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Is stimulus specific perceptual learning the result of extended practice or does it emerge
early in the time course of learning? We examined this issue by manipulating the amount
of practice given on a face identification task on Day 1, and altering the familiarity of stimuli
on Day 2.We found that a small number of trials was sufficient to produce stimulus specific
perceptual learning of faces: on Day 2, response accuracy decreased by the same amount
for novel stimuli regardless of whether observers practiced 105 or 840 trials on Day 1. Cur-
rent models of learning assume early procedural improvements followed by late stimulus
specific gains. Our results show that stimulus specific and procedural improvements are
distributed throughout the time course of learning.
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INTRODUCTION
Improvements in perceptual and motor skills often follow a time
course comprising steep early gains, followed by gradual increases
in performance that accumulate over the course of several hun-
dreds or thousands of trials (Poggio et al., 1992; Karni and Sagi,
1993; Recanzone et al., 1993; Ahissar and Hochstein, 1997; Karni
et al., 1998; Wright and Fitzgerald,2001; Hussain et al., 2009a; Ortiz
and Wright, 2009; Agus et al., 2010). Rapid improvements within
the first few trials are attributed to learning of task demands and
general aspects of the procedure, termed task-related, conceptual,
or procedural learning (Recanzone et al., 1993; Karni and Bertini,
1997; Karni et al., 1998; Wright and Fitzgerald, 2001). Stimulus
specific learning – the proportion of learning that is specific to the
trained stimulus attributes, retinal location, or eye (Fiorentini and
Berardi, 1980; Ball and Sekuler, 1987; Poggio et al., 1992; Karni
and Sagi, 1993; Ahissar and Hochstein, 1997; Hawkey et al., 2004;
Aberg et al., 2009; Hussain et al., 2009a; Ortiz and Wright, 2009;
Jeter et al., 2010) – is thought to be a slower process occurring
later, after the cumulation of several hundred trials or more, and
is associated with different mechanisms of plasticity than those
involved in task-related learning (Karni and Bertini, 1997; Zhaop-
ing et al., 2003; Law and Gold, 2009). By this view, the early and
late phases of perceptual learning are associated with distinct types
of learning.

On the other hand, it is known that for a variety of tasks, learn-
ing approximates a power or exponential form: when performance
is plotted against log number of practice trials, no clear discontinu-
ity in performance emerges (Dosher and Lu, 2005, 2007; Hussain
et al., 2009b). In other words, performance is a linear function of
the log number of practice trials, which could be viewed as incon-
sistent with the idea that learning consists of qualitatively distinct,
early and late stages. From this perspective, stimulus specificity of
learning is predicted to emerge both early and late in practice. The

most straightforward method of establishing whether specificity
emerges early is to vary the amount of practice before subjects
transfer to a different stimulus or task. One study in the visual
domain (Jeter et al., 2010) explicitly used this method to show
early generalization, followed by late specificity of learning of an
orientation discrimination task. Aberg et al. (2009) reported a
similar finding in a study examining the minimum amount of
practice needed to improve Chevron discrimination. In the audi-
tory domain, however, stimulus-related learning has been reported
to emerge early (Hawkey et al., 2004), and one study has shown
that late trials contribute to generalizable improvements (Wright
et al., 2010).

Previous studies have shown that robust, long-lasting, stim-
ulus specific improvements are found on face identification
after large amounts of practice (Hussain et al., 2011), and
that small amounts are sufficient to raise performance to sta-
ble levels on a subsequent session (Hussain et al., 2009b).
When a fixed stimulus set is used, rapid improvements on
this task occur within the first 200–300 trials, after which the
gains are more gradual, with performance approaching ceil-
ing after approximately 1700 practice trials (Hussain et al.,
2009a,b). Here, we ask whether the early improvements within
first 100 trials are stimulus specific, or whether they reflect
only task-related learning. The emergence of stimulus specific
learning after relatively few trials would suggest that the early
and late phases of learning are not as distinct as previously
assumed.

MATERIALS AND METHODS
SUBJECTS
Subjects were 32 undergraduate students at the University of
Nottingham (mean age= 21 years). All had normal or corrected-
to-normal vision.
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APPARATUS AND STIMULI
Stimuli were generated in Matlab (v. 5.2) using the Psychophysics
and Video Toolboxes (Brainard, 1997; Pelli, 1997), and displayed
on a 21” Sony Trinitron monitor (1024× 768 pixels) at a frame
rate of 85 Hz. Average luminance was 40 cd/m2. Display luminance
was measured with a PhotoResearch PR650 photometer, and the
calibration data were used to build a 1779-element lookup table
(Tyler et al., 1992). Customized computer software constructed
the stimuli on each trial by selecting the appropriate luminance
values from the calibrated lookup table and storing them in the
display’s eight-bit lookup table.

The face stimuli were faces of five males and five female
faces cropped to show only internal features (i.e., eyes, nose, and
mouth). All of the faces had the same global amplitude spec-
trum (see Gold et al., 2004) for a more detailed description. The
square patch within which the faces were embedded subtended
4.8˚× 4.8˚ of visual angle, and the faces themselves subtended
2.5˚× 3.7˚. During the experiment, stimulus contrast was var-
ied across trials using the method of constant stimuli. Seven
levels of contrast were spaced equally on a logarithmic scale,
and spanned a range that was sufficient to produce significant
changes in performance in virtually all subjects. The stimuli were
shown in one of three levels (low, medium, and high) of static
two-dimensional Gaussian noise, created by sampling from Gauss-
ian distributions with contrast variances of 0.001, 0.01, and 0.1.
Hence, subjects viewed each stimulus at a signal-to-noise ratio
that varied significantly across trials. Thus, there were 21 different
stimulus conditions (seven contrast levels× three external noise
levels).

PROCEDURE
All subjects performed the face identification task on two consecu-
tive days. On Day 1, subjects performed 5 or 40 trials per condition
(i.e., a total 105 or 840 trials per session). All subjects performed
40 trials per condition on Day 2. On Day 2, half the subjects from
each group performed the task either with the same set of faces as
on Day 1 or with a novel set of faces. Therefore, on Day 2, there
were four groups of subjects that differed in terms of the number
of trials per condition on Day 1 (5 vs. 40) and the type of stimuli
seen on Day 2 (same vs. novel).

On each day, subjects were seated in a darkened room 114 cm
away from the monitor. Viewing was binocular, and viewing posi-
tion and distance were stabilized with an adjustable chin-rest.

The experiment started after a 60 s period during which time the
subject adapted to the average luminance of the display. A trial
began with the presentation of a black, high-contrast fixation point
(0.15˚× 0.15˚) in the center of the screen for 100 ms, followed by
a face, selected randomly from the set of ten, in one of the 21 stim-
ulus conditions, presented for 200 ms at the center of the screen.
Since faces were randomly selected on each trial, each face was the
target an average of 10 times for the 5-trials group, and an average
of 84 times for the 40-trials group. After the face disappeared, the
entire set of 10 faces was presented in a selection screen in two
rows of five noiseless, high-contrast thumbnail images placed near
the top and bottom of the display (see Figure 1). The location
of each face in the response window was constant across trials
and days. The subject’s task was to inspect the thumbnail images,
and decide which one of the 10 faces had been presented during
the trial by clicking on the chosen face with a computer mouse.
Auditory feedback in the form of high-pitched (correct) and low-
pitched (incorrect) tones informed the subject about the accuracy
of each response, and the next trial began 1 s after presentation of
the feedback.

RESULTS
Proportion correct was calculated in eight bins comprising 105 tri-
als each, for each of the 2 days (16 bins across the 2 days; Figure 2).
Preliminary analyses showed that noise did not interact with the
results described below (p > 0.10 for all relevant interactions, or
the direction of the effect did not vary as a function of noise),
hence the 105 trials in each bin were collapsed across noise and
contrast levels. The 40-trials groups performed 8 bins each on
Days 1 and 2. The 5-trials groups performed one bin on Day 1 and
8 bins on Day 2.

We established that performance was equivalent across groups
at the beginning of Day 1 through a one-way, between-groups
ANOVA on accuracy in Bin 1, which showed that the effect of
group was not significant [F(3,28)= 0.22, p= 0.88].

We first examined performance of the groups that received
large amounts of practice (40 trials/condition). To assess within-
session learning on Day 1 for the 40-trials groups, we conducted
an 8 (bin)× 2 (stimulus) repeated measures ANOVA. A significant
main effect of bin indicated that accuracy in the 40-trials groups
increased across bins on Day 1 [F(7,98)= 23.58, p < 0.0001],
demonstrating that within-session learning occurred in those
groups. The effect of stimulus was not significant and did not

FIGURE 1 | Examples of stimuli used in the 10-AFC face identification tasks, and a schematic of the task.
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FIGURE 2 | Performance of the four groups on the face identification task over two consecutive days.

interact with bin (p > 0.30). Accuracy of the 40-trials groups
increased significantly from Day 1 to Day 2 [F(1,14)= 42.66,
p < 0.0001], and a significant day× stimulus interaction indicated
that the improvement was greater for the 40-same than the 40-
novel group [F(1,14)= 22.19, p < 0.0001], which suggests that a
significant component of the learning was stimulus specific. Con-
sistent with this idea, performance of the 40-same group did not
differ between Bin 8 and 9 [t (7)= 1.64, p= 0.1443], but accuracy
of the 40-novel group dropped by 12% in Bin 9 relative to Bin
8 [t (7)= 4.76, p= 0.002]. Furthermore, accuracy of the 40-novel
group in Bin 9 was 20% worse than accuracy of the 40-same group
[t (13.92)= 3.38, p < 0.01]. In summary, these analyses confirm
that significant stimulus specific learning occurred in the 40-trials
groups.

Next, we examined if significant stimulus specific learning
occurred with much smaller amounts of practice than had been
examined previously (i.e., in the 5-trials group). We established
that the 5-same group improved across Days [i.e., significant
improvement from Bin 1 to Bin 9; Mean= 0.11; t (7)= 2.89,
p= 0.02]. This finding replicates our previous work showing the
positive effects of small amounts of practice on this task (Hus-
sain et al., 2009b). A separate t -test indicated that performance
of the 5-novel group did not change between Bin 1 and Bin
9 [t (7)= 1.11, p= 0.30]. Thus, small amounts of practice are
effective in improving performance only if the stimuli remain
fixed.

Figure 2 suggests that performance of the 5-novel group may
have decreased from Bin 1 to Bin 9. To examine whether there
was inhibition between bins for the 5-novel group (i.e., nega-
tive learning due to the transfer), we conducted an ANOVA on
the difference between the first two successive bins for the novel
versus same Groups (i.e., Bins 9 minus Bin 1 for the 5-trials
groups and Bins 2 minus Bin 1 for the 40-trials group). A 2× 2
mixed ANOVA (practice: 5 vs. 40 trials; stimulus: same vs. novel),
revealed a significant main effect of practice [F(1, 28)= 5.50,
p= 0.026], no significant effect of stimulus [F(1, 28)= 1.16,
p= 0.28], and a significant interaction between practice and

stimulus [F(1,28)= 10.99, p= 0.002]. The main effect of prac-
tice confirms an overall larger improvement for the 40 trials than
the 5-trials group (which is not surprising because the 5-novel
group did not increase from Bin 1 to Bin 9). The significant inter-
action suggests that the effect of stimulus depended on the amount
of practice. We decomposed this interaction through separate t-
tests examining the amount of improvement for each group. The
improvement of the 5-same, 40-same, and 40-novel groups did
not differ from each other (p > 0.05), but all groups differed from
the 5-novel group (p < 0.05). As mentioned above, the change in
performance of the 5-novel group between Bins 1 and 9 did not
significantly differ from zero. These analyses suggest that (1) there
was positive improvement for all groups that saw the same stimuli
on successive bins, whereas (2) there was no change (no increase,
and no inhibition) in performance for the group that transferred
to novel stimuli.

A 2 (stimulus: same vs novel)× 2 (practice: 5 vs 40 trials per
condition) between-subjects ANOVA was computed on accuracy
measured in the first bin on Day 2 (i.e., Bin 9). There were signif-
icant main effects of stimulus [F(1,28)= 17.3753, p < 0.001] and
practice [F(1,28)= 11.2651, p < 0.01], but the stimulus× practice
interaction was not significant [F(1,28)= 0.12, p < 0.73]. Further-
more, the fact that the F value for the interaction was less than
one means that the best estimate of the interaction’s effect size
is zero (Kirk, 1995). The absence of a significant interaction sug-
gests that the advantage of same over novel stimuli in Bin 9 did
not depend on the amount of practice on Day 1 (see Figure 2).
Indeed, as was the case with the 40-trials groups, accuracy of the
5-novel group in Bin 9 was 17% worse than that of the 5-same
group. In other words, stimulus specific learning, as indexed by
performance on Bin 9, was equivalent for the 40-trials and 5-trials
groups. Another way of stating this result is that large amounts of
practice (i.e., practice trials later in the time course of learning)
had equivalent benefits for same and novel stimuli. The effects of
late practice trials, rather than being confined to stimuli practiced
in the first session, extended to novel stimuli viewed in the second
session.
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Learning on Day 2 was analyzed with an 8 (bin)× 2 (prac-
tice trials)× 2 (stimulus) ANOVA. There was a significant main
effect of bin [F(7,196)= 26.1031, p < 0.0001], reflecting the fact
that accuracy generally increased with bin number. There was a
significant main effect of practice [F(1,28)= 6.7916, p < 0.015],
indicating that accuracy was greater in the 40-trials groups.
There was also a significant main effect of stimulus, indicat-
ing that accuracy of the same stimulus groups was greater than
that of the novel stimulus groups [F(1,28)= 5.3681, p < 0.03].
Figure 2 suggests that on Day 2 the novel stimulus groups
showed more improvement than the same stimulus groups.
This was confirmed by a significant stimulus× bin interaction
[F(7,196)= 3.49, p < 0.01]. None of the other interactions were
significant.

Finally, Hussain et al. (2009b) reported that the effect of prac-
tice depended primarily on the number of practice trials and
not on how those trials were distributed across days, and there-
fore response accuracy of the 5-same group in Bin 9 (on Day
2) ought to be the same as the performance of the two 40-
groups in Bin 2 (on Day 1). To test this prediction, we performed
an ANOVA on response accuracy measured in Bin 9 for the 5-
same group and Bin 2 for the 40-same and 40-novel groups:
the effect of group was not significant [F(2,21)= 0.64, p < 0.54].
Next, we performed a 3 (group)× 7 (bin) ANOVA on response
accuracy measured in Bins 2–8 in the 40-same and 40–novel
groups and Bins 9–15 for the 5-same group. The main effect of
bin was significant [F(6,126)= 12.42, p < 0.001], but the main
effect of group [F(2,21)= 0.065, p < 0.94] and the group× bin
interaction [F(12,126)= 0.95, p < 0.50] were not. These analy-
ses suggest that the performance of the 5-same group on Day
2 did not differ from the performance of the 40-trials groups
on Day 1.

DISCUSSION
Even small amounts of practice produced stimulus specific learn-
ing in a 10-AFC identification task: response accuracy measured
on Day 2 was significantly greater in subjects shown a familiar
set of faces (i.e., those shown on Day 1) compared to subjects
shown a novel set of faces. The degree of specificity, as indexed
by the difference in performance obtained with familiar and novel
stimuli at test, did not depend on whether subjects received 105
or 840 trials of practice the preceding day. Furthermore, task-
related learning was not confined to early practice trials: accuracy
for novel faces was higher for the group that received more prac-
tice on Day 1, reflecting the contribution of late practice trials to
non-specific improvements (see also Wright et al., 2010). Hence,
precise stimulus properties were encoded early, and procedural
improvements distributed throughout the time course of learning
of the task.

There is some evidence that performance in some perceptual
and motor tasks depends not only on the number of practice
trials but also on the distribution of practice trials across time
(Savion-Lemieux and Penhune, 2005). These effects have been
interpreted as evidence for a consolidation process that may be
influenced by sleep (Censor et al., 2006). If sleep had a significant
effect on perceptual learning in our task, we would expect to find
a difference between performance of the 5-same group on Day

2 and the 40-trials groups on Day 1 (i.e., better performance of
the 5-same group than the 40-trials groups due to the overnight
interval). However, our analyses did not support this prediction.
Instead, our results suggest that the effect of sleep on perceptual
learning of faces is small, and that performance depends primarily
on the number of practice trials rather than the way those tri-
als are distributed across days (Aberg et al., 2009; Hussain et al.,
2009b).

A recent study (Jeter et al., 2010) found non-specific learn-
ing of Gabor orientation discrimination after relatively small
amounts of practice, and increasing stimulus specificity thereafter:
two practice blocks comprising 1248 trials yielded generalization
to an untrained location and orientation, whereas 12 practice
blocks comprising 7488 trials produced location- and orientation-
specific learning. For a Chevron discrimination task, Aberg et al.
(2009) found that learning was specific to orientation when intense
practice (≈800 trials per session) was given, but transferred to
the orthogonal orientation with fewer practice trials per session
(≈400 trials), similar to the results of Jeter et al. Although the
current experiment used an amount of practice (105 trials) that
was considerably less than that used by Jeter et al and Aberg et al
the learning we observed was stimulus specific. The discrepancy
between studies may reflect differences in the generalized dimen-
sion (location and orientation versus identity), or the stimulus
and task complexity, both of which varied across studies. Jeter et al
characterized their task as a high precision task, but stimulus spe-
cific learning can occur in far fewer trials for other similarly precise
tasks (e.g., hyperacuity; Poggio et al., 1992), suggesting that task
precision does not predict the onset of stimulus specificity in learn-
ing. Other factors such as task difficulty (Ahissar and Hochstein,
1997), task precision (Jeter et al., 2009), sleep-dependent consol-
idation (Karni et al., 1994), variations of the training method
(Xiao et al., 2008), and variability of the stimulus set (Hussain
et al., 2012) have all been shown to affect the amount (but not
onset) of stimulus specificity after practice on a particular task.
Some combination of these factors may also account for why the
onset of specificity is early for particular tasks, and delayed for
others.

Face identification is an example of a high-level, behaviorally
relevant visual task in which rapid learning might be advanta-
geous, but rapid stimulus specific learning on the time-scale of
200 trials has been found for rudimentary visual judgments such as
grating discrimination (Fiorentini and Berardi, 1980) and hyper-
acuity (Poggio et al., 1992), suggesting that similar computational
rules might underlie the learning of simple and complex spatial
patterns. The current data are consistent with a single-process
functional architecture that has been described for learning of
orientation signals (Dosher and Lu, 2007), and for the abrupt,
insight-like learning of larger spatial patterns (Rubin et al., 1997),
but not with models that differentially weight task and signal
at successive stages in the time course of learning (Jeter et al.,
2010).
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