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This paper considers solving a biobjective urban transit routing problem with a genetic algorithm approach. The objectives are to
minimize the passengers’ and operators’ costs where the quality of the route sets is evaluated by a set of parameters. The proposed
algorithm employs an adding-node procedure which helps in converting an infeasible solution to a feasible solution. A simple
yet effective route crossover operator is proposed by utilizing a set of feasibility criteria to reduce the possibility of producing an
infeasible network. The computational results from Mandl’s benchmark problems are compared with other published results in the
literature and the computational experiments show that the proposed algorithm performs better than the previous best published

results in most cases.

1. Introduction

The urban transit network design problem (UTNDP) is
concerned with searching for a set of routes and schedules
according to the predefined stations and passengers’ demand
in each station for an urban public transport system. The
UTNDP is a complex NP-hard problem where a lot of
criteria need to be met in order to maximize the passengers’
satisfaction and at the same time minimize the cost of the
service provider [1].

Chakroborty and Dwivedi [2] divided the UTNDP into
two major components, namely, the urban transit routing
problem (UTRP) and the urban transit scheduling problem
(UTSP). In general, the UTRP involves searching for an
efficient transit route (e.g., bus routes) on existing road
networks and nodes, with predefined pick-up/drop-of points
(e.g., bus stops), following certain constraints. In a transit
network, adjacent nodes are linked by an arc or edge, and
a route will consist of several nodes connected by edges to
form a path. One or more such routes can be combined
to form a route set, and when all the routes in a route set
are superimposed, this will form a route network. After an

efficient route network has been found, the UTSP will act
to find an efficient schedule for that route set. Due to the
complexity of the UTNDP, Chakroborty and Dwivedi [2]
stated that solving both the transit routing and scheduling
concurrently is not felt to be possible. Therefore, the UTRP
and UTSP are usually implemented sequentially with the
UTRP coming before the UTSP. More recently, Fan et al.
[3] stated in their work that the UTRP is a highly complex
multiconstrained problem where the evaluation route sets
can be very time-consuming and challenging as well. Many
potential solutions were rejected due to infeasibility.

In this paper, we consider a biobjective UTRP with the
aim of designing an efficient route set from the passengers’
and operators’ point of view. Often in reality, a routing prob-
lem involves both parties: the passenger and the operator.
As much as a passenger would love to travel with as little
cost as possible, an operator also prefers to operate a public
transport company with minimum cost in order to gain
higher profit. However, passengers and the operator often
have contradicting objective functions. The attempt to reduce
the cost for the operator will simultaneously increase the
cost for the passenger, so the other way round. In the UTRP,



there is no single solution that best represents both parties.
In this case, the optimal solution is called a Pareto optimal
solution where there exists no other feasible solution which
would decrease some objectives (in a minimization problem)
without causing a simultaneous increase in at least one other
objective [4].

We address the biobjective UTRP using a genetic algo-
rithm (GA) approach. In the proposed algorithm, the initial
population is being initialized with the help of Floyd’s
algorithm [5]. Every individual must go through four feasible
criteria in order to ensure the feasibility of each individual.
For the genetic operators, route crossover and identical-
point mutation are proposed. The biobjective UTRP is solved
sequentially by switching the objective function after the first
objective has converged. Each of the contributions will be
explained later in the paper.

In the following section, the literature review of the
UTRP is given, followed by Section 3 where we explain the
objective functions and constraints. Our proposed GA will
be discussed in Section 4. The computational results and
discussions will be presented in Section 5. Finally, the paper
ends with a conclusion in Section 6.

2. Literature Review

There are many approaches for solving the UTRP. It would not
be possible to cover the literature involved for the scope of this
paper. Thus, this section will focus mainly on the use of the
evolutionary algorithms, particularly GA for multiobjective
UTRP.

Pattnaik et al. [6] solved the multiobjective problem by
minimizing both passengers’ and operators’ costs using a GA.
They designed the algorithm by involving route configuration
and also associated frequencies to achieve the desired objec-
tives. The proposed algorithm is implemented in two phases.
First, a set of candidate routes that are going to compete to
be the optimum solution is generated by a candidate route set
generation algorithm (CRGA). Then, the optimum solution
is selected through the GA. In the second phase, the route
evaluation module is used to evaluate the objective function
value. Two models based on the GA were developed: the
fixed string length coded model and the variable string length
coded model. They applied the algorithm to a transportation
network in part of the Madras Metropolitan City, South India,
with 25 nodes and 39 links.

In 2001, Chien et al. [7] presented two methods, a GA
and an exhaustive search algorithm, to optimize the biob-
jective UTRP and its operating headway while considering
intersection delays and realistic street patterns. The aim of
Bielli et al. [8] is to improve the old performance of a bus
system network by trying to reduce the average travel time
of the passengers and the management costs through the
reduction of the number of vehicles employed in the network.
In the first step, they implement a simple GA. A classic
assignment algorithm is used to evaluate the fitness function.
The assignment phase is when the improvement of the results
occurs and where a neural network approach will be used to
compare the results. Finally, the cumulative GA adopted from
Xiong and Schneider [9] is performed.
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Later in 2002, Bielli et al. [10] solved the biobjective
problem that involved satistfying both the demand of the
passengers and the offer of the transport by using GA. Their
goal was to design a bus route network associated with
frequencies. The proposed algorithm is then applied to a
small city located in the middle-north of Italy. In the same
year, Fusco et al. [11] minimized the overall system costs of
the UTNDP. They attempted to design a transit network that
consists of a set of routes and the associated frequencies.
The designer’s own knowledge was also adopted into the
algorithm. The proposed GA combines the transit network
design methods developed by Baaj and Mahmassani [12] and
Pattnaik et al. [6].

Tom and Mohan [13] searched for a set of routes and
the associated frequencies with an objective to minimize the
operating cost and the passenger total travel time. In the
paper, they separated the model into two distinct phases.
Candidate route generation algorithm is used to generate a
large set of candidate routes in phase one. Phase two involved
a GA to select the solution route set. The proposed GA is
then validated on a network which is part of the Chennai
Metropolitan City, South India, with 75 nodes and 125 links.

Ngamchai and Lovell [14] have designed seven different
genetic operators for their GA. The objective of the paper
was to demonstrate the efficiency of the problem-specific
genetic operators in optimizing the UTRP which include
passengers’ cost and operators’ cost incorporating frequen-
cies settings for each route. The proposed model consists of
three major components: (1) route generation algorithm to
construct a feasible initial population, (2) route evaluation
algorithm where the overall cost is calculated, and (3) route
improvement algorithm where modification is applied to the
current route set by using the seven genetic operators with the
hope to discover a better route set. The network configuration
from Pattnaik et al. [6] is used to measure the performance of
this proposed model.

Fan et al. [3] initialize their route set by first constructing
a random route. Then, they chose to start the first node
of the subsequent routes from the set of nodes present in
the previously constructed routes. For the next node, the
procedure will favor nodes that have not appear in the
route set. This procedure is to minimize the probability of
getting an infeasible route set. However, if a route set is
not feasible, the make-small-change procedure is utilized
repeatedly until a feasible route set is found. They presented
the simple multiobjective optimization algorithm to solve the
multiobjective UTRP. The scheme is based on the SEAMO
algorithm proposed by Valenzuela [15] and Mumford [16],
but without the crossover operator.

Szeto and Wu [17] solved a bus routing design problem
with the aim to reduce the number of transfers and the total
travel time of passengers while simultaneously considering
the frequencies setting. In the paper, a GA is hybridized
with a neighborhood heuristic search in order to tackle the
frequency setting problem. The proposed model is applied to
a unique route network problem where the routes need to be
connected from a suburban area to an urban area in Tin Shui
Wai, Hong Kong.
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Most recently, Mumford [18] has presented some new
sophisticated problem-specific heuristics and genetic oper-
ators for the UTRP in a multiobjective evolutionary frame-
work. The approach balances passenger and operator costs.
Computational results on Mandl’s benchmark have outper-
formed the previous best published results by Fan et al. [3] for
the passenger costs and equaled the lower bound for operator
costs.

3. The Urban Transit Routing Problem

The UTRP involves determining a set of efficient transit
routes that meet the requirements of both passengers and
the operator. For simplicity purposes, in this paper, only
symmetrical transit networks are considered, in which the
travel time, distance, and demand between two nodes are the
same regardless of the travel direction. The basic problem
representation given by Fan et al. [3] is as follows.

The transit network is represented by an undirected graph
G(V, E) where the nodes V = {x,,...,x,} represent access
points (e.g., bus stops) and the edges E = {e;,...,e,}
represent direct transport links between two access points. A
route can then be represented by a path in the transit network,

ra:(xil,...,xiq), where i, € {1,...,n}, @

and a solution to the UTRP is specified by a route set:
R={r,:1<a<N}. (2)

A route network is associated with a route set to be the
subgraph of the transit network containing precisely those
edges that appear in at least one route of the route set.

The efficiency of public transport from the passengers’
point of view includes a low travel time from the source to
the destination and the number of transfers involved being as
low as possible or no transfer at all. This is because transfer
waiting time will eventually increase the travel time of the
passengers. It is a difficult task to optimize the transit network
due to the complexity of the transit travel time characteristics
which include vehicle travel time, waiting time, transfer time,
and transfer penalties. From the operators’ point of view,
however, the objective is to minimize the cost in operating the
service to make as much profit as possible. It is a challenge
in the UTNDP to find an equilibrium between these two
conflicting objectives, not forgetting other expectations for
an efficient public transport system from other points of view
such as the local government and the community. Therefore,
the definition for efficiency might be different according to
various points of view.

According to Chakroborty and Dwivedi [2], the aim of
the UTRP is to serve transit demand efficiently. An efficient
route set is one that satisfies the following.

(1) The route set should satisfy all of the transit demand.

(2) The route set should satisfy the transit demand of
passengers with the percentage of demand satisfied
with zero transfer to be as high as possible.

(3) The route set should offer an average travel time per
transit to be as low as possible.

From the passengers’ point of view, the objective function
is the total travel time made by all the passengers that travel
from their source to their respective destination (Fan et al.

(3]):

Z dijtijs (3)

Minimize Cp =

where d;; is travel demand between node i and node jand t;;
is the shortest travel time between node i and node j.

From the operators’ perspective, the running cost in
operating the public transport is an important consideration.
Operators aim to minimize the cost in operating the service.
Operators will try to minimize the route length so as to
reduce the fuel costs and also reduce the mileage of the public
transport which directly affect the maintenance frequencies
of the public transport. Thus, it is clear that the total route
length of a public transport system is an important aspect for
the operator’s cost. The objective function from the operators’
perspective is proposed by Fan et al. [3]:

r
Minimize Cg = ) L, (4)
=1

where r is total number of routes in the route set and L; is
length of route [.

Both of the objective functions are subject to the following
constraints.

(1) The number of nodes in a route must have a minimum
number of two nodes and must not exceed the
predefined maximum number of nodes set by user in
aroute.

(2) There must be exactly x number of routes in a route
set which is predefined by the user.

(3) Eachroute in the route set is free from repeated nodes.
This is to avoid backtracks and cycles of a route.

(4) All nodes must be included in the route set in order
to form a complete route set.

(5) The routes in the route set are connected to each other.

(6) The exact same route cannot be repeated in a single
route set.

(7) The demand, travel time, and distance matrices are
symmetrical, and we assume that a vehicle will travel
back and forth along the same route, reversing its
direction each time it reaches a terminal node.

(8) The demand level remains the same throughout the
period of study.

(9) The transfer penalty (representing the inconvenience
of moving from one vehicle to another) is set at 5
minutes.

(10) The vehicle frequency/headway is not considered, but
assume that there are sufficient vehicles and capacity,
and total travel time consists only of in-vehicle transit
time plus transfer penalties at 5 minutes for each
transfer.



(11) Passenger choice of routes is based on the shortest
travel time.

In the literature of the UTRP, the problem has been char-
acterized with different optimization criteria and constraints.
However, the following parameters have been adopted by
many researchers to assess the quality of the route set (Mandl
[19], Baaj and Mahmassani [20], Kidwai [21], Chakroborty
and Dwivedi [2], and Fan and Mumford [22]):

d,: percentage of demand satisfied without any transfers,
d,: percentage of demand satisfied with one transfer,
d,: percentage of demand satisfied with two transfers,

: percentage of demand unsatisfied (we assume that
more than two transfers per journey are unaccept-
able),

ATT: average travel time in minutes per transit user incor-
porates transfer penalty of 5 minutes per transfer.

These parameters will be used to measure the quality of the
final biobjective results produced by the proposed algorithm.

4. Genetic Algorithm

The proposed GA starts with an initial set of solutions
called population. Each solution in the population is called
an individual which is initialized with the help of Floyd’s
algorithm. Every individual will need to go through four
feasible criteria for the feasibility purpose. In each generation,
individuals will be selected to perform the genetic opera-
tions of crossover and mutation. Inspired by Chakroborty
and Dwivedi [2] and Ngamchai and Lovell [14], the route
crossover and identical-point mutation are introduced. The
steady-state replacement strategy is adopted where a new
generation is formed by selecting a subset of parents and
offspring according to their fitness values and by rejecting
others to keep the population size constant. To solve the
biobjective UTRP, both of the objectives are implemented
sequentially by using the same set of initial population. When
all the chromosomes have converged, it indicates that the
implementation has reached the stopping criteria. The final
solution hopefully represents the optimal solution or a near-
optimal solution to the problem. In the remainder of this
section, each GA component of the proposed algorithm is
explained in detail.

4.1. Initialization. A complete route set consists of more than
one route forming from a list of nodes. Thus, to initialize the
population, the nodes are listed in the order in which they
are visited by using one dimensional integer representation
array where each route is separated by a “0”. For example, if
the integer representation of a route set is

1 3 40 2 6 50,

then there are two routes in the route set where the first route
will first visit node 1, followed by node 3 then finally node 4
before returning to nodes 3 and 1. This can be interpreted by
using the notations 1-3-4 and 2-6-5 for the first and second
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routes, respectively. Note that a feasible network is made
up by a minimum number of two nodes in a route and a
predefined number of maximum nodes in a route by the user.
To initialize an individual, firstly, two random nodes will
be generated. The first node represents the starting point
while the other one represents the destination point of the
route. Floyd’s algorithm [5] is embedded to help find the
shortest distance between two randomly generated nodes if
both of the nodes are not connected to each other. The process
is repeated until the predefined number of routes has been
reached to form a partial route set. Following this, a complete
route set can be found by executing the feasibility check in
order to ensure the feasibility of the route set. The proposed
GA will initialize a fixed number of population which is, in
our case, 200 individuals and the population size (P,,,) is
kept constant throughout the implementation.
4.2. Feasible Criteria. The feasibility check is important in
generating a feasible initial population before proceeding to
the genetic operations. There are four criteria that need to
be fulfilled by the route set in order to generate a feasible
solution.

(I) A Node Can Never Be Repeated Twice in a Route but Can
Be Repeated in The Network. As mentioned before, during
the chromosome initialization stage, two random numbers
are generated; the first number represents the first node of
the route and the second number represents the last node
of the route. If both nodes are not connected to each other,
then Floyd’s algorithm [5] is used to find the shortest distance
between the two nodes. The steps are repeated until the
required number of routes reached. This way actually enables
us to produce a route without a repeated node. Unfortunately,
a problem can occasionally arise when the length of the route
is longer than the predefined maximum nodes allowed in
a route causing the route to be infeasible. Hence, in this
situation, another new route will be selected to replace this
infeasible route.

(I1) A Complete Network Allows No Missing Node. The missing
node refers to the node that cannot be found in the network.
This is when the adding-node procedure is introduced. The
idea of this procedure is to add the missing node into
the network without violating criteria I. As mentioned,
Floyd’s algorithm is used to construct a partial network. For
example, if node x is missing from the partial network of
1 2 3 5 0 5 6 0with the maximum number of 4
nodes in each route, adding-node procedure will check if the
first route of 1-2-3-5 reaches the maximum number of nodes
which it has, then it will proceed to check the next route, and
since the second route 5-6 has less than 4 nodes, x will first be
added to the first position of the route which is x-5-6. Floyd’s
algorithm will find the shortest distance between node x and
node 5 if node x does not directly link to node 5. At this
stage, however, if the network violates criteria I, node x will
be removed from the current position and inserted into the
next position. In this case, 5-x-6 and the steps will be repeated
until the missing node is added to the network without
violating criteria I. However, if the missing node could not be
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TABLE 1: Route crossover.

Parent 1: Parent 2:
(123505604670) (34670134023570)
Crossover route: 2 Crossover route: 1
Offspring 1: Offspring 2:
(12350346704670) (560134023570)

inserted in any position in the network, the network will be
discarded and replaced with a new network. The conceptual
overview of the procedure is shown in Figure 1.

(III) The Routes in the Network Must Connect to Each Other.
For example, if the maximum number of nodes in each route
is set to 4 and the number of routes in the network is set to 3
routes (this parameter will be used for the rest of the examples
given later), considering the graph in Figure 2(a), the routes
in the network are

1235056 04 6 7 0

Note that the nodes of network in Figure 2(a) are connected
to each other. This means that passengers can travel from
any source to any destination, whereas the network for
Figure 2(b) is

1 25 0 4 3 6 0 4 6 7 0.

It represents an unconnected network where some nodes in
the network are not linked to each other. Note that the route 1-
2-5is not connected to the rest of the route. Therefore, some of
the passengers are unable to travel to their destination. Hence,
if an unconnected network is found, a new network will be
constructed to replace the unconnected network.

(IV) The Exactly Same Route Cannot Be Repeated Twice in a
Single Network. If there is any, that network will be deleted
and replaced by a new feasible network. Note that, since we
are dealing with a symmetric network, theroutel 2 3 0
isequalto3 2 1 0.

4.3. Fitness Evaluation. During the Fitness evaluation, the
fitness value will determine the quality of the solutions and
enables them to be compared. Figure 3 shows an example of a
transit network with the distance (in minutes) stated between
two nodes, whereas Figure 4 represents a feasible route set
with the number of 4 routes and a maximum of 5 nodes in
a route. Notice the difference between the route set and the
original transit network where some links from the transit
network may be absent in the route set. Therefore, in the
fitness evaluation function, every route set will go through
Dijkstra’s algorithm [23] to calculate the shortest path of the
route set from each source to each destination.

We assume that every passenger would want to travel
through the shortest path. However, in a route set, there might
be a possibility of having more than one route sharing the
same shortest distance. For example, in Figure 4, to travel
from node 2 to node 6, the shortest distance is 9 and a
passenger may travel through nodes 2-1-3-4-6 or 2-3-4-6. A
five-minute penalty is imposed each time a passenger makes

a transfer. Notice that the first route 2-1-3-4-6 requires two
transfers with the total travel time of 19 minutes while the
second route 2-3-4-6 requires only one transfer making the
total travel time of 14 minutes. This clearly shows that the
passenger would prefer the shortest distance with less transfer
with lesser total travel time.

Another situation may arise where, in some cases, the
passengers may able to travel with a lower travel time with
less number of transfer(s) or no transfer at all. By using the
example above, if passengers take account of the transfer
waiting time when choosing their travel path, the travel path
of 2-3-5-7-6 can lead to a lower travel time of 13 minutes
with no transfer at all. Fan and Mumford [22] justified
that when passengers take account of transfer waiting times
when choosing their travel path, it gives results that are at
least as good (and probably better) as those when assuming
passengers ignore transfer waiting times when choosing their
travel paths.

4.4. Selection. In every generation, a proportion of pop-
ulation will be selected to undergo genetic operations to
breed a new generation. Based on the initial investigations
on the selection methods between the roulette wheel, rank,
probabilistic binary tournament, and the sexual selections,
we adopted the probabilistic binary tournament selection
proposed by Deb and Goldberg [24] in the GA. First, a pair of
individuals are randomly chosen from the population. Next,
a probability will decide whether the fitter individual or the
less fitter individual will be chosen to be the parent. Both of
the individuals are then returned to the population and may
be selected again. The process is repeatedly performed until
half of the P, pairs of parents have been selected.

4.5. Crossover. In the crossover phase, GA attempts to
exchange portions of two parents to generate an offspring.
In this study, route crossover inspired by Chakroborty and
Dwivedi [2] is proposed where a random route is selected
from each parent. Substrings between the chosen routes
swap their position between the two parents, rendering two
offspring. Table 1 shows an example of the route crossover
between two parents. Route 2 from parent 1 crossed with
the substrings of route 1 from parent 2 rendering offspring
1 and 2. Due to the highly complex multiconstrained UTRP,
route crossover is able to reduce the possibility of getting
an infeasible route set by avoiding infeasibility for criteria
I in Section 4.2, and at the same time, search for a better
solution with a higher fitness value. However, if the two
offspring violated criteria II, III, or IV in Section 4.2, instead
of replacing the route set, this genetic operator will be
repeated by randomly searching for another route from each
parent until two feasible offspring are found. Even so, if none
of the possibilities are able to produce two feasible offspring,
two new parents are then selected to run the route crossover
again. This process is repeated until two feasible offspring are
found.

Note that the route crossover operator will only be applied
to the selected parents with a given crossover probability.
When the route crossover is not applied, the parents will be
duplicate directly to be the offspring.
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| Construct a partial route set using Floyd’s algorithm

Check if a

missing node is
found

Check if the 1st
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Check if the next
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maximum No
number of nodes Add the missing node to the
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lgorith
agoritm to its neighbor

Check if the
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Check if the
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l Yes

Check if the missing

the route set

Discard the

route set

node reached the
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route

Remove the missing node from
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Route set fulfilled

o into the next position
criteria II

End

FIGURE 1: Adding-node procedure.
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2
1 3 5
4 6 7
— 1-2-3-5
— 56
4-6-7
(a)
2
1 3 5
4 6 [— 7
—— 1-2-5
— 4-6-7
4-3-6

(®)

FIGURE 2: (a) A connected-7-node network. (b) An unconnected-7-
node network.

TABLE 2: Identical-point mutation.

Offspring 2:
(560134023570)

Chosen node: 3

Offspring 2:
(560234013570)

4.6. Mutation. The mutation operator helps in maintaining
the population diversity by avoiding the population from
being trapped in the local optimum. In this study, an
identical-point mutation operator based on the modified
version of route-crossover genetic operator from Ngamchai
and Lovell [14] is proposed. In this mutation, a random
node that consists of at least two or more identical nodes
in the route set is chosen. The two routes that consist of

7
2
1 4
3
1 3 5
2 2
5
3 4
4 6
3 3 7
FIGURE 3: Transit Network.
2
1 3 5
4 6 7
— 2-3-5-7-6 — 21
— 3-4-6 — 1-3-5-7
FIGURE 4: Route set.
1
9
2 3
. | | 5
4 6
12 8 7
10
11 14
13

FIGURE 5: Mandl’s Swiss road network.

the random node are chosen. Then, the substrings before
the random node in the chosen routes swap their position
between two routes to create a new offspring. This operator is
best explained by example given in Table 2. The chosen node
is 3 and it appears in route 2 and route 3. All nodes before
node 3 in both of the routes are then swapped position-wise,
not forgetting that the new offspring needs to be checked
for the feasibility. For an infeasible offspring, instead of
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Route 4 Route 6

Route 7 Route 8
(c) (d)

FIGURE 6: The best route sets for passenger.

Route 4 Route 6

Route 7 Route 8

() (d)

FIGURE 7: The best route sets for operator.



Journal of Applied Mathematics

14.5
141,
13.5 1
13 ;

. 1251
12 1
11.5 4
11 -
10.5
10

60 76 8b 9b 160 liO léO léO 140 150
Co
Nondominated (Pareto Frontier) solutions for case I
()
14 -
13.5 1
13 1
12.5 1
12
11.5 4
11 1
10.5 1
10 1
9.5

S

60 80
Co
Nondominated (Pareto Frontier) solutions for case III

(c)

100 120 140 160 180 200 220 240 260

13.5 1
13 1
12.5 1
12 1
11.5 1
11 A
10.5 1
10 4
9.5

60 80 100 120 140 160 180 200 220 240

Nondominated (Pareto Frontier) solutions for case II

(®)
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Nondominated (Pareto Frontier) solutions for case IV

(d)

FIGURE 8: Nondominated (Pareto Optimum) solutions for cases I-IV.

replacing it with a new route for criteria I and replacing it
with a new route set for criteria II, III, and IV as stated in
Section 4.2, the steps in identical-point mutation are repeated
with a different random node till a feasible offspring is found.
However, if all of the random nodes are unable to produce a
feasible offspring, then a new offspring is chosen to perform
the mutation. It is important to mention that the mutation
operation will only occur to the selected offspring based on
the given probability.

4.7. Replacement Strategy. Replacement strategy is executed
at the end of each generation where the parent population
will be replaced by the offspring population. In the proposed
GA, the steady-state replacement strategy is adopted where 10
percent of the best offspring is selected to replace 10 percent
of the worst parent in order to keep the population size
constant in every generation during implementation. The
proposed algorithm terminates when all the individuals in the
population converged.

5. Results and Discussions

From the literature review, we discovered that most of
the papers have adopted the classical approaches for the

multiobjective UTRP. Pattnaik et al. [6], Tom and Mohan
[13], Ngamchai and Lovell [14], and Fan and Machemehl
[1] applied the weighted sum method in order to obtain a
range of nondominated solutions. Although the weighted
sum method is able to provide good solutions, the difficulties
of this method are to determine the suitable values for the
weights. In addition, it has nonuniformity in the Pareto-
optimal solutions and the inability to search for some Pareto-
optimal solutions [25].

In the recent years, Fan et al. [3] and Mumford [18]
addressed the UTRP using the evolutionary multi-objective
approach. They searched for a set of Pareto-optimal solutions,
and the best solution for passenger and operator was chosen
from the set. By doing this, decision-making becomes easier
and less subjective. In this study, our proposed algorithm will
be tested on Mandl’s benchmark data set which contains 15
nodes and 21 links as shown in Figure 5.

Four cases will be tested, each with different number of
routes in the route set. In case I, the number of routes in
the route set is 4, followed by cases II, III, and IV with 6, 7,
and 8 number of routes, respectively, in the route set with a
condition of a maximum number of 8 nodes in each route.
To the best of our knowledge, Fan et al. [3] and Mumford
[18] are the only researchers in the literature who tested their
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TABLE 3: The best results obtained by Fan et al. [3].
Case  Number of routes Parameters rglfltl;efs()tr The best routes for rg?SItlzefsotr The best routes for
passenger passenger operator operator
dy 90.88 14-13-11-10-8-6-4-5 61.08 2-3-6-8-15-7-10-11
d, 8.35 2-4-12-11-10-7-15-9 36.61 15-9
I 4 d, 0.77 11-10-8-6-3-2-1 231 14-13-11-12
dyn 0.00 5-2-3-6-15-7-10 0.00 5-4-2-1
ATT 10.65 13.88
Co 126 63
dy 93.19 13-11-10-8-6-3-2-1 66.09 2-3-6-8-15-7-10
d, 6.23 7-15-6-3-2-4-5 30.38 9-15
I 6 d, 0.58 10-8-6-4-5 353 2-1
dyn 0.00 13-14-10-11-12-4-2-1 0.00 14-13-11-10
ATT 10.46 10-7-15-9 13.34 2-4-5
Co 148 12-11-13-14 63 11-12
dy 92.55 7-15-8 65.64 9-15
d, 6.68 14-13-11-12-4-2-3 26.60 11-12
- , d, 0.77 12-11-10-7-15-9 8.61 4-5
dyn 0.00 14-10-7-15-6-4-5 0.00 14-13-11
ATT 10.44 10-8-6-4-5-2-3 13.54 2-4
Co 166 1-2-3-6-8-10-11-13 63 1-2-3-6-8-15-7-10
4-2-1 11-10
dy 91.33 2-4-12-11-13-14-10 59.92 4-2
d, 8.67 12-11-13-14-10-7-15-6 21.37 3-2
d, 0.00 5-2-3-6-8-15-9 18.11 2-1
v 8 din 0.00 1-2-3-6-8-10-11-13 0.00 13-11
ATT 10.45 12-11-13-14-10-8-6-4 13.57 4-5
Co 245 4-6-15-9 63 15-9

12-11-10-7-15-6-3-2

5-4-6-8-10-11-13 12-11-10-7-15-8-6-3

13-14

algorithm on the Mandl’s network for the biobjective UTRP.
Therefore, the results provided by Fan et al. [3] and Mumford
[18] will be compared with our computational results to
assess the efficiency of the proposed algorithm in solving the
problem.

Table 3 contains the results published by Fan et al. [3].
However, we notice that some of the values published do not
fit the route sets given. Notice that, from the results published,
the percentage of passengers’ demand satisfied with more
than two transfers (i.e., demand unsatisfied) in all of the four
cases remains constant at the value of 0.00. We found out
that, especially from the operators’ point of view, some of
the demands of passengers require more than two transfers

to travel from the origin to their destination which leads to
a certain percentage of passengers demand unsatisfied. For
example, Table 4 shows the shortest path of origin node i of
passengers that require more than two transfers to reach their
destination node j for cases II and IV from the operators’
point of view. The nodes in bold indicate the station where
the passenger needs to make a transfer. According to the
best routes published, there is no other possible way that
passengers could travel from node i to node j with no more
than two transfers. Note that Mandl's benchmark data set
is a symmetric network where [4, j] = [j,i]. Therefore, the
demand shown in the Table 4 represents total demand of [4, j]
and [}, 7] and the last column shows the value for d,,. Also
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TABLE 4: Routes and percentage for passengers’ demand unsatisfied from the operators’ point of view for cases II and IV.
Case 4,71 Route Number of transfers Demand dun
[1,12] 1-2-3-6-8-15-7-10-11-12 3 50
11 [4,12] 4-2-3-6-8-15-7-10-11-12 3 50 0.9
[5,12] 5-4-2-3-6-8-15-7-10-11-12 3 30
[9,12] 9-15-7-10-11-12 3 10
[1,9] 1-2-3-6-8-15-9 3 60
[1,13] 1-2-3-6-8-15-7-10-11-13 3 70
[1,14] 1-2-3-6-8-15-7-10-11-13-14 4 0
[2,14] 2-3-6-8-15-7-10-11-13-14 3 10
[4,9] 4-2-3-6-8-15-9 3 30
[4,13] 4-2-3-6-8-15-7-10-11-13 3 20
v [4,14] 4-2-3-6-8-15-7-10-11-13-14 4 10
[5,6] 5-4-2-3-6 3 100
[5,7] 5-4-2-3-6-8-15-7 3 50 4.75
[5.8] 5-4-2-3-6-8 3 50
[5,9] 5-4-2-3-6-8-15-9 4 20
[5,10] 5-4-2-3-6-8-15-7-10 3 240
[5,11] 5-4-2-3-6-8-15-7-10-11 3 40
[5,12] 5-4-2-3-6-8-15-7-10-11-12 3 30
[5,13] 5-4-2-3-6-8-15-7-10-11-13 4 10
[5,14] 5-4-2-3-6-8-15-7-10-11-13-14 5 0
[5,15] 5-4-2-3-6-8-15 3 0
[9,14] 9-15-7-10-11-13-14 3 0
TaBLE 5: Computational results for method 1.
Case CPU time (sec) Generation Objective Results
d, d, d, dun ATT Co
I 6715 327 Passenger 89.84 9.80 0.36 0.00 10.75 131
Operator 67.68 28.13 4.16 0.03 13.83 67
I 101,00 3 Passenger 92.92 6.53 0.55 0.00 10.47 184
Operator 58.66 32.29 7.65 1.39 14.29 69
I 18780 790 Passenger 92.02 7.58 0.40 0.00 10.51 194
Operator 52.10 2748 14.32 6.10 15.58 66
v 618.86 2361 Passenger 91.70 772 0.58 0.00 10.59 212
Operator 50.24 20.65 15.85 13.26 16.59 66
Average 243.70 988 Passenger 91.62 7.91 0.47 0.00 10.58 181
Operator 5717 27.14 10.50 5.19 15.07 67
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TABLE 6: Computational results for method 2.
Case CPU time (sec) Generation Objective Results
d, d, d, dg, ATT Co
I 2333 16 Passenger 88.53 1 0.36 0.00 10.93 126
Operator 72.54 25.27 1.93 0.27 13.14 68
I 4171 145 Passenger 92.92 7.00 0.08 0.00 10.48 175
Operator 66.05 31.20 2.47 0.28 13.36 69
I 50.64 158 Passenger 93.53 6.28 0.19 0.00 10.43 196
Operator 56.81 36.13 6.31 0.75 14.29 67
v 55.56 172 Passenger 94.68 5.29 0.03 0.00 10.32 231
Operator 60.99 27.85 8.72 2.44 14.61 66
Average 42.81 148 Passenger 92.42 742 0.17 0.00 10.54 182
Operator 64.10 30.11 4.86 0.94 13.85 68
TaBLE 7: Comparison of biobjective results of Mandl’s Swiss road network.
Fan et al. [3] Mumford [18] Proposed GA
Case Number of routes  Parameters The best The best The best The best The best The best
results for results for results for results for results for results for
passenger operator passenger operator passenger operator
d, 90.88 61.08 90.43 61.08 91.84 61.08
d, 8.35 36.61 9.57 36.61 8.16 36.61
I 4 d, 0.77 2.31 0.00 2.31 0.00 2.31
dy, 0.00 0.00 0.00 0.00 0.00 0.00
ATT 10.65 13.88 10.57 13.88 10.50 13.88
Co 126 63 149 63 150 63
d, 93.13 65.18 95.38 70.91 96.79 70.91
d, 6.29 30.38 4.56 25.50 3.21 25.50
II 6 d, 0.58 3.53 0.06 2.95 0.00 2.95
dy, 0.00 0.90 0.00 0.64 0.00 0.64
ATT 10.49 13.82 10.27 13.48 10.21 13.48
Co 148 63 221 63 224 63
d, 92.55 64.42 96.47 65.13 98.01 70.65
d, 6.68 26.20 3.34 22.93 1.99 21.13
I 7 d, 0.77 8.16 0.19 10.34 0.00 7.13
dyn 0.00 1.22 0.00 1.61 0.00 1.09
ATT 10.44 14.13 10.22 14.25 10.16 13.76
Co 166 63 264 63 239 63
d, 91.33 55.17 97.56 57.93 99.04 61.91
d, 8.67 21.97 2.31 31.92 0.96 29.67
v 8 d, 0.00 18.11 0.13 9.70 0.00 6.87
dyn 0.00 4.75 0.00 0.45 0.00 1.54
ATT 10.45 15.45 10.17 14.45 10.11 14.22
Co 245 63 291 63 256 63

note that there will be a 5-minute transfer penalty each time a
passenger makes a transfer. Thus, in this case, the added value
for d,, directly affects the ATT of passengers as well.

5.1. Experimental Design. As for the computational experi-
ment of the proposed algorithm, the population size is set at

200. Based on the initial investigations, the selection pressure,
crossover, and mutation probabilities are set at 0.75, 0.80, and
0.10, respectively. The stopping criteria of the proposed GA
are when the entire population has converged. The proposed
algorithm was coded in ANSI-C using Microsoft Visual C++
2010 Express as the compiler and performed on a laptop
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TABLE 8: The best route sets for passenger and operator for all four

cases.

The best route sets for

The best route sets for

Case
passenger operator
13-14-10-8-6-3-2-1 5-4-2-1
I 9-15-8-10-11-12-4-2 11-10-7-15-8-6-3-2
11-10-7-15-6-3-2-5 9-15
12-11-13-10-8-6-4-5 12-11-13-14
13-10-7-15-6-3-2-1 10-7-15-8-6-3-2-1
11-10-8-6-4-5-2-1 11-12
II 5-4-12-11-10-7-15-9 5-4-2
10-14-13-11-12-4-2-1 14-13
7-15-8-6-4-5-2-3 13-11-10
12-11-10-8-6-3-2-1 9-15
13-10-7-15-8-6-4-5 1-2-3-6-8-15-7-10
9-15-8-6-3-2-4-5 4-2
- 9-15-7-10-11-12-4-2 12-11
14-13-11-12-4-5-2-1 13-11-10
5-4-6-8-10-11-13 5-4
1-2-3-6-15-7-10-14 9-15
1-2-3-6-8-10-11-13 14-13
14-10-7-15-6-3-2-1 10-7-15-8-6-3-2-4
11-10-8-6-4-5-2 12-11
13-11-10-8-6-3-2-1 13-11
v 11-12-4-2-1 2-1
14-13-11-12-4-5-2-1 9-15
9-15-8-6-3-2-4-5 4-5
14-10-7-15-8-6-4-5 11-10
12-11-10-7-15-9 14-13

computer running on Windows 7 with Intel (R) Core 2 Duo
CPU 1.3 GHz and 2 GB of RAM.

5.2. sBiobjective Implementation. As mentioned in Section 3,
the two objective functions that we are trying to optimize
are Cp and C,. We implement the biobjective UTRP in
two different methods separately. Here, we named them
as method 1 and method 2. To satisty the two objective
functions Cp and C,, for Method 1, the algorithm starts with
Floyd’s initialization. The algorithm will switch the objective
functions in every 10 generations until the solutions have
converged. The best nondominated result for each objective
will be recorded. As for method 2, instead of switching
the objective function in every 10 generations, the objective
function will only be switched when the entire population for
the first objective (Cp) has converged. Therefore, in method 2,
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the algorithm will only switch once and both of the objective
functions will start with the same initial population that has
been recorded earlier.

To make comparison between the methods, each case in
Mandl’s network will be run five times. Five sets of the initial
population are previously recorded so that, in each run, both
of the methods will be using the same initial population.
Tables 5 and 6 show average computational results for each
case for method 1 and method 2. The last row in each table
represents the overall average of all cases. From the results
shown, it is undeniable that method 2, shows a better value
especially in terms of execution time and the number of
generations. The execution time and number of generation
for method 1increase dramatically when the number of route
increases. Thus, we decided to use method 2 in our proposed
algorithm to solve the biobjective UTRP.

5.3. Comparative Results for Biobjective Mandl’s Swiss Transit
Network. As for the final computational experiment, for
each case, the proposed GA is performed for 30 runs for
statistical significance. 30 nondominated solutions for each
of the objective functions will be recorded as the output. In
every generation of each run, both of the objectives value are
tested to see whether the value improves the best solutions
recorded. If yes, it will replace the current best solution. After
the population has converged, the nondominated solutions
will be returned as output.

As mentioned earlier, the route sets published by Fan et
al. [3] do not match the parameters’ value. Thus, in Table 7,
we record the corrected results of Fan et al. [3] according to
the route sets published. The last two columns show the best
parameters” values obtained for the two objectives based on
the proposed GA. The values in bold represent the best results
of each parameter.

The Cp and C, are always contradicting each other.
Therefore, it is reasonable that the lowest Cp will correspond
with the highest C, [3]. In Table 7, from the passengers’ point
of view, we obtained a very satisfactory C, value with the
highest value of d, reaching 99.04% and the lowest ATT value
of 10.11 minutes in case IV. We constantly outperformed the
results of [3, 18] in all cases. Nevertheless, the low C, has
led to a higher Cg value. From the operators’ point of view,
for case I, we obtained the same values as in Fan et al. [3] in
all parameters, whereas for cases II, III, and IV, even though
we obtained the same value for Cg as in Fan et al. [3] for
all cases, we constantly bettered the values for the rest of the
parameters. Similar pattern of results is obtained as compared
to Mumford [18]. The percentage for passengers to travel to
their destination without any transfer is up to 70.91% and the
unsatisfied customer in all cases is not more than 1.54%. The
lowest value for the ATT from the operators’ point of view is
13.48 minutes.

The route sets in Table 8 and Figures 6 and 7 refer to the
best results from Table 7, whereas in Table 9, the second and
third columns show the average generations and run time
for the 30 runs and the last three columns show when the
best solutions is found. For example in case I, the average
generations and CPU time for the 30 runs are 112 generations
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TABLE 9: The average and the best solutions found in terms of number of generations, number of runs, and CPU time.
Case Average Objective The best solution
Generations CPU time (second) Runs Generations CPU time (second)
I 2 5766 Passenger 6 21 12.52
Operator 2 11 3.73
I 116 70.07 Passenger 16 31 31.47
Operator 24 59 23.92
I 123 102.91 Passenger 1 61 73.20
Operator 28 46 25.82
v 124 129,68 Passenger 9 63 98.90
Operator 22 41 25.12

and 57.66 seconds, respectively. The best solution from the
passengers’ point of view was obtained on run number 6 at the
21st generation with the CPU time of 12.52 seconds starting
from the 6th run. In the operators’ point of view, on the other
hand, the best solution is obtained on the 2nd run at the
11th generation with the CPU time of 3.73 seconds. Finally,
the 30 nondominated solutions for each of the objective
functions from the 30 runs which formed the Pareto Frontier
for case I to case IV can be seen in Figure 8. Through the
nondominated solutions from the Pareto Frontier, it is up
to the decision maker to search for the best suited solution
among all the nondominated solutions.

6. Conclusion

In this paper, we solved the biobjective UTRP by looking at
the passengers’ and operators’ points of view. The proposed
GA for the biobjective UTRP is first being initialized by using
Floyd’s initialization. The initial population must satisfy the
four feasible criteria in order to generate feasible solutions.
Among them, an adding-node procedure is introduced to
convert an infeasible solution to a feasible one. Furthermore,
route crossover and identical-point mutation are proposed to
perform the genetic operations. We executed the biobjective
UTRP by switching the objective function after the first
objective has converged. The proposed GA is tested on
MandI’'s benchmark data set and it has performed better than
the previous best published results from the literature in most
cases.
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