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a b s t r a c t

In the framework of the SAFECAST Project, a full-scale three-storey precast building was subjected to a

series of pseudodynamic (PsD) tests in the European Laboratory for Structural Assessment (ELSA). The

mock-up was constructed in such a way that four different structural configurations could be investi-

gated experimentally. Therefore, the behaviour of various parameters like the types of mechanical con-

nections (traditional as well as innovative) and the presence or absence of shear walls along with the

framed structure were investigated. The first PsD tests were conducted on a dual frame-wall precast sys-

tem, where two precast shear wall units were connected to the mock up. The first test structure sustained

the maximum earthquake for which it had been designed with small horizontal deformations. In the sec-

ond layout, the shear walls were disconnected from the structure, to test the building in its most typical

configuration, namely with hinged beam–column connections by means of dowel bars (shear connec-

tors). This configuration was quite flexible and suffered large deformations under the design level earth-

quake. An innovative connection system, embedded in the precast elements, was then activated to create

emulative beam–column connections in the last two structural configurations. In particular, in the third

layout the connectors were restrained only at the top floor, whereas in the fourth layout the connection

system was activated in all beam–column joints. The PsD test results showed that, when activated at all

the floors, the proposed connection system is quite effective as a means of implementing dry precast

(quasi) emulative moment-resisting frames.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction and background

A collaborative three-year research project called SAFECAST

was undertaken by European national associations of precast con-

crete producers, along with universities and research centres, to

study the behaviour of precast concrete structures under earth-

quake loading. The main objective of the project was to fill the

gap in the knowledge of seismic behaviour of precast concrete

structures, with emphasis on the connections between precast

members. A major part of the experimental phase of this

programme consisted of the pseudodynamic tests on a full-scale

3-storey precast concrete building, carried out at the European

Laboratory for Structural Assessment (ELSA), Joint Research Centre

(JRC) of the European Commission in Ispra.

Precast concrete construction represents a viable alternative to

construction methods utilizing cast-in-place concrete. Advantages

related to the use of precast techniques include higher quality con-

trol that can be obtained in the precast plants, speed of erection,

and freedom in the architectural shape of the members. Despite

these well-recognized advantages, the use and development of

precast concrete structures in seismic areas have been typically

limited by the lack of confidence and knowledge about their seis-

mic performance.

ASSOBETON (the Italian association of precast producers) and

the ELSA Laboratory of the Joint Research Centre have a long tradi-

tion of scientific collaboration on the subject of the seismic behav-

iour of precast structures. The two institutions have been involved

in the study of the seismic behaviour of precast structures ele-

ments since 1994 [1]. After the identification of the seismic behav-

iour of single elements, a research programme aimed at

demonstrating the equivalence between the behaviour factor of

precast and cast-in situ single-storey industrial buildings was acti-

vated. This research project, named ‘‘Seismic behaviour of precast

R/C industrial buildings’’, partially financed within the European

‘‘Ecoleader’’ research programme was performed at the ELSA Labo-

ratory. The results of the tests demonstrated the excellent capacity

of precast buildings to withstand earthquakes without suffering

important damage [2]. The data obtained within the two men-

tioned research projects provided the starting point for the PRE-

CAST EC8 project [3]. This project was successfully carried out
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and concluded in early 2007, after 4 years of activity. As a result of

the project, a calibration of the global behaviour factor (q factor)

for precast frame structures was carried out with a combined

experimental and numerical approach. The research pointed out

the very good behaviour of precast structures under earthquake

conditions and their substantial equality to traditional cast-

in situ ones as for the safety under earthquake excitation, even

without monolithic joints.

The only, but crucial missing link in the modelling of such pre-

cast buildings, was the adequate knowledge about the behaviour of

connections. The empirical evidence from the past earthquakes is

sparse, incomplete, non-quantified and first of all controversial.

Some reports show excellent behaviour of precast systems and

connections [4–6]. On the other hand, the same documents report

some catastrophic collapses. This is not surprising, since seismic

response clearly depends on the specific structural system, type

of connections and quality of the design and construction. Some

collapses were also reported during the 1977 Vrancea earthquake

[7], the 1979Montenegro earthquake [8] and the Northridge earth-

quake [9]. Failures of welded and poorly constructed connections

were also the main cause of extensive collapses in Armenia [10]

and during the 1976 Tangshan earthquake in China. These bad

experiences have generated mistrust to precast systems in general.

In some countries this practically preclude the use of precast struc-

tures and in many codes all precast systems were penalized with

high seismic forces related to the reduced competitiveness in the

market.

The problem of investigating the seismic behaviour of connec-

tion among precast concrete elements is addressed within the

SAFECAST project. The major part of the experimental phase of this

programme comprises the pseudodynamic tests on full-scale 3-

storey precast concrete prototypes. The paper presents the global

test results related to the overall pseudodynamic response of the

prototypes.

2. Design of the prototype according to Eurocode 8

The prototype was designed with the aim of providing experi-

mental validation about the seismic behaviour of multi-storey pre-

cast concrete buildings, through large-scale reference testing. The

aim of this campaign was to provide proper experimental evi-

dences about the seismic behaviour of precast multi-storey build-

ings with both hinged and moment-resisting beam-to-column

connections. The building was representative of a large-scale

three-storey building with a 7 m by 7 m structural grid with and

without structural walls. Its portion that was (initially) selected

to be tested had 2 by 3 spans/bays (14 by 21 m). However, the dy-

namic non-linear analyses conducted [11,12] revealed the possible

effects of the higher vibration modes on this type of relatively-

‘‘flexible’’-structure. In particular, the storey forces obtained from

these analyses exceeded the force capacity of the available actua-

tors in some of the floors. Thus, the prototype that was finally

decided to be constructed and tested comprised a 2 by 2 spans/

bays structure as presented in next section.

3. Test structures

3.1. The mock-up

The specimen structure was a three-storey full-scale precast

residential building, with two 7 m bays in each horizontal direction

as shown in Fig. 1a. The structure was 15 � 16.25 m in plan and

had a height of 10.9 m (9.9 m above the foundation level) with

floor-to-floor heights equal to 3.5 m, 3.2 m and 3.2 m for the 1st,

2nd and 3rd level, respectively. Whereas the storey height is

typically larger in single-storey industrial or commercial precast

buildings, those of the specimen well represent the typical config-

uration for a residential or office building in Europe.

The floor systems which were of high interest in this research,

were carefully selected to gather the largest possible useful infor-

mation. To accomplish this, three different pretopped floor systems

were adopted. As shown in Fig. 1b and c, the 1st floor at 3.5 m was

constructed with box-type elements put side by side and welded to

each other; similarly the 2nd floor at 6.7 m comprised double-tee

elements put side by side welded to each other; and finally the

3rd floor at 9.9 m was realized with the same box slab elements

of the 1st floor, but spaced to simulate diaphragms with openings.

Detailed description of the three floor systems and their connec-

tions is given in the companion paper by Bournas et al. [13].

The precast three-storey columns had a cross-section of

0.5 � 0.5 m (Fig. 2a) which was kept constant along their height

and were embedded by 0.75 m into 1-m-deep 1.3 � 1.3 m in plan,

pocket foundations (Fig. 2b). All the columns were constructed

with wide capitals at the level of each floor, with widths of

0.90 m and 2.25 m in the loading and transverse direction, respec-

tively (Fig. 2c), in order to allow for the mechanical beam-to-col-

umn connection, the details of which are presented in a

companion paper. The capitals of the columns were designed as

cantilevers fixed at the axis of the columns with flexure and shear

reinforcement. Fig. 2d illustrates the erection phase of a column

with capitals before its positioning into the pocket foundation.

The longitudinal beams connected to the columns’ capitals were

precast box-type hollow core elements, with a cross-section

0.4 � 2.25 m and a length of 6.38 m. The cross section and dimen-

sions of a typical beam spanning in the direction of loading are

illustrated in Fig. 3. Such type of beam has similar weight with re-

spect to its equivalent inverted T or I-shaped beam in terms of stiff-

ness but with clear economical advantages over it associated with

the increase in the floor area.

As it can be seen in Fig. 1b, two 4.05-m-long � 9.6-m-

tall � 0.25-m-thick (4.05 m � 9.6 m � 250 mm) precast concrete

walls were connected to the mock-up in order to compose with

the columns a dual frame-wall precast system. Each wall com-

prised three wall hollow-core precast elements 3.2-m-tall

(Fig. 4a) which were joined among themselves by means of vertical

reinforcement crossing their gaps at the level of each floor. Con-

crete was cast only at the two edge cores of the section, where

the wall vertical reinforcement was concentrated in ‘‘boundary ele-

ments’’. The confinement of the concrete was also limited there

(Fig. 4b and c). Thus, the wall’s moment resistance was assigned

to the ‘‘flanges’’ at the edges of its section and its shear resistance

to the ‘‘web’’ in-between them. The nonlinear behaviour of such

pre-fabricated walls was expected to differ from the one of normal

cast in situ walls, however, this aspect was not considered in the

research, since the walls were expected to suffer limited yielding

during the test. The longitudinal reinforcement was lap-spliced

at the mid-height of the second floor. The walls-to-foundation con-

nection was realized through two pocket foundations in which

only the walls’ longitudinal reinforcement protruding from the

pockets was anchored (Fig. 4d). The connection between the walls

and the frame was conceived having in mind the need to easily dis-

connect the walls at the end of the first round of tests and con-

sisted into over-reinforced blocks of concrete, with steel surfaces,

placed at each storey and to be simply cut at the end. This arrange-

ment was neither typical, nor code-compliant; however, in this

case the objective was to study the behaviour of the frame as con-

nected to a wall system, rather than studying the behaviour of the

wall itself or the connection between the wall and the frame.

All precast elements (columns, walls, beams, slabs) were cast

using the same concrete class, namely C45/55, which turned out

to havea 28-day strength, measured on 150 � 150 mm cubes,
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equal to 64.5 MPa. The corresponding compressive strength of the

concrete cast in the boundary elements of the walls was equal to

61 MPa. The steel reinforcement cast into the members had a yield

stress of 527 MPa, a tensile strength of 673 MPa, and an ultimate

strain equal to 10%. Table 1 summarizes the dimensions and per-

centages of steel reinforcement of all prefabricated structural bear-

ing elements used for the construction of the mock-up.

It is worth mentioning that the mock-up which weighed

approximately 450 t, represents the biggest precast structure ever

tested and with a floor area of 244 m2 (15 � 16.25 m in plan) is

possibly also the biggest in plan specimen tested ever under seis-

mic conditions worldwide.

3.2. Description of the structural system-investigated parameters

The mock-up was constructed in such a way that the effective-

ness of four different structural precast systems could be investi-

gated experimentally. Therefore, the behaviour of a series of

parameters, including several types of mechanical connections

(traditional as well as innovative) and the presence or absence of

shear walls along with the framed structure, could be assessed.

The first layout (prototype 1) comprised a dual frame-wall pre-

cast system, where the two precast shear wall units were con-

nected to the mock-up (Fig. 5a). In this structural configuration,

the effectiveness of precast shear walls in terms of increasing the

stiffness of a relatively flexible three-storey precast building with

hinged beam-to column joints was examined.

In the second layout (prototype 2 – Fig. 5b), the shear walls

were disconnected from the structure, to test the building in its

most typical configuration, namely with hinged beam–column

connections by means of dowel bars (shear connectors). This con-

figuration, which represents the most common connection system

in the construction practice in the European countries, had been

tested only for industrial typically single-storey precast structures

[3]. Thus, the second layout investigated for the first time experi-

mentally the seismic behaviour of a flexible multi (three)-storey

precast building with hinged beam-to-column connections, where

the columns are expected to work principally as cantilevers.

Afterwards, the possibility of achieving emulative moment

resisting frames by means of a new connection system with dry

connections was investigated in the third and fourth structural

configurations. With the target of providing continuity to the lon-

gitudinal reinforcement crossing the joint, an innovative connec-

tion system, embedded in the precast elements, was then

activated by means of bolts connecting the steel devices in the col-

umns and beams. A special mortar was placed to fill the small gaps

between beams and columns. In particular, the first solution exam-

ined was expected to combine ease in the implementation and to

reduce significantly the flexibility of such structures with hinged

beam-to-column joints by restraining just the last floor of multi-

storey buildings; and thus, in the third layout (prototype

3 – Fig. 5c) the connectors were restrained only at the third floor.

Finally, in the last fourth layout, the connection system was

activated in all beam–column joints (prototype 4 – Fig. 5d). A sum-

mary of all structural systems and the investigated parameters is

presented in Table 2.

4. Experimental programme

4.1. Pseudodynamic testing

The continuous PsD method developed at the ELSA laboratory of

the European Commission JRC [14] was used for testing the mock-

up. The PsD method couples the properties of the structure as a

16.25 m

15 m 10.9m

   (b) (c) 

   (a)

Fig. 1. (a) Three-dimensional representation of the test structure (Dimensions in m). Section view of the test structure: (b) In the loading direction. (c) In the transverse to the

loading direction (dimensions in cm).
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physical quasistatic model tested in the laboratory and a computer

model representing inertia. The equation of motion for such an ide-

alized model can be expressed in terms of a second-order ordinary

differential equation:

MaðtÞ þ CvðtÞ þ RðtÞ ¼ �MIagðtÞ ð1Þ

This implies that the structure can be analyzed as if it was sup-

ported on a fixed foundation and subjected to an effective force

vector Peff(t) = �MIag(t), where I is a vector of zeros and ones and

ag(t) is the ground acceleration time history. The mass matrix, M,

the viscous damping matrix, C (typically null as explained in

[15]), and the excitation force vector, Peff(t), are all numerically

specified. The restoring force vector, R(t), which is, in principle,

nonlinear with respect to the displacement vector, d(t), is

measured experimentally. At each time instant, t, the equation is

numerically solved (in this case, through the Explicit Newmark

method), from the restoring forces, R(t), measured at time t by

the actuator load cells, to obtain the acceleration response,

a(t),velocity, v(t) and displacement, d(t + Dt), at the next time step.

The computed displacements at time instant t +Dt are then im-

posed on the structure via actuators which load cells, at the end

of the step, provide the (measured) restoring forces, R(t + Dt), to

be used subsequently for the calculation of the response at the next

time step. In the present tests the equation of motion, Eq. (1), was

formulated in terms of three degrees of freedom (DOFs), namely

one per floor with the floor displacement x parallel to the direction

of the excitation at the storey centre of mass. The computed floor

displacement was symmetrically imposed at two HEIDENHAIN

(a) (b)

(c) (d)

Fig. 2. (a) Cross section of columns. (b) Pocket foundation. (c) A three storey column with its capitals. (d) Erection of a column with capitals (dimensions in cm).

P. Negro et al. / Engineering Structures 57 (2013) 594–608 597



high-resolution (2 lm) optical encoder displacement transducers,

mounted on two reference unloaded frames (Fig. 6), and serving

each one as feedback for the proportional-integral-derivative

(PID) controller of one actuator.

Translational masses of 186,857 kg at the first floor, 168,404 kg

at the second floor and 132,316 kg at the top floor, were numeri-

cally represented in the PsD test of prototype 1. The corresponding

masses for the layouts without shear walls (prototypes 2, 3 and 4)

were considered equal to 170,948 kg, 157,978 kg and 127,013 kg,

for the first, second and third floor, respectively. The above simu-

lated masses in the PsD tests are larger than the actual masses of

the specimen in order to reproduce the effect of additional loads

beyond self-weights. In the PsD test method it is not necessary

to have the additional masses on the test structure physically
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Fig. 3. (a) Cross section and dimensions of the main beams (dimensions in cm).

(c) (d) 

Pocket foundations  
of the wall 

(a) (b) 

Fig. 4. (a) View of a hollow-core precast wall element. (b) Cross section of precast wall’s end cores and flange. (c) Assembling phase of the precast wall elements. (d) Pocket

foundations used for the precast wall elements (dimensions in cm).
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present, but only in the numerical model. Note that the possibility

of using additional physical weights was rejected from the begin-

ning of the project due to technical reasons. This restriction re-

sulted into a slightly lower magnitude of the axial force in the

columns. The average axial load ratios, N/Ac fc, resulting for the col-

umns of the ground floor are 0.029 or 0.027, for the prototype with

or without shear walls, respectively. The corresponding axial load

ratios, if the additional masses had been physically applied, would

have been 0.034 and 0.032, respectively. No viscous damping term,

Cv(t), was included in the equation of motion of the PsD test algo-

rithm Eq. (1), because in RC buildings the dissipation is hysteretic

and is thus already reflected by the quasistatic relationship [15] of

the (measured) restoring forces, R(t), to the imposed displacement

vector, d(t).

An overview of the experimental set up adopted is shown in

Fig. 6. The horizontal displacements were applied on the mid

axis of the two transversal bays by two hydraulic actuators with

a capacity of 1000 kN at the 2nd and 3rd floor levels, while at

the 1st floor level (due to the availability of these devices in

the laboratory), four actuators with capacity of 500 kN were

used (two of which controlled in force). Steel beams were placed

along the two actuator axes to connect all the floor elements and

distribute the applied forces. An instrumentation network of 175

channels was used to measure:

Table 1

Dimensions and percentages of steel reinforcement of all prefabricated bearing elements.

Precast and loading

element

Concrete strength,

fc (MPa)

Type of the

cross-section

Dimensions of the

cross-section (m)

Amount of longitudinal

reinforcement (mm2)

Geometrical ratio

of longitudinal

reinforcement, qs (%)

Column 64.5 Solid 0.5 � 0.5 2513 1.00

Beams of the 1st floor 64.5 Hollow-core 0.4 � 2.25 1810 0.35

Beams of the 2nd floor 64.5 Hollow-core 0.4 � 2.25 1609 0.32

Beams of the 3rd floor 64.5 Hollow-core 0.4 � 2.25 1473 0.29

Wall 64.5 Hollow-core 2.4 � 0.25 8952 1.30

Wall end 61 Solid 0.8 � 0.25 2767 1.38

Wall web 64.5 Hollow-core 2.45 � .25 3418 1.20

(a) prototype 1   (b) prototype 2 

(c) prototype 3 (d) prototype 4 

Fig. 5. Structural configuration of the prototype with: (a) Shear walls and hinged beam–column joints. (b) Hinged beam–column joints. (c) Hinged beam–column joints at the

1st and 2nd floor and emulative at the 3rd. (d) Emulative beam–column joints.

Table 2

Experimental parameters.

Specimen

notation

Peak ground

acceleration

(g)

Existence

of

structural

walls

Type of beam-

to-column

connection in

the 1st and 2nd

floor

Type of beam-

to-column

connection in

the 3rd floor

Prot1_0.15g 0.15 Yes Hinged Hinged

Prot1_0.30g 0.30 Yes Hinged Hinged

Prot2_0.15g 0.15 No Hinged Hinged

Prot2_0.30g 0.30 No Hinged Hinged

Prot3_0.30g 0.30 No Hinged Emulative

Prot4_0.30g 0.30 No Emulative Emulative

Prot4_0.45g 0.45 No Emulative Emulative

Prot4_Cyc Cyclic test No Emulative Emulative
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1. The vertical deformation and curvature of the column sections

at the base (bottom) of all columns of the ground storey.

2. Absolute rotations within the plane of testing of all ground sto-

rey columns, 300 mm above their bottom.

3. Absolute rotations within the plane of testing for the beams and

columns in the vicinity of all beam–column joints of the central

frame and one of the external frames.

4. The beam-to-column joint shear displacement measured in

selected beam-to-column joints.

5. The decomposition of the wall lateral displacement at the first

storey.

4.2. Input motion selection and test sequence

The reference input motion used in the PsD tests is a unidirec-

tional 12 s-long time history, shown in Fig. 7a for a PGA of 1.0 g.

The selected seismic action is represented by a real accelerogram

(Tolmezzo 1976) modified to fit the Eurocode 8 (EC8) [16] response

spectrum type B all over the considered frequency interval. Fig. 7b

illustrates the spectra of the modified EW component of Tolmezzo

recording and the EC8 specification. The accelerogram was scaled

to the chosen peak ground accelerations of 0.15 g for the service-

ability limit state, and 0.30 g for the no-collapse limit state. Two

PsD tests at a PGAs of 0.15 g (Prot1_0.15g) and 0.30 g (Prot1_0.30g)

were initially conducted on prototype 1, namely the dual frame-

wall precast system. After the walls were disconnected from the

structure, the same excitation sequence was repeated for proto-

type 2 (Prot2_0.15g and Prot2_0.30g) which had hinged beam–col-

umn connections in all joints. Prototype 3, which had emulative

beam–column connections only at the top floor, was subjected

only to the higher intensity earthquake of 0.30 g (Prot3_0.30g),

whereas prototype 4 which had emulative connections in all

beam–column joints, was tested at the PGAs of 0.30 g

(Prot4_0.30g) and 0.45 g (Prot4_0.45g). A zero-acceleration signal

was added after the end of the record, to allow for a free vibration

of the test structures, giving total durations ranging between 15 s

and 19 s for the applied record. To approach the ultimate capacity

of the structure, a final ‘‘funeral’’ sequence of cyclic tests was per-

formed, controlling the top displacement of the structure and con-

straining the floor forces to an inverted triangular distribution,

which is consistent with the assumptions of most seismic codes

including EC8.

5. Experimental results and discussion

Detailed results about the behaviour of the mechanical connec-

tions used between various precast elements are given in the com-

panion paper by Bournas et al. In the next sections of this paper the

global test results related to the overall pseudodynamic response

of the four prototypes are presented in detail. A summary of the

global response of all prototypes tested is given in Table 3. It in-

cludes: (a) The fundamental natural vibration period. (b) The max-

imum base shear in the two directions of loading. (c) The peak roof

displacement. (d) The maximum interstorey drift of each floor. (e)

The peak pseudo-acceleration at the roof.

5.1. Prototype 1 – structure with shear walls and hinged beam-to-

column joints

Prototype 1 (Fig. 5a) was tested under two input motions scaled

to a PGA of 0.15 g and 0.30 g. The time histories of floor displace-

ments and restoring forces measured in these two PsD tests are

shown in Fig. 8. As expected, this dual wall-frame precast system

was stiff. A (experimental) fundamental natural vibration period

of T = 0.30 s was observed for the 0.15 g PGA earthquake. The same

fundamental period was obtained from a 0.03 g preliminary PsD

test at the beginning of the test program. These period estimations,

as for all the tests, were obtained from the measured response by

means of identification of equivalent linear models [17]. Note that

the theoretical fundamental period obtained from a three-dimen-

sional model of the building using fully cracked walls (Icr = 0.33

Ig, where Ig is the stiffness for the gross section) was slightly lower,

namely T = 0.28 s. At the higher intensity earthquake, namely

0.30 g PGA, the response curves were characterized by lower fre-

quencies (natural vibration period shifted to T = 0.46 s) due to

the partial loss of tension stiffening in the vertical precast elements

caused by the 0.15 g test. As can be observed in Fig. 8, the floor dis-

placements and restoring forces are mostly in phase between them

for both earthquake intensities, a fact which clearly indicates that

the first vibration mode dominates the PsD response of this struc-

tural configuration.

Fig. 6. General view of the experimental set-up.

Fig. 7. (a) Input motion, scaled to PGA of 1 g. (b) Spectra of the modified EW

component of the Tolmezzo record compared to EC8 spectrum.
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The global base shear force versus roof (3rd floor) lateral dis-

placement hysteretic response is plotted in Fig. 9 for the 0.15 g

and 0.30 g tests. At the 0.15 g PsD test, corresponding to the ser-

viceability limit state (SLS) earthquake, the response remained

practically within the elastic range as it is illustrated in Fig. 9a. This

PsD 0.15 g test deformed the building to a maximum roof displace-

ment equal to 21.9 mm, while the maximum base shear force was

1457 kN. The maximum interstorey drift ratio was recorded at the

third floor as equal to 0.31%. Fig. 9b plots the base shear versus roof

displacement hysteretic curves for the 0.30 g test. At this higher

intensity earthquake corresponding to the no-collapse design limit

state, the response of the dual wall-frame system was character-

ized by some non-linear effects with noticeably wider force–dis-

placement loops. The peak roof displacement and maximum base

shear force measured in this test were 60.3 mm and 2146 kN,

respectively. The maximum interstorey drift ratios recorded at

the first, second and third floor remained at low levels, namely

equal to 0.42%, 0.71% and 0.72%, respectively.

At the base of the ground level columns, moderate yielding oc-

curred only in one of the loading directions for two columns, which

reached a tensile strain (measured over the lower 300 mm of the

column above the base and including the effect of bar pull-out

from the base) of 0.29% and 0.31%, respectively, while the average

tensile strain of all columns in both directions of loading was

0.22%. The average concrete compressive strain measured near

the extreme compressive fibre, at the base of the 9 columns, re-

mained in low levels in the 0.30 g test of prototype 1, namely

0.10%. The corresponding average tensile and compressive strains

measured at the base of the two end sections (concealed columns)

of the 2 walls, were 0.18% and 0.035%, respectively. These rela-

tively low values of tensile and compressive strains, measured at

the base of the walls, could be attributed to the fact that the con-

tribution of flexural deformations comprises a small portion of

their overall deformation, as explained in the next section.

The wall cracking pattern at the first floor after the 0.30 g PsD

test is illustrated in Fig. 10a. Longitudinal and horizontal tensile

Table 3

Summary of test results.

Specimen notation Fundamental natural vibration period (s) Maximum base

shear (kN)

Peak roof

displacement

(mm)

Maximum interstory drift of each floor

(%)

Peak roof

acceleration (g)

Pull Push Pull Push Pull Push Pull Push

1st 2nd 3rd 1st 2nd 3rd

Prot1_0.15g 0.30 1340 �1457 21.9 �16.8 0.12 0.24 0.31 0.15 0.19 0.21 0.44 �0.58

Prot1_0.30g 0.46 1780 �2146 48.2 �60.3 0.42 0.71 0.72 0.30 0.54 0.63 1.07 �0.91

Prot2_0.15g 1.09 500 �442 97.4 �86.6 0.58 1.12 1.28 0.57 0.99 1.08 0.31 �0.33

Prot2_0.30g 1.41 882 �895 208.2 �172.9 1.39 2.36 2.63 1.19 1.99 2.10 0.59 �0.64

Prot3_0.30g 1.08 889 �859 198.7 �148.4 1.74 2.54 1.77 1.37 1.91 1.23 0.50 �0.55

Prot4_0.30g 0.66 1715 �1454 132.5 �121.2 1.38 1.59 1.15 1.32 1.43 0.95 0.64 �0.88

Prot4_0.45g 1.25 1846 �1902 189.3 �206.5 1.96 2.37 1.77 2.46 2.37 1.45 0.98 �1.31

Cyclic test – 2237 �2031 388.1 �415.6 6.01 4.63 1.96 5.93 5.05 2.01 – –

Fig. 8. Time histories of floor displacements and restoring forces of prototype 1 at PGAs of (a) 0.15 g and (b) 0.30 g.
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cracks were developed close to the wall end sections of maximum

moment; these cracks were more evident over the lower 1 m from

the wall base. Shear cracks were formed on the hollow web of the

wall with an angle to the vertical direction approximately equal to

45� (Fig. 10a). The shear cracking initiated from the first seconds of

the PsD test, whereas their number and length was increasing as

the acceleration amplitudes was approaching the PGA of 0.30 g.

Despite the extensive cracking occurred on both shear walls,

they did not reach significant level of damage their selves since

the weak link in this layout was finally the wall-to-beam joint in

each floor. In particular, the six beams connecting the two walls

with the diaphragms failed in each floor due to diagonal compres-

sion (or shear) as shown in Fig. 10b. It should be pointed out here

that the connection of the bracing walls with only two beams per

floor was a sort of compromise arisen from the design of the test-

ing programme, where (as mentioned above) the basic concept

was to provide the capability of easily disconnecting the wall from

the rest of the structure. To effectively transfer the shear forces

from the floors into the walls, vertical shear connectors should

be capacity designed and placed along the wall-to-floor interface.

However, in spite of the fact that the walls did not reach their

ultimate capacity, the main objectives of prototype 1, namely to

reduce the flexibility of a multi-storey systems with hinged

beam–column joints and to transfer high shear forces among

slab-to slab and beam-to-column joints, were successfully met.

5.1.1. Decomposition of the wall lateral displacement

The overall wall drift is composed by various deformation

mechanisms, namely deformations due to flexure, shear distortion,

shear slip and fixed end rotation. In this section, an attempt is

made to decompose the total wall displacement applied at the first

floor into the above mentioned relative displacements by using the

data recorded from the displacement transducers mounted on var-

ious cross sections of the walls. Fig. 11 illustrates the envelope of

first floor drift (average of absolute values in both directions of

loading) attributed to individual deformation mechanisms during

the 0.30 g PsD test of prototype 1. In brief, based on this decompo-

sition of the wall lateral drift at the first floor, it can be concluded

that at the peak (0.45% drift) the shear distortion, shear slip, fixed-

end rotation and the flexural contributions were equal to 25%, 17%,

41% and 17% of the total drift, respectively.

5.2. Prototype 2 – structure with hinged beam-to-column joints

Prototype 2 (Fig. 5b), which represents the most common con-

nection system in the European construction practice with hinged

beam-to-column connections, was tested under the 0.15 g and

0.30 g earthquakes. The time histories of floor displacements and

restoring forces measured in these two PsD tests are shown in

Fig. 12. The fundamental vibration period of this flexible structural

systemwas T = 1.10 s for the 0.15 g PGA, whereas at the 0.30 g PGA,

the response curves were characterized by lower frequencies (nat-

ural vibration period shifted to T = 1.40 s). The seismic response of

prototype 2 was much influenced by the effect of higher modes. As

can be observed in Fig. 12, the floor displacements and restoring

forces are out of phase for both earthquake intensities at some mo-

ments. In addition, from the shape of the base shear force – top dis-

placement curves, illustrated in Fig. 13, it is evident that the higher

modes significantly influenced the values of storey forces, for both

0.15 g and 0.30 g earthquakes. Moreover, there seems to be no

Fig. 9. Base shear versus roof displacement response of prototype 1 at PGAs of: (a) 0.15 g and (b) 0.30 g.

Fig. 10. (a) Cracking pattern of the wall at the 1st floor after the PGA 0.30 g. (b) Diagonal compression failure of the connection beams.
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upper limit for the storey forces when the structure enters into the

nonlinear regime, an effect which was anticipated in the prelimin-

ary nonlinear calculations [11]. This effect, which is a direct conse-

quence of the large higher modes contribution, results into large

force demands in the connections (companion paper, Bournas

et al. [13]). To further evaluate the influence of the higher modes

a modal decomposition is executed in the companion paper. It

should be also pointed out here that, although the peaks of the in-

put ground acceleration occurred during the first 7 s of the acceler-

ogram (Fig. 7a), the corresponding peak floor displacements were

recorded in its last 4 s, when the seismic excitation was consider-

ably reduced. For this reason a zero-acceleration signal was added

after the end of the record, to allow for a free vibration of the test

structure, giving a total duration close to 19 s for the applied

record.

At the 0.15 g PsD test, corresponding to the frequent (service-

ability) seismic action, the overall response of prototype 2 re-

mained practically within the elastic range as it is illustrated in

Fig. 13a. However, the EC8 damage limitation requirement for

buildings, which is simply expressed by an upper limit on the

interstorey drift ratio, equal to 1% for the serviceability limit state

was exceeded in the second and third floor. In particular, the max-

imum interstorey drifts were equal to 0.57%, 1.06%, and 1.18%, at

the first, second and third storey, respectively. Thus, to meet the

requirements imposed by EC8 a multi-storey hinged frame struc-

ture would require larger cross-sections of the columns. Fig. 13b

plots the base shear versus roof displacement hysteretic curves

for the 0.30 g test. At this higher intensity earthquake correspond-

ing to the no-collapse design limit state, the response of this pre-

cast system with hinged beam-to-column joints was

characterized by excessive deformability. The peak roof displace-

ment and maximum base shear force measured in this test were

208 mm and 895 kN, respectively. Maximum interstorey drift ra-

tios recorded at the first, second and third floor were 1.29%,

2.18% and 2.37%, respectively.

During the 0.30 g seismic excitation, yielding occurred at the

base of the all ground level columns of prototype 2, which on aver-

age reached a tensile strain of 0.92%. The average concrete com-

pressive strain measured near the extreme compressive fibre at

the base of the 9 columns was 0.32%.

The behaviour of this structural configuration with hinged

beam-to-column connections was in general satisfactory. Despite

the limited stiffness of this structural configuration and the fact

that the maximum interstorey drifts were above the limits im-

posed by EC8, prototype 2 did not suffer significant damage in its

structural members during the 0.30 g PsD test. A visual inspection

made at the end of the design level earthquake revealed only dam-

ages around the welding of the slab-to-slab connections of the first

floor which are reported in the companion paper.

5.3. Prototype 3 – structure with emulative beam-to-column joints at

the top

In the third structural configuration, the mechanical connection

system embedded in the beam–column joints was activated to cre-

ate moment-resisting connections only at the top floor and then

prototype 3 (Fig. 5c) was subjected to the higher intensity earth-

quake of 0.30 g. The time histories of floor displacements and

restoring forces measured in this PsD test are shown in Fig. 14.

The fundamental vibration period of the structural system was re-

duced by 23% in comparison with its counterpart with hinged
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Fig. 11. Envelope of drift attributed to individual deformation mechanisms versus

the total imposed drift for the first floor of the wall at PGA 0.30 g.

Fig. 12. Time histories of floor displacements and restoring forces of prototype 2 at PGAs of 0.15 g and 0.30 g.
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beam–column connections (T = 1.08 s, as opposed to T = 1.40 s in

prototype 2). However, it turned out that the concept of emulative

beam–column joints at the top floor only was not quite effective as

a means of reducing interstorey drifts and the overall displace-

ments of the structure. In fact, as illustrated in Fig. 14, the floor dis-

placements and restoring forces are still out of phase for the design

level earthquake a fact which, as in the case of prototype 2, corre-

sponds to a seismic response considerably influenced by the effects

of higher modes. As for prototype 2, the peak displacement re-

sponse arose during the time interval 9.5–10.3 s, when the seismic

input acceleration was marginal. Similarly to prototype 2, a zero-

acceleration signal was added after the end of the record, to allow

for a free vibration of the test structure, giving a total duration

close to 19 s for the applied record.

Fig. 15 plots the base shear versus roof displacement hysteretic

curves for the 0.30 g test. The peak roof displacement and maxi-

mum base shear force measured in this test were 199 mm and

889 kN, respectively. The maximum interstorey drifts were equal

to 1.56%, 2.23%, and 1.50%, at the first, second and third storey,

respectively. Comparing the above values to the corresponding

maximum interstorey drifts marked in Prot2_0.30g, (namely

1.29%, 2.18% and 2.37%), it is evident that by constraining the

beam–column joints of the top floor, the problem of large intersto-

rey drifts was moved from the third to the second and first floors.

Therefore, it appears that the damage limitation requirement for

the serviceability limit state imposed by EC8, would not be met

for the columns of lower stories by restraining only the top joints

of a precast system with hinged beam–column connections.

Due to the restraining of the beam–column joints in the top

floor, the seismic excitation of 0.30 g resulted in slightly higher

stresses at the base of the ground floor columns. The average con-

crete tensile and compressive strain measured close to the extreme

tension and compression fibre at the base of the 9 columns, were

1.22% and 0.39%, respectively. A visual inspection made at the

end of the 0.30 g at prototype 3 did not reveal any new damages

to the specimen.

5.4. Prototype 4 – structure with emulative beam-to-column joints

In the fourth and last layout, the mechanical connection system

was activated in all beam–column joints with the aim of fully cre-

ating emulative moment-resisting frames. Prototype 4 (Fig. 5d)

was tested under two input motions scaled to 0.30 g and 0.45 g.

Fig. 16 illustrates the time histories of floor displacements and

restoring forces measured during these two PsD tests. The natural

vibration period of prototype 4 was 0.66 s, approximately half the

period measured in its counterpart with hinged beam–column

joints (Prot2_0.30g). This stiffer precast system led as a conse-

quence to higher inertia forces and lower storey drifts. Moreover,

its vibration for 0.30 g PGA was not affected by the higher modes

to the same extent, as was the case in the prototypes with hinged

beam-to-column joints. This can be clearly noticed in Fig. 16,

where the restoring forces at the three floors are in phase with

the applied horizontal floor displacements. At the maximum con-

sidered earthquake, namely 0.45 g PGA, though, the response

curves were characterized by much lower frequencies (natural

Fig. 13. Base shear versus roof displacement response of prototype 2 at PGAs of: (a) 0.15 g and (b) 0.30 g.

Fig. 14. Time histories of floor displacements and restoring forces of prototype 3 at

PGA of 0.30 g.

Fig. 15. Base shear versus roof displacement response of prototype 3 at PGA of

0.30 g.
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vibration period shifted to T = 1.25 s) due to the crack opening of

the beam–column joints, caused by the previous 0.30 g test.

Fig. 17 presents the base shear versus roof displacement loops

of prototype 4 for both 0.30 g and 0.45 g earthquakes. In the ulti-

mate limit state seismic excitation of 0.30 g, the response of proto-

type 4 underwent reduced non-linear effects (Fig. 17a). The 0.30 g

PsD test deformed the building to a maximum roof displacement of

132.5 mm, while the maximum base shear force was 1454 kN. The

maximum interstorey drifts were significantly lower than the cor-

responding ones in prototypes 2 and 3, namely they were equal to

1.35%, 1.51%, and 1.05%, at the first, second and third storey,

respectively. The average concrete tensile and compressive strain

measured close to the extreme tension and compression fibre at

the base of the 9 columns, were 1.34% and 0.43%, respectively. A vi-

sual inspection made at the end of the 0.30 g at prototype 3 did not

reveal any new damages to the specimen. Since prototype 4 sur-

vived the design level earthquake (0.30 g PGA) without significant

damages, it was decided to proceed with the more intense seismic

excitation of 0.45 g, which might be regarded as representative of

the maximum considered earthquake (MCE).

The peak roof displacement and maximum base shear force

measured in this test were 206.5 mm and 1902 kN, respectively.

Under the 0.45 g excitation, the maximum interstorey drifts were

increased to 2.21%, 2.37%, and 1.61%, at the first, second and third

storey, respectively. A visual inspection of the structure after the

0.45 g PsD test revealed dense flexural cracking at the base of the

ground floor columns, but without considerable damage. The aver-

age concrete tensile and compressive strain measured (near the ex-

treme tension compression fibre) at the base of the 9 columns were

2.61% and 0.60%, respectively. Additionally, the flexural cracking

detected at the bottom of beams, in the vicinity of the beam–col-

umn joints of the first and second floor, indicated evidence of yield-

ing at those cross-sections. At the end of 0.45 g test, the width of

the permanent cracks measured at the base of ground floor col-

umns and at the bottom of beams in the first and second floor,

was approximately 0.2 mm and 0.1 mm, respectively. No clear

identification of the plastic mechanism was possible at this level

of deformation.

In summary, the PsD test results show that the proposed con-

nection system is quite effective as a means of implementing dry

precast (quasi) emulative moment-resisting frames especially

when all beam–column joints are made rigid.

5.5. Final cyclic test

Peak ground accelerations of 0.30 g or 0.45 g could be assumed

to be the intensities for the no-collapse limit state for a zone with

high seismicity, however, the seismic tests did not lead prototype 4

Fig. 16. Time histories of floor displacements and restoring forces of prototype 4 at PGAs of 0.30 g and 0.45 g.

Fig. 17. Base shear versus roof displacement response of prototype 4 at PGAs of: 0.30 g and 0.45 g.
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to heavy damage. To approach the ultimate capacity of the struc-

ture, a final ‘‘funeral’’ sequence of cyclic tests has been performed,

controlling the top displacement of the structure and constraining

the floor forces to an inverted triangular distribution. The starting

displacement amplitude was selected to approximately coincide

with the maximum displacement recorded during the PsD tests,

while the successive cycle(s) progressively increasing by 90 mm

corresponded roughly to 1% interstorey drift increases. Two cycles

were repeated at increasing amplitudes of ±210 mm and ±300 mm.

During the reverse cycle of the larger amplitude (300 mm), the fas-

tenings of one of the actuator force distribution beams were de-

tached at the third floor. For this reason the final loading cycle of

the test was performed by applying the actions only at the first

and second floors and controlling the displacement at the second

floor at ±360 mm amplitude. The fact that the actuators of the third

floor were disconnected during the last cycle, therefore applying

zero force, did not drastically affect the building’s maximum base

shear force, nor its ‘‘collapse’’ mechanism, since the damage con-

centration and interstorey drifts measured already during the

two cycles (amplitudes of ±210 mm and ±300 mm), were in the

1st and 2nd floor substantially higher than in the 3rd one.

Fig. 18 illustrates the time histories of floor displacements and

restoring forces measured during the cyclic test in prototype 4.

The maximum interstorey drifts were considerably high, namely

equal to 5.97%, 4.84%, and 1.99%, at the first, second and third sto-

rey, respectively. Fig. 19 presents the base shear versus roof dis-

placement hysteretic curves recorded for the cyclic test. The peak

roof displacement and maximum base shear force measured in

the cyclic test were 415.6 mm (4.2% global drift) and 2237 kN,

respectively. During the cyclic test, the response of prototype 4

underwent extensive damages and approached the non-collapse

limit state with very wide force-drift cycles. Nevertheless, even un-

der the very high horizontal displacements that prototype 4 was

subjected to, its peak recorded strength was not considerably re-

duced in any of the loading directions and thus the building’s fail-

ure as it is conventionally defined (20% drop in peak strength) was

not reached. The cyclic test was terminated when the stroke of the

actuators in the first floor (±250 mm) was about to be exhausted.

The damage pattern and the distribution of plastic hinge forma-

tion detected in each frame of prototype 4 after the cyclic test is

summarized in Fig. 20, where the size of the circles approximately

indicates the level of damage identified and also estimated on the

basis of the permanent crack width. The major part of inelasticity

and damage was concentrated at the base of all ground floor col-

umns, namely at the cross-sections of maximum moment. There,

the concrete cover and part of the core over the lower 300 mm

of the columns disintegrated and bar buckling initiated after the

concrete cover spalled off, as shown in Fig. 21a. The average max-

imum concrete tensile and compressive strains(for the 9 columns)

at those sections were excessive, (7.61% and 3.24%, respectively).

The ground floor columns attained a drift ratio of about 6%

(Fig. 21b), while their mean curvature ductility factor l/ was

rather high, in the order of 22.

The plastic hinge formation was then diffused at the joints of

the first and second storey. It appears that at the first floor level,

the capacity design requirements (plastic hinges to appear in beam

rather than column ends) were not met in all beam–column joints.

In particular, for the external joints, where the columnwas framing

into only one beam, it seems that the plastic hinge was formed in

the beams (primarily) but also in the columns. The cracking at

these joints started in the vicinity of the mechanical connections,

possibly due to debonding forces, and propagated to the adjacent

beam and column, as illustrated in Fig. 22a. On the other hand,

at the 3 central joints, where two beams were connected to each

column, the plastic hinge was clearly developed in the columns

and the beams remained essentially intact (Fig. 22b). The damage

pattern was identical in the joints of the second floor, even though

the damage accumulation was clearly inferior there.

6. Conclusions

A full-scale three-storey precast building was subjected to a ser-

ies of PsD tests in the European Laboratory for Structural Assess-

Fig. 18. Time histories of floor displacements and restoring forces of prototype 4

during the cyclic test.

Fig. 19. Base shear versus roof displacement response of prototype 4 during the

cyclic test.

Fig. 20. Typical damage pattern and plastic hinging formation after the cyclic test.

606 P. Negro et al. / Engineering Structures 57 (2013) 594–608



ment. The mock-up was constructed in such a way that four differ-

ent structural configurations were investigated experimentally.

Therefore, the behaviour of various parameters like the types of

mechanical connections (traditional as well as innovative) and

the presence or absence of shear walls along with the framed

structure were assessed.

The presence of two stiff precast wall units in prototype 1 was

quite effective in limiting the maximum interstorey drift ratios for

Fig. 21. Final damage state: (a) Disintegration of concrete and bar buckling. (b) View of the first floor’s columns (approximately) maximum horizontal displacement during

the cyclic test.

Fig. 22. Final damage state: (a) Cracking in the vicinity of an external first floor’s (emulative) beam–column joint. (b) Plastic hinging at the top of the first floors’ columns in a

central beam–column joint.
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both the serviceability and ultimate limit states. In such a dual

frame-wall system the first vibration mode dominated the PsD re-

sponse for both earthquake intensities. However the proper con-

nection of stiff RC walls or cladding elements to precast

diaphragms still remains a challenging task.

The seismic response of prototype 2 was highly influenced by

the effects of higher modes. There seemed to be no upper limit

for the storey forces when the structure entered into the nonlinear

regime. This effect, which is a direct consequence of the large high-

er modes contribution, results into large force demands in the con-

nections. The 1% drift limitation imposed by EC8 for the SLS was

exceeded and, at the higher intensity earthquake, corresponding

to ULS, the response of this precast system with hinged beam-to-

column joints was characterized by excessive deformability. How-

ever, despite the limited stiffness of this structural configuration

and the fact that the maximum interstorey drifts were above the

limits imposed by EC8, prototype 2 did not suffer significant dam-

age in its structural members during the 0.30 g PsD test. A visual

inspection made at the end of the design level earthquake revealed

only some very slight damages.

After the seismic test results of prototype 3, it turned out that

the concept of emulative beam–column joints at the top floor only

was not much effective as a means of reducing interstorey drifts

and the overall displacements of the structure, as well as control-

ling the effect of higher modes on the structure’s seismic response.

Finally, when activated at all the floors, the proposed connec-

tion system is quite effective as a means of implementing dry pre-

cast (quasi) emulative moment-resisting frames. This was the case

in prototype 4, where lower maximum interstorey drifts were re-

corded and the first vibration mode dominated the PsD response.

In the design level test (0.30 g), prototype 4 underwent little

non-linear effects and thus it was subjected to a PGA of 0.45 g. In

this MCE the structure revealed dense flexural cracking at the base

of the ground floor columns, but again without considerable dam-

age. In the final cyclic test, prototype 4 underwent extensive dam-

ages and approached the non-collapse limit state with very wide

force-drift cycles. The major part of inelasticity and damage was

concentrated at the base of all ground floor columns which at-

tained a drift ratio of about 6%.
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[12] Fischinger M, Kramar M, Isaković T. The selection of the accelerogram to be
used in the experimental program-selection of the record for 3-storey full-
scale structure to be tested at ELSA, JRC. SAFECAST – UL Report No. 4a; 2010.
66p.

[13] Bournas DA, Negro P, Molina FJ. Pseudodynamic tests on a full-scale 3-storey
precast concrete building: behavior of the mechanical connections and floor
diaphragms. Elsevier Eng Struct J 2012. 58C.

[14] Pegon P, Molina FJ, Magonette G. Continuous pseudo-dynamic testing at ELSA.
In: Saouma VE, Sivaselvan MV, editors. Hybrid simulation; theory,
implementation and applications. Taylor & Francis/Balkema Publishers;
2008. p. 79–88.

[15] Molina FJ, Magonette G, Pegon P, Zapico B. Monitoring damping in pseudo-
dynamic tests. J Earthq Eng 2011;15(6):877–900.

[16] CEN. European Standard EN 1998-3: Eurocode 8: design of structures for
earthquake resistance – Part 3: Assessment and retrofitting of buildings,
European committee for standardization, Brussels, 2005.

[17] Molina FJ. Spatial and filter models. MATLAB functions freely available at
MATLAB central file exchange. Natick, Massachusetts (USA): The MathWorks,
Inc.; 2011. <http://www.mathworks.com/matlabcentral/fileexchange/32634>
[22.08.11].

608 P. Negro et al. / Engineering Structures 57 (2013) 594–608

http://refhub.elsevier.com/S0141-0296(13)00278-2/h0005
http://refhub.elsevier.com/S0141-0296(13)00278-2/h0005
http://refhub.elsevier.com/S0141-0296(13)00278-2/h0010
http://refhub.elsevier.com/S0141-0296(13)00278-2/h0010
http://refhub.elsevier.com/S0141-0296(13)00278-2/h0010
http://refhub.elsevier.com/S0141-0296(13)00278-2/h0035
http://refhub.elsevier.com/S0141-0296(13)00278-2/h0035
http://refhub.elsevier.com/S0141-0296(13)00278-2/h0035
http://refhub.elsevier.com/S0141-0296(13)00278-2/h0025
http://refhub.elsevier.com/S0141-0296(13)00278-2/h0025
http://refhub.elsevier.com/S0141-0296(13)00278-2/h0025
http://refhub.elsevier.com/S0141-0296(13)00278-2/h0025
http://refhub.elsevier.com/S0141-0296(13)00278-2/h0030
http://refhub.elsevier.com/S0141-0296(13)00278-2/h0030
http://www.mathworks.com/matlabcentral/fileexchange/32634

	Pseudodynamic tests on a full-scale 3-storey precast concrete building: Global response
	1 Introduction and background
	2 Design of the prototype according to Eurocode 8
	3 Test structures
	3.1 The mock-up
	3.2 Description of the structural system-investigated parameters

	4 Experimental programme
	4.1 Pseudodynamic testing
	4.2 Input motion selection and test sequence

	5 Experimental results and discussion
	5.1 Prototype 1 – structure with shear walls and hinged beam-to-column joints
	5.1.1 Decomposition of the wall lateral displacement

	5.2 Prototype 2 – structure with hinged beam-to-column joints
	5.3 Prototype 3 – structure with emulative beam-to-column joints at the top
	5.4 Prototype 4 – structure with emulative beam-to-column joints
	5.5 Final cyclic test

	6 Conclusions
	Acknowledgements
	References


