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SUMMARY 

This thesis describes the wind loading of two slender flexible 

structures, the tall mast and the suspension bridge. Aspects of the 

problem discussed are the long-term climatic and statistical properties 

of high winds, the properties of the mean wind and the turbulence .near 

the ground and the resistance of structures to a gusty wind. Experimental 

results are given. 

The r •• ponse of the suspension bridge and mast to the mean wind 

and to random gust loads are analysed theoretically. 

To Ulustrate the methods the wind loading of a 500 ft. high 

mast and a 3.300 ft. span suspension bridge are worked out and the peak 

stresses predicted. Vertical as well as lateral loads on suapension 

bridges are con8idered. 

Thia iato certify that the contenta of thia 

theais and of the four 

li.ted in the explanation 

aupportinl paper. 
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this the.i. are the indepenelent work 01 
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1.0 INTRODUCtION 

1.1 HISTORICAL BACKGROUND TO THE STUDY OF WIND ACTION 

1.1.1 Early Suspension Bridges 

The suspension bridge, in the forra of twisted vines andore..,er.,. 

supporting a simple deck of wooden .. lats, has been used by prtmitive people 

since ant~~uity. No appreciable dev.lopraent from this archetypal fora. 

occurred until the di.covery of iron and the introduction of iron chain •• 

Some fine bridges incorporating the •• innovations and built in the early 

leventeentb century, can .tUI be .een in China. In Europe, however,.u.

pension bridge. using iron were not .e.n for another hundred years. An 

Act of Parliament of 1721 refer. to a "chain bridle" acro.s the Welland 

at Market aarborough, and this was probably the first. 

In the first half of the nineteenth century a vigorous, up.UTaeat 

intereat swept through Europe and North Aaerica in al.olt all e.pect. of 

engineerinl_ During this period a number of notable suspension bridle. 

arO.8 - the forerunners of the modern structure. Unfortunately, fev 

of them escaped without being either damaged or deltroyed by tbe win4. 

Perhaps the first pioneer luspension bridge builder of note. 

was Captain (later Sir) Samuel Brown. On80f his earliest and mOlt 

ambitious .tructures was the Union Bridge across the river Tweed.· Built 

in 1820, it had a span of 449 ft. and for the first time u.e4 eye-beri 

for chains. It was Ihort lived, however, and was blown down six .onth. 

after campletion. Another of his better known structure. vas the Irllhtoa 

Chain Pier t buile three years later and consisting o·f four Ipans of 250 ft. 

each (Bishop - 1897). Thi. vaa seriously damaged by wind on at lea.t three 

occalions before betng finally deltroyed in 1896. Bis bridl •• at BrouihtOD 

and Montrose shared a similar fate. 



What i. regarded a. the fine.t .u.pen.ion bridle of this period -

Telford'. 600 ft •• pan aero •• the Menai Stratt. - va •• eriou.ly .... ,ed 

by wind in 1826 (11K week. after it. openinl), and al.o fifte.n year. 

later. After the latter accalion it. deck va. con.iderably .tiffened. 

and it ha •• uffered no further .eriou. aisbap .tnce. 

Bridge. in the United State. and in Europe fared no better. 

Ellett'. Wheeling bridge of 1,010 ft •• pan (the fir.t over I,OOOft.) over 

the Ohio river va. built in 1848 and blawn down .ix year. later. Serrell'. 

1,043 ft. span at Levi.ton near liagar. built in 1850 had the .-me f.te. 

On the cODti~.nt, the Ha.sau bridle acro •• the Lebo river in Geraany and 

the Tournan bridle over the Rhone were de.troyed by .tora. during tbe .... 

period. 

One cau.e of destruction of th ••• bridge. va. uDdOQ~tedly the 

f ... of aerodynaaic in.tability which, ~e than a century later, in 1940, 

al.o deltroyed the tacoaa Harrows bridge. Thi. in.tability i. n .. known 

to be due to certain unfaveurable aerodynaaic characteri.tic. of the deck 

ca.bined vith extr ... flexibility. The flexibility of tbe.e early bridle. 

al.o made tb. vulnerable to gu.ta. The .... 11 true tMay. 

1.1.2· The Growth of UDder.tandinl of Wind Actiog 

Perhaps the earlie.t pr.ctic.l inforaation on wind pre •• ure. 

va. that pr •• ented to the Royal SOCiety by .... ton ift 1759, ba.ed on .a.e 

re.ult. by Rou.e. Th •• e value., which are given io Table 1.1, .aree 

r ... rkably clo.ely vith tbe re.ult. of recent wind tunnel exper~ot. on 

flat plat ••• 
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TABLE 1.1 (after S ... toa - 1759) 

Table containing the Velocity and Fore. of Wind, 
according to th.ir Common Appellation •. 

Velocity of 
the wincl 

I-
I 
I 

i ... . .. If .. C ... 
g .. I .... g ........ 

g =' 0 
I U .. ~ 

.5 8 .s1 I .... 8 .... 1 k • , .... ! w,cs I ... ¥ \ u., ~ .... ., , Q,U"'S:O .... 
I 

., w· I t~g8t .... • , 
I: lie ! A.. ........ Q." 

i 
! 

, 
1 

. 'r---'--,---'-"--
~ 1.47, .005 

2 
3 
4 
5 

10 
15 
20 
25 
30 
35 
40 
45 
SO 
60 
80 

100 

I 
/ . 
I 
I' 
! 

i 
) 

, 

2.93 
4.40 
5.87 
7.33 

14.67 
22.00 
29.34 
36.67 
44.01 
51.34 
58.68 
66.01 
73.35 
88.02 

117.36 
146.70 

1 ~ 2 

I 
~ 

, , , 
I , 

, 
! 
I 

.020! 

.044 

.0795 .123 

.4921 
l.107} 
1.968~ 
3.075) 
4.4291 
6.027J 
7.8731 
9.963) 

12.300 
17.715 
31.490 
49.200 

3 

I 

l 

Co.aon app.llation. of 
the fore. of wincl. 

Hardly p.rc.ptible 

Ju.t perc.ptibl. 

Gentl. plea.ant wind 

P1ea.ant bri.k sale 

V.ry brllk 

Riah wincl. 

V.ry hlgh 

A .tora or t ..... t 
A gr.at .tOni 
A hurricane 
A hurricane that teara up 

tre... carr ie. building. 
before It, etc. 

• __ --L. .. __ .. ___ .•. _. __ ...... ______ '-____ _ 

.-. 
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Although thi. inforaatlon w •• undoubtedly available to th ••• 

early engineers. it would have been hard for them to reconcile these .t.ady 

pressurel with the violent heaving moVe.8nts of their bridges. Besides, 

the earliest mathe.atical technique for deter.ininl the effect of what i. 

(somewhat mideadingly) termed the ".tatic wind load" dld not appear till 

1913. Instead tha problem had to be dealt with .. pirically. 

Varioue .ch .... were put forward for overcoming the effect. of 

the wind. Sir Marc BruneI. for exaaple, in hi. de.iln for the .u.pension 

bridg_ at the I8land of Bourbon in 1821. incorporated a sy.t .. of chain 

bracing (.ee Be .. ish, 1862). This con.i.ted of two inverted caten.arie • 

• ituated below the bridge, and inclined to the vertical so as to provide 

some degree of lateral stability a. well. Later, in 1830, he va. con

.ulted on the subject of wind action by a deleaation of ,8ntl ... n from 

Bri8to~vho were engag.d in judging a competition for the de.lln of a 

bridge acro.s the Avon gor.e. On the atr8ngtb of hi. experience, he was 

able to advisa thea on Ithaw the lateral agitation .. y be pr.vantacl and 

how the effactl of the wind might be count.raetecl". The winning cl •• ian, 

.ubmitted by hi •• on, I.ambard Kingdoa Brunel, did in fact incorporate a 

.y.t .. of wind braeinl .~ilar to that u.ed earlier by hi. father. 

(I.X. BruneI - 1841). 

At tha .... tiae, other .y.t ... of radiatillg cabla .tay. wera 

dave1opacl, but tha lIO.t affective aathocl of ovarc_iDa the villel effects . 

• a. to .tiffen the elack. Thil aeldecl welpt to tha .tructure whlch further 

incr .... d the gravity .tlff..... rbe flr.t.enllneer to reall.e the 

.'101fieance of beth (he •• factor. (of t~. ~ortanc. of .tifl.Diol the 

eleck au of vei&ht io ,rOYielllla Favity .tUf .. iDI) wal aoebliul. The 

Itructura. he built -- which inclueled tke railvay bridga (tha fir.t) at 
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Niagara Palls, (185S) the Cincinatti bridge acro.s the Ohio river, (1861) 

his famous 1,596 ft. span at Brooklyn (1883) -- po.sessed greater rigidity 

than any previous suspension bridge.. They exemp~ified the ~portant 

principles he had learnt intuitively, and which· were to stand succeeding 

suspeneion bridge de.igner. in good stead unti~ tn the pre.ent century, 

they were forgotten, with disastrous consequances. 

1.1.3 Tha Consequence. of the Tay BrIdie plsaster 

This trend towards increa.iagly rigid structures vaa greatly 

acceleratad by an event which wa. to prove important in the later develop

.ent of the theory of wind action on bridges. On the night of December 

29th, 1879 the celebrated bridge acro.s the Pirth o~ Tay (then the world'. 

longest), consi.ting of eighty-feur truss .pans, vas blown down in a gale. 

A train plunged throulb the saP in the bridge and some aeventy-five live. 

ware loet. 

In the inquiry that followed, it turned out that little or no 

allowance had been made for wind (none in fact had been called for in the 

epecificatione). The de.igner, Sir Thoaae Bouch, was diacr"ited and 

work begun on hi. deeian for a railway lu.pension bridge across the Firth 

of Forth, (tvo 1,600 ft. spans). va. discontinued. With this inglorious 

Ivan-song the suspenaion bridge disappeared fra. the repertoire of British 

enginears for the next half century (until vor~ was begun in 1958 on the 

3.300 ft.-span. road suspension bridge near the .... aite). It. plac. 

va. taken by more rigid foras - the arch and "the cantilever structure. 

The dasign for a new railvay bridge acro.s the Pirth of Porth 

was placed 1n the hancl. of Sir John ·'owler and Benj_1n Baker. They 

advocated a caatilever desisn. and the ~nuaental structure which 
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resulted epitoaised this trend teward. stiffer and stiffer .truct.ree. In 

the lu.pension bridge field this trend b.d alrea.y been .• tart .. by aoebllna • 

• nd reached a o1~ in 1903. in the very cenerous dept~ of .tiffeniDI 

tru., u.ed in the Willi .. sburC .u.pen.ion bridge. vith a depth to .pan 

ratio of 1/40. 

One of the main consequence. of the f.y Brida. di ••• tar ••• to 

give impetu. to • nav field of leientific inve.tiptlOR, the Itu410f the 

effact of wind 00 .tructur.... IDterelt in thie had aleo baeD .rouled It, . 

the pOI.ibi11t1e. of aviation. In this Benjaaln B.ker fiaure. pro-iDently. 

From hi. stu.y of the force. on l.rge board. in the viad ( ... Bak.r 189S) 

va. obtainad tha de,iaa wind pressure figure of 56 lb./ft. 2 u.ed in the 

'orth Bridge. It v ••• 1.0 the Britisb Standard for .ev.ral year.. In 

the l1ght of later inve.tig.tion., this .llow.nce for wiad load. w •• 

perh.p. over-generou. (p.rticularly .inca the .. in ... ber. of the Porth 

Bridge are round). Ignor.nce of the r.al affect. of the .lad vere there

fore to prove cOltly both io the Tay aD. the Perth bridge. - but for 

different rea.on •. 

1.1.4 The liftel TO!!r 

In the same dec •••• the Eiffel tower va. ea.plete. to .ark 

the oce.lion of the P.ris Exhibition of 1889. With a heisht of .~o.t 

1,000 ft., thil bec .. e the world's talle.t structure and alao.t double 

the heisht of the previous t.lle.t, the 550 ft. Va.hlncton aonuaeat iD 

W.shinlton. There had been a nuaber of previous propos.ls for tall towers, 

but none were built. trevethick, fer auaple. had I""e.t" i. 1832 that 

• 1,000 ft •• ca.t iroD tower should be built to ee1eltrate the pa •• iDa of 

the aefora Bill. Clarke, had propo.ed a tower of 1,000 ft. for the 1874 

., 
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Exhibition at Philadelphia, and in 1881, S4b1110t had Busae.tad il1uminatiDI 

Paris with electric light. from the top of another 1,000 ft. hlah tower. 

It i. possible that Eiffelte idea ~y have originated fro. the laat of 

the.e. 

It is interesting to cQaPare the wind load a.lu.ptiOPI liffel 

used, with the 56 lb./ft. 2 used in the Forth 'Bridge. buUt twe year"s 

earlier. In his account preBented to the Soci't' del Insenie,,1 Ctyil, 

in 1885, liffel statel: 

"With regard the inten.ity (of the wind pre .. ure) we have IIl&de 

tvo a.lu.ptions: one which ,uppole. that the wind has a con.taDt force 

of 300 kiloaram/metre2 (61.5 Ib./ft. 2). the other that thi, pre •• ure 

iRcreale. fra. the ba.e where it i. 200 kl./m. 2, (41 Ib./ft. 2) to the 

top where it attains 400 kg./ •• 2 (82 Ib .. /ft. 2)." 

'''ith reaard the exposed surfaces, we have not he.itated in 

a.sumina, in spite of the apparent severity of the al'umption, that OD 

the upper half of t~e tover, all the lattice work i. replaced by •• lid 

.urface.; that in the interaediate section, where the openings bee ... 

IlOre iaportant. the frontal area is taken al four tUte. the actual area 

of iron; below thi. (the fir.t .tage gallery and the upper part of eke 

arc. of the Ie.,) we a •• u.e the frontal area i, .olid; finally at the 

ba.e of the tower we count the Ie,. a. .01i4 and .truck twice by the 

wind (i ••. each Ie, .eparately expo.ed to the full force of the viDd)." 

The.e viad pre •• ures vere ba.ed 00 .... renlts by Cl"el, a 

Preoch eDliDMr of that p.ri~. 

Th. deflexioo of tb. tower in a 54 al1e./bour (24 •. I.ec.), 

in which the wind pres.ure waa taken al 78 ka.'m. 2 (16 lb./ ••• ft.). 

va. calculated to be about 8 inche.. At the .... t~ it va. a.eumed 
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that ~vibration would be very slow, so that the effects of any movement 

on sight-seers would be imperceptible. He regarded the comfort of sight

seers in a 120 mile/hour wind (the full design win~ as only an academic 

consideration. 

The deflexion of 8 inches indicates the comparative rigidity 

of the Eiffe1 tower compared to towers erected today. For eXaMple, 

the 700 ft .• free-standing, concrete tower, built at Stuttgart, Germany 

in 1954 (which incorporates amongst other things a restaurant 500 ft. 

above the ground), deflect. approximately 5 1/2 ft. under a similar wind-

load, in spite of it being only two-thirds the length (see Leonhardt - 1956). 
~ 

A 1,200 ft. guyed tower at Thule, Greenland is calculated to deflect 9 ft. 

under similar conditions. (Sturgis - 1954) . 

. 1.1.5 Early Wind Tunnel Experiment. 

Contemporaneously with Baker'. te.ts on boards, early wind 

tunnel tests were begun. It is in thi. field, probably, that the early 

pioneers .. de their greatest contributions. One of the earliest "wind-

tunnels" was made by Irminger, the manager of a Copenhagen gas works. 

(.ee Baker - 1895). It con.isted of a 4 1/2 in. X 9 in. conduit, con-

nected to a vent in the base of one of the large chimneys, through which 

the air wa. sucked by the low-pressure, hot gases inside. In 1893, 

Stanton began hi. notable experiments at the National Physical Laboratoriel 

near London, and in Paris, Eiffel began his. A wide variety of objects 

were te.ted by the.e investigators, including basic .hap •• euch ae flat 

plate. and cylinders, as well as building shapes, (eee Stanton - 1903/4; 

Eiffel - 1913). 
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It was at this time that the foundation. of what has now coae 

to be the staniard method for determining the wind force. on structur •• , 

were laid. So standard they are now traditional, they have bee. followed, 

often blindly, ever since. It is significant that they vere evolve4 at a 

time when the trend to rigid structurel had reached its cl~i the 

structures were usually stiff enough to exclude the possibilities of 

dynamic excitation by the wind. Since then, however, th1. trend has 

reverled: with improvements in analysi., in strength of .. teriall, and 

in construction, and with the aeethetic demand for light, graceful forms, 

structures have been .ade lighter and consequently more flexible. But 

althou~th. structure. have chanaed, the wind loadl, by and larie, bave 

not. In 1940 one fana of dyn .. ic loading due to wind caus.d the 

catastrophic collapse of the Tacoma Narrow. Bridge. Although the probl ... 

related to this have now largely been solved, another for. of dyn .. lc 

excitation still exists, due to the turbulent, gu.ty character of the 

wind. 

1.2 THE QUASI-SUTIC APPltOACB TO WIl!D LOADING AND ITS SllORTC<IlINOS 

Tra.itronally, the wind.preslures acting on a .tructure were 

calculated on the assumption that the fluctuation. in the velocity 

and direction of the wind could be disregarded, and that the wind could 

be taken a. horizontal and invariant with t~e and apace. Thes. 

simplifications were conv.n~ent in that pre •• ure. could tben be determined 

frOB .~ple wind tunnel exper~ents on .odele, conducted 1n a .teady 

airstr.... From the.e. various coefficient. -- such a. the coefficient. 

of pre •• ure and dra, -- were found which vere ••• u.ed to apply to the 

.ode1 and ite prototype alike. the only further information needed to 

... 
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calculate the pressures was a suitable value for the 'design wind velocity'. 

Since the effect. of sudden SUIts could not be predicted with any certainty, 

it was common practice (and still is frequently) to use the highest in-

stantaneoul velocity recorded by saae nearby anemometer. ThiS, it was 

believed, would at leaat be a conservative esti_ate. 

Although this traditional approach has been modified and ~ 

proved with the passage of time, particularly vith respect to the choice 

of "de.ign wind velocity", the fundamentally quasi-.tatic nature of the 

approach has been preserved. Although it may not be entirely unsat1s· 

factory where rigid .trueture. are concerned, it i8 incapable of dealing 

with two important dynamic problem. affecting flexible .tructures, .uch 

as the tall .. st and the long .pan su.pen.i~n bridge. These are 

1. forma of aaroelastic inltability 

and 2. excitation due to gusts, both vertical and horizontal.. 

The forms of aeroelastic instability which affect bluff bodia. 

are well known, mainly because of their catastrophic conaequence •• 
.. 

Usually they can be clas.Uied into "forced" and "self excltina" 

oscillation. (.lthough the dividina line i. not alway. easy to draw in 

.0Ge cases where both type. tend to .. nife.t th .... lve.). The forced 

o.cill.tion is known to affect tall, cylindrical .tructure. such a. 

ch~ey Itack., (Scruton - 1955: Den.Bartog - 1954) pipelina .u.pen.ioo 

bridge. (laird - 1955), and .ome type. of antenna .... t (Davenport - 1959). 

The .elf-exciting o.cillation is well known iD connection .1th the 111-

f.ted Taca.a Narrow. bridge, which vas .haken to piee •• by the aero-

el •• tic fore •• produced in a .ind of DO .ore than 42 mi./hr. (.h.r •••• 

it val .e.igned to with.tand • ".t.tie" wind load corr •• pond1na to a 

.ind of about 120 .t./hr.) 
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Although still only partially understood, these dangerous dynamic 

forces can usually be remedied, either by changing the shape of the struc. 

ture to one that is aerodynamically stable, or by raising the natural 

frequency of the structure so that instability only occurs at improbably 

high wind speeds. (see papers by Scruton - 1959; Bleich - 1950; 

Parquarhson - 1952; and Prazer - 1952). 

Although not unrelated to the present topic, these aeroelastic 

forces are not discussed in this thesis, which is concerned with the 

second of these problems, namely the forcel produced by gusts of wind~ 
.. - .. _-------

These gusts may be either vertical or horizontal. Neglect of the vertical 

components of gustiness, and the assumption that the wind is purely 

horizontal, has led to the overlooking of the large lift forces that 

can develop on a bridge deck in a slightly inclined wind. This was at 

least partially responsible for the collapse of the Tay Bridge and, 

more recently, in 1944, of the Chester Bridge across the Mississippi. 

1.3 THE LOADING IMPOSED BY STRONG WINDS 

1.3.1 The Gult Problem 

The transient and localized nature of gusts hal been appreciated 

for some time and a number of attempts have been made to allow for it in-

est~ting wind loads. In his experiments at the Forth Bridge, Baker 

(1895) found that the wind preslures on a 300 sq. ft. board were some 

50 per cent less than those on a board 1 1/2 sq. ft. in area. Thi' vas 

later corrobrated by Stanton'. measurements (1925) of the average wind 

velocity at a number of pOint, acro.s a 420 ft. "front" and at a lingle 

point. These showed tbatthe hlgh'.It average velocity_across the front 

val significantly le.1 than that at a pOint. 
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The conclUlion resulting fro. thele experi .. nta ten.e. to IUlaest 

that lome allowance mi,ht belD&~e at least for .the l~~~U.&ecl effect. of 

~.~~~~ This was later dilcounted, however, by the conclulion. Stanton 

(1925) reached after hi. exper~ents at Tower Brid.e, London. Here, 

pre.aure tubes were mounted both on the windward and leeward faces of 

the footway girders at intervall acrol. the 225 ft. span. These were 

coupled to mechanically linked, aneroid prel.ure cha.ber. in luch • way 

as to yield the total average pre. sure acting on the footways. Thil 

average prelilure and the limultaneou. "paint" pre18ure (.easured acrols 

a single lection of the span) were recorded continuously on a chart 

drum. 

It is noteworthy that. the.e record. appear to be the only 

continuous measurements ever made of the wind pressures exerted on a 

large structure. Unfortunately it was Dot possible to record.ltaul

taneously the velocity of the incident wind giving rise to theae 

pressures. and the valuable opportunity to correlate the fluctuation 

of the pressures OD a structure. with the corresponding fluctuatioua 

in the wind, wal lost. 

The records did indicate, however. that the prea.urel at a 

aingle station (mealured on windward JaS leeward faces) corresponded 

closely with the averaae preseures acting on the span as a whole. Fr. 

this Stanton concluded: 

" .•• that in winds of moderate intensity, up to 50 mile. per 

hour, the pressure on a large area during the passage of a SUit le, in 

the majority of case., appreciably less than that on a small area. There 

is, however, very definite evidence of the existence of gu.t. up to 50 

miles per hour" in which the variation in veloc1ty over the front 1, 10 
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s .. 11 that, in the ca.e of a .tructure in an exposed po.ition and having 

a span of less than 250 ft., the pressure over the whole area is •• nsibly 

equal to that at • point in it. Obviously, if this condition were found 

to obtain for ,usts of still higher intensity and for structure. of much 

greater .p.n, no reduction in the wind-pressur.· factor on account of 

lateral variation of wind-speed could be justified". 

This conclusion introduced a strong note of caution into wind 

load specification which has survived since. In fact. the reasoning 

s.ems to be somewhat doubtful. While the conclu.ion refers to the 

"variations in veleeity over the front" the _alurem.nts, in fact, 

r.ferr.d to pr ••• ~.8 at pairs of points, (on windward and leeward 

surfaces), separated by the full width of the brid,e~ and inside the 

w.ke and vortex regioD. created by the .tructur.. The respon •• 

charact.ristic. of the instrum.nts app .... al.o to b. an unknown 

quantity. 

Stanton'. conclusion was reaffirmed by Bailey and Vincent (1939) 

in their "follow-up" experiments at the Severn Iridg., aero •• a very 

auch wider span. their rea.ons for doing so are not altosether cl.ar. 

In the.e experillent., velocities vere .... ur.d, not pre •• ure •• 

It ..... fair to caa.ent that these earlier investigators w.r • 

•• riously handicapped by the lack of a suitable stati.tical fr ... work 

into which to fit their ob •• rvations. In fact, the .tatistical th.ori •• 

of turbul.nce were th.n .till in th.ir infancy. Thi. may account for 

their appar.nt t.nd.ncy to try to distinguish betw.en possible and im

po •• ibl •• v.nts rather than the probable and the improbable. Fram thi' 

point of view the re.ults tende. to be eo.ewhat inconclu.ive. 
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A sreater dearee of lucce •• va. achieved by Sherlock, who va. 

alao concernea with another problem. Thi. va. that the indicaee. 

·aax~ gust velocity' used in de.ian depended largely on the re.poo.e 

characteristic. of the particular inatruaent. Thi. could lead to the 

'OIIl8what ill.aical .ituation io which de •. ian wind loa •• were hlper 

vhere the nearby anemometer wa. le •• sluaai.h. or e~en better lubricated. 

A. an alternative to the practice then current. Sherlock (1'47. 

1953) advocated the ule of an average inltead of an iQ.t~nt • .D"9U' velocity, 
-. .• ,_,,_~ ~ ,,_.-" • . ._ .•. ~ • 0'_,,,.,",,...,' -- _ d." ___ '_~ • 

together with certain 'gust factor.' which would allow for the additional 

effect. of gu.ts. A five minute averaaina period val sUlle.ted for tha 

former. since cl~toloaical record. for thi. period were available ia the 

United State.. In decidina .uitable gUlt-factor., Sherlock inferred, 

from aeaaurements of the build·up of lift fo~ce. on an aerofoil pene-

tratina a "sharp-edged" gust that, analogouely, a lU.e mu.t trave~.e 

eight or ten diameter. of an object before the full drag pre •• ure. 

vould be felt. On this ba.is t for ex_ple, he concluded that smaller 

.tructures, such as houle., would not respond to lu.t. laltinl Ie •• 

than about two .econd.. For larger .tructure. the period would be 

corre.pondinsly lonser. \ 

From detailed .. a.ureaent. of wind velocity .. de on a tall 

tower durinl .everal winter .tor •• , Sherlock va. able to deteraiDa the 

ratio of the 'aoet probable' tvo .econd .. an velocity to the .~ltaaeou. 

five minute .. aa velocity. Thia wa. the ,o"called 'tvo .econd p.t-

factor'. The lU.t factor. for other interval. were al.o deter.ined. 10 

each ca.e they vere found to deerea.e with he1&bt above the ,rOund, a 

feature al.o noted by DeacOD (1955), who iaveetiaated a somewhat areater 

height range. Froa the •• Lnveatiaationa it wae a1.0 concluded that tall 
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masts .hould be de.igned for 'moving load effects'. a •• hown in Fi,. 1.1. 

Although this approach undoubtedly represented a notable advance 

in the understanding of wind-loading. and. in particular, of the effect of 

gu.ts, it still possessed serious limitations. vFirst. the result. could 

only be expected to apply to open-country sites .imilar to that u.ed in 

the investigations; at much rougher aitea, .uch a. the centre of a larle 

city. the guatineu would almolt certainly be more inten.e. Second. 

~ the approach fail. to take account of the hiatory of the loadinl pattern. 

It i •• for example, incapable of predicting eitber the eon.e,uences of 

a sequence of gusts striking the structure or the likelihood of such 

an event occurring. For flexible structure., such as tall tower. and 

long span bridge., this could be a source of serious dynamic .tre.l· 

.. gnification which no theory based on purely statical assumptions 

could allow for. 

One or two rules of thumb were available for aVOiding the 

worst dynamic effect. One is that given by Irminger and Nokkantved 

(1936) that the natural oscillation period of radio malta should nQt 

be allowed to exceed 3 • 4 .econds. In another instance, tbe survival 

of several tall masts erected in the Far East after being .truck by 

.everal fierce typhoons is credited to the fact that natural periods 

between 4 and 8 seconds were avoided. (.ee Anon. - 1937). Although 

these simple notions probably contain an element of truth they are 

unlikely to represent either .uf£ieient or even necessary conditions 

for the avoidance of serious dynamic effects. 

1.3.2 The Relation of the Oyet Probl .. to the General Strong Wind Probl .. 

Evidently, 08. a.peet of the probl .. that still ha. to'be 

eatiefaetorU, annareel 18 the pre4ietioo of the dy.aaaie action of pete. 
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Expressed somewhat differently but more in l1ne with 4e81gn needs, 

the problem is to predict the static-equivalent gu.t load baving a 

given probability of occurrence. Having found the answer to this question, 

it is necessary to link it with the cUaaatolog1cal problem of predicting 

the extreme mean wind load at different geographical localities. 

The general principles of the method suggested for answering' 
t 

these problems have already been described in a paper by the writer 

(Davenport - 1961). In it the response of a simple "one-degree of freedom" 

structure to gusty wind was considered. The structure was ass~d to be 

small enough for the wind to be acting virtually at a point. 

To solve the gust problem the concept of the atationary rand~ 

series was introduced. Th18 led to a "gust factor" which defined. the 

ratio of the probable peak gust load during a given period to the ~ 

wind load during the same period. It was shown to depend on the aero· 

dyn .. ic and dynamic characteristic. of the structure, and a180 on the 

roughn •• s of the site, the principle factor governing the intenaity of 

the gustiness. The mean wind load could be determined from a theory 

of climatological extremes discus.ed earlier by Davenport (1960). 

1.4 STATISTICAL CONCEPTS OF THE STATIONARY RANDOM PROCESS 

The theory of the .tationary, random .eries as.ume. that, 

although the quantities involved (wind velocity, d.flexion •• tr •••••• tc.) 

are purely random and cannot be .pecifi.d from one moment to the next, 

their statistical properties, n.v.rth.l •••• reaaln stationary, that i. 

to say con.tant, provided that the general conditions of the exper~ent 

.tay constant. Such proce •• es are known a. stochastic proceaaes and have 

the same relationship to a continuOU8 function of tUDe, as a random 

variable bear. to a diacrete sample value. The properties of the 
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stochastic process are defined by the results of a large number of 

individual exper~ents each of which yields a function of t~e (such as 

a "run" of wind). 

This property of ,tationarines" ls, it seems, generally 

exhibited by the wind to a highly latisfactory degree, provided that 

.ample tu.es are chosen .uitably. A ~~riod of between one hour and five 

minutes appears generally to be satisfactory, largely because for .uch 

periods, seneral weather conditions - such a. mean wind velocity and 

thermal stability - can normally be relied upon to remain fairly constant. 

Isolated sa.ples of wind do appear to depart fra. this property of 

stationarine". the Ie however, are seemingly unrepresentative when it 

comes to making an overall, long-term, prediction of wind loading, and 

any distortion they may cau.e to the statistical picture, assuming 

stationarinesl, i8 believed to be quite negligible. 

Application of statistical concepts to physical problems are 

not new. They were applied to dynamic problema by Lord Rayleigh. Since 

then the concepts described above have been applied to the theory of 

Brownian motion, noise in electrical, ra.10 and acoustical .ystems, 

noi.e from jet enginea, certain aspects of astrophYSiCS, ocean waves 

and the response of ships to these, and the response of automobile. to 

bumpy road,. Most significantly, from the pre.ent point of view, they 

form the baail of the atati.tical theory of turbulence developed by 

Taylor (1926 - 1935) and von Karman (1937). Proceeding f~ thi., Lin 

(1943) deter.ined theoretically the respon.e of a a~ple pendulua to a 

turbulent fluid flow. The analogy of thl. to the gust loading of air

craft was first pOinted out by Liepmann (1952). The .ethod. would now 

seem eminently suitable for solving the civil engineering probl .. of 
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gust loading. 

A direct consequence of the "stationarineas" of the wind 18 that 

it is possible to think of the fluctuations in it as composed of a very 

large number of wave trains, of all frequencies, superimposed on one 

another. Each wave train remains the same amplitude throughout the 

'run', and a "gust" will occur whenever the peaks of several wave train. 

arrive simultaneouslYj similarly a "lull" will occur whenever several 

troughs arrive together. 

If the mean square amplitude of these wave trains are ranged 

accordingly to frequency, (or wave length), a form of spectrum results. 

A true spectrum (in which the power density or mean square amplitude per 

unit frequency interval is related to frequency) is obtained, if the 

length of the record and the number of component wave trains are increased 

indefinitely. The magnitude of each component wave train can, if 

necessary. be found by Fourier analysis of the original wind record. If 

this is done a remarkable result is usually obtained, in that, sampling 

errors excepted, the spectrum is found to be extremely regular and well 

grdered as can be seen from Fig. 1.2. Furthermore the· form of this 

spectrum seems to be predictable within limits, knowing only the wind 

velocity, the height and the ground roughness, as is discussed in 

aection 4.0. 

If the response of the structure to each individual frequency 

is known, and if this is linear, then it is a simple matter to determine, 
'--~ 

first the spectrum of aerodynamic pressure, and subsequently, the spectrunl 

of the structure's deflexion. The area under the latter is e~ual to the 

total mean square deflexion. This, together with the ~ deflexion 

(which can be found straightforwardly) is usually enough to define the 
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statistical diatribution of the deflexions. Prom this the "most probable" 

peak deflexion can be estLmated. The ratio of this to'the mean deflexion 

defines the SUit factor. 

This procedure, which has been described by Davenport (1960) 

for the cale of a Iu-ple structure, can be extended to slender, beam-like 

structures possessing several modes of vibration. This requires analysina 

the distribution of the wind velocity across the span into the component 

modes of the beam. The response is then determined for each mode sep-

arately, and the results superposed. 

1.5 THE CLlK4TB AND STATISTICS OF EXTREME WINDS 

Any accurate estimate of the probable wind loadina must rest on 

a reliable prediction of the climate of extreme winds. This forms an 

essential, but separate part of the wind loading problem. U.e hal been 

made recently of "extreme value" statistical methods to predict the wind 

extremes of clUDate (Shellard 1958; Tho. 1960), the objective being to 

estimate the extreme wind~ typical of "flat, open country", with various 

recurrence period. (i.e. the "once-in-fifty-year wind etc .") • An_a.eter 

records frca "suitable" Itation. were u.ed for the purpose and froa the.e 

contours of wind velocity were drawn. Davenport (1960) hal auaseated 

that failure to take account of the very ~ortant modifying influence 

of ground roughness results in .ean wind velocities in cities (where, 

after all._ost building' are erected) beina for too high. Furthermore 

it leads to the assumption that the expolurel of the anemometers in 

service are far aore homogeneous than they actually are. 

The alternative method for e.t~ting the climate suggested 

by Devenport (1960) il summarised here. A pOllible further improv ... nt 

i8 introduced in th.t gultiness is used as an 'iDdicator' of the rouabo •••• 
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2.0 W INn STIlUCTURE NEAR THE GROO!I) 

2.1 GENERAL 

It is well known that the wind. is induced by the pressure 

differenees which arise over the earth's surface. These pressure 

differences are indicated by the isobars (line8 of equal barometric 

pressure) of any weather map, such as that shown in Fig. 2.1. The wind, 

at heights great enough for it to be unaffected by the frietional forces 

near the earth' •• urface, tends to mova parallel to the isobars, and 

attains a velocity known as the gradient velocity. If tha overall 

pressure patterns are stationary, this gradient velocity can be est~ted 

quite easl1y from the spacing of the isobars, (i .•. the pressure gradient), 

their radiu., and the latitude (see Sutton - 1953; Davenport - 1960). 

In general, the closer the spacing of the isobars, and the ..aller their 

radius of curvature, the stronger will be the wind. 

This gradient velocity, however, is only obtained at beight. 

above about 1,000 - 2,000 ft. Below thiS, at heights of greatarinterest 

to the structural engineer, the airflow is influenced by tbe friction at 

the surface. The principal consequences of tnis are that the airflow 

is retarded, it becomes turbulent and gusty, and its direction is no 

longer parallel to the isobars. The rougher the .urface the greater 

these effects will be. Fig. 2.2, which ahows stmultaneOU8 records of 

wind.peed at 2-second intervals at three heights on a tall mast, illus

trates some of these effecta. 
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2.2 VARIATION OF MEAN VELOCITY Wl'nI REIGlJI 

A number of formulae are available for describing the variation 

of the mean wind velocity in this lower height range. All of them are, 

to some extent. ~pirical. since. as yet. there is no established theory 

which accounts adequately for all the factors involved. One of the 

simplest and most reliable of these e~f.e.~aJi~II_~s._t:bt_ .. .P~~.!L~, which 

can be written 

where 

• V G 

Vz • mean velocity at height Z, 

VG • gradient velocity, 

(2.1) 

Ze • the height at which the gradient velocity il first attained 
<the gradient heigbt), 

and ~ • aD exponent, applicable to the particular aite and wind 
conditions. 

In high winds it appears that the parameters of this profile 

are controlled almost entirely by the ground roughness. Convection - the 

other possible influence - is usually les8 important in hiah winds, partly 

because the churning action of the strong mechanical turbulence prevents 

the necessary thermal iDstabUities from ar1aing (thh is particularly 

true if, as is usual, clouds blanket incoming or outgoina radiation) 

and partly because the .echanical turbulence increases with wind-speed, 

whereas convectional turbulence does not. 

Exceptions to these statement. aay possibly be encountered in 
I 

severe local It oral • such as frontal .quaUs and tornadoes. However. 

the.e stor.a. although perhaps not infrequent when taken over a wide 

region. alnerally affect very ... 11 are.s (of the order of a few square 
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miles) at a t~e and the incidence of high winds at anyone place due to 

these "freak" storms (even in the notorious tornado belt of the American 

Mid-West) is probably negligibly alight compared to that due to more 

general large Icale storm systems, to which the earlier atatements refer. 

In the latter, more leneral type of sto~ it appears that both 

the value of ~ (measuring the variation of the wind velocity with heiSht) 

and of ZG (meaauring roughly the thickness of the layer in which the 

airflow is retarded) increase with ground roughne.s. This can be seen from 

Table 2.1 giving the values of 0( and ZG repr«:~entat~v.!".~~""'y~XJous type. 
--.~--- .... , .... 

of surface, as suggested by Davenport (1960). The corre.ponding aean 

wind velocity profile. (for a uniform gradient wind of 100) are shown in 

Fig. 2.3. Prom this it is seen that. the aean velocity at 100 ft. in a 

city aight be about half that in open country. This means that the 

kinetic pres.ure of the airflow in the city i. a quarter that in open 

country. 

On the other hand. the gu.tinell in a city 18 greater. aha 

due to the greater roughness. The actual turbulent energy in the wind 

(at frequencies greater than about .1 cycle per minute) .. y be about 

12 tUDes that in open country for the sama surface velocity. Cons.-

quently, large variations in the pos.ible .ffective wind loads on a 

structure can ari.e, depending on whether it i8 erected in a city or in 

open country, and on whether it i. susceptible to fluctuating sust loads. 

It should be observed that the aean velocity profiles shown 

in Fig. 2.3 refer to flat terrain whose roughness characteristic. extend 

over a sufficiently wide area for the flow reg~e to e.tabliah itself 

uniforaly. Where this is not so, either due to the undulating nature of 

the ground or to the rapidly changing character of the lurface roughne •• 
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TABLE 2.1 

WIND STRUCtuRE PAlUMBTDS rOB. SURFACBS 

or DI71'IllIRT llOUGD!SS 

Pover law Gradient 
Type of surface exponent height 

C( Zca 

Open terrain with very few 
obatacles: 

a.g. open gras., or farmland 
with few trees, hedgerows, 
and othar barrier •• tc.: 
prairie. tundra; shores and 
low island, of inland lak.si 
de.ert. 0.16 900 

t.rrain uniformly cov.red 
with obltacla, 30-50 ft. in 
beigbt: 

e.,. re.idential luburbsi 
... 11 toval; wood land, and 
.cruD; ... 11 fielde with 
~uab.s. tree. and hadgel. 0.28 1300 

t.rrain with large aad 
irregular object.: 

e.g. centres of large citiea. 
very brokan country with many 
wlnd breaks of tall tr •••• etc. 0.40 1700 

• 

Dra, 
Coefficient 

H 

.OOS 

.015 

.050 
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certain modifications will be necessary to suit the conditions. Por 

example, in hilly region~ amplifications of wind velocity can art.e n .. r 

hill-tops and in funnel-shaped valleys. The former have been investia.ted 

and exploited to a Itmited extent, in the obtaining of power from the 

wind (Wax - 1956). In coastal diltricts, also, it seems likely that 

when a wind blows off the rough shore, it may take some distance (perhaps 

three or four miles) before the flow regime corresponding to the rougher 

land surface is fully established. A s~llar effect is likely to be 

present when the wind flows fra. the outskirts of a city to its centre. 

In this instance, however, the change in roughness 1s probably .ore 

gradual, and the wind reg~e may therefore eltablish itlelf sooner. 

It 1. perhaps interesting to note that, although two of the 

moat UDportant applications of the study of wind structure in the lower 

layers (namely, the diffusion of smoke and the wind load, on bulldlnss) 

refer most frequently to large urban areas, no detailed investigation 

has yet been carried out under tbese conditions. There is, however, a 

miscellaneoua assortment of measurements available Clee Davenport 1960) 

which all point to the conclusions referred to here. 

2.3 THE CLIMATE AND STATISTICAL PROPEllTIES OF EXTREME WIl!DS 

Fundamental to the entire problelll of wind loading is a s.tiafac-

tory estimate of the cltmate andltatiltlcal properties of the mean wind 

velocity at tbe site of the Itructure. 

Some of tbe difficulties encountered 1n determining these have 

been di8culled by the writer (Davenport - 1960). It was pOinted out that 

the principle source of inform&tlon on wind speeds near the surface was 

anemometer records and that thele in tbem.elvel had certain shortcomings. 

The siting was not a1waya ideal (e.g. on cliff. or on city buildings) 
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and the period records had been kept varied from station to station. In 

addition the wind speed would poslibly be representative of the surface 

roughness only in the Lmmediate vicinity of the anemometer. This meaDt 

that to obtain an overall picture of the extreme surfaee winds from 

anemometers alone, it would be neceslary not only to have an anemometers 

situated in luch a way that they reflected local variations in terrain 

roughness, but also to make some adjustment for the different periodl of 

record. Clearly this would be conliderable task. An alternative method 

for determining the climate (i.e. statistical propertie.) of the extreme 

wind velocities, suggested by Davenport (1960) is now described. Thil 

ules the gradient velocity as a reference and uses records of surface 

anemometers to obtain estimates of this at several points. 

As a first step. the statistical propertiel of the surface 

velocities as given by anemometer records are found. To do this tbe 

annual wind velocity maxima for a nuaber of years are extracted from 

records of each station and analysed statistically. It is found tbat 

their statistical distribution - in co.mon with many other cltmatological 

and other extremes - can be satisfactorily represented by the function 

P(v) (2.2) 

where ~. 0. (V-V) ) 

~. tbe scale factor for the data (measures it. dispersion), 

and U. the mode of the date. 

Here. P(~ denotes the probability that the maximum velocity in anyone year 

is less than V . 

Some valuable relults of tbis kind have been compiled by Shellard 

(1958) from the anemometer records for selected stations in the British 
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Isles. (A stmilar study has been made by Thom (1960) for the United 

States using a slightly different distribution.) From Shellard's 

values of the par8Jlleters Ya. and U for the various stations. e.timate. 

of the corresponding para .. ters for the gradient wind were then made 

(see Davenport-1960). This was done assuming a constant ratio between 

the velocity of the gradient wind and that at the anemometer heilht, 

determined from the wind velocity profile which seemed most appropriate 

to the site. Contours of the parameters of the extreme mean hourly 

gradient wind speed, obtained by these means are shown in Fig. 2.4 

(This is a sltshtly improved version of the map given previou8ly by 

Davenport - 1960). 

From this map, the gradient wind velocity with any prescribed 

probability of occurring can now be predicted. For some U8.S - such &s 

flood prediction - it has become customary to allude to this probability 

in terms of a return period which defines the average number of y.ars 

before a certain value either recurs or is again exceeded. If thi. 

convention is adopted and the return period is denoted by Y' • the 

probability that a certain value i. ~ exceeded in anyone year i. 

Hence from equation (2.2) the gradient wind velocity \iG 

for which Y' is the return :period is 

V G = U - -k ( 1°!Je (-loge /- ~)] (2.3) 

For large valu •• of r (r -7.10) thh can be approx1JDated by 

(2.4) 

The value. of U and t are read from the contours of the map. Extrem. 

wind velociti •• close to the ground can now be determined from equation (2.1). 

.. ~ 
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It is common practice for records of Maximum peak instaDtaDeoue 

gust speed to be kept in addition to hourly mean velocities. The averase 

ratio of the extreme gust velocities to the extreme hourly velacitiee livea 
. 

a useful measure of the guatiness. This gustiness (as might be expected, 

and .s 1. discussed in the next section) also happens to be good indication 

of the roughne.s of the site upon which the variation of the .. an wind 

velocity with height depends. The po.sible use of this gust ratio .s an 

'indicator' of the roughness (1n place of the more subjective evaluation) 

1s diecu.aed in the Appendix 1. 
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3.0 TB! RESPONSE OF BEAMS TO STATIC AND STOCHASTIC LOApING 

3. 1 ItmlODVCTION 

The loads ~posed on a tall malt or a long span auepension 

bridge by a gu.ty wind can be separated into two parts. First, a steady 

cOilponent due to the Glean wind, and a sec on. , a super iI.poled flue tua ting (' 

load, due to gusts. In principle, the response of the structure to the 

mean wind load presents no difficulty, since it is a simple statical 

problem, The loads due to gust., however, prasent a more difficult 

probl_ .inee these are random in nature owing to the randomne .. of the 

aUlts th .... lve.. As such, they are only definable in statistical tam.: 

to .try to d.fine them otherwise is useless. 

It i. hardly pos.ible to define the stati.tieal proper tie. of 

the guet loade witb any lenerality, aince they are governed by the dyn .. ic 

and aerodynamic characteristic. of the particular .tructure. It doe., 

however. • ... to be possible to .... kI ___ .~~_!_~f'.actory .tateaent of. the 

Itati.tical properties of the at.ospberic turbulence (at l.a.t the Glore 

relevant Oftea), and then, to estimate the statistical properties of the 

deflexlon., Itreases, etc., knowlns the aerodynamic and dyn~c eharac· 

tarl.tic. of the structure. As indicated a!~eady, this can be done •• iDI 
_____ '._ •• ,_,-.._ ,"'--' .... r 

the Generali,.d Bar~ic Analysis developed by Liepaann and others. 

For the purpo.a. of aenaral theory, the tall ••• t and loag 

.,an .ulpen.1oa bridge can be relarded .Lmply a •• l.nder b..... The 

'pecial 8upport condition. appertaining to .ach structur. need not b. 

in~oduc.d until a later ataae. 

3.2 ,,'rglll or A ~ TO A STATIC LOAD DIS1l1lUtIQN 

There are many method. of det.ralalna the response of a he.. to 

a .tatic load di.tribution. One of th •••• which happen. to be 1a l1n. 
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with the technique used later for determining the reaponse to gUlt loada, 

uses the natural modes of the beam for repre.entlng both the deflexions 

and tAe loads. 

The natural modes of a beam are given by the various solutionl 

to the equation, 

K{x.). ~ + (3.1) 

where m(lIC.) and K(~) are general expre .. icm. for the .... anel the equivalent 

.tUfne., of the bua (taking into account .uch additional effect. al "'Y 

.upport. in tbe ma.t and the ,upport of the cable in the .u.pen.ion bridge). 

The infinite nuaber of .olution. to thb equation can ulually be written 

in the fora: 

~t'(x)t) = ../"',.(~). ~In 21lnrt 

where n,:r the natural frequency in the r th mode; 

the r'th. mode of vibration i.e. the shape of the 
deflexlon curve during vibration. 

(3.2) 

Any Itatic load distribution, P(-x.) , actina on the baa. can be 

expre •• ed in term. of the.e mode.; 

P (?t):: L: py . ~f~) (3.3) 
'(' -------_.-_.-._.-- ----~ 

The coefficients P'(' can be found by multiplying both sides by 

~r(Jt.) and integrating over the entire length of the be .. ) 0- t. Since 

it i8 a univer.al property of natural beam modes that they are orthogonal 

to one another. 

t 1 ........ ,C!L) . ./"". f!<.). d" (3.4) 

and bence, 

P,. - - r 
b 

(3.5) 
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(A procedure similar to this is used in ordinary harmonic analysia). 

It is also possible to represent the stiffness function ~~) , 
in the same way. either directly, or by assuming an initial form for the 

deflexion curve. 

l<(x) - ~' Kyo .~r(.x.) (3.6) 
r 

"he~e 

Kr = If' 
N( 0 

K(;c.)~f~) .d')(. (3.7) 

The def1exlon of tbe .tructure .. y be written 

)
--, Py 

LI: K rr~) (3.8) J _. ( 
r 

Inowin& the def1ex10n, it i, then a straight forward matter to 

deteraine other quantities such .s the ao.enta and .tre.se •• 

The actual method of determlnlng the mode. is left untll 

aection 6.0. Even 1f the fora of the mode. 1. difficult to expre.s 

explicitly (due to~ch.nge. in beam section etc.), it i, usually pOllible 

to repre.ent tha sufficiently accurately by leriee of other ai.ple 

functionl, luch a. ordinary .ine function' or the so-called Basic Function •• 

The analysis of thesulpen.ion bridge under .tatic wind loading, using 

tbe former functlon., has been carried out by Selberg (1944), and the tall 

mast, using the latter functions, by Davenport (1959). 

3.3 THE RBSPONSB OP BIAMS TO lAJ!P<Il lAWS 

In a previous paper (Davenport 1961), the relpoD.e of a limple 

one-degree of freed ... tructure to a stationary, random load was de.cribed. 

The equation of aotion of such a .y.te. is: 

+ c.~ dt; 
P (t-) (3.9) 
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where ~ • defl.xion of the .truetur. at tiae C 

,,, • .... of the structure; 

C • velocity damping ooeffieient; 

and 1< - .pring .ttffn ... (load per unit deflexion). 

The solution of this equation .nabl.. the .pectrum of the 

defl.sion to be .xpr •••• d in t.r •• of the .p.ctrua of the load. (The 

.p.ctrum defin •• the contribution. to the varianee of a .• toehe.tie proc.e • 

.. de by the diff.r.nt frequeneiee.) 

i.e. 

5~(n) "- IX~~)I". 5 p (n) (3.10) 

. where 'sy (n) • .p.ctrua of defl.sion at fr.qu.ney n 

Splp) • .pec trua of the load at frequency n 

I XJn)/':. (3.11) 

and n ... natural frequency 

. tii/~' (3.12) 

I Xd t") I i8 e~nly known .e the 'yn .. fc MlnUieatiog of the eyet_. 

It follow. fro. the definition of a 'peetrua that the variance 
o • 

• 
of tbe deflexion i.: 

2 
() (Y> -

(3.13) 

If the .tructure hal more than one mode of vibration - a. in the 

ea.e of a ba .. - and the load no lonser aet. at • point, but alenl the 

entire I_natb of the b .... the probl .. i •• ore eoapl.x. Ae a flr.t 

approx~tlon it i. poe.ible to eoneLder the re.pon.e in .ach mode 

• 
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separately and then ~uperimp()., the re.ults. This ignores any possible 

coupling effect between the different modes. If, however, the damping i. 

~all (as later it i. shown to be), the natural frequencies are separated, 

and the beam modes do not involve torsion, any coupling is generally 

negligible and the aisumption ju.tified. (A full description of the 

theory taking into account the coupling has been given by Eringen ~~53).) 

Aa a first step both the load and the deflexion are represented 

in terms of the natural modes of the beam: 

1.e. 

(3.14) 

where 

an4 Py-li) • coaaponent of the load for '('rh. mode.at time t. 

This load will cause a deflexion ~l~/~) which can likewi.e be expr •••• d 

in t.rm. of the natural modes: 

(3.15) 
r 

Using a procedure for determining the coefficients similar to that u.ed 

in the Itatic caae (aee Eq. (3.5», 

(3.16) 

The mean .quare of thi. load component i. 

J. ~I~-----[prl~)]2 -::: -2 P(~Jx.)P(~,'X.')/"'r(~)/r(x.I).d".d"" (3.17) 
N r 0 0 

where the bars denote ttme averagea. Now the quantity on the left hand 

.ide represents the variance of the quantity Pr{r) and the quantity 

repre •• nts the co-variance of the load P(~>x.) at 
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I 

points '" and "" on the beam. Both quantities are assumed to be stationary. 

random ·functions of time. and therefore have spectra. 

The spectrum of the ,...tb. mode load component, at frequency n • 

is, from equation (3.17), 

5 P
r 
In) :: iJ& il I t 5 p ("",,'; n) .,... ,("j :/" ,( .. ') . cllL. <-lx. '. 

roo . 

(3.18) 

where Sp",".)(.';n) 1a the cross-spectru1l of the loads on the beam at X. 

anel x', for frequency ~. The cross-spectrum is a complex quantity. 

that i. to .ay, it is defined by two components. one in-pha.e and the other 

in quadrature. It can be normalised by dividing by the spectrum at some 

reference point yielding. effectively. a cro.s-correlation coefficient 

I 
between the loads at the two pointe, .1C.and ~ , for the frequency n • 

Bence, 

~p (n) = 
r 

(3.19) 

where 

and R~)X.,>D)- the croBs-correlation coefficient of the load at 
;I(. and ",' at frequency n , 

-, Sp(,c.)x,') "2-
5po<.n) 

The above expre •• ion for the r~. mode load co-ponent can be simplified 

by writing 

5p, tn) -r 
(3.20) 

where 

J J .. (P)\~ = ~2 fif R(r., .. 'j 0 )/",<1'). ""Ax'). d x. d ,,'. 
r o. ,/ (3.%1) 

the latter is termeel the" joint acceptance" for the rK, mode, and 18 a 
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mea.ure of the correlation between the form of the pres.ure di.tribution 

acrOI. the Ipan and the mode. 

The relponae of the beam to the load spectrum Sp In) t 18 
r 

governed by equation (3.9). Resulting from'this, the deflexion spectrum 

for the rth. mode component is found to be 

(3.22) 

where 

(3.23) 

n ... natural frequency in rt1, lDOClej 

~r· logarithmic damping decreaent in the yti, mocle. 

If it is a.lwned that tl.'e .. all coupl~ng effect bet.en .ode. 

i, negligible it follow. from equation (3.15) that the total variance 

of the deflexion il 

=L .:, (3.24) 
r 

The total. spectrum of deflexion at position ~ i. corre.pondingly 

where 

S~~)n) = L 
f 

5 ';)r(n) is given by 

S~r(n) .,)-'/"<.?'). (3.25) 

(3.20). This i. the basic expression for 

determining the deflexion .pectrum. 
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The variances of the shear force and bendinl mo.ent on the beam 

at station X. are liven respectively by 

(3.26) 

and 2-
G M~) = L <J'r1(Pa~ft) . m: QC.) (3.27) 

~ 

where • the variance of the .ynamically magnified mode 
component of load for the "th mode; 

and q,r~) and M(QIJ are the shear force and bendina moment due to unit 

r tho mode load component at station x. 

Stmi1ar expressions can be written for the spectra of the .hear 

force. and bending moment •. 

It is evident that the data required for evaluatinl the above 

expre.sion. are: 

1. the spectrum of the loads at lome reference point; 

2. the crose-spectrum of loade for pairs of points alonl the I.nlth of 
the beg; 

3. the .odes and natural frequencies of the beam; 

4. the .. ehanica1 malnifieation of the beam for the various modes; 
(this nee •• ,itatea knOWing the dampinl in the atructure). 
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4.0 PROPERtIES OF ATMOSPHERIC TURBULENCE 

4.1 GENERAL 

the properties of atmospheric turbulence required in the analysls 

of the wind loads on the tall ma8t and 8uspension bridge are those that 

arise naturally in the statistical theory of turbulence. This theory 

originated in an isolated paper by G. I. Taylor in 1922. discuIslng the 

problem of diffusion in the atmosphere. Part of the aim was to deduce 

the properties of the mean flow from the statistical properties of the 

turbulence. rather than by direct observation and empirical inference. 

It was shown that the motion of particles of air was essentially random 

and analogous to the Brownian motion of small particles due to molecular 

collisions. 

In the period between the wars. very little direct ule was made 

of the Itatistical theory in studying wind structure; the empirical 

approach still remained the principal weapon of attack. It is interesting 

to note. however. that one of the first applications of statistical 

concepts to wind structure was made by Giblett and others (including, 

notably. Durst) in the period 1925 - 1932 at the Royal Airship Works at 

Cardington. (see Giblett - 1932). Occaaions of high wind were studied 

with the a~ of obtaining basic knowledge from which the wind loadl on 

airshipi might be a8sesled. Had interest in airships lasted, enabling 

thele expertaents to be continued. the value of statistical theory in 

determining the dynamic wind prelsures on other structures might have 

been realised earlier. 

In spite of this generally dormant interest in the statistical 

theory (at least insofar as meteorology was concerned), it neverthelel' 

underwent considerable development during the prewar years 1935 - 1939, 
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due principally to the efforts of Taylor (1935) and von Karman (1937). 

One of the notions introduced by Taylor during this period was that of the 

spectrum of turbulence: this defined the contribution to the total 

turbulent energy made by fluctuations of different frequencies. To 

completely specify the turbulent fluctuations statistically it was, in 

leneral, necessary to define three velocity spectra at each pOint (one 

for each component of velocity), and al.o certain cross-correlation 

coefficient.. The latter essentially mea.ure the phase relationship 

between velocity components at different points, as well as the extent 

to which their a.sociation il random. For each particular wavelength 

they are defined by two componentl. one in-phase and the other in 

quadrature. For homogeneous, ilotropic turbulence the picture i. 

simplified. 

Taylor also suggelted that 1£ the fluctuations are aall 

cOlRpared to the magnitude of the aean velocity V J then the time 

correlations between velocity components at a fixed polnt, for a tt.e 

interval t , were the saae as a spatial correlation between two points 

a distance Vt apart. This fact waa first deaonstrated by Giblett (193Z) 

and later by Panofaky et al (1958). Ita usefulneas in the present proble. 

is that it enables certain spatial correlations to be inferred directly 

from their t~ correlations. 

. .. ~ .. --.... --
4.2 STATISTICAL DISTRIBUTION OF VELOCITIES 

An important property of turbulence concerns the distribution 

of velocities. It appeared at an early stage that, in common with 

molecular motion, the distribution of velocities in atmospheric turbulence 

was Maxwellian, or very nearly so. Thi' simply states that the probability 

of attaining a velocity at any instant between V and V + d V is 
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f(V). d V 
(4.1) 

and the probability of attaining a velocity les8 than V is 
V :z 

I J -"i"z, F(V) = 12:Ti e. d x.. 
2. TT -CI() 

(4.2) 

-
where X. :: 

V-V 
<r(V) 

and CT (V) ::: 

The function of the right hand side of 4.1 18 the well-known "error 

function" and is illustrated in Fig. S.l. 

In these expressions F=(V) i_ defined a_ the distribution function of V , 
.fLV) the distribution denl1ty function, and cr(V) the standard deviation 

of V while ot~8 the variance. From this it is aeen that the diatribution 

of velocity fluctuation_ can be completely defined from a know1edae of 

the mean and the variance. 

The a8sumption that the velocity distribution is Maxwellian il 

important to the theory developed here. It has been observed to be true 

(or very nearly _0) for sample times of the order of 10 minutes by a 

number of observers including Hel.e1berg and Bjorkdal (1929), Wagner (1929), 

Belt (1935), Graham (1936) and Hus. and Portman (1949). 

4.3 PROPERTIES OF THE SPECTRA 

4.3.1 General 

At altitudes of 2000 ft. and greater, it is usually possible to 

make the amplifying assumption that the atmospheric turbulence i. 

homogeneous and i8otropic. Unfortunately the same i8 not true nearer the 
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ground. Here the turbulence i8 generally non-isotropic and only homogeneous 

in the horizontal plane if the nature of the surface i. uniform. This 

tmplle8 that not only are the spectra of the three components of velocity 

all different, but that they also vary with height above ground. The.ame 

applies to the cross-correlations of the velocity components at different 

points. It appear. that very little simplification can be made, therefore, 

regarding the form of the spectra. 

Fortunately, however, owing to the relatively simple "Une-like" 

form of both the tall ma.t and the suspen.lon bridge, and the fact that 

they are only significantly affected by transverse forces, the information 

required 1s somewhat reduced. In the first place, the tall ma.t i. only 

likely to be affected by the lateral and longitudinal components of 

turbulence. This .ugge.ts that the information required for the analysis 

of this structure concerns:-

a. the spectra of the longitudinal and lateral fluctuations and their 
variation with height above ground. 

b. the crols-correlations between these velocity components for different 
vertical separations and for different heights above ground. 

The suspension bridge on the otber band i8 only 11kely to be 

affected by the wind components in a vertical plane, normal to the bridge 

axis. Since the maximum effects of the wind will probably occur in a 

more or less beam wind it follows that the longitudinal and vertical 

I ca.ponentB are of .. in importance. Hence the important quantities bere 

are:-

a. the spectra of tbe longitudinal and vertical fluctuation. and tbeir 
variation with height above ground. 

b. the cros.-corre1ations of tbe longitudinal and vertical fluctuat10na 
for different lateral .eparations and for different height. above 
ground. 
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General expressions for all the above quantities.are not yet 

known. However, reasonably reliable estimates can, it seems, be made of 

the following:-

a. the spectrum of the horizontal components of turbulence 
(1.e. lateral plus longitud1nal)j 

b. the spectrum of the vert1cal components of turbulence; 

c. the cross-correlation of the horizontal components for vertical 
separations; 

d. the "scales" of the longitudinal lateral and vertical components for 
longitudinal and lateral separations. 

From these data it is believed that a good estimate can be made 

of the response of the various structures. Details of theae follow below. 

4.3.2 The Spectrum of Horizontal Gustiness 

An expression proposed by Davenport (1961) for the spectrum of the 

horizontal components of gustiness in high winds at height r; is 

where 

x 
4.0 K VI 2 -{-,-+-",~Z-)~":'"''''. 

n :x. .. 4oo0=- where 
VI 

Z,mIOm. (33 ft.) 

-

n 

V, is in cy./ft., 

a standard reference height, 

v. .. mean (hourly) velocity at height Z, 

(4.3) 

and R a the drag coefficient for the surface (referred to the mean 
velocity at height Z,) 

This expression wal arrived at from the study of some 100 spectra 

for strong winda obtained at different heights and over different terraina, 

a large number of wh1ch are given in Appendix 2. 

Values of the surface drag coefficient t.:z. are given in Table 2.1. 

It 1s found that the turbulent energy over a city might be expected to be 

about 12 times as great as that over open country. for the 8ame surface 

velocity. 
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The general shape of the spectrum can be seen from Fig. 4.1. 

only in this instance an alternative representation is used - the product 

of the spectral density and the frequency. the advantage of this i. that 

when represented on alogarithmic frequency scale - as is appropriate in 

the present case - the area under the curve still gives a true measure 

of the energy. This can be seen from the equality 

!)(n). d n 

(This fact is particularly u.eful 1n plan~etric integration.) 

The following are particular features to note about the 

spectrum: 

1. Almost all the energy i8 confined to wavelengths less than 

2. 

5,000 or 10.000 ft. this implies that in a wind of about 

60 mi./hr. the fluctuations with periods less than one or two 

minutes are small. and contribute little to the total energy. 

-z. 
the spectrum is proportional to the quantity H V; • which 

itself is proportional to the shear stre.s between the air and 

the ground. this implies that the turbulence is predominantly 

mechanical rather than convective in origin, which for high 

winds appears to be 8ubstantially true. 

n 
3. The inverse wavelength (i.e. wave number - ) is used on the 

V 
assumption that the spatial pattern of the turbulence remains 

invariant with change in mean w~nd velocity. this il true for 

example, of flow behind grids etc. 
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4.3.3 Analysis of Severn Bridge Records 

Reference has already been made to the wind-structure investiga

tions carried out by Bailey and Vincent (1939) at the site of the Severn 

River railway bridge between Lydney and Sharpness. A photograph of the 

bridge i8 shown in 'ig.4.2a. Fixed direction preslure-tube anemometerl 

were mounted at intervals across the span covering a "front" of about 

2.400 ft. The locations and groupings of the anemometers in the testl 

are shown in Fig. 4.2b, vertically below their actual locations on the 

bridge in the photograph above. The records obtained in these experiment. 

provided a unique opportunity to compare the generalized spectrum of 

gustiness obtained above with the spectrum of gustiness at an actual 

bridge site. (The site is. in fact. only about four mile. upstream of 

the projected 3,240 ft. span Severn River luspension bridge. and the 

wind properties there might be expected to be similar.) 

In the experiments the anemometers were grouped in fours 

(as shown in Fig. 4.2b) and observations covered three leparate recording 

periods each of about 4 1/2 minutes. A total of twelve anemometer runs 

were therefore available for analysis. From the original record., 

published by Bailey and Vincent. the mean wind velocity during con

secutive two second intervals was estimated. Spectra were computed for 

each run using the auto-correlation technique (see Panoflky and McCormick -

1954; also Davenport - 1961). and the results plotted in Fig. 4.3. The 

mean wind velocity during the observationl was 41 mi./hr. and the 

direction south-west - at right angles to the bridge. 

Owing to the rather small number of readings in each run the 

statistical reli,bility of the spectral estimates is not high; in fact, 

there are no irregularitiel in the form of the spectra that cannot be 
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explained in terms of sampling errors (the 95l confidence limits are 

shown.). To improve the reliability, the results for all runs have been 

added together and averaged, and replotted in Fig. 4.4; the resulting 

spectrum is much smoother. 

Also shown in Fig. 4.4 is the generalized spectrum of horizontal 

gustiness (given in equation 4.3) with the surface drag doeffictent taken 

as .003, so as to fit the data. The agreement with the observations 18 

seen to be most satisfactory. both with regard the general shape of the 

spectrum and the position of the peak. 

Before going further, however, it should be observed that 

whereas the generalized spectrum refers to both horizontal componeqts of 

gustiness. the experimental results refer to the longitudinal component 

only (the anemometers were fixed in the approxLmate direction of the 

mean wind). Before any comparisons are made, therefore, it is pertinent 

to comment on the probable nature of the two horizontal component, of 

gustiness. Some previous results, obtained from Giblett's Cardington 

records (see Davenport - 1961), suggested that in high winds the lateral 

component contains about half or two-thirds as much energy as the 

longitudinal component; there was no suggestion that the general shapes 

of the spectra for the two components are significantly different. If 

this is the case, as seems reasonable, then the spectra for the ca.~ined 

horizontal components 8hould be about 1 1/2 - 1 2/3 times the spectra of 

the longitudinal component only. Thus if the experimental results are 

augmented by this amount - as an estimate of the spectrum of both 

horizontal components - we would have had to choose fJa ~ ·005 to make 

the generalized spectrum fit)and is therefore the proper value to 

consider. In view of the open exposure of this wide estuary in the 
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direction of the prevailing west to south-westerly winds, together with 

the rolling and treed farmland on either bank. this value for H agrees 

well with the values given in Table 2.1. 

It seems fair to conclude from this evidence (although only 

obtained from one storm) that the suggested expression for the spectrum 

of horizontal gustiness is applicable to a site such as that at the 

Severn Bridge and that the appropriate value of ~ should be taken as 

approximately '005. 

During the preliminary investigations for the new Severn 

suspension brid3e a number of other records were made at the same site. 

using synchronized anemometers. These were kindly loaned to the writer 

by the consulting engineers for study. Unfortunately the recording 

apparatus was too heavily damped. and the time scale of the charts 

insufficiently expanded to allow any estimate to be made of the spectrum 

in the region of greate.t energy. The records were however used to 

check the form of the spectrum in the region of the low-frequency 

"spectral gap" , and cUd in fact confirm its existence in the instance of 

the very severe storm studied (mean winds 60 mi./hr. for 12 hours or so) -

(see Davenport - 1961). 

4.3.4 The Spectrum of Vertical Gustiness 

A general expression for the spectrum of the vertical velocity 

component, suggested by Panofaky and McCormick (1959), is 

(4.4) 

I 

~ 
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where f • ~: - the ratio of height to wavelength, y 

v, • a reference velocity at height Z. I , 

Zo .. the roughness length. 

From Prandtl velocity profile, taking von Karman's constant aa 40 

-2 
V, 

where ~ is the drag coefficient of the surface, referred to the mean 

velocity at the 10m. height, ", , as in the horizontal spectrum. 

Rewriting, the logarithmic form of the spectrum is 

(4.5) 

The form of the spectrum is shown in Fig. 4.5. The form differs some-

what from the horizontal spectrum insofar as the vertical scale of the 

disturbances appears to be governed by the height above ground. 

4.3.5 Cross Correlation Coefficients 

As already noted, both the phase relationship and the degree 

of association (i.e. randomness) between the velocity components at 

different points in the flow, are meaaured by the cross-correlation 

coefficients. Th •• e are ccm~lex quantities: that is to say they contain 

two components, one of which measures the in-phase correlation and the 

other the quadrature correlation. Only when both these componenta are 

zero or near zero is the relationship totally random. Since a structure 

responds differently to each frequency, it is necessary to know the 

croBs-correlation coefficient for each frequency separately. 



·5 

-
~1: en~ 
c ·4 

~ 
:::> ·3 a: 
I-
0 
LaJ 
a.. 
en 

·2 
0 
LaJ 
0 
:::> 

·1 0 
LaJ 
0:: 

0' 4f d 
·05 ·1 ·2 ·5 1·0 2 5 10 20 50 100 

REDUCED 
nz 

FREQUENCY v 

FIG. 4.5 SPECTRUM OF VERTICAL GUSTINESS (AFTER PANOFSKY) 



- 57 -

The cross-correlation between the velocity components at two 

I 
points X and x. and at frequency n is given by 

where 

{ 5 (n> .. s ... (n) (4.6) 

Lo ,CIt)- co-spectrum at frequency n of velocities at x. and x.' 
Xiii 

(the in-phase component), 

Q"lI.&{n). the quadrature spectrum at frequency n 
at x. and x.' , 

of velocities 

and SIloc.n)JS~("). the spectra at:l. and x.' respectively. 

It has already been noted that the spectrum of the horizontal 

components of turbulence is more or less invariant with height. Further-

more, although the vertical velocity spectrum does vary with height, it 

is only required 1n the suspension hridge problem 1n which the height of 

the deck is more or less uniform. Hence in the problems we are considering 

5",,{rI) ::. 5~0) ::: 50) 
If we write for the cross spectrum 

S(x., .. l jn) :: Co c C."') "',. 
then K I (n) = !:> ("',.' i n) 

::La. 

.s~) 

.. c. <t> ua.~~) 

which is the form in which it appeared in Section 3. The aquare 

modulus, \ R &JL,' (rl) 12 , is sometUnes called the "coherence". 

In nearly all the problems we need to consider the mean 

(4.7) 

of the 

wind 

is at right angles to the "beam" axis. In the case of the mast it is 

always ao, and it represents the most serious loading condition for the 

suspenaion bridge. Under these circumstances it appears that the quadrature 
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component can be neglected and the cross-correlation coefficient over the 

region of high correlation represented by a 

/x.-x.'\ 
simple expression of the type 

R ,(r» = 
:It.:.. 

L(9/n) 

(4.8) 

where L ("l,,) is termed the "scale" of the turbulence and is a func tion 

of the wavelength (~n) 

Putting the separation 
, 

x-x, = Ax. it is seen that 

eO I RA.(n) ci(AtL) == 
o 

L('Y..) (4.9) 

Tbe scale therefore can be thought of as the average dimension of a 

disturbance of given wavelength. 

Some results quoted by Cramer (1958) for the "scales" of the 

horizontal components of turbulence are shown in Fig. 4.6, as functions 

of the wavelength V/n The results were obtained in open gra.sland. 

Only the cross-wind .cales for stable stratification are shown: for . 
unstable conditions the cro.s-wind wind .cales are stated to be more or 

less of the same magnitude as the down wind scales. From thi. diagram 

it would appear that the crosswind wind "scale." can be represented 

quite adequately by 

L(~) ;.. I V -~ 56 n in stable condition. (4.10) 

and 

Ll*) ",I V 
"'--

7 1'\ 
in un. table conditions (4.11) 

The que.tion of which of the.e expressions i, the more appropriate 

in high winds needs to be considered. Although there is Dot yet much 

information available, the indications are that in high wind. the turbu-

lence structure tends more to resemble that in fairly stable conditions, 



200 

i 100 

UJ 
..J 
c:( 
o 
en 

"7 

U - component. 

v - component. 

~ 

./ 
,/ 

-' 

,/ 

,/ 

,/ 

/ 

,/ 

/ 
./ 

,/ 
,/ 

/ 

-----------

,/ 

./ 

-

/ 

,/ 

-

,/ 

~1 
,/ Along wind: 

/ (also crosswind in 
./ unstable conditions) 

i 

-- --. - Crosswind. 
(stable conditions) 
t -

O~'-----L----~----~----~----~----~----~----~~--~~----~----~--~ 

o 500 -
WAVELENGTH V/n ft. 

1000 

FIG. 4.<D SCALES OF TURBULENCE FOR HORIZONTAL COMPONENTS 

OF WIND VELOCITY AS FUNCTION OF WAVELENGTH (AFTER CRAMER) 



- 60 -

insofar that,on the whole) the disturbances are elongated in the direction 

of the wind. Cross-correlation results obtained from Bailey and Vinceot's 

(1939) Severn Bridge records of wind velocity at various points across 

the span, tend to suggest that the lateral scale of the longitudinal 

velocity component is about one third of its longitudinal scale. 

However, in the present state of our knowledge it seems 

advisable to take the more conservative estimate (i.e. the value producing 

the higher correlation) and assume the value for the crosswind scale in 

unstable conditions. The cross-correlation coefficient then becomes 

A 2.. " 
-7 V 

R A OIL (n) =. e (4.12) 

The same expression is assumed for the lateral correlation of 

the vertical component of turbulence. 

4.3.6 The Vertical Correlation of the Horizontal Components of Turbulence 

Fig. 4.7 shows the correlations for various frequencies between 

the horizontal velocity components at pairs of .tations on a 500 ft. 

vertical mast. (The results are those obtained by Davenport (1961) from 

some records of strong wind kindly made available by D~acon of the 

Commonwealth of Australia Scientific and Industrial research Organization). 

Both the in-phase and quadrature correlations are shown. Unlike the 

correlation in the horizontal, crosswind direction, the correlation in 

the vertical direction gives rise to'a non-zero quadrature component. 

This is not surprising since the flow is non-isotropic in the vertical 

direction due to the presence of the ground. 

The quadrature correlation ia generally much smaller than the 

in-phase correlation, at least, for the longer wavelengths, (l.e. smaller 

wave numbers) which are the only ones having a significant correlation. 
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It seems reasonable therefore, either to neglect the quadrature correlation 

(which only introduces an additional complexity into the calculations) or, 

better still, to use the square root of the coherence (as defined above in 

section 4.3.5). The square root of the coherence between the three 

stations on the mast are shown together in Fig. 4.8 and are expressed 

n ~Z 
as a function of the separation to wavelength ratio. (Le. --=- ). 

V 
From dimensional arguments it might have been supposed that the coherence 

of the horizontal components in the vertical direction might allo depend 

h 1 h ( 
nz 

on the ratio of the height to t e wave engt ) . The relults 
V 

shown in Fig. 4.8, however, tend to indicate that the height variation, 

if present, is fairly small. The fact that there was little variation 

in the horizontal velocity spectrum with height would itself tend to 

support this. For the present purposes it would seem that over the 

region of significant correlation we can write 
..e.z.n 

..J Coherence - e 
-G V 

where C ~ 7 , as in the case of the horizontal cros.-correlations in 

the horizontal directions. It will therefore be assumed that the 

"narrow-band" cross-correlation coefficient of the horizontal velocity 

component in the vertical direction is 

-7 ~z n 

RAZ(n) = e. V 
(4.13) 

which is in fact the same expression a8 equation 4.12. 

4.4 REMARKS ON mE STRUCTURE OF tuRBULENCE NEAR mE GROUND 

At present very little can be said with certainty regarding the 

structure of the turbulence near the ground. Although, as described, a 
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certain amount of information is now available on the scale of the 

disturbances and on their spectra. this is not by any means adequate 

for inferring reliably the structure of the disturbances themselves. 

However, it is perhaps worthwhile to con.ider some of the possibilities, 

and in this respect recent wind tunnel investigations provide an 

interesting comparison. 

In general, the similarity between turbulence in the wind 

tunnel and in the natural wind may be somewhat limited by the various 

factors, such as the thermal stability, the density gradient and the 

dynamic forces (e.g. the Geostrophic force due to the earth's rotation) 

which affect the wind but not the flow in the wind tunnel. However, 

in high winds, as already mentioned, thermal effects are not likely to 

be large and the dominant form of turbulence is likely to be mechanical 

in origin, as in the wind tunnel. If again we confine our attention to 

the so-called "constant-stress layer" the effect of the density gradient 

will be very small, and the dynamic forces due to the earth'. rotation 

will be overshadowed by the shear stresses generated at the surface and 

transmitted upwards in the form of momentum exchange by turbulence. In 

the wind tunnel this "constant-stress layer" is roughly 5 - 6 em. deep 

for the usual planed wooden surface: in the wind it extends to a height 

of 150 to 300 ft. depending on ground roughness. 

Possibly the simplest notion concerning the structure of 

turbulence near a plane, but rough surface is that of a series of 

"roller-type" eddies, and this form of has been tentatively suggested 

by Webb (1955) in the case of the natural wind, and originally by 

Townsend (1956) in the ca.e of the outer layer in the wind tunnel. Hore 

recently, however, Townsend (1957) has quoted SOlDe measurements which are 
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not generally consistent with this hypothesiS, and has instead suggested 

that the motion consists of two dimensional jets which originate in the 

immediate neighbourhood of the wall surface. Such jets with their 

surrounding induced flow are shown diagrammatically in Fig. 4.9. Thi. 

also indicates the deflection of the jet streamlines due to the velocity· 

height gradient. The slower longitudinal velocity in the jet (compared 

to that outside) is due to the transport upwards of tre slower moving 

fluid near the surface. What determines the longitudinal Icale of theae 

jets is not known but possibly surface irregularities provide the 

principal control. 

Now this postulated structure i8 in agreement with several 

observed features in the wind tunnel which the "roller" structure faU. 

to account for. These include, inter alia: 

1. the ca.paratively large Icale of the longitudinal velocity component 

in the longitudinal direction and itl apparent independence of height; 

2. the 8maller vertical velocity scale (particularly in the lateral 

direction) and its apparent proportionality to the height; 

3. the displacement of the maximum correlation of the longitudinal 

velocity component in the vertical direction to a position which 

lies approximately along the mean of the postulated jets. In the 

o wind tunnel this occurred along a line roughly at 45 to the mean 

flow which corresponds to the direction of maximum shear. 

Comparing these results with those already described for high 

winds, a remarkable iimilarity i8 noted. Pirst the comparatively large 

scale in the longitudinal <as compared to vertical) direction has already 

been noted, and is reflected in the different parameters used in the 

expressions for the spectra of the horizontal and vertical velocities. 
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n 
In the former the parameter used was =- L • where L was another "scale" 

V 
length which turned out to be about 4,000 ft. In the latter the parameter 

was nz 

v in which Z. was the height and therefore much less than 4,000 ft. 

The above also indicates that the longitudinal scale is independent 

of height (as in 1) whereas the vertical scale is proportional to the 

height (as in 2). The third fact, the displacement of the pOsition of 

maximum correlation of the horizontal components along approximately 

() 
a 45 line, was in fact noted by Davenport (1961) in connection with 

correlations on a tall mast. it is the reason for the non-zero quadrature 

spectrum of the horizontal component in the vertical direction, which 

has already been noted. 

These similarities between the properties of high winds, and of 

the flow in the wind tunnel appear hopeful from the point of view of 

establishing the structure of the wind under these conditions. However, 

wh~n convection plays an important part, as it undoubtedly can when the 

wind speeds are lower, it could well be that the structure i. then 

dominated by cellular convection cells with the general structure of 

roller type eddies. This would account for the very much larger lateral 

scales under unstable, convective conditions. (see Fig. 4.6). 

Before any firm theories can be put forward, however, it would 

seem deairable to have a good deal more information than is at present 

avaUable. 
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5.0 AERODYNAMIC RESPONSE TO FLUCTUATING FLOW 

5.1 GENERAL 

The general properties of the aerodynamic forces which arise 

on typical mast and bridge deck sections in a steady airflow are fairly 

well known and have been studied in a number of easel. Mast sections 

generally consist of lattice trusse. of .ither square or triangular 

section, the principal members of which are usually round bars (to 

reduce wind drag) with flat members used for diagonal bracing. Wind 

tunnel te.ts on such structures have been described by a number of 

investigators (Schott ~!! - 1954. Cohen • 1958; Redwood - 1960). 

Sometimes for .pecial reason. (u.ually to do with the signal pattern of 

the antenna m~nted on the mast) circular cylindrical sectiona are 

used for the mast. Such is the ca.e in a 700 ft. ma.t at Oldenburg, 

Germany ( •• e Stahlban - 1956), and others in Canada described by 

Davenport (~959). For the cylinder, the aerodynamic characteristics 

in steady airflow are well known. 

Since the collapse.of the Tacoma Narrows Bridge, the open 

box truss has almost entirely replaced the plate girder as the stiffening 

truss of the suspension bridge. Not only does the box truss (with two 

levels of lateral wind bracing) provide the necessary torsional stiffne.s 

required to avoid catastrophic vibration., but the open form of the 

tru •• i. more .table aerodynamically. Static tests on bridge tru •••• 

have been d.scribed by Biggs (1954)i Flach.bart (1932) and others and 

an exhau.tive test on actual su.pension bridge trulse. for the Severn 

and Forth Bridges are described by Frazer and Scruton (1952). 
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5.2 RESISTANCE IN UNSTEADY FLOW 

Most of the above tests have been carried out in the steady 

flow of a wind tunnel. There is, however, no reason why the drag (and 

lift) coefficients for steady flow should also apply to the fluctuating 

component of drag in fluctuating flow. In fact, there are good indication. 

that under some circumstances they do not. For instance, Schwabe (1932) 

examined the flow induced round a cylinder started impulsively from rest, 

and found that the drag coefficient built up steadily to a value twice , 
the steady state value after the gean flow had traversed nine di ... ters 

of the cylinder, .s shown in Fig. 5.1. Bingham, We~ar and Griffiths (1952) 

obtained a somewhat sLmilar result. In this case the cylinder was 

mounted in a shock tube, and the ~ulsive flow was induced behind a 

shock wave in front of an expanding body of gas. The latter found 

similar results with other structures such as walls and block shaped 

structures. 

Another type of investigation into the drag of bluff object. 

in fluctuating flow was carried out by Keulegan and Carpenter (1958) 

and also McNown (1957). In the former of these experiments, the object 

wa. placed at the node of a wave generated in a wave tank. As a re.ult 

the flow past the object executed almost harmonic motion with a velocity 

given by 

The forces on the object were analysed and the principal component in 

phase with the velocity was related to the drag coefficient ~D , which 

was defined by tbe following 

-i ~. VQ:).I V(t)1 
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The values of CD for the infinite flat plate and the circular cylinder 

obtained from theae experLments are shown in Fig. 5.2, a8 a function of 
nO 

the dimensionless parameter 
Vrn":' 

The drag coefficient far the flat plate rises steadily with 

increase of this dimensionless parameter, to values three or four times 

a. large as the steady flow values. The circular cylinder, on the other 

hand, rises to a maxLmum value of about 2.1 (twice the Iteady flow value) 
nD , 

~ .1 and then drops off with further rise of the parameter. when v", ..... 
It is interesting to note that if the average velocity during 

a half cycle i8 substituted for the m&!Uoum velocity, the peak is then 
,.,0 

found to occur when - ~ .2 This is also the value for the v .. v 
frequency of eddy-shedding in a steady flow of velocity Vav . Thil 

bints to the pOSlible mechanism causing this variation in the drag 

coefficient. 

Other variations in the effective drag coefficient have been 

observed by O'Brien and Morison (1952) on spheres acted on by wave forces. 

In these experiments drag coefficients of over 3 were noted at Reynold 'I 

numbers for which tbe drag coefficient in steady flow i. about .5. 

Most lignificant of all, poasibly, are some expert-ents by 

Schwarz and Corlsin (1957) designed to teat Lin'l theory for the responle 

of • simple pendulum to a turbulent flow. The latter val a straight-

forward application of the statistical concepts embodied in the 8tationary 

randa. series approach. Knowledge of the Ipectrum of the turbulence and 

of~he mechanical respon •• of the pendulum to fluctuating loads was used 

to predict the root mean square deflexion of the pendulum bob. This 

prediction wal found to be some fourteen tLmes les8 than the actual 
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measured R.M.S. deflexion. This large discrepancy can no doubt be partly 

attributed to the fact that no account was taken of the eddy-shedding 

effect which would produce oscillations of the pendulum bob even in flow, 

free from turbulence. But more particularly it was also probably due 

to the fact that, in making their predictions,the steady value of the 

drag coefficient was used. this may very well have underestimated the 

response of the pendulum to certain frequencies present in the turbulence. 

5.2.1 The Virtual Ka,s Effect 

A further consequence of assuming that the wind is steady 

rather than fluctuating. is that the virtual (or additional) .. s. effect 

is neglected. This arises from the fact that any fluctuation in the air 

flow must be caused by a pressure gradient acting in the direction of 

the fluctuation. This pressure gradient will likewise act on the 

surface of any object placed in the flow, and, in addition. on a certain 

mass of air which effectively "clings" to the object rather than 

accelerate with the rest of the flow. The latter is referred to as the 

additional mass effect. The ratio of the effective mas. of air 

"clinging" to the object, to the mass of a body of air equal in volume 

to the object itself, ia known as the additional mass coefficient. For 

the flat plate, which theoretically has no volume, this coefficient i. 

uaually referred to the circular cylinder having the same di..eter. 

The ~portance of the additional maS8 effect i8 familiar to 

tho.e concerned with such problem. as the vibration of ships plating, 

the force. on pil.s under wave action, the movement of control surfaces 

in aircraft and in the landing re.i,tanee of flying boat hulls. Its 

po.sible bearing on the wind loading problem was first pointed out by 
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Feydayewsky and Belotserkovsky (1954). These authors showed that in a 

very sharp squall (such as one they examined which occurred in Moscow) 

the additional inertial forces could be just as large as the conventional 

drag forces. The assumptions used in this deduction, might however be re-

garded as somewhat severe, and as already remarked in Section 2.2 the 

inc idence of these" freak" local storma at any particular place is small, 

on account of their very limited size. For these reasons it is believed 

that these large inertial forces are unrepresentative of general high 

wind-loading conditions. With the usual levels of turbulence present in 

high winds these inertial effects are believed to be quite small, and in 

the majority of cases, negligible. 

A number of investigations have been carried out into the effect 

of acceleration on the resistance of bluff objects. (Frazer and Simmons -

1919; Stelson and Mavis - 1955). In particular,Keulegan and Carpenter 

also determined the virtual mass coefficient in the fluctuating flow of 

a wave tank. Their results are shown in Fig. 5.2 together with the 

drag results obtained in the same expertments, as a fUnction of the 

nO 
dimensionless frequency parameter ---

V~ 

5.2.2 The General Problem 

From the above it is evident that in considering the response 

of a structure to a fluctuating flow of any description, it is necesaary 

to allow for the possible variations in the resistance not otherwise 

covered by simple quasi-static a~~umptlon.. In general this resistance 

in fluctuating flow can be expressed a. 

(5.1) 



where p(t) = 

V(l) = 

e = 
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force per unit area anJ the object at time t: 

velocity of th~ fluid at time t : 

fluid density 

1> - diameter of object 

Ao "" a reference area for the additional mass 

Cb(n)= coefficient of drag (assumed to be a function of the 

fluctuation frequency ~ ) 

Crn(n):o coefficient of additional mass (including the 

equivalent mass of the fluid and the object itself) -

also assumed to oe a function of n . 

Clearly the problem of determining the resistance can be boiled 

down to that of determining the values of the effective coefficients of 

mass, em, and drag} Cz> The word effective is used since it is in 

fact diff lcul t to divorce the coeH icients from the characteristics of 

the flow itself, as is now disCUBsp.u. 

One oE the simplest types of fluctuating flow is one in which 

the fluctuat.ions are uniform throughout the fluid. This is another way 

of saying that the correlation of the velocity is unity for all points 

in the flow. For turbulent flow this is not the case, the fluctuations 

are both space and time dependent, and the correlation only reaches unity 

when the points are coincident. 

Consider the respon~e of a transverse "strip" or "salmon-slice" 

of a slender beam to these two distinct types of flow. The section of 

this beam can be represented by the bridge deck shown in Fig. 5.3, which 

has a breadth b and a depth D. The pressures on this slice will be 

determined by the flow characteristics in some limited region surrounding 

the section and its wake. For the sake of argument let us assume that th\s 
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region is approxu.ately the size of the object itself. This is obviously 

con8e.rvative in the case of a "solid" body which disturbs the flow for a 

considerable region around, but it may be le8s so in a truss lection, in 

which the drag is created by a lattice of 8mall member. each generatin, 

initially its own individual wake (which may merge later on). Let UI 

also assume (for want of anything better) that the instantaneous force 

on the strip depends on the instantaneous average velocity in this region. 

In uniform flow, the average velocity in the regton 18 obviously 

also equal to the velocity at any point in the region. In turbul~ flow, 

however. the average velocity differs from the velocity at a point owing 

to the variation in phase and randomness of the fluctuations within the 

region. The phase and randomness is, of course, measured by the velocity 

correlation of the type given in equations 4.12 and 4.13. 

If we alsume a correlation function of the type 
- ,"'-)Co' , 

~n) 
R ~",' 0) = . e 

where Ltn) is the "scale" of the fluctuations at frequency" , then the 

correlation over the whole area is of the form 

and that 

where 

e ; (r r: r e-I";,il 
- \%.-z' J 

e L&<.p5 

If, as in Section 4, we aSlume 

, V 
7 r; 

, then the form of the function i. 

+ Co 
-7~ ] 

n1> -V 

I , 
d '" . d.,.. . d z. d%. 

(5.2) 
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nD 
This parameter V is dimensionless and i8 termed the reduced 

fre9uenc~. The form of th'Ls function is shown in Fig. 5.4. It repre •• nts 

the ratio of the average mean square velocity over the entire region to 

the mean square velocity at a point in the region. From thi."it is seen 

that the function is negligibly small for reduced frequenci •• greater 

than about 1.0. This ~plies that even if the amplitude of fluctuations 

of this frequency are large in themselves, their effect on the bridge 

section as a whole is fairly small. 

The conclusions that might be drawn from this are:-

1. that for reduced frequencies less than .1 the velocity 

fluctuations within the region of the flow likely to affect 
• 

the pressures on the structure are fairly uniform: thus the 

resistance in turbulent flow at these reduced frequencies 

probably approaches that in uniform fluctuating flow; 

2. that for reduced frequencies greater than I, fluctuations in 

turbulent flow have negligible effect in inducina pr.,.urea 

on structures; 

3. that for .\ ~ ~~, there is a transition region in which the 

resistance diverges from the uniform flow result in I, and 

decreases until it is negligible as in 2. 

These conclusion. Bugge.ted that although it milht be a difficult 

problem to measure the fluctuating resistance in an actual turbulent flow, 

.ome useful insight might nevertheless be obtained by considering the 

re.i.tance in a uniform fluctuating flow. To obtain al close an analogy 

as possible to the wind it would be necessary to superimpose the fluctuation 

on a mean flow. The resistance'of bluff obstacle. under these conditions 

does not appear to have been inveltigated. 
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As a first approach to this problem a "gust tunnel" with a 

2 ft. x 3 ft. working section was built. A flow of air could be induced 

in the tunnel by blowing compressed air parallel to the tunnel walls through 

slits cut in pipes which ran the full height of the working section. It 

was intended to regulate the flow of compressed air in such a way as to 

produce controllable fluctuations in the tunnel flow itself. 

It was later realized, however, that there was possibly. more 

direct way of determining the variation of the resietance coefficients 

with frequency. This was to attach the, object to a heavy pendulum 

immersed in a steady flow, deflect the pendulum, and observe the decay of 

the oscillations due to the damping effect provided by the drag of the 

object moving through the fluid. A description of some experiments 

conduatad on these lines now follow •• 

5.3 INVESTIGATION OF THE RESISTANCE OF BLUFF OJJECIS IN FLUCTUATING PLOW 

5.3.1 Outline of Experiments 

As noted, the aim of these experiments was to find the resistance 

of various bluff objects to a flow which (relative to the object) con-

ta1ned a fluctuating component of velocity. To produce the fluctuating 

component, the object. were mounted on a heavy pendulum which oscillated 

in a steady flow of water. The arrangement of the pendulum with the 

object attached is shown in Fig. 5.5, and a ganeral photograph of the 

apparatus, in Fig. 5.6, shows the pendulum mounted above the long, 

Fig. 5.6 Photograph showing the axperilHntal arrangement of the pendulum 
suspended over the glas.-sided flume with the object ~er.ed 
in the flow. In the foreground can be seen the strain analyzer 
and oscillograph and, to the right of the object, the propellor 
and itl supporting rod. 
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glass-sided flume, (9 In. wide: 12 in. deep). The velocity and depth 

of flow in the flume could be adjusted by means of an inlet valve and 

a weir at the outflow. The water depth was kept between 10 in. and 11 in.: 

the object was then at the mid-depth. 

The frequency of the pendulum could be altered either by adding 

heavy lead weights, or by varying the size of the Iprings fixed to the 

pendulum. Two stiffneases of springs were used and two weights could be 

added, which, with the no-weight condition, enabled a total of six 

different weight-spring combinations to be arranged and thus six different 

pendulum frequencies. These frequencies ranged from approximately 1 cy./aec. 

to just over 4 cy./sec. 

One of the springs attached to the pendulum was connected to a 

ring dynamometer as illustrated in Flgs. 5.5 and 5.7. Strain g~es 

were attached to the ring in the conventional way, and were connected to 

form a bridge circuit, the output of which was amplified and fed into a 

pen oscillograph. The latter recorded the force in the spring which waa, 

in fact, proportional to the deflexion of the pendulum. Thus the decay 

of oscillation which occurred when the pendulum was deflected and 

luddenly released could be recorded directly on the oscillograph. From 

the characteristics of the damping curve, both the additional mala and 

drag doeffictents could be determined by a .ethod de.cribed below. The 

only additional information required va. the steady velocity of the water 

and the proper tie. of the pendulum. 

The velocity of the steady flow of water was measured by .eanl 

of a ~ll 1 inch diameter, plastic, three-bladed propellor similar to 

those found on miniature aotor boatl, (lea Fig. 5.7). It ran on a 

Close-up of the lower end of the pandulu. showing the object 
sounted between end-Ihialda, the lead weight. attached and the 
apring. connected to tha ring dyn..ometer. 
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free-running brass spindle vhich was mounted horizontally on a thin L-shaped. 

brass rod which could be lowered into the flow to the same depth a. the object, 

but a fair distance upstream so as to avoid any interference vith the flow 

around the object. Apart from the usual "startlng velocity" (about 1 In.'.ec.). 

characteristic of most propeller in.truments. the relponle of the propeller ' 

was linear. It was calibrated carefully in the inlet of a flume. At low 

velocities the speed of the propeller val determined .t.aply by counting. 

the revolutions against a stop-watch. at higher velociti'l a strobolcop, 

vas used. 

The objects tested consisted of a flat plate. a circular 
. . 

cylinder and a triangular, lattice trull, typical of the .ect1on of 

many tall masts. These are illustrated in P1g. 5.8. Each had a diameter 

of one inch. The objectl were mounted between end-shield. to enlure that. 

al far as possible the flow did not "spUI" off the ends an. vas •• unifona 

as p08Sible over the sp.n. To determine the "end effect" of the ahielel. 

v.r1ous lengthlofobj.ct between 6 in. and 3 1n. were telted. It w ••• 

in fact, found to be •• all. 

5,3.2 T •• t Procedure 

The method of test waa daaple and .tr.lpt forward. After the 

flow had settled down and the v.loc1ty .... ur.d. the pendulum va. pluckad 

.nd the decay of the r •• ultlng olcillation va. r.corded on tbe oecl11o-

araph trace. Aa a check for conslstency, three trac •• vereobcalne.,fOf 

each observatioD. Each of the 6 'priDa-weight coablnatiooa. v •• inv •• ti

.ated for aean flow velocities lD the r.nae 2 - 201nch •• per .econd. 

Pia. 5.9 shows .ample result •• 

F1g. 5.8 Photograph of the objecta teeted. Di ... ter· 1 lnc~. 
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5.3.3 Theory of Experiments 

The velocity of the flow at time t relative to the object 

mounted on the pendulum is 

V(t):: V .... 
. 

L9 . 
where ~ = angular velocity of pendulum. 

L • length of pendulum from axis of Totation to object centre line, 
-

am V. mean velocity of the flow 10 the flume. 

Substituting in equation (5.1) the resistance of the pendulum 

(5.3) 

where CI> and C"" • the required coefficients of drag and add!'tional ma •• , 

A. - reference area for additional maS8, 

and 

where 

t • length of· specimen. 

]) • diameter of specimen normal to the flow. 

The equation of motion of the pendulum ie 

1~ • moment of inertia of the pendulum, 

ct.- velocity daping of the pendulum, 

(5.4) 

k • the re.toration force due to the .prings and gravity 
per unit angul'r deflexion of the pendulum. 

If in eq. (5.3), the linear velocity of the pendulua ia ... 11 

compared to the mean flow itself so tera. in ~ ~ are negligible. 

then 

P(~)c te.Cb.V~ l,b +(eCs>vtb.L.) e -+teCW\l.~)Le (5.5) 
, 

Write llW\. e C", Ao~ (the additional mall), 

~ · i e CJ) \7 ( I:> L. (the velocity .duping coefficient of the water), 

and ? - {: e"b V~~ I> (the mean re.htanee). 5.6 
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Substituting in equation (5.4) 

(5.7) 

From this it 1s seen that the effects of the water on the behaviour of 

the pendulum are: 

1. to increase the inertia term by an amount corresponding to the 

additional mass, 

2. to increase the damping by an amount ~ • which for small amplitude 

fluctuations can be treated as velocity damping. and 

3. to exert a mean force P on the pendulum equal to the drag due to the 

mean flow alone. 

where 

and 

The solution to this equation can be written 
- int 

e(~) : ~o e. ",o~2'TTnt 

I 
~ 

o£. + ~ 
= 

_. 
(the logarithmic decrement) 

n (I .. +Aw"'.':) 

n /1 _ 1i'L 
\ 

n :: (the "apparent" frequency) 
I 4T1'&. , , i I • ~ A .. L-'&. n. ': - (the "natural" frequency Z1l in water) 

We also define 

r1 -:..-!- I k 
o 2. .. VT -, 

(the "natural" frequency 
in air) 

(5.8) 

(5.9) 

(5.10) 

(5.11) 

(5.12) 

Equation (5.8) conlists of an 08ci1latlni component with a 

superimposed exponential decay. Its featurel are well known and are seen 

clearly in Fig. 5.9 which show. several such curves for different water 

& 
velocities. From these curves two quantities can be measured: 

1. the logarithmic decrement, $ 

and 2. the "apparent" frequency, n 

The decrement is obtained by picking off the peak amplitudes and plotting 
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these on a logarithmic scale, against tUne (or the number of cycles) on 

a linear scale. The slope then gives the decrement. The procedure 1. 

illustrated in Fig. 5.9 for the same traces. 

measured directly from the trace. 

The "apparent" frequency 1s , 

In the experiment. the logarithmic decrement, was much smaller 

than unity. Hence expanding eq. (5.10) binomially" and neglecting terms 

of order greater than f, z. , 

n, - n( 1+ .£ _.) (5.13) 
81'71. 

and AI" :: n,- n ::. 
~"1. _ n 
i li&. 

From (5.11) and (5.12), 
n. 

11 

, 
::. t- ..6rn.I.." 

n, to 
If Am. L1« To 

,62.(n) = no-n, ::. J.. A m.L z. 
n l 2 

. 
To 

Since no~ ,." ~I"\ 

~n no-~ .l- A~. L"I. <r,z. 
::. -:. 

Z. - + 8iT~ nc no 1:'0 (5.14) 

Now the "apparent" frequency in air in almost exactly equal to the natural 

frequency 11 0 • due to the low internal clamping. A typical "air damping" 

curve il shown in Fig. 5.9. (The frequency il seen to be .omewhat higher 

than in water.) Since all the other quantitl •• are measurable the 

additional mall Atrl can be found from equation 5.14. viz. 

~m = 2.T. { An _ .1.z. ... } 
L2. n. ~1\ (5.15) 

The coefficient of additional mals 18 now given by equation 5.6 i .•. 

. .6. m 

e· Ao. ( (5.16) 
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Having found the additional mass coefficient it ia now possible 

to determine the value of ~ , (the velocity damping coefficient due to 

the drag), and hence the drag coefficient. From equation 5.9 

~::. n b (Io + .d m. L~) - ex 0 (S .17) 

( ~ 0 is usually negligibly small) 

If we write Ot o = nQ b. r. (where ~o is the logarithmic 

decrement in air). then from .quation (5.6) the drag coefficient can be 

written 

C fn) N Z t . (~)( Io + Am L 2.)( b - S.) 
1> \.: '" e. t. L... 1> \ V 

This is the basic equation for deter.la1ng the drag coefficient. All 

the quantities on the right hand side are measurable. The dimensionles8 
nD 

parameter is denoted by ~ and is the reduced frequency. 
V 

5.3.4 Results 

5.3.4.1 Introduction 

Dimenaional analysiS eugge.ts that there are three parametere 

On which the values of the drag and mass coefficients might be expected 

to depend. The.e are: 
nD .. f. - the reduced frequency 1. V 

2. neL. - the velocity ratio of the object 
V 

3. VD - Re - the "Reynold's number". - -~ 

Any dependence on the second of these parameters will be revealed by the 

damping curves themselve •• aince theae record the oscillation over a 

range of amplitudes. If the damping depends on amplitude, the plot of 

the damping curve on semi-logarithmic paper will be non-linear. (It was 

stipulated in the first place that the velocity of the object was ~ll 

compared to the mean flow so no significant non-linearity could be 
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expected from this source.) 

Dependence on the Reynold's number can be ascertained by vary

ing the velocity (pI'oportional to It.) but at the same time maintaining 

the same reduced frequency (by varying the frequency of the pendulum). 

In fact. with bluff. unstreamlined objects, dependence on Reynold's 

number might be expected to be amall. This is because the mOlt marked 

influence of Reynold's number is in changing the position of the 

'separation pOints', separating the regions of laminar and turbulent 

flow around the body. In bodies of curved profile (such as a circular 

cylinder) a variation of Reynold's number can cause the separation points 

to move. thereby affecting the width of the wake and therefore the drag. 

In sharp edged bodies (such as a flat plate normal to the flow) however, 

the separation is almost bound to occur, at the sharp edges. This 

effectively fixes the size of the wake and the drag i. then almost 

independent of the Reynold's number. 

This implies that the prinCipal parameter is likely to be the 

reduced frequency ~ ,which is already contained in equation (5.18) 

for CD The analysis were carried out on this assumption. 

5.3.4.2' Calculations 

From the series of damping curves (three for each ob.ervation), 

obtained for various mean flow velocities and for each of the spring-

weight combinations, the following data were obtained: 

1. the logarithmic decrement ~ . (from graphical plots such as 
those shown in Fig. 5.9), 

2. the apparent frequency n . 

By allowing the pendulum to oscillate in air the follOWing 

was obtained: 
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3. the logarithmic decrement in air, <i>o 

and 4. the natural frequency in air, no , 

The moment of inertia of the pendulum, Io,was determined by removing the 

springs and timing the swing. To is then given by 

T ': g M-... -,'Z 
-0 ~'&. (5.19) 

where T is the pendulum period, M the mass and r the distance 

from the pivot point to the centre of gravity (found by balancing the 

pendulum horizontally on a knife edge). 

Values of To, no and be:. for the pendulum with various object. 

attached are given in Table 5.1. 

It is now possible to compute the additional mass from eq. (5.15) 

and the additional mass coefficient from (5.16). Knowing the additional 

.. ss the drag coefficient can be computed from (5.18). 

5.3.4.3 Determination of Effect of End Shields 

AI noted, the objects were mounted between end-shields, designed 

to prevent the flow 'Ipilling' off the ends and also to provide a means 

of support (see FigL 5.5 - 5.7). The end-shielda and the supporting .truts 

were cut from 16 lauge bras. sheet. In spite of the fact that the edges 

were sharpened so as to streamline them as far as possible, they did, 

nevertheless, make a s .. ll contribution to the drag, over and above that 

of the object it.elf. To determine the size of bbi. contribution, several 

lengths of object were tested at the same velocity. The end effect was 

tben determined by effectively differencing the total drag for the 

d1fferent lengths and a.suming that the drag contribution by the end-

shields was the lame in each case. The procedure i8 illustrated in 

Fig. 5.10; in which the product of object length and total drag 



TABLE 5.1 

Properties of Pendulum for Various Tests 

-

3" Plate 4 1/2" Plate 6" Plate 6" Plate 6" Cylinder 
(Series 1) (Series 2) 

bO 
C . 

110 Io Io To 10 10 ..-4&.1 no "0' "0 ryp 
~ :J - . ' 
g. 

cy./sec. 1b. in. 2 ey./sec. 2 cy./sec. 2 cy./sec. lb. in. 2 cy ./sec. CI) lb. in. lb. in. lb. in. 

Ii 1 1.919 4,020 1.842 4,070 1.827 4,280 1.852 4,280 1.681 4,690 
A 2 1.360 8,280 1.332 8,320 1.326 8,920 1.340 8,920 1.276 9,340 
A 3 1.030 16,320 1.017 16,370 1.011 16,520 1.021 16,520 .995 16,970 

B 1 4.300 4,020 4.130 4,070 4.095 4,280 4.140 4,280 4.090 4,690 
B 2 2.961 8,280 2.895 8,320 2.870 8,920 2.902 8,920 2.730 9,340 
B 3 2.123 16,320 2.082 16,370 2.077 16,520 2.100 16.520 2.020 16,970 

-- ~ -

DaDping decrement in air no :: ·00.50 for all testa. 

4" Lattice Truss 

"0 10 
2 cy./sec. lb. in. 

1.756 3,870 
1.350 8,520 
1.028 16,170 

3.955 3,870 
2.928 8,520 
2.1LO 16,170 

I 

I 

2 

I 

'" c....I 
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coefficient (for end-shields plus object) is plotted against the object 

length. The gradient of these lines gives the net drag coefficient for 

unit length of the object alone. The intercept with the vertical axis 

gives a measure of the end-shield drag. 

As can be seen from Fig. 5.10, the effect of the end shields 

decreased as the v_Iocity increalel. This can probably be explained by 

the difference in the drag characteristics of the object and the end 

shields. Whereas the drag of the former is probably almost entirely 

IOI'm drag, and therefore proporti onal to V2 , the drag of the end 

shields is more likely to be viscous and therefore proportional simply 

to \I. The drag of the latter. therefore rises less rapidly; or. put 

in other words, a drag coefficient computed on the basis of the drag 

being proportioned to V2 will appear to decrease inversely as V 

Thus the end correction appears to become less and les8 important as the 

velocity rises. In fact it only seemed necessary to correct for the 

end shields 1n the case of the lowest velocity measurements (approx~tely 

2.5 in./sec.) 

The effect of the end shield. was assumed to be the same for 

each of the objects tested. 

No allowance was made for end shields in computing the additional 

mass. because the crucial readings could not be made to sufficient 

accuracy (1.e. depended on a small increment of frequency) to warrant 

the attempt. That it was .mall. is borne out by the agreement between the 

results for the flat plates of different lengths shown 1n Ptg. S.12b. 

The final results for all tests (with end-corrections made) are 

recorded in Tables 5.2 to 5.6 and plotted in Figs. 5.12, 5.13 and 5.14. 

The •• results are discussed in detatl, following the description of the 
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determination of the steady-flow drag coefficient below. 

5.3.4.4 Determination of Steady Flow Drag 
I 

\ Thi. wa. accomplished by removing the .prings and measuring 

the deflexion of the pendulum hanging freely in the flow of water. by 

.1ghting the croll-wires of a tele.cope on a graduated scale mounted on 

the pendulum itlelf. The drag could then be calculated from the equili-

brium of the pendulum. A typical drag curve (for the lattice trus.) i • 

• hown in Fig. S.12. The drag coefficients for the three object. tested 

were found to be: 

Flat Plate 

Circular Cylinder 

Lattice TrulS 

~teady Plow Drag Coefficient 

2.0 

1.05 

1.10 

The.e value. agree with those given ellewhere. The value. for the flat 

plate and cylinder are familiar results given in text books. In the 

case of the lattice tru8S the drag coefficient i. based on the gro •• 

area of the .urface and not .imply the net frontal area of the lattice 

members. For compari.on with results by Cohen and Perrin (1954). 

Redwood (1960), Schott (1954) and other8 the solidity ratio (ratio of 

net area of member. to gro •• area of trus.) .hould be taken as .60. 

5.3.5 Di8cu.aion 

In Section 5.3.4.1 it was pointed out that the parameters on 

which the drag and virtual .... 

were the reduced frequency. ~ 

and the Reynold'. number Re . 

coefficients might be expected to depend 
nEH

the velocity amplitude ratio. \i 

Independence of the velocity amplitude 

ratio wal partially a.sured by using only small value. of the parameter 

, 
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and was verified experimentally insofar as the damping curves were found 

to be linear (see Fig. 5.9) - a situation which would not have resulted 

had the coefficients been dependent on the velocity amplitude ratio. 

Dependence on Reynold's number was expected to be small (except possibly 

for the cylinder) - as 1. the case with the steady flow drag coefficienta 

of most bluff objects. Hence the most influential parameter was expected 

to be the reduced frequency - as already pointed out. The dr,ag and 

additional mass coefficients are plotted in Figs. 5.12, 5.13 and 5.14 as 

functions of this parameter. 

Three features of these curves aeem to be noteworthy 
, 

1. The drag coefficients of the flat plate and triangular lattice 

truss both increase steadily with reduced frequency (the truss 

slightly more so than the flat plate), from a value which is 

close to the steady state value for S~ ·o!>. The coefficient 

for the truss reaches about double the steady state value for 

~= I.S 

2. The additional maS8 coefficient of the flat plate and truss 

both decrease with reduced frequency (the trend in the latter 

case being less well defined for reasons explained below). 

3. The results for the circular cylinder ., insofar a. they 

indicate any certain trend., - do not appear to exhibit either 

of those in land 2. 

It is extremely difficult 1n a purely quantitative experUDent 

such as this to account for the above. Some of the same difficulty was 

encountered by Keulegan and Carpenter (1958) in investigating the 

resistance of the flat plate and cylinder to a simple periodic flow with 

no mean velocity. They were, howev~. able to obtain some insight into 
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TABLE 5.2 

RESULTS OF TESTS ON 3 INCH FLAT PLATE 

Spring/ 
to V S c'" c'J) Weight n 

in/$« "y/Sf-(. 
A I 1 .213 2.70 1.856 0.687 1.429 (4.58) 

.249 ' 5.00 1.860 0.372 1.303 3.30 

.342. 8.75 1.846 0.211 1.601 2.61 

.512 13.10 1.818 0.139 2.173 2.65 

A I 2 .113 2.70 1.342 0.497 1.421 (3.56) 
.149 5.00 1.339 0.268 1.626 2.85 
.219 8.75 1.336 0.153 1.813 2.41 
.322 13.10 1.327 0.101 2.391 2.36 

A / 3 .072 2.70 1.022 0.379 1.655 3.10 
.096 5.00 1.022 0.204 1.440 2.71 
.135 8.75 1.019 0.116 2.257 2.19 
.199 13.10 1.010 0.071 4.063 2.19 

B I 3 .037 2.70 2.104 0.779 1.448 3.32 
.050 5.00 2.102 0.420 1.629 2.92 
.075 8.75 2.107 0.241 1.176 2.49 
.112 13.10 2.098 0.160 1.918 2.49 

B / 2 .051 2.70 2.913 1.079 1.427 3.23 
.075 5.00 2.919 0.584 1.239 3.09 
.114 8.75 2.915 0.333 1.347 2.70 
.173 13.10 2.903 0.222 , 1.697 2.75 

B / 1 .076 2.70 4.167 1.543 1.337 3.52 
.103 5.00 4.167 0.833 1.337 3.40 
.162 8.75 4.175 0.477 1.242 2.83 
.253 13.10 4.142 0.316 1.556 2.88 
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TABLE 5.3 

RESULTS OF TESTS ON 4-1/2 INCH FLAT PLATE 

Spring/ V Weight n em c. D 
in I $e.c. 'Y /5&C. 

A / 3 .0971 2.55 1.0059 0.394 1.403 3.12 
.1532 5.00 1.0021 0.201 1.820 2.19 
.2125 8.60 .9980 0.116 2.418 2.34 
.298 14.50 .9842 0.0619 4.239 1.97 

A / 2 .1656 2.55 1.3038 0.511 1.308 (3.64) 
.228 5.00 1. 2931 0.259 1.812 2.90 
.339 8.60 1.2853 0.149 2.151 2.51 
.507 14.50 1.2552 0.081 3.532 2.29 

A/I .283 2.55 1. 7647 0.692 1.248 (4.31) 
.351 5.00 1.1544 0.351 1.401 3.06 
.512 8.60 1.1544 0.204 1.346 2.62 
.861 14.50 1.6948 \ 0.117 2.145 2.64 

B / i .1054 2.55 3.9761 1.559 1.053 3.55 
.1556 5.00 3.9682 0.194 1.102 3.02 
.2365 8.60 . 3.9841 0.463 0.981 2.61 
.415 14.S0 3.8760 0.267 1.687 2.80 

B / 2 .0702 2.55 2.8450 1.116 0.897 3.29 
.1086 S.OO 2.8302 0.566 1.185 2.96 
.1619 8.60 2.826 0.329 0.951 2.55 
.285 14.S0 2.800 0.193 1.763 2.70 

B I 3 .OS08 2.55 2.0640 0.809 1.134 3.39 
.0766 5.00 2.0619 0.412 1.240 2.93 
.1060 8.60 2.0534 0.239 1.719 2.38 
.1916 14.50 2.0408 0.141 2.375 2.S6 

, 
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TABLE 5.4a 

RESULTS OF TESTS ON 6 INCH FLAT PLATE 

Series 1 

Springl 
6 -Weight V n C'" CJ) 

in / flet c-y/st.' 
A I 1 .336 2.70 1. 730 .640 1.176 (4.231) 

.532 6.50 1. 718 .264 1.277 2.786 

.907 11.95 ,1.670 .140 1.726 2.608 

A I 2 .209 2.70 1.296 .480 1.045 (3.811) 
.373 6.50 1.274 .196 1. 780 - - 2.817 
.631 11.95 1.250 .105 2.535 2.588 

A I 3 .128 2.70 1.002 .371 .766 3.295 
.244 6.50 .992 .153 1.584 2.603 
.354 11.95 .980 .0820 2.561 2.035 

B I 3 .068 2.70 2.060 .763 .713 3.642 
.1248 6.50 2.040 .314 1.549 2.802 
.189 11.95 2.035 .170 1.734 2.307 

B I 2 .0907 2.70 2.815 1.043 .907 3.654 
.177 6.50 2.78 .428 1.473 2.993 
.309 ll.95 2.795 .234 1.183 2.824 

B I 1 .1324 2.70 3.915 1.450 .999 3.724 
.257 6.50 3.87 .595 1.233 3.022 
.452 11.95 3.85 .322 1.304 2.893 

, 
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TABLE 5.4b 

RESULTS or TESTS ON 6 INCH FLAT PLATE 

Series 2 1\ 

Spring! -Weight V n em C]> 

in /$£C. 'y/'c, 
A I 1 .439 5.00 1.756 .351 1.138 (3.023) 

.604 8.60 1. 715 .200 1.580 2.453 
1.ll0 ' 13.10 1.650 .l26 2.132 2.961 

I A I 2 .280 5.00 1. 310 .262 1.017 (2.846) 
.439 8.60 1.289 .150 1.696 2.625 
.564 13.10 1.256 .0959 2.788 2.248 

A I 3 .• 187 5.00 1.005 .201 1.346 2.6767 
.284 8.60 .992 .115 2.411 2.380 
.372 13.10 .983 .0750 3.115 2.064 

B ! 3 .0924 5.00 2.080 .416 .829 2.705 
.150 8.60 2.070 .241 1.232 2.567 
.204 13.10 2.065 .158 1.426 2.299 

B ! 2 .136 5.00 2.860 .572 .679 2.977 
.210 8.60 2.825 .328 1.230 2.695 
.360 13.10 2.815 .215 1.349 3.043 

B I 1 .182 5.00 3.980 .796 .871 2.781 
.304 8.60 3.935 .458 1.101 2.723 
.466 13.10 3.920 .299 1.149 2.736 
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TABLE 5.5 

RESULTS OF TESTS ON 6 INCH CIRCULAR CYLINDER 

Spring! -
Weight V n ern Col) 

in I st.c. (.y / st.c. 

A I 1 .0520 2.55 1.609 .631 1.061 .633 
.1630 7.50 1.667 .222 .198 .716 
.428 11.70 1.667 .142 .149 1.190 

A ! 2 .0311 2.55 1.246 .489 1.lS8 .523 
.1503 7.50 1.264 .169 .450 .976 
.266 11. 70 1.263 .108 .458 1.120 

A I 3 .0251 2.55 .982 .385 1.182 .566 
.1074 7.50 .986 .131 .796 .971 
.171 11.70 .984 .0841 .961 1.015 

B ! 3 .0127 2.55 2.008 .787 .530 .434 
.0181 7.50 2.017 .269 .134 .250 
.097 11.70 2.015 .172 .212 1.126 

B ! 2 .0213 2.50 2.692 1.017 .686 .703 
.0296 7.50 2.706 .361 .434 .352 
.0965 11.70 2.721 .233 .157 .835 

B I 1 .0300 2.50 3.584 1.434 .872 .878 
7.50 

.132 11.70 3.854 .329 .912 , 
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TABLE 5.6 

RESULTS OF TESTS ON 4 I~CH TRIANGULAR LATTICE TRUSS 

(Upstream face normal to flow) 

Spring/ -
Weight V n ern CD 

in / ~f.' ,y/s.c. 
B / 1 .0620 2.91 4.167 1.432 .182 2.002 

.1014 5.05 4.167 .825 .181 2.100 

.142 8.75 4.132 .472 .410 1.612 

.207 13.70 4.167 .304 .181 1.505 

B I 2 .0439 2.91 2.898 .996 .623 2.106 
.0641 5.05 2.894 .573 .707 1.846 
.0978 8.75 2.885 .330 .891 1.680 
.132 13.70 2.882 .210 .951 1.466 

B I 3 .0316 2.91 2.092 .719 .988 1.968 
.0423 5.05 2.088 .413 1.206 1.591 
.0637 8.75 2.092 .239 .985 1.443 
.0956 13.70 2.086 .152 1.310 1.425 

A I 3 .0510 2.91 1.019 .350 1.010 1.663 
.0824 5.05 1.012 .202 1.002 1.615 
.122 8.75 1.017 .116 1.216 1.408 
.175 13.70 1.018 .0743 1.082 1.307 

• 
A / 2 .0796 2.91 1. 337 .450 .584 1.863 

.119 5.05 1.335 .264 .672. 1.642 

.196 8.75 1.327 .152 1.002 1.604 

.277 13.70 1.326 .0968 1.027 1.455 

A I 1 .130 2.91 1.846 .634 .498 1.992 
.195 5.05 1.852 .367 .450 1.740 
.277 8.75 1.824 .208 .800 1.454 
.468 13.70 1.838 .134 .543 1.564 
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the mechanism governing the resi.tance by photographing flow patterns 

u.ing dye, which led'to their supposition that the variation. in drag 

and additional mass coefficients were in some way governad by the .d~y 

shedding in the wake. A similar photographic study in the present ca.e 

would have been far more difficult to carry out, and also to ~nterpret. 

the mean flow would give rise to a flow pattern of its own which would 

be extremely difficult to disentangle from that due to the fluctuating 

flow. 

It Be ... likely that the phenomenon may be allociated with the 

build-up and shedding of vortices at the sharp edge.. Thu., the realOA 

why the drag coefficient for the truss showed a greater rise than that 

for the flat plate may be due to the former'. greater proportion of 

"edge" per unit frontal area. It should be noted that Reulesan and 

Carpenter (19S8) in their experiments found that the drag coefficient for 

the flat plate ro.e with reduced frequency (lee Fig. 5.2) just a. it 

did in the pre.ent expert.enCs: furthermore, the additional mas. 

coefficient showed a similar decreaslng trend. Both the.e facts "Y. 
however, be coincidental. 

In both sets of experiments, the cylinder and flat plate 

regi.tared characteristically different responses. In the present 

experiments the cylinder results were most irregular (see Fig. 5.13) 

for a number of reasons. The principal reason probably lies in the fact 

that the "separation points" for the cylinder do not occur at sharp edges 

as they do in the flat plate; this means that they are free to move - a. 

it is well known that they do - with consequent changes in the width of 

the wake and in the drag. It is well known that the positions of these 

aeparation points are very sensitive to variations in the oncoming flow. 
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Under these circumstances it would not be surprising if the periodic 

fluctuations in flow imposed in the experiments were sufficient to 

disturb the separation points and produce widely varying results for the 

drag. Indeed. a very prominent feature of the investigations va. that 

with the two highest frequency arrangements (i.e. with strong springs 

and the two lighter weights) the pendulum would go into a state of se1f

excited oscillation of such large amplitude that it precluded all 

possibility of obtaining damping curves. This happened over a wide range 

of velocities. and is probably evidence in itself of the inatabilitie. 

that must exist in the drag. With these difficulties to contend with, 

investigation of the cylinder drag was limited to the points shown in 

Fig. 5.13, being those that did not exhibit self-exciting oscillations. 

Another reason for 1Uniting study of the cylinder was that results for 

Reynold's numbers as low as these (1,000 - 10,000) have no practical 

relevance to the wind loading problem: and at the much higher Reynold's 

numbers (102 - 108 or so) encountered in tall chimneys. masts and other 

full-scale cylindrical structures the drag has altogether different 

characteristics. 

It i8 noticed that the additional mass coefficient for the 

flat plate flattens out to a value close to 1 for larger reduced fre

quencies. This happens to be close to a theoretical value (quoted by 

Stelson and Mavis - 1955) determined by Riabouchinsky. He assumed two 

parallel flat plates placed some distance apart, with potential flow in 

the region surrounding the plates and the streamlines joining their 

opposite edges. The additional mass coefficient determined on this basis 

was 1.05 and i8 indicated by the dashed line in Fig. 5.12b. 
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The scatter in the relults for the additional ma •• coefficient 

of the tru.I is much greater than that for the flat plate. The main. 

and probably only reason i8 that the additional mal. effect wal much 

.maller for the tru.s. and consequently, the frequency change. were more 

difficult to measure accurately. 

One final observation concerns the value of the mean drag 

during the oscillation.. For the tru.s and the flat plate (little can be 

.aid with certainty regarding the cylinder) thia appeared to remain con

atant at the ateady flow val~e~ This fact would be verified from the 

oscillograph trace which showed that the mean pOlition of the pendulum 

during vibration wal the lame a. the position atoreat. 

5.4 THE AERODYNAMIC FoaCES IN A GUSTY WIND i RECAPITULATION AND C(!fCIcUS IONS 

i.4.1 Drag Forces 

To determine the gust forces on a .tructure such aa the bridge 

deck shown in Fig. 5.3. or a mast section. the best we can probably do 

at present is aalume: 

1. that the iust velocity effective in creating pres.ures on the 

structure is an average velocity over lome area of influence 

such as that suggested in Section 5.2.2 (.ee Fig. 5.4). 

2. that the effective drag coefficients appertaining to the flow 

fluctuations are similar to those determined in the experiments 

described in 5.3 above, 

and 3. that additional mass effects are negligible. 

It follows that the force per unit length of a structure due 

to a wind of mean velocity V t ':.n_1aiOlo\' .ull auperimpo.ed harmonic 

fluctuation of frequency 1'1 and "effective" amplitude \/e. (over the region 
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of flow postulated in 1) will be 

Cl)l,' v. 
- P.. 2. P c:;;) V • In Z 7i n t (5.20) 

where p • - z 
the mean pre. sure - ~ e· c. ~ <.0). V t> 

In terms of the spectrum of the effective velocity ~~cln) the 

spectrum of pressure 5 p (n) 

4 P 1. 

, is found from this to be 

( ~»)2. Sv&(f"l) 

,»\0) V" 
By the first assumption, clearly 

5 ve (.n) == C 5v (n) 

where C - velocity correlation over the postulated region of 
influence, 

and 5v(n) - .pectrum ofhcrizontal velocity at a point. 

If we assume that C is given by equation 5.2 and write 

(5.21) 

then the expression for the spectrum of pressure. becomes 

-- -L V 
(5.22) 

will be termed the aerodynamic admittance; it is an 

important quantity in determining the pressures that develop. It i. 

significant to note that, assusing the expression for C(~) given in 
C Des) 

equation (5.2) is adopted, at the reduced frequencies for which -----) 
CJ>(o 

becomes significantly greater than unity, C (~) diminishes rapidly to 

very small values. Considering that £:(~) was not itself a precisely 

defined function and was based on somewhat conservative assumptions, it 

does not seem necessary to make any further allowance for the increase 
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in the drag coefficient. That is to say it seems adequate to assume that 

C(~) (5.23) 

(with 'ttl given by eq. (5.2». 

5.4.2 Lift Force~ 

No examination has so far been made of the lift forces that 

develop on a bridge deck due to vertical gusts. 

It is characteristic of most bridge decks that they will 

experience a vertical force when the wind is inclined to the plane of 

the deck. The forces that develop are large even at small angles of 

inclination. If the deck and the mean wind are horizontal, this angle 

of inclination - or angle of attack - of the deck to the wind, 0<. 18 

the angle between the horizontal and the instantaneous wind velocity. 

Approximately, 
w -V 

where ~ - the vertical component of velocity. 

For most bridge decks it i8 possible, over a limited range, to 

represent the change in lift force with angle of attack by a straight line. 

This i_ true for example of the deck for the projected Severn suapen_ion 

bridge,as can be seen from the results of the wind tunnel tests given 

in Fig. 9.2. Suppose that the slope of this line - i.e., the rate of 

change of lift force with ~ 

force P is given by 

p :: 

dz 
1s denoted by a-; , then the vertical 

where "-Ie is an effective vertical velocity. The best assumption we can 

make regarding W~ is that, like the effective horizontal velocity, it is 
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the average vertical velocity over some hypothetical region of influence. 

If we follow the same arg~nts used in determining the response to hori-

zontal gusts, the expression for the spectrum of the vertical lift force 

can be 1fl!itten 

5.w tn) ['\J 1'1 _. A. (n) 
V'" '" 

(5.25) 

where 5~(n) is the vertical velocity Itpectrum and 

c. (~) (5.26) 

as before. 

Equations (S.2~ and (5.25) now represent the necessary expressions 

for determining the speetra of the horizontal and vertieal force. per unit 

length of the strueture. 
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6.0 DYNAMIC AND STATIC BEHAVIOUR OF THE SUSPENSION BRIDGE AND TALL MAST 

6.1 INTRODUCTION 

Having estimated the aerodynamic pressures developed on a thin 

transverse "strip" of bridge, or maBt, by the various frequency fluctua

tions in the wind, the next step is to consider how these localised 

pressures act collectively to excite individual modes of the structure. 

This can be done along the lines described in Section 3.0 provided we 

know the form of the cross-correlation of pressures across the span and 

the form of the various modes of vibration and their natural frequencies. 

Expressions for the cross-correlation of velocities have been given in 

Section 4.0, and it is reasonable to assume that for the latticed members 

of the mast and suspension bridge, in which the drag is generated by a 

large number of localised surfaces, the cross-correlation of pressures 

1. similar. The modes and natural frequencies have not yet been discussed, 

however, and so reprelent the next aspect of the problem to be considered. 

In particular we need to consider the lateral, vertical and 

torsional modes of the suspension bridge, and the lateral mode of the 

mast. Except for the lateral suspension bridge vibration., methods 

/ already exist for determining these, and are summarized below. A method 

for determining the lateral modes is described in full. 

».2 VIBRATION OF THE SUSPENSION BRIDGE 

6.2.1 Lateral Vibration 

Suppose that the centre span of the suspension bridge is 

executing a simple harmonic motion laterally, and that at time t and 

statton x. across the span the deflexions of the stiffening truss and 

cable are given respectively by 
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and ~e.(~). ~I·'" ~t 

Vibrations of the truss and the cable are linked by the tension 

that develops in the hangers as soon as one is displaced laterally relative 

to the other (see Fig. 6.1). If we denote the horizontal component of 

this hanger tension at station x. as q,t"') , (assumed uniformly distributed), 

then the equation of motion for the stiffening truss becomes 

E1 + ':h (6.1) 

The equation of motion for the cable is 

H 
d l Yc. _ ",<.x.) We. 

CAl. '.J e. - -d :x,.L 9 (6.2) 

where E.I is the rigidity of the stiffening tru8s; 

WT is the dead weight of the truss; 

W, is the dead weight of the cable; 

q.~) is the horizontal tension in the cable; 

and 9 is the a¢celeration due to gravity. 

From Pig. 6.lb, by taking moments about the cable for the 

equilibrium of the trues, the horizontal component of tension in the 

cable is seen to be 

,\(?c.) -
(6.3) 

where ht"x') is the hanger length. 

Let the deflexion of the truss and cable be represented by 

harmonic serie. of the type 

(6.4) 



t CABLES 

<t TRUSS 

---~ 'j, 
YT' 

1-4---------------X ------------------------~.~I 

PLAN 

CABLE I 

4 
.1 

FORCES ON CABLE 

FIG. to.1 LATERAL LOADING OF SUSPENSION BRIDGE 
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rTi "$,,,, -
.( 

Substituting in (6.3) 

The quantity "I'n~" / hI..) ~ - ~ I ~ can be analysed harmonically as 

. riiK! 
S '" T h(..,,-)-:: [ft . YI\ JC. J 2 - ~'" T . s11)( - L . '11'\ - "'" -rr 5 • h~) t 

(6.5) 

(6.6) 

(6.7) 

Substituting from equations (6.4), (6.S), (6.6) and (6.7) into equations 

(6.1) and (6.2) and comparing the harmonic components, the following equations 

are obtained for the 'fii, component: 

. sn~ w: 2-.'" r dJC. ':; ,T. ~ Q.~ 

(6.8) 

. s1i,.. W '-L 
~"" T cf "" :: f ~ ~". . . 

(6.9) 

These equation8 can be written for all values of r , and then 

solved for the a's and b's which determine the mode shape, and for ~ 

which gives the frequency. In practice, only a few equations need be 

considered because, in any given mode, the corresponding harmonic component 

will always predominate over all the others and give a good first approxi-

mation to the mode. Two terms in the harmonic series generally yield 

all the accuracy needed. The method of numerical solution is best left 

until the numerical example given later. 

I t should be noted that, because the hanger lengths. hl-x.) are usually 

symmetrical about the bridge centreline, the integrals in equations (6.S) 
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and (6.9) only have any value when '(' and ~ are either both even or 

both odd. It then follows that the equatioD8 group themselves tnto two 

families involving in the one case the odd terms only, and in the other 

case the even terms only. 

6.2.2 Vertical Vibrations 

Since the failure of the Tacoma Narrows bridge, in which coupled 

torsional and vertical oscillations were chiefly re8ponsible, there has 

been a considerable amount of attention paid to the behaviour of the 

suspension bridge in these modes. Theoretical methods for determining 

the natural modes and frequencies have been checked exper~entally. 

(see Bleich et al - 1950; Farquahson - 1952). 

The basic equation for the vertical vibration of 

W d
a l-9' ~"'-J :. -d~& H~ + ~ AH 

the suspension bridge 1, 

E.! d &';) ] 
d ~a 

where is the initial horizontal cable tension. 

~ ~ is the increment of the cable tension during vibration; 

EI is the rigidity; 

{ is the initial cable dip at station ~ 

~ is the mode deflexion; 

~ is the circular frequency of vibration; 

and w is the total dead weight of the span. 

A simple routine method for determining the modes and frequencies 

from this equation has been given by Steinman (1959). It does not seem 

necessary to repeat the derivation of the various expressions, but for 

convenience of reference they are given here straightforwardly without 

proof. The natural frequency, n ,of the suspension bridge can be 

expressed as 

n = ~rr,j K:; · (6.10) 
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where K is an effective stiffness for the bridge as a whole. 

The effective stiffness ~ has to take account of a number of 

contributory elements such as the el.stic stiffness of the stiffenlng 

truss in bending, the interaction of the aide spans through flexing of 

the towers, the elastic extension of the cable and the gravity stiffness 

of the cable itself. Por anthyametric modes ( of' - 2, 4, 6 etc.) there 

is no side span interaction or stretching of the cable, and the expression 

for )( 18 simply 

I( = (6.11) 

where t' 1& the mode number. 

and t is the span length a8 before. 

Substitution of thil expression in (6.10) gives the frequency. 

directly. The mode is given by 

= Q. 
. rThc. 

~In - { 
(6.l2) 

For the symmetric modes, the expression for K is more complex, since 

side span interaction and cable stretching are both bound to occur. In 

this case K is given as the solution to an expression of the type 

~J ci 
(6.13) 

r~ ( K- ~ K,) 
where the summation covers all odd values of r in each of the several 

spans of the bridge. In this exprealion 

K 2. '1l'2. H .. 1f~ (6 4) 
r ~ r rio +- r T" E r .1 

.f • the central dip of the cable (mealured vertically frOIR the chord 
joining the two ends of the cable span); 

l - length of the particular apan in the 8uamation; 

W. dead weight of apan; 

Wo. dead weight of main span. 
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The quantity C 512. +. E, A., 
= ,..a.. I~' L s (6.15) 

where E.c.. the elastic modulus, 

Ac. - the cross sectional area of the cable, 

and LS - the total length of cable (all spans), 

• 2. (I.,.. ¥ 1. ) fJ e.c. ;s r 
where r - the inclination of the cable chord, 

and the summation covers all the spanl. Solving equation (6.13) for K 

is not difficult and can be determined rapidly using luccessive 

approximations as shown in the worked example. 

The mode forms are not given simply by single harmonic terma 

(as in the antis~etrlc modes) but by a series of harmonic terms in 

which the dominating tera will, however, always correspond to the 

particular mode being considered (1 ••. in the ~. mode the t'~ harmonic 

term will always predominate). If the ~ode shape for the main span is 

• 11')Co 
lj 0 = 0, ~ ,." T. 

and for the aide spans is 

. "'Ii x . )T1 '" L Y s :: Q., S ,1'\ T) ~ 0.', ~ 1"', ,. _ .. 
then the relative amplitudes of the cQefficients are glven by the 

proportionality, 

(6.16) 

which hold. for both main and side spana. 

Detezmination of the vertical modes by this method 1. illustrated 

in the worked example. 

6.2.3 Torsional Oscillations 

Similar expressions for determining the torsional modes and 

frequencies have also been given in the same paper by Steinman (1959). 

d 
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The formulae are not repeated here, however, partly because they cannot 

be stated with quite the same conciseness as in the case of vertical 

oscillations, and partly because tor_ional oscillations have not been 

considered in the worked example given later - mainly becauae the 

necessary numerical data was not available at the time of writing. 

This omission of the torsional modes does not u-ply that they are le •• 

critical than either the lateral or vertical modes. 

6.3 THE VIBRATION OF THE GuyED MAST 

6.3.1 General 

The vibration of the tall mast was first analysed by Koloulek 

(1947). The method he employed was based on the 'slope-deflexion' 

technique, and required lol4ing simultaneously a number of equationa for 

the slope and deflexion of each point of discontinuity on the mast, where 

either a change of section or a guy attachment pOint occurred. lor very 

tall masts, with many guy levels and incorporating several changes of 

section. the work involved quite soon becomes laborious, and better 

suited for electronic. rather than desk computation. With the additional 

complication of large axial loads, the solution along these lines is 

still more difficult. 

An alternative method was suggested by Davenport (1959) using 

a development of the so-called Basic fUDction technique first used by 

Inglis for determining the whirling speed of turbine shafts. Th.s. 

functions represent the natural modes of uniform beams pOllelsina similar 

end conditions to the beam under conlideration. For example, the Baelc 

function for a s~ly supported beam 1, the sin. function. For the 

"hinged-free" and "fixed-free" beams, which have end conditions .imiter 
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to the two types of guyed mast found in practice, the Basic function. are 

composed of both trigonometrical and hyperbolic functions. The mast can 

be analysed as a whole by simply representing the deflexion, bending 

moments etc. in terms of series of these functions and their derivati~ •. 

The number of terms used in the series depends only on the accuracy 

required. 

It is usual to regard the guyed mast as an elastic beam relting 

on flexible supports. These supports (provided by the guys) can, for 

lLmited deflexions, be regarded as having linear characteristics. Under 

static loads the stiffness of the guys il due principally to the elastic 

stiffness of the cable Itretching al a taut wire. this il partially 

offset, however, by a gravity effect due to the raising and lowering of 

the cable mass during the deflexion process. Under dynamic loading this 

stiffness contains a third element due to the inertia effect of the cable 

mass which, as was shown by Davenport (1959), can be large when the 

excitation frequency is close to the natural frequency of the cable 

vibrating as a taut wire. The dynamic behaviour of the guy cable ia now 

considered. 

6.3.2 The Influence of the Guy. 

It is well known that the shape the guy cable will adopt when 

it hangs at re.t is the arc of a catenary. If however the tension il 

large enough so that the change in tenlion due to the weight of the 

cable is amall, this arc will be almost exactly parabolic. In practice 

this is almolt always the case for the limple reason that a alack cable 

i. a mOlt ineffective support. This as'umption, that the arc will be 
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almost exactly parabolic, is made here.* 

Consider the guy illustrated in Fig. 6.2. The notation 1s defined 

as follows; 

and 

1r 18 the average tension 1n the cable, 

A T(t} is the change in this tension at time t during a cycl~ 
due to the movement of the upper guy attachment point 
in vibration, 

S is the length of the cable, at rest, 

~ i8 the inclination of the chord joining the two enda of 
the guy~ 

w 18 the weight per unit length of the cable_ 

A· , is the croas .ectional area of the cable, 

E, is the elaatic modulus of the cable material, 

e 18 the mean radiul of curvature of the guy cable at relt. 

Th. cale in which the stack is vibrating in the same plane as the 

guy, 1s examined fir.t. 

Consider an element of length d~ at distance ":f. frOll· the lower 

end. Suppose that when the stack is Itationary the deflection fraM the 

chord i8 Y t suppole, further. that when the upper, end of the cable i.< 

displaced horizontally' during vibration. by an amount ~~) that the 

deflection of the same element becomes y + ttltJ measured now frOli the 

chord in its new pOlition 0 ~I. The additional dilplacement of the 

element due to the rotation of the chord i8 i . ~ (t). ai" cr and 

the normal acceleration of the element i8 therefore 

*At the time of writing. a paper by Dean has appeared ("The Itatic 
and dynamic character18tics of guy cable." - J. Str. Div. Proc. M. Soc. 
eiv. En,. Jan. 1961) in which this al8umption i. not made and the derivation 
based on the catenary. Althouah the result. for fairly shallow ~Y' are 
not likely to differ greatly, for steep. slack guys, Dean', derivation i8 
clearly preferable. 
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.. 
+ 't. tt) 

The total force causing this acceleration is 

[ T. rz U(t) + AT(t) rt.11~)] dK. 

Lin J 8ignifies I --e 

The quantity A T{t) . 'l. "(~) is of second order if the vibration 

is small, and the equation of motion therefore becomes 

(6.17) 

The change in length between the ends of the guys due to the 

additional deflection '1.(1:) 10 given by f.' ~ ". '1. (J). elK. (This 

relult can be seen from the elementary diagram in Fi8.6.3). The elastic 

extension due to the additional tension ATlt:) is 
AT .• 
At,. £., 

Equating this with the longitudinal displaceaent of the upper end of the 

guy 

Renee 

Prom the theory of taut wire., the curvature 

I --e ;: - w 
T 

c. •• cr 

(6.18) 
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Eq\lation (6.18) shows that AT (I:) and 't (~) are linear function. 

of v(t). Therefore 1£ "\)~) variel harmonically with circular frequ.ncy ~ , 

then 80 will A T~) and q(t). That is I lf ~~) 11 ~. $I;'..,.t .m.n 

gives 

. Substitution in equation (6 .. 18) 

~ • fA):a. ( ~ • $I"~. V ... '1) of- T. '1. II + .AT. ~ II :. 0 

Sub.tituting from (6.18) into this last .quation. 

a. e., ... ,. C.O$ . tI W Y 
• T 

_ 0 

(6.19) 

To solve this equation, q 1, represent.d by the Fouri.r .erle. 

rt c 'l> [ a , 

Likewise each term of equation (6.19) can be broken down into a leries 

of harmonic componenta. Since equation (6.19) mu.t be satisfied for each 

component separately, aa many equation. can be for.ed AI there are 

harmonic cOlllpon.nt.·. From these I the various coeffici.nts .Q. \) 4" .... tc. 

may be determined. Equatlon (6.18) then sivel the so-call.d guy modulus 

K , which, aft.r 10000e fuxther simplification, c,n b. written 

1< 
.A T(\:) 

1< [I - F...n."-l ] ... 
~(t) = C,.!~)-, 

(6.21) 

where k • 
E~ ~~ c..~&.cr , 

F- Ti ~ Tie $C'", 0-. -w .• ': k ~ 
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~Q." ¥ }-I 
T..n. 
T 

The quantity .Jl. in fact. 1s the ratio of the ~pre.sed 

frequency ~ • to the fundamental frequency of the guy cable vibrating 

&s a taut wire. Valu •• of ~(~) have been given by Davenport (1959). 

If the ust is vibrating at an angle e inclined to the plane 

of the guy. theexpre •• ion for the guyaodulul is 

[ 

& &~ ] a. '0. e F . .n. - c. ... " 
K. ::. k (.0$ e I - c. •• + G. t(A) _ ,., •• (6.22) 

where 
c..~ e CoO. CT 

,"0. + :: ., 
-II - c. •• a. e c..o .'&.tr 

the static modulus can be found by putting &.).=. O' (or.n = 0 ). 

~ 12 
f or which '1'(.4) = - 71' a. . Equation 6.22 then give. 

K: Ie. c.o.a.e [f -
12T~ Since 

~l ""a. k 
can be written 

K 

is usually much greater than c.o.~+ 

(6.23) 

the static modulus 

(6.24) 

a familiar result obtained otherwise fra. purely .tatie considerations. 

It is slsnificant to consider the general b.ha~iour of the 

dynamic guy modulus given by equation 6.2l(or 6.22). 

For ~ll value. ofJOL (i.e. impre.sed frequencie. much lesl 

than the fundamental frequency for the guy cable), the modulus i8 quasl

Itatie: that i8 to lay. dYnamic effects are not felt. AsJL approaches 
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unity (impressed frequency equal to the fundamental for the guy) the 
"YT 1. T 2. • 

modulus falls to the value w~1. • Sl~cr , which is independent of 

elastic terms. For a very small further increase in frequency the guy 

modulus becomes first negative, and then goes through a series in in

finittes (positive and negative) as G.. t{tL) .... , ..... ,. The infinities are 

found to occur whenever the impre .. ed frequency is slightly greater than 

the odd-mode natural frequency of the cable. Between theae frequenciea, 

l.e. for I >J2. ~ a '!S:7-11. ". 5 etc ., the guy modulu. is aenerally . ) 

constant at a value close to the simple elastic atiffne •• for the cable 

- k This Lmplies that there il practically no gravity or inertia 

contribution to the dynamic cable modulus at frequencies above the 

fundamental for the cable - except in the i ... diete Vicinity of the 

odd-mode natural frequencies of the guy cable, when the inertia stiffne •• 

dominates almost completely. 

In considering these results it .ust be remembered that no 

allowance has been made for the damping of the cable which i8 lnevitably 

present whenever the iUY cable ia forced into oscillation. This explain. 

the somewhat anomolous re.ult that the modulul i, infinite when the. 

frequency i. clo.e to the odd-mode natural frequency of the guy cable. 

This behaviour i. analogous to that of any undamped dynamic ay.t .. which 

when excited at it. own natural frequency theoretically buUds up to an 

infinite amplitude. It 18 to be expected. therefore, that 1£ d.aap1ng is 

taken into account, the modulul will remain flnite at all frequencies 

and the anomoly thereby removed. A further factor is thlt, as the iIl-

pre.sed frequency approaches the odd-mode natural frequency of the guy 

cable,the aaplitudes probably become large._nd the strictly lineari.ed 

theory adhered to above no longer holds. Non-linear effects will usually 
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tend to inhibit the amplitude somewhat and in effect, to damp the 

vibration. 

The modifications necessary to the guy modulus when velocity 

da.ping is acting (not previously considered by the writer (Davenport -

1959» are now discussed. 

6.3.3 Effect of damping on the GUY Modulul 

The equation of motion for the guy cable with damping is the 

.ea. as equation (6.19) with the addition of the velocity damping term, 

(6.25) 

where c. is the velocity damping coefficient. The effect of damping 18 

to produce a phase difference between the foree ~T(t) and the mast 

deflexion ,,(~). 

Thus if 

then "\)~) 'I: tv + '- V) 'I~ ... t 
Pollowing the previous procedure we expre8. the cable aeflexion as • 

lourier series, which this time must be taken a. complex. A8sume 

therefore 

( A., 
'1(" &1t J( ) rt= ~ S,ft - 4- 0." ',1\ + , s 

~ ~ v ( b, ,.'", 1!.!" b a 
' :liiM ) 4- If7\ - + , s .. ---

If substitution is .. de for 'Itt) and ,,(~) in the equation of 

motion, the equation i8 found to cons1.t of a real, and an taaainary part, 

both of which muet be satisfied independently. If each term of theee two 

equations is broken down (by Fourier analysls) into itl harmonic componenta 
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then the equations must hold for each harmonic coaponent separately. 

hom these equations so formed, the coefficients Q., ' Ql. • etc. 

and b" b l. etc. may be determined. 

Equation (6.18) is again used to determine the guy modulus, 

which this time is found to con.ist of a real (i.e. in-phase) and an 

imaginary (i ••. quadrature) component. After some mantpulations, the 

in-phase component is found to be 

The quadrature component of the guy modulus is 

where k F ~ 
) ) 

and ~ are the same a8 before and 

(6.28) 

i",~)= +,1. +.: (6.29) 

and 

(6.30) 

The functions 4>, and q,~ denote 

4>. = '>' L -n-~-[-'.rL-2.---· n-~-)-::"Z.-"-4-.n~a-o(,:""''''J 
., ~d \; 

(6.31) 

2.n. 0<. 
(6.32) 
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where the summations cover all odd values of n 

If the velocity damping coefficient is zero (i.e. ~~ 0 ) 

it is found that the quadrature component of the guy modulus, given in 

equation 6.27, has no value and the in-phase component of equation (6.26) 

reverts to the undamped form of equation (6.21), as might be expected. 

The denominators in the expressions for the guy modulus are 

leen to consist of the sum of two squared terms. Provided the damping 

coefficient is non-zero, the second of these is always positive and 

greater than zero and so the guy modulus can never become infiaite a, ia 

the undamped cas •. 

In a high wind the velocity damping will arise in two ways. First 

from the natural mechanical damping produced by the rubbing of strands of 

the cable against one another, and second due to the aerodynamic, drag 

damping (corresponding to the fluctuating drag component of the pendulum 

in the experiments discussed in Sectioa 5) of the cable moving against 

the strong air flow. 

It i8 evident from the analysis of Section 5.3.3 (of the 

damping of the pendulum) that the value of the damping coefficient i. 

given by 

6.3.4 Vibration of the Kast with GUX8 

As noted, the method used for determining the vibration of the 

guyed mast is that described by Davenport (1959). Thia uses the Basic 

functions which describe the natural modea for the unifo~ beam having 

end restraints similar to the mast. For the maat ball-jointed at the 
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bAse and unsupported at the top, the firatfour Basic functions of the 

lowest order, labelled 

e.~)-
x-
l 

8){s) • - 2.. 787 4~.s • 10.
2 ~iol\h ¥ + 

•. _~ 11. 

~I" T (6.33) 

8&(~ .. 1.2.041Z.05 "IO"~ ~If\h ~x. ... . ·a~ 
al" T 

B~)a - 5. 2~~"'C. " lci'- sl~h ~" + S." "", T -r 
where ol ., 

&. ~.~2C.C.O 

-'~ - 7.0'- .e.-. (6.34) 

etA ., 10.2,10 ,. 

and t = the overall span length. 

These functions are illustrated in Fig. 6.4 and have been tabulated by 

Davenport (1959). 

For the beam cantilevered at the base and unsupported at the 

top, the first three Basic function are given by 

I. ac.12.11 [c. •• h "'1- ".t -. {] - [~'''1o\f,.1- ,I'" tC, ~ 1 
.9&11<'"1'-r c...h ",,!!'( - LAio "'-- 3.] - [s~ ... " ~ _ s-." !] - -~ ( • <. lot 

I.00071"low[c.o·"".1_ t01>,,:cl -[f~" .. 1-SW-IC..11 
where oJ, • I. 8'7S 104 

"s· 7." S4-157 

(6.35) 

(6.36) 

These functions are illustrated 1n Fi,. 6.5 and again have been tabulated 

by Davenport (1959). 

Two subsidiary functions are allo required (termed the second ancl third 

Basic functions) and these are defined respectively by 

(6.37) 
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and 

(6.38) 

Theae functions have also been tabulated' (Dannport - 1959) 

The method of solution using Basic functions i8 now de.cribed. 

Consider a mast of total height t . for which the rigidity and mas. 

(which may be irregular or discontinuous) have values E Ix. and ,n .. at 

height ~ above the base. Suppose that the tower is supported by guy. at 

several leveb, the j Ht level being at a beight c j and having a total 

dynamic modulus for the BUY sy.tem at this level of Kj . It is not 

necesaary at this point to specify whether the tower i. fixed at the 

base or pinned. 

The deflection (or mode) of the tower during vibration may be 

represented by the serie. 

L: 0., 13, (:x.) 
r 

The determination of the natural frequencies and mode. of 

(6.39) 

vibration can now proceed by an energy method. Thlscon.ista of determlniftl 

the total elaatic energy stored up by the tower and the guy. at the point 

of extreme deflexiOD wken it is .omentarily at reat, and e~tinl this 

with the kinetic enaray of the tower and the change in potential ener" ' 

of the axial load., as the tewer paS8es through the mid-po.ition. 

The tetal ela8tic energy stored 9P by the guys, U g , is aiven by 

U, = ~ ). K j. 'j ~ 
where the 8u.mation ~ludea all the guYI. Prom equation (6.39) 

':/j :: L Cl. l" • Br (c.j) 
r 

and 80 

UCj I "I K j > : 0. r . B r (c. j ) :. "2L. (6.40) 
j 
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The total elastic energy stored up by the tower Ut (if the shear 

energy is neglectel) is given by 

, Jt ct ,2, lJ~ = - E i (~) d~ 
t: 2 -x, dx" .. 

o 

Differentiating equation (6.39> twice and .ubstituting third 

Basic functions ~(?c.) for~;). , we have 
~ Q" 

'T" _ I I.t £. T r '" i '&. ~12 
v~ - z: 0 t:L~ a r , o(,r' (3,.l~)J dx. (6.41) 

The chanae in potential energy4Vof the axi.al loads 5 .. due to 

the deflection of the tower and its consequent .. all for.ahortening,ie 

given by 
, I.. t (d~)Z. 

..:1 V = Z • :; a. ' dJ' d '" 

d~ can be expressed 1n terms of second Basic functions and 

"" 
(6.42) 

1£ the malt is vibrating with circular frequency Go> 8uch that at 

time t 

y(#:;) = ~,Sl ..... ~t: 

the kinetic energy tJ of the .tack at itl mid pOlition (t = ":) 11 

,iven by 

which, 

W = -L rt 
2. Jo 

from equation (6.39) 1s 

I So = - (4) Z 

by the con.ervation of energy 

• 

(6.43) 

(6.44) 
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By the calculus of small variation& 

o (6.45) 

Substituting e~uationa (6.40), (6.41). (6.42) and (6.43) into (6.44) and 

applying (6.45) the following basic equation can be written for all values 

of r 

} 
" 1(' L -.1 
J '\. ) 

(6.46) 

where E I.. 50 and mo are reference values. 

Usually. it i8 quite sufficient to repre8ent the deflexion by 

three or perhaps four term. of the series given by equation (6.39), so that 

equation (6.46) is written only for y. I ) 2. l ~ and 4. The four equations· 

enable the natural frequency and the three ratio. of the coefficient. to 

be found. This can be done by a method of continuous approximation. The 

deflexion is first approxtmated by the dominant term of the series which 

invariably is the term corresponding to the number of the mode to be 

determined. (i.e. the second term if the second mode is being determined). 

The equation in which this term is dominant (in this case the second) 

then yields a first approximation to the frequency, ~ • which can be 

. ' 
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substituted • in the other equations, to give the ratio of the a's. These 

in turn can be substituted into the original dominant equation to give a 

better approximation to the frequency. The procedure 1s repeated until 

all the values settle down, which usually requires either one or two 

cycles. 

The determination of the various iDtegrals involved in equation 

(6.46) ia best accomplished by numerical integration, and for this purpose 

values of the various Basic function products have b~en tabulated at 

intervals of ~ = . o~ by Davenport (1959). The procedure is further 

simplified by the use of certain fundamental properties of Basic function. 

given in Table 6.1, including the orthogonal property that for .-; $ 

chc. 

6.4 Determination of Momenta and Shears 

From the point of view of design it i. important to determine 

the moments and shears. If the mode form is known. these can be found 

directly from the ba.ie property that the shear force 

«(x) s: J w.d "- (6.47) 

and the moment 

Ml.~) ::. S Q",>. d ~ (6.48) 

where ~ is a general expre.sion for the loading on the beam. 

In the case of the lateral suspension bridge modes the loading 

is provided by 

1. the inertia loading of the deck 
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. TABLE 6.1 

NUMERICAL QUANTITIES USED IN BASIC FUNCTION ANALYSIS 

Hinged-free 
be .. 

1.00000 
3.92660 
7.06583 

10.21018 

1.00000 
15.41819 
49.92595 

104.24777 

0.33333 
0 

0.50000 
0.50000 
0.50000 

0(, 

0(1 

«J -. 
"&. 

at. .. ~ 
.t 

0(" 
,3. 

cK..c. 

~I • • 81~)d .. 
~ PI &C!'-) d .. 

J~ a:",,). '" ~ s~ 0." 4 .. ) chi. 

J~ 6;v.>'- s S~ (!-: 0&) GI~ 
J.! & .. (io.) ...... S.: P.a.~) .. -. 

Fixed-free 
be •• 

1.875104 
4.694092 
7.854757 

3.516015 
22.035000 
61. 697208 

1.855645 

0.964065 
1.001553 
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and 2. the cable reaction ~~J (given by equation 6.3)}. 

For the vertical mode. of vibration the loading is provided by 

1. the inertia loading, "" a 9'~' ~<.",) 

2. the cable reaction ~ AH ~'1. H ~ 

'" d~ 

where ~H il the increment of cable tenlion given by 

AH= C:2:I~~ 
the other quantities being given by equations (6.14) and (6.15) 

The loading of the guyed mast i. supplied by 

1. the inertia W L-loading 9" ~ . 'j 

2. the guy reactions )<. y. 
J J 

3. the axial loads g, (5 ~) 
dx.. • '" 

Knowing the form of the mode, the loadings can .ach be 

found and the moments and shear. evaluated straight forwardly. 

It should be noted that double differentiation of the deflexion 

to obtain EI ~ is not a satisfactory method for determining the d.,..· 
moments. Thil i. becauae differentiation of the serial representation of 

the mode deflexion is often non-convergent. The suae argument appU s. 

to the .hear forces. 

6.5 THE RESPONSE OF THE HAST AND SUSPENSION BRIDGE TO STEADY WIND LOADING 

6.5.1 General 

In Section 3.2 the response of a beam to a static load distribu-

tion wal analy.ed by expre.sing the dsflexion and loading in term. of the 

natural mode. of the .tructure. However, since the modes have been 

expressed in term. of .eri.1 of either line functions or Basic functions, 

it is in fact more direct to rspreeent both the static load distribution 

and the deflexion in terms of these functions rather than the natural 

modes. 
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6.5,2 The Suspension Bridge 

For the suspension bridse the mean wind may be taken as uniform 

across the span. This mean wind load acts laterally and consists of two 

components, PI and Pc. acting on the stiffening truss and cable 

respectively. The static analysis follows the dynamic analysis of Section 

6.2.1 closely, only instead of inertia loading, the harmonic components 

of the static loadins are SUbstituted. Equations 6.8 and 6.9 now read 

(6.50) 

From the above equations the coefficients a. t and b,. may be found, 

enabling the deflexion and the cable load, ~~) to be found from equations 

6.4, 6.5 and 6.6. Knowing the uniform wind loading ~ and the proportion 

of this load taken directly by the cable, the lateral bending moments 

and shears induced in the stiffening truss may be found. 

A method similar to the above has been described by Selberg, 

who also introduced into his analysi8 one or two secondary effect8 such 

as the deflexion of the tower tops. The value of including detailed 

secondary effects here, when the wind loading problem as a whole can only 

be sketched in broad outline i8 debatable, and can perhaps lead to a false 

impression of the accuracy of the final result. 

6.5.3 The Tall Mast 

In conaidering the mean wind loadings of the tall mast it is 

necessary to allow for the variation of the mean wind velocity with 

height. With this observation, the static wind load ana1yals, broadly 
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speaking, follows the dynamic analY8i8. The mean wind load is broken down 

into its Basic function components which are substituted for the inertia 

terms in the dynamic analysis. Equation (6.46) now is modified to 

E I ~ {y ~ f t E. I~ A. & d. ~ "1 
{.td. r . 7- (ls'G(,s J. it. ,-:l,-r I S-

(6.51) 

where P, • is the Man wind load of the reference height and V. t the 

corresponding mean wind velocity. 

From these equations (written for each value of r) the 
• 

coefficients ell _ . . a~ may be determined and hence the deflexion. Knowing 

the deflexion, the guy reactions and the effect of the axial loads can 

be determined, and hence, the .oaentJ and shears. It should be noted 

that the static values for the guy moduli should be used, given by 

equation (6.24). 
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7 .0 MECHANICAL AND AERODYNAMIC DAMPING 

7.1 GENERAL 

The damping of a structure vibrating in a hlgh wind arises from 

two sources. First there 1s the mechanical damping occurring at joints 

of the structure and within the material itself, and second the aero

dynamic daaplng due to the motion of the object through the strong current 

of air. Some estimate of these damping parameters is vital on account 

of the strong control they have over the attainable a.plitudes of 

oscillation. 

7.2 MECHANICAL DAMPING 

The mechanical damping present in a structure appears to be an 

extremely variable quantity dependent on such factor. &s the material 

it i8 made of, the foundations, the mode of vl~ration and its construction 

- whether it is prestres.ed or reinforced in the case of concrete 

structures, or whether it has welded, rivetted or bolted joints in the 

case of metallic structures. 

This mechanical damping can be determined exper~entally by 

deflecting the structure, releasing it and recording the resulting 

decay of vibration, either by strain gua,e. or photosraphically. Several 

such exper~nts have been performed on full .cale eh~ney stacks and 

aasts, (.ee Davenport - 1959). The logaritbaic damping decrement found 

from the.e exper~nt. ranged from .01 for an unlined, welded steel 

structure to .10 for a welded aluminum structure. Two lUyed ste.l 

mast., 120 ft. and 500 ft. high, both gave a value of.OS. Two, 240 ft.

high, rivetted Iteel chimaeys with brick linlngl gave values between 

.03 aneS .07. 



- 145 -

Very little information 11 available on the mechanical damping 

of full scale suspension bridges although some experiments were performed 

on short span suspension bridges for light traffic (moltly wooden) by the 

University of Washinaton. Th.s. are reported by Farquahson et. al. (1954), 

from which it would seem that the logarithmic damping decrement can be 

expected to be at lealt .02. 

There i. bound to be difficulty in predieting exactly the 

mechanical damping 1n a structure. However, from what little information 

is available, it seem. reasonable to a.suae that the da.ping will give 

a logarithmic dee1ement for the fundamental .ode of vibration of at least 

.01 or .02. To assume a value of this ma&nitude for J!! mod.s iI, of 

course, likely to underelt~ate the actual mechanieal dampina pre.ent, 

particularly in the highar modes. Fortunately the laek of precision will 

not, it seems, significantly affect the outcome becau.e in this in.tance 

the mechanical damping is apparently overshadowed by the aerodynamic 

damping due to t~e high wind, which ean be esttmated fairly aecurately. 

The tmportanee of the aerodynamic damping in the wind has been 

previously overlooked by the writer (sea Davanport - 1959) and a180 by 

others discussing the aeroela.tic vibration of the suspension bridae. 

7.3 THE AERODYNAMIC DAMPING 
A structure vibrating in air will be subject to certain aero- . 

dynamic forces tendina to damp the vibration. In still air"tkeforce. 

will be due mainly to the viscosity of tba air disturbed by the oscillating 

object. The damping i, not likely to be larae and probahly insignificant 

compared to the mechanical dampina. If, however, the air i8 flOWing past 

the object, the principal aerodynamic forces actina will be from drag and 
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lift. If the object is moving, fluctuating component. of these lift 

and drag forces will be induced, tending to oppose. and hence da.p out 

the motion. This form of damping 1s precisely that investigated in the 

pendulum experi~ents de.cribed in Section 5.3. 

All alternative definition for the logarithmic damping decreaent 

to that u.ed before is 

b::: ~ 
2.E 

where ~E 18 the work done per cycle against the drag .(or 11ft), 

and E 18 the total energy .tored in the .y.tem. 

Suppose the mode of the baam (i.e. mast or au.penalon bridge) ia 

~ ~(a) , then the valocity of the beam at atation x. i. 

':J ~ Z.lf. n r' ~r (!to) . $,;" 2. 'Ti n", f; 

where n, 18 the natural frequency in the r~ mode. 

The drag on a .lice of the beam of thicktteu d x. , in a ateady 

wind of velocity V~ is 
-a 

d R : i e c.l.> V.. ]). cl ~ 

where D is the diameter of the beam. 

The fluctuating component of thi, drag. when the velocity of the object 

,is 
, 

d(A R) ~ d x.. ~ (i e (l> V~1D) 
Vac. 

The work done per cycle on tbe .lice i. then 

d (~E.) ~ 
where the integral is taken over one cycle. 

The total enaray 1n the sy.tem is given by the kinetic energy 

at the mid-position of the oscillation. For the same .lice of the beam 

this is 

d. (E) :=. d x _, __ · 1. 
. 2. "'x. ~ 
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where m~) is the mass per unit length at station X. • 

For the entire beam, the logarithmic decrement is therefore 

5.::. Jot d eLl. E) 

f ci (Eo) 

( -Zl - 2) = e C J).l).V, 

n,.. 

, 

(7.1) 

This is the basic expression for the logarithmic decrement due to aero-

dynamic drag damping. 

In the above form the expression applies principally to the 

tall mast, in which allowance has to be mad, for variations in the wind 

velocity with height and in the section of the malt. In the auapension 

bridge both of these seneralities are unnecessary and both the wind 

velocity and the section can be a.sumed conatant acro •• the span. The 

expresaion then becomes simply 

(1: e Co» V &]» 

n,.. V "" 
(7.2) 

Here the numerator represents the drag per unit length in a steady WiAd 

-of velocity V (provided that the drag coefficient can be taken al for 

quasi-steady flow). 

For the vertical vibration. the expre •• ion i. found to be 

dZ 
d~ Z,n,..,Y.m (7. :) 

where d Z 11 the rate of change of the lift force per unit length of 
dot 

the deck with the angle of attack 0(. (in radian.). 

Evidently, the damping varies directly al the •• an wind velocity 

anti inver.ely al the frequency of vibration. The latter impUe.that the 

higher .od •• of vibration are more lightly damped. 
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The values these formulae give for the fundamental-made, 

logarithmic decrement for the tall mast considered later in the worked 

example, are.4 and .7, for open country, and city conditions respectively: 

for the sU8pension bridge the values . 'are .4 for the fir8t vertical mode 

and .18 for the first lateral mode. These results (which are pre8umably 

typical) suggest that the aerodynamic drag and lift damping makes a far 

larger contribution to the total damping than doe. the inherent mechaDlcal 

damping. 
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The a~. of this dilcussion .0 far have been to e.t~t. the 

'pectra of the bending moments, ,hears and deflexions at all points on 

the span. In addition .ethods for determining the bending .oments, 

shears and deflexion. undar the action of the maan wind load have bean 

described. The problem now is to estimate the critical quantities needed 

in design from this ba.ic information. 

The qe •• tion fir.t to be considered is what quantities ar. 

critical? An.wers to thia may be several. If the structure i. liable 

to failure through brittle fracture, then probably peak value. of .tress 

are most important. If on the other hand the structure i. more vulnerable 

to fatl~. failure the number of atre •• repetitions will be more vital. 

It will again depend to so.e extent on the d •• i8n precept.: that i. to 

.ay whether the .tructure is being analYled for ultimate collapse conditionl 

or for a more l~lting condition .uch a. the onset of plastic yield of 

the material, with resulting p.r.anent plastic set. 

The particular criteria mo.t relevant to the design of tbB 

su.pension bridge and tall ma.t are as"n debatable. 'or the sake of 

argument, however, it will be a.suaad that the instantaneou. peak values 

of stre •• are tho.e that are mOlt t.portant in determining the aufficiericy 

of the .tructural member •• 

A nu.ber of expression. are available for predicting, not only 

the peak valu •• , but al.o such it ... as the number of exc ••••• and 

maxima of a rando. •• rie. occurring in a given time. Sev.ral of these 

were arrived at in .tu4ie. of notae in cOIIIINnicat1onl (Rice ,- 1945) and 

• 
in ocean vave. (Longu.t Riggin. - 1952). Three which seemed relevant 
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to civil engineer ins problems were siven by Davenport (1961), and are 

now repeated here for convenience. 

As noted elsewhere, the statistical distributions of all the 

stocha.tic variables considered here are aSlumed to be normal i.e. 

Gaussian. This follows immediately from the normal or near-normal 

diatribution of the wind velocity and from the quasi-linear relation.hips 

which have been aSIUMed to exilt with all other variables - pres.ure, 

deflexion. shear, moment etc. 

8.2.1 The Number of Excesses per Unit Time 

Rice (1945) ha. shown that for a stationary random serie. of 

the normally di.tttbuted stochastic variable x that the number of ttae., 

t a given value x. i. exceeded in unit time i. 

'IC," • 
-~ e. 

where c:T(x). standard deviation of ~ 

· [ J~ 5" (f') d1L]!I~ t 
I [1-" ]Y~ (1'(7t.) • 0 n . 5",l"'), d .. 

and Sa. (r1). spec trU1ll of x:. • 

(8.1) 

(8.2) 

8.2.2 The Distribution of the Peak Value. Occurring Within a Given Period 

If a number of periods, each of duration'- , are chosen from 

the .... stationary randoa .erie., the proportion of them in which the 

large.t values are less than x.18 ,- T. N<.a..) (o ~ ~':i.). Using 

Rice's expression for ~(~) it follows that the di.tribut1on of the peak, 

or larg.at, 1nstantaneoua value. 't zfor all the periods 11 

Q( 'V ,- ~ T e - ~\~) (8.3) 
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where ~~). the probability that the max~um value durina per£od 

is leas than rt ' 
cr(x.) • 

and v • 
the Itandard deviation of the parent population of variable X , 

c:r'e,:x.) 
u QC.) 

The frequency denlity function is 

(8.4) 

vII will be termed the response factor. The mean of the distribution i. 

found to be 

= + '" Z /0, Co ~T ' _. - • J (8.5) 
and the standard deviation 

( z I.,c ~T' 
The form of the distribution and ita relation to the parent 

population can be seen from PiS. 8.1. 

8.2.3 The Distribution of Larselt Average Valuel Occurring Within a Given 
Period 

If, in.tead of the peak value., the larselt value aver a Sed over 

a finite interval of time, ~ 1: • il required>the same formulae a. above 

in Section 8.2.2 are uled, only a modified form of Ipectrum for determin

ing 0"(") and CT"(x) 11 adopted, namely, 

S~(n) - ~~ <.n) [ 

8.3 THE GUST FACTOR 

s ,'" n ."Tt.A T 

n. Yr. AT (8.6) 

The exprellion derived ,for the probability distribution of the 

peak value. (equation 8.3). 1s lean to be a function of ~), the r.m.s. 

fluctuation, which, for the wind depends on the mean value, ~. Due to 

\ 
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climatological variations the ~ean value is itself likely to be a chance 

occurrence with its own probability distribution (as discussed in Section 

2.3) To find the absolute probability of a given peak value, therefore, 

requires knowing the combined probability of the mean values as well a8 

their associated peaks. This is not impos.ible to. determine knowing the 

propertie8 of each distribution separately. In practice, however, the 

labour involved is hardly jU8tifi~d, and it is felt that in most cases 

perfectly adequate estimates can be made using certain approx~tion. 

which enable the complications to be avoided. 

As can be seen from Fig. 8.1, the distribution of maxtmum 

value. is narrow one, and in practical cases 951 of the peak values lie 

within an interval much less than half the 8tandard deviation of the 

parent population on either side of the mean peak value. This suggest • 
. 

that not much error will be involved if this slight spread of peak 

values i. disregarded and the peak value in any given period is taken 

1.".1. to the mean peak value. The total peak value X p (referred to the 

true origin) caq then be written 

x: { I ... 

where i . mean value of population and (from equation (8.5) and Fig. 8.1) 

9'.y T) = .,j Z I~, & l>T" 

( 9t~11 is plotted as a function of 
fZ. I ~ c. "tiT 
~T in Fig. 

(8.7) 

8.2) 

. 9· ~) is not necessarily constant, and may have a .lightly different 

value for every value of ;c.: in practical cases, however t the variation 

i. not likely to be great and it will norm.lly be adequate to choo.e a 

suitably con.ervative value corresponding to a value of;t close to the 

.ean value of the 1 di.tribution. The absolute peak value. will then 
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have a distribution similar to the mean values, except that the variable 

[I + 9 ~;:~)] will be increa.ed by the factor ~ 

The a.sumptions this involves are not severe. Measurements of 

peak gult velocities for example appear to follow the extreme value 

distribution (equation 2.2) jUlt a. well as tbe mean velocities them •• lvel. 

and the two velocities are in more or le88 a constant ratio to one another 

for all return period •. 

The ."antity ~ w1l1be defined a8 the gust factor. since it 

.eaaures the additional deflexion. force, velocity. moment, shears etc. 

which can b. attributed to the gulttne.s of the wind. It i8 a crucial 

quantity in estimating wind load.. In beam like structures it will vary 

acrols the span and with the variable being considered. 
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9.0 APPLICATIONS 

9.1 THE WIND LOADING OF A SUSfENSION BRIDGE 

9.1.1 Description of Bridle 

The suspension bridge analysed i. illustrated in Fig. 9.1. The 

essential structural details are a180 given. This bridge (on which con-

struction besan in 1958) is typical of modern trend. in suspension bridge 

de.ign: the stiffening girder conaiat. of a box-.haped, open lattice 

truss with two levels of horizontal wind bracing, one being at dec~ level, 

the other below. Due to the closed box· shape" the torsional rigidity of 

the stiffening girder 1s high: this fact, together witb the epen lattice 

construction, contribute towards a bridge section that i. aerodynamically 

stable against cataatrophic forms of .eroela.tic vibration. 

9.1.2 AerodYnamic Propartie, 

Although the aerodynamic properties of the Forth Bridge were not 

available, tho •• for the Severn liver Bridle, a si.ter project of abao.t 

identical span, were publi.hed in a detailed report by Frazer and Scruton 

(1952), and the.e are taken to be repre.entativ. of the Forth Bridle a1.0. 

Summarized result. of the lift, drag and pitching ma.ent on a 180 ft • 
• 

section of the deck in a 100 ai./hr. wind for various ang1 •• of yaw 

and attack are given in Pig. 9.2. 

It i •••• n that the horizontal drag force 1n a b ... wind re

mains almost constant for changes in wind direction up to 20· and for 

chang •• in angl. of attack of up to about 10°. The variation of lift 

force with ang1. of attack i. aore or 1 ••• linear for allW4nd direction •• 
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i.I.) Description of Site agd Groya4 Roughne.s 

The bridle 1. situated in approx~tely a North-South direction 

across tha Firth of Forth which itaalf, rUDS approxlaately East-West. 

The fetch of the prevailing westerly wind is probably somewhat rougher 

than the Severn Bridge .ite owlnl to the fact that the latter has open 

water to the weatward. whereas at the rorth Bridge the river narrows to 

the weltward and is flanliby hUly country. It wal concluded in Section (OJ! 
4.3.3 that the surface drag coefficient at the Severn Bridge site might 

be taken a. K.·005; on account of the att.shtly greater roughneu. a 

value of H 0·010 kas been a •• wned for the Forth Bridge. Site investi-

gation would improve this elttmate. 

9.1.4 Est~tioD of Design Mean Wind Velocity 

From rlg. 2.4 the parameters of the. extreme hourly gradient 

wind speed at the Firth of Parth are .ean to be approximately (q,," 84, ~ = ~.40) 

The extreme hourly gradient vind .peed occurring on average once e.ery 

r years i. then 

VG(,r) = e4 + 8.4- l~e y mL /"r 
where r i, known as the r.turn R.ri2d. Por a return period of 50 years 

the gradiant ,1nd .peed i. 117 mi./hr., for 500 yaar., 136.i./hr. Prom 

T ... ble 2.1 the &radient height :ZGt,and power law exponent OC , core.8ponding 

to a terrain bevina • rouahne.s factor of K ::·01 are •• en to be approxi

mately 1000 ft. and .20 r'.,ectlvaly. The elevation of the stiffening 

girder is about 200 ft. above mean .ea level at which height the de.ign 

hourly wind velocity for a 50 year return period i. found from .~uatlon 

(2.1) to b. 85 ml./hr. (124 ft./s.c.). and for a 500 year return ppriod. 

99 ml./hr. (145 ft./,.c.) 
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The question of what return period is appropriate cannot. of 

course. be decljed without reference to a number of factor ••• uch a8 the 

duration the structure is expected to last, the design stress limitations, 

the coat of insurance, and the cost to the eommunitylf the structure fails. 

(For a discussion of these points see ~gsley - 1951; Freudenthal - 1954.) 

For arguments sake, the gust and moan wind loading have been determined 

in this example for a mean wind velocity of 100 ft./sec. The wind loading 

at other mean wind velocities will be approxUnately in proportion to the 

mean wind 10a4s (i.e. to the square of the mean velocities). 

9.1.5 The Responae to Horizontal Wlndl 

The determination of the reapODse of the 8u.pension bridge to 

horizontal winds falls into two part. - the re.pon.e to gult. and to 

mean winds. The quantities that need to be determined are a. follow.: 

rart I 

1. 

2. 

3. 

QUit respog.e: 

The horizontal gult spectrum, 

The aerodynamic a4mittance! and hence, the .pectrum of pres.ure 

on a "str1p", 

The lateral mode. of the bridg_ and natural frequencies of 

vibration. 

4. The jolnt_ode acceptance. an. of the .p.ctra of pre •• ure in 

pha._ with the modes. 

5. The da.p1ng and dynamic malnificat10n for each mode. 

6. The dJDaaically ma801£i.4 mode components of pres.ure. 

7. The .hears and bendinl moments in each mode of vibration. 

S. The total R.K.S. shears an. bending .oaent. across the .pan by 

superposition of the .hears and bendiDg moments due to individual 

mode •• 
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9. The response factors and gust factors and hence the peak value. 

of the bending moments and shears due to gusts. 

Part 2 Response to mean wind: 

1. Tne relative deformations of the cable and deck and hence the 

proportion of the mean wind load taken by truss. 

2. The shear and bending moments. 

These steps are now amplified and illustrated. 

9.1.5.1 The Lateral Modes and Natural Frequencies of Vibration 

To determine the lateral modes of vibration the analysis of 

Section 6.2.1 is followed. 

The hanger length h(x] at mid span is 9 ft. Assuming the 

cable i, parabolic the hanger length at any other station 1 1s 

h(x.) -= 9 + 12. (Q (t -.5) 

From this the following integrals are 800n found (by numerical integration) 

"'T L . t 1L 
sin 1i 't 

d~ I '7. ~ Ib/.f~ z -= 
" (..11.) t 

f.' 
S'''2. zn 1 

&~ WT = '-7. <- .. 
h ~) ( 

f -s,"& ~n l 
d~ 1(.4. S ~/- - :: .. 

I h(1L) l 

w.,- I' ~ I't" 1 41l~ ~t :: 94.7 I. 

0 ~) 

[' 
. ~ . 2: ~ 

W'r 
SIn 11 "'( 51'" :'Ii t 

c:l~ - S7.c It :. 
h ().) { 

11 • 2.T1:1l ~ 

W'T 
~I~-r f,1M ,,., 

d 3 ~ - 47. () .. 
0 n~) (. 
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_0 

for(r+ 6) ... odd numbers. 

Substituting in equations 6.8 and 6.9, the equations for determining 

the first and third modes are found to be 

15.10., + 'I9.Z (d,-b,) - 3C..!I.«(l~-b3) 

44.4 b, - /19.2 (c::.,-b,) ~ 3b.~(G:s.-bJ.) 

IZ23 a~ - ~(...~(o.. -b,) +,o4.e(o.~-b.) 

3~~ b3, + 3(., ~(GI - b,) _ 1~4..S (~~-~) 

3-= Z(c,Z·Q.I·~ 

7&·7. b •. &.::a&. 

2(.,2.. .o.~. (,.;)'3. 

7'8,7 b a Co:) &. 

The equations for the second (and fourth) modes are 

241. '- Q. &. + 4 ~.~ (0.. a. - ba, ) - L.s..~ (4. - b .. ) - z.c.z. . o.a,. ~ ~ 

/77. C. b
1 4 !».o (Co. Z. - b~) +- L~.~ ( c.. .. - b.) :: 78.7. '-I.' ~" 

3Sc. C> 0.4- 2!».~ (o.,,-bw.) -I- b~.4("4--b .. ) • 2<''1. A4 ~"J". 

,'0 b ... + ZSi» . .:> (a..~ - b .. ) - <.0 .... (0. - b...) - 78.7.b .... ~ ~ 

The equations may be solved by successive approximation. For example, a 

first approsimation to the first mode may be found by 8ssu.ing that the 

deck and cable move integrally. Adding the first two equations then 
~ 

gives a first approx~ation to U) which may be used to solve the remaining 

equations simultaneously to find the ratios of the coefficients 4.: 0..: b,: b~. 
a. These in turn lead to an improved estimate of ~ . The procedure 18 

"'&. 
repeated until no further changes take place in the value of ~ and the 

coefficients. The results are tabulated below: 

I 
r 
i 
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TABLE 9.1 

LATERAL MODES AND NATURAL FREQUENCIES OF SUSPENSION BRIDGE 

Harmonic Frequency Period Mode 
cy./sec. secs./cy. 

. '1f,c. . 3fT M. 
(truss) ':JT:: $I~ T ... ·00452. $'''' T 

1st .0636 15.7 74 . 1T1C. • :I" K. (c;able) Yc. =. .''''"t - ·014- ~'" -r 
YT ~ ai"" 1';-" ... Oc:."1~ t~ A.";-IC. (truss) 

2nd .164 6.10 (cable) 
~, -='314·SI·"'~.!{"'- ·o~o s;"4..!f" 

. ,.... . 'Itr .. (truss) ~T ::. -.oI7SS'" 't ... " ... '"T 
3rd .348 2.88 . ow.. . jlft'. (cable) ':Jc. ~ ·o~c. $.0\ l' +.i.ob '''''' t 

The forms of these modes are illustrated 1n Fig. 9.3. 

The period of the 1st lateral mode of the Golden Gate Bridge (4,200 ft.) 

was observed to be between 23 - 18 secl., (Vincent - 1959). thus the spans 

and periods of the two bridges are in roughly the same ratio) as might be 

expected. 

2.1.5.2 Determination of Lateral Respon •• to Horiz9ntal GURt, 

The balic procedure in determining th. response to horizontal 

gusts il shown diagramatically in Fig. 9.4. 

Th. first step i8 to specify the spectrum of horizontal gustiness. 

The expression suggested in equation 4.3 (lee Fig 4.1) is used and is 

repeated in the top right hand of Flg. 9.4 (a logarithmic Icale is us.d 

to enable the multiplications incurred to be don. graphically). 

Th. next step is to det.rmine the pre.,ur. acting on a trans-

verse "strip" or "slice" of the bridge. The velocity. correlation function 

given in rig. 5.4 (see a180 equation 5.3) in conjunction with equation 5.25 

gives the Aerodynamic Admittance, (top 1.ft hand d1agraa) which when 

multiplied by the guat spectrum lives the spectrum of pre .. ure on a "sUce" 

or "strip" of the bridge deck (eq. 5.22). (right hand centre diagram). 
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The spectra are also drawn on a linear ordinate scale in Fig. 9.5. 

The third step is to determine the spectra of the components 

of pressure acting in phase with the various modes of the bridge. Th. 

joint mode acceptances are given in the form 

I J r l[1)/:Z = ~ J I J. I R .... ' lh) ./""',. \:') . ~ ... C!") ~ a.. d '" I 
Nt '0 

in which the cross correlation coeffic ient, Q .. , ... In) hoas been given 

by equation (4.12), 

e 
Since the mode forms have been derived in Section 9.1.S in term. of sine 

functions, the above expression for the joint mode acceptance can b. 

r~ritten in terms of integrals of the type 

[II I - c. (x.-~' t 
e t ~ In T' oS ,'" d~. d~' • • • 

where C. -:. 7 ~ ~ . From Flg. 4.1 it is leen that over the important 
V 

range of the horizontal gust spectrum~ the wave number ~ 
V 

, 1& greater 

than about 2 K ,c>4 cy./ft. The main span of the Firth of Forth 

suspension bridge is 3,300 ft., consequently in the range of interest 

C.~5 , for which values, the correlation is concentrated over 

fairly ahort interval. of the span. A. e increases, the average correla-

tion over these interval. tends towards ~ c. Furthermore, since the.e 

intervals are small, ~ and ~f will not be widely .eparated over region. 

of signiflcant correlation, and consequently for larger value. of c:. the 

above integral tends towards 

2 SI . rTix . SfitC. .... c: 0 SIl'\ t s.", (" (.Ix, 

This integral haa a value only for y:. ~ when it tends to the value I 
c. 

Hence the only signiflcant terms ln the joint mode acceptance will be of 

the type 

e 
1~-x.'1 

t: l nil~' 
{ 

I 
d:lt. dx. 
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Exact values of this integral for n = I) '2 , ~ are given in Fig. 9.6. 

The joint mode acceptances found directly from this (making use of the 

mode forms given in Section 9.1.5) are shown in Fig. 9.4. The spectra 

of the mode components of pressure are shown in the middle right diagram 

of Fig. 9.4. 

The next step is to determine the dynamic magnification for 

each'mode. and a crucial part of this is the determination of the damping. 

The expression necessary for determining the lojaritbmic decrement of the 

aerodynamic damping is given in e,uation 7.2. 
- a. 

to = (i e c.~ V 1» 

"ro. ~. m 
The numerator is simply the horizontal wind load in the 100 ft./sec. 

mean wind and is found from Fig. 9.2 to be approximately 336 lb./ft. 

With the mall ~ • 341 slugs/ft. and the natural frequencies given in 

Section 9.1.5 , the aerodynamic damping in the various mod •• are found 

to be as follows: 

Logarithmic dameins decrement, 

for suspension bridge in lateral modes 

Mode Aerodynamic Mechanical Total 
damping damping , damping 

1st .155 .02 .17.5 
2nd .060 .02 .080 
3rd .028 .02 .048 

The values of the mechanical damping decrement are minimum values 

suggested in the discussion of Section 7.2. The aerodynamic ~ping ia 

seen to be far more important than the mechanical damping. the dynaaic 

magnification factors are calculated from equation 3.21, 



'I' 'I 
_ - c x,-x. , t (i:) -1 e 1 ., n !l!!2!; "n ne" dx.dx' 

o 0 { 

'5 

/

n:1 

,2r----~_ 

n = 2 

·05 --_--£ ____ -

n=3 

_'02~-~/~---
u -

,002 

·001 
·1 ,2 ·5 1·0 2 5 

C 

FIG.~,G VALUES OF IT -cl,,-->o'l . l<X e Sin ~ 
o 0 

10 

SID 

FOR SIMPLY SUPPORTED BEAM. 

20 50 

n7t.x.' d. x. . -1.1(.' 
( 

100 



- 170 -

and are plotted in the lower left diagram of Fig. 9.4. These factors 
. 

are used as multipliers, and the relulting Ipectra of the dynamically 

magnified pre.sures for the various modes are .hown in the bottom right 

hand diagram. The spectra are redrawn on a linear ordinate Bcale in 

Fig. 9.5. 

It is noticed that almost all the enargy of the spectrum is 

concentrated in the immediate neighbourhood of the natural frequency. 

This enables the areas of the spectra to be computed from the following 

simple expreslion, which is valid for small values of S and for values 

of Sen) which do not vary rapidly over the neighbourhood of the peak. 

-- 1f~ 

2 ~, 

Applying the formula, the normalized variance of the dynamically 

magnified mode componentl of pressure, 

cr/(P} - I-IX (n) t~, I J, (n)/ ~ 
1""'i2, , 

r- .' 

S,<.n) ~ n 
-P' 

are found to be: 

r 

1 
2 
3 

Normalize4 Variance of Pres.ure 
O"'r Jo(p) I p ~ 

.936 

.502 

.128 

Evidently the higher modes are leu ilQPortant which gives some (but not 

complete) justification for neglectina modes higher than the third. 

Applying the same formula, the second moments of the pressure 

spectra, 

required in calculating "the response factors", )) T , of equation 8.2, 

are found to be: 
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Normalized 2nd Moment of Pressure Spectrum 

r 

1 
2 
3 

o-~ z. (P) / P ~ 

.00358 

.01313 

.01547 

The estimation of the peak bending moments and shears can now 

be considered. In Fig. 9.7 the bending moments and shears arising from 

unit load distributiDns for the first three lateral modes are plotted: 

the lateral load takan directly by the cable (found from equation 6.6) 

is also shown. These shears and bending moments are repeated in Table 

9.2. To determine tbe total mean square bending moments and .hears 

ariaing across the span, the squares of the shears and bending moments 

for unit mode load distributions are combined in proportion to the mean 

square intensity of each of these load components, found above. Tbus 

the root mean square shear and bending moment at station 1C.) O'"'Q~) and 

can be written 

and cr r1 (x.) 

where 9.~) and ~(l!c-) • sbear force and banding moment at station x. dua 

to unit yth mode load distribution (from Flg. 9.7). Similarly, the 

.econd moments of tha shear and banding moment spectra are given by 

I ~~ la 1 
cr ~~) :- vr (P). q. .. ~} 

r 

and 
I 

<T ,.., (x.) = 12: a~ I (P). ~:~)" 

Details of tbe calculations appear in Table 9.2. 

The respoDse facto •• » , is found from the ratio of the .ecClld 
0- 1 (x..) 

mo.ent of the spectrum to the root mean square fluctuation (i.e. cr(~) ) 
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TABLE 9.2 

ANALYSIS OF LATERAL WIND-LOADING OF SUSPENSION BltIDG! 

Mean Wind-load P_ - 336 lb./ft. 
Mean Wind Velocity V - 100 ft./sec. 
Roughness factor ~ - .01 

-5 
SHEAR LB. " 10 

"Unit mode load" 
factors 

x 
T ~I '\.z. <\.3 

0 680 -390 -408 
.1 746 -315 -258 
.2 848 - 84 56 
.3 937 170 294 
.4 858 290 238 
.5 0 250 0 

oq<x) 
--r 
728 
761 
824 
920 
860 
177 

-~ 
BENDING M<MENT LB.'T. x 10 

"Unit mode load" 
factors 

O'Mla.) 
x. --=-
t rn, ml. rt'l~ P 

0 0 0 0 0 
.1 2.26 1.19 1.19 2.39 
.2 4.85 1.95 1.62 4.93 
.3 7.86 1. 70 .96 7.73 
.4 10.93 .85 - .06 10.60 
.5 12.58 0 -.32 12.18 

" 

CTq,fI) 

p 

79 
65 
52 
70 
68 
29 

O'"~ 
p-

0 
.243 
.418 
.523 
.660 
.755 

-' GUlt Peak Mean Total Raponse 
factor factor gust peak 

))= shear Ihur shear 

o-j (!o) " l",T) 9·<i'"Q<!-} 
<T~~) 

.108 3.75 .91 3.20 4.11 

.085 3.69 .95 2.10 3.05 

.063 3.60 1.00 1.05 2.05 

.076 3.65 1.13 .10 1.23 

.079 3.65 1.05 .45 1.50 

.162 3.86 .23 0 .23 

• I 

I ' Mean Total Rspat88 Gult Peak 
I peak factO'l' factor Quit 

»: ~t ~ Moment 
cr~'-"\ ---- f3 (\)1") 9·cr~.> 
a-"",(,!J.) 

- - 0 0 0 
.102 3.75 301 892 1,193 
.085 3.69 6LO 1,404 2,014 
.068 3.63 945 1,586 2,531 
.062 3.60 1,281 1,503 2,784 
.062 3.60 1.472 1,403 2,875 

.. , 

. 

, 
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aa outlined in Section 8.1. The gu.t factor, ~(YT) is found from Pig. 8.2. 

( T is taken aa 3600 secs. since we are interested in the hourly gust 

factor). The peak shears and bendina moments due to gust action only are 

found by multiplying the R.H.S. values by the appropriate gust factors. 

(The calculation. again appear in Table 9.2). 

9.1.5.3 Response to Mean Wind 

The response to the mean wind is carried· out according to the 

method described in Section 6.5.3. 

The quantities appearing on the left hand aide. of equations 

6.49 and 6.50 have been evaluated already in Section 9.1.5.1 in connection 

with the determination of the modes and natural frequencie.. The mean 

wind loading on the trus. and cable are Pr • 336 Ib./ft. and ~ • 

38 Ib./ft. respectively (for a 100 ft./sec. mean wind). Substituting 

in 6.49 and 6.50 the equation. for determining the deflected form Gf 

the truss and cable are: 

.5.1 Q, +' 119.2. l~.- b,) - . 3te. ~ (Q&- b~) = I~'-O 

A ...... b, - 1f~.Z. (ca,-b,) ~ a<-.!a (0..-'-.) :. IS .... 

'Zz.~ 0." - 3 •. !> (4.- b.) .. 'o .... ~ (0." .. b~ .. .4~.~ 

"e!t .3 +- 3'-.& (0., - b,) 'C)4.~ (Go a-I...) .. !S.l 

Prom the.e equations the static deflexion of the bridge (in feet) 

i. found to be given by 

• 1t':lt. ... Y -:. ~.IZ $It't T + .O&:t~ ~t. 

(i.e. a mid span deflexion of 3.11 ft.) 

It is also found that 

) 

The wind load taken directly by the cable, cvt~t can now be 

found from equation 6.6 viz. 

,\(x) = 'WT L: to. r - by) 
r 
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The distribution of the load taken by the cable is shown in 

F1g. 9.8. It 1s seen to be concentrated around the mid-span region, 

where, in fact, the counteraction by the cable is found to be greater 

than the wind load itself for a short region. 

The moments and shears produced by these loads on the stiffening 

truss are found straight forwardly and are also shown in Fig. 9.S. It 

is noticed that one effect of the cable load is to dilp·lace the pOlitions 

of maximum bending moment from the mid-span to nearer the quarter points 

and at the same time to produce a central zone (nearly three quarters 

the span in length)having nearly constant bending moment. (This fact is 

referred to again in the discussion below). 

The moment. and shears shown in Fig. 9.8 are repeated 1n 

Table 9.2. 

9.1.5.4 Dipculsion of the Effects Qf Horizontal Wind 

Final results of the bending moments and shears due to both 

gust and mean wind loading are combined in 1ig. 9.9 to show the maximum 

peak bending moments and shears across the span of the bridge. Certain 

feature. of the diagram seem noteworthy. 

In the first instance it should be emphasized that the magnitude 

of the gust loading is dependent on the surface roughness (proportional 

to KY~). Thus if the bridge under discussion was situated in a more 

open site, such as the Severn River, where we have seen J-l. ~ ·005 

the gust loading would be roughly 701 of that shown, (for the lame mean 

wind loading). At rougher lites - such al those occupied by the Thames 

bridges In Lon4on. the Clifton Bridge at Bristol, or the East River 
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bridges in New York - a value of ~ nearer .04 might be appropriate and 

the gust load, consequently, twice as great (for the .ame mean wind load). 

On the other hand it must be remembered that the roughne •• of the surface 

also governs the attainable mean wind loads. Thus at the smoother Severn 

bridge site. although the gust loading maybe relatively le.s, the mean 

loading will be higher and as a con.equence the total loading may be 

higher. Conversely, the rougher city sites the mean wind loading will 

be less. 

It should also be noted that the mean wind velocity of 

Q 100 ft./sec. was chosen arbitrarily. At any other wind velocity the 

wind loading (gust as well as mean) will be in proportion to the square. 

of the velocities, or very nearly so, Thu. if the once-in-flve-hundred 

year wind was felt appropriate, which for the Forth Bridge site was 

shown to be approximately 99 mL/hr. or 145 ft./sec. (see Section 9.1.4), 

the values of the wind loading would be (~)Z, or 2.1, times those 
\100 . 

shown in Fig. 9.9. 

It is also seen that the effect. of the gust and me.n wind-

loading on the shear and bending moment diagrams are not similar. Where

as the shear due to the mean wind loading varies considerably acrols the 

span, from a maximum at the end. to no value at the mid-span. the shear 

due to gusts is almost constant across the span except very close to the 

centre where only the second mode vibration makes any contribution. 

The bending moments due to the mean and gust loads are again 

dissimilar. Whereas the mean bendina moment i8 relatively constant over 

a broad central region, with slight maxLma near the quarter point •• the 

bending moment due to gusts, is peaked with a max~ at the mid-span. 
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It is worth observing that the form of the bending moment and 

shear diagrams are dependent on the proportion of the load taken by the 

cables. The latter is determined by the length of the hangersr'in other 

words, the dip to span ratio and the distance the deck i8 bung below the 

lowest point of the cable. In fact it would aeem that the ahorter the 

central hanger and the smaller the dip to span ratio, the greater 1s the 

lateral load taken by the cable and consequently the lmaller need be the 

lateral stiffening trU8S. 

9.1.6 Response of Suspension Bridge to Vertical GUlts 

In broad outline, the procedure for determining the respon.e 

of the suspension bridge to vertical and to horizontal gusts are similar. 

Certaln details, however, sueh as the expression used for vertical gusts, 

and the method for determining the vertical model of vibration differ, 

and the aerodynamic forces developed depend on variations in wind-

inclination rather than velocity. There is, of course, no mean wind 

effect to consider unle •• the vertical forces happen to b. a.ymmetrical. 

9.1.6.1 The Vertical Modes and Natural Frequenc!e, 

The procedure used 1. due to Steinman and is described. in Section 

6.2.2. Prom the data of Fig. 9.1 the following are calculated: 

Main Span ~!cle Span 

EIn'" 
Ib/ ft-a. 1.875 50.5 ---p-

1-111' .. lb / ~~a. 44.4 269.0 -p 
Vol 

~'u9·11~ 341 469 ,-
From these data the equivalent stiffness, I( , the. natural 

frequency, n , and the _ode for each antiaymmetrlc mode can be found from 
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equations (6.11), (6.10) and (6.12) respectively. The results are as 

follows: 

Harmonic 

TABLE 9.3 a 

ANTISYHMETRIC VERTICAL MODES AND NATURAL 
FREQUENCIES OF SUSPENSION BRIDGE 

K n Period 
lb./ft. 2 cy./sec. sec./cy. 

Mode 

2nd 207 .124 8.10 ~c. Go .i.., ~1t 
T 

4th 1190 .293 3.38 ~:::Q fti" 4"ftx, 
T 

To determine the symmetric modes it is necessary to compute 

the following: 

c ~ 
T 

~. K 
IN ... 

,. 6170 

Main Span 

( ..... I) 

46.3 

470 

(r:a) 
552 

Side Spans 

223 

(,..1) 
233 

Substituting, the basic equation for determining the Itiffne •• (equation 

6.13) now reads 
.... 70 

+ 
47(:) 

~~( K- SS2) 1"( K- Z~!» 
=1 

This equation can be solved rapidly as foilowi. Suppose we require to find 

K for the. ht mode. Anume a good approximation to K 18 Kr - in this 

cale 46.3. Substitute this for K in tb. 2nd and 3r4 fraction. on the 

left hand side (the les8 aignificant on.l) but Itill l •• ving K as an 

unknown in the firat fraction. Solve for ~ thus obtaining a better 

approximation. Repeat the procedure until K .ettles down to a conltant 

value. 

Once K bas been found the relative .iz •• of the coefficients 

of the mode exprelslon. can be found from equation (6.16). The fo11owinl 
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results were found; 

TABLE 9.3 b 

SYMMETRIC VERTICAL MODES AND NATURAL FREQUENCIES FOR 
SUSPENSION BRIRGE 

Harmonic t< I") Period Mode 
lb./ft. 2 cy./sec. sec. Icy. Main Span Side 82a9'· 

1st 132 .098 10.02 • '" x. • 3ft II . .,." 
~ - S'n T. - .0,-&.,,, 1 ':) - - .458 5"'1; 

• • 
3rd 518 .196 5.10 . we. . ~1f. 

~ ::. -:1.0!) "" t. + ~ ... t. 
.."11. .., ... -·~.1 ~'" -t" 

The.e modes are depicted (to a .omewhat exaggerated vertical scale) in 

Flg. 9.10. It is noted that only the symmetric modes involve side-span 

and tower participation. 

The inertia load ins and the loading taken by the cable. are 

now determined from the expressions given in Section 6.4. The shear 

forces and bending moments (with loading diagram.) for unit mode load 

distributions are shown in Fig. 9.11, and are repeated in Table 9.4. 

9.1.6.2 Re.ponse to Vertical Gusts 

As in the case of horizontal gults the firet step in 8.timating 

the gust loading 18 to define the spectrum of guatiness. Panofsky'e 

spectrum (see Fig. 4.5 and equation 4.5) is uled with the height 

taken aa the deck height of approx~ately 200 ft. this 11 .hown 1n 

Fig. 9.12. The aerodynamic admittance function i8 a •• umed to be the 

.ame as in the case of horizontal gUBtS. and the vertical force is 

calculated according to equation 5.2S. .. The resulting spectrum of the 

pressure on a transverse strip is also shown in rig. 9.12. the joint 

mode acceptances are almost precisely the same a. thOle for the lateral 

modes. 

Before the dyqamic magnifications can be computed it is neceslary 
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to determine the damping. These are computed from e.uation 7.3. The 
dz 

is found from Fig. quantity dOl 9.2 to be 2,730 lb./ftr/rad. in a beam 

wind of 100 ft./sec. mean velocity. This results 1n the following 

logarithmic damping decrements (allowing .02 for mechanical damping) 

LOGARITHMIC DAMPING DECREMENTS FOR 
VERTICAL MODZS Of SUSPENSION §RIPGE 

Harmonic .~ 6 , 
(aerodynamic) (mechanical) (total) 

1st .408 .02 .428 

2nd .323 .02 .343 

3rd .210 .02 .230 

4th .137 .02 .157 

The mechanical damping is seen to be small compared to the aerodynamic 

damping. 

The dynamic magnification factors can n~ be calculated from 

equation 3.23 and the resultmg spectra of the dynamically magnified 

mode components ~£ load are shown in Fia. 9.12. Again all the energy 

is seen to 'be concentrated at or near the natural frequency, nr ' which 

enables the simple approximate formula to be us.d for determining the 

variance, viz. 

flO 

J 
St"l. cl f'\ 

o [ I - t~t)~' r' • (J t (~)L 
0-'2._ 

We find from thl. that the normalised variance of the dynamically 

~ .Idt ... 
magnified mode componenta of prellure, (tlP)/Ia;' and the normall.ed ,.coad 

moments of the spectra o!(.P)~.t~"have the follOWing value.: 

. ) 

I 
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VALUES .QI 

(VERTICAL RESPONSE OF SUSPENSION BRIDGE) 

Harmonic O"~lP) !~!) }. d(.PVl~t 
ht .0132 .000128 

2nd .0126 .000194 

3rd .0108 .000414 

4th .0053 .000452 

When combined with the unit mode load factors of shear and 

bending moment, the variance of shears and bending moments (and the second 

moments of the spectra) are obtained for all points on the beam as 

indicated in the Table 9.4. The response factor. 'Y ,enables the 

gust factor, v1r • to be found which in turn determine. the peak values 

of shear and bending moment. These peak value8 of shear and bending 

moment (given in Table 9.4) are plotted in Fig. 9.13. 

9.1.6.3 Discussion 

Fram a comparison of Fig. 9.9 and 9.13 it appears that the peak 

vertical and lateral shear forcel and bending moments are of a similar 

magnitude. This result may seem surprising in view of the generally 

much SDaller depth to span ratio of the vertical atiffening trues. Fig. 

9.11, and the unit mode load factors of Table 9.4 indicate that by far 

the largest contribution to the m~nts and shears in the stiffening 

truss is made by the first mode component. Further examination of Fig. 

9.11 showl that the~ct1on developed in the cable i8 ma1nly responsible 

for this. 

It was shown in Section 6.4 that the cable reaction was com-

posed of two components, one of which was due to a change in the geometry 
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TABLE 9.4 

ANALYSIS OF VERTICAL GUST-LOADING OF SUSPENSION BRIDGE 

Mean Wind • v.loc ity 
g (from Fig. 9.2) 
etc( 

"': . 100 f t ./sec .. '. 
= 2730 lb./ft./rad. 

Roughness factor ~ = .01 

SHEAR 

Unit mode load factors 

O'"<t~) crkC!-) 

" ,\, r 'h .. C1~ '\. .. l~) dot \~) 

0 1731 -75 -119 -105 199 19.6 
.1 1295 -60 - 50 - 33 149 14.7 
.2 955 -22 37 85 110 10.7 
.3 657 22 90 85 76 7.4 
.4 337 60 73 - 33 39 4.2 
.5 0 75 0 -105 11 2.5 

BENDING MC!1:ENT 

Unit mode 104d factor. 

cr,..,~) oJM<zc.) 
x. - -
I m, m~ "".) """4- (dZ) \d~) dClC. 

0 0 0 0 0 - -
.1 5.00 -.23 -.23 -.26 .57 .51 
.2 8.71 -.37 -.30 -.16 1.00 .99 
.3 11.l7 -.37 -.09 .16 1. 31 1.29 
.4 13.01 -.23 .18 .26 1.50 1.47 
.5 13.56 0 .30 0 1.56 1.53 

, I 

\>= 
r 

9(V T ) 
Peak cr gUt} shear 

tTQQL) 
Ib 

~ Icr· 

.099 3.72 2.02 

.099 3.72 1.51 

.099 3.72 1.12 

.099 3.72 .77 

.108 3.75 .40 

.227 3.95 .12 

\,)= 
Peak 

cr~? g(yr) moment 
Ib.H. 

0" 1"1C!c-) -'T 
~tC) 

- -
.099 3.72 5.8 
.. 099 3.72 10.2 
.099 3.12 13.3 
.099 3.72 15.2 
.099 3.72 15.6 
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of the cable ( H ~.) 
d",,~ and the other due to a change in cable tension 

AH ~ . Gl ,,1. ( q being the original coordinate of the cable). The 

symmetric modes of vibration involve both tOller and side span participation. 

as well as stretching of the cable, accompanied by an increase in tension. 

The latter has the effect of inducing a uniformly distributed load across 

the deck which, in the first vertical mode, is relatively large. In all 

other modes the change in cable tension is either small or;" tbe asymmetric 

modes, non-existent . 

This predominance of the first mode oscillations in producing 

moments and shears suggests that consideration of more than two modes 

is superfluous, and makes calculation of the peak values relatively 

simple. The distributions of maximum shears and bending moments are 

similar to those for the lateral modes, insofar aa the max~um shear 

forces occur at the ends of the span and the maximum moments at the 

centre. 

It is worthwhile to consider the peak vertical deflexions 

under the same wind condition •• 
O"lP). gl~ i) 

K 

first mode, 9lyT) • 

These are given by 

~. 72. Por the 
dz 
00(. • 2730 lb./ft./rad. and 

;1~ ~.Jt.~2.' XI.' 
K - 132 I b ./ ft. 2 

Hence the peak deflexion 1s found to be approximately 9.0 ft. (from 

centre line). The peak second mode deflexion is found to be about 5 ft. 

It seems quite likely that oscillations of this magnitude could be 

mistakenly ascribed to an aeroeia8tic phenomenon of the flutter type 

instead of to the lift induced by the vertical components of guatines8. 

In the paat, this has been largely due to the fact that there haa been 

no satisfactory method for e.t~tln8 the effect. of vertical change. 

in wind direction. 
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9.2 THE WIND LOADING OF A TALL MAST 

9.2.1 Description of the Mast 

The mast, illustrated in Fig. 9.14, is 500 ft. high and consists 

of a slender elastic column supported at three levels by guys spread 

around the base ft 120 0 horizontal spacing. All the guys' 1n the same 

vertical plane terminate in common anchorages. The top section of the 

mast is cantilevered and, as a consequence, is considerably stiffened 

at the top guy level as indicated in Fig. 9.14. The base of the mast 

rests on a ball seating, enabling the mast to pivot freely. All 

relevant statistics of the mast and guy. ~re given in Table 9.5. 

9.2.2 Wind Loading Conditions 

The wind load on the mast in a steady wind of lOOmph is taken 

as 200 Ib./ft. The ground roughness is significant because it determines 

both the gust intensity, the mean wind velocity variation wtth height, 

and, consequently, the mean wind load distribution. To study the effects 

of both extremes of surface roughness the wind loading in both city and 

open country conditions is investigated. For illustrative purposes it 

is assumed that the mast is situated on the U: eo ; ~ = 8 contour of 

Fig. 2.4 and that it is to be designed to resist the once-in-fifty year 

wind load. The mean wind loads at a 30 ft. datum are then 89 lb./ft. 

and 10 lb./ft. in open country and city conditions respectively. 

9.2.3 Behaviour of the GUYs. 

From the data of Table 9.5 the following are evaluated: 

Bottom Guy Middle Guy T02 Guy 

k: E, 42 c..$~cr Jb/~"'I04 2.97 2.39 3.21 $ 

,.s. 9 e.o ur 
(.oS + ... zz t i' .500 .395 .308 t I - Co •• 9"._ a 
J=-~.~ .0339 .0675 .0915 $&"" k 'L 

G= 
....... T~ 

5'a w & k 2.74 2.72 2.37 



250FT-------------~~1 

FIG. 9·1+ 500 FT. GUYED MAST. 

RIGIDITY 

a MASS. 
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'l'A3LE 9.5 

IJETAILS OF GuYED LAST 

Ribidity at reference section E!. • I ...... 10
10 lb. ~t ... 

~ss per unit length at reference section rn. • 

Guy data: Bottom l::iddle Top 

Guy lancth 5 ft:. 270 341 426 
° I 42°45' 54°00' Inclination a- 24 45 

'irt ./uni t length w Ib/.f.t 1.7 2.57 6.73 

Cross secti on A9 
• 'l. 

.500 .755 1.98 In 

l':odulus E, Ib/,;"'" 20 x 106 

Tension r Ib 8,:)00 12,000 )0,000 
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Bottom GuX Middle Guy Top GUY 

4.39 3.56 2.79 

c.y/se.c. .698 .567 .444 

The guy moduli are calculated, for a vibration coplanar with one 

o 
of the guy sets and therefore inclined at 60 to the other two guy set •. 

The modulus for the guy in the plane of vibration i. calculated from 

equation 6.21 and, for the other two guys, from equatten 6.22. The.e 

expressions make no allowance for damping. The combined moduli for 

each set of guys in the frequency range 0 - 2.5 cy./sec. are shown in 

Fig. 9.15 by the dashed lines, which, except in the vicinity of the odd 

numbered modes, coincide with the full line. If damping is taken into 

account the modulus is calculated from equation (6.27). For 10 per cent 

critical damping the moduli are given in Plg. 9.15 by the full lines. 

Damping is seen to be significant only in the vicinity of the odd mode •• 

For practical purposes it would seem to be adequate to assume that the 

modulus 1s approximately equal to its statfc value for'frequencies less 

than the fundamental, and approximately equal to the "taut wire" value 

k ,at higher frequencies. 

9.2.4 Determination of the Natural Mode. 

It is al.umed that the modes can be adequately represented by 

four Basic functiona as follows: 

The first step in determining the natural modes is to calculate 

the integrals appearing in equation 6.46, written for each value of r 

from 1 to 4. Uling S~pson'8 integration formula and the tables of Basic 

function products given by Davenport (1959), together with the Basic 
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function properties in Table 6.1, the following values are calculated: 

(Units - lb./ft. 2) 

(m. 6,~cI ~ == 3.1.'<' . , 

t /"n. 13"&1.. ~x,t : 

f~ tn. 1?»7... cI "'t :: 4.87<. 

J' z. 
o m.B4 · d"'t = 4.470 

J~ rn. 81.B~.d","fC= 

f~ tn. ~,.£3l·d .. Jt = -.<.&5 

f~ tn.~.B ... .d~::. '1'-5 

L tn. ~.B,.d"t: -.35.1 

J~ m .B;a.~ .. c:4'f: -·C)7.3 -

So' m . e,J.B .... ~..ye: -. ~~~ 
.. , 
~ 1. E.,! .f3:' ~ ~I t :: 34.1 
0( 4 I . 

i-1 SO EJ,{!:. 4 "It = 3~4.S 
g( 4

f
, 

1! .. r:.r.~,.~ cA. "'/ ( :: I S~~.l 

, J I 1t 0 5. b~. d ~/( = ·:51~ 
,,~ r it .. ~ .b~. d~( -= ..c..~+ 

tl~ f' 
~ 0 

5. b;. d. :../< '" 1!I.07 

1.1' 'to ~ 5. b •. d _It :: 2~.57 t" ~ 

~~ J' 
t~ 0 

S. b,b~. d 1t. = 'La 

The axial load terms, it should be noted, are much smaller than the bending 

terms. 

For the first mode the guy moduli are assumed to have approxi-

nwtely their static values. Hence: 

.1(= 7~.o (bottom) 

substituting in equation (6.46), the Bet of equations for 

determining the first mode of vibration is found to be 

20. I e.G., -+ 8.47 g." - 70.1 e. o.~ 

... 2. o. , ...... : ... ' {3.2.'Io., + . "'4,,. - . follSo. ••. "S"'-41 ti) I 
~ 8.470... = Co)~[ '2b4~1 + 4.2.530.~ - .3570..3 - . ()"73 0" •• J ("1): 

- 70.' 1. ~4 -: ~&. (-.'-850., -. ~~7o..a.4. 87E>o.." -. 3\)~Q.-Jc.1fi) 

~t~4Z..4 ~4 ::c.) .... [.Z.'-SQI -.\)73Q.'L-'~~~"~+4.47DO .. lrv) 
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These equations can be solved by successive approximations. 

Initially it is assumed that ell.: Q~ = "4= 0 and a first approximation 

1-
for ~ is obtained from e4uation (i). This is then substituted in the 

remaining three equations to obtain values for o~k, Q~1a , and Q4/t. . 
I I '" I 

Substitution of these ratios into (i) leads to a new estimate of ~~ 

which mayor may not agree with the first estimate. If it does agree , 
the approximation is completed; if a discrepancy still exists the process 

is repeated. (Somet~es a better estimate can be obtained by assuming 

only 03 and (14 -0 and solving for ~1. from the first two equations). 

The result of this analysis gives for its first mode: 

The mode form (normalised to give unit deflexion at the top) 1s 

.~(:c.)= ':540 8,(1.) - .~84 61.(x.) + .03Bt03~) - .OO~ e4~) 

For calculating the higher modes the guy moduli assumed above, 

are unlikely to be appropriate (this will be established when the fre

quencies are determined). Instead the taut wire moduli (i.e. elastic 

stiffness ) are alsumed, The.e give 

K r ': 92..0 (bott.",) =- 74.0 ('" ,acHe.) -= 94.0 (+op) 

The resulting equations are: 

'7.0C. 0., +~7.54 Q" • "'Z.OI Q~ ~ .2.'.t)~Q ... := ~~[?>.2.lfo(l1 +',1(040.1.- ._&SO~ +.2.<.5 4 4J 
5'7 54-Ct I -4- 142.70 OJ, + 24.1.043 +- 7.1'Z.04 = ~a. [.2.'-4 0., +-+. 2.5~Q&. - . .351"3 - .073ca..] 

-4L.01a, + 2.4.2.0Q ... +-548.70 Q 3 -"~.40CA ... : ~a~.,-as<.t.,- .357c.1+4.~7'=aQ3-.~0~Q~I 

ZS.03o., + -r.lz.a&. - _:>'4.;)G.3+-1-4Z.·4.C)o4:(,.)~L·2.'o:so.,-·073 Q2,- .30'34,+4.47~q.] 
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Solving these in the fashion described above, the 2nd and 3rd natural 

frequencies are formed to be respectively 1.012 cy./sec and 1.710 cy./sec. 

The mode forms (having unit mast top deflexions) are: 

The forms of these modes are shown in Fig. 9.16. The next step is to 

determine the shears and bending moments corresponding to these deflexions. 

This requires integrating the loading acting on the mast. As discussed 

1 W I. in section (6.4) this loading is supplied by the inertia oading~. ~~t~) 

the guy reactions, I( ..".~Jand the axial loading - :~ { 5", °1:"1 . Each 

of these can now be evaluated, and the moments and shears formed in the 

usual way. The .hear and bending moment diagrams for the first three 

modes for unit malt - top deflexion are shown in Fig. 9.17. 

9.2.5 Response to Static Wind10ad 

where 

The mean wind pressure at height ~ ft. is 

p , 

- 'I. 

IS"". PI ~"'~ 
V, 

- mean wind pressure at a 30 ft. reference height. 

From equation (2.1) this can be written 

p _ p (~)'201. 
:I. - I \ 7-, 

Substituting for ()( from Table 2.1, in open country, 

P ... = 15 (~ r~ 
,.. 1:1.. 

and in city conditiona, 

- (2. ) ''0 s P -
I .7-, 

These loadings are shown in Fig. 9.18. 

, 
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The solution now follows the analysis of Section 6.5.3. 

Evaluating the necessary integrals it is found that: 

QEen Countr~ City 

f' -P" e>,Cit)· ~, oP. -= 1.021 3.116 

f~ o PI \3"3.~> d ~ - .329 .255 r P" 
o '", 

~3~) ct~ -= .138 .0928 

l' & 
&4(e) d ~ .0768 .0198 " ~I 

Following equation (6.51) the equations for determining the .tatic 

deflected shape for unit load at 30 ft. are 

4:>·(..00., + A3.2~42. - 30.~S 0.3 + 20.1_0.. ". .. o~, (3. 11 1.) 

.4)·1.~().1 +- IIS·~~o.L + I~.?,~ 0.3 + V .4"7 ~4 ~ ·31.~ CloSS) 

-:!Ia. ~So., .. "3.~0 o.~ + SbC..,C) 0. ~ - . "7 U. I ~ C) do :: ·138 (. c)~3) 
"l,o.\10 <'-, ... 1l.4Ll «~ - 10. I~ o..~ + 1(041..40.. -= ·\)77 (.0'2.0) 

(Bracketed values are for city conditions). 

The static deflexion under unit load at 30 ft. in open country 

is found to be 

~ -= . ~~a B,~) - . I'-~ Ba.~) .... 04.5 a3~) -. 004 13 .. ~ .c:r. 

and, in the city, 

~ -= I.~'-S B,~) - .708 132.~) + .l"3g B~) -.0,5 B4<!') .ft-. 

These curves are illustrated in Fig. 9.l8b. From thi. 1n-

formation the bending moments and shear diagrams are drawn and the, are 

shown in Fig. 9.l8c and d. 

9.2.6 R •• ponse to Horizontal Gusts 

The procedure 'or determining the response of the mast to 

horizontal SUlti 1 •• tmilar to that for the ,u'pension bridge. The 

spectrum of gu.tiness is given by Flg. 4.1 (repeated in Fig. 9.19). 

The aerodynamic admittance is assumed to be given by equation (5.23) 
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and resulting spectrum of aerodynamic pressure on a transverse strip is 

given in Fig. 9.19 also. The joint mode acceptances also take a similar 

form to those for the suspension bridge. The major contributions are 

made up of terms of the type: 

f I J I e. - ~ '''' -( ",' I 
o· 0 Bh~) 

Values of this integral for n;\,2. and!» are shown in Fig. 9.20. Using 

the known values of the constituents of the Basic functions, the Joint Mode 

acceptances are calculated and from these the mode components of pressure. 

The next step is to compute the damping in each mode so that the dynamic 

magnification can be found. At this stage it is necessary to specify the 

mean wind velocity, and for purposes of illustration a mean wind velocity 

of 100 ft./sec. at a 30 ft. datum has been chosen in both city and country. 

In pTactice it would be better to use the actual design mean wind velocity, 

corresponding to the return period considered appropriate for the structure. 

The basic expression for the aerodynamic damping is g~ven by 

equation 7.1. The integrals involved are found to be 

~ ~ountr:t 

f~ m~) ......... ~~) eli : I,I~C. "'",~/Cf. f.'V~ a " 
• Va )0'1' d t 'So 

.423 .226 

J' M~}.r:~) cit • .!).81 .. l' ~ .. tJ. ~ 0:. 2.638 1.497 0 • ".)-0.. ( 
f~ ~ ,. " J 1/,.. ~ 'It .90 .555 ~ }~3C!'}~t ": •• 15 ~ " _ 1I,.r3 4 ( -= 

Hence the logarithmic damping coefficients are found to be as follows: 

LOGARITHMIC DAMPING DECREMENTS FOR GUYED MAST .. 
b + .... 0.1 Mode ~QC.~o 'f> ""c. .... 

Country CHX Country City. 

ht .397 .745 .02 .417 .765 

2nd .140 .246 .02 .160 .266 

3rd .082 .153 .02 .102 .173 

*assumed minimum 



~(c)= sr~-CI"-"'I BnCx) Bn(x')dxdx' 
o 0 ,n =1 

·2 

·1 

·05 

·02 

·01 

·005 

·002 

·001 
·1 ·2 ·5 1·0 2 5 10 20 50 100 

C 

FIG. 9.20 VALUES OF cp (e) = II e -</x-x'/ "'n(x) Bnex') dx.dx' 
o 0 

FOR HINGED - FREE BEAM. 



, 

- 205 -

The dynamic magnification for each mode is now calculated from 

equation (3.23). The resultin, spectra of the dynamically magnified mode 

components of pressure are given in Fig. 9.19. The areas under the spectra 

were measured planimetrically and 

Mode 

lat 

2nd 

3rd 

or~(P) 
VALUES OF ~ 

I 

found to be as follow.: 

FOR GUYED MAST 

Country 

.420 

.033 

.036 

cr .. &(P) 
pi , 

City 

4.50 

.36 

.39 

The above value. take into account the different roughness coefficient., 

viz. Ii. .005 in open country and Ji • .060 in the city. The second 

moment of the spectra are aa follows: 

VALUES OF 
c:r;'(P) 

FOR GUYED MAST pi (J': & (f) I 
HODE ~1. 

Country I City 

ht .0207 .136 

2nd .0072 .052 

3rd .0258 .187 
, 

The peak value. of the bending moments and shears due to the gustiness are 

calculated in Table 9.6 and combined with the bending m~ent8 and sheara 

due to the mean wind. As noted already the values calculated in this table 

refer to a mean velocity at the 30 ft. datum of 100 ft./.ec. In practice 

it would be logical to calculate the peak gu.ts for the chosen design mean 

velocity at the site (e.,. the "once-in-50-yeara" mean velocity). As 

mentioned in Section 9.2.2 it was the intention to compare the "once-in-

50-year" vind loads 1n open country and city conditions for a site where the 

parameters of the extreme hourly gradient wind velocity are (UGa ::iO,;i .: «i ) 



TABLE 9.6 a 

ANALYSIS OF WIND LalDIOO OF GUYED JIlST (SHEAR FORCE) 

Mean wind at 30 ft. ~= 100 it./see. 
IIean wind load at 30 ft. i5. = 95 lb./ft. 
Roughness i ~=-.~o5 (open country): ~ .0"-0 (city) 

Uni t lIOde load OPEN COUNTRY CITY 
factors -

Mean rrotal 
,~ 

shaa' peak 

• jahear 
~ 

Q,z. ~. ~ 9~lj lb. lb. lb. CT,,~ ~ 9(~T) T '\-, q.~ "'i ~ P, p. '. 
1.0 0 0 0 0 0 - - 0 0 0 0 0 - -.9 40.1 -21.6 28.0 21.0 7.1 .28 4.00 108 100 208 88.5 20.1 .23 3.95 .8 69.3 -21.9 26.5 45.5 li.l .24 3.91 lBo 228 409 148.8 26.1 .19 3.91 
.7 92.9 t 6.5 - 3.5 60.6 1.4.5 .24 3.96 240 336 516 198.2 31.5 .19 3.90 

-50.0 -98.8 24.9 31.3 U.8 .32 4.02 150 -250 400 122.5 31.0 .25 4.00 .6 -30.0 -10.9 -28.2 20.3 6.3 .31 4.01 81' -145 226 66.4 16.1 .25 4.00 .5 -27.9 12.3 -48.7 24.2 10.1 .44 4.13 100 - 51 151 79.4 28.1 .36 4.01 
.47 -21.1 98.1 -48.1 26.8 12.1 .45 4.15 III - 25 136 88.0 32.4 .36 4.01 

-27.1 -51.5 -50.2 22.1 10.0 .45 4.15 92 -200 292 12.5 21.2 .21 4.01 .4 -21.9 -12.4 -45.0 20.1 8.3 .42 4.10 82 -140 222 65.9 22.2 ·34 4.05 .3 -28.6 46.8 -16.8 20.6 6.3 .31 4.00 82 - 15 151 67.6 16.1 .25 3.98 
.23 -28.6 80.1 12.3 23.1 8.2 .35 4.05 96 0 "'99 11.1 21.1 .28 4.50 

- 3.6 -38.8 -28.3 9.2 5.6 .61 4.20 39 -130 169 30.2 15.2 .50 4.17 .2 - 3.6 -21.0 -15.8 6.2 3.5 .56 4.18 26 -80 106 20.4 9.3 .45 4.12 .1 - 5.0 4.6 20.1 5.1 3.3 .65 4.21 21 - 20 42 16.7 8.9 .54 4.20 
0 - 5.7 4.0 34.0 1.5 5.5 .14 4.25 32 30 62 24.6 1~9 .61 4.21 

I 
Mean Total 

9~1. shear peak 
shear 

lb. lb. lb. 
I 

0 0 0 
350 418 768 
582 800 1382 
113 U50 1923 
490 - 800 1290 
265 -490 155 
323 - 230 553 
358 - 150 408 
295 - 610 965 
261 - 418 185 
269 - 221 496 
311 - 120 4n 
126 - 261 381 

54 -200 284 
10 - 10 140 

103 - 50 IS3 
-

cr...J,,) ~. ~ 1 '2. • -I T. = Y A2.0~ • .... 3.3 "'a. + 3'''''3,.·0 : 
<rQ~) { ~ 1£ ~ • 
~~::: 4.5 0 a -+-. bbQ +.5~Q P ,. r~ v. 

I 
, 

• f. ) C-- 1 ? .... ' -I ¥: V 2. 07" ~'72"L ~ Z·.5&"3 J(H): 
, 

(j;~) = IllJ.e,~ + 'S.).<\-: + 1'.1\-~ "'It 1 0 , 
, 

N 
o 
0\ 



TABLE 9.6 b 

AHlLISIS OF WIlD LOlDING OF GUYED MAST (BENDING lIa1ENT) 

Vean wind at )0 ft. ~= 100 ft./sec. 
llean wind load at )0 ft. is,:I 95 lb./ft. 
Roqhness 1... .,~.~(open country) ~-==·04a (city) 

Uni t aod. load 
factors 

,r. 

T m. ""a. m~ 

1.0 0 0 .00 
.9 1.04 .75 .08 
.8 ).84 2.28 .23 
.7 7.71 2.88 .30 
.6 5.80 5.66 .28 
.5 4.29 4.ll .19 
.47 3.7) 2.40 0 
.4 3.ll 3.31 .18 
.3 1.61 2.43 .34 
.23 .59 ~ .45 .35 
.2 .54 .06 .38 
.1 .32 .71 .32 
0 0 0 0 

OPEN COUN'lRY CITY 

Vean Total - llean Total 
peak peak ,."'1"\ moment !I.cr", t1 ... t74) a',...c..) 

9l~~ 
lIIDmeilt ~<l') Q'~~) IDOaent moment 

15, ~ - " lb. ~'= » ",~T) Ib.~~ Ib.f" lb. ,,~ ~ lb. ~f: P. Ib.ft ".'C)-~ "'0- ~IO) • Fr " '1)-1 ~ ,c)"5 
" 10

3 

0 0 - - 0 0 0 
.69 .16 .24 3.98 2.7 3.1 5.8 

2.52 ·59 .23 3.96 10.0 10.1 20.1 
5.02 1.14 .2) 3.96 19.9 24.0 43.9 
3.90 .96 .25 3.99 15.6 12.0 27.6 
2.88 .71 .25 3.99 n.5 6.5 18.0 
2.46 .57 .23 3.96 9.7 6.0 1,.7 
2.10 .53 .25 3.99 8.4 4.3 12.7 
1.14 .31 .28 4.00 4.6 ).1 7.7 

.40 .11 .27 4.00 1.6 2.2 ).8 

.36 .10 .28 4.00 1.4 1.0 2.4 

.25 .09 .)6 4.07 1.0 .5 1.5 
0 0 0 0 0 0 0 

0: ~ ~ - ~ ~ ---,.' ~I 
...!:L =- ., 4Z.o -. -+- 3.3 ""a. + 3._ rnb ,..,~ 
~ 

I ( ~ ~ ~'-I 
~~ 2.07"". +- .72 rna + Z.~~~ ..iC1~ 

P, 

0 0 - 0 0 0 0 
2.25 .42 .19 3.90 8.8 14.1 22.9 
8.26 1.51 .18 3.90 32.2 43.2 75.2 

16.43 2.92 .18 3.90 64.1 91.7 155.8 
12~17 2.50 .20 3.91 49.9 55.0 104.9 
9.43 1.84 .20 ).91 36.9 39.5 
8.04 1.48 .18 3.90 31.4 38.0 
6.89 1.37 .20 3.91 26.9 23.0 
3.72 .83 .22 3.92 14.6 13.0 
1.30 .28 .22 3.92 5.1 10.4 
1.17 .26 .22 ).92 4.6 6.2 

067 .24 .36 4.07 2.7 1;;0 
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mi./hr. For such a locality, the mean wind loads at 30 ft. are 89 lb./ft. 

and 10 Ib/ft. in open country and city conditions respectively. The wind 

loads adjusted to correspond to these values, are plotted in Fig. 9.21. 

9.2.7 Discus.ion 

The results of Pig. 9.21 indicate some of the differences between 

the wind loads on a tall mast in open country and city conditions, the 

probability of occurrence being the same in both localities. Both the 

peak shear forces and bending moment envelopes are seen to be less in the 

city - the max~m peak shear force in open couatry is three times as 

large as that in the city while the maximum peak bending moment is 2 1/2 

times as large. The relative contributions to the peak shears and bending 

moments made by gusts and mean wind are seen to be different: for instance, 

of the total peak bending moment in open count~y only a third is attributable 

to gusts which in a city the proportion is nearer to a half. 

There are two main reasons for these differences. In the first 

place the mean wind load at 30 ft. in the city is only 10 per cent of 

that in open country whHe at the top of the mast (500 ft.) it is nearer 

66 per cent. Secondly, in spite of the fact that the drag coefficient in 

the city is taken to be .060 Wherea. in open country it is only .005, the 

drag foree between the air and the ground generating the gustiness is only 

1 1/2 tUnes that in open country. This means that the R.M.S. gust velocities 

are only about 20 per cent greater in the city and the R.M.S. gust loads 

actually smaller, being probably only 40 per cent of that in open country. 

Because the mean wind velocities in the city are les8, the damping 

i. also less meaning that the dynamic magnification 1s larger: however, 

this 1s largely offset by the fact that the natural frequencies of the mast 

.. 
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then correspond to higher wave numbers n 
V , for which the gust spectrum 

generally contains less energy. 

Since the gust spectrum has b~en assumed invariant with height, 

the height of the mast is not likely to greatly affect the ratio of the 

gust. loading in city and country. On the other hand a taller mast generally 

means that the natural frequencies are slower so that the dynamic magnifi-

cation occurs at lower wave numbers and hence higher gust energies. (In 

this connection it should perhaps be mentioned that the mast considered 

in the worked example is probably somewhat stiffer in relation to its 

mass than the majority of masts of a similar height,and consequently 

the natural frequencies tend to be somewhat higher). In contrast, the 

effect of increasing the height will be to make the mean wind effects in 

city and open country more nearly equal. 

The envelopeof peak bending moment are seen to be more or less 

similar to the distribution of mean wind bending moment (in both city and 

country). The same is not howeveT so true of the shear forces. HeTe it 

would appear that the additional shear due to gusts il nearly constant 

between guy points (except for the top cantilevered section) whereas the 

mean shear is mOTe or less triangular. Since the bending moment i8 

probably more critical, it seems that with proper selection of the ratio 

of peak to mean moments the peak moments can be satisfactorily estimated 

from the moments. due to the mean wind load only. The study of various 

mast configurations would be necessary to determine the value of this 

ratio for masts of various types and for specified roughness conditions. 

No comparison was made with the peak shear and moment envelopes 

obtained from loading patterns such. as those shown in Fig. 1.1, used in 

conjunction with the "gust profiles" suggested by Sherlock (1947) and 
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Deacon (1954). (The characteristic of the latter being a steeper slope 

than the mean velocity profile, the suggested power law index being .085 

instead of .14 - .16 for open country). It is to be expected that any 

sLmi1arity would be largely fortuitous. 
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10.0 EVALUATION AND SUGGESTIONS FOR FUTURE RESEARCH 

10.1 GENERAL 

The aims of this stlldy have been to provide first, some under

standing of the physical processes involved, in the wind loading of two 

slender beam-like structures, second a comprehensive, rational treatment 

of the prohlem on which engineering design might be based, and third the 

data needed to apply the latter. He now consider briefly to what extent 

the goals have been achieved. 

Although it is believed that the~ is a satisfactory framework 

of ideas upon which a physical understanding of wind-loading can be based, 

much is unknown about the details. At the root of the wind-loading problem 

is the question of the climate of extreme winds. Although some of the 

characteristics are recognizable - it not explainable - the problem.of 

finding a general statement of the climate of a territory 8uitable for 

adaptation to particular localities still remains largely unsolved. An 

empirical method for doing so has been suggested,~o demonstrate the need 

as much as for any other reason): it is, however, based on limited evidence 

and experience and may later prove to be imperfect. Although knowledge of 

the structure of turbulence near the ground is steadily improving, it i_, 

nevertheless, still deficient. In investigations on this subject, the 

statistical theories of turbulence undoubtedly provide the necessary 

framework. A third area, about which possibly even less is properly 

understood, is the formation of aerodynamic forces on bluff objects in 

turbulent flow. 

By comparison. the mechanical aspects of the wind-loading problem, 

concerning the behaviour of the structure under dynamic and static loads, 

are better understood, although some of the more far reaching questions -
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such as what form of loading is most critical in these structures - have 

scarcely been touched. 

The statistical treatment of wind loading has revealed several 

facts not previously widely recognized or possibly even suspected. The 

worked examples for instance have shown that gusts of wind are relatively 

ineffectual in producing large momentary pressures on a structure (contrary 

to what common design precepts would suggest). The regularity with which 

they occur, however, is such as to maintain oscillations over a fairly 

wide range of frequencies, those near the natural frequencies being 

particularly large, resulting in large inertia forces. The most important 

role of the gust loads is to overcome the damping. The treabnent has also 

enabled the vertical gust forces on the suspension bridge to be evaluated 

in a way that has not hitherto been managed. 

The worked examples have indicated that only the first and 

second modes c .. se significant stresses and deflexions. Tbis suggests that 

simplifications are possible leading to adaptations of the method to meet 

design needs. (The question has not yet been considered in detail). On 

the whole, the merits of the statistical approach are that it is rational, 

it gives a true reflection of the physical processes involved, and is 

suitable for practical application. 

For applying the method it has only been po.aibl. to provide a 

bare minimum of data. Where information has been uncertain or imprecise -

a8 in the determination of cross-correlation coefficients and the forces 

in fluctuatini f'-w - values have been suggested in the belief they are 

slightly on the conservative side, although this inaight not necessarily 

be so. In this respect i. is worth noting that many of the quantities 

introduced (cross-correlation coeffiCients, spectra, aerodynamic admittance etc.) 
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appear finally in square root form which appreciably reduces any initial 

errors. In , •• eral,the aim has been more to evaluate the probable value , 
of the wlnd loading rather than a value circumscribed by natural deslgn-

office cantlousnels. 

A few selected topics for research now follow. 

10.2 SUGGESTIONS FOR FUTURE RESEARCH 

Wind Structure and Cl~ate 

1. The investigation of high-wind structure up to 1000 ft. in rougher 

regions such as the centrei of large cities. This has never been 

thoroughly studied, it appears.although it is obviously of interest 

for many applications. 

2. The amalgamation of the results of 1 with those for more open regions 

to improve estimates of cliaate made from anemometer records. 

3. The investigation of the spectra and cross-correlation coefficients 

(both vertical and horizontal) under different roughness conditions -

with particular reference to strong winds. 

Aerodynamics 

1. Investigation of the buildup of aerodynamic forces in turbulent flow. 

Structural 

General 

1. Investigation of the modes of failure of flexible beam-llke structures 

due to wind-type loading. 

Suspension Bridges 

2. Inveltigation of the lateral modes and natural frequencies of the 

complete suspension brldge,including the possibility of coupled 

vertical-lateral oscillations. 



, 
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3. Observation of the behaviour of full scale structures including 

study of their internal structural damping. 

!1!!.!: 

1. Inveltigation of the behaviour of guy wires under dynamic load, 

(experimental and theoretical). 

2. Investigation of the behaviour of full scale structures including a 

study of their internal damping and modes of vibration. 
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APPENDIX I 

USE OF THE PEAT/" GUST 'RATIO AS AN INDICATOR OF SURFACE ROUGHNESS 

Reference vas made in Section 2.4 to the possibility of using 

the ratio of peak gust velocity to mean velocity as an indicator of the 

surface roughness of an anemometer site - or for that matter the site 

for a struct:lre at which exploratory \vind investigations have been 1R&de. 

The premises for this are as follows. 

In Section 8.3 it tvas shown that the average peak fluctuation 

of a random proces~ during a period Twas 9(vT). <r , where ,(~ T) 

was the "gust factor" and c:r the R.M.S. fluctuation. The random 

process in this instance is the indicated wind speed. If the "admittance" 

of the anemometer (defining its response to different frequencies) is 

I 'XAI then the spectrum of the indicated velocity will be I 'XA(2. 5tt) where 

S(n) 1s the velocity spectrum of the actual wind. Hence the indicated 

R.M.S. fluctuation is 

CT. [ Jo·1 X A (r,) It. S Crt) . d n ] ~ 
~ and the "response factor" J "i) = a-

,.,here 

cr I:: [I.- n'l.. rk'. (.n) I ~ 5(n). d n ]~ 
The expressi.on for the horizontal gust spectrum suggested in 

Section 4.2 is of the form 

~tn). cln ,. 
L) -1 
~.VI 

where ?t was prorortional to the wave-number-

Using the pow~r lnw to relate the mean velocity at reference height, \I. 
to that at aneMometer height \I~ we can write 

- 1 ("Z )1. 
~ . VA . \ i '. ~ ~). Ox. 
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If the anemometer response is not too sensitive to changes in mean wind 

velocity the R.M.S. fluctuation can be written 

<r~ K~. VA'(~')~ ( f:IXAln)I~ . .f~).d .. ]Ya 

~ K~. vA..(3 r"·. ~ 
Z.t\ 't' 

where 4> is the value of the definite integral. The peak gu.t ratio 

is now found to be 

VpC",k -L [ + 9<'~T).c:r ] :: 
VA VA 

~ Ya-l-t
A

) ~ <t = + 9(\>T) 

Provided again that the anemometer response is moderately in.ensitive to 

changes in wind velocity, then 9(-vr) and ~ will both be constants for 

the anemometer and for the sampling period T . Hence the peak gust 

ratio is seen to be more or less independent of wind speed, but dependent 

on the anemometer height 7A ' and on 0( and J{ which are functions of 

the roughne •• of the site. 

Thu., it appear. that if the gUlt factor g(\1T) and the response 

characteristics of the instrument are known, the peak guit ratio can b. 

used to define a function-of Hand « I from which the roughn ••• can 

be ascertainad. Another function of K and 0( can be formed by 

interpolation of the values given in Table 2.1. Hand oc can tben 

be evaluated by sLaultaneous solution of the two expres.ions. Once 

the value of 0( is eitabUshed the roughness factor, k. I for th. 

anemometer site (the ratio of the gradient velocity to the mean velocity 

at the anemaaeter height) can be found from 
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ZG. can be expressed as a function of a( using the values in 

Table 2.1. A nomogram for the complete solution of the roughne,. factor 

from the peak gust ratio is given in Fig. A-l. The dashed liDe illustrates 

the solution for an anemometer installation at which 

ZA • 75 ft., 9 (VT)- 3.2 

and the peak gust ratio - 2.06. It is found that 0\, - .37 and ~- 3.2. 

In applying these results the question arises as to how be,t 

to estimate the peak gust ratio appropriate to an anemometer installation. 

Fortunately, in the United Kingdom it is the practice at most meteorological 

,tations to record not only the maximum mean hourly wind speed. but al,o 

the peak gust speeds. 

Values of the peak gust ratio determined from indivi4ual 

observations of peak and hourly speeds will obviously vary from one 

estimate to the next. Poslibly a better way to estimate the peak gust 

ratio i. to determine the ratio of the parameters (mean, mode, etc.,) 

of the statistical distribution. of both extreme hourly wind .peede and 

of extreme gust .pee4.. From an examination of Shellard'. data (1958). 

for example. it appears that the modes of the two distributions are in 

approximately the .... ratio a. the "once-in-50-year" quantUe.. (This 

can be .een from the few sample values given in Table A-l). Thi. ratio 

is probably a. repre.entative a value for the peak gust ratio .1 can be 

• obtained. 

The gu.t recording anemometers installed at mOlt British 

.. teorological .tationl would appear to be of the Dine'. pre.lura-tube 

variety. Some frequency response data for this instrument are given in 

the "Handbook of Meteorological Instruments", from which it appears that 

the response 11 "flat" up to a critical frequency (about 2 cy./sec. in a 



9 
7 

~ 6 

- 5 

4 

3 

- 2 

~ 
Vuv, 

E 40 

:: 

r 3·0 

" ~ " 
_ - :r-- ~ 

2 ·0 
19 
I e 
1·7 
1·6 

H5 

! 
1 4 

1·3 

1·2 

~ ------

Illo) 

1'0 

• 
·8 

·7 

·s 

5 

.. 

3 

·2 

L. IO 

' 1 

'" 45 --
':: 40 • --35 -- ...... 

- 30 

"'25 

,'" 20 

15 

AMm~t" 
II,,,IIt (ft I 

z. 
300 

200 

-.r. --
100 

90 

89-

10 

60 

60 

40 

30 

20 

- ..... 
CIl 

RoeVIIl"" 
focto, 

k. 

• 
5 

4 

-~.~~_ -... --L 
-- -- .~~ . ~ 

2 

FIGA-I NOMOGRAM FOR DETERMINING THE ROUGHNESS FACTOR OF AN ANEMOMETER INSTALLAnOH FROM THE RATIO OF 

PEAK GUST SPEED TO MEAN WINDSPEEO. 



- 220 -

60 mi./hr. wind) at which point the falling-off of the respon.e to higher 

frequencies i8 80 rapid that it might almost be regarded a. a high frequency 

"cut-off". This cut-off frequency increases with wind .peed and over the 

range of extreme wind speeds encountered in practice it .eeml reasonable 

to assume that it occurs at constant wave-number. The length and crol'-

section of the pressure tubing connecting the instrument head to the 

recording gear has a large effect on the instrument response. For this 

reason the response characteristics of the Dines anemometer. in service 

at meteorological stations may vary. However, if 1t 11 al.umed that the 

"high-frequency cut-off" referred to above 1. reasonably repre.entative 

of the installed anemometers then it is found that the "gult factor" 1& 

approximately 3.83. It is a180 assumed that the Dines anemometer indl-

cates the instantaneous value of the horizontal wind speed (and not merely 

the velocity component in the mean wind direction), so that the spectrum 

of horizontal gustiness cited above is applicable. 

Using the nomogram, some estLmate. of the roughne •• factors for 

a few anemometer stations in Southern England are given in Table A-I. The 

stations are seen to range in roughness from the centre of a city 

(Kingsway-London) to the open sites of Lympne (airfield) and Dover 

(on a pier over the sea). The instrument heights range from 160 ft. to 

36 ft. 
" 

It is seen that there is a realonably good correlation between 

the "roughness factors" found by thele means and thOle found by the .ub-

jective evaluation of the site and surroundinal made previously (Davenport -

1960). When the roughnesl factors are used to e8t~ate the mode of the 

extreme hourly gradient wind velocity the results all 11e within a few 

miles/hour of one another and of the 70 - 7S mi./hr. contour for this 



TABLE .A.-I 

DETERMINATION OF ROUGHNESS FROM PEAK GUST RATIO 

Station Ht. Mean Peak Peak Roughness Gradient Exposure 
hrtly gust Gust i'actor Velocity 

ve,t°,city ve10)t.ty Ratio mi./", In hr "". hr 

VII 
, 

U, 
, ~ ~ k t kAo U,.. Z ... (i .. ii, CC u ... VN,O) A. 't 

Shoeburyness 104 45 4.5 66 6.8 1.46 1.48 .12 1.30 (1.57) 60· Flat lowland on coast 
Birmingham 118 34 4.1 6) 1.4 1.85 1.84 .31 2.15 (2.40) 74 City Suburb 
LoMon Kw 160 28 4.1 56 9.9 1.98 2.13 .33 2.44 ( - ) 70 Ci ty centre 

(Kingsway) 
Croydon 105 37 4.3 65 6.5 1.74 1.68 .26 1.93 (2.15) 72 Suburban airfield 
lew Obstty 75 30 2.4 61 5.3 2.06 2.09 .32 2.60 (2.75) 76 City park 
Dover 36 42 2.9 63 6.2 1.51 1.65 .12 1.45 ( - ) 61~ Pier on sea front 
Lympne 76 43 3.7 09 6.0 1.61 1.60 .18 1.62 (1.75) 70 Open airfield 
llanston 46 40 3.7 67 5.7 1.68 1.64 .18 1.79 (2.00) 71 Open shore 
Calshot 80 42 4.6 64 7.7 1.51 1.57 .15 1.48 (1.60) 63- Lowland verging on Solent 
Boscombe D. 55 39 3.7 65 6.2 1.66 1.66 .18 1.72 (1.90) 67 )tili tary station in open grassland 
Larkhill 51 39 3.1 68 4.8 1.72 1.68 .18 1.75 (1.60) 68 Military station in open grassland 

t' Bracketed values previously obtained from subjective evaluation of s1 te and surroundings 
(Davenport - 1960) 

"'It woule. appear that stations on the coastline give SORBwhat larer estimates. 

N ps 

I 

I 
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general region given in Fig. 2.4 

Thus it would seem that the peak gust ratio may prove to be a 

useful predictor for determining the roughnes8 parameters of anemometer 

sites. With further confirmation regarding the response of the anemometer. 

in service and with the analysis of extreme wind. extended to include the 

records of more recent years, it might prove profitable to make a wider 

survey of the extreme wind climate along these l1nes. 
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APPENDIX II 

HORIZONTAL VELOCITY SPECTIL~ AT THREE HEIGHTS ON A TALL MAST 

The following six figures show the spectra of the horizontal 

components of gustiness computed from records of 20 occasions of strong 

wind at heights of [.0, 210 and 503 ft. on a tall mast. The experimental 

details have been fully described by Davenport in a paper entitled "Th. 

spectrum of horizontal gustiness near the ground in high winds" to b. 

published in the Quarterly Journal of the Royal Meteorological Society. 

The spectra have been computed using 6, 9 and 18 anto-correlation 

coefficients. The summarised estimates of the normali.ed logarithmic 

n.~ 
spectrum ~ at specific wave numbers appearing in the above 

paper were obtained from the "by eye" curves shown in the diagr .... 
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