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Abstract

Modern imaging methods allow a non-invasive assessment of both structural and functional brain connectivity. This has lead to
the identification of disease-related alterations affecting functional connectivity. The mechanism of how such alterations in
functional connectivity arise in a structured network of interacting neural populations is as yet poorly understood. Here we use
a modeling approach to explore the way in which this can arise and to highlight the important role that local population
dynamics can have in shaping emergent spatial functional connectivity patterns. The local dynamics for a neural population is
taken to be of the Wilson–Cowan type, whilst the structural connectivity patterns used, describing long-range anatomical
connections, cover both realistic scenarios (from the CoComac database) and idealized ones that allow for more detailed
theoretical study. We have calculated graph–theoretic measures of functional network topology from numerical simulations of
model networks. The effect of the form of local dynamics on the observed network state is quantified by examining the
correlation between structural and functional connectivity. We document a profound and systematic dependence of the
simulated functional connectivity patterns on the parameters controlling the dynamics. Importantly, we show that a weakly
coupled oscillator theory explaining these correlations and their variation across parameter space can be developed. This
theoretical development provides a novel way to characterize the mechanisms for the breakdown of functional connectivity in
diseases through changes in local dynamics.

Introduction

Modern brain imaging methods allow the quantitative study of both
local activity dynamics and the interdependency between activities in
anatomically distant areas. The latter, known as functional connectiv-
ity (FC) analysis, is of growing interest in the clinical and
experimental neuroscience community.

Functional connectivity refers to the temporal synchronization of
neural activity in spatially remote areas. It is widely believed to be
significant for the integrative processes in brain function. FC is
typically assessed using brain activity data acquired during a relaxed
resting condition, although it can also be assessed from measurements
taken during a particular task. The resting condition poses minimal
demands on experimental preparation and the measured subject whilst
still providing reliable information about a range of brain networks
(Shehzad et al., 2009; Smith et al., 2009).

In practice, it is evaluated using a range of statistical techniques
fitted to the particular measurement modality, including high temporal
resolution methods such as electroencephalography and magnetoen-
cephalography as well as high spatial resolution methods such as
functional magnetic resonance imaging. For the latter, simple linear
dependence measures (linear correlation) are suitable (Hlinka et al.,
2011a) while for the former, more time-resolved, data modality,

elaborate methods of synchronization assessment such as mean phase
coherence (quantifying the phase synchronization) are commonly
used.
As malfunction of integration of neural information, further

affecting cognitive and emotional processing, is believed to be central
to many psychiatric and neurological diseases, a range of studies has
investigated the differences in FC in patients with specific disease
compared to healthy subjects. Although the description of such
differences is still far from complete, many specific results for
particular diseases have already been reported. We refer the reader to
the Discussion section and recent reviews for more details (Bassett &
Bullmore, 2009; Sporns, 2011).
While FC analysis as a data processing method seems to be

effective in the detection of consistently synchronized networks of
brain areas, there is an ongoing discussion regarding the origin of the
specific observed patterns. The very structure of the anatomical
connections between remote brain areas, termed structural connectiv-
ity (SC), is the most widely discussed potential contributor to the
observed spatial pattern of FC. However, the extent to which it
determines the FC is not known (Honey et al., 2010), with reports of
various degrees of predictability (see Ghosh et al., 2008; Daffertshofer
& van Wijk, 2011; or Honey et al., 2010 and references therein).
In view of the situation described above, we contribute in this paper

to the discussion of the relation between SC and FC by describing the
role of mutual synchronizability of brain subunits modelled as neural
oscillators. We have illustrated this general argument by systemati-
cally studying changes under parametric variation in a network model
based on coupled neural populations. We have further assessed the
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associated changes in the FC topology, relating this to the hypothesis
of increased randomization of brain networks in disease. Finally, we
have related the results to theory-based predictions of changes in
global network synchrony.

Materials and methods

Model description

To investigate the relationship between SC and FC in brain networks,
we constructed a phenomenological model using standard compo-
nents. In particular, we considered a network of interacting neural
populations, coupled by a specific matrix of connections.
For simplicity, we assumed a parcellation of the cerebral cortex into

functional areas, such that each area corresponds to a functional unit
that can be represented by a single instance of a localized neural
population model. We also assumed that the approximate structure of
neural connections between the functional areas was available in the
form of a connectivity matrix.
Each cortical area in the model is represented by a Wilson–Cowan

(Wilson & Cowan, 1972) node – a model of two interacting
populations of neurons. This represents a simple (but historically
important and well recognised) example of an oscillatory neural
population model, convenient here for ease of introduction, analysis
and simulation. In principle for detailed simulations it could be
replaced with other choices of neural mass models such as developed
by Jansen & Rit (1995), Marten et al. (2009) and Liley et al. (2010),
which are more amenable to accurately describing real EEG and fMRI
time-series data. Denoting the activity of the two Wilson–Cowan local
populations by u and v the network equations are written as:

_ui ¼ �ui þ f ðc1ui � c2vi þ P þ e
X

j

wijujÞ

_vi ¼ �vi þ f ðc3ui � c4vi þ QÞ
ð1Þ

where f(x) = 1 ⁄ (1 + exp ()x)) and represents a population firing rate
function. Here wij > 0 with wii = 0 and reflects the anatomical
(structural) activity pattern in a system of N nodes [each described
by the pair (ui, vi)]. This is defined by the matrix bij with entries 0 or 1
where we set wij ¼ bij=

P
k bik(so that the input to each node is

normalised). The constants c1, …, c4 denote the strength of interaction
between sub-populations within a node. For the current analysis we
chose c1 = c2 = c3 = 10 and c4 = )2 as in Hoppensteadt & Izhikevich
(1997). For e = 0 the network dynamics decouples into a set of
identical nodes, each of which may oscillate or be at rest depending on
initial data and the values of the system parameters.

Bifurcation analysis

A linear stability analysis of the node dynamics shows that oscillations
may arise via a Hopf bifurcation. The locus of these Hopf bifurcations
(HB) in the (P, Q) parameter plane is shown in Fig. 1, as well as the
locus of saddle-node (SN) bifurcations of fixed-points (as the system
may have either one or three rest states). The diagram shows only the
main skeleton of the bifurcation structure of the system (though see
Hoppensteadt & Izhikevich, 1997, for more detail).

Structural connectivity

For exploration of the relation between SC and FC, we considered
three types of connectivity matrices. The first is modular connectivity,
where the network consists of several modules that are fully connected
inside and have no connections between them. The second is an

example of a quasi-realistic scenario, where we chose the parcellation
of the cerebral cortex and the SC matrix in agreement with Honey
et al. (2007) as 47 areas of macaque cortex together with an
anatomical connectivity matrix collated in the CoComac database
(Kotter, 2004). The third is a random binary matrix produced by the
Maslov–Sneppen algorithm (Maslov & Sneppen, 2002), preserving
the number of connections of each node (degree sequence) and
therefore also the overall network density of the macaque matrix. The
structural matrices are shown in Fig. 2.

Simulations of the model

The dynamics of the model were simulated using in-house Matlab
scripts. To facilitate the detection of stable solutions, a small amount
of additive white Gaussian noise with variance r = 0.01 was added
independently to the u variable of each node and the system integrated
using the Euler–Murayama method, with a time step dt = 0.1.
Parameters P and Q were varied in the intervals ()6, 6) and
()12, 0) respectively with increments of 0.25. The coupling strength
was fixed to e ¼ 1.
For each parameter setting, a run of the model of length T = 10 000

was simulated, with random initial conditions for u and v variables of
all nodes chosen uniformly from the interval (0,1). For FC analysis,
the first 1000 steps were discarded to allow for initial transients. An
example of the system behaviour is shown in Fig. 3. All the local
populations show oscillations, with a typical period of approximately
50 time units.
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Fig. 1. Bifurcation diagram for an isolated Wilson–Cowan node in the (P, Q)
plane. Here HB denotes Hopf bifurcation and SN a saddle node of fixed-points
bifurcation. Here c1 = c2 = c3 = 10 and c4 = )2. Also shown are plots of H(h)
(solid red line) at three different points in the (P, Q) plane. At points a
((P, Q) = ()2.5, )8.5)) and c ((P, Q) = (2.5, )3.5)) we find H’(h) < 0 and at
point b ((P, Q) = ()1.5, )6)) H’(h) > 0. The green dashed line is the h axis
(H = 0). A breakdown of FC (loss of synchrony) is predicted at points a and c
(for weak coupling between nodes).

A B C

Fig. 2. SC matrices for (A) modular connectivity, (B) brain anatomical
connectivity (CoComac database; Kotter, 2004) and (C) random connectivity
with the conserved degree sequence of (b). A nonzero entry at the position with
coordinates i, j denotes the existence of anatomical link from the j-th to the i-th
network node.
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Measurement of FC

For assessment of FC we employed two commonly used measures. As
a primary measure, the simple linear (Pearson’s) coefficient of
correlation of the time series was used. As the model supports
nonlinear oscillations, we also computed the mean phase coherence
(Mormann et al., 2000). The computation of mean phase coherence
requires first determining the instantaneous phase of each signal at
every time point, which was carried out by applying a Hilbert
transform and reading out the angle of the complex output. The phase
coherence of the two signals is then quantified as the temporal stability
of the phase difference udiff(t) = u1(t) - u2(t). The mean phase
coherence thus is defined as:

R ¼ 1
N

XN�1
j¼0

eiudiff jDtð Þ

�����
����� ð2Þ

and we refer the reader to (Mormann et al., 2000) and the references
therein for details.

Graph–theoretical measures

For the purposes of studying functional networks, the graph–theoretic
approach is commonly used (Bullmore & Sporns, 2009). Here we
used standard methods to compute some of the most commonly used
graph–theoretic network characteristics (:) average path length,
clustering coefficient and small-world index. We include only a brief
description; see Bullmore & Sporns (2009) for details.

First, the FC matrix was binarized by choosing a threshold and
keeping only links that held above-threshold connectivity values. For
our simulations, we chose the value of the threshold such that the
density of the resulting graph was equal to that of the underlying SC.

One can compute a distance matrix Dij holding for each pair of
nodes the length of the shortest connecting path (minimal number of
links necessary to go through to get from i to j). By averaging this over

all node pairs, one obtains the average path length L, one of the key
graph–theoretical measures.
For each node one can also compute its local clustering coefficient

c, defined as the ratio of the existent links between its neighbours to
the total number of such possible links. By averaging this coefficient
over all nodes, one obtains the (global) clustering coefficient C.
To facilitate comparability, these characteristics are often related to

the expected values for a corresponding random graph (commonly the
Erdos–Renyi random graph, conserving the number of links, is used.).
Thus we obtained relative coefficients k ¼ L=Lrand and c = C ⁄ Crand.
A widely discussed network property is so called small-worldness;

see Watts & Strogatz (1998) for an original discussion of the concept.
A key property of a ‘small-world’ network is that it has similar
average path length, but increased clustering coefficient compared to a
corresponding random graph. These properties are summarized by the
small-world index r ¼ c=k suggested in Humphries & Gurney (2008).

SC–FC agreement

The level to which SC overlaps with the FC can be conveniently
captured by the Jaccard similarity coefficient of the non-diagonal
entries of the binary SC and FC matrices. This is the relative
number of links that are shared by the SC and FC matrices with
respect to the total number of links that appear in at least one of
the matrices. Such a ratio is a natural measure of connectivity
matrix overlap, ranging from 0 for matrices with no common links
to 1 for identical matrices.

Computation of stability

To provide a theoretical background and interpretation of numerical
results, we consider the following theoretical arguments.
Synchronization phenomena in neuroscience have been extensively

studied from a theoretical perspective using weakly coupled oscillator
theory (Hoppensteadt & Izhikevich, 1997). This theory allows us to
predict the stability of specific dynamic oscillatory network solutions.
In the following we outline the method, and use it to derive a heuristic
model for the prediction of parameter sets that will yield a high degree
of correlation between SC and FC.

Transformation of the model

We may rewrite the model given by Eqn (1) in the matrix form

_X ¼ �X þ f ðWeX þ RÞ ð3Þ

with X = (u1, …, uN, v1, …, vN), R = (P, …, P, Q, …, Q) and

We ¼
c1IN þ ew �c2IN

c3IN �c4IN

� �
ð4Þ

where w has components wij and IN is the N · N identity matrix so
that W = <2N·2N. Using the linear transformation Y = WX + R we
obtain a similar model, though with the term in e appearing additively:

_Y ¼ �Y þ Rþ W0f ðY Þ þ e
w 0
0 0

� �
ð5Þ

This is in a more convenient form for applying standard phase
reduction techniques.
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Fig. 3. Example segment of time series of the model for a network of 47
population nodes connected by the CoComac network of connections; the u-
variable is shown for each node.

Relating structural and functional brain connectivity 2139

ª 2012 The Authors. European Journal of Neuroscience ª 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd
European Journal of Neuroscience, 36, 2137–2145



Phase reduction

Writing Y in component form as Y = (x1, …, xN, y1, …, yN) means
that Eqn. 5 takes the form

_xi ¼ �xi þ P þ c1f ðxiÞ � c2f ðyiÞ þ e
X

j

wijf ðxjÞ

_yi ¼ �yi þ Qþ c3f ðxiÞ � c4f ðxiÞ
ð6Þ

For e = 0 we look for oscillatory solutions with a common
trajectory such that (xi(t), yi(t)) = (x(t + hiT), y(t + hiT)), for some
arbitrary phase-shifts hi 2 [0, 1),where (x(t), y(t)) is a T-periodic
solution of

_x ¼ �xþ P þ c1f ðxÞ � c2f ðyÞ
_y ¼ �y þ Qþ c3f ðxÞ � c4f ðyÞ

ð7Þ

For weak coupling (small e) we may then invoke the theory of
weakly coupled oscillators to obtain a description of the network
dynamics in terms of a set of phase variables that evolve according to

_h ¼ 1
T
þ e
X

j

wijHðhi � hjÞ ð8Þ

for i = 1, …, N. Here the phase interaction function (which is 1-
periodic) is given by a temporal average of the product of the phase
response vector of oscillator i and the interaction from oscillator j.
The former can be found once the periodic orbit has been determined
(by solving the so-called adjoint equation) and the latter merely
requires writing f(xj) in the form f(x(t + hjT)). The numerical
machinery for constructing the phase interaction function is conve-
niently implemented in XPPAUT (Ermentrout, 2002). Note that this
approach differs significantly from that in Daffertshofer & van Wijk
(2011), which constructs a phase-oscillator network by linearizing
around an unstable fixed point. Instead we have used the notion of
phase response, which is the appropriate technique for describing
systems with large amplitude oscillations such as those seen in
Wilson–Cowan networks.
From the set of ordinary differential Eqn (8) it is particularly easy to

determine the stability of the synchronous state (hi = h for all i), which
is key in determining FC. We introduce the N · N matrix Ĥwith
components:

Ĥij ¼ H 0ð0Þ wij � dij

X
k

wik

" #
ð9Þ

where H¢(h) = dH(h) ⁄ dh. The stability of a general phase-locked
solution of the system of oscillators depends on the eigenspectra of the
Jacobian Ĥijof the linearized perturbation equation. In particular,
while one eigenvalue is always zero, the solution is stable if all the
remaining eigenvalues have negative real parts. For a synchronous
solution, the phase differences are all zero. A sufficient condition for
the instability of the synchronous state is that Tr Ĥ>0 (as this would
require at least one eigenvalue to have positive real part). Given that
wij > 0 and wii = 0 we would therefore expect to see a breakdown in
global synchrony if H¢(0) < 0. Similarly, for a globally coupled
network ("i „ j; wij = c), the matrix has a very simple form and the
non-zero eigenvalues are easily shown to be )1 (with N)1 degen-
eracy). Therefore, the synchronous solution is stable if H¢(0) > 0 and
unstable if H¢(0) < 0.
This provides us with conditions for global synchrony, that is,

synchrony of all neural oscillators. However, we are mostly interested

in complex patterns of partial synchrony. Computation of conditions
for these is impractical, as these differ in principle for each particular
synchrony pattern and each underlying SC. Nevertheless, the above
analysis can provide a heuristic condition regarding the stability of
synchronous patterns in agreement with the underlying SC.
In particular, the same stability condition H¢(0) > 0 as for globally

coupled networks also trivially holds for an isolated sub-network of
two coupled oscillators. Thus wherever H¢(0) > 0 holds in parameter
space, the nodes connected by a structural link will tend to
synchronize. On the other hand, we expect to see a disagreement
between SC and FC if H¢(0) < 0.
Some examples of H (obtained using XPPAUT) are shown in

Fig. 1. At the points labelled a and c we predict a breakdown of FC [as
H¢(0) < 0], which is consistent with our direct numerical simulations
of the full model. For more extensive computation of H¢(0) as a
function of parameters P and Q, an in-house interface to the Matlab-
based continuation package MATCONT (http://www.matcont.ugent.
be/) was used.

Heuristic prediction of SC–FC agreement

For networks with complex SCs, total agreement of SC and FC may
be impossible. Moreover, many candidate phase-locked solutions
might be available for testing, rendering detailed treatment cumber-
some. Nevertheless, we propose that a general tendency towards
agreement between SC and FC might be determined from the pair-
wise phase interaction function. In particular, we conjecture that when
the phase interaction function is such that the bi-synchronized solution
is stable, this would promote synchrony within those pairs of nodes in
the networks that are coupled, further leading to increased agreement
between SC and FC.

Results and statistical analyses

SC–FC agreement

For all three types of SC, the variation of the SC–FC agreement within
the (P, Q) parameter plane in the numerical simulations showed
somewhat noisy but clearly non-random structure, which was to a
large degree stable across the SC types and FC measures. See Fig. 4
for values of the agreement.

Graph–theoretic properties of FC

The network-level effects of variation of the FC within the (P, Q)
plane were assessed using a selection of commonly used graph–
theoretic measures. Again, there was a clear structure of the
dependence on (P, Q) parameters, affecting strongly the clustering
coefficient and also the characteristic path length, leading to changes
of the small-world index r; see Fig. 5. The (P, Q)-dependence pattern
was related to the one observed for the SC–FC agreement. In
particular, the areas of increased clustering and small-world index
(with respect to random network) generally overlapped with the areas
of increased SC–FC agreement.

Stability of synchronized solution

Numerical computation of the pair-wise phase interaction function
outlined in Materials and Methods allows the determination of
the stability of the fully synchronized (in-phase) solution.
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In particular, the positive sign of H¢(0) corresponds to stability
while a negative sign of H¢(0) to instability of synchrony. The
values of H¢(0) as function of P and Q are plotted in Fig. 6,
suggesting an overall large central area of synchrony instability
with two roughly triangular areas of instability, at the lower left and
upper right corner of the limit cycle region delineated by the
bifurcation lines.

For a network consisting of two independent and internally fully
coupled modules, synchrony among all nodes within each module is
from theory given by the sign of H¢(0), while the synchrony between
them is predicted as random and asymptotically zero as they are
completely independent. This theoretical argument predicts perfect
agreement of the FC matrix with the underlying structure for positive
H¢(0) and zero agreement for negative H¢(0). This is confirmed by
simulations; see Fig. 7.
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Fig. 4. Agreement between the SC and FC as measured by the Jaccard similarity coefficient of the connectivity matrices. (Left) Measuring FC by correlation; (right)
measuring FC by mean phase coherence; (top) CoComac SC; (bottom) random SC.
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Fig. 5. Graph–theoretical properties of FC measured by mean phase coherence as function of parameters P and Q of the Wilson–Cowan model.
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Fig. 6. Stability of synchronous solution for weakly coupled network of
Wilson–Cowan oscillators with global coupling. H¢(0) is shown; note that its
positive value corresponds to stability.

Relating structural and functional brain connectivity 2141

ª 2012 The Authors. European Journal of Neuroscience ª 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd
European Journal of Neuroscience, 36, 2137–2145



Note that this also suggests that the strength of coupling e = 1 is
sufficiently small for the predictions of the weak coupling theory to
approximately hold.

Discussion

The current study has documented how FC within a network of neural
populations crucially depends on the parameters of the populations.
Moreover, the drastic consequences of this dependence for the
agreement between SC and FC, as well as for the global functional
network properties, has been investigated. Importantly, a link to the
theory of weakly coupled oscillators has been established. In particular,
in the parameter regions where the synchronous solution is predicted to
be stable, the FC resembles the underlying SC. On the other hand, in
areas of instability of synchronous solutions (for pair-wise or fully
coupled networks) the network shows a richer pattern of activity,
generally independent of the underlying structural connections. While
several specific choices had to be made for the purpose of this study, we
expect that the main results hold under more general conditions.
There is an increasing interest in analyzing brain FC alterations

using graph–theoretical approaches. For example, such techniques
have been applied to electrophysiological data for a variety of diseases
including Alzheimer’s dementia (Stam et al., 2007), major depression
(Leistedt et al., 2009) and schizophrenia (Rubinov et al., 2009). We
refer the reader to recent reviews for more details (Bassett &
Bullmore, 2009; Sporns, 2011). In particular the latter review
highlights the notion of randomization (loss of specific complex
properties of brain connectivity) as an important potential common
mechanism for FC disruption in brain disease. As various diseases
have been shown to have such randomizing effects on brain FC, the
instability arising from variation in population properties may have
direct relevance for understanding the way diseases affect brain
activity dynamics, being a candidate mechanism for FC disruption in
the absence of (or as a precursor to) notable changes in the anatomical
connectivity or local dynamics.

Model parameter settings

Within our high-level model, the values of some parameters could
not be directly informed by biology. The strength of the coupling e
was chosen for convenience (and set to unity). For weaker coupling,
longer time series would have to be simulated to achieve robust
statistical sampling of the process, which would pose an impractical
demand for both memory and computational time especially in

combination with the requirement to cover a two-parameter plane.
Importantly, even though the coupling strength was not ‘negligible’,
the weak coupling theory stability prediction still proved relevant for
understanding the FC topology. A small amount of noise was also
implemented in the model. We have not investigated the parametric
variation of the results with noise levels so only note that, while we
have obtained similar results for decreased or moderately increased
noise levels, under very strong noise, synchronisation is, as expected,
less robust.
The role of node heterogeneity in the formation of FC has recently

been studied by Daffertshofer & van Wijk (2011). We have observed
very similar results for both a network with homogenous nodes and a
network where a random fluctuation in the P parameter drawn from
interval (0, 0.01) was added to each node. This confirms that the effect
does not require strictly homogeneous node properties. As the node
heterogeneity introduces several more degrees of freedom, which
would require additional space to explore and describe, the role of the
heterogeneities will be reported upon elsewhere.

Model choice

In the Wilson–Cowan model considered, the parameters P and Q were
conveniently chosen for exploration of the dependence of FC on
parameter variation. In the original formulation, these correspond to
the background level of non-specific input to the two node subpop-
ulations. In this context our findings could be interpreted as the
potential effect of global increase or decrease in excitatory or
inhibitory transmission, leading to deviation from the optimal modus
of function and breakdown or randomization of FC pattern. More
generally, P and Q can be interpreted as general modulators of the
local input response.

FC assessment

The choice of methods for FC assessment is still a matter of intense
research and debate even within the experimental community. The
mean phase coherence used in this paper is among those most widely
used for quantification of dependence of electrophysiological signals.
On the other hand, while many nonlinear methods have been recently
tested in this respect, it has been confirmed that linear correlation is
generally sufficient for the assessment of FC for functional magnetic
resonance imaging data (Hlinka et al., 2011a). Our model output is
generally closer (though not equivalent) to a local field potential and
therefore means phase coherence is the method of first choice.
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Fig. 7. Agreement of FC and SC for a purely modular network as a function of model parameters P and Q. (Left) Measuring FC by correlation; (right) measuring
FC by mean phase coherence. Note the good agreement with Fig. 6 (stability of synchronous solution), which can be directly proven for weak coupling.
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Nevertheless, we also include the results for the linear correlation
measure as it is widely known and also commonly used in studies of
interactions within complex dynamic systems. In general, the results
using both measures have shown marked similarities, although they
also offer to some extent complementary information due to their
differential sensitivity with respect to out-of phase synchrony. In
particular, linear correlation can show negative values for prevalently
anti-phase synchronized oscillations while mean phase coherence can
show positive ones, reflecting the strength of synchronization. The
differences between these measures constitute a still widely neglected
but important subject for further study.

Graph–theoretic network characteristics

In the present study, the overall effect of changing system parameters
on the FC pattern has been studied on several levels. Apart from the
consequences for the structure–function relationship, the global
topology alterations have been probed using a selection of widely
used graph–theoretic measures. There was a pronounced variability
particularly in the clustering coefficient and small-world index with
respect to the degree-matched random graph, suggesting a potential
mechanism for the breakdown of FC towards increased randomness in
specific areas.

The binarization threshold for the FC was conveniently chosen to
preserve the density of the structural matrix. Although a change in the
threshold would lead to quantitative alterations in the graph–theoret-
ical measures, the specific threshold choice (within reasonable limits)
does not strongly affect the general qualitative results that we
obtained.

Of note, although graph–theoretical approaches are commonly
applied for the characterisation of both SC and FC and are believed to
provide important qualitative and quantitative information about the
topology of the corresponding graphs, the interpretation of the path-
based measures in FC matrices is not as straightforward as with SC
due to the abstract nature of these paths. The problem is discussed in
more detail in Rubinov & Sporns (2010).

It has recently also been shown that a FC approach using common
measures introduces some bias into the graph topology, namely a
spurious tendency towards increased clustering and small-worldness
(Hlinka et al., 2011b). However, this is not crucial in the current
context as long as it is the parameter-dependent relative variation
rather than the exact quantitative values of the graph measures that is
interpreted.

The specific interpretation of graph–theoretic measures in the
context of brain function is an ongoing topic of research outside the
scope of the current paper; see e.g. Bullmore & Sporns (2009) and
Rubinov & Sporns (2010) for reviews.

Relating SC and FC

We have observed that the agreement between SC and FC was
crucially modulated by the parameter regime. In particular, in
agreement with our intuitive theoretical argument, high values of
agreement were observed in the analytically derived parameter area
corresponding to pairwise synchronizability of local dynamics, while
low values were observed in areas that correspond to instability of
pairwise synchrony (compare Fig. 6 with Fig. 4).

For purely modular networks (Fig. 7), this agreement was perfect
up to some noise due to finite-size simulation effects. For a random
network, the patterns were qualitatively similar as for a more realistic
brain network, although the prediction was weaker. This is probably

related to the tendency towards modular architecture in real brain
networks; see also Honey et al. (2007). The specific role of modularity
in the formation of FC is a complex topic requiring further research.
The robustness of the brain network results was confirmed with
additional simulations using an alternative SC matrix (cat cortex; see
Scannell et al., 1999); see Fig. S1.
Note that the similarity of matrices can be quantified by a range of

methods. The Jaccard similarity coefficient is preferable for its
conceptual simplicity (effectively being a relative number of shared
links). Although only results using the Jaccard similarity coefficient
are presented in this paper, other measures such as Pearson correlation
coefficient were tested in an exploratory fashion and offered
qualitatively similar results.
In general, experimental studies support the idea that structural

connections, when present, are substantially predictive of the presence
or strength of functional connections, although this relation may be
only moderate in available data. In computational models, even
stronger agreement of SC and FC has been reported in some cases; see
e.g. Ghosh et al. (2008), while the potential for their decoupling has
been discussed elsewhere (Daffertshofer & van Wijk, 2011).
Although the investigation here was not aimed at fitting a particular

experimental dataset, we were able to confirm that the values of the
structure–function agreement in the synchronization regime were of
similar order as those generally reported in the experimental literature,
suggesting substantial, but far from perfect, agreement.
Experimental establishment of the relation of structure and dynam-

ics (or function), though progressing, is still complicated by method-
ological difficulties with in vivo measurements of SC (Hagmann et al.,
2008). On the other hand, modeling studies are relatively scarce,
include specific and widely differing assumptions and therefore offer
only partial answers. The isolated reports differ in whether they predict
high similarity between SC and FC as well as in the expected
reliability of this prediction; see e.g. Daffertshofer & van Wijk (2011),
Honey et al. (2010) and Ghosh et al. (2008).
Thus, understanding the potential and observed changes in FC in

disease would benefit from embedding previous studies into a broader
framework, the aim being an improved theoretical understanding of
the principles of the emergence of FC patterns from the dynamic
activity of local nodes coupled through long-range anatomical
connections.
In this context, it seems reasonable to assume that the extent of the

relationship might in fact strongly depend on some key system
parameters. In this paper we document such dependence using a basic
computational neuroscience model and provide a tentative explanation
of a major source of this variability through the stability analysis of
synchronized behaviour.
The argument presented is applicable to a wide class of oscillator-

based neural models. Importantly, the desynchronization mechanism
of FC disruption we have described, through its decoupling from the
SC substrate, may play a role in the topological changes observed in
brain FC in disease. In particular, the topology of FC was shown to
potentially drastically change without a notable change of the
underlying structural substrate or local dynamic behaviour.
For simplicity we have not included axonal transmission delays in

the model. However, these can potentially play a significant role in
shaping FC, particularly for resting-state networks. For a review we
refer the reader to Deco et al. (2011). Moreover, the inclusion of
delays in neural mass models is known to allow for a richer repertoire
of response, including chaotic behaviour (Coombes & Laing, 2009).
In the phase-reduced description the presence of a delay would
manifest itself as a phase shift. For small enough delays this can be
described by a phase shift in the phase interaction function, as in
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Daffertshofer & van Wijk (2011). Interestingly, time delays can cause
the stability of the synchronous state to switch periodically as they are
increased (Campbell & Kobelevskiy, 2012).
The Wilson–Cowan model was chosen as a widely known example

of a neural population model with exemplary oscillatory dynamics,
also suitable for its simplicity. Of course, more sophisticated and
biologically realistic models would have to be studied to provide more
specific, potentially quantitative, predictions regarding the effects of
variation of particular physiological variables due to brain disease or
other factors modulating brain function. Related to this, it would be
beneficial to complement this work in future with more accurate
forward models that connect the local neural activity to the variables
observed in experimental brain measurements using diverse
brain imaging methods (Bojak et al., 2010). In such detailed
modelling, realistic levels of noise and signal conduction delays
should be implemented; they have already been shown to contribute to
the reproduction of realistic FC patterns in specific models (Ghosh et
al., 2008).
The described phenomena leave many open questions. For instance,

while we have shown that the predictive power of pair-wise synchrony
stability for the structure–function agreement is strong across widely
varying topologies, it may be parametrically modulated by the
network topology or other parameters of the dynamic model. For
instance, this prediction should intuitively be very precise for sparse
networks formed by many isolated node doublets, while for denser
and more complex connectivity matrices it should provide rather an
approximate heuristic estimate (and we should instead analyze the full
Jacobian matrix of the system); this dependence may be of interest for
the investigation of real data.

Conclusion

In conclusion, the current paper contributes to the study of large-
scale patterns of brain activity dynamics and its alterations in disease
by documenting the profound effects of subtle changes of param-
eters within local nodes on the FC topology. For a specific model,
we have identified regions of breakdown of the FC pattern
characterized by increased randomization and decreased resemblance
to the underlying structural coupling pattern. This was further
related to theoretical predictions by correspondence to the param-
eter-regions of instability of pair-wise synchronous solutions. Further
work is ongoing that will formulate a more rigorous theoretical
framework for explaining FC patterns and their alterations in brain
disease.

Supporting Information

Additional supporting information can be found in the online version
of this article:
Fig. S1. Agreement between the structural and simulated functional
connectivity as measured by the Jaccard similarity coefficient of the
connectivity matrices. Left: quantifying functional connectivity by
correlation; Right: quantifying functional connectivity by mean phase
coherence; Top: cat cortex structural connectivity; Bottom: random
structural connectivity. Visualization as in Figure 4 of the article that
presents results for macaque structural connectivity matrix.
Please note: As a service to our authors and readers, this journal
provides supporting information supplied by the authors. Such
materials are peer-reviewed and may be re organized for online
delivery, but are not copy-edited or typeset by Wiley-Blackwell.

Technical support issues arising from supporting information (other
than missing files) should be addressed to the authors.
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