitude 

calculated as the maximum value of the reflected waveform plus the modulus of the 

minimum value during a heat ramp for two different adhesives. It can be seen that 

the signal drops off dramatically at certain temperatures. 

 

 

Figure 3-16. A graph showing the peak-to-peak measurements of two different 

adhesive combinations during an temperature ramp. 

 

As previously discussed in Section 3.4, the coupling between the sensor and the 

material is of great importance. Any slight changes in this layer will massively affect 

the signal due to different damping modes and changes in signal attenuation. The 

temperature effect of different adhesives is relatively well understood in terms of 

glass transition temperature etc. and the manufacturers are often willing to provide 

this information. A test must be carried out to characterise the signal integrity is over 

the complete temperature operating range. Temperature will also affect the 

attenuation due to absorption of a sound wave as discussed in Section 2.1.5. This is 

Adhesive A 

Adhesive B 
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particularly evident in plastics but the affect is so small that it can generally be 

ignored with metal components. Both effects from temperature can be accounted for 

by heating the component and monitoring change in signal amplitude and time. If the 

change is significant, it can be recorded and accounted for in the post processing 

stage.  

 

3.9.2 Electronic Hardware Influencing the Measurement 

All electronic systems display individual characteristics that have an affect on 

ultrasonic signals due to slight variations in components such as position, resistance, 

the amount of solder used etc. The electrical components themselves will exhibit 

variation in their characteristics. These variations can be quite considerable when 

they are compounded, and it is important to use the same equipment at each 

measurement stage if comparisons are to be drawn. Another important point to 

consider is that the temperature of the equipment can influence the signal. This 

should be monitored to prevent erroneous results. The measurements that rely on 

time are not affected greatly but the measurements relying on changes of signal 

amplitude must have a dedicated channel with a reference measurement so any 

differences can be measured and accounted for in the post processing.  

 

3.9.3 The Effect Electrical Noise Can Have on the Measurement 

Electrical noise can have a devastating effect on ultrasonic measurements as it can 

often influence the A-Scan response. Care can be taken to minimise this by ensuring 

the equipment is electrically shielded and that the wires used are coaxial. Problems 

can arise when sensors are bonded onto electrically noisy components such as motors 

as they will then share a common ground. The noise can often be filtered out or 

overcome using averaging techniques. 
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3.9.4 Stress and Material Deformation Effecting the Measurement 

The acoustoelastic effect, discussed in Section 2.1.9 can influence the measurement 

in a number of ways. This is particularly important to consider with time based 

measurements because the stress affects the speed that sound propagates through a 

material and this must be accounted for. It has been noticed that stresses in a material 

can also affect the magnitude of the signal by means of deflecting the sound wave. It 

stands to reason that if the speed of sound changes in different parts of the material, 

the sound wave path will change as dictated by Snell’s law. 
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4 WEAR MEASUREMENT USING TIME-OF-FLIGHT 

 

4.1 Introduction 

Understanding wear behaviour of components is paramount to material selection and 

machine element design. Nearly all engineering components will experience some 

level of wear and material transfer when they are subjected to dry sliding contact 

conditions. It is also important in order to optimise component life, reduce 

maintenance cycles and maximise operating efficiency whilst minimising cost. The 

different methods of measuring wear that are currently available have been discussed 

in Section 1.7.1. It is evident that there is a lack of options available for many 

industrial real-time applications so an ultrasonic method has been hypothesised, 

tested and the findings presented in this chapter. 

 

Section 2.2.1 describes how ultrasound can be used to measure thickness of a 

material by sending a sound wave travelling at a known speed through a component 

and measuring the time the sound wave takes to travel through the material. From 

this the author hypothesised that wear in the form of material removal can be 

measured in real-time using ultrasonic reflectometry. As the material experiences 

wear, the thickness will reduce and this will be seen in a change in the ultrasonic 

time-of-flight. This is achieved by conducting a wear test whilst measuring the 

change in material thickness using ultrasonic reflectometry, along with concurrent 

wear measurement techniques. 

 

4.2 Pin-on-Disk Wear Experiment 

It was necessary to create controlled conditions in which a component is subjected to 

wear so that the ultrasonic measurements can be compared to other wear 

measurement methods. In doing so, it should be possible to validate the method and 

develop an understanding of the strengths and weaknesses of the proposed technique. 
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4.2.1 Test Apparatus 

A sliding configuration was selected as it is one of the most common causes of wear 

found in industrial applications. The pin-on-disk testing arrangement was chosen as 

it is often used as standard to measure kinetic friction and sliding wear. It is one of 

the most common tribometers due to the simple geometry and the large amount of 

control the user has over the testing parameters. An Eyre/BICERI universal wear 

testing machine, now known as the Cameron Plint TE99, was employed for this 

series of tests. A photograph of the equipment can be seen in Figure 4-1. 

 

 

Figure 4-1. The BICERI/Plint testing rig in the pin-on-disk configuration. 

 

The pin specimen is mounted on to a counter-balanced pivot arm that is loaded onto 

a horizontally rotating disk using dead weights. The resultant lateral frictional force 

can be measured using either a load cell or an LVDT linear potentiometer with a 

sprung bar. 
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The rugged and open design of the machine can accommodate a large range of 

specimen sizes and allows easy access to the contact, making the necessary 

additional instrumentation of the rig and specimen possible. This is often not the case 

with the more compact tribometers. The user has the ability to control the following 

parameters; 

 

 Sliding speed 

 Load 

 Temperature 

 Material of both fixed and moving specimens 

 Surface topography of both fixed and moving specimens 

 Lubricant condition 

 Contact pressure (resultant) 

 Environmental conditions 

 

4.2.2 Test Specimen 

The pin specimen was made from 10.8 mm diameter 1050A aluminium. This 

material was chosen as it is particularly effective in transmitting sound waves 

without creating internal reflections from grain boundaries and voids. This is 

important as it makes it easier to define a zero crossing point which aids when post 

processing. A flat bottomed slot was machined in the top of the pins to mount the 

ultrasonic transducer and allow the load to be transferred directly through the pin 

into the loading arm. A 2 mm x 7 mm 10 MHz ultrasonic sensor was bonded to the 

surface using thin bond line high temperature adhesive. A thermocouple was also 

bonded to the surface next to the transducer to monitor temperature. The slot was 

then back filled with a high temperature epoxy to damp the transducer and protect 

the sensors. A diagram of the testing specimen can be seen in Figure 4-2 on which 

the path of the ultrasonic wave has been drawn for illustrative purposes. 
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Figure 4-2. A diagram of the instrumented pin specimen. 

 

The 80 mm diameter disk was made from AISI 01 tool steel with a ground surface of 

0.4 Ra. The combination of aluminium on hard steel should result in a substantial 

amount of wear. 

 

4.2.3 Test Condition 

The tests were carried out using recommendations from ASTM G 99-95a entitled 

"Standard Test Method for Wear Testing with a Pin-on-Disk Apparatus”. The disk 

was rotated at a speed of 60 rpm with the pin in contact at a radius of 40 mm, 

resulting in a sliding speed of 0.25 m/s. A fixed load of 5 kg was applied at the end 

of the loading arm with a resultant contact pressure of 1.15 MPa at the pin and disk 

interface. A photograph of the test arrangement can be seen in Figure 4-3.  
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Figure 4-3. The instrumented pin-on-disk test set-up. 

 

4.2.4 Instrumentation 

Numerous wear measurement methods were employed to draw comparisons with the 

time-of-flight based ultrasonic wear measurement. Displacement measurements were 

logged throughout the tests using an LDVT fixed to the frame of the rig with the 

needle resting on the loading arm. This gave a live reading of the displacement of the 

loading arm, which is an indication of the combined wear of the pin and the disk. 

The displacement reading is also affected by any misalignment of the disk, the 

deflections in the beam and the thermal expansion effects of the assembly. The 

temperature from the thermocouple in the head of the pin was logged, along with test 

time and ultrasonic data. Mass and pin length measurements were taken at 30 minute 

intervals using Sartorius BP 210 D precision scales and a pair of CD-15CPX 

Mitutoyo digital vernier calipers respectively. The pin, cables and the specimen 

holder were all measured to ensure the pin was returned to the same position after 

being removed from the rig. 
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The ultrasonic measurements were taken using a Tribosonics Ltd FMS100 high 

performance PC based ultrasonic pulser/receiver/digitising system. The sensor was 

driven with a -100 V square wave pulse with a width of 120 nS. The pulse repetition 

rate was 2 kHz. The reflected signal was amplified by 6 db. A digitised A-Scan 

measurement at a single point in time can be seen in Figure 4-4. 

 

 

Figure 4-4. The time-domain A-Scan from the instrumented aluminium pin. 

 

Full A-Scans were recorded at 2 kHz, along with temperature, displacement and time 

data. The time-of-flight (ToF) measurement points were calculated in real-time and 

were taken from the first downward zero crossing interval after the initial rising edge 

over a pre-defined threshold. More details of the zero crossing measurement method 

can be found in Section 2.2.1. The sound velocity, c, in the aluminium is 6404 m/s. 

The time gap, t, between the excitation pulse and the reference reflection is 3.37 µs 

therefore the distance, d, that the sound wave travelled can be calculated to be 0.0216 

m from Equation 2-7. As the sound wave travelled both up and down the pin, the 

distance should be halved to relate to length of the pin, resulting in a distance of 10.8 

mm. 
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4.2.5 Results 

Figure 4-5 shows the results from a 30 minute test. The temperature measurement 

from the thermocouple is shown in a dashed line with the units on the left axis. The 

change in time-of-flight of the back wall echo is represented with a solid line with 

the units shown on the right axis. The recording continued after the wear test had 

ended and was stopped when the pin reached the starting temperature according to 

the thermocouple mounted on the top of the pin. 

 

 

 

Figure 4-5. The temperature and ultrasonic time-of-flight data. 

 

 

After cooling, a change in time-of-flight of 13 ns was observed, relating to a change 

in pin length, Δl, of 42 µm from Equation 2-7. It was then possible to calculate 

volumetric wear, Vw, by the geometrical relationship between the length of a 

cylinder, l, and the cylinder radius, r, using Equation 4-1. 

 

        
  4-1 
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Figure 4-6 shows the volumetric wear data from the different measurement methods. 

The wear from the LVDT and micrometer were converted to volumetric wear using 

Equation 4-1 and have been plotted alongside the ultrasonic data. The measured 

mass lost was 0.0094 g and the wear volume was calculated using a density of 2.71 

g/cm
2
. The final volumetric wear measurements can be seen in Table 4-1. 

 

 

Figure 4-6. Wear test data from the pin-on-disk test. 

 

Measurement 

Type 

Ultrasound LVDT Mass Lost Micrometer 

Wear Volume at 

end of test (mm
3
) 

3.68 3. 34 3.47 3.67 

Table 4-1. The wear volumes from each measurement method at the end of the wear 

test. 

  

Wear From LVDT  

Wear From Ultrasound  
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4.2.6 Discussion of Pin-on-Disk Wear Measurement 

Figure 4-5 clearly shows the extent to which temperature affects the ultrasonic 

measurement. After 2 minutes, the measured temperature at the top of the pin had 

increased by 11 ºC and the measured time-of-flight had increased by 7 nS, relating to 

an apparent increase in material thickness of 22 µm. It would be expected that the 

material would reduce in thickness when subjected to a sliding wear test assuming no 

material transfer has occurred from the steel disk onto the aluminium pin. This 

measured change from the ultrasonic sensor is due to the thermal effects of the 

material in terms of thermal expansion and the decrease in the speed of sound in the 

material. Once the temperature gradient reduces, it can be seen that the thickness of 

the material decreases with time as expected.  

 

It is clear that for this test set-up that the thermal expansion effects of the material are 

substantial relative to the wear. The ultrasonic method is very sensitive to the change 

in length due to thermal expansion and is therefore more suited to measurements 

during steady state conditions.  

 

The results in Table 4-1 show a maximum variation in final volumetric wear 

measurements of 0.33 mm
3
 between different measurement methods. Although each 

measurement method is valid in its own respect, they are all a measurement of 

different things.   

 

The digital calipers provide a measurement for the change in length of the pin, but 

are subjected to an error from thermal expansion and there is an aspect of user 

variability and human error. The measurement made was of the longest point of the 

pin.  Substantial differences from the other measurement methods will therefore arise 

if the wear face is not parallel to the top of the pin as the measurement would be an 

underestimation.  

 

The LVDT measures the change in position of the loading arm during the test, thus 

indicating the real-time wear rate. As the pin and disk both wear, the arm will lower 

but the measurement will not be able to distinguish between the two. If material is 

transferred from one component to the other, this will have an effect on the results. 



78 

 

The LVDT is also sensitive to vibrations and irregular disk shapes, so care must be 

taken when processing the results and enough data points must be captured in order 

to average the measurement. The LVDT mounting was affected by vibration which 

could have led to errors being introduced. 

 

The weighing of test specimen before and after a test is a traditional method to 

measure wear, but it is only an indication of total mass lost and does not consider 

displaced material that is not detached. It is often the case that material is displaced 

out of the contact zone due to plastic deformation. The density value used to 

calculate wear volume was given by the material supplier but variations in this value 

could introduce errors 

 

Profilometry is not possible due to the geometry of the pin specimen, but is often a 

very powerful tool in the measurement of wear and could be applied to measure the 

wear on the disk. 

 

As it is a time based measurement and the material is under load, the time-of-flight 

will be affected by the acoustoelastic effect and will be subjected to the errors 

discussed in Section 2.1.9. A loading ramp was carried out and the effects in this 

case were negligible. 

 

Care must be taken when setting the measurement window to make sure it is large 

enough to capture the reflection throughout the entirety of the test as it moves in time 

when the pin experiences wear. Also the threshold of the zero crossing algorithm is 

important as if the waveform might change shape as discussed in Section 2.2.1. 

 

4.3 Temperature Compensated Pin-on-Disk Wear Experiment 

It can be seen from the results of Section 4.2 that the thermal effects are too 

significant to ignore. One method of compensating for the thermal effects would be 

to create a heat dependency curve. This could be achieved by conducting a heat ramp 

whilst logging the temperature and resultant change of time-of-flight. By monitoring 

the temperature of the pin during the wear test, the effect of temperature could be 



79 

 

looked up from the heat dependency curve and accounted for accordingly.  This 

method would not account for the thermal gradient of the pin and further 

compensation would be required as this pin wore down. A more robust method was 

necessary. 

 

The preferred solution would be a method that automatically compensates for the 

change in temperature without having to rely on a temperature measurement. An 

artefact was created part way down the pin specimen that resulted in a second 

reflection in the time-domain plot.  The time-of-flight of this reflection changes due 

to temperature, but is not affected by wear. It is possible to use this as a reference to 

measure the extent that the temperature effect has on the time-of-flight of the wear 

face echo.  

 

4.3.1 Test Specimen 

A reference reflection was created by cutting a notch in the side of the pin specimen 

as shown in Figure 4-7. The path of the sound wave has been sketched and it can be 

seen that part of the sound wave is reflected from the solid air interface at the notch, 

thus creating a reference reflection. Figure 4-8 shows the A-Scan with both the 

reference reflection and the back wall echo. The time gap, t, between the excitation 

pulse and the reference reflection is 1.87 µs therefore the distance, d, that the sound 

wave travelled can be calculated at 0.012 m from Equation2-7.  
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Figure 4-7. A diagram of the modified instrumented pin specimen. 

 

 

Figure 4-8. The time-domain A-Scan reponse from pulsing a sound wave through a 

pin with a reference notch. 
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4.3.2 Test Set-up 

The same pin-on-disk testing equipment and testing parameters were employed as 

those used in Section 4.2 with the addition of the modifications to the pin specimen. 

Please refer to Section 4.2 for details. 

 

4.3.3 Temperature Calibration 

During the tests, the time-of-flight data was recorded for both the reference 

reflection, RL, and the full length from the back wall echo, FL. In assuming a linear 

thermal gradient, the thermal expansion measured from the reference reflection can 

be used to estimate the change in length of the entire pin due to thermal expansion 

using the Equation 4-2. 

 

 
 












 n

n

n
n FL

RL

RLRL
FLTL 1  4-2 

 

where TL is the temperature compensated length and n is the measurement count. To 

test the method, the sample was placed in the oven and heated to 130 ºC. The results 

can be seen in Figure 4-9.  
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Figure 4-9. Results from the heat ramp temperature test showing the measured 

length and the temperature compensated length. 

 

Figure 4-9 shows both full length from the backwall echo and the temperature 

compensated length from the method described. The fact that the temperature 

compensated length is approximately linear indicates that Equation 4-2 can be 

successfully used to automatically compensate for the thermal effects on the pin. 

Temperature affects the measurement in two ways, firstly the pin itself will expand 

with an increase in temperature and secondly the acoustic velocity in the material is 

altered. By working out the expected extension of the pin due to thermal expansion, 

it is possible to determine to what extent there is a change in acoustic velocity. The 

thermal expansion relationship can be seen in Equation 4-3. 

 

  121 TTLL    4-3 

 

where ΔL is the change in length due to thermal expansion, L1 is the initial length, α 

is the thermal expansion coefficient and T1 and T2 are the initial and final 

temperatures respectively. The thermal expansion coefficient of aluminium is 

Full Length TL  

Temperature Compensated 

Length TL 
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22.2x10
-6 

m/mK. The ultrasonically measured change in length of the pin from an 

increase in temperature of 58 ºC was 0.113 mm. The expected change in length 

calculated from the linear thermal expansion relationship, Equation 4-3, was 0.015 

mm. Comparing this with the results from the oven test, it can be seen that the 

dominating factor affecting the ultrasonic measurements is not the thermal expansion 

of the pin, but rather the change in the acoustic velocity in the material with 

temperature to the ratio of approximately 7.5:1. The empirical relationship Equation 

4-2 accounts for both the thermal expansion of the material and the change in 

acoustic velocity. If the temperature across the pin was accurately know, it could be 

possible to estimate TL from Equation 2-1 and 4-3. 

 

4.3.4 Results 

The results from the first test can be seen in Figure 4-10. The test was halted every 

30 minutes to take the static wear measurements. The plot shows the temperature 

compensated wear from the ultrasonic (UT) method, wear from the mass 

measurements, the wear from the digital calipers and the wear from the LVDT. 

 

. 

Figure 4-10. The results from a wear test showing measured wear from ultrasound 

(UT), mass lost, digital calipers and an LVDT. 
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4.3.5 Discussion of Temperature Compensated Wear Measurement 

The temperature compensation appears to have worked successfully as the 

measurement seems relatively unaffected by temperature. The measurement of full 

length varied 0.95 % over a 60 ºC increase in temperature and the temperature 

compensated measurement varied by a maximum of 0.08 %. There is considerable 

variation in the different measurement methods shown in Figure 4-10. The reasons 

for these differences have been discussed in Section 3.9.1. The temperature 

compensation model assumes a linear temperature profile across the length of the 

pin. This is quite a large simplification as the temperature profile would be 

exponential. 

 

The digital calipers have reported the smallest wear volumes as they are taking a 

reading at the maximum point on the pin. The mass loss method has reported smaller 

wear volumes than the UT measurements. A contributing reason for this is that the 

method does not consider displaced material as wear. An example of displaced 

material during a wear test can be seen in Figure 4-11. It would be possible to 

manually remove the displaced material, but this would disturb the natural behaviour 

of the specimen and introduce some human interaction effects which could vary 

between repeated tests. 
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Figure 4-11. The pin and disk mid-test with the pin experiencing a large amount of 

material displacement. 

The LVDT measurements were not very reliable due to the experimental set-up. The 

disk was not perfectly flat, necessitating the use of a moving average. Furthermore, 

the LVDT went out of range after 2700 m sliding distance resulting in an incomplete 

data set. Testing using a tribometer with a better displacement measurement system 

would provide a more thorough validation. 

 

4.4 Further Work and Industrial Applications 

The fact that the method is non-invasive means that it is suitable for the measurement 

of wear in industrial applications without affecting the tribosystem. The low cost 

sensors are small in form and can easily be retrofitted to existing machines. Care 

must be taken to position the sensor so that the wave strikes the interface at the 

correct position and some modification of the component might be required. This 

would then mean that the measurement system was no longer non-invasive. 

Measurements in components with more complicated geometries can be achieved 

using the pitch-catch configuration. 

 

The ultrasonic time-of-flight wear measurement technique is a measurement of 

change in the length of the pin alone. It is potentially possible to also measure the 

wear of the disk using the same sensor. Depending on the wearing interface, a 
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proportion of the sound wave might be transferred to the disk and would reflect off 

the back-wall. Some of this wave will then be transferred back into the pin and this 

will be sensed by the transducer. The time-of-flight will be visible in the time 

domain plot, and from this the thickness of the disk could be calculated. 

 

Temperature compensation through referencing can be achieved by carrying out a 

time-of-flight measurement on any part of the component that does not experience 

wear, but undergoes similar thermal changes as the point of desired wear 

measurement. Component geometries like these are often easy to find in industrial 

applications thus making temperature compensated wear measurement using 

ultrasound a viable method. 

 

4.5 Conclusions 

This work has proven that ultrasonic reflectometry can be used to measure wear in a 

sliding contact. Errors are introduced with temperature in terms of thermal expansion 

and the change in acoustic velocity of the material. A method has been presented to 

account for these changes but further work could still be carried out by calculating 

the thermal gradient of the pin and working out the resultant change in time-of-flight 

from this. There are more robust methods of measuring time-of-flight discussed in 

Section 2.2.1. These methods could be explored further to create a more robust 

measurement system. If the component was at steady state temperature, the wear rate 

would be independent of temperature. 
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5 WEAR MEASUREMENT FROM FREQUENCY 

FEATURE 

 

5.1 Introduction 

The wear from time-of-flight method explored in Chapter 4 was limited in 

measurement accuracy due to the large effects that temperature has on the 

measurement. It can be difficult to achieve the required measurement accuracy when 

applying the technique to a working industrial environment. A method is presented 

in this chapter that aims to reduce these temperature induced discrepancies to an 

absolute minimum by creating a temperature reference point very near the running 

surface. The issue with this approach is that when the two reflected waveforms get so 

close to each other, they begin to overlap and the zero crossing method cannot be 

used. The phenomenon known as the resonant dip method described in Section 2.2.2 

has been used successfully to measure thin lubricant layers by looking at the 

reflected waveforms in the frequency domain, [Dwyer-Joyce et al. 2002]. The author 

hypothesises that this technique could be used to measure wear from Equation 2-9, 

whilst minimising the temperature effect. 

 

If a reference artefact such as a small hole is created very close to the running 

surface, it will partially reflect the sound wave, shown as the arrow t1 in Figure 5-1 

(a). The rest of the wave will continue to travel through the material and reflect off 

the solid-air interface, shown as arrow t2 in Figure 5-1 (a). If the hole is close enough 

to the solid-air interface, i.e. if t1 tends towards t2, the two wave fronts will begin to 

interfere with one another and each individual reflection becomes difficult to 

distinguish in the time domain, shown in Figure 5-1 (b). By performing an FFT, the 

frequency domain plot reveals destructive interferences that are a function of the 

distance between the two waveforms, related by Equation 2-9. See Section 2.2.2 for 

further details about the method. 
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Figure 5-1. A diagram showing an instrumented block of material with a hole near 

the running surface. 

 

If it is possible to accurately measure the distance between the reference artefact and 

the running face using ultrasound, it stands to reason that it therefore possible to 

measure the wear. As material is removed, the distance between the reference 

artefact and the wear face will decrease. This is the concept of the wear measurement 

technique using the frequency feature method. 

 

5.2 Reference Geometry Investigation 

The first task was to establish the optimum method of creating this subsurface 

reference reflection. A series of different designs were cut into a material and then a 

controlled wear test was carried out to assess the functionality of each design. 

 

5.2.1 Test Specimen 

It was decided that subsurface circular holes would be the preferential option to 

create a reference reflection as they are simple to manufacture using standard or 

spark drilling and they can be positioned in such a way that does not alter or interfere 

with the running surface. Small slots or square holes might yield a better result as the 

wave would strike a perpendicular interface, rather than a curved one, but the holes 

themselves would be difficult to manufacture. 
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An AISI 01 tool steel test block was designed with 8 different configurations made 

up of 0.6 mm holes in different spacings. Figure 5-2 shows the diagram of the block 

with 0.6 mm holes and Figure 5-3 is a photograph of the test block. The ultrasonic 

sensors used were 7 mm diameter 10 MHz piezoceramic sensors bonded onto the 

surface using m-bond 610 cured at 140°C. This frequency sensor is ideal for this size 

hole as higher frequency waves will attenuate too much as they passes through the 

steel and if the frequency was lower, they not be as effected by the frequency 

features. The sensors were mounted on the far side of the block. 

 

 

 

Figure 5-2. A diagram showing the different 0.6 mm hole spacing configurations. 

 

 

Figure 5-3. The test block with the 0.6 mm holes in various spacing configurations. 
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5.2.2 Experimental Set-up 

The test block was mounted in a vice on the two axis magnetic bed of a surface 

grinder, the schematic arrangement shown in Figure 5-4. The grinding wheel was 

used to remove the material and simulate wear by a controlled amount in each step. 

A small known step, validated with dial gauge with an error of 0.02 mm, was 

systematically removed from the upper face of the instrumented block. A photograph 

of the test set-up can be seen in Figure 5-5 with a close up image of the contact 

shown in Figure 5-6. The ultrasonic sensors were pulsed at 30 V with a pulse width 

of   7x10
-6 

s. The reflected waveforms were recorded with the depth information and 

temperature after each pass. The material removed was calculated using the resonant 

dip technique from Equation 2-9 after the test during post processing, see Section 

2.2.2 for details. The optimum configuration will result in clearly defined dips in the 

frequency domain in order to easily track their movements to measure the change in 

thickness from Equation 2-9. Two example hole configurations and the resultant 

affect they have on the ultrasonic signals have been described in this Section. 

 

 

Figure 5-4. A schematic diagram of the testing arrangement. 
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Figure 5-5. The testing arrangement. 

 

 

Figure 5-6. The grinding disk and the test block. 

 

5.2.3 Results from a Good Feature Configuration 

The configuration of the holes determines the shape of the reflected waveform for 

reasons described in Section 2.2.2. Figure 5-7 (a) shows the position of the holes 

relative to the running face of the block that resulted in an ideal response.  Figure 5-7 

(b) shows the reflected signal in the time domain and Figure 5-7 (c) shows the FFT 

of the signal with the dip numbers (M) highlighted. The resultant dips from this 
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configuration are clearly defined meaning they will be easily tracked as they move 

position as the material is removed. 

 

 

 

 

 

 

 

 

 

Figure 5-7. (a) shows the position and size of the holes relative to the running face of 

the block, (b) shows the reflected signal in the time domain and (c) shows the FFT 

with the dip numbers (M) highlighted. 

 

Figure 5-8 shows all of the dip (or valley) indices from the FFT throughout the test. 

The points where taken at the lowest value of each dip. This data was obtained by 

using a valley detect algorithm with a threshold limit of 3, meaning that at least three 

consecutive data points must have decreased in magnitude for the algorithm to 

consider the waveform feature to be a valley or a dip. 
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Figure 5-8. The frequency index of all of the dips as material is removed from the 

block. 

 

It can be seen that using this threshold for the valley detection algorithm has 

recognised numerous dips in the FFT. There is no differentiation between the very 

prominent dips seen in Figure 5-7 (c) and the minute dips that occur from noise and 

other influencing factors. It is possible to reduce this effect by increasing the 

threshold, but this is not ideal as it can prevent valuable information from being 

presented. Using a more intelligent detection method, it is possible to detect only the 

very prominent dips of interest in a more robust manor. In order to extract the index 

of the frequency dip features, a signal processing algorithm was developed. This 

consisted of creating an idealised or reference frequency spectrum that was of similar 

shape to the measured waveform. By dividing the measured signal by the reference 

signal, the result is a flat line with the dips now represented as peaks.. 

 

After performing this operation, it is easier to create a threshold for the LabVIEW 

peak detection algorithm. By squaring the result, the peaks become even more 

clearly defined. 
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The results using this method can be seen in Figure 5-9. It can be seen in this chart 

that only the very prominent dips are indexed (M2, M3 and M4) and all of the others 

are ignored. It can be seen that as material is removed simulating wear, the frequency 

index of the dips clearly changes. 

 

 

Figure 5-9. The frequency index of the dips from the wear test using the intelligent 

detection algorithm. 

 

The values for dip count M and f where inserted into Equation 2-8 along with the 

acoustic velocity in steel to calculate h, the distance between the two wave fronts or 

the distance between the bottom of the holes and the running surface. The results can 

be seen in Figure 5-10, along with the actual change in thickness from the dial gauge. 

The actual thickness was calculated from starting thickness of 1.6 mm minus the 

displacement of the dial gauge as the grinding wheel was lowered onto the block 

with each pass.   
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Figure 5-10. A plot showing the measured thickness between the bottom of the hole 

and the running surface of the test block. 

 

From Figure 5-10, the cases of M3 and M4 show that the calculated thicknesses are 

in good agreement with the actual thickness. With the case of M2, the results are not 

accurate in the low frequency region (shown in Figure 5-9) until the dip moved into 

the region of approximately 1.5 MHz at 200 μm when it converged with the others. 

 

5.2.4 Results – An Unclear Feature Configuration  

In this section, the results from a different hole configuration are presented. Figure 

5-11 (a) shows the position and size of the holes relative to the running face of the 

block. In this example six 0.6 mm holes where made 1 mm below the surfaces 

spaced 1.2 mm apart. Figure 5-11 (b) shows the reflected signal in the time domain 

and Figure 5-11 (c) shows the FFT of the signal. It can be seen from the frequency 

domain plot that the dips are not clearly defined like those seen Figure 5-7 (c). This 

is evident in the dip index plot Figure 5-12, obtained using the valley detect 

algorithm with a threshold of 3. It can be seen that numerous dips have been detected 

using this method. 
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Figure 5-11. (a) shows the position and size of the hole relative to the running face 

of the block, (b) shows the reflected signal in the time domain and (c) shows the FFT 

with the dips poorly defined. 

 

Figure 5-12. The dip positions at the different distances between the running face 

and the reference reflection using the simple valley detect alogrythm. 
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The advanced dip detection algorithm, it was applied to the time domain response 

(the starting waveform shown in Figure 5-11 (b). The resultant dip frequency indexes 

have been plotted in Figure 5-13. 

 

 

Figure 5-13. The dip index positions calculated using the intelligent dip detection 

algorithm. 

 

It can be seen that fewer dips have been detected using this method. Using Equation 

2-9, the distance between the two overlapping reflections has been calculated for 

each dip. This can be seen in Figure 5-14. The values are in agreement with the 

calculated values from the grinding wheel displacement validated with the dial 

gauge. 
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Figure 5-14. A plot showing the measured thickness between the bottom of the hole 

and the running surface of the test block. 

 

5.2.5 Discussion of Wear Measurement from frequency Feature: Reference 

Geometry Investigation 

This work has proven that the resonant dip technique can be applied to measure the 

thickness of a very small part of a wearing component. By placing a reflector feature 

near the running face, the method can measure the distance between the feature and 

the wear face. As this distance changes due to the wear, the thickness changes and 

this can be measured and monitored to provide a real-time measurement. As the part 

of the component that is measured is so small (>2 mm), the effect that temperature 

has over the entire component is negligible. 

 

Figure 5-7 and Figure 5-11 show the extent that the positions of the holes have on the 

frequency content of the reflected wave. Using a valley detection algorithm with a 

threshold of 3 yields a large number of dip index points. It is clear that this makes it 

difficult to detect the individual dip number making the use of Equation 2-8 difficult 

as this relies on this knowledge. Furthermore, this work has shown how hard it is to 
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determine at what point the dips begin, i.e., which dip is M1, and therefore it is not 

possible to use Equation 2-8 without some trial and error. Equation 2-9 however does 

not require the knowledge of individual dip counts as it purely relies on the 

difference between consecutive dips, and is therefore a more robust technique. The 

more advanced dip detection method has proven successful in detecting only the 

substantial dips of interest. Using this method, it is possible to apply the algorithm in 

real-time to detect wear during the test, rather than relying on post processing to 

calculate the results. 

 

Figure 5-10 and Figure 5-14 have shown that it is possible to trend wear using the 

resonant dip technique. Theoretically all of the calculated thicknesses should have 

yielded the same results. It can be seen that although the results show similarity, 

there is some evident variation. These differences could have occurred due to errors 

introduced in the peak detection algorithm. It has become evident that in areas of low 

frequency magnitude, i.e. at low frequency, the results are highly erroneous as seen 

in Figure 5-10 with the calculated thickness from M2. Figure 5-14 also displays a 

frequency index of M=4.5, this indicates that there are some other mechanisms 

happening in the waveform that require further investigation, indicating that this 

method is not robust enough to use in real-time and must rely on careful post 

processing to determine the correct frequency index. 

 

5.3 Applying the Measurement Technique in a Standard Wear Test 

An industrial partner was interested in using the technique to measure wear on a 

specific material pair using a bespoke pin-on-disk tribometer. As previously 

discussed in Section 1.7.1, the accurate measurement of real-time wear in tribometers 

is a difficult task. This is particularly true when dealing with applications that see 

only small amounts of wear like those experienced with cast iron on steel in 

combustion engines. As this is sensitive data, some of the test parameters have not 

been presented. 
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5.3.1 Test Set-up 

A bespoke pin-on-disk test rig was used to assess the wear behaviour of sliding cast 

iron on polished steel. The rig has an eddy current displacement sensor that measures 

the displacement of the pin thus indicating wear in real-time. This was used to 

validate the wear measurement from the ultrasonic resonant dip method. A 

photograph of the test equipment can be seen in Figure 5-15. The pin was held in 

place using a collet arrangement. The rig has the capability to heat the specimen and 

a has a heated lubrication delivery system. A rotational velocity of 120 rpm was used 

throughout the tests and all tests were conducted with a drip mineral oil lubrication 

feed at 80 ºC to replicate a more commonly seen tribosystem. Dry metal on metal 

sliding is an unrealistic arrangement and rarely seen in machine element components.  

 

 

Figure 5-15. The bespoke pin-on-disk testing equipment and ultrasonic PC. 

 

5.3.2 Test Specimen 

The pin specimens were manufactured from cast iron with three holes spark eroded 

near the running surface to create a reference reflection. Due to the porous and 

acoustically poor nature of the cast iron, it was necessary to use a low frequency 
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ultrasonic transducer. A 10 mm 2 MHz PZ46 high temperature piezoelectric element 

was bonded to the rear face of the pin using MBond-610 cured at 300 ºC. A high 

temperature coaxial cable was used and the sensor was potted using Robnor high 

temperature epoxy in a cast. A photograph of the un-instrumented specimen can be 

seen in Figure 5-16 (a), (b) shows the pins with sensors bonded onto the back face 

showing the two electrodes and (c) is the instrumented pins in their final form 

partially worn. Figure 5-17 is a schematic diagram of the pin configuration. 

 

 

     

(a)                                       (b)                                               (c) 

Figure 5-16. (a) an unistrumented pin specimen. (b) shows the specimens with the 

piezoelectric element bonded to the upper surface and (c) shows a partially worn 

instrumented pin. 

 

 

                                          

Figure 5-17. The pin specimen showing the configuration of the holes.  
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The disk specimen was made of AISI 01 steel. The centre of the disk was 

manufactured from stone to achieve an initial high wear rate in the cast iron pin at 

the start of the test. This was to achieve conformity between the two interfaces and 

ensure flat on flat sliding. The pin was initially placed on the stone part of the disc 

and once conformity had been achieved, it was moved onto the steel and the actual 

representative test was initiated. Figure 5-18 is a photograph of the test showing the 

pin sliding on the stone section of the disk. 

 

 

Figure 5-18. The sliding contact with the pin in position on the stone section of the 

disk. 

 

5.3.3 Results 

Figure 5-19 (a) shows the A-Scan time domain response from the reflected wave in 

an instrumented pin and (b) shows the frequency domain plot of the time domain 

signal.  
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Figure 5-19. (a) shows the A-Scan response and (b) shows the FFT of the reflected 

signal. 

 

Figure 5-20 shows the results from the pin-on-disk wear test. The eddy current 

displacement measurement was zeroed, inverted to read wear and a 25 point moving 

average was applied to smooth the results. The ultrasonic wear results have been 

calculated from Equation 2-9 for 3 different dip positions Ma, Mb and Mc. 

 

 

Figure 5-20. The wear measurements of the pin-on-disk test with an eddy current 

displacement transducer and an ultrasonic sensor using the resonant dip technique. 
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5.3.4 Discussion of Wear Measurement from Frequency Feature Pin-on-

Disk Test 

The time domain signal from the instrumented pin, shown in Figure 5-19 (a), shows 

the reflections from the reference holes and from the back face. The two reflections 

are not as clearly defined as in the initial study shown in Figure 5-7 and Figure 5-11. 

This is due to the use of lower frequency transducers resulting in a longer 

wavelength and the wave is not as well reflected by smaller features. The dips are 

therefore not as clearly defined in the frequency domain. A solution to this would be 

to use larger reference holes, but this is not suitable due to the size of the pin 

specimens. 

 

The wear results shown in Figure 5-20 show some variation in the wear measured 

ultrasonically between the different dips. Theoretically these measurements should 

all be the same. These differences are likely to have been introduced from the dip 

detection method as the dips are poorly defined as a result of using lower frequency 

transducers. Another source of error could have been introduced from the lubricant 

filling the reference holes. Although this would not have affected the reflected 

waveform in the time domain, it would have affected the magnitude of the reflected 

wave. This is due to a higher proportion of the sound wave being transmitted into the 

lubricant as from Equation 2-4 the ideal reflection coefficient of cast iron and air is 

0.97 and cast iron and oil is 0.91. This would in turn have resulted in a smaller 

reflection from the reference features thus introducing a variation in the dip 

definition. 

 

5.4 Conclusions 

The work in this chapter has shown that the ultrasonic frequency feature wear 

measurement technique has the potential to be a usable method that is virtually 

unaffected by the temperature of the material. The results are erroneous as some of 

the resonant features provide more accurate results than others, depending on where 

they are in the frequency domain and how much energy is at each particular dip. The 

size of the frequency feature must be large enough to provide a detectable reflection, 

but must not affect the natural attributes and behaviour of the component. The lower 



105 

 

frequency ultrasonic transducer yielded less clear reference reflections with smaller 

artefacts and is therefore not suitable from small specimens. 

 

By using Equation 2-9, it is not necessary to know the number of the dip. Assuming 

it is possible to detect at least two consecutive dips at any one time, it would be 

possible to perform the necessary calculations in real-time, making the method a 

viable option for the monitoring of wear in industrial applications. Figure 5-13 shows 

a frequency index of M=4.5. This means Equations 2-8 and 2-9 must be used with 

care as other mechanisms are occurring in the waveforms that are not fully 

understood. Waveform modelling software such as COMSOL Multiphysics® could 

be used to investigate the affect the voids have on the waveform and obtain an 

optimum configuration. 

 

Inserting frequency features on test specimen such as the ones used in this chapter is 

a relatively simple task. For industrial applications, through holes near the running 

surface may not be possible due to geometrical restrictions and are likely to be 

undesirable. There are other ways to create a frequency feature, such as creating a 

small pattern directly onto the running surface. This would, however, affect the 

interaction between the contacting surfaces. 

 

 

  



106 

 

6 METAL-TO-METAL SEAL CONTACT 

CHARACTERISATION 

 

6.1 Introduction 

In any pressurised system, seals are of critical importance and are often the point at 

which failure occurs. The seal is achieved by ensuring the contact pressure is 

sufficiently high and it is understood that if an area of contact is of sufficiently 

higher contact pressure than an adjacent fluid, it will prevent leakage and thus act as 

a pressure seal, [Electric Power Research Institute, 1995]. 

 

Metal-to-metal seals are often created by deforming or swaging one or more of the 

contacting surfaces like those seen in ferrules or olive joints in compression seals. 

These deformations ensure conformity of the two surfaces to ensure no passage of 

fluid across the seal. The forces holding the two surfaces together must be of 

sufficient magnitude to prevent the fluid forcing the surfaces apart as the hydrostatic 

pressure increases. By carefully designing the geometry of the seal system, it is 

possible for the internal pressure to actually increase the contact pressure of the 

sealing interface; this is known as pressure energising. 

 

Compression seals are commonly used to seal piping in plumbing applications, but 

are also employed in larger high pressure piping networks in the oil and gas industry. 

In this application, metal-to-metal seals are responsible for preventing crude oil at 

pressures in the range of 200 MPa from being leaked into the ocean at pipe 

connections. End fittings are attached to the end of the flexible pipes and facilitate 

the joining of components together whilst preventing leakage. Attaching an end 

fitting assembly onto the end of a flexible pipe made up of multiple layers of steel 

and polymers is a difficult task. It is the metal-to-metal seal within the end body 

fitting that is to be investigated in this section.  

 

Understanding the behaviour of the components during swaging is of fundamental 

importance to ensure the interface pressure is sufficiently high to prevent seal failure. 

Finite element analysis has traditionally been used to predict the contact pressure at 
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the interface but empirical data is required to validate the model. The author 

conducted all of the ultrasonic measurements presented for GE Wellstream 

International Ltd and co-wrote a conference paper, see Fernando et al. [2012]. with 

the aims of providing some validation for their finite element contact analysis. The 

possibility of using this method as a quality assessment tool during manufacture is 

also explored 

 

6.2 End Fitting Seal Design 

Figure 6-1 is a schematic diagram of an end fitting on a pipe. As the bolts are 

tightened, the taper of the work hardened metal seal ring is forced against the tapered 

section of the end fitting body. As the two surfaces come into contact, the seal ring 

plastically deforms thus creating a seal. The design of this seal is critical to ensure no 

leakage occurs during operation which comprises of high temperature crude oil being 

piped through at high pressure. As the internal section is pressurised, the contact 

pressure at the seal ring interface should increase. This is known as pressure 

energisation. Figure 6-2 is a diagram showing the cross section of the assembly with 

details of the metal-to-metal seal interface, from Fernando et al. [2012]. 

 

                

Figure 6-1. The end fitting seal assembly, from Fernando et al. [2012]. 
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Figure 6-2. The details of the metal-to-metal interface, from Fernando et al. [2012]. 

 

6.3 End Fitting Compression Test 

An initial test was conducted to develop understanding of the seal interface and to 

test the ultrasonic method. GE Wellstream International Ltd. provided a modified 

end fitting assembly that was mounted in a loading rig to simulate the swaging that 

occurs as the bolts in the end fitting are being tightened. As the load is applied, the 

seal ring plastically deforms and conforms to the taper of the end fitting body. A 

number of ultrasonic sensors were mounted on the outside of the end fitting body in 

such a position to measure the contact during swaging.  

 

6.3.1 Test Specimen 

The end fitting body and seal ring interface was simplified in order to have a greater 

amount of control over the experimental parameters and to allow the design to fit in a 

loading rig. An end block was manufactured to house the polymer pipe and the inner 

metal sleeve and to support the seal ring. The inner section of the assembly can be 

seen in Figure 6-3. The end fitting body was lowered on top of the inner section and 

placed in the loading rig. Flat edges were machined into the outside surface of the 

end fitting body to ensure that the surface to which the transducer was mounted was 

parallel to the sealing interface. This will ensure that the sound wave will reflect off 

the interface back to the same position it started, which is a requirement of the 

ultrasonic method in pulse-echo mode. Two tests were carried out with slight 

variation in the thickness of the polymer tube. 
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Figure 6-3. The inner section of the end fitting assembly. 

 

6.3.2 Test Set-up 

A 500 kN Mayes servo-hydraulic controlled universal testing machine was used to 

apply a load to swage the metal-to-metal seal. The inner section was mounted on the 

loading frame bed and the end fitting body was forced against the seal ring by 

applying a series of displacement steps. The temperature, displacement and normal 

load was fed into the ultrasonic acquisition PC and logged alongside the ultrasonic 

A-Scans. Reference A-Scans were taken before the test in order to calculate 

reflection coefficient and the stiffness of the contact was calculated from Equation 

2-11. The contact pressure was obtained using a calibration procedure in which two 

materials of the same surface roughness with a known contact area where loaded 

together resulting in a relationship between stiffness and contact pressure, see 

Section 2.3 for further details. 

 

  



110 

 

6.3.3 Instrumentation 

As the seal rings are consumable parts, it was only feasible to carry out two tests. In 

order to obtain the maximum amount of data and minimise risk, numerous ultrasonic 

measurement techniques were employed simultaneously. A 10 MHz focusing 

transducer was used as a single point measurement positioned to measure the contact 

pressure at a single point. A picture of the instrumented end fitting can be seen in 

Figure 6-4. 

 

           

Figure 6-4. The complete end fitting assembly with three ultrasonic transducers. 

 

A flexible mounted water bath was manufactured to ensure the sensor could be 

moved during set-up to optimise signal response. The axisymetrical shape of the 

assembly meant that the sensors had to be positioned perpendicular to the tangent of 

the contact to maximise the reflected energy. The transducer was moved in the 

vertical plane to focus the beam and ensure the correct focal depth of field. Both of 

these positioning challenges are achieved through trial and error by moving the 

transducer whilst monitoring the response until the reflected energy reaches a 

maximum. The transducer was positioned so that the sound wave was focused at the 

point of interest. For the first test, the probe was focussed on the edge of the seal ring 

fillet; location B in Figure 6-2. For the second test, the probe was moved 1.5 mm 

away from the edge of the fillet, location A, in Figure 6-2.  
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Two 10 MHz 64 element ultrasonic array transducers, described in Section 3.5, were 

used to obtain a 2D linear measurement across the sealing interface.  

(a)                                                            (b) 

                          

Figure 6-5 is a schematic diagram showing the position of an array transducer on the 

end fitting body. The paths of the sound waves have been included.  

 

 

  

 

(b)                                                            (b) 

                          

Figure 6-5. A schematic diagram showing the position of the array transducer (a) 

and the immersion transducer (b) mounted on the end fitting body with the paths of 

the sound wave included. 

 

6.3.4 Results 

Figure 6-6 shows the resultant swaging force from the load cell for each 

displacement step for two repeated tests with the transducer placed at different 

positions. The predicted results from the finite element analysis have also been 

plotted. Due to the sensitive nature of the results, the two methods were normalised 

by making a maximum contact pressure and displacement equal to unity. 
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Figure 6-6. A graph showing the resultant swaging force from the applied 

displacement, from Fernando et al. [2012]. 

 

Figure 6-7 shows the results from the focussed immersion transducer. The results 

have been presented in normalised format. In both cases, the predicted values from 

the FE are in agreement with the experimental results.  

 

 

Figure 6-7. The normalised contact pressure at point A in Test 1 and point B in Test 

2 from the FE and the ulrasonic contact pressure measurements for the increasing 

displacement steps, from Fernando et al. [2012]. 
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The measured contact pressure profile obtained from the digitally switched ultrasonic 

array transducer can be seen in Figure 6-8. The graph compares three displacement 

(δ) values, of 5 mm, 8 mm and 10 mm. The case where δ=10 mm represents the fully 

swaged seal. The results have been presented in normalised format achieved by 

dividing all results by the peak value.  

 

 

Figure 6-8. The normalised contact pressure profile from ultrasonic measurements 

and FE across the length of the metal-to-metal seal, from Fernando et al. [2012]. 

 

6.3.5 Discussion of Contact Pressure Measurement of the End Fitting 

Compression Test 

The initial FE models predicting the required swaging force are in agreement with 

the experimental output as shown in Figure 6-6. This builds confidence in the FE 

model and shows that the modified specimen is representative of the pipe assembly. 

In both tests, the experimental results have shown a slightly higher swaging force 

than the finite element predictions. The results show an increase in swaging force for 

the final 20 % of the test which was accurately predicted in the FE analysis. 

 

The single point measurements at the interface, shown in Figure 6-7, again show 

good agreement to the finite element analysis with the majority of experimental 

results within ±15 % of the simulated contact pressures. The onset of contact 



114 

 

pressure at location A was found to be earlier than predicted. At location B, the final 

contact pressure value after swaging was found to be lower than predicted. 

The contact pressure profile obtained from the ultrasonic array system is also in 

agreement to the results predicted with the FE analysis. It can be seen that the 

pressure profile at the interface increases in magnitude as the displacement increases. 

Each element of the ultrasonic array transducer is 0.7 mm wide so the discrete 

measurement points are an average over that area, meaning that the ultrasonic output 

is of lower resolution than the FE model. The FE predicted slightly higher pressures 

at lower deflections. The results from the manually switched array system are very 

similar to the automatically switched system so were not fully processed or presented 

as they were only put in place in case of redundancy. 

 

6.4 Measurement of Pressurised Seal 

To develop a greater understanding of the metal-to-metal seal interface as it 

experiences stress during operation, a pressurised test was performed on a real pipe 

and end fitting to measure any change in seal contact pressure during internal pipe 

pressurisation.  

 

6.4.1 Test Specimen 

This test aimed to reproduce the conditions that a pipe end fitting would experience 

during operations. A standard multi-layered pipe was cut to a short section and 

sealed at one end using a bespoke epoxy sealing bung. The seal ring was placed on 

the pipe and then the end fitting was bolted in place using the standard assembly 

procedure. This swaged the seal ring onto the end fitting. The end fitting was 

pressure sealed at the end using a bespoke sealing bung that was fitted with an inlet 

in which to pump water to build up the internal pressure. This simulated the high 

pressure oil that would be pumped through the pipe section. The test was conducted 

at ambient temperature, in the real application; the process fluid would be at higher 

temperature. A schematic diagram of the pressure sealed end fitting can be seen in 

Figure 6-9.  
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Figure 6-9. A diagram of the end fitting assemlby swaged onto a pipe showing the 

modifications to allow pressure retention, modified from Fernando et al. [2012]. 

 

6.4.2 Test Details 

The test was split into two sections. The first section involved swaging the seal by 

tightening a series of bolts around the end fitting body. Reference measurements 

were taken prior to swaging and then each of the bolts was tightened in steps. 

Ultrasonic measurements were taken at each step to measure the contact pressure 

profile evolution throughout the swaging process. After the end fitting was in place, 

the system was sealed to hold the pressurised water. Once sealed, water was pumped 

into the assembly creating an internal pressure of similar magnitude to which the 

pipes would experience during operation. Ultrasonic measurements were taken 

during pressurisation to measure any changes in the metal-to-metal seal contact 

pressure and area.  
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6.4.3 Instrumentation 

The interfacial coupling between the array transducer and the surface in which it is 

mounted on is of crucial importance as discussed in Section 3.4. The sensitivity of 

the interfacial coupling means extreme care has to be taken when performing 

measurements so as not to disturb the sensors. These factors mean that the ultrasonic 

transmission is subject to change if used over a long period of time. It is critical that 

the position of the transducer must not move between reference measurement and 

test measurement. In order to overcome these problems, a permanently embeddable 

ultrasonic array transducer was developed for this work and was bonded into position 

to ensure this crucial interface did not change over time, thus ensuring the 

measurement position was kept the same.  

 

A 10 MHz 12 element ultrasonic array transducer was developed for the purpose of 

this test described in Section 3.5.3. The transducer was bonded on a flat section of 

the end fitting body using Tribobond cyanacrolyte based room temperature cure 

adhesive. The element spacing of the array transducer is 0.7 mm per sensor.  Only 7 

sensors could be used at any one time. The ultrasonic pulsing-receiving-digitising 

hardware had 8 channels and one channel was reserved for the external calibration 

sample. The array was positioned so that the sound waves reflected at the interface in 

which the seal contact was at highest contact pressure, shown in Figure 6-10. 

  

  

Figure 6-10. A schematic diagram showing the bonded array transducer in position 

on the end fitting body. 
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A linear scan was performed by exciting each element individually with negative 100 

V square wave signal with a pulse width of 70 ns. The reflected response was 

captured from the same element, the signal amplified and digitised. A delay of 1700 

µs was employed with a capture range of 400 µs with a gain of 35 dB and a pulse 

repetition frequency of 2000 Hz. A photo of the array transducer can be seen in 

Figure 6-11. 

 

 

Figure 6-11. The 12 element permanently bonded array transducer. 

 

This investigation introduced new measurement challenges because the complex 

pipe end fitting assembly had to be built up in stages over the space of weeks. The 

swaging process took place a number of days before the pressure test could 

commence. The contact pressure measurements rely on a reference measurement 

which is an ultrasonic reflection measurement of the interface with no contact, i.e., 

100 % reflection. This reference is then used to calculate the reflection coefficient, R, 

by dividing this number by the measured reflection when contact occurs. The time 

gap (weeks) between the different measurements makes referencing extremely 

difficult as the reference measurement is traditionally obtained seconds before 

contact occurs, which was not possible in the pressurised test. There are numerous 

things that affect the ultrasonic measurement so a reference reflection obtained on 

one day will be different to one obtained on another as discussed in 3.9.  
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A way of overcoming this issue is to conduct a concurrent external calibration 

measurement as discussed in Section 3.9. This was achieved by instrumenting a 

metal sample that is subjected to the same environmental factors as the measured 

component, but does not experience change from contact pressure. External factors 

affecting the ultrasonic measurement over time can then be accounted for by 

adjusting the magnitude of the reference measurement accordingly. 

 

6.4.4 Results 

An initial ultrasonic reference measurement was taken with a steel-air interface. The 

seal ring was then put in position and swaged by tightening the flange bolt set. 

Ultrasonic measurements were taken throughout the swaging process. A series of 

reflection coefficients have been plotted in Figure 6-12 that show the evolution of the 

pressure profiles over time. The distance across the contact area has been normalised 

and the timing has not been shown as the information is commercially sensitive. 

 

 

Figure 6-12. Interfacial stiffness during seal swaging. 
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The seal ring and end body was greased prior to swaging resulting in an interface 

that is a mixture of two stiffness regimes: solid/solid contact and solid/liquid/solid 

contact. This means that the reflected wave is determined by the interfacial stiffness 

of both the solid-solid contact and the thin lubricant layer.  

 

The end body was internally pressurised until the system failed by bursting and the 

array transducer was pulsed using the same configuration as during swaging. The 

resultant change in interfacial stiffness can be seen in Figure 6-13 below. P0, P1, P2 

etc. represent increasing internal pressures in the vessel. 

 

 

Figure 6-13. Interfacial stiffness during internal pressurisation. 

 

6.4.5 Discussion of Contact Pressure Measurement of a Pressurised Seal 

Figure 6-13 shows that the contact patch magnitude and interfacial stiffness changes 

over time as the seal ring is swaged. The sensor position has meant that the edge of 

the contact profile was not measured. As the pressure was increased, a change in 

contact pressure was observed. The interfacial stiffness decreases as the vessel is 

pressurised thus indicating that the contact pressure decreases. This indicates that the 

seal is not pressure energised; this was as expected. Failure occurred between P5 and 

P0 

P5 

P6 

P1 
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P6, a sharp increase in interfacial stiffness can be seen after failure to the extent that 

it was higher than before pressurisation. At one measurement point, the reflection 

coefficient was greater than one. To calculate the interfacial stiffness, any results 

above one had to be made to be one as a negative stiffness is not possible. This 

occurred as the sensor was at the edge of the contact area and indicated that the 

contact was only partially over the measurement window; see Section 2.1.7 for more 

information.  

 

It was not known prior to testing that the contact was going to be lubricated. The 

contact was therefore operating in the boundary lubrication regime. The total 

stiffness of the interface is the sum of the stiffness of the solid-solid contact and the 

lubricant layer. This meant that an accurate value for contact pressure could not be 

determined from Equation 2-11 as it does not consider the stiffness of the lubricant. 

Investigations have been carried out to calculate the total interfacial stiffness, see 

Dwyer-Joyce et al. [2011], but this falls beyond the scope of this work which is 

concerned with dry contacts. This is a potential area for future work. 

 

6.5 Conclusions 

In the laboratory based compression test, the ultrasonic results were in agreement 

with predictions from the finite element analysis. This has given confidence in the 

FE model, allowing it to be used to design the next generation seal geometries with 

smaller margins of safety thus resulting in a cheaper construction whilst maintaining 

functionality. The results of the pressurised test were of great interest to GE 

Wellstream International Ltd., allowing them to further their understanding of the 

contact pressure distribution for the seal when it is subjected to similar conditions to 

those seen in service. The investigation was successful in detecting whether or not 

the contact was pressure energised with fluid pressure. Subsequent tests were carried 

out with new designs in which the contact pressure increased with internal pressure 

resulting in a more reliable sealing system. 

 

The purpose built bespoke permanent array transducer worked successfully in the 

industrial application allowing measurements to be taken with substantial time gaps 

between referencing and the actual measurement. This is of particular interest as it 



121 

 

implies that sensors could be permanently installed into the end fittings during 

manufacture to ensure a proper seal has been made. This could then be used as a 

condition monitoring tool in service to monitor the contact pressures over time and 

detect the onset of failure preventing potentially catastrophic damage and substantial 

fines. Future work will investigate the feasibility of this application in terms of costs 

and return on investment. 
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7 ROLLING WHEEL/RAIL CONTACT PATCH 

CHARACTERISATION 

 

7.1 Introduction 

The rail vehicle wheel and rail contact interface is a critical component of any rail 

based system that must be carefully controlled in order to provide safe and efficient 

operations for passenger and freight services alike. There is a wide range of 

influential factors that affect wheel/rail contact conditions including vertical and 

lateral forces, distribution of mass, attack angle of wheel-set, speed, friction, debris 

on the track and curve radius to name a few [Makoto et al. 2001]. These factors all 

effect wear of both the wheel and the rail which can lead to failure and derailment.  

 

Wear is an unavoidable consequence of wheel/rail interaction and rolling contact 

fatigue (RCF) is one of the primary outcomes of improper contact conditions that 

result from worn wheels and rail. It is the management and maintenance of this 

process that is of critical importance. There are numerous methods to minimise wear 

including the addition of friction modifiers to the interface, grinding the rail head and 

re-profiling the wheel-sets to ensure ideal contact conditions in terms of contact 

pressure, area and position on the wheel and rail. Improper contact conditions are the 

root cause of all wheel and rail damage mechanisms such as RCF, corrugation and 

wear. Logistical and political complications occur as the rail vehicles in the UK are 

owned by different private organisations and often travel across numerous different 

track networks, meaning that it can often be difficult to determine which body is 

responsible for the maintenance and the associated costs. 

 

The majority of the current designs and maintenance cycle predictions heavily rely 

on analytical and numerical techniques to model the contact conditions and wear at 

the wheel/rail interface, [Marshall et al. 2005]. A common approach to model the 

contact pressure under normal loading conditions is to calculate the area of 

interpenetration of measured profiles. By fitting an ellipse to this, the Hertzian model 

can be applied to calculate the contact pressure, [Rovira et al. 2012]. There is a wide 

variety of complex numerical solvers such as FASTSIM, CONTACT or STRIPES 
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that use the real profiles to create accurate dynamic contact area and pressure 

predictions considering the tangential load, [Kalker, 1982].  

 

To accurately predict the contact pressure, area and wear, most of these methods 

require the accurate measurement of the wheel and track profiles to input into the 

calculations. This is possible for research based applications but impractical to apply 

this to nationwide track maintenance predictions. Obtaining the required profile 

information would be a costly procedure considering there is over 15,777 km of track 

in the UK alone, [Railway-Technical, 2013]. The computational time would also be 

extensive. 

 

Very few experimental methods exist to measure the wheel/rail contact. Pressure 

sensitive films have been used but these introduce a thickness that will inherently 

change the contact conditions. Also the dynamic nature of the system limits the 

application, [Pau et al. 2001]. Dynamic measurements have been obtained using a 

modified rail section with a grid of small holes passing low pressure air through the 

surface of the railhead. As the wheel moves over the rail, some of the holes will stop 

the flow of air. This results in low resolution contact evolution data, [Poole, 1987].  

 

The aim of this work was to develop a dynamic measurement system based on the 

fundamental static work carried out by Marshall, et al. [2005], [2006] in the 

investigation the contact of a rolling wheel on a rail using ultrasonic techniques. In 

this investigation, a constant series of ultrasonic pulses reflecting off the interface 

will measure the contact evolution as a wheel is rolled over the railhead in order to 

obtain the contact pressure distribution. This should result in high resolution data that 

can be obtained in-situ in real-time for monitoring applications. This information 

could be used to validate numerical models or used directly to determine 

maintenance schedules and optimise wheel/rail profiles. The possibility of using this 

method as a real-time safety system for train driver feedback is also discussed. 
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7.2 Static Contact Measurement using Scanning Immersion 

Transducer 

Marshall et al. [2006] have successfully used a 2D scanning system with a section of 

wheel and rail to measure the contact pressure distribution at the wheel rail interface 

using ultrasonic reflectometry. The correlation achieved between ultrasonic results 

and numerical models was excellent and thus provided validation for the method. 

This work was repeated with a new set of wheel and rail profiles to validate a 

FASTSIM model developed by Rovira et al. For further detail of this work, see 

Rovira et al. [2012].  

 

7.2.1 Experimental Set-up 

The wheel and rail specimen were cut from full size sections and can be seen in 

Figure 7-1.  

 

Figure 7-1. The wheel and rail sections. 

Two tests were carried out, the first with specimen set cut from a worn wheel and rail 

and the other test, the specimens were cut from a new wheel and rail. The specimens 

were mounted in a steel loading frame with the wheel section set at a 1:20 incline to 

replicate the real application. The wheel and rail sections were hydraulically loaded 

together with a force of 50 kN to simulate the resultant forces from the mass of the 

railroad vehicle. A water bath was mounted on top of the rail section to support the 

ultrasonic wave. The loading frame was mounted on a 2D scanning table to traverse 

the loaded specimen arrangement under the focussed ultrasonic transducer in order to 

achieve the 2D contact patch measurement. See Sections 3.3.5 and 3.6 for further 

detail on the immersion scanning method. A schematic of the testing arrangement 

can be seen in Figure 7-2, [Rovira et al. 2012]. 
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Figure 7-2. A schematic diagram of the static wheel/rail ultrasonic measurement 

testing arrangement, from Rovira et al. [2012]. 

 

7.2.2 Calibration Details 

According to the calibration test done by Marshall et al. [2005], the empirical 

equation to best fit the calibration data is contact pressure Cp=263 K MPa. Figure 

7-3 shows the calibration curve for the same specimens, see Section 2.3.5. 

 

 

Figure 7-3. The calibration curve relating interfacial stiffness to contact pressure, 

from Marshall et al. [2005]. 
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7.2.3 Results 

The two-dimensional scan results from the new and worn specimens can be seen in 

Figure 7-4 showing the contact pressure at the wheel/rail interface. The contact 

pressures were calculated from the reflection coefficient using Equation 2-11, see 

Section 2.3 for details. 

 

    

 

Figure 7-4.  Two dimensional reflection coefficient surface plots of the wheel/rail 

interface. (a) is with 40 kN applied load and (b) is with 60 kN applied load, from 

Rovira et al. [2012]. 

 

The contact area obtained by the interpenetration method has been overlaid on the 

contact pressure measurements. More information about this method and the 

Hertzian contact pressure modelling can be seen in Rovira et al. [2012] and Kik 

[1996]. 

 

  

(a)                                                               (b) 
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7.2.4 Discussion of Static Contact Pressure Measurement using Scanning 

Immersion Transducer 

The results obtained using the two dimensional scanning system have resulted in 

high resolutions contact patch measurements that show good agreement with the 

Hertzian model. This has been proven a successful method by a number of previous 

authors as discussed in Section 1.3. This method is confined to the laboratory 

environment with component sections under static conditions. A dynamic method 

has been developed by the author to use the technique in real life dynamic 

applications 

 

7.3 Static Contact Pressure Measurement with an Ultrasonic Array 

Transducer 

An ultrasonic array transducer can provide a high speed 1-dimensional line scan; see 

Section 3.5 for more details. By mounting an ultrasonic array transducer in the rail, it 

is possible to have a real-time measurement of the wheel/rail contact as the wheel 

passes over the sensor. In this investigation, the array transducer was mounted in the 

rail and the wheel is manually traversed across the rail head to simulate the rolling 

wheel. 

 

7.3.1 Experimental Set-up 

The wheel and rail specimen were cut from full sections and can be seen in Figure 

7-5. Transducer placement is important to obtain the optimum signal reflection 

condition from the interface. It was necessary to remove a section from the wheel or 

the rail to position the array transducer in such a way that the waveforms reflected 

off the contact interface. A hole was wire eroded in the rail to house the array 

transducer. A spring was used to load the array transducer against the top of the rail 

and a solid rubber couplant was used to prevent the fluid film couplant effects 

discussed in Section 3.4. The through hole allows the array transducer to be 

positioned at any point in the rail head to ensure the contact patch is fully captured. 

The manually switched ultrasonic array system was used for the test, see Section 

3.5.1 for more details. 
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Figure 7-5. The static wheel/rail loading rig with a 5 MHz 64 element ultrasonic 

array transducer. 

 

A 100 kN electric Mayes compression rig was used to simulate the vertical force. 

The wheel section was mounted in the upper loading frame and the rail was clamped 

to the lower test bed during loading. The rail was free to traverse under the rail to 

simulate the rolling of the wheel. 

 

The design of the hole in the rail is important as any deflection occurring in the rail 

section will jeopardise the ultrasonic measurements and could potentially damage the 

array transducer. It was necessary to statically load the wheel section onto the rail 

without the array transducer present to measure the deflection in the hole. The 

transducer was removed from the loading rig and replaced with a digital dial gauge 

mounted on the solid loading frame bed. The wheel section was incrementally loaded 

up to 80 kN against the rail and the deflection of the hole face measured to ensure the 

transducer would not be damaged. A photograph of the test set-up can be seen in 

Figure 7-6. There was no measureable deflection of the rail so it was determined safe 

to carry out the test with the array transducer in place. 

 

Array 

Wheel 

Rail 

Spring 

Load 

Actuator 
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Figure 7-6. The static wheel/rail test set-up with a digital dial guage to measure the 

displacement of the rail above the hole. 

 

7.3.2 Linear Cross Section Contact Patch Measurement. 

The rail was incrementally loaded from 0 to 60 kN in steps of 10 kN. The resultant 

cross sectional reflection coefficient profiles can be seen in Figure 7-7 below. 

 

 

Figure 7-7. The reflection coefficient over the length of the wheel/rail interface. 
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The interfacial stiffness can be calculated from reflection coefficient using Equation 

2-11. Using the relationship between interfacial stiffness and contact pressure 

discussed in Section 2.3, a cross sectional pressure profile for the wheel/rail contact 

can be obtained, as shown in Figure 7-8. 

 

 

Figure 7-8. Contact pressure plot of the wheel/rail interface for various loads. 

 

7.3.3 Two Dimensional Static Contact Pressure Results 

In order to create a two dimensional surface plot, the rail was manually traversed 

under the fixed wheel at 1 mm steps and re loaded at each step.  

 Figure 7-9 shows the two dimensional reflection coefficient surface plots at loads of 

40 kN shown in (a) and 80 kN shown in (b). 
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 Figure 7-9. Two dimensional reflection coefficient surface plots of the wheel/rail 

interface at 40 kN shown in (a) and 80 kN shown in (b). 

Pressure sensitive film was placed between the contact and the load applied. The 

results can be seen in Figure 7-10. The measured contact areas from the different 

methods can be seen in Table 7-1. 

 

    

 

Figure 7-10. The measured contact patch from the pressure sensitive film for an 

applied load of 40 kN (a) and 80 kN (b). 

 

Contact 

Geometry 

Radius 

(mm) 

Loads (kN) 
40 80 

Width Length Width Length 

Ultrasound 5.47 5.98 6.92 7.39 

Pressure Sensitive Film 5.64 6.11 7.01 7.56 

Table 7-1. The contact areas from the ultrasonic measurement and the pressure 

sensitive film. 
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7.3.4 Discussion of Static Contact Pressure Measurement with an 

Ultrasonic Array Transducer 

This investigation proved that the rail mounted array transducer was a feasible 

method to measure the wheel/rail contact. It was proven that the hole in the rail did 

not experience excessive deflection so it was safe to house an array transducer. The 

resolution of the contact pressure profile was dependent upon the size of the 

ultrasonic elements, which was fixed at 0.7 mm which is the minimum size a 10 

MHz transducer can be made, but also the distance that the rail was moved under the 

wheel. The ultrasonic contact area measurements were in agreement with the 

pressure sensitive film. The pressure sensitive film used was not optimised for the 

pressure range therefore it is not possible to extract pressure values. It is understood 

that this method of moving the wheel under the rail is not representative of a rolling 

wheel but is a simplified set-up that only applied normal loads. A rolling wheel on a 

rail will display a different stress distribution due to the more complex tangential 

forces acting on the components. The sensors were 7 mm long in the rolling plane, 

this was accounted for in the contact area measurements by subtracting 6 mm from 

the centre of the final surface plots to reveal the true contact shape.  

 

7.4 Dynamic Measurement Bench Test 

In order to measure a dynamic contact, the author has developed a method to 

measure various points over a line simultaneously with sufficient resolution to create 

an image of the wheel passing over the rail. To do this, a number of different 

ultrasonic elements were used simultaneously. A digital switching system was 

developed to enable a 64 element ultrasonic array transducer to be used with an 8 

channel ultrasonic system as detailed in Section 3.5.2. Due to the large number of 

transducers, the data analysis also required great care. It is for this reason a bench 

test was arranged to trial the hardware along with the control and acquisition 

software. 
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7.4.1 Experimental Set-up 

An initial bench experiment was arranged to test the experimental method. A rolling 

ball on flat contact was created to measure a simple dynamic rolling contact that is 

representative of the wheel/rail contact. A 25 mm diameter Nitrile ball was loaded 

and rolled along an acrylic surface using a bespoke friction measurement test rig 

shown in Figure 7-11. The lower plate specimen was attached to a worm drive 

resulting in a linear displacement as the controlled motor was driven. 

 

 

Figure 7-11. A schematic diagram showing the placement of the ultrasonic array 

transducer and the direction of movement. 

 

All 64 elements of the array transducer were pulsed and the multiplexer was 

switching at full speed to assess the resolution. A series of tests were undertaken to 

trial the methodology and establish the limits in switching speed and associated 

measurement resolution. 
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7.4.2 Results 

Figure 7-12 shows the reflection coefficient surface plots of a 25 mm Nitrile ball 

rolling between two loaded Perspex plates. Figure 7-12 (a) is the resultant contact 

plot with an applied load of 0.1 kg and Figure 7-12 (b) was with an applied load of 1 

kg. Both tests were conducted with a rolling speed of 0.6 mm/s.  

 

                      

 

 

Figure 7-12. Reflection coefficient intensity plot of a Nitrile ball rolling at 0.6 mm/s 

loaded between two Perspex plates with an applied load of 0.1 kg and 1 kg in figures 

(a)  and (b) respectively. 

 

When no contact occurs, virtually the entire wave is reflected at the solid-air 

interface, resulting in a reflection coefficient of 1. As the ball passed under the array 

transducer, part of the energy in the sound wave is transmitted due to the interfacial 

stiffness. The resultant reflected wave is divided by the reference resulting in a value 

for reflection coefficient. The resolution of the length measurement in the x-axis was 

fixed by the size of the elements in the array transducer at 0.7 mm per division. The 

resolution of the y-axis resolution was dependent on rolling velocity and ultrasonic 

PRF. If the PRF remained constant and the rolling speed is increased, the resolution 

in the y axis would decrease proportionately. 

 

The size of the contact patch was validated using a camera mounted in place of the 

array transducer. The contact patch was evident on the Perspex surface. This can be 

seen in Figure 7-3. 
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Figure 7-13. A photograph of the contact area between the 25 mm Nitrile ball and 

an acrylic plate. 

 

Contact 

Geometry 

Radius 

(mm) 

Loads (N) 

0.981 9.81 

Width (x) 
Length 

(y) 
Width (x) Length (y) 

Ultrasound 2.45 2.50 4.90 5.24 

Camera 2.57 2.63 4.78 4.92 

Table 7-2. The contact areas from the ultrasonic measurement and the camera. 

 

7.4.3 Discussion of Dynamic Measurement Bench Test 

The methodology and the bespoke ultrasonic equipment have been proven to 

function successfully in this simple bench test arrangement. The slower rolling 

speeds yield far clearer results due to the increased measurement resolution. It was 

deemed unnecessary to perform a calibration procedure to relate reflection 

coefficient to contact pressure as the purpose of this investigation was purely to test 

the equipment.  
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7.5 Dynamic Measurement of Wheel/Rail Contact 

The aim of this section was to obtain dynamic ultrasonic contact patch measurements 

of a real wheel rolling over a rail with a rail mounted ultrasonic array system. 

 

7.5.1 Experimental Set-up 

To simulate the wheel rolling over the rail, a full scale wheel/rail rig was employed. 

The rig consisted of a rail mounted on a linear translation bed fixed to a hydraulic 

actuator. The wheel was normally loaded against the rail using a second hydraulic 

actuator with the ability to apply loads up to 200 kN. The ultrasonic array transducer 

was mounted in the rail in the same configuration as in Section 7.3. To simulate 

rolling, the rail was displaced using the actuator and the friction between the two 

components caused the free wheel to roll over the rail. Figure 7-14 shows three 

photographs of the rig with three positions of the rail. 

 

 

Figure 7-14. The wheel/rail arrangement in different stages of displacement. 

 

The wheel has a diameter of 920 mm and has a worn P8 profile. A 1200 mm 

UIC60A rail section was used. The maximum throw of the rail results in a 1/3 

rotation of the wheel. The load was applied and the rail was displaced 200 mm in one 

direction whilst taking the ultrasonic measurements. The rail was then returned to the 

original position causing the wheel to rotate in the opposite direction. The array 

transducer measurement length is 42 mm so the array transducer measurement 

window did not cover the entire rail head. Through trial and error, the array 

transducer was positioned in such a way that meant the entire contact patch was 

captured. 
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7.5.2 Results 

Figure 7-15 shows the 2D contact pressure patch measurements achieved from the 

ultrasonic array transducer with a rolling speed of 5 mm/s. (a) shows the 

measurement with an applied load of 40 kN and (b) shows the measurement with an 

applied load of 80 kN. The sensors were 7 mm long in the rolling plane; this would 

result in an overestimation of the contact area in the rolling (y) axis. To account for 

this, the length of the contact patch was reduced by 7 mm to reveal the true contact 

area. 

 

                      

 

 

Figure 7-15. Contact patch measurements on a full scale dynamic wheel rail rig 

using a 10 MHz 64 element ultrasonic array transducer.  
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Figure 7-16. The contact area measurements from the pressure sensitive film with an 

applied load of 40 kN and 80 kN for (a) and (b) repectively. 

 

To apply this method to measure on the rail network, the ultrasonic pulsing hardware 

would have to be faster. By using a phased array ultrasonic system, it would be 

possible to increase measurement speed and resolution, but it would dramatically 

increase the associated costs and complications in post processing. Figure 7-17 

shows the possible number of measurements as the wheel rolls over the rail at 

various speeds and various pulse repetition frequencies (PRF). 
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Figure 7-17. A graph showing the number of measuremens as the rail vehicle passes 

over the array transducer as a function of pulse repatition frequency. 

 

7.6 Discussion of Dynamic Measurement of Wheel/Rail Contact 

The introduction to the chapter highlights how important the wheel/rail contact is and 

how there is a lack of techniques available for the measurement real-time wheel/rail 

contact distribution. The two dimensional scanning of the static wheel/rail contact 

showed how the ultrasonic method can be used to measure both contact area and 

pressure.  

 

The static array transducer measurement proved the ability of the bespoke ultrasonic 

array system to measure the wheel/rail contact patch. The resolution in the x-axis of 

the measurement system is a function of element diameter which in this case was 

fixed at 0.7 mm. The measurement resolution in the y-axis is a function of rolling 

speed and PRF. This could have been refined, but the resolution was deemed 

satisfactory for the purposed of this investigation. The resultant contact area 

measurements were in agreement with the measurements from the pressure sensitive 

PRF = 100000 

PRF = 10000 

PRF = 1000 
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film. The contact pressure measurements were in agreement with previous 

measurements of contact pressure. The stiffness values were converted to contact 

pressure using a previous calibration process involving similar, but not exactly the 

same specimen which will have resulted in some error. 

 

The dynamic bench test using a Nitrile Ball rolling along a Perspex plate introduced 

the dynamic measurement. The investigation proved the viability of the bespoke 

ultrasonic array system. The resolution in the Y-Axis is a function of the ultrasonic 

pulse repetition frequency and the rolling speed. The limiting factor is the switching 

speed of the PCi based multiplexer. It is necessary to add a slight delay after 

switching for the relays to settle, this is known as de-bounce time. The individual 

channel measurement frequency could have been maximised by reducing the number 

of active channels, using only those actually measuring the contact. 

 

The measurement on the full scale rig proved successful and dynamic wheel rail 

measurements where achieved at low rolling speeds. The thickness of the pressure 

sensitive film will result in a larger contact area being measured. The reason for this 

is that when there would normally be a thin air gap, the film will still indicate contact 

due to its inherent thickness. Furthermore, the film has a low friction coefficient 

which resulted in partial sliding of the wheel as it came into contact with the rail. It 

was not possible to lock the wheel in position when applying the load like it was in 

Section 7.3. The pressure sensitive film was not optimised for such high contact 

pressures so therefore only contact area could be extracted. It was not possible to 

measure profile information so it is difficult to validate the contact measurement 

using numerical methods. The results are similar to those measured with the new 

wheel and rail sample as seen in Sections 7.2 and 7.3. 

 

7.7 Further Work 

Cutting a hole in the rail section is not an ideal solution and would not be permitted 

in a live rail network. It would be possible to mount the sensors at an angle on the 

outside of the rail head in pitch-catch configuration and achieve a similar result, 
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although with lower resolution. It would also be possible to mount a series of sensors 

on the wheel but this would require the use of slip-rings or radio transmission. 

 

One of the main limiting factors of railroad vehicle speeds in the British rail system 

is the low radius curves. Contact conditions are more severe during curving as the 

wheel/rail geometry becomes less conformal and contact occurs at the wheel flange. 

These conditions result in increased slip and resultant wear due to deformation and 

rolling contact fatigue, [Cannon & Pradier, 1996]. Too much lateral load will result 

in excessive flange contact and wheel climb that can lead to derailment. 

 

By monitoring the position of the wheel on the rail during railroad vehicle 

movement, it would be possible to optimise speed with a safety feedback loop 

system thus preventing too much flange contact. By mounting sensors on the outside 

of the wheel, it would be possible to create a flange contact detection monitoring 

system. The transducers would have to be positioned in such a way that the signals 

could be reflected off the interface at precise locations. To do so might require some 

removal of wheel material or the use of a wedge to get the correct angle of attack as 

shown in Figure 7-18. A more in depth feasibility study can be seen in Dwyer-Joyce 

et al. [2012]. 

 

 

 

Figure 7-18. A diagram showing the possible options for transducer placement on 

the wheel for flange detection. 

 

Ultrasonic Array 

Rail 

Wheel 
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7.8 Conclusions 

A method has been developed to characterise rolling contacts using a bespoke low 

cost ultrasonic array system. This was successfully applied to a simple rolling ball on 

flat arrangement. A rail mounted sensor was trialled in a static measurement and the 

results were positive with minimal displacement of the rail head due to the hole.  

 

A full size wheel/rail rig was used to create a loaded wheel/rail interface for 

inspection. A rail mounted ultrasonic sensor was successfully used to measure the 

dynamic contact patch evolution. It is also possible to measure the contact pressure 

distribution with the aid of a calibration procedure. The current system is too slow 

for full speed rail, but with a commercial phased array system, the measurements 

would be possible at full speed. 

 

The concept currently requires the removal of a section of the rail which would not 

be an acceptable solution to use in the field. Possible solutions to this issue have been 

discussed. Hardware requirements for real-time measurement on the rail network 

have been determined. A flange detection sensing system has been proposed. 
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8 DISCUSSION AND CONCLUSIONS 

 

When two machine element components come into contact with one another, they 

experience complex stress patterns and pressures at the interface. If the components 

are moving, wear will often result. These are fundamental factors affecting the 

majority of machine element components. There is a great difficulty in achieving 

empirical information surrounding dynamic contacting interfaces due to the fact that 

the contact itself is inaccessible. Traditionally engineers rely on models and 

modification of the assemblies to install sensors to obtain contact pressure 

information and disassembling systems to gather wear data. The aim of this work 

was to investigate the use of ultrasound to measure and monitor contact pressure and 

wear in real-time. An emphasis was placed on industrial applications and real 

machine element components as previous ultrasonic contact measurement work has 

been confined to simple geometries such as ball-on-flat conducted in a laboratory 

environment. The ultimate aim with all of the techniques was to develop them into 

tools that can be used, ideally by untrained personnel, to measure and monitor these 

important factors in real-time in real machine element arrangements to increase 

understanding of the system for design optimisation and to prevent failure. 

 

The first part of this document explained the fundamental behaviour of components 

in contact on a micro and macro scale and what happens in a dynamic situation. 

Methods currently used to measure these factors were discussed and critiqued. The 

fundamental ultrasonic theory was described as an understanding of this is necessary 

in order to apply the measurement techniques to new situations with different 

materials, geometries and arrangements. The options available in terms of 

measurement hardware were explained to ensure the most appropriate equipment is 

selected for the specific application.  

 

In order to meet the project aims, new equipment was developed. This thesis has 

outlined the theory behind the new technology and has described its proper use to 

ensure future users are able to operate the tools efficiently and recreate them where 

necessary. A manually switched ultrasonic array system was developed for low 
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speed or highly repeatable applications, a digitally switched ultrasonic array system 

was developed for high speed applications and a permanently installable ultrasonic 

array transducer was developed for long term monitoring applications. The manually 

switched array system proved to be a successful low cost option for acquiring linear 

measurements in static applications and could be used for highly repeatable dynamic 

applications. The low switching speed meant that it was not suitable for single pass 

contact measurements such as the wheel on rail application. Its development was an 

important stepping stone paving the way for the digitally switched multiplexing 

system which was able to switch fast enough to capture these dynamic contacts in a 

single pass. The system had a maximum global acquisition rate of 750 Hz per 

channel (if pulsing on 64 elements) which still limits its use for many high speed 

applications. The permanently installable array transducer was a low cost solution 

compared to other array transducers on the market. This opened up a host of new 

measurement opportunities as the device was expendable. By bonding the sensor 

onto the component, it facilitated linear measurements to be taken over long periods 

of time and to be used as a monitoring device, rather than just for a single 

measurement. The device was designed in such a way that meant it could be re-

created with any number of elements. 

 

The move away from static tests and laboratory environments has resulted in a 

requirement for low cost permanently embedded sensors instead of the traditional 

expensive commercial probes and scanning systems. The author has spent a 

substantial amount of time developing a wide range of low cost sensors through a 

process of trial and error investigating numerous piezo-materials, sensor sizes, sensor 

shapes, cable and termination types, soldering methods, backing and bonding 

techniques. The different sensor configurations have then been trialled in numerous 

environments including high temperature, high vibration and general industrial wear 

and tear. Numerous different ultrasonic hardware arrangements were trialled and 

developed in order to establish the optimum configuration. 

 

The longer test timescales have required new methods to account for the numerous 

external factors (including material stresses and strains, electrical noise, electronic 

hardware and temperature) that affect the measurements. To apply these 
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measurement techniques for monitoring of dynamic applications, most of the 

processing algorithms that have been developed in this work have been designed to 

work in real-time, rather than relying on traditional post processing methods. 

 

The measurements proposed in this thesis have required a number of bespoke 

hardware solutions to be invented as there are no financially viable commercial 

solutions available. Furthermore, to interface this hardware with a control and 

acquisition system has required custom software to be created. Bearing these 

developments in mind, the time constraints have meant that the author would have 

preferred to carry out more exhaustive experimental work to explore the techniques 

in depth and the associated errors of the measurement systems and techniques. 

Numerous other researchers are initiating in depth studies using the methods 

developed in this work so this document has been tailored to serve as a manual in the 

hopes that the foundations laid here will be built upon resulting in fully developed, 

industry ready measurement systems. 

 

8.1 Wear Measurements 

A method of measuring wear in real-time using a time-of-flight based ultrasonic 

technique was applied to a pin-on-disk tribometer. It was found that the measurement 

was heavily influenced by temperature and this resulted in inaccurate measurements. 

A referencing method was devised to automatically account for these temperature 

effects. The other wear measurement methods used during the test could not be relied 

on as a tool for validation and error calculations as each method was measuring a 

different wear attribute. The displacement measurement should have provided the 

best method for comparison but the experimental set-up was not very reliable and the 

contact experienced a high level of vibration similar to that in many actual machine 

element components. Methods in which to apply the technique to machine elements 

were discussed and a number of alternative referencing methods were introduced.  
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A further method to measure wear was proposed to virtually eliminate the effects of 

temperature by placing a reference feature very close to the wearing interface. The 

wear measurement was then reliant upon the frequency content of the reflected 

waveforms. This method was trialled in a controlled test in which fixed steps of 

material were removed using a surface grinder. The technique was then applied to a 

specific material combination pair in a pin-on-disk tribometer. The measurement 

algorithm showed great promise in the controlled experiment, but discrepancies were 

seen in results calculated from different dip numbers when they should have been 

identical. Some of this error will have been introduced in extracting the frequency 

index from the frequency domain plot, but it is evident that due to the complex multi-

dimensional nature of waveform propagation, this frequency feature method needs 

further investigation.  

 

8.1.1 Applications 

The non-invasive measurement of wear has a wealth of applications spanning across 

a wide range of industries. Virtually all dry sliding components and failed lubricated 

contacts are subject to wear and currently there are very few tools available to help 

manage this process. When machinery has to be stopped and potentially 

disassembled to carry out the wear measurements, the ultrasonic method would be 

applicable and will often quickly provide a return on the investment. Furthermore if 

wear leads to costly failure, the use of the proposed methods as an alarm system 

would be of great benefit. The fact that the systems are often completely non-

invasive and retro-fittable means integrating them into active mechanical systems is 

a relatively simple process.   
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Having a constant, real-time wear measurement makes it possible to relate wear to 

the operating parameters. The following are some example applications for the 

technology: 

 

 Tribometers 

 Engine piston rings and liners 

 Engine valve and valve seats 

 Mechanical seals 

 Journal bearings 

 Cams and followers 

 Cutting tools 

 Bushings and gears 

 Conveyor chutes 

 

8.1.2 Limitations 

The wear measurement technique is highly dependent on temperature as the both the 

acoustic velocity and thermal expansion affects the time-of-flight measurements. 

There are numerous ways to compensate for these effects, but an understanding of 

what is happening is crucial to select the most appropriate solution. The referencing 

method assumed a linear thermal gradient which would have introduced some error. 

Friction causes flash temperatures at the interface in the region of 200 ºC – 250 °C 

and this heat will propagate throughout the component, see Stackiowack & Batchelor 

[2005]. By using a more representative thermal gradient, these errors would be 

reduced.  

 

The component being measured must be able to support a sound wave or the 

techniques cannot be applied. By using lower frequency transducers, the method can 

be applied to highly attenuative materials such as cast iron and some polymers. The 

components may have to be modified in order to position the transducer is such a 

way that it can generate a signal and sense the reflected signal. Some of the 

erroneous results from the frequency feature method have shown that further 
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investigation is needed in order to understand the multi-dimensional effects that 

subsurface defects have on wave propagation. 

 

8.1.3 Further Work 

Equation 4-2 assumes a linear thermal gradient, in reality this is not the case and will 

introduce some error in the measurement. A more complex model using a more 

realistic thermal gradient could be introduced. A more robust timing measurement 

could be introduced to make the measurement less dependent on operator skill, see 

Section 2.2.1. There is a great deal of work that could be done to investigate the 

optimum reference feature profile. 

 

8.2 Contact Measurements 

The ultrasonic contact pressure measurement technique was applied to a metal-to-

metal seal. The seal was based on the design of subsea pipe end-fittings. A number 

of different ultrasonic sensor types were mounted on the external surface of the 

simplified component that was positioned in such a way to make the ultrasonic 

pressure waves reflect off the contacting interface and return to the same sensor. The 

large end fitting body was forced onto the lower assembly using an axial loading rig 

which swaged the seal ring. The results from the ultrasonic measurements were in 

good agreement with the FE predictions and thus provided validation for the model.  

 

The measurement technique was then applied to an actual end fitting assembly 

modified to hold internal pressure. The aim of this work was to see what effect 

internal pressure had on the sealing interface. The seal ring was swaged by tightening 

the bolts before the rig could then be built up to support an internal pressure. The 

time gap between the measurement of the initial swaging and the pressure test meant 

that a single reference measurement taken before assembly had to be used throughout 

the whole test. This required the use of a permanently embedded ultrasonic array  

transducer and temperature compensation techniques involving a separate channel to 

be used to account for any environmental changes that could occur. The swaging 

results obtained were in agreement with the previous experiment, but unfortunately 
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part of the contact was outside of the measurement window. The sensors detected a 

change in shape of the pressure profile during internal pressurisation and the results 

showed the design was not pressure energised. This was as expected from the FE 

model. The necessary steps to use the technique as a tool for manufacturing quality 

control have been discussed. 

 

The technique was then applied to analyse the railroad vehicle wheel/rail interface. 

Initially a two-dimensional scanning system was used to successfully validate a 

FASTSIM model. A low cost, high channel count ultrasonic array system was then 

developed in order to measure dynamic contact patch evolution of a rolling wheel on 

a rail. The array transducer was mounted in the head of a small section or rail, the 

wheel was manually loaded onto the rail and then traversed across the rail face 

repeating the loading cycle at 1 mm increments. From this, a contact patch 

measurement was creating by stacking the linear contact pressure scans up next to 

one another. The results were in agreement with the measurement using a pressure 

sensitive film. 

 

The technique was tested with a rolling ball-on-flat contact. The results proved the 

method successful with this simplified arrangement. A full-scale wheel/rail rig was 

employed to simulate a railroad vehicle wheel rolling on a rail. The array transducer 

was again mounted in the rail head and the wheel rolled over the surface. The 

measurements were in agreement with the statically loaded pressure sensitive film. 

Modification of the rail in such a way would not be allowed in the active rail network 

so other routes have been discussed. 

 

8.2.1 Applications 

The non-invasive measurement of contact area and pressure has numerous 

applications across most engineering industries. The main applications are research 

and condition monitoring. In any application where a high contact pressure is critical, 

an actual measurement of the interface can confirm and validate calculations and 

models that would otherwise carry associated risks. With this knowledge, factors of 
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safety can be significantly reduced saving costs without jeopardising reliability. With 

a non-invasive empirical measurement technique such as this, engineers are able to 

design far more complicated components and systems that would not be possible if 

the design has to rely on calculations and models. The associated factors of safety 

due to compound errors could make the design unfeasible from cost and size 

restrictions. 

 

In terms of monitoring contacts, there are a number of applications in which a 

constant non-invasive measurement of contact pressure would be valuable. In any 

sealing system where failure would be catastrophic, a constant measurement of the 

contact pressure could be used to prevent failure by automatically shutting the 

system down is the pressure drops. With real-time knowledge of the contact area and 

pressure of critical interfaces, it is possible to push machinery to its limits to 

maximise productivity without the risk of failure. 

 

8.2.2 Limitations 

The position of the sensors is critical to the success of the measurement. To be able 

to reflect the sound wave off the interface at the exact point of interest, care must be 

taken when positioning the transducer. This might require modification of the 

component making it no-longer a non-invasive technique. Some materials cannot 

support a pressure wave (highly attenuative etc.), in which case it would not be 

possible to use the ultrasonic method.  

 

To obtain reliable empirical contact pressure measurements, a calibration procedure 

is required. This procedure requires the use of the same materials in question with 

the same surface finish. When loading finished components for the first time, the 

surfaces experience plastic deformation. This fundamentally changes the structure of 

the interface and therefore the calibration must replicate this for the relationship 

between contact pressure and interfacial stiffness for it to be valid. This has been 

investigated by Dwyer-Joyce et al. [2001] who identified a shakedown effect in 

subsequent loading cycles. Other errors can be introduced if the contact becomes 

contaminated. This work in this thesis has concentrated on dry solid-solid contact. 

When a lubricant is introduced into the interface, it results in a mixture of two 



151 

 

stiffness regimes; solid/solid contact and solid/liquid/solid contact. This means that 

the reflection coefficient is a mixture of both regimes and therefore it is not possible 

to simply perform a calibration procedure to relate interfacial stiffness to contact 

pressure. 

 

It is imperative that the measurement window is smaller than the contact patch being 

measured. If the measurement window contains partial contact, the result is often an 

increase in the reflected amplitude, resulting in a reflection coefficient greater than 

one. Previous work has not been able to explain this phenomenon so the results when 

this happens have thus far been ignored as they result in a negative stiffness. 

 

8.2.3 Further Work 

The author was not able to investigate the sensitivity of the measurement to the 

changes in surface finish from the sliding. In doing so, it would be possible to 

accurately calculate the errors associated and therefore the accuracy of the technique. 

Investigations using smaller active elements would yield higher accuracy results, as 

would the use of equipment with a higher pulse repetition frequency for rolling 

contacts. For the railroad vehicle wheel/rail contact measurement, it would be 

interesting to explore the options suggested to measure contact pressure, position and 

shape without any modifications of the rail. Further work investigating the mixture 

of solid/solid and solid/liquid stiffness regimes could enable the method to be used in 

a wider range of applications. Further work investigating an increase in reflection 

coefficient above 1 would be of great interest. 

 

During the author’s research, a number of other experimental investigations were 

conducted that were not presented in this thesis. These included fluid film, wear and 

contact pressure measurements on a block-on-ring set-up, measurements of stiffness 

measurements in a fretting contact, see Mulvihill et al. [2013], and numerous 

investigations into the contact pressure of different bolted joint contacts under 

dynamic conditions, see Marshall et al. [2012]. 
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8.3 Conclusions 

The following conclusions have been drawn from this body of work. 

 Studies in recent years have shown the capability of ultrasonic reflectometry 

in the characterisation of inaccessible interfacial phenomena such as contact 

pressures, contact areas and lubricant film thickness measurements. 

 

 For simple geometries, piezoelectric elements can be used to measure such 

phenomena with confidence that the measurement area is the same size as the 

element. 

 

 For complex geometries, the time-domain response must be studied to ensure 

the correct echo is being processed. 

 

 Care must be taken when selecting ultrasonic apparatus to ensure the 

minimum requirements are satisfied. 

 

 Coupling between the ultrasonic transducer is an important parameter. 

Bonding the transducer in place allows for a single reference measurement to 

be valid over a long period of time making it a suitable option for condition 

monitoring. 

 

 Using ultrasonic array systems can result in line scans that traditionally 

would have required an immersion system. 

 

 It is possible to use industrial array transducers with low channel count 

ultrasonic systems by introducing a multiplexer. 

 

 Low cost permanently installed array systems allow linear measurements to 

be taken over long periods of time making it a suitable option for condition 

monitoring. 
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 Consideration must be given to factors that may influence the reference 

measurement including temperature, hardware, electrical noise and material 

stress. 

 

 The ultrasonic time-of-flight method of thickness gauging is very sensitive to 

temperature. It is possible to use this method to measure a change in 

thickness and thus wear in real-time but referencing must take place to 

account for temperature effects. 

 

 There are numerous industrial applications for a non-invasive wear 

measurement system. 

 

 The resonant dip method shows potential for the measurement of wear by 

placing a frequency feature near the running surface of the component. 

Further work needs to be done to understand the wave propagation as it 

reaches the frequency feature to develop optimal designs that result in clear 

dips in the frequency response. 

 

 A permanently embedded ultrasonic array is capable of measuring and 

monitoring the contact pressure profile of a metal to metal seal during 

swaging and during the pressurising of the internal sealed system. 

 

 An ultrasonic immersion transducer and scanning system is capable of 

measuring the 2D contact pressure distribution of a contact. This was applied 

to a modified rail vehicle wheel and rail section.  

 

 A commercial ultrasonic array is capable of measuring the contact pressure 

profile of a rolling contact. This was applied to a simplified rolling contact 

and the interface between a rail vehicle wheel and rail.  
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