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SUMMARY

This thesis describes the wind loading of two slender flexible
structures, the tall mast and the suspension bridge. Aspects of the
problem discussed are the long-term climatic and statistical properties
of high winds, the properties of the mean wind and the turbuience,near

the ground and the resistance of structures to a gusty wind. Experimental

results are given.

The response of the suspension bridge and mast to the mean wind
and to random gust loads are analysed theoretically. |

To illustrate the methods the wind loading of a 500 ft. high
mast and a 3,300 ft. span suspension bridge are worked out and the peak
stresses predicted. Vertical as well as lateral loads on suspension

bridges are considered.

This is to certify that the contents of this
thesis and of the four supporting papers
listed in the explanation at the front bof
this thelii are the independent work of

the undersigned except where acknowledgement

to other persons is made in the text.
V. o

March 28th, 1961
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1.0 INTRODUCTION

1.1 HISTORICAL BACKGROUND TO THE STUDY OF WIND ACTION
1.1.1 Early Suspension Bridges

The suspension bridge, in the form of twisted vines and-éroopcrc;’
sﬁpporting 8 simple deck of wooden slats, has been used by primitive people
since antiquity. No appreciable development from this archetypal form .
occurred until the discovery of 1:06 and the introduction of iron chains.
Some fine bridges incorporating these innovations and built in the early :
seventeenth Eentury, can still be seen in China. In'Europo, however, sus-
pension bridges using iron were not seen for another hundred ysars. An
Act of Parliament of 1721 refers to a "chain bridge" across the Heiland
at Market Harborough, and this was probably the first.

In the first half of the nineteenth conﬁuty a vigorous, upsurgent
interest swept through Europe and North America in almost all aspects of
engineering. During this period a uﬁmbet of notable suspension bridges '
arose - the forerunners of the modern structure. Unfortunately, few
of them escaped without being either Aamnged or destroyed by the wind,

Perhaps the first pioneer suspension bridge builder of note
was Captain (later Sir) Samuel Brown. One of his earliest and most
ambitious structures was the Union Bridge across the river Tweed. Built
in 1820, it had a span of 449 ft. and for the first time used eye-bars
for chaina. It was short lived, however, and was blown down six months
.after completion. Another of his better known structures was th.lnrightqn, '
Chain Pier, built three years later aﬁd consisting of four spans of 250 ft.'
each (Bishop - 1897). This was seriocusly damaged by wipd on acAchat three
occasions before being finally destroyed in 1896. His bridges at Broughton

and Montrose shared a similar fate.
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What is regarded as the fincli suspension bridge of this period -
Telford's 600 ft. span across the Menal Straits - was seriously damaged
by wind in 1826 (six weeks after its opening), and also fiftegu years
later. After the latter occasion its deck was considerably stiffened,
and it has suffered no further serious mishap since.

Bridges in the United States and in Europe fared no better.
Ellett's Wheeling bridge of 1,010 ft. span (the first over 1,000ft.) over
the Ohio river was built in 1848 and blown down six years later. Serrell's
1,043 ft. span at Lewiston near lilgaia built in 1850 had the same fate.
On the continent, the Nassau bridge across the Lahn river in Germany and
the Tournen bridge over the Rhone wtrevdeattoycd by storms during the same
period.

| One cause of destruction of these bridges was undoubtedly the

foom of aerodynamic instability which, mere than a century later, in 1940,
also destroyed the Tacoma Narrows bridge. This instability is new known
to be due to certain unfaveurable asrodynamic characteristics of the dcﬁk
combined with extreme flexibility. The flexibility of these early bridges

also made them vulnerable to gusts. The same is true today.

1,1.2. The Growth of Understanding of Wind Actiog

Perhaps the earliest practical information on wind pressures
was that presented to the Royal Society by Smeaton in 1759, based on some
results by Rouse. fhelc values, which are given in Table 1.1, agree
remarkably closely with the results of recent wind tunnel experiments on

flat plates.

~a



LE 1.1

after Smeaton -

7

Table containing the Velocity and Force of Wimi,
according to their Common Appellations.

Velocity of .
the wind

o] ]
§ 9 % §3§ Coummon appellations of
° CIP 3 the force of winds
7§ g3 3 gn" .
] d N )
© 8 g ! 9o 9w
] o I puUNEO
-4 Qo =n ' ) 3 8 8 (=3
= ° e 3
x e | mwwad
1 1.47 l 005 Hardly perceptible
2 i 2.93 .020
3 4 .40 ' . 044 Just perceptible
4 . .
5 g ;g; i 2;3 Gentle pleagsant wind
j i '
ig i ;28(7) | 1;’3;} Pleasant brisk gale
20 - 29.3% 1.968}
25 4 3667 3.075 Very brisk
30 i 44,01 ! 4.429}
35 513 i 6.027 High winds
40 58.68 7.873
45 | 66.01 | 9.963 Very high
50  73.35 [ 12.300 A storm or tempest
60 | 88.02 ! 17.715 A great storm
80 I 117.36 ! 31.490 A hurricane
100 : 146.70 | 49.200 A hurricane that tears up
‘ § trees, carries buildings
{ ! before it, etc.
1 i 2 | 3
;
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Although this information vu-.undoubtcdly available to these
early engineers, it would have been hard for them to reconcile these steady
pressures with the violent heaving movements of their bridges. Besides,
the earliest mathematical technique for determining the effect of what is
(somevhat misleadingly) termed the "“static wind load" did not appear till
1913. 1Instead the problem had to be dealt with empirically.

Various schemes were put forward for overcoming the effects of
the wind. Sir Marc Brunel, for example, in his design for the suspension
bridge at the Island of Bourbon in 1821, incorporated a system of chain
bracing (see Beamish, 1862). This consisted of two inverted catenaries
situated below the bridge, and inclined to the vertical so as to provide
some degree of lateral stability as well. Later, in 1830, he was con-
sulted on the subject of wind action by a delegation of gentlemen from
Bristol, who were engaged in judging a competition for the design of a
bridge across the Avon gorge. .On the strength of his experience, he was
able to advise them on "how the lateral agitation may be prevented and
how the effects of the wind might be counteracted". The winning d;sign,
submitted by his son, Isambard Kingdom Brunel, did in fact incorporate a
system of wind bracing similar to that used earlier by his.fnthcr.

(I.KX. Brunel - 184l1). |

At the same time, other systems of radiating élblc stays were
developed, but the most effective method of overcoming the wind effects.
was to stiffen the deck. This added weight to the structure which further
increased the jravtty atitfnaoo. The firct_.n;in;cr to realise the
utgnificancc'of beth these factors (of the importance of stiffening the
deck and of weight in providing gravity stiffening) was Roebling. The

structures he built -- which included the railway bridge (the first) at
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Niagara Falls, (1855) the Cincinatti bridge across the Ohio river, (1867)
his famous 1,596 ft. span at Brooklyn (1883) -- possessed greater rigidity
than any previous suspension bridges. They exexplified the important
principles he had learnt intuitively, and which.were to stand succeeding
suspension bridge designers in good stead until in the present century,

they were forgotten, with disastrous consequences.

1.1.3 The Consequences of the Tay Bridge Disaster

This trend towards increasingly rigid structures was greatly

acceleratad by an event which was to prove important in the later develop-
ment of the theory of wind action on bridges. On the night of December
29th, 1879 the celebrated bridge across the Firth of Tay (then the world's
longest), consisting of eighty-four truss spans, was blown down in a gale.
A train plunged through the gap in the bridge and some seventy-five lives
were lost.

In the inquiry that followed, it turned out that little or no
allowance had been made for wind (none in fact had been cilled for in the
specifications). The designer, Sir Thomas Bouch, was discredited and
work begun on his design for a railway suspension bridge across the Firth
of Forth, (two 1,600 ft. apaﬁs), was discontinued. With this inglorious
swan-song the suspension bridge disﬁppeared from the repertoire of British
engineers for the next half century (until work was begun in 1958 on the
3,300 ft.-span, road suspension bridge near the same site). Its place
vas taken by more rigid forms - the arch and the cantilever atrucéure.

The design for a new railway bridge across the Firth of Forth
vas placed in the hands of Sir John Fowler and Benjamin Baker. They

advocated a cantilever design, and the monumental structure which
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resulted epitomised this trend towards stiffer and stiffer lttﬁet-tea. In
the suspension bridge field this trend had already been started by Roebling,
and reached a climax in 1903, in the very generous depth of stiffening
truss used in the Williamsburg suspension bridge, with a depth to span
ratio of 1/40.

One of the main consequences of the Tay Bridge disaster was to
give impetus to a new field of scientific 1nvcltig;t16n, the study of the
affect of wind on structures. Interest in this had also been arouoed by -
the posoibiliti‘a of aviation. In this Benjamin Baker figured prOninontly.'
From his study of the forces on large boards in the wind (ses Baker 1895)
wvas obtained the design wind pressure figure of 56 lb./ft.z used in the
Porth Bridgc{ It was also the British Standard for several years. I;
the light of later lnvestigationl; this allovance for wind loads was
perhaps over-generous (particularly since the main members of the Forth
Bridge are round). Ignorance of the real effects of the wind were there-
fore to prove costly both in the Tay and the Forth bridges - but for

different reasons.

1.1.4 The Eiffel Tower

In the same decade, the Eiffai tower was completed to mark
the occasion of the Paris Exhibition of 1889. With a height of almost
1,000 ft., this became the world's tallest structure and almost dpublq
the height of the previous tallest, the 550 ft. Washington monument in
Washington. There had been a number of previous proposals for tall towers , |
but none were built. Trevethick, for example, had suggested in 1832 th#t
a 1,009 ft;.lcnat fron tower should be built to éolnbrqtc the passing of

the Reform Bill. Clarke, had proposed a towsr of 1,000 ft. for the 1874
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Exhibition at Philadeiphia, and in 1881, sébillot had suggclt‘d illuminating
Paris with electric lights from the top of another 1,000 ft. high tower.
It is possible that Eiffel's idea may have originated f;on the last of
these.

It is interesting to compare the wind load assumptions Eiffel
used, with the 56 1b./ft.? used 1§ the Porth Bridge, built twe years
earlier. In his account presented to the Société des Ingenieurs Civils
in 1885, Eiffel states:

"With regard the intensity (of the wind pressure) we have made
two assumptions: one which supposes that the wind has a constant force
of 300 kilograu/necrez (61.5 1b./ft.2); the other that this pressure
increases from the base where it is 200 kg./n;z, (41 lb./ft.z) to the
top where it attains 400 kg.ln.z (82 Ib./ét.z)."

"With regard the exposed surfaces, we have not hesgitated in
assuming, in spite of the apparent severity of the assumption, that on
the upper half of the tower, all the lattice work is replaced by aolid
surfaces; that in the intermediate section, where the openings become
more important, the frontal area is taken as four times the actual area
of iron; below this (the first stage gallery and the upper part of the
arcs of the legs) we assume the frontal area is solid; finally at the
base of the tower we count the legs as solid and struck twice by tpe
vihd (i.e. each leg separately exposed to the full force of the wind).”

Thess wind pressures were based on some results by Claudel, a
French engineer of that perio‘. |

The deflexion of the tower in a 54 miles/hour (24 m./sec.),
in which the wind pressure was taken as 78 kg./n.2 (16 1b./sq.ft.),

was calculated to be about 8 inches. At the same time it was assumed
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that P vibration would be very slow, so that the effects of any movement
on sightfseers would be imperceptible. He regarded the comfort of sight-
seers in a 120 mile/hour wind (the full design wind as only an academic
consideration.

The deflexion of 8 inches indicates the comparative rigidity
of the Eiffel tower compared to towers erected today. For example,
the 700 ft., free-standing, concrete tower, built at Stuttgart, Germany
in 1954 (which incorporates amongst other things a restaurant S00 ft.
above the ground), deflects approximately 5 1/2 ft. under a similar wind-
load, in spite of it being only two-thirds the length (see Leonhardt - 1956).

4

A 1,200 ft. guyed tower at Thule, Greenland is calculated to deflect 9 ft,

under similar conditions. (Sturgis - 1954).

1.1.5 Early Wind Tunnel Experiments

Contemporaneously with Baker's tests on boards, early wind
tunnel tests were begun. It is in this field, probably, that the early
pioneers made their greatest contributions. One of the earliest "wind-
tunnels' was made by Irminger, the manager of a Copenhagen gas works.
(see Baker - 1895). 1t consisted of a 4 1/2 in. x 9 in. conduit, con-
nected to a vent in the base of one of the large chimneys, through which
the air was sucked by the low-pressure, hot gases inside. 1In 1893,
Stanton began his notable experiments at the National Physical Laboratories
near London, and in Paris, Eiffel began his. A wide variety of objects
were tested by these investigators, including basic shapes such as flat
plates and cylinders, as well as building shapes, (see Stanton - 1903/4;

Eiffel - 1913),
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It was at this time that the foundations of what has no; come
to be the standard method for determining th§ wind forces on structures,
were laid. So standard they are now traditional, they have beem followed,
often blindly, ever since. It is significant that they were evolved at a
time'when the trend to rigid structures had reached its climax; the
structures were usually stiff enough to exclude the possibilities of
dynamic excitation by the wind. Since then, however, this trend has
reversed: with improvements in 5nalysis, in strength of materials, and
in construction, and with the aesthetic demand for light, graceful forms,
structures have been made lighter and consequently more flexible. But
although the structures have changed, the wind loadsg, by and large, have
not. In 1940 one form of dynamic loading due.to‘wind caused the »
catastrophic collapse of the Tacoma Narrows Bridge. Although the problems
related to this have now largely been solved, another form of dynamic

excitation still exists, due to the turbulent, gusty character of the

wind.

1.2 THE QUASI-STATI TOW LOADING AND I1TS § (1 .}
Traditionally, the wind pressures acting on a structure were

calculated on the assumption that the fluctustions in the velocity

and direction of the wind could be disregarded, and that the wind could

be taken as horizontal and invariant with time and space. These

simplifications were convenient in that pressures could then be determined

from simple wind tunnel experiments on models, conducted in a steady

airstream. From these, various coefficients -- such as the coefficients

of pressure and drag -- were found which were assumed to apply to the

model and its prototype alike. The only further information needed to
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calculate the pressures was a suitable value for the 'design wind velocity'.
Since the effects of sudden gusts could ﬁot be predicted with any certainty,
it was common practice (and still is frequently) to use the highest in-
stantaneous velocity recorded by some nearby anemometer. This, it w#a
believed, would at least be a conservative estimate.

Although this traditional approach has been modified and im-
proved with the passage of time, particularly with regpect to the choice
of "design wind velocity", the fundauantaliy quasi-static nature of the
approach has been preserved. Although it may not Be entirely unsatis-
factory where rigid structures are concerned, it is incapable of dealing
with two 1mpogtant,dynanic problems affecting flexible structures, such
as the tall mast and the long span suspension bridge. These are

i. forms of aeroelastic instability
and 2. excitation due to gusts, both vertical and horizontal.

The forms of aerdclactic instability which affect bluff bodies
are well known, mainly because of their cataltrOphicvconsequencea.

Usually they can be classified ihto."fékced" and "self exciting"
oscillations (although the dividing line is not always easy to draw in
some cases where both types tend to manifest themselves). The forced
oscillation is known to affect tﬁll, cylindrical structures such as
chi-hcy ,tacks, (Scruton - 1955: Den.Hartog - 1954) pipeline suspension
bridges (Baird - 1955), and some types of antennae mast {Davenport - 1959).
The self-exciting oscillation is well known in counection with the ill-
fated Tacoma Narrows bridge, which was shaken to pieces by the aero-
elastic forces produced in & wind of no wmore than 42 mi./hr. (whereas,

it was designed to withstand a "static" wind load corrclponitng to a

vind of about 120 mi./hr.)
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Although still only partially understood, these dangerous dymamic
forces can usually be remedied, either by changing the shape of the struc-
ture to one that is aerodynamically stable, or by raising the natural
frequency of the structure so that instability only occurs at improbably
high wind speeds. (see papers by Scruton - 1959; Bleich - 1950;
Parquarhson - 1952; and Frazer - 1952).

Although not unrelated to the present topic, these aercelastic
forces are not discussedlin this thesis, which is concerned with the
second of these problems, namely the forces produced by gustgﬂggwgindk//
These gusts may be either vertical or horizontal. Neglect of the vertical
components of gustiness, and the assumption that the wind is purely
horizontal, has led to the overlooking of the large lift forces that
can develop on a bridge deck in a slightly inclined wind. This was at
least partially responsible for the collapse of the Tay Bridge and,

more recently, in 1944, of the Chester Bridge across the Mississippi.

1.3 THE LOADING IMPOSED BY STRONG WINDS

1.3.1 The Gust Problem

The transient and localized nature of gusts has been appreciated
for some time and a number of atte;;;;B;;ve been made to allow for it in.
estimating wind loads. In his experiments at the Forth Bridge, Baker
(1895) found that the wind pressures on a 300 sq. ft. board were some

50 per cent less than those on a board 1 1/2 sq. ft. in area. This was
later corrobrated by Stanton's measurements (1925) of the average wiﬁd
velocity at a number of points across a 420 ft. "front" and at a single

point. These showed that. the highest average velocity across the front

was significantly less than that at a point.
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o The conclusion resulting from these experiments tended to suggest
that ao;eballowance might be made at least for the localized effect of
gusts. This was later discounted, however, by the conclusions Stanﬁon
(1925) reached after his experiments at Tower Bridge, London. Here;
pressure tubes were mounted both on the vindwqrd and leeward faces of
the footway girders at intervals across the 225 ft. span. These were
coupled to mechanically linked, aneroid pressure chambers in such a way
as to yield the total average pressure acting on the footways. This
average pressure and the gsimultaneous ''point" pressure (measured across
a single section of the span) were recorded continuously on a chart
drum.

It is noteworthy that, these records appear to be the only
continuous measurements ever made of the wind pressures exerted on a
large structure. Unfortunately it was not possible to record simul-
taneously the velocity of the incident wind giving rise to thege
pressures, and the valuable opportunity to correlate the fluctuation
of the pressures on a structure, with the corresponding fluctu#tioua
in the wind, was lost. |

The records did indicate, however, that the pressures at a
single station (measured on windward and leeward faces) corrcapondedA
closely with the average pressures acting on the span as a thle. From
this Stenton concluded:

"...that in winds of moderate intensity, up to 50 miles per
hour, the pressure on a large area during the passage of a gust is, in
the majority of cases, appreciably less than that on a small area. There
is, however, very definite evidencc.of the existence of gusts up to 50

miles per hour’ in which the variation in velocity over the front is so
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small that, in the case of a structure in an exposed position and having

a span of less than 250 ft.,'the pressure over the whole area is sensibly
equal to that at a point in it. Obviously, if this condition were found

to obtain for gusts of still higher intensity and for structures of much

greater span, no reduction in the wind-pressure factor on account of

lateral variation of wind-speed could be justified".

fhis couclusion introduced a strong note of caution into wind
load specification which has survived since. 1In fact, the reasoning
seems to be somewhat doubtful. While the conclusion refers to the
"variations in veiocity over the front" the measurements, in fact,
referred to pressures at pairs of points, (on windward and leeward
‘surfaces), separated by the full width of the bridge; and inside the
vake and vortex regions created by the structure. The response
characteristics of the instruments appeamd also to be an unknown
quancity.

Stanton's conclusion was reaffirmed by Bailey and Vincent (1939)
in their "follow-up" experiments at the Severn Bridge, across a very
much wider span. Their reasons for doing so are not altogether clear.
In these experiments, velocities were measured, not pressures.

It seems fair to comment that these earlier investigators were
seriously handicapped by the lack of a.suitable ltltisticﬁl framework
into which to fit their observations. In fact, the statistical theories
;f turbulence were then still in their tnfincy. This may account for
their apparent tendency to try t# distinguish between possible and im-
possible events rather than the probable and the improbable. PFrom thisg

point of view the results tended to be somewhat inconclusive.
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A greater degree of success was achieved by Sherlock, who was
also concerned w;th another problem. This was that the indicated
'maximum gust velocity' used in design depended largely on the response
characteristics of the particular instrument. This could lead to the
somewhat illegical situation in which design wind loads were hijher
vhere the nearby anemometer was less sluggish, or even better lubricated.

As an alternative to the practice then cﬁrrent, Sherlock (1947;
1953) advocated the use of an average instead of an instantaneous velocity,

. e
together with certain 'gust factors' which would allow for the additional
effects of gusts. A five minute averaging‘period vas suggested for the
former, since climatological records for this period were available im the
United States. In deciding suitable gust-factors, Sherlock inferred,
from naasurcmcnt; of the build-up of lift forces on an aerofoil pene-
trating a "sharp-edged" gust that, analogously, a gust must traverse
eight or ten diameters of an object before the full drag pressures
would be felt. On this basis, for example, he concluded that smaller
structures, such as ﬁouses, would not respond to gusts lasting less
than about two seconds. For larger structures the period would So
correspondingly longer. }

From detailed measurements of wind velocity made on a tall
tower during several winter storms, Sherlock was able to dctotm;nd the
ratio of the 'most probable' two second mean velocity to the simultaneous
five minute mean velocity. This was the so-called 'two second gust-
factor'. The gust factors for other intervals were also detarmined. 1In
each case they were found to decrease with height above the ground, a

feature also noted by Deacon (1955), who investigated a somewhat greater

height range. From these investigations it was also concluded that tall
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magts should be designed for 'moving load effects', as shown in Fig. 1.1.

Although this approach undoubtedly represented a notable advance
in the understanding of wind-loading, and, in particular, of the effect of
gusts, it still possessed serious limisﬁsfons. \First, the results could
only be expected to apply to open-country sites similar to that used in
the investigations; at much rougher sites, such as the centre of a large
city, the gustiness would almost certainly be more intense, Second,
the approach fails to take account of the history of the loading pattern.
It is, for example, incapable of predicting either the consequences of
a gsequence of gusts striking the structure or the likelihood of such
an event occurring. For flexible structures, such as tall towers and
long span bridges, this could be & source of serious dynamic stress-
magnification which no theory based on purely statical assumptions
could allow for.

One or two rules of thumb were available for avoiding the
worst dynamic effect. One is that given by Irminger and Nokkentved
(1936) that the natural oscillation period of radio masts should net
be allowed to exceed 3 - &4 seconds. In another instance, the survival
of several tall masts erected in the Far East after being struck by
several fierce typhoons is credited to the fact that natural periods
between &4 and 8 seconds were avoided. (see Anon. - 1937). Although
these gimple uotioné probably contain an element of truth they are
unlikely to represent either sufficient or even necessary conditions

1

for the avoidance of serious dynamic effects.

- 1,3.2 The Relation of the Gust Problem to the General Strong Wind Problem

Evidently, one aspect of the problem that still has to-be

satisfactorily answered is the prediction of the dynamic action of gusts.
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Expressed somewhat differently but more in line with design needs,

the problem is to predict the static-equivalent gust load having a

glven probability of occurrence. Having found the answer to this question,
it 1s necessary to-link it with the climatological problem of predictiﬁg
the extreme mean wind load at different geographical localities. ‘

The generalvprinciples of the method suggested for answering
these probléms Lave already been described in a paper by the writer
(Davenport - 1961). 1In it the response of a simple "one-degree of freedom"
structure to gusty wind was considered. The structure was assumed to be 5
small enough for the wind to be acting virtually at a point.

To solve the gust problem the concept of the stationary random
series was introduced. This led to a "gust factor" which defined the
ratio of the probable peak gust load during a given period to the mean
wind load during the same period. It was shown to depend on the aero-
dynamic and dynamic characteristics of the structure, and also on the
roughness of the site, the principle factor governing the intensity of
the gustiness. The mean wind load could be determined from a theory

of climatological extremes discussed earlier by Davenport (1960).

1.4 STATISTICAL CONCEPTS OF THE STATIONARY RANDOM PROCESS

The theory of the stationary, random series assumes that,
although the quantities involved (wind velocity, deflexion, stresses atc.)
are purely random and cannot be specified from one moment to the next,
their statistical properties, nevertheless, remain stationary, that is
to say constant, provided that the general conditions of the experiment
stay constant. Such processes are known as stochastic processes and have ‘
the same relationship to a continuous function of time, as a fandom

variable bears to a discrete sample value. The properties of the
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stochastic process are defined by the results of a large number of
individual experiments each of which ylelds a function of time (éuch as
a "run" of wind).

This property of gtationariness, is, it seems, generally

exhibited by the wind to a highly satisfactory degree, provided that
sample times are chosen suitably. A period of between one hour and five
minutes appears generally to be satisfactory, largely because for such
periods, general weather conditions - such as mean wind velocity and
thermal stability - can normally be relied upon to remain fairly constant.
Isolated samples of wind do appear to depart from this property of
stationarinegs; these however, are seemingly unrepresentative when it
comes to making an overall, long-term, prediction of wind loading, and -
any distortion they may cause to the statistical picture, assuming
stationariness, is believed to be quite negligible.

Application of statistical concepts to physical problems are
not new. They were applied to dynamic problems by Lord Rayleigh. Since
then the concepts described above have been applied to the theory of
Brownian motion, noise in electrical, radio and acousticalbsystems,
noise from jet engines, certain aspects of astrophysics, ocean waves
and the response of ships to these, and the response of automobiles to
bumpy roads. Most significantly, from the present point of view, they
form the basis of the statistical theory of turbulence developed by
Taylor (1926 - 1935) and von Karman (1937). Proceeding fi'em this, Lin
(1943) determined theoretically the response of a simple pendulum to a
turbuleqt fluid‘f¥ow. The analogy of this to the gust loading of air-
craft was first pointed out by Liepmann (1952). The methods would now

seem eminently suitable for solving the civil engineering problem of
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gust loading.

A direct consequence of the "stationariness”" of the wind is that
it is possible to think of the fluctuations in it as composed of a very
large number of wave trains, of all frequencies, superimposed on ome
another. Each wave train remains the same amplitude throughout the
'run', and a "gust" will occur whenever the peaks of several wave trains
arrive simultaneously; similarly a "1lull" will occur whenever several
troughs arrive together.

If the mean square amplitude of these wave traing are ranged
accordingly to frequency, (or wave length), a form of spectrum results.

A true spectrum (in which the power density or mean square amplitude per
unit frequency interval is related to frequency) is obtained, if the
length of the record and the number of component wave trains are increased
indefinitely. The magnitude of each component wave train can, if
necessary, be found by Fourler analysis of the original wind record. If
this is done a remarkable result is usually obtained, in that, sampling
errors excepted, the spectrum is found to be extremely regular and well
ordered as can be seen from Fig. 1.2. Furthermore the form of this
spectrum seems to be predictable within limits, knowing only the wind
velocity, the height and the ground roughness, as is discussed in

section 4.0.

If the response of the structure to each individua%wfrequency

m -

is known, and i{f this is linear, then it is a simple matter to determine,

first the spectrum of aerodynamic pressure, and subsequently, the spectrum
of the structure's deflexion. The area under the latter is equal to the
total mean square deflexion. This, together with the mean deflexion

(which can be found straightforwardly) is usually enough to define the
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statistical distribution of the deflexions. Prom this the "most probable"
peak deflexion can be estimated. The ratio of this to the mean deflexion
defines the gust factor.

This procedure, which has been described by Davenport (1960)
for the cagse of a gimple structure, can be extended to slender, beam-like
structures possessing several modes of vibration. This requires analysing
the distribution of the wind velocity across the span into the component
modes of the beam. The response is then determined for e‘?ﬁ.“?ff sep-

arately, and the results superposed.

1.5 THE CLIMATE AND STATISTICS OF EXTREME WINDS

Any accurate estimate of the probable wind loading must rest on
a reliable prediction of the climate of extreme winds. This forms an
essential, but separate part of the wind loading problem. Use has been
made recently of "extreme value' statistical methods to predict the wind
extremes of climate (Shellard 1958; Thom 1960), the objective being to
estimate the extreme vindq :ypicil of "flat, open country", with various
recurrence periods (i.e. the "once-in-fifty-year wind etc."). Anemometer
records from "suitable" stations were used for the purpose and from these
contours of wind velocity were drawn. Davenport (1960) has suggested
that failure to take account of the very important modifying influence
of ground roughness results in mean wind velocities in cities (vhere,-
after all,most buildings are erected) being for too high. Furthermore
it leads to the assumption that the exposures of the anemometers in
service are far more homogeneous than they actually are.

The alternative method for estimating the climate suggested
by Davenport (1960) is summarised here. A possible further improvement

is introduced in that gustiness is used as an 'indicator' of the roughness,

13
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2.0 WIND STRUCTURE NEAR THE GROUND

2.1 GENERAL

It is well known that the wind is induced by the pressure
differences which arise over the earth's surface. These pressure
differences are indicated by the isobars (lines of equal barometric
pressure) of any weather map, such as that shown in Fig. 2.1. The wind,
at heights great enough for it to be unaffected by the frictional forces
near the earth's surface, tends to move parallel to the isobars, and

attains a velocity knowm as the gradient velocity. If the overall

pressure patterns are stationary, this gradient velocity can be estimated
quite easily from the spacing of the isobars, (i.e. the pressure gradiemt),
their radius, and the latitudé (see Sutton - 1953; Davenport - 1960),

In general, the closer the spacing of the isobars, and the smaller their
radius of curvature, the stronger will be the wind.

This gradient velocity, however, is only obtained at heights
above about 1,000 - 2,000 ft. Below this, at heights of greater interest
to the structural engineer, the airflow is influenced by the friction at
the surface. The principal consequences of this are that the airflow
is retarded, it becomes turbulent and 3Us;y, and its direction is no
longer parallel to the isobars. The rougher the surface the greater
these effects will be. Fig. 2.2, which shows simultaneous records of
wvindspeed at 2-second intervals at three heights on a tall mast, illus-

trates some of these effects.
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FIG.2.I WEATHER MAP SHOWING AN INTENSE
DEPRESSION WITH STRONG WINDS.
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FIG.2.2 RECORD OF WINDSPEED AT THREE HEIGHTS ON A S5OOFT. MAST.
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2.2 VARIATION OF MEAN VELOCITY WITH HEIGHT

A number of formulae are available for describing the variation

of the mean wind velocity in this lower height range. All of them are,
to some extent, empirical, since, as yet, there i; no established theory
which accounts adequately for all the factors involved. One of the
simplest and most reliable of these expressions is the power lay, which

can be written

- o
v, o Ve (2D

g (2'1).
where

Vz = mean velocity at height Z,

VG = gradient velocity,

Zp = the height at which the gradient velocity is first attained

(the gradient height),

and ® = an exponent, applicable to the particular site and wind
conditions.

In high winds it appears that the parameters of this profile
are controlled almost entirely by the ground roughness. Comnvection - the
other possible influence - is usually less important in high winds, partly
because the churning action of the strong mechanical turbulence prevents
the necessary thermal instabjlities from arising (this is particularly
true if, as is ulual,.clouds blanket incoming or outgoing radiationm)
and partly because the mechanical turbulence increases with wind-speed,
vhereas convectional turbulence does not.

Exceptions to these statements may possibly be encountered in
severe local ggtorms, such as frontal squalls and tornadoes. However,

these storms, although perhaps not infrequent when taken over a wide

region, generally affect very small areas (of the order of a few square
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miles) at a time and the incidence of high winds at any one place due to
these "freak" storms (even in the notorious tornado belt of the American
Mid-West) is probably negligibly slight compared to that due to more
general large scale storm systems, to which the earlier statements refer.
In the latter, more general type of storm, it appears that both
the value of X (weasuring the variation of the wind velocity with height)
and of Zg (measuring roughly the thickness of the layer in which the
airflow is retarded) increase with ground roughness. This can be seen from

Table 2.1 giving the values of ® and Z

e i i,

G

of surface, as suggested by Davenport (1960). The corresponding mean
vind velocity profiles (for a uniform gradient wind of 100) are shdwn in
Fig. 2.3. From this it is seen that.the‘uean velocity at 100 ft. in a
city might be about half that in open country. This means that the
kinetic pressure of the airflow in the city is a quarter that in open
country.

On the other hand, the gustiness in a city is greater, also
due to the greater roughness. The actual turbulent energy in the wind
(at frequencies greater than about .l cycle per minute) may be about
12 times that in open country for the same surface velocity. Conse-
quently, large variations in the possible effective wind loads on a
structure can arise, depending on whether it is erected in & city or in
open country, and on whether it is susceptible to fluctuating gust loads.

It should be ob:érved that the mean velocity profiles shown
in Pig. 2.3 refer to flat terrain whose roughness characteristics extend
over a sufficiently wide area for the flow regime to establish itself

uniformly. Where this is not so, either due to the undulating nature of

the ground or to the rapidly changing character of the surface roughness
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' : TABLE 2.1

WIND STRUCTURE PARAMETERS FOR SURFACES

OF DIFFERENT ROUGHNESS

Power law
Type of surface exponent

4

8} Open terrain with very few

b)

obstacles:

e.g. open grass, or farmland

with few trees, hedgerows,

and other barriers etc.: ~

prairie; tundra; shores and

low 1islands of inland lakes;

desert. 0.16

Terrain duniformly covered
with obstacleg 30-50 ft. in
height:

e.g. residential suburds;

. small towns; wood land, and

c)

sorub; emall fields with
bughes, trees and hedges. 0.28

Terrain with large and

irregular objects:

e;g. centres of large cities;
very broken country with many
wind breaks of tall trees, etc. 0.40

Gradient
height

Zga

900

1300

1700

Drag

" Coefficient

R

.005

015

.030
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certain modifications will be necessary to suit the conditions.b For

~ example, in hilly regions amplifications of wind velocity can arise near
hill-tops and in funnel-shaped valleys. The former have been investigated
and exploited to a limited extent, in the obtaining of power from the
wind (Wax - 1956). In coastal districts, also, it seems likely that
when a wind blows gff/;he rough shore, it may take some distance (perhaps
three or four miles) before the flow regime corresponding to the rougher
land surface is fully established. A similar effect is likely to be
present when the wind flows from the outskirts of a city to its centre.
In this 1ﬁstance, however, the change in roughness is probably more
gradual, and the wind regime may therefore establish itself soomer.

It is perhaps interesting to note that, although two of the
most important applications of the study of wind structure in the lower
layers (namely, the diffusion of smoke and the wind loads on buildings)
refer most frequently to large urban areaé, no detailed investigation
has yet been carried out under these conditions. There is, however, a

migcellaneous assortment of measurements available (sse Davenport 1960)

which all point to the conclusions referred to here.

2.3 THE CLIMATE AND STATISTICAL PROPERTIES OF EXTREME W

Fundamental to the entire problem of wind loading is a satisfac-
tory estimate of the climate and statistical properties of the mean wind »
velocity at the site of the structure. .

Some of the difficulties encountered in determining these have
been discussed by the writer (Davenport - 1960). It was pointed out that
the principle source of information on wind speeds near the surface was
anemometer records and that these in themselves had certain shortcomings.

The siting was not always ideal (e.g. on cliffs or on city buildings)
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and the period records had been kept varied from station to statien. In
addition the wind speed would possibly be representative of the surfuﬁe
roughness only in the immediate vicinity of the anemometer. This meant
that to obtain an overall picture of the extreme surface winds from
anemometers alone, it would be necessary not only to have an anemometers
. situated in such a way that they reflected local variations in terrain
roughness, but also to make some adjustment for the different periods of
record. Clearly this would be considerable task. An alternative method
for determining the climate (i.e. statistical properties) of the extreme
wind velocities, suggested by Davenport (1960) is now described. This
uses the gradient velocity as a reference and uses records of surface
anemometers to obtain estimates of this at several points.

As a first step, the statistical properties of the surface
velocities as given by anemometer records are found. To do this the
annual wind velocity maxima for a number of years are extracted from
records of each station and analysed statistically. It is found that
their statistical distribution - in common with many other climatological
and other extremes - can be satisfactorily represented by the function

e Y
P(V) = ¢€ (2.2)
vhere y = a (V-U) ,
O = the scale factor for the data (measures its dispersion),

and U = the mode of the data.
Here, Pﬂo denotes the probability that the maximum Qelocity in any one year
is less than V

Some valuable results of this kind have been compiled by Shellard

(1958) from the anemometer records for selected stations in the British
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Isles. (A similar study has been made by Thom (1960) for the United
States using a slightly different distribution.) From Shellard's
values of the parameters !41 and U for the various stations, estimates
of the corresponding parameters for the gradient wind were then made
(see Davenport-1960). This was done assuming a constant ratio between
the velocity of the gradient wind and that at the anemometer height,
determined from the wind velocity profile which seemed most appropriate
to the site. Contours of the parameters of the extreme mean hourly |
gradient wind speed, obtained by these means are shown in Fig. 2.4
(This is a slightly improved version of the map given previously by
Davenport - 1960).

From this map, the gradient wind velocity with any prescribed
probability of occurring can now be predicted. For some uses - such as
flood prediction - it has become customary to allude to this probability
in terms of a return period which defines the average number of years
before a certain value either recurs or is again exceeded. 1If this
convention 1is adopted and the return period is denoted by v , the
probability that a certain value is not exceeded in any one year is

(”"!,2) . Hence from equation (2.2) the gradient wind velocity VG

for which v is the return period is

- . _ — '
Ve = U - & [loge (~log, i—2)] (2.3)
For large values of r (v’ﬁ?lco this can be approximated by

\76 = U + 4 losr (2.4)

a
The values of U and %f are read from the contours of the map. Extreme

wind velocities close to the ground can now be determined from equation (2.1).



60° ié,(
¢ U=90
I/ = 9.0
$9°
2
&
Q {
U =85
3
I/a= 85
8
8, U = 80
;igb I/d= 8.0

| &
° U=75"|
55 «'A W 1/q = 7.5
)
d
<
Ay
=, ¢
<
50 , - 7
10° 5° o°

FIG.2.4 PARAMETERS OF EXTREME MEAN HOURLY GRADIENT WIND SPEED
OVER THE BRITISH ISLES

UNITS: MILES PER HOUR




-33_

It is common practice for records of maximum peak instantaneous
gust speed to be kept in addition to hourly mean velocities. The average
ratio of the extreme gust velocities to the extreme hourly velocities gives
a useful measure of the guotinega. This gustiness (as might be expected,
and as is discussed in the next section) also happens to be good indication
of the reughness of the site upon which the variation of the mean wind
velocity with height depends. The possible use of this gust ratio as an
‘indicator’' of the roughness (in place of the more subjective evaluation)

is discussed in the Appendix 1.
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;.0 THE RESPONSE OF BEAMS TO STATIC AND STOCHASTIC LOADING

.1 _JINTRODUCTI

The loads imposed on a t;ll mast or a long span suspension
bridge by a gusty wind can be separated into two parts. First, a steady
component due to the me;n wind, and a second, a superimposed fluctuating
load, due to gusts. In principle, the response of the structure to the
ﬁcan wind load presents no difficulty, since it is a simple sﬁatical
ﬁroblan. Tﬁe loads due to gusts, however, present a more difficult
ptoblcnlsincc these are random in nature owing to the randomness of the
gusts themgelves. As such, they are only definable in staﬁistical terms:
to try to define them éthervioe is useless.

It is hardly possible to define the statistical properties of
the gust loads with any generality, since they are governed by the dynamic
and aerodyﬁamic characteristics of the particular structure. It does,
however, seem to be possible to make a satisfactory statement of the
statistical properties of the atmospheric turbulence (at least the more
relevant ones), and then, to ;stimate the statistical properties of the
deflexions, stresses, etc., knowing the aetodynamig and dynan;c charac-

teristics of the structure. As indicated already, this can be done using

[V S

the Generslised Harmonic Analysis developed by Liepmann and others.
For the purposes of general theory, the tall mast and long

span suspension bridge can be regarded simply as slender beams. The

special support conditions appertaining to each structure need not be

introduced until a later stage.

3.2 P or TO A STATIC DIS
There are many methods of determining the response of a beam to

a static load distribution. One of these, which happens to be in line
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with the technique used later for determining the response to gust loads,
‘uses the natural modes of the beam for representing both the deflexions

and the loads. +

The natural modes of a beam are given by the various solutions

to the equation,

dl

Kx).y + m). E-f:u‘ =0 ‘ (3.1)
wvhere m(x) and K(x) are general expressions for the mass and the equivalent
stiffﬁess of the beam (taking into account such additional effects as guy
supports in the mast and the support of the cable in the suspension bridge).
The infinite nﬁnber of solutions to this equation can usually be written

in the form:

y (x,t) = _a,@ . sin 2unt (3.2)

where N =the natural frequency in the rth. mode;

//5@9= : the rth. mode of vibration i.e. the shape of the
- deflexion curve during vibration. :

Any static load distribution, Plx) , acting on the besm can be
expressed in terms of these modes;

Py = D, B @ (3.3)

Y

The coefficients Fi can be found by multiplying both sides by
/ r("') and integrating over the entire length of the bom,o— ¢. Since
it is a universal property of natural beam modes that they are orthogonal

to one another,

O fer ‘r%s

S
J‘/«r@.)./h;@).dx = (3.4)
o ' N, for r=s

and hence,

p=_ (!
r = — J Pe) m ). dx (3.5)
Ny J,
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(A procedure similar to this is used in ordinary harmonic analysis).
It is also possible to represent the stiffness function | ki@‘)
in the same way, either directly, or by assuming an initial form for the

deflexion curve,

K(DC) = Z' Ky 60 (3.6)
where r | :

| .
Kr = "f\“: K(_z\./u,(x.).dx . 3.7

o
The deflexion of the gtructure may be written

— Pr
Yy = )R, Me® (3.8)

L |

Knowing é&e deflexion, it 19 then a straight forward matter to
determine other quantities such as the moments and stresses.

The acﬁucl mathod of determining the modes is left until
Section 6.0. Even if the form of the modes is difficult to express
explicitly (due to’changea in beam gsection etc.), it is usually possible
to represent them sufficiently accurately by series of other simple
functions, such as ordinary sine functions or the so-called Basic Functions.
The analysis of the suspension bridge under static wind loading, using
the former functions, has been carried out by Selberg (1944), and the tall

mast, using the latter functiomns, by Davenport (1959).

3,3 THE RESPONSE OF B 10

In a previous paper (Davenport 1961), the response of a simple

one-degree of freedom structure to a stationary, random load was described.

The equation of motion of such a system is:

2
Mc:u-’ + cCa{-‘é + Ky = P{) (3.9)
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vhere \j = deflexion of the structure at time ¢ ;
M = mags of ‘the structure;
C = velocity damping coefficient;
and K = spring stiffness (load per unit deflexion).
The solution of this equation enables the spectrum of the
deflexion to be expressed in terms of the spectrum of the load. (The
spectrum defines the coﬂtrlbutiona to the variance of a stochastic process

made by the different frequencies.)

)
Sﬂ(n) = L‘x_.f:z(_:_!— . 59("‘) (3.10)
" where 59(”) = gpectrum of deflexion at frequency n ; '

Sp(n) = gpectrum of the load at frequency n ;

|X n)r- ; (3.11)
‘ {‘—(_) } ’18? (n.)

and N, = natural frequency

‘de)l is commonly known as thc gxg ¢ magnification of the system.

It follows from tho dcfini.tion of a spectrum that the variance

of the deflexion is:
G(y) - f Sy(n).dn
o

I‘<’ L‘ Xa(n)‘z. Sp).dn | (3.13)

If the structure has more than one mode of vibration - as in the
case of a beam - and the load no longer acts at a point, but aleng the
entire length of the beam, the problem is more complex. As a first

approximation it is possible to consider the response in each mode
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separately and then superimpoge the results. This ignores any possible
coupling effect between the different modes. 1If, however, the damping is
swall (as later it is shown to be), the natural frequencies are separated,
and the beam modes do not involve torsion, any coupling is generally
negligible and the assumption justified. (A full description of the
theory taking into account the coupling has been given by Eringgnw(_lg_S}).)

As a first step both the load and the deflexion are represented
fn terms of the natural modes of the beam:

i.e.

Pt x) = Z Plt) m e (3.14)

where /ur@.)- the function defining the deflexion of tha beam in the
¢ th. mode for unit deflexion at_the reference point;

and pr(t) = component of the load for v'h. mode.at time ¢,
This load will cause a deflexion \H(t)n) which can likewise be expressed

in terms of the natural modes:

(:J(t x) = Z_ 9',(\&)./#",@.) (3.15)

Using a procedure for dcumining the coefficients similar to that used

in the static case (see Eq. (3.5)),

P®) = _"TrL Plt,x) m, @). dx 316

The mean square of this load component is

et
[Pr(“)]z = 71,": I [ Plt,x) At x) o) o2 )dn. da' (3.17)

where the bars denote time averages. Now the quantity on the left hand

side represents the variance of the quantity P‘. (l’) , and the quantity

PQ:,x,). PQ:,;&') represents the co-variance of the load P(E,x.) at
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!
points x and x on the beam. Both quantities are assumed to be stationary,
random functions of time, and therefore have spe;:tra.
The spectrum of the rth, mode load component, at frequency N ,

is, from equation (3.17),

1L _
Spr(."‘) = 'F\li"‘z [ j 59(";"|5”)/“r@‘) -/“r("")- dx.dx’ (3.18)

r
vhere Sp(x,x‘,'n) is the cross-spectrum of the loads on the beam at X

and x' , for frequency @ . The cross-spectrum is a complex quantity,
that is to say, it is defined by two components,one in-phase and the other
- in quadrature. It can be normalised by dividing by the spectrum at some
reference point yielding, effectively, a cross-correlation coefficient

between the loads at the two points, x and =', for the frequency n .

Hence,
Sp Q")
59,.( ) = A R(x x': n)/.r(x.)/«rx Jedx.dn'.  (3.19)
vhere 5? (n) = the spectrum of the load at a reference point‘.'/
and R(?'-x-,n)- the crou-cotrelation coefficient of the load at

x and »' at frequency n ,
5p("'>"‘ 3 ™)
_———-___‘-_*
SY RGO
The above expression for the rth mode load component can be simplified

et

1

by writing

Sp.(m) = lJ,(n)lz. Sp () (3.20)

where

et
l
|0 = N? f f R@E, x50 mp) mix). dx. dx'. (321

The latter is termed the "joint acceptance" for the rth mode, and is a
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meagure of the correlation between the form of the pressure distribution
across the span and the mode.
The response of the beam to the load spectrum Sp (n) , is
r .

governed by equation (3.9). Resulting from'this, the deflexion spectrum

for the rth mode component is found to be

2
Sﬂr(n) - IX,Q‘»)I_,_ Sp (™
Ky

X
lhéiz"l’ lJr(”)fz- Sp (n)
r (3.22)
where {Xr(n) ,2- :

A CHR RN ETTY 3.23)

N, = natural frequency in rf, mode;
O, = logarithmic demping decrement in the v'h mode.
I1f it i{s assumed that the small coupling effect between modes
is negligiblc it follows from equation (3.15) that the total variance

of the deflexion is

0”79) = Z_ 9,&)’./3@) R C R 75

The total spectrum of deflexion at position x is correspondingly

59(1sn)= Z Sy, e (3.25)
where 5;).,(") is given(by (3.20). This is the basic expression for

determining the deflexion spectrum.
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The variances of the shear force and bending moment on the beam

at station X are given respectively by

2 2 rd
O—Q (X.) =ZG:- (Pisn) . q/,(") (3.26)
and G’z ) =7 c-l P 2 6e (3.27)
M / r(-dj")'mv"> .
-
vwhere G'l',z(pd ~) = the variance of the dynamically magnified mode
3 component of load for the rth mode;

% r S 2
o= [IXOR 0 Spe. dn

o
and C},Qﬁ) and m () are the shear force and bending moment due to unit
r th. mode load component at station x
. Similar expressions can be written for the spectra of the shear
forces and bending moments.

It is evident that the data required for evaluating the above
expressions are:
1. the spectrum of thé loads at some reference point;

2. the cross-spectrum of loads for pairs of points along the length of
the bean;

3. the modes and natural frequencies of the beam;

4. the mechanical magnification of the beam for the various modes;
(this necessitates knowing the damping in the structure).
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4.0 PROPERTIES OF ATMOSPHERIC TURBULENCE

4.1 GENERAL

The properties of atmospheric turbulence required in the analysis
of the wind loads on the tall mast and suspension bridge are those that
arise naturally in the statistical thebry of turbulence. This theory
originated in an isolated paper by G. I. Taylor in 1922, discussing the
problem of diffusion in the atmosphere. Part of the aim was to deduce
the properties of the mean flow from the statistical properties of the
turbulence, rather than by direct observation and empirical inference.

It was shown that the motion of particles of air was essentially random
and analogous to the Brownian motion of small particles due to molecular
collisions.

In the period between the wars, very little direct use was made
of the statistical theory in studying wind structure; the empirical
approach still remained the principal weapon of attack. It is interesting
to note, however, that one of the first applications of statistical
concepts to wind structure was made by Giblett and others (including,
notably, Durst) in the period 1925 - 1932 at the Royal Airship Works at
Cardington. (see Giblett - 1932). Occasions of high wind were studied
with the aim of obtaining basic knowledge from which the wind loads on
airships might be assessed. Had interest in airships lasted, enabling
these experiments fo be continued, the value of statistical theory in
determining the dynamic wind pressures on other structures might have
been realised earlier.

In spite of this generally dormant interest in the statistical
theory (at least insofar as meteorology was concerned), it nevertheless

underwent congiderable development during the prewar years 1935 - 1939,
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due principally to the efforts of Taylor (1935) and von Karman (19375.
One of the notions introduced by Taylor during this period was that of the
spectrum of turbulence: this defined the conttibutionito the total
turbulent energy made by fluctuations of different frequencies. To
completely specify the turbulent fluctuations statistically it was, in
general, necessary to define three velocity spectra at each point (one
for each component of velocity), and also certain cross-correlation
coefficients. The latter essentially measure the phase relationship
between velocity components at different points, as well as the extent
to which their association is random. For each particular wavelength
they are defined by two components, one in-phase and the other in
quadrature. For homogeneous, isotropic turbulence the picture is
simplified.

Taylor also suggested that if the fluctuations are small
compared to the magnitude of the mean velocity V , then the time
correlations between velocity components at a fixed poiant, for a time
interval t , were the same as a spatial correlation between two points
a distance Vt apart. This fact was first demonstrated by Giblett (1932)
and later by Panofsky et al (1958). 1Its usefulness in the present problem

is that it enables certain spatial correlations to be inferred directly

from their time correlations.

e vt o

4.2 STATISTICAL DISTRIBUTION OF VELOCITIES

An important property of turbulence concerns the distribution
of velocities. It appeared at an early stage that, in common with
molecular motion, the distribution of velocities in atmospheric turbulence

was Maxvellian, or very nearly so. This simply states that the probability

of attaining a velocity at any instant between Y and V+dV s
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Dav - 2= &
tHv)dV = = e cdx
2m (4.1)
and the probability of attaining a velocity less than V is
v 2
l -*72
Fiv) = -__-[ & dx.
V2T —c0
(4.2)
. _ V-V
where X = T )

and O'(V) = Y _\-/_i - L—\—/)z .

The function of the right hand side of 4.1 is the well-known "error
function" and is {llustrated in Fig. 8.1.

In these expressions F(V) is defined as the distribution function of V ,

-f(_‘/) the digtribution density function, and G'(V) the standard deviation

of V while Gz\oia the variance. From this it is seen that the distribution
of velocity fluctuations can be completely defined from a knowledge of
the mean and the variance.

The assumption that the velocity distribution is Maxwellian is
important to the theory developed here. It has been observed to be true
(or very nearly so) for sample times of the order of 10 minutes by a
number of observers including Hesselberg and Bjorkdal (1929), wWagner (1929),

Beat (1935), Graham (1936) and Huss and Portman (1949).

4.3 PROPERTIES OF THE SPECTRA

4.3.1 General

At altitudes of 2000 ft. and greater, it is usually possible to
make the simplifying assumption that the atmospheric turbulence is

homogeneous and isotropic. Unfortunately the same is nottrue nearer the
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ground. Here the turbulence is generally non-isotropic and only homogeneous
in the horizontal plane if the nature of the surface is uniform. This
implies that not only are the spectra of the three components of velocity
all different, but that they also vary with height above ground. The same
applies to the cross-correlations of the velocity components at different
points. It appears that very little simplification can be made, therefore,
regarding the form of the spectra.

Fortunately, however, owing to the relatively simple “line-1like"
form of both the tall mast and the suspension bridge, and the fact that
they are only significantly affected by transverse forces, the information
required is somewhat reduced. 1In the first place, the tall mast is only
likely to be affected by the lateral and longitudinal components of
turbulence. This suggests that the information required for the analysis
of this structure concerns:-

a. the spectra of the longitudinal and lateral fluctuations and their
variation with height above ground;

b. the cross-correlations between these velocity components for different
vertical separations and for different heights above ground.

The suspension bfidge on the other hand is only likely to be
affected by the wind components in a vertical plane, normal to the bridge
axis. Since the maximum effects of the wind will probably occur in a
more or less beam wind it follows that the longitudinal and vertical
components are of main importance. Hence the important quantities here
are:-

a. the spectra of the longitudinal and vertical fluctuations and their
variation with height above ground;

b. the cross-correlations of the longitudinal and vertical fluctuations
for different lateral separations and for different heights above
ground.
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General expressions for all the above quantities are not yet
known. However, reasonably reliable estimates can, it seems, be made of
the following:-

a. the spectrum of the horizontal components of turbulence
(i.e. lateral plus longitudinal);

b, the spectrum of the vertical components of turbulence;

c. the cross-correlation of the horizontal components for vertical
separations; '

d. the "scales" of the longitudinal lateral and vertical components for
longitudinal and lateral separatiomns.

From these data it ig believed that a good estimate can be made

of the resgponse of the various structures. Details of these follow below.

4.3.2 The Spectrum of Horizontal Gustiness

An expression proposed by Davenport (1961) for the spectrum of the

horizontal components of gustiness in high winds at height Z is

x

Sz(n). dn = 40 R V, U+ <%)¥» dx 4.3)
o
where X = 4000= yhere = is in cy./ft.,
Vi Vi

Z, = 10m. (33 ft.) a standard reference height,
v. = mean (hourly) velocity at height Z, ;

and R = the drag coefficient for the surface (referred to the mean
velocity at height Z, )

This expression was arrived at from the study of some 100 spectra
for strong winds obtained at different heights and over different terrains,
a large number of which are given im Appendix 2.

Values of the surface drag coefficlient P® are given in Table 2.1.
It {s found that the turbulent energy over a city might be expected to be
about 12 times as great as that over open country, for the same surface

velocity.
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FIG. 4.1 SPECTRUM OF HORIZONTAL GUSTINESS
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The general shape of the spectrum can be seen from Fig. 4.1,
only in this instance an alternative representation is used - the product
of the spectral density and the frequency. The advantage of this is that
when represented on alogarithmic frequency scale - as is appropriate in
the present case - the area under the curve still gives a true measure

of the energy. This can be seen from the equality

n. 5(n) d(log'_n) = S(r).dn
(This fact is particularly useful in planimetric integration.)
The following are particular features to note about the
spectrum;
1. Almost all the energy is confined to wavelengths less than
5,000 or 10,000 ft. This implies that in a wind of about
60 mi./hr. the fluctuations with periods less than one or two
minutes are small, and contribute little to the total energy.
2. The apectrum is proportional to the quantity P%‘Zz , which
itself is proportional to the shear stress between the air and
the ground. This implies that the turbulence is predominantly
mechanical rather than convective in origin, which for high
winds appears to be substantially true.

3. The inverse wavelength (i.e. wave number ) 18 used on the

<t{s

assumption that the spatial pattern of the turbulence remains
invariant with change in mean wind velocity. This 1s true for

example, of flow behind grids etc.
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4.3.3 Analysis of Severn Bridge Records

Reference has already been made to the wind-scruccﬁre investiga-
tions carried out by Bailey and Vincent (1939) at the site of the Severn
River railway bridge between Lydney and Sharpness. A photograph of the
bridge is shown in ?13.4.23; Fixed direction pressure-tube anemometers
were mounted at intervals across the span covering a "front" of about
2,400 ft. The locations and groupings of the anemometers in the tests
are shown in Fig. 4.2b, vertically below their actual locations on the
bridge in the photograph above. The records obtained in these experiments
provided a unique opportunity to compare the generalized spectrum of |
gustiness obtained above with the spectrum of gustiness at an actual
bridge site. (The site is, in fact, only about four miles upstream of
the projected 3,240 ft. span Severn River suspension bridge, and the
wind properties there might be expected to be similar.)
In the experiments the anemometers were grouped in fours
(as shown in Fig. 4.2b) and observations covered three separnte.recording
periods each of about 4 1/2 minutes. A total of twelve anemometer runs
were therefore available for analysis. From the original records,
published by Bailey and Vincent, the mean wind velocity during con-
secutive two second intervals was estimated. Spectra were computed for
each run using the auto-correlation technique (see Panofsky and McCormick -
1954; also Davenport - 196l), and the results plotted in Fig. 4.3. The
mean wind velocity during the observations was 41 mi./hr. and the
direction south-west — at right angles to the bridge.
Owing to the rather small number of readings in each run the
statistical reliability of the spectral estimates is not high; in fact,

there are no irregularities in the form of the spectra that cannot be



FIG.4.2a VIEW OF SEVERN BRIDGE LOOKING N.E. FROM SHARPNESS.
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FIG.4.2b LAYOUT OF ANEMOMETERS AND TEST GROUPINGS USED.
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explained in terms of sampling errors (the 95% confidence iimits are
shown.). To improve the reliability, the results for all runs have been
added together and averaged, and replotted in Fig. 4.4; the resulting
spectrum is much smoother.

Also shown in Fig. 4.4 is the generalized spectrum of horizontal
gustiness (given in equation 4.3) with the surface drag ceefficient taken
as .003, so as to fit the data. The agreement with the observations is
seen to be most satisfactory, both with regard the general shape of the
spectrum and the position of the peak.

Before going further, however, it should be observed that
whereas the generalized spectrum refers to both horizontal componepts of
gustiness, the experimental results refer to the longitudinal component
only (the anemometers were fixed in the approximate direction of the
mean wind). Before any comparisons arc made, therefore, it is pertinent
to comment on the probable nature of the two horizontal components of
gustiness. Some previous results, obtained from Giblett's Cardington
records (see Davenport - 1961), suggested that in high winds the lateral
component contains about half or two-thirds as much energy as the
longitudinal component; there was no suggestion that the general shapes
of the spectra for the two compoqents are significantly different. 1If
this is the case, as seems reasonable, then the spectra for the conbing?
horizontal components should be about 1 1/2 - 1 2/3 times the spectra of
the longitudinal component only. Thus if the experimental results are
augmented by this amount - as an estimate of the spectrum of both
horizontal components - we would have had to choose H2%-005 to make

the generalized spectrum fit,and is therefore the proper value to

consider. In view of the open exposure of this wide estuary in the
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‘direction of the prevailing west to gouth-westerly winds, together with

the rolling and treed farmland on either bank, this value for R agrees

well with the values given in Table 2.1. %
It seems fair to conclude from this evidence (although only .

obtained from one storm) that the suggested expression for the spectrum

of horizontal gustiness is applicable to a site such as that at the

Severn Bridge and that the appropriate value of R should be taken as

approximately ‘005,

During the preliminary investigations for the new Severn |
suspension bridze a number of other records were made at the same site,
using synchronized anemometers. These were kindly loaned to the writer

by the consulting engineers for study. Unfortunately the recording

apparatus was too heavily damped, and the time scale of the charts
insufficiently expanded to allow any estimate to be made of the spectrum
in the region of greatest energy. The records were however used to
check the form of the spectrum in the ragion of the low-frequency
"spectral gap", and did in fact confirm its existence in the instance of

the very severe storm studied (mean winds 60 mi./hr. for 12 hours or so) -

(see Davenport - 1961).

4.3.4 The Spectrum of Vertical Gustiness

A general expression for the spectrum of the vertical velocity

component, suggested by Panofsky and McCormick (1959), is

- df
S (n) dn = 11 V*
H(n) n t (l+ 4;)2 logzez'/z"
(4.4)
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‘F nz

where = —ir - the ratio of height to wavelength,

\4 = a reference velocity at height Z,

Z, = the roughness length.
From Prandtl velocity profile, taking von Karman's constant as 40

- 2 -—_

Y ( R v?

)

Logi zyz ('40)1

where H 1is the drag coefficlient of the gurface, referred to the mean

velocity at the 10m. height, V

, » as in the horizontal spectrum.

Rewriting, the logarithmic form of the spectrum is

£
(1+ af)

nS,m=x 61 v, (4.5)

The form of the spectrum is shown in Fig. 4.5. The form differs some-
what from the horizontal spectrum insofar as the vertical scale of the

disturbances appears to be governed by the height above ground.

4.3.5 Cross Correlation Coefficients i

As already noted, both the phase relationship and the degree
of association (i.e. randomness) between the velocity components at
different points in the f[low, are measured by the cross-correlation
coefficients. These are complex quantities: that is to say they contain
two components, one of which measures the in-phase correlation and the
other the quadrature correlation. Only when both these components are
zero or near zero is the relationship totally random. Since a structure
responds differently to each frequency, it is necessary to know the

cross-correlation coefficient for each frequency separately.
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The cross-correlation between the velocity components at two

points x and x' and at frequency N 1is given by

Cont®) + @, oM
[ 5‘ ) S;,(n) (4.6)

Rz.:.' ) =

where C-ox.,‘n)- co-spectrum at frequency N of velocities at x and x'
(the in-phase component),

Qvu.(n)- the quadrature spectrum at frequency n  of velocities
at x and x' ,

A
and Sa_(_n),S:_. (") = the spectra at x and x' respectively.
1t has already been noted that the spectrum of the horizontal
components of turbulence is more or less invariant with height. Further-
more, although the vertical velocity spectrum does vary with height, it
is only required in the suspension Lridge problem in which the height of
the deck is more or less uniform. Hence in the problems we are considering

S.m = S5.@ = S

If we write for the cross spectrum

S(x,x;n) = Co_ @ + ¢ Qo
then R_.() = Sa,n';n)
©) 4.7)
which is the form in which it appeared in Section 3. The square of the
2

modulus, ‘Ra.a.' ©) ‘ , is sometimes called the "coherence".

In nearly all the problems we need to consider the mean wind
is at right angles to the 'beam" axis. In the case of the mast it is

always so, and it represents the most serious loading condition for the

suspension bt;dge. Under these circumstances it appears that the quadrature
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component can be neglected and the cross-correlation coefficient over the

region of high correlation represented by a simple expression of the type

-]
R aQ") = € L%

x> (4.8)
where L‘(G/n) is termed the "scale'" of the turbulence and is a function
of the wavelength (V/n) .

Putting the geparation x- x = Ax it is seen that

©
L Ry @ d(an) = L(%) (4.9)
The scale therefore can be thought of as the average dimension of a
disturbance of given wavelength.

Some results quoted by Cramer (1958) for the 'scales" of the
horizontal components of turbulence are shown in Fig. 4.6, as functions
of the wavelength 73 . The regults were obtained in open grassland.
Only the cross-wind scales for sﬁable stratification are shown: for
unstable conditions the cross-wind wind scales are stated to be more or
less of the same magnitude as the down wind scales. From this diagram
it would appear that the crosswind wind "scales" can be represented

quite adequately by

L) =5 & in stable conditions (4.10)

and
L(ZyaL ¥ ble conditi 4.11
F)~7 - in unstable conditions (4.11)

The question of which of these expressions is the more appropriate
in high winds needs to be considered. Although there is not yet much
information available, the indications are that in high winds the turbu-

lence structure tends more to resemble that in fairly stable conditions,



200 -

7 .
. Along wind:
~ “(also crosswind in
——— U - component. / unstable conditions)
v
I , , 4

————— V - componendt.

-~ 100
[P
w
|
- ¢
(3
)
| - - -§
—_ Crosswind.
(stable conditions)
0 ' !
0 500 - 1000

WAVELENGTH ¥n ft.

FIG. 4. © SCALES OF TURBULENCE FOR HORIZONTAL COMPONENTS

OF WIND VELOCITY AS FUNCTION OF WAVELENGTH (AFTER CRAMER)



- 60 -

insofar that,on the whole, the disturbances are elongated in the direction
of the wind. Cross-correlation results obtained from Bailey and Vincent's
(1939) Severn Bridge records of wind velocity at various points ;cross
the span, tend to suggest that the lateral scale of the longitudinal
velocity component is about one third of its longitudinal scale.

However, in the present state of our knowledge it seems
advisable to take the more conservative estimate (i.e. the value producing
the higher correlation) and assume the value for the crosswind scale in

unstable conditions. The cross-correlation coefficient then becomes

Ax. N
-7 —
v

Rox(”) = e (4.12)
The game expression is assumed for the lateral correlation of

the vertical component of turbulence.

4.3.6 The Vertical Correlation of the Horizontal Components of Turbulence

Fig. 4.7 shows the correlations for various frequencies between
the horizontal velocity components at pairs of stations on a 500 ft.
vertical mast. (The results are those obtained by Davenport (1961) from
some records of strong wind kindly made available by Deacon of the
Commonwealth of Australia 8c1e;c1fic and Industrial resgearch Organization).
Both the in-phase and quadrature correlations are shown. Unlike the
correlation in the horizontal, crosswind direction, the correlation in
the vertical direction gives rise to a non-zero quadrature component.
This is not surprising since the flow is non-isotropic in the vertical
direction due to the presence of the ground.

The quadrature correlation is generally much smaller than the
in-phase correlation, at least, for the longer wavelengths, (i.e. smaller

wave numbers) which are the only ones having a significant correlation.
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It seems reasonable therefore, either to neglect the quadréture corrélation
(which only introduces an additional complexity into the calculationsi or,
better still, to use the square root of the coherence (as defined above in
section 4.3.5). The square root of the coherence between the three
stations on the mast are shown together in Fig. 4.8 and are expressed

n Az
as a function of the separation to wavelength ratio. (i.e. —

From dimensional arguments it might have been supposed that tgi coherence
of the horizontal components in the vertical direction might also depend
on the ratio of the height to the wavelength ( E%? ). The results
shown in Fig. 4.8, however, tend to indicate that the height variationm,
if present, is fairly small. The fact that there was little variation

in the horizontal velocity spectrum with height would itself tend to

support this. For the present purposes it would seem that over the

region of significant correlation we can write
AZ.D

-C'_'_—

'
4Coherence = e
where ¢ 7 , as in the case of the horizontal cross-correlations in
the horizontal directions. It will therefore be assumed that the

"narrow-band" cross-correlation coefficient of the horizontal velocity

component in the vertical direction is

7 4Z

v

fa:sz(ND = €
(4.13)

which is in fact the same expression as equation 4.12,

4.4 REMARKS ON THE STRUCTURE OF TURBULENCE NEAR THE GROUND

At present very little can be said with certainty regarding the

structure of the turbulence near the ground. Although, as described, a
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certain amount of information is now available on the scale of the
disturbances and on their spectra, this is not by any means adequate
for inferring reliably the structure of the disturbances themselves.
However, it is perhaps worthwhile to consider some of the possibilities,
and in this respect recent wind tunnel investigations provide an
interesting comparison.

In general, the similarity between turbulence in the wind
tunnel and in the natural wind may be somewhat limited by the various
factors, such as the thermal stability, the density gradient and the
dynamic forces (e.g. the Geostrophic force due to the earth's rotation)
which affect the wind but not the flow in the wind tunnel. However,
in high winds, as already mentioned, thermal effects are not likely to
be large and the dominant form of turbulence is likely to be mechanical
in origin, as in the wind tunnel. 1If again we confine our attention to
the so-called '"constant-stress layer'' the effect of the density gradieamt
will be very small, and the dynamic forces due to the earth's rotation
will be overshadowed by the shear stresses generated at the surface and
transmitted upwards in the form of momentum exchange by turbulence. 1In
the wind tunnel this "constant-stress layer'" is roughly 5 - 6 cm. deep
for the usual planed wooden surface: in the wind it extends to a height
of 150 to 300 ft. depending on ground roughness.

Possibly the simplest notion concerning the structure of
turbulence near a plane, but rough surface is that of a series of
"roller-type'' eddies, and this form of has been tentatively suggested
by Webb (1955) in the case of the natural wind, and originally by
Townsend (1956) in the case of the outer layer in the wind tunnel. More

recently, however, Townsend (1957) has quoted some measurements which are
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not generally consistent with this hypothesis, and has instead suggested
that the motion consists of two dimensional jets which originate in the
immediate neighbourhood of the wall surface. Such jets with their
surrounding induced flow are shown diagrammatically in Fig. 4.9. This
also indicates the deflection of the jet streamlines due to the velocity-
height gradient. The slower longitudinal velocity in the jet (compared
to that outside) is due to the transport upwards of the slower moving
fluid near the surface. What determines the longitudinal scale of these
jets 1s not known but possibly surface irregularities provideithe
principal control.

Now this postulated structure is in agreement with several
observed features in the wind tunnel which the 'roller" structure fails
to ;ccount for. These include, inter alia:

1. the comparatively large scale of the longitudinal velocity component
in the longitudinal direction and its apparent independence of height;

2. the smaller vertical velocity scale (particularly in the I‘terai
direction) and its apparent proportionality to the height;

3. the displacement of the maximum correlation of the longitudinal °
velocity component in the vertical direction to a position which
lies approximately along the mean of the postulated jets. In the
wind tunnel this occurred along a line roughly at 45° to the mean
flow which corresponds to the direction of maximum sghear.

Comparing these results with those already described for high
winds, a remarkable similarity is noted. PFirst the comparatively large
scale in the longitudinal (as compared to vertical) direction has already

been noted, and is reflected in the different parameters used in the

expressions for the spectra of the horizontal and vertical velocities.
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In the former the parameter used was %}1_ » where L. was another "scale"
length which turned out to be about 4,000 ft. In the latter the parameter

n
was ~—= in which z was the height and therefore much less than 4,000 ft.

—

14

The above also indicates that the longitudinal scale is independent
of height (as in 1) whereas the vertical scale is proportional to the
height (as in 2). The third fact, the displacement of the position of
maximum correlation of the horizontal components along approximately

a 45°

line, was in fact noted by Daveaport (1961) in connection with
correlations on a tall mast; it is the reason for the non-zero quadrature
spectrum of the horizontal cowponent in the vertical direction, which

has already been noted.

These similarities between the properties of high winds, and of
theAflow in the wind tunnel appear hopeful from the point of view of
establishing the structure of the wind under these conditions. However,
when convection plays an important part, as it undoubtedly can when the
wind speeds are lower, it could well be that the structure is then
dominated by cellular convection cells with the general structure of
roller type eddies. This would account for the very much larger lateral
scales under ungtable, convective conditions. (see FPig. 4.6).

Before any firm theories can be put forward, however, it would

seem desirable to have a good deal more information than is at present

available.
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2.0 AERODYNAMIC RESPONSE TO FLUCTUATING FLOW
5.1 GENERAL

The general properties of the aerodynamic forces which arise
on typical mast and bridge deck sections in a steady airflow are fairly
well known and have been studied in a number of cases. Mast sections
generally consist of lattice trusses of either square or triangular
section, the principal members of which are usually round bars (to
reduce wind drag) with flat members used £of diagonal bracing. Wind
tunnel tests on such structures have been described by a number of
investigators (Schott et al - 1954; Cohen - 1958; Redwood - 1960).
Sometimes for special reasons (usually to do with the signal pattern of
the anfenna mounted on the mast) circular cylindrical sections are
used for the mast. Such is the case in a 700 ft. mast at Oldenburg,
Germany (see Stahlban - 1956), and others in Canada described by
Davenport (1959). For the cylinder, the aerodynemic characteristics
in steady airflow are well known.

Since the collapse of the Tacoma Narrows Bridge, the open
box truss has almost entirely replaced the plate girder as the stiffening
truss of the suspension bridge. Not only does the box truss (with two
levels of lateral wind bracing) provide the necessary torsional stiffness
required to avoid catastrophic vibrations, but the open form of the
truss is more stable aerodynamically. Static tests on bridge trusses
have been described by Biggs (1954); Flachshart (1932) and others and
an exhaustive test on actual suspengion bridge trusses for the Savern

and Forth Bridges are described by Prazer and Scruton (1952).
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5.2 RESISTANCE IN UNSTEADY FLOW

Most of the above tests have been carried out in the steady
flow of a wind tunnel. There is, however, no reason why the drag (and
l1ift) coefficients for steady flow should also apply to the fluctuating
component of drag in fluctuating flow. 1In fact, there are good indications
that under some circumstances they do not. For instance, Schwabe (1932)
examined the flow induced round a cylinder started impulsively from rest,
and found that the drag coefficient built up steadily to a value twice
the steady state value after the mean flow had traversed nine di::aters
of the cylinder, as shown in Fig. 5.1. Bingham, Weimar and Griffiths (1952)
obtained a somewhat similar result. In this case the cylinder was
mounted in a shock tube, and the impulsive flow was induced behind a
shock wave in front of an expanding body of gas. The latter found
similar results with other structures such as walls and block shaped
structures. ,
Another type of investigation into the drag of bluff objects
in fluctuating flow was carried out by Keulegan and Carpenter (1958)
and also McNown (1957). In the former of these experiments, the object

was placed at the node of a wave generated in a wave tank. As a result

the flow past the object executed almost harmonic motion with a velocity

given by

V(l:) = Vm“ sin 2ntnt
The forces on the object were analysed and the principal component in
phase with the velocity was related to the drag coefficient (:, , which

was defined by the following
C Drag
* T Lo vVl
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The values of (:o for the infinite flat plate and the circular cylinder
obtained from these experiments are shown in Fig. 5.2, as a function of

n
the dimensionless parameter ——

meax

The drag coefficient for the flat plate rises steadily with
increase of this dimensionless parameter, to values three or four times
8s large as the steady flow values. The circular cylinder, on the other

hand, rises to a maximum value of about 2.1 (twice the steady flow value)
nD

Vmu
It is interesting to note that if the average velocity during

when % .1 and then drops off with further rise of the parameter.

a half cycle is substituted for the maximum velocity, the peak is then

nD
— a2 .2 . This is algo the value for the
Vav

frequency of eddy-shedding in a steady flow of velocity VLV . This

found to occur when

hints to the possible mechanism causing this variation in the drag
coafficient.

Other variations in the effective drag coefficient have been
observed by O'Brien and Morison (1952) on spheres acted on by wave forces.
In these experiments drag coefficients of over 3 were noted at Reynold's
numbers for which the drag coefficient in steady flow is about .S,

Most significant of all, possibly, are some experiments by
Schwarz and Corssin (1957) designed to test Lin's theory for the response
of & simple pendulum to a turbulent flow. The latter was a straight-
forward application of the statistical concepts embodied in the stationary
random series approach. Knowledge of the gpectrum of the turbulence and
oflfhe mechanical response of the pendulum to fluctuating loads was used
to predict the root mean square deflexion of the pendulum bob. This

prediction was found to be some fourteen times less than the actual
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measured R.M.S. deflexion. This large discrepancy can no doubt be partly
attributed to the fact that no account was taken of the eddy-shedding
effect which would produce oscillations of the pendulum bob even in flow,
free from turbulence. But more particularly it was also probably due

to the fact that, in making their predictions,the steady value of the -

drag coefficient was used; this may very well have underestimated the

response of the pendulum to certain frequencies present in the turbulence.

2.2.1 The Virtual Mass Effect

A further consequence of assuming that the wind is steady
rather than fluctuating, is that the virtual (or additional) mass effect
is neglected. This ariges from the fact that any fluctuation in the air
flow must be caused by a pressure gradient acting in the direction of
the fluctuation. This pressure gradient will likewise act on the
surface §£ any object placed in the flow, and, in addition, on a certain
mass of air which effectively "clings" to the object rather than
accelerate with the rest of the flow. The latter is raferred to as the
additional mass effect. The ratio of the effective mass of air
"clinging" to the object, to the mass of a body of air equal in volume

to the object itself, is known as the additional mass coefficient. For |

the flat plate, vwhich theoretically has no volume, this coefficient is
uﬁually referred to the circular cylinder having the same diameter.

' The importance of the additional wmass effect is familiar to
those concerned with such problems as the vibration of ships plating,
the forces oﬁ piles under wave action, the movement of control surfaces

in aircraft and in the landing resistance of flying boat hulls, Its

possible bearing on the wind loading problem was first pointed out by
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Feydayersky and Belotserkovsky (1954). These authors showed that in a
very sharp squall (such as one they examined which occurred in Moscow)

the additional inertial forces could be just as large as the conventional
drag forces. The assumptions used in this deduction, might however be re-
garded as somewhat severe, and as already remarked in Section 2.2 the
incidence of these "freak" local storms at any particular place is small,
on account of their very limited gize. For these reasons it is believed
that these large inertial forces are unrepresentative of general high
wind-loading conditions. With the usual levels of turbulence present in
high winds these inertial effects are believed to be quite small, and in -
the majority of cases, negligible.

A number of investigations have been carried out into the effect
of acceleration on the resistance of bluff objects. (Frazer and Simmons -
1919; Stelson and Mavis - 1955). In particular Keulegan and Carpenter
also determined the virtual mass coefficient in the fluctuating flow of
a wave tank. Their results are shown in Fig. 5.2 together with the
drag results obteined in the same experiments, as a function of the

nD

dimensionless frequency parameter -—- .
MaAr

5.2.2 The General Problem

From the above it is evident that in considering the response
of a structure to a fluctuating flow of any description, it is necessary
fo allow for the possible vnriations‘in the resistance not otherwise
covered by simple quasi-static assumptions. In general this resistances

in fluctuating flow can be expressed as

PE) = 7 e-Com. VE). |VBY] . Cm®™Q. QA]-;. %‘z_@ (5.1)
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where P(f)

]

force per unit area and the object at time t:

<

r—

<
I}

velocity of the fluid at time t :

fluid density

"
0

D = diameter of object
A, = a reference area for the additional mass
Cp(n)= coefficient of drag (assumed to be a function of the
fluctuation frequency m )
C,?(n) = coefficient of additional mass (iacluding the
equivalent mass of the fluid and the object itself) -
also assumed to be a function of N

Clearly the problem of determining the resistance can be boiled
down to that of determining the values of the effective coefficients of
mass, C,p, , and drag, Cp . The word effective is used since it is in
fact difficult to divorce the coefficients from the characteristics of
the flow itself, as is now discussed.

One of the simplest types of fluctuating flow is one in which
the fluctuations are uniform throughout the fluid. This is another way
of saying that the correlation of the velocity is unity for all points
in the flow. For turbulent flow this is not the case, the fluctuations
are both space and time dependent, and the correlation only reaches unity
when the points are coincident.

Consider the response of a transverse "strip” or "salmon-slice”
of a slender beam to these two distinct types of flow. The section of
this beam can be represented by the bridge deck shown in Fig. 5.3, which
has a breadth b and a depth D . The pressures on this slice will be
determined by the flow characteristics in some limited region surrounding

the section and its wake. For the sake of argument let us assume that this
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region is approximately the size of the object itself. This is obviously
congservative in the case of a "solid" body which disturbs the flow for a
considerable region around, but it may be less so in a truss section, in
which the drag is created by a lattice of smail members each generating
initially its own individual wake (which may merge later on). Let us
also assume (for want of anything better) that the instantaneous force
on the gtrip depends on the instantaneous average velocity in this region.

‘In uniform flow, the average velocity in the region is obviously
also equal to the velocity at any point in the region. 1In turbulent flow,
however, the average velocity differs from the velocity at a point owing
to the variation in phase and randomness of the fluctuations within the
region. The phase and randomness is, of course, measured by the velocity
correlation of the type given in equations 4.12 and 4.13.

If we asgume a corre%ifigﬁ‘function of the type

Fz,‘;.(p). = €& s
where L(n) is the "scale" of the fluctuations at frequency n , then the

correlation over the whole area is of the form

[x-x'{ -lz-2']

b b P D .| i
C - ff I I e T e TP 4. da'dz dz
© Je o “eo

If, as in Section 4, we assume

L.(P) = L-zLP) ~ 7 n
and that b = D , then the form of the function is

-7
C(g) = (;ZE)Z[ 7% -1 +e ] (5.2)

D
where g = Q-..--
v
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nd
This parameter T; 1s dimengionless and is termed the reduced

frequency. The form of this function is shown in Fig. 5.4. It represents
the ratio of the average mean square velocity over the entire region to
the mean square velocity at a point in the region. From this it is seen
that the function is negligibly small for reduced frequencies greater

than about 1.0. This implies that even if the amplitude of fluctuations
of this frequency are large in themselves, their effect on the bridge
section as a whole is fairly small.

The conclusions that might be drawn from this are:-

1. that for reduced frequencies less than .l the velocity
fluctuations within t@f region of the flow likely to affect

the pressures on the structure are fairly uniform: thus the

resistance in turbulent flow at these reduced frequencies

probably approaches that in uniform fluctuating flow;
2. that for reduced frequencies greater than 1, fluctuations in
turbulent flow have negligible effect in inducing pressures

on structures;

3. that for -1 < €4 there is a transition region in which the
resistance diverges from the uniform flow result in 1, and

decreases until it is negligible as in 2.

These conclusions suggested that élthough it might be a difficult
problem to measure the fluctuating resistance in an actual turbulent flow,
some useful ingight might nevertheless be obtained by considering the
resistance in a uniform fluctuating flow. To obtain as close an analogy
as possible to the wind it would be nécessary to superimpose the fluctuation
on a mean flow. The resistance of bluff obstacles under these conditions
does not appear to have been investigated.
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As a first approach to this problem a "gust tunnel" with a
2 ft. x 3 ft. working section was built. A flow of air could be induced
in the tunnel by blowing compressed air parallel to the tunnel walls through
slits cut in pipes which ran the full height of the working section. It
was intended to regulate the flow of compressed air in such a way as to
produce controllable fluctuations in the tunnel flow itself.

It was later realized, however, that there was possibly a more
direct way of determining th; variation of the resistance coefficients
with frequency. This was to attach the object to a heavy pendulum
immersed in a steady flow, deflect the pendulum, and observe the decay of
the oscillations due to the damping effect provided by the drag of the
object moving through the fluid. A description of some experiments

conductad on these lines now follows.

5.3 INVESTIGATION OF THE RESISTANCE OF BLUFF OBJECTS IN FLUCTUATING FLOW
5.3.1 oOQutline of Experiwments

As noted, the aim of these experiments was to find the registance
of various bluff objects to a flow which (relative to the object) con-
tained a fluctuating componeant of vélécity. To produce the fluctuating
component, the objects were mounted on &8 heavy pendulum which oscillated
in a steady flow of water. The arrangement of the pendulum with the
object attached is shown in Fig. 5.5, and a general photograph of the

apparatus, in Fig. 5.6, shows the pendulum mounted above the long,

Pig. 5.6 Photograph showing the experimental arrangement of the pendulum
sugpended over the glass-sided flume with the object immersed
in the flow. 1In the foreground can be seen the strain analyzer
and oscillograph and, to the right of the object, the propellor
and its supporting rod.
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glass-sided flume, (9 in. wide: 12 in. deep). The velocity and Aepth‘.
of flow in the flume could be adjusted by means of an inlet valve and

a weir at the outflow. The water depth was kept between 10 in. and 11 inm.:
the object was then at the mid-depth.

The frequency of the pendulum could be altered either by adding
heavy lead weights, or by varying the size of the springs fixed to the
pendulum. Two stiffnesses of springs were used and two weights could be
added, which, with the no-weight condition, enabled a total of six
different'weight-spring combinations to be arranged and thus six different
pendulum frequencies. These frequencies ranged from approximately 1 cy./sec.
to just over 4 cy./sec.

One of the springs attached to the pendulum was connected to a
ring dynamometer as illustrated in Figs. 5.5 and 5.7. Strain gykges
were att‘ched to the ring in the conventional way, and were connectéd to
form a bridge circuit, the output of which was amplified and fed Lnté a
pen oscillograph. The latter recorded the force in the spring which was,
in fact, proportional to the deflexion of the pendulum. Thus the.decay
of oscillation which occurred when the pendulum was deflected and
suddenly released could be recorded directly on the oscillograph. From
the characterigtice of the damping curve, both the additional mass and
dragldoefficients could be determined by a method described below. The
only additional information required was the steady velocity of the water
" and the properties of the pendulum,

The velocity of the steady flow of water was measured by means
of a small 1 1n¢h diameter, plaétic, threé-bladed propellor similar to.

those found on miniature motor boats, (sge Fig. 5.7). It ran on a

Fig. 5.7 Close-up of the lower end of the pendulum showing the object
mounted between end-shields, the lead weights attached and the
springs connected to the ring dynamometer.
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free-running brass gpindle which was mounted horizontally on a thin L-shaped,
brass rod which could be lowered into the flow to the same depth as the oﬁjaet;i‘
but a fair distance upstream so as to avold any interference with the flow |
around the object. Apart from the usﬁal "gtarting velocity" (about 1 in./sec.),
characteristic of most propeller instruments, the response qf the prqpellet !
was linear. It was calibrated carefully in the inlet of a flume. At low
velocities the speed of the propeller was determined simply by counting
the revolutions against a stop-watch; at higher velociticﬁ a stroboscope
vas used,

The objects tested consisted of a flat plate, a circular
cylinder and a triangular, lattice truss, typical of the section of
many tall masts. These are illustrated in Pig. 5.8. Each had a diameter
of one inch. The objects were mounted between end-shields ﬁo ensure that
as far as possible the flow did not "spill" off the ends and vas as uniform
as possible over the span. To determine the 'end effect" of the shields

various lengths of object between 6 in. and 3 in, vere tested. It was,

in fact, found to be small.

5.3.2 Test Procedure

The method of test was simple and straight fofwu:d. After the
flow had settled down and the velocity measured, the pendulum was plucked
ind the decay of the resulting oscillation was recorded on the oscillo~-
graph trace. As a check for consistency, three trc@bo wcro,obucinod;£6§ |
each obgervation. Each of th; 6 spring-weight éo-binationa'wal 1ni-sg1-,

gated for mean flow velocities im the innge 2‘— 20 inches pit second, o

Pig. 5.9 shows sample results.

Fig. 5.8 Photograph of the objects tested. Diameter = 1 inch.
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3.3.3 Theory of Experiments

The velocity of the flow at time t relative to f.iue objéct
mounted on the pendulum is
V) = V+ L6
where 6 = angular velocity of pendulum,
L - length of pendulum from axis of rotation to object centre line,
and V = mean velocity of the flow in the flume.
Substituting in equation (5.1) the resistance of the pendulum
is '
Pl)=L1@ColV+LO LD + 0Cp AL L& (5.3)
where Cb and Cm = the required coefficients of drag and additional mass,
A, = reference area for additional mass,
L = length of- lpécimn,
and D = diameter of specimen normal to the flow.
The equation of motion of the. pendulum is
I.0 + 2,0 +k® + L.Pt) =0 (5.4)
where
I, - moment of inertia of the pendulum,
® o = velocity damping of the pendulum..

K « the restoration force due to tﬁo springs and gravity
per unit angular deflexion of the pendulum.

If in eq. (5.3), the linear velocity of the penduium is small
compared to the mean flow itself so terms in 62 are negligible,
then
Pit) = -é-e.C,.Vz C,b +(e§p§ ¢1>.L) e -a{ecml.{)Lé (5,.5)
Write A"; = @ CM Ao{ (the additional mass), |
e = ‘{QC»V( DL (the velocity .dliping coefficient of the water), |

— -2 5.6
and L —;: QCDV D (the mean resistance).
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Substituting in equation (5.4)

(I.+4am13)6 +2(a +p)p+ kO + LP = o (5.7)
From this it is seen that the effects of the water on the behaviour of
the pendulum are:

1. to increase the inertia term by an amount corresponding to the
additional mass,

2. to increase the damping by an amount (5 » which for small amplitude
fluctuations can be treated as velocity damping, and

3. to exert a mean force 5 on the pendulum equal to the drag due to the

mean flow alone.

The solution to this equation can be written

- 9nt
OF) = &, e ces2nnt (5.8)
where
] ol + (3
= F(T Amis) (the logarithmic decrement) (5.9)
e tTAm
s‘l-
n= nNnylI- 4—;_,"-,_ (the "apparent" frequency) (5.10)
e e——
and n, = = )/ K 1 (the '"natural" frequency
ZN I I +amb in water) (5.11)
We also define
| 74
Ne = -2 -'1-:" (the "natural" frequency
2TV 1 in air) C(5.12)

Equation (5.8) consists of an oscillating component with a
superimposed exponential decay. Its features are well known and are seen
clearly in Pig. 5.9 which shows several such curves for different water
velocities. From these curves two quantities can be measured:

1. the logarithmic decrement, ) ;
and 2. the "apparent" frequency, N ;

The decrement is obtained by picking off the peak amplitudes and plotting.
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these on a logarithmic scale, against time (or the number of cycles) on
a linear scale. The slope then gives the decrement. The procedure is
illustrated in Fig. 5.9 for the same traces. gpe "apparent" frequency is
measured directly from the trace.

In the experiments the logarithmic decrement, was much smaller
than unity. Hence expanding eq. (5.10) binomially,, and neglecting terms

of order greater than 8

o
n = ”( b+ —.;;z'-) (5.13)
. t
and An = n-n = 2 n
17!-
From (5.11) and (5.12), .
Me 2
—_— = Am. L
R, }/' vt =

If OAm LP<< T,

2
Az(") S Neg—nN, = "‘2" _é_.':'_l:_. N,
Te

Since nok nix "

An _ No-0 _ L Am.L‘+ __‘i:
Pe Do 2 L. am* (5.14)

Now the "apparent" frequency in air in almost exactly equal to the natural
frequency n,, due to the low internal damping. A typical "air damping"
curve is shown in Pig. 5.9. (The frequency is seen to be somewhat higher
than in water.) Since all the other quantities are measurable the

additional mass A mMm can be found from equation 5.l4, viz,

2
am= 2hfon_ &)

K ng 8ut (5.15)

The coefficient of additional mass is now given by equation 5.6 i.e.

Am

Cm() = o AL (5.16)
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Having found the additional mass coefficient it is now possible
to determine the value of (b » (the velocity damping coefficient due to
the drag), and hence the drag coefficient. From equation 5.6

= n S(I,d- Am. L?) — o, (5.17)
( Ry 1is usually negligibly small)

If we write X, = Mg S.I, (where $° is the logarithmic
decrement in air),. then from equation (5.6) the drag coefficient can be
written

Caw & hm (B o ant) 583
This is the basic equation for determimning the drag coefficient. All
the quantities on the right hand side are measurable. The dimensionless

nD
parameter —— is denoted by § and is the reduced frequency.

14

5.3.4 Results
5.3.4.1 Introduction

Dimensional analysis auggénts that there are three parameters

on which the values of the drag and mass coefficients might be expected

to depend. These are:

| %—,P = § - the reduced frequency
2. n_%l_-_ - = the velocity ratio of the object -
3. Y_Q = Re "~ - the "Reynold's number" .

ﬁ

Any dependence on the second of these parameters will be revealed by the
damping curves themselves, since these record the oscillation over a
range of amplitudes. If the damping depends on amplitude, the plot of
the damping curve on semi-logarithmic paper will be non-linear. (It was
stipulated in the first place that the velocity of the object was small

compared to the mean flow so no significant non-linearity could be
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expected from this source.)

Dependence on the Reynold's number can be ascertafined by vary-
ing the velocity (proportional to Re) but at the same time ﬁaintaining
the same reduced frequency (by varying the frequency of the pendulum).
In fact, with bluff, unstreamlined objects, dependence on Reynold's
number might be expected to be small, This is because the most marked
influence of Reynold's number is in changing the position of the
'separation points', separating the regions of laminar and turbulent
flow around the body. 1In bodies of curved profile (such as a circular
cylinder) a variation of Reynold's number can cause the separation points
to move, thereby affecting the width of the wake and therefore the drag.
In sharp edged bodies (such as a flat plate normal to the flow) however,
the separation is almost bound to occur, at the sharp edges. This
effectively fixes the size of the wake and the drag is then almost
independent of the Reynold's number.

This implies that the principal parameter is likely to be the
reduced frequency § , which is already contained in equation (5.18)

for CD . The analysis were carried out on this assumption.

5.3.4,2° Calculations

Prom the series of damping curves (three for each observation),
obtained for various mean flow velocities and for each of the spring-
weight combinations, the following data were obtained:

1. the logarithmic decrement D . (from graphical plots such as
those shown in Fig. 5.9),

2. the apparent frequency N
By allowing the pendulum to oscillate in air the following

was obtained:
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3. the logarithmic decrement in air, $o .

and 4. the natural frequency in air, Nng ,

The moment of inertia of the pendulum Ig,was determined by removing the

springs and timing the swing. I; is then given by
- ——2
A = 9-1_ ™M r |
where T 1is the pendulum period, ™ the mass and ¥ the distance

(5.19)

from the pivot point to the centre of gravity (found by balancing the
pendulum horizontally on a knife edge).

Values of MNe and 60 for the pendulum with various objects

attached are given in Table 5.1. .
It is now possible to compute the additional mass from eq. (5.15)
and the additional mass coefficient from (5.16). Knowing the additional

mags the drag coefficient can be computed from (5.18).

2.3.4.3 Determination of Effect of End Shields

As noted, the objects were mounted between end-shields, designed
to prevent the flow 'spilling' off the ends and algso to provide a means
of support (see Figs. 5.5 - 5.7). The end-shields and the supporting struts
were cut from 16 gauge brass sheet. 1In spite of the fact that the edges
were sharpened so as to streamline them as far as possible, they did,
nevertheless, make a small contribution to the drag, over and above that
of the object itself. To determine the size of this contribution, several
lengths of object were tested at the same velocity. The end effect was
then determined by effectively differencing the total drag for the
different lengths and assuming that the drag contribution by the end-
shields was the same in each case., The procedure is illustrated in

Fig. 5.10; 1in which the product of object length and total drag



TABLE 5.1

Properties of Pendulum for Various Tests

3" Plate 4 1/2" Plate 6" Plate 6" Plate 6" Cylinder 4" Lattice Truss
(Series 1) (Series 2)
g . - '
g M | Lo me | Lo | ne | I e L | e | I | e | I
& cy./sec.|1b. in.2 cy./sec.]1b. in.2 cy./sec.|1b. in.2 cy./sec.llh. in.*|cy./sec.| 1b. in.2 cy./sec.} 1b. in.2
Al 1.919 4,020 | 1.842 4,070 | 1.827 4,280 | 1.852 4,280 | 1.681 4,690 | 1.756 3,870
A2 1.360 8,280 | 1.332 8,320 | 1.326 8,920 | 1.340 8,920 | 1.276 9,340 | 1.350 8,520
A3 1.030 16,320 1.017 16,370 1.011 16,520 1.021 16,520 .995 16,970 1.028 16,170
B1 4.300 4,020 | 4.130 4,070 | 4.095 4,280 | 4.140 4,280 | 4.090 4,690 { 3.955 3,870
B 2 2.961 8,280 | 2.895 8,320 | 2.870 8,920 | 2.902 8,920 { 2.730 9,340 | 2.928 8,520
B3 2.123 16,320 | 2.082 16,370 | 2.077 16,520 | 2.100 16.520 | 2.020 16,970 | 2.110 16,170
Damping decrement in air 60 = .00950 for all tests.

- €6 -
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coefficient (for end-shields plus object) is plotted against the object
length. The gradient of these lines gives the net drag coefficient for
unit length of the object alone. The intercept with the vertical axis
gives a measure of the end-shield drag.

As can be seen from Fig. 5.10, the effect of the end shields
decreased as the velocity increases. This can probably be explained by
the difference in the drag characteristics of the object and the end
shields. Whereas the drag of the former is probably almost entirely
form drag, and therefore proportional to \/2 , the drag of the end
shields is more likely to be viscous and therefore proportional simply
to \/ . The drag of the latter, therefore rises less rapidly; or, put
in other words, a drag coefficient computed on the basis of the drag
being proportioned to Vz will appear to decrease inversely as \

Thus the end correction appears to become less and less important as the
velocity rises. 1In fact it only seemed necessary to correct for the

end shields in the case of the lowest velocity measurements (approximately
2.5 in./sec.)

The effect of the end shields was assumed to be the game for
each of the objects tested.

No allowance was made for end shields in computing the additional
mass, because the crucial readings could not be made to sufficient
accuracy (i.e. depended on a small increment of frequency) to warrant
the attempt. That it was small, is borne out by the agreement between the
results for the flat plates of different lengths shown in Fig. 5.12b.

The final results for all tests (with end-corrections made) are
recorded in Tables 5.2 to 5.6 and plotted in Figs. 5.12, 5.13 and 5.14.

These results are discussed in detail, following the description of the
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determination of the steady-flow drag coefficient below.

5.3.4.4 Determination of Steady Flow Drag

\ This was accomplished by removing the springs and measuring
the deflexion of the pendulum hanging freely in the flow of water, by
sighting the cross-wires of a telescope on a graduated scale mounted on
the pendulum {tgelf. The.drag could then be calculated from the equili-
brium of the pendulum. A typical drag curve (for the lattice truss) is
shown in Fig. 5.12. The drag coefficients for the three objects tested

were found to be:

Steady Flow Drag Coefficient

Flat Plate 2.0
Circular Cylinder 1.05
Lattice Truss 1.10

These values agree with those given elsewhere. The values for the flat
plate and cylinder are familiar results given in text books. 1In the
case of the lattice truss the drag coefficient is based on the gross
area of the surface and not simply the net frontal area of the lattice
members. For comparison with results by Cohen and Perrin (1954),
Redwood (1960), Schott (1954),a“d others the golidity ratio (ratio of

net area of members to gross area of truss) should be taken as .60.

5.3.5 Discussion
In Section 5.3.4.1 it was pointed out that the parameters on

which the drag andivirtual wass coefficients might be expected to depend

' noL
were the reduced frequency, i; , the velocity amplitude ratio, 'E?" R
and the Reynold's number Re . Independence of the velocity amplitude

ratio was partially assured by using only small values of the parameter
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and was verified experimentally insofar as the damping curves were found
to be linear (see Fig. 5.9) - a situation which would not have resulted
had the coefficients been dependent on thé velocity amplitude ratio.
Dependence on Reynold's number was expected to be small (except possibly
for the cylinder) - as is the case with the steady flow drag coefficients
of most bluff objects., Hence the most influential parameter was expected
to be the reduced frequency - as already pointed out. The drag and
additional mass coefficients are plotted in Pigs. 5.12, 5.13 and 5.14 as
functions of this parameter.

Three features of these curQea seem to be noteworthy

1. The drag coefficients of the flat plagg and triangular lattice
truss both increase steadily with reduced frequency (the truss
slightly more so than the flat plate), from a value which is
close to the steady state value for gz-os. The coefficient
for the truss reaches about double the steady state value for
g: .S .

2. The additional mass coefficient of the flat plate and truss
both decrease with reduced frequency (the trend in the latter‘
case being less well defined for reasons explained below).

3. The results for the circular cylinder -, insofar as they
indicate any certain trends, - do not appear to exhibit either
of thosein 1 and 2.

It is extremely difficult in a purely quantitative experiment
such as this to account for the above. Some of the same difficulty was
encountered by Keulegan and Carpenter (1958) in investigating the

resistance of the flat plate and cylinder to a simple periodic flow with

no mean velocity. They were, howevex, able to obtain some insight into
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Spring/
Weight

A/l

A/ 2

A/l3

B/3

B/ 2

B/ 1

RESULTS OF TESTS ON 3 INCH FLAT PLATE

.213
.249:
.342.
.512

113 ¢
.149
.219
. 322

.072
.096
.135
.199

037
.050
.075
112

.051
.075
114
.173

.076
.103
.162
.253

Vv
in/sec
2.70
5.00

8.75
13.10

2.70
5.00
8.75
13.10

2.70
5.00
8.75
13.10

2.70
5.00
8.75
13.10

2.70
5.00
8.75
13.10

2.70
5.00
8.75
13.10
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TABLE 5.2

n
cy/sec
1.856
1.860
1.846
1.818

1.342
1.339
1.336
1.327

1.022
1.022
1.019
1.010

2.104
2.102
2.107
2.098

2.913
2.919
2.915
2.903

4.167
4,167
4.175
4.142

g

0.687
0.372
0.211
0.139

0.497
0.268
0.153
0.101

0.379
0.204
0.116
0.077

0.779
0.420
0.241
0.160

1.079
0.584
0.333
0.222

1.543
0.833
0.477
0.316

P ek ot ped ol el BN N -y N =t e

e

C

m

.429
.303
.601
173

421
.626
.813
.391

.655
440
.257
.063

448
.629
.176
.918

427
.239
.347
.697

.337
337
242
.556

(3.56)
2.85
2.41
2.36

3.10
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TABLE 5.3

RESULTS OF TESTS ON 4-1/2 INCH FLAT PLATE

Spring/
Weight 5 .V n g C"‘
n[sec cy/$¢°
A/ 3 L0971 2.55 1.0059 0.394 1.403
.1532 5.00 1.0027 0.201 1.820
.2125 8.60 .9980 0.116 2.418
.298 14.50 .9842 0.0679 4,239
Al 2 .1656 2.55 1.3038 0.511 1.308
.228 5.00 1.2931 0.259 1.812
.339 8.60 1.2853 0.149 2.151
.507 14.50 1.2552 0.087 3.532
A/ .283 2.55 1.7647 0.692 1.248
.351 5.00 1.7544 0.351 1.401
.512 8.60 1.7544 0.204 1.346
.867 14.50 1.6948 0.117 2.145
B/ 1 .1054 2.55 3.9761 1.559 1.053
.1556 5.00 3.9682 0.794 1.102
.2365  8.60 3.9841 0.463 0.981
415 14.50 3.8760 0.267 1.687
B/2 .0702 2.55 2.8450 1.116 0.897
.1086 5.00 2.8302 0.566 1.185
.1619 8.60 2.826 0.329 0.951
.285 14.50 2.800 0.193 1.763
B/ 3 .0508 2.55 2.0640 0.809 1.134
0766 5.00 2.0619 0.412 1.240
.1060 8.60 2.0534 0.239 1.719
.1916 14.50 2.0408 0.141 2.375



RESULTS OF TESTS ON 6 INCH FLAT PLATE

Series 1
Spring/
Weight 5
A/ .336
.532
.907
A/ 2 .209
.373
.631
A/ 3 .128
244
. 354
B/ 3 .068
. 1248
.189
B/ 2 .0907
177
. 309
B/ 1 .1324
.257

.452

TABLE 5.4a

-

Y
in/sec
2.70

6.50
11.95

2.70
6.50
11.95

2.70
6.50
11.95

2.70
6.50
11.95

2.70
6.50
11.95

2.70
6.50
11.95
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n
ey [sec
1.

1

1
1

3.
3.
3.

730

.718
;1.

670

.296
274
1.

250

. 002
.992
.980

.060
.040
.035

2.815
2.
2.795

78

915
87
85

. 640
.264
.140

.480
.196

.105

371
.153
.0820

.763
314
.170

.043

.428
<234

.450
.595
.322

1.176
1.277
1.726

1.045

1.780 -

2.535

.766
1.584
2.561

.713
1.549
1.734

.907
1.473
1.183

.999
1.233
1.304

NN W NN wW L ™

N WWw

.231)
.786
. 608

.811)
.817
.588

.295
.603
.035

.642
.802
.307

.654
.993
.824

724
.022
.893
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TABLE 5.4b

RESULTS OF TESTS ON 6 INCH FLAT PLATE

Series 2 ki
Spring/ —
Weight 5 \V} ] € Cm Cy
n /sec c)l/sec
A/l 439 5.00 1.756 . 351 1.138 (3.023)
. 604 8.60 1.715 .200 1.580 2.453
1.110 '13.10 1.650 .126 2.132 2.961
A/l 2 .280 - 5.00 1.310 262 1.017 (2.846)
.439 8.60 1.289 .150 1.696 2.625
.564 13.10 1.256 .0959 2.788 2.248
A/ 3 <. 187 5.00 1.005 .201 1.346 2.6767
.284 8.60 .992 .115 2.411 2.380
.372 13.10 .983 .0750 3.115 2.064
B/ 3 .0924 5.00 2.080 416 .829 2.705
.150 8.60 2.070 .241 1.232 2.567
.204 13.10 2.065 .158 1.426 2.299
B/ 2 .136 5.00 2.860 .572 .679 2.977
,210 8.60 2.825 .328 1.230 2.695
. 360 13.10 2.815 .215 1.349 3.043
B/ 1 .182 5.00 3.980 .796 .871 2.781
.304 8.60 3.935 458 1.101 2.723
466 13.10 3.920 .299 1.149 2.736



Spring/

Weight

A/l

A/ 2

A/3

B/ 3

B/ 2

B/ 1
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TABLE 5.5

RESULTS OF TESTS ON 6 INCH CIRCULAR CYLINDER

D v

in [sec
.0520 2.55
.1630 7.50
428 11.70
.0311 2.55
.1503 7.50
. 266 11.70
.0251 2.55
.1074 7.50
171 11.70
.0127 2.55
.0181 7.50
.097 11.70
.0213 2.50
.0296 7.50
.0965 11.70
.0300 2.50

7.50

132 11.70

cy/sec

.609
.667
. 667

1
1
1

1
1

NN

NN

n

. 246
.264
1.

263

.982
.986
.984

.008
.017
.015

.692
.706
721

.584

.854

.631
.222
. 142

.489
.169
.108

.385
.131
.0841

.787
.269
172
.077
.361
.233
434

.329

Crm

1.061

.198
.149

1.158

.450
‘458

1.182
.796
0961

.530
134
.212

.686
434
.157

.872

.633
.716
1.190

.523
.976
1.120

.566
971
1 0015

434
.250
1.126
.703
.352
.835
.878

.912



Spring/
Weight

B/ 1

B/ 2

B/3

A/3

A/t 2

A/l
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TABLE 5.6

RESULTS OF TESTS ON 4 INCH TRIANGULAR LATTICE TRUSS

.0620
.1014
.142
. 207

.0439
.0641
.0978
.132

.0316
.0423
.0637
.0956

.0510
.0824
.122
.175

.0796
119
.196
.277

.130
.195
.277
.468

(Upstream face normal to flow)

—

\"
fn/sec

2.91
5.05
8.75
13.70

2.91
5.05
8.75
13.70

2,91
5.05
8.75
13.70

2.91
5.05
8.75
13.70

2.91
5.05
8.75
13.70

2.91
5.05
8.75
13.70

n

c.y/sec
.167
.167
.132
167

Lol R g

.898
.894
.885
.882

VNN

.092
.088
.092
.086

NN

.019
.012
.017
.018

P

1.337
1.335
1.327
1.326

1.846
1.852
1.824
1.838

1.432
.825
472
.304

.996
.573
.330
.210

.719
413
.239
.152

.350
.202
.116
.0743

450
.264
.152
.0968

.634
.367
.208
134

.182
.181
410
.181

.623
.707
.891
.951

.988
1.206
.985
1.310

1.010
1.002
1.216
1.082

.584

.672

1.002
1.027

.498
450

543

2.002
2.100
1.612
1.505

2.106
1.846
1.680
1.466

1.968
1.591
1.443
1.425

1.663
1.615
1.408
1.307

1.863
1.642
1.604
1.455

1.992
1.740
1.454
1.564
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the mechanism governing the resistance by photographing flow patterns
using dye, which led to their supposition that the variations in drag
and additional mass coefficients were in some'way governed by the dddy
shedding in the wake. A similar photographic study in the present case
would have been far more difficult to carry out, and also to {nterpret;
the mean flow would give rise to a flow pattern of its own which would
be extremely difficult to disentangle from that due to the fluctuating
flow.

It seems likely that the phenomenon may be associated with the
build-up and shedding of vortices at the sharp edges. Thus, the reason
why the drag coefficient for the truss showed a greater rise than that
for the flat plate may be due to the former's greater proporﬁion of
"edge" per unit frontal area. It should be noted that Keulegan and
Carpenter (1958) in their experiments found that the drag coefficient for
the flat plate rose with reduced frequency (see Fig. 5.2) just as it '
did in the present experiments: furthermore, the additional mass
coefficient showed a similar decreasing trend. Both these facts may,

however, be coincidental.

In both sets of experiments, the cylinder and flat plate
registered characteristically different responses. In the present
experiments the cylinder results were most irregular (see Fig. 5.13)
for a number of reasons. The principal reason probably lies in the fact
that the "separation points" for the cylinder do not occur at sharp edges
as they do in the flat plate; this means that they are free to move - as
it is well known that they do - with consequent changes in the width of
tﬁe wake and Iin the drag. It is well known that the positions of these

separation points are very sensitive to variations in the oncoming flow.
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Under these circumstances it would not be surprising if the periodic
fluctuations in flow imposed in the experiments were sufficient to
disturb the separation points and produce widely varying results for the
drag. Indeed, a very prominent feature of the investigations was that
with the two highest frequency arrangements (i.e. with strong springs
and the two lighter weights) the pendulum would go into a state of self-
excited oscillation of such large amplitude that it precluded all
possibility of obtaining damping curves. This happened over a wide range
of velocities, and 1is probaﬁly evidence in itself of the instabilities
that ﬁust exisf in the drag. With these difficulties to contend with,
investigation of the cylinder drag was limited to the points shown in
Fig. 5.13, being those that did not exhibit self-exciting oscillatioms.
Another reason for limiting study of the cylinder was that regults for
Reynold's numbers as low as these (1,000 - 10,000) have no practical
relevance to the windlloading problem: and at the much higher Reynold's
numbers (102 - 108 or §0) encountered in tall chimneys, masts and other
full-scale cylindrical structures the drag has altogether different
characteristics.

It is noticed that the additional mass coefficient for the
flat plate flattens out to a value close to 1 for larger reduced fre-
quencies. This happeas to be close to a theoretical value (quoted by
Stelson and Mavis - 1955) determined by Riabouchinsky. He assumed two
parallel flat plates placed some distance apart, with potential flow in
the region surrounding the plates and the streamlines joining their
opposite edges. The additional mass coefficient determined on this basis

- was 1.05 and is indicated by the dashed line in Fig. 5.12b.
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The scatter in the results for the additional mass coefficient
of the truss is much greatcr than that for the flat plate. The main,
and probably only reason is that the additional mass effect was much
smaller for the truss, and consequently, the frequency changes were more
difficult to measure accurately,

One final observation concerns the value of the mean drag
during the oscillations. For the truss and the flat plate (little can be
said with certainty regarding the cylinder) this appeared to remain con-
stant at the steady flow valuye., This fact would be verified from the
oscillograph trace which showed that the mean position of the pendulum

during vibration was the same as the position at rest,.

5.4 THE AERODYNAMIC FORCES IN A GUSTY WIND; RECAPITULATION AND CONCLUSIONS
3.4.1 Drag Forces

To determine the gust forces on a structure such as the bridge
deck shown in Fig. 5.3, or & mast section, the best we can probably do
at present is assume;

1. that the gust velocity effective in creating pressures on the
structure is an average velocity over some area of influence
such as that suggested in Section 5.2.2 (see Fig. 5.4);

2. that the effective drag coefficients appertaining to the flow
fluctuations are similar to those determined iﬁ the experiments
described in 5.3 above;

and 3. that additional mass effects are negligible.
It follows that the force per unit length of a structure due

to a wind of mean velocity vV , containing.p small superimposed harmonic

fluctuation of frequency N and "effective”" amplitude Ve (over the region
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of flow postulated in 1) will be

P = _'i. e C»© vi . o .Cx(8). VD ve sin2Ting
_ -~ Cp'®) v, _
= P4 2P /o, T s~ Z2unt (5.20)

vhere P = the mean pressure = ‘é e -Cr®. Vip
In terms of the spectrum of the effective velocity fah(p) the

spectrum of pressure S_(n) , is found from this to be
<2 C D(D) )2 SV‘(n)

By the first assumption, clearly
Sv,)= C 5,0)
vhere C = velocity correlation over the postulated region of
‘ influence,
and Sv(n) = gpectrum of harizontal velocity at a point.

1f we assume that C 1is given by equation 5.2 and write

2 [y ke
lyk Q”), = C(§) L"‘gj (5.21)
then the expression for the spectrum of pressures becomes
— z S.,0n)
Spry = 4P° I Xa@| (5.22)

]'X.A(n)lz will be termed the aerodynamic admittance; it is an
important quantity in determining the pressures that develop. It is

significant to note that, assuming the expression for C(S) given in
Cpl8)
Cp(e)
becomes significantly greater than unity, C(g) diminighes rapidly to

equation (5.2) is adopted, at the reduced frequencies for which

very small values. Considering that C_(S) was not itself a precisely
defined function and was based on somewhat conservative assumptions, it

does not seem necessary to make any further allowance for the increase



- 113 -

in the drag coefficient. That is to say it seems adequate to assume that

IXAGHZ > C(%) (5.23)

(with Q) given by eq. (5.2)).

5.4.2 Lift Forces

No examination has so far been made of the lift forces that
develop on a bridge deck due to vertical gusts.

It is characteristic of most bridge decks that they will
experience a vertical force when the wind is inclined to the plane of
the deck. The forces that develop are large even at small angles of
inclination., If the deck and the mean wind are horizontal, this angle
of inclination - or angle of attack - of the deck to the wind, &K is
the angle between the horizontal and the instantaneous wind velocity.
Approximately,

o =

<\\z

where W = the vertical component of velocity.

For most bridge decks it is possible, over a limited range, to
represent the change in lift force with angle of attack by a straight line.
This is true for example of the deck for the projected Severn suspension
bridge, as can be seen from the results of the wind tunnel tests given
in Pig. 9.2. Suppose that the slope of this line - i.e., the rate of
change of 1ift force with & , is denoted by g-g then the vertical

da '’
force P 1s given by

_ dz v
P = do v

where we 1s an effective vertical velocity. The best assumption we can

make regarding We is that, like the effective horizontal velocity, it is
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the average vertical velocity over some hypothetical region of influence.
If we follow the same arguments used in determining the response to hori-
zontal gusts, the expression for the spectrum of the vertical lift force

can be written

2 (g)
Setn) = (%_i) ' ?"\%.) [Yaﬁ")lz (5.25)

where 5,.,("') is the vertical velocity spectrum and

X, 1* = c(8) (5.26)
as before.
Equations (5.22 and (5.25) now represent the necessary expregsions

for determining the spectra of the horizontal and vertical forces per unit

length of the structure.
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6.0 DYNAMIC AND STATIC BEHAVIOUR OF THE SUSPENSION BRIDGE AND TALL MAST
6.1 INTRODUCTION

Having estimated the aerodynamic pressures developed on a thin

transverse "strip” of bridge, or mast, by the various frequency fluctua-
tions in the wind, the next step is to consider how these localised
pressures act collectively to excite individual modes of the structure.
This can be done along the lines described in Section 3.0 provided we
know the form of the cross-correlation of pressures across the span and
the form of the various modes of vibration and their natural frequencies.
Expressions for the cross-correlation of velocities have been given in
Section 4.0, and it is reasonable to assume that for the latticed members
of the mast and suspension bridge, in which the drag is generated by a
large number of localised surfaces, the cross-correlation of pressures

- i similar. The modes and natural frequencies have not yet been discussed,
however, and so represent the next aspect of the problem to be considered.

In particular we need to consider the lateral, vertical and

torsional modes of the suspension bridge, and the lateral mode of the
mast. Except for the lateral suspension bridge vibrations, methods
already exist for determining these, and are summarized below. A method

for determining the lateral modes is described in full.

6.2 VIBRATION OF THE SUSPENSION BRIDGE
6.2.1 Lateral Vibration

Suppose that the centre span of the suspension bridge is

executing a simple harmonic motion laterally, and that at time 1t and
station X across the span the deflexions of the stiffening truss and

cable are given respectively by



- 116 -
(j.r(x) sn wt

and Yelx) . sinwt

Vibrations of the truss and the cable are linked by the tension
that develops in the hangers as soon as one is displaced laterally relative
to the other (see Fig. 6.1). If we denote the horizontal component of
this hanger tension at station X as q(x) , (assumed uniformly distributed),

then the equation of motion for the stiffening truss becomes

=

dly wr
EI :i_a—: * 9@ = g @ Yy (6.1)

The equation of motion for the cable is

d2 Ye We 2
Hom —9® = 3 « 9 (6.2)
where EI 1is the rigidity of the stiffening truss;

Wy is the dead weight of the truss;

W, 1is the dead weight of the cable;

qQ(x) 1is the horizontal tension in the cable;
and 9 is the acceleration due to gravity.

Prom Fig. 6.1b, by taking moments about the cable for the
equilibrium of the truss, the horizontal component of tension in the

cable is seen to be

(Y —Ye)
Q&) = T

W
hex) (6.3)
where Hh(x) is the hanger length.
Let the deflexion of the truss and cable be represented by

harmonic series of the type

rhix

‘JT(,‘) = Cl.r Sin T (6.4)

M
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FIG. .1 LATERAL LOADING OF SUSPENSION BRIDGE
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y.@) = Z b, sin 5% (6.5)

Substituting in (56.3)

— Sin rTix

= -6
) W Z'_(ar e) — (6.6)

- v
The quantity sm_té‘"/ hfx) can be analysed harmonically as

riix 2 < l"""‘z"} sTix snx

Substituting from equations (6.4), (6.5), (6.6) and (6.7) into equations
(6.1) and (6.2) and comparing the harmonic components, the following equations

ate obtained for the rvth component:

3
A

2.w1-

CI t" r1a ‘- — é___,(as bg ) J

———

HI v b, - 277 @, - b‘)f . s-‘-\’—g—“d“%m b

3 Mz-)
(6.9)

These equations can be written for all values of ¥ , and then
solved for the a's and b's which determine the mode shape, and for w |
which gives the frequency. In practice, only a few equations need be
considered because, in any given mode, the corresponding harmonic component
will always predominate over all the others and give a good first approxi-
mation to the mode. Two terms in the harmonic series generally yield
all the accuracy needed. The method of numerical solution is best left

until the numerical example given later.

It should be noted that, because the hanger lengths, Hh(x) are usually

gymmetrical about the bridge centreline, the integrals in equations (6.8)
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and (6.9) only have any value when v and s are either both even or
both odd. It then follows that the equations group themselves into two
families involving in the one case the odd terms only, and in the other

case the aven terms only.

6.2.2 Vertical Vibrations

Since the failure of the Tacoma Narrows bridge, in thch coupled
torsional and vertical oscillations were chiefly responsible, there has
been a considerable amount of attention paid to the behaviour of the
suspension bridge in the;e modes. Theoretical methods for determining
the natural modes and frequencies have been checked experimentally.

(see Bleich et al - 1950; Farquahson - 1952).

The basic equation for the vertical vibration of the suspension bridge is

W, a* [ ET 42

- = - AH — 9

g “Y d=* Hj * 'l ax?
where H 1is the initial horizontal cable tension;

.

AH is the increment of the cable tension during vibration;
EI is the rigidity; |
1 is the initial cable dip at staiion L8 :
Yy is the mode deflexion;
w is the circular frequency of vibration;
and w is the total dead weight of the span.

A simple routine.method for determining the modes and frequencies
from this equation has been given by Steinman (1959). It does not seem
necessary to repeat the derivation of the various expressions, but for
convenience of reference they are given here straightforwardly without
proof. The natural frequency, M , of the suspension bridge can be
expressed as |
[ k.9

n = 5=

21T w : (6.10)
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where K 1s an effective stiffness for the bridge as a whole.

The effective stiffness K has to take account of a number of
contributory elements such as the elastic stiffness of the stiffening
truss in bending, the interaction of the side spans through flexing of
the towers, the elastic extension of the cable and the grawvity stiffness
of the cable itself. For antisymmetric modes (v = 2, 4., 6 etc.) there
is no side span interaction or stretching of tﬁe cable, and the expression

for K is simply

k3 P
K = «* % - "‘IF ET (6.11)

where ¢ ig the mode number,
and { 1s the span length as before.

Substitution of this expression in (6.10) gives the frequency -
directly. The mode is given by

y = a Sin T (6.12)
For the symmetric modes, the expression for K is more compicx, since
side span interaction and cable stretching are both bound to occur. In
this case K 1is given as the solution to an expression of the type

S — < f w (6.13)

r2 ( K- Yo K,)

where the sumnation covers all odd values of © in each of the several

spans of the bridge. In this expre:sion

2 T* .
Ko = r 1;-; H + r‘p EI - (6.14)

f = the central dip of the cable (measured vertically from the chord
joining the two ends of the cable span);

{ - length of the particular span in the summation;
W = dead weight of span;

W, = dead weight of main span.
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. 512 £ Ec Ac
The quantity C= 73 'E'z . s (6.15)

where E. = the elastic modulus,

Ac = the cross sectional area of the cable,

and Lg = the total length of cable (all spans),
- Qeft 3
Z (1 5 )sely
where { = the inclination of the cable chord,

and the summation covers all the spans. 'Solving equation (6.13) for K
is not difficult and can be determined rapidly using successive
approximations as shown in the worked example.

The mode forms are not given simply by single harmonic terms
(as in the antisymmetric modes) but by a series of harmonic terms in
which the dominating term will, however, always correspond to the
particular mode being considered (i.e. in the rth mode the rth harmonia

term will always predominate). If the mode shape for the main span is

. T + a sui ST
= 1l W - -
Yo =05 “z. 3 t. *

and for the side spans is

. A% . 3INn
- -_— 4+ & W — .
Y= @y sin Tk Sy e

’
then the relative amplitudes of the cpefficients are given by the

proportionality,

|
r(K- =K (6.16)

a,oc

which holds for both main and side spans.

Determination of the vertical modes by this method {s illustrated

in the worked example.

6.2.3 Torsional Oscillations

Similar expressions for determining the torsional modes and

frequencies have also been given in the same paper by Steinman (1959).



- 122 -~

The formulae are not repeated here, however, partly because they cannot
be stated with quite the same conciseness as in the case of vertical
oscillations, and partly because torsional oscillations have not been
considered in the worked example given later - mainly because the
necessary numerical data was not available at the time of writing.

This omission of the torsional modes does not imply that they are less

critical than either the lateral or vertical modes.

6.3 THE VIBRATION OF THE GUYED MAST
6.3.1 General

The vibration of the tall mast was first analysed by Kolousek
(1947). The method he employed was based on the 'slope-deflexion’
technique, and required iol*ing simultaneously a number of equations for
the slope and deflexion of each point of discontinuity on the mast, where
either a change of section or a guy attachment point occurred. For very
tall masts, with many guy levels and incorporating several changes of
section, the work involved quite soon becomes laborious, and better
suited for electronic, rather than desk computation. With the additional
coﬁplication of large axial loads, the golution along these lines is
still more difficult.

An alternative method was suggested by Davenport (1959) using
a development of the so-called Basic function technique first used by
Inglis for determining the whirling speed of turbine shafts. These
functions represent the natural modes of uniform beams possessing similar
end conditions to the beam under consideration. For example, the Basic
function for a simply supported beam is the sine function. For the

"hinged-free' and "fixed-free" beams, which have end conditions similar
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to the two types of guyed mast found in practice, the Basic functions are
composed of both trigonometrical and hyperbolic functions. The mast can
be analysed as a whole by simply representing the deflexion, bending
moments etc. in terms of series of these functions and their derivatives.
The number of terms used in the series depends only on the accuracy
required.

It is usual to regard the guyed mast as an elastic beam r;lting
on flexible supports. These supports (provided by the guys) can, for
limited deflexions, be regarded as having linear characteristics. Under
static loads the stiffness of the guys is due principally to the elastic
stiffness of the cable stretching as a taut wire; this is partially
offset, however, by a gravity effect due to the raising and lowering of
the cable mass during the deflexion process. Under dynamic loading this
stiffness contains a third element due to the inertia effect of the cable
mass which, as was shown by Davenport (1959), can be large when the
excitation ffequency is close to the natural frequency of the cable

vibrating as a taut wire. The dynamic behaviour of the guy cable is now

considered.

6.3.2 The Influence of the Guys

It is well known that the shape the guy cable will adopt when

it hangs at rest is the arc of a catenary. If however the tension is
large enough so that the change in tension due to the weight of the
cable is small, this arc will be almost exactly parabolic. 1In practice
this is almost always the case for the simple reason that a slack cable

is a most ineffective support. This assumption, that the arc will be
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almost exactly parabolic, is made here.*
Consider the guy illustrated in Fig. 6.2. The notation is defined
as foltows:
T 1s the average tension in the cable,
AT(t) is the change in this tension at time t during a cycle
due to the movement of the upper guy attachment point
in vibration,

S is the length of the cable, at rest,

O is the inclination of the chord joining the two ends of
the guy,

w is the weight per unit length of the cable,
Ag  1s the cross sectional area of the cable,
Ey 1is the elastic modulus of the cable material,
and @ 1s the mean radius of curvature of the guy cable at rest.

The case in which the stack is vibrating in the same plane as the
guy, is examined first.

Consider an element of length dx at distance z from the lower
end. Suppose that when the stack is stationary the defloction from the
chord is y ; suppose, further, that when the upper_end of the cable is
displaced horizontally during vibration by an amount V{t) , that the
deflection of the same element becomes Y + f[(t) measured now from the
chord in its new position O N' . The additional displacement of the
element due to the rot.;tion of the chord is % vE) . sino and

the normal acceleration of the element ig therefore

%At the time of writing, a paper by Dean has appeared ("The static
and dynamic characteristics of guy cables" - J. Str. Div. Proc. Am. Soc.
Civ. Eng. Jan. 1961) in which this assumption is not made and the derivation
based on the catenary. Although the results for fairly shallow guys are
not likely to differ greatly, for steep, slack guys, Dean's derivation is
clearly preferable,
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FIG.6.2 EXTENSION OF GUY ELEMENT DURING VIBRATION
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-’;—.;(t).ﬁnd' + ;i(t)

The total force cauwsing this acceleration is

[ T ") + at.y" & st "® ] d=

2
where \:j “ signifies d_.i 2 -

d=x* €
The quantity AT() . 'l"“) is of second order if the vibration

is small and the equation of motion therefore becomes

w Lo . & IS
3 (Z sina V() + ’ZW) = ATO.4"+ To'®
(6.17)
The change in length between the ends of the guys due to the
additional deflection rL(t') is given by "g " QLE), clx (This

result can be seen from the elementary diagram in Fig.6.3).‘ The elastic
AT. s
Ag- Eg
Equating this with the longitudinal displacement of the upper end of the

extension due to the additional tension AT(t) is

guy
AT s ’
vit), coeser = rour f y' 18 d=x
9 =3 °
From the theory of taut wires, the curvature
\.J“: - = e -vic..osc'
e T

Hence

s

A o '
_AT‘#) - Eq. :6 s [ v(f) + w J.rl(k).dz] (6.18)

T
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Equation (6.18) shows that AT(t) and r{(}.) are linear functions
of v(t) . Therefore if v(t) varies harmoni¢ally with circular frequency w ,

then so will AT (t) and nt) . That is, 1f YE)sV.snwt then

ATE)=AT.sinet and Q(k) = N sin wt . Substitution in equation (6.18)

gives

%’.u"(ﬁ.shf.v +Q) + T. rl" + AT.Q" =0

Substituting from (6.18) into this last equation,

Eq.hg c08"C

w/ . w o a "
-l v aw T w
3 wisinc + 3 W+ T = = A Y
_ Eo. Aaq wosia 3 a8
9- "3 w
+ — . d =
. T er 12 o

(6.19)
To solve this equation, rz is represented By the Fourier series
M= [a‘ s(n’% + o, 3in '-'-13;’24 .- ..* ansfﬂa-!r;}h..(&m)
Likewise each term of equation (6.19) can be broken down into a series
of harmonic components. Since equation (6.19) must be satisfied for each
component separately, as many equations can be formed as there are
harmonic components. From these, the various coefficients ‘Qy,8,..0tc.
may be determined. Equation (6.18) then gives the so-called guy modulus

} , which, after some further simplification, can be written

ATE) B I |

© Ea Aq testa
where k = ——Q—-—;L———

F e n* T . sinQ
w.s® k 2

(6.21)
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2 3
T
G - s’w'k
w{—_
and §(.n.) _Q.‘{ tan 79"
A
&

The quanttity 2 , in fact, is the ratio of the impressed
frequency «@ , to the fundamental frequency of the guy cable vibrating
a3 a taut wire. Values of é(.n.) have been given by Davenport (1959).

If the mast is vibrating at an angle © inclined to the plane

of the guy, the expression for the guy modulus is

2 cos @ F.ﬂ. - cad “
k cas O [' cos * G. §(.a_)_ cos” (6.22)

: 4,,9 cos O

where cos * - cost® wasro

The static modulun can be found by putting &3=0 (orN2 =0 ),
(2 '
for which @Q(a)=- -5 . Equation 6.22 then gives

cos 8. c.os¢

K= k cos*®© [l -
12T 2
| b iialads ¢ (6.23)
is usually much greater than cos‘é the static modulus

1213
3wk
can be written

Since

Atk T
K = kes*0 | |- ¢os® cosd =2 Q.J
| L t T (6.24)

a familiar resuit obtained otherwise from purely static considerations.
| It 1s significant to consider the general behaviour of the
dynamic guy modulus given by equation 6.21 (or 6.22).
Por guali values of . (i.e. impressed frequencies much less
than the fundawental frequency for the guy cable), the modulus is quasi-

static: that is to say, dynamic effects are not felt. As (L approaches
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unity (impressed frequency equal to the fundamental for the guy) the

Ll sl
modulus falls to the value el oSL%EE' , which 18 independent of

elastic terms. For a very small further increase in frequency the Buy
modulus beconés first negative, and then goes through a series in in-
finittes (positive and negative) as G .§(ﬂ-)"l—'*‘¢. The infinities are
found to occur whenever the impressed frequency is slightly greater than
the odd-mode natural frequency of the cable. Between these frequencies,
i.e. for I>J2..>3> 3> >5 etc., the guy modulus is generally
constant at a value close to the simple elastic stiffness for the cable
- k . This implies that there is practically no gravity or inertia
contribution to the dynamic cable modulus at frequencies above the
fundamental for the cable - except in the immediate vicinity of the
odd-mode natural frequencies of the guy cable, when the inertia stiffness
dominates almost completely.

In considering these results it must be remembered that no
allowance has been made for the damping of the cable which is inevitably
present whenever the guy cable is forced into oscillation. This explains
the somewhat anomolous result that the modulus is infinite when the.
frequency 1is clooe.to the odd-mode natural frequency of the guy cable.
This behaviour {s analogous to that of any undamped dynamic system which
wvhen excited at its own natural frequency theoretically bﬁildg up to an
infinite amplitude., It i{s to be expected, therefore, that if damping is
taken into account, the‘modulus will remain finite at all frequencies
and the anomoly thereby removed. A further factor is tha, as the im-
pressed frequency approaches the odd-mode natural frequency of the guy
cable, the amplitudes probably become large, and the strictly linearised

theory adhered to above no longer holds. Non-linear effects will usually



- 130 -

tend to inhibit the amplitude somewhat and in effect, to damp the
vibration.

The modifications necessary to the guy mo&ulus when velocity
damping is acting (not previously considered by the writer (Davenport -

1959)) are now discussed.

6.3.3 Effect of damping on the Guy Modulus
The equation of motion for the guy cable with damping is the

same as equation (6.19) with the addition of the velocity damping term,

c(3 sine. v + 1) (6.25)
Qhoro ¢ 1is the velocity damping coefficient. The effect of Qamping is
to produce a phase difference between the force AT (¢) and the mast
deflexion () .
Thus if rl(l') e sh ot
then ) = (ve Lv) s at
Following the previous procedure we express the cable deflexion as a

Fourier series, which this time must be taken as complex. Assume

therefore
. Xx . 2
'1-—. uw ( Q, s« T + o, Su\';-z:— + .... _ )
-+ ;.V ( b' 50'5\1‘:‘ S b: Sl.hz-.-r‘—s: ¢ ... )

1f substitution is made for rl({) and v(t) in the equation of
motion, the equation is found to consist of a real, and an imaginary part,
both of which must be satisfied independently. If each term of these two

equations is broken down (by Fourier analysis) into its harmonic components
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then the equations must hold for each harmonic component separately.
From these equations so formed, the coefficients a, , a, , ete.
and b, , b, etc. may be determined.

Equation (6.18) is again used to determine the guy modulus,
which this time is found to consist of a real (i.e. in-phase) and an
imaginary (i.e. quadrature) component. After some mantpulations, the

in-phase component is found to be

| — (Far-)(G A @) -1) + ZG.F.n.x.thn.)-

K=k ORI CE R

(6.26)
The quadrature component of the guy modulus is
YO 260 .« (GHEO) 1) + Fa’-() G. yyn)
- { Gl’\lf&n)" { }1 + {.C‘a‘r;(n)}z (6.27)
where k) F, Ca and L£1 are the same as before and
/_1__  sin ©
x = €98
WT : (6.28)
€s: ¢
. Y= 7T -Fté (6.29)
and ) X
as
Vi) = Tor g (6.0
The functions ¢, and ¢, denote
b = 7 == a ' (6.31)
7 LT T e '
- S 2LL K
¢, = > (6.32)

L h"[ a>-n")* L 407>
N odd ( J
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vhere the summations cover all odd values of n

I1f the velocity damping coefficient is zero (i,e. x=0 )
it 1s found that the quadrature component of the guy modulus, given in
equation 6.27, has no value and the in-phase component of equation (6.26)
reverts to the undamped form of equation (6.21), as might be expected.

The denominators in the expressions for the guy modulus are
seen to consist of the sum of two squared terms. Provided the damping
coefficient is non-zero, the second of these is always positive and
greater than zero and so the guy modulus can never become infinite as in
the undamped casd.

In a high wind the velocity damping will arise in two ways. Pirst
from the natural mechanical damping produced by thebrubbing of strands of
the cable against one another, and second due to the aerodynamic, drag
damping (corresponding to the fluctuating drag component of the pendulum
in the experiments discussed in Section 5) of the cable moving against
the strong air flow.

It is evident from the analjsis of Section 5.3.3 (of the
damping of the pendulum) that the value of th§ damping coefficient is

given by
c = e.CD.D.V

6.3.4 Vibration of the Mast with Guys

As noted, the method used for determining the vibration of the
guyed mast is that described by Davenport (1959). This uses the Basic
functions which describe the natural modes for the uniform beam having

end restraints similar to the mast. For the mast ball-jointed at the
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base and unsupported at the top, the first four Basic functions of the

lowest order, labelled B &), B, &), By and B,y are

X
Be= T
Bx)» —2.787495 » 10°% 3iah °.‘3:E.’.‘ + sin :}C: (6.33)
B,@= 1.2041205x«10™ sinh '_‘:r" + sin ‘L%"
B -5.20346 x15° su'\h“_gg‘ + Sim x‘%
vhere o, = 3 92660
oy = 70582 (6.34)
Ay = 10.21018
and { = the overall span length.

These functions are illustrated in Fig. 6.4 and have been tabulated by
Davenport (1959).
For the beam cantilevered at the base and unsupported at the

top, the first three Basic function are given by

B|‘l-)‘ l.BGZ‘LZIE,.;hd.’-% - e d.—.é'] - Esll\k"%—'ﬁt.nﬂ.}él
Bo- oaitcie|wsh G- weni] - [y s X] (639

5,@)- l.ocoT76 |°0[(..obh¢’!é' - u,,uf'f] - [;mk u:t -3 n.,!"}
vhere o, = 1. B7S |04

o, = 4 @D4092 (6.36)

dyg= 7.8547T57 |
These functions are illustrated in FPi{g. 6.5 and again have been tabulated
by Davenport (1959). -
Two subsidiary functions are also required (termed the second an& third
Basic functions) and these are defined respectively by

d B x) _
b= — =)
n® =g, ol.x/2 (6.37)
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and e
n()
x — —
Ph( ) “l d2® x/e ‘ ) (6.38)

n
These functions have also been tabulated (Davenport - 1959)
The method of solution using Basic functions is now described.
. Consider a mast of total height 1/ » for which the rigidity and mass
(which may be irregular or discontinuous) have values EI,‘_ and M at
height x above the base. Suppose that the tower is supported by guys at
several levels, thejfh level being at a height ¢j and having a total
dynamic modulus for the guy system at this level of '<j . It is not
necessary at this point to specify whether the tower is fixed at the
base or pianed.

The deflection (or mode) of the tower during vibration may be

represented by the series

y = Z: a, B .® (6.39)
The determination of the natural frequencies and modes of
vibration can now proceed by an energy mathod. Thiu'conoiltg of determining
the total elastic energy stored up by the tower and the guys at.thc point
of extreme deflexion when it is momentarily at rest, and equating thi;
with the kincﬁic energy of the tower and the change in potential energy

of the axial loads, as the tewer passes through the mid-position.

The total elastic energy stored yp by the guys, (Jg » 1s given by

{ 2
U = E; Kj Yi
where the summation includes all the guys. From equation (6.39)

ljJ = Z Qr.ar(Cj)

-

and so

™

( —
IJS‘, 2 L. K; Z o, B,y (6.40)
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The total elastic energy stored up by the tower Ut(if the shear

energy is neglected) is given by

Vomg [ en(ghye

x

Differentiating equation (6.39) twice and substituting third
d?

Bas‘ic functions (5@') for a_;:’, » we have
U =L (lernfs | > : |
t= 7 ’fi[é.. Ay Xy Pr(")] dx (6.41)
© Y

The change in potential energyAV of the axial loads S, due to
the deflection of the tower and its consequent small foreshortening, is
glven by

AY = -i—fts d‘-‘)zd
’ 24, T * ('d—ﬁ »

‘:(_‘_‘J can be expressed in terms of second Basic functions and
2

{
AV = 3 L 2= [Z ar by dx (6.42)
If the mast is vibrating with cﬁcﬁlaf frequency g such that at
time t
gl) = y . sin it
nr is

the kinetic energy W of the stack at its mid position (f:: =

31v§n by

W = -é- M, o gz dx
o
wvhich, from equation (6.39) is

' 2
W =—‘_'L—u=" L m,‘[z Qp. '5'@‘)] dx (6.43)
. : - r
by the conservation of energy

R=T,+ U, ~av-W =0 (6.44)
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By the calculus of small variations

Q| 2@ ?

Substituting equations (6.40), (6.41), (6.42) and (6.43) into (6.44) and
applying (6.45) the following basic equation can be written for all values

of r
El, = =
-—{-4_.(!', { Q. & JEI (5 [ df + a,. .« IEI' P‘@r (-..}
5 t
-F'a{o. “ | -2-’.-‘ b bed 7 « a,.a,.f :—: b.b.d%-... }

<
+ %, T r(c) (a,.B,(cj) + a, 6;(‘_39 + .. )

= Qm{ J"‘&584£+—qz[m"'66d—(____}

(6.46)
vhere ET_, S, and m, are reference values.

Usually, it is quite sufficient to repre;ent the deflexion by
three or perhaps four terms of the sefies given by equation (6.39), so thaﬁ
equation (6.46) is written only for v= | 2 =3 and4 . The four equations-
enable the natural frequency and the three ratios of the coefficients to
be found. This can be done by a method of continuous approximation. The
deflexion is first approximated by the dominant term of the series which
invariably is the term corresponding to the number of the mode to be
determined. (i.e. the second term if the second mode is being determined).
The equation in which this term is dominant (in this case the second)

1

then yields a first approximation to the frequency, @ , which can be
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substituted in the other eduations, to give the ratio of the a's. Thesge
in turn can be substituted into the original dominant equation to give a
better approximation to the frequency. The procedure is repeated until
;11 the values settle down, which usually requires either one or two
cycles.

The determination of the various integrals involved in equation
(6.46) is best accomplished by numerical integration, and for this purpose
values of the various Basic function products have been.tnbulated at

intervals of 2% = .0% by Davenport (1959). The procedure is further

7

simplified by the use of certain fundamental properties of Basic functions

given in Table 6.1, including the orthogonal property that for F‘# S

¢ ¢ t
f B, (x) Bex) dn = L O (60 dx = O

6.4 Determination of Moments and Shears

From the point of view of design it is important to determine
the moments and shears. If the mode form is known, these can be found

directly from the basic property that the shear force

and the moment

Mw) = f Q. d= (6.48)

vhere w 1s a general expression for the loading on the beam.
In the case of the lateral suspension bridge modes the loading

is provided by

1. the inertia loading of the deck — !{I- “31>/~@F)»

9
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TABLE 6.1

NUMERICAL QUANTITIES USED IN BASIC FUNCTION ANALYSIS

Hinged-free Fixed-free

beam beam

1.00000 | «, 1.875104

3.92660 «, 4.694092

7.06583 , » 7.854757
10.21018 3 .-

1.00000 o 3.516015
15.41819 «, 22.035000
49.92595 o3, 61.697208
104.24777 o -

]
0.33333 j:- Blo dx
0 o PEIdx 1.855645
> ' L
0. 50000 J2 Blodx = 5, 0y dn)an 0.964065
0. 50000 So By = S By @) de 1.001553

0.50000 Jo Bl Gude = SJ Ptey de N
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and 2. the cable reaction CL@‘, (given by equation 6.3)).
For the vertical modes of vibration the loading is provided by
1. the inertia loading, g.w'. 4 (=)
2. the cable reaction H %% + AaH %1
where &AH ig the increment of cable tension given by
= $
AH = CT X ?—'t
the other quantities being given by equations (6.14) and (6.15)
The loading of the guyed mast iabsupplied by
1. the inertia loading %;.as‘.j
2.  the guy reactions K;jy;
3. the axial loads g’,_( Sx éﬁ)
Knowing the form of the mode, the loadings can each be
foﬁnd and the moments and shears evaluated straight forwﬁrdly.
It should be noted that double differentiation of the deflexion
to obtain EI %:'3‘ , 18 not a satisfactory method for determining the
moments. This is because differentiation of the serial representation of

the mode deflexion is often non-convergent, The same argument appli es

to the shear forces.

6.5 THE RESPONSE OF THE T AND SUSPENSION BRIDGE TO STEADY WIND LOAD

6.5.1 General

In Section 3.2 the response of a beam to a static load distribu-
tion was analysed by expressing the deflexion and loading in terms of the
natural modes of the structure. However, since the modes have been
expressed in terms of series of either sine functions or Basic functionms,
it is in fact more direct to represent both the static load distribution
and the deflexion in terms of these functions rather than the natural

modes.
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6.5.2 The Suspension Bridge

For the suspension bridge the mean wind may be taken as uniform
across the span. This mean wind load acts laterally and consiste of two
components, ﬁir and ﬁz' acting on the stiffening tfusa and cable
respectively., The static anklysis follows the dynamic analysis of Section
6.2.1 closely, only instead of inertia loading, the harmonic components

of the static loading are substituted. Equations 6.8 and 6.9 now read

— L . -
T4 4 2w\ N LAl \ I 4 =5
EI'T_""'G' + = Z, @,—b,)L —,,TL;')"sms_ntn dx = PT (6.49)

Vi

e
T 2wy < I‘Sﬁnf_ﬂ." . ghin 4
H-{}.r.a, -~ = Zr_.(c‘s'bs) o h@‘;. e Ax TR Te (6.50)

From the above equations the coefficients a, and br may be found,
enabling the deflexion and the cable lead, q(¢) to be found from equations
6.4, 6.5 and 6.6. Knowing the uniform wind loading ﬁ; and the proportion
of this load taken directly by the cable, the lateral bending moments
and shears induced in the stiffening truss may be found.

A method similar to the above has been described by Selberg,
who also introduced into his analysis one or two.secondary effects such
as the deflexion of the tower tops. The value of including detailed i
secondary effects here, when the wind loading problem as a whole can only ;
be sketched in bréad outline is debatable, and can perhaps lead to a false

impression of the accuracy of the final result.

6.5.3 The Tall Mast

In considering the mean wind loadings of the tall mast it is
necessary to allow for the variation of the mean wind velocity with

height. With thise observation, the static wind load analysis, broadly
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speaking, follows the dynamic analysis. The mean wind load is broken down
into its Basic funhction components which areAsubstituted for the inertia

terms in the dynamic analysis. Equation (6.46) now is modified to

— ! t
E_-{_l}_arl{ s qs.u:L %p,/&,df}_ _%:.«,.Zas«,.'ﬂ%:‘b,b,d%‘-
ST K < o) V" X
M Z._J T'j"ar@'.i)é_,as‘ Byy) = R J'\‘Z%'E)r@)'d'f
(6.51)
where ﬁ% , 18 the mean wind load of the reference height andlgz , the
corrésponding mean wind velocity.
Ftom‘these equations (written for each value of r) the
coefficients(l,_-_ar'may be determined and hence the deflexion. Knowing

the deflexion, the guy reactions and the effect of the axial loads can
be determined, and hence, the moments and shears. It should be noted
that the static values for the guy moduli should be used, given by

equation (6.24).
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7.0 MECHANICAL AND AERODYNAMIC DAMPING

7.1 GENERAL

The damping of a structure VLbrating in a high wind arises from
two sources. First there is the mechanical damping occurring at joints
of the structure and within the material itself, and second the aero-
dynamic damping due to the motion of the object through the strong current
of air. Some estimate of these damping parameters is vital on account
of the strong control they have over the attainable amplitudes of

oscillation.

7.2 MECHANICAL DAMPING

The mechanical damping present in a structure appears to be an
extremely variable quantity dependent on guch factors as the material
it is made of, the foundations, the mode of vibration and its construction
- whether it is prestressed or reinforced in the case of concrete
structures, or whether it has welded, rivetted or bolted jointg in the
case of metallic structures.

This mechanical damping can be determined experimentally by
deflecting the structure, releasing it and recording the resulting
decay of vibration, either by strain guages or\photographically. Several
such experimsnts have been performed on full scale shimney stacks and
masts, (see Davénport - 1959). The logarithmic damping decrement found
from these experiments ranged from .01 for an unlined, welded steel
structure to .10 for a welded aluminum structurs. Two guyed steel
masts, 120 ft. and 500 ft. high, both gave a v#l;; of .05. Two, 240 ft.-

high, rivetted steel chimneys with brick linings gave values betwaen

.03 and .07.
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Very little information is available on the mechanical damping
of full scale suspension bridges although some experiments were performed
on short span suspension bridges for light traffic (mostly wooden) by the
University of Washington. These are reported by Farquahson et. al. (1954),
from which it would seem that the logarithmic damping decrement can be
expected to be at least .02.

There is bound to be difficulty in predicting exactly the
mechanical damping in a structure. However, from what little information
is available, it seems reasonable to assume that the damping will g;vel
a logarithmic decyement for the fundamental mode of vibration of at least
.01 or .02. To assume a value of this magnitude for all modes is, of
course, likely to underestimate the actual mechanical damping present,
particularly in the higher modes. Fortunately the lack of precision will
not, it seems, significantly affect the outcome because in this instance
the mechanical damping is apparently overshadowed by the aerodynamic
damping due to the high wind, which can be estimated fairly accurately.

The importance of the aerodynamic damping in the wind has been
previously overlooked by the writer (see Daveaport - 1959) apd also by 1

others discussing the aeroelastic vibration of the suspension bridge.

7.3 THE AERODYNAMIC DAMPING

A structure vibrating in air will be subject to certain sero-
dynamic forces tending to damﬁ'the vibration. In still air, the forces
will be due mainly to the viscosity of ths air disturbed by the oscillating
object. The dampiqg is not likely to be large and probably insignificant
compared to the ﬁechanical damping. 1If, howevei, the air is flowing past

the object, the principal aerodynamic forces acting will be from drag and
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1ift. If the object is moving, fluctuating components of these lifc
and drag forces will be induced, tending to oppose, and henc? dauip out
the motion. 'fhis form of damping 1s precisely that investigated in the
pendulum experiments described in Section 5.3.

An slternative definition for the logarithmie damping decrement

to that used before is
AE
=
2 E
vhere AE 1is the work done per cycle against the drag (or lift),

and E 1is the total energy stored in the system.
Suppose the mode of the beam (i.e. mast or suspension bridge_) is
Y = @ , then the velocity of the beam at station x is
y = 2WN.. s, (x). 3" 2Tin ¢t
where N, 1ig the natural frequency in the rHh mode.
" The drag on a slice of the beam of thickness dx , in a steady

—

wind of velocity V,‘ is
dﬁ = -;—- e Co V:D. d x

vhere D is the diameter of the beam.
The fluctu;ting component of thi; drag, when the velocity of the object
is  , is _ |

d((.\ R) = d=x. g_é’ (—'ie Cp v:.zD>
The work done per cycle on t’l:e elice is then

d (AE,) = .o §d@R). d:.]
where the integral is taken over ome cycle,

The total energy in the system is given by the kinetic energy
at the mid-position of the oscillation. For the game slice of the beam
this is '

d(E) = dx. L ‘2
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where M) is the mass per unit length at station %

For the entire beam, the logarithmic decrement is therefore

5 = fld(ae)
[ d(g) !
'
= (é eC,_D.V,z) j. %—:/uz'(zs) cla .
N, : }rr n(ls)/“:u“) dn
° 7.1

This is the basic expression for the logarithmic decrement due to aero-
dynamic drag damping.

In the ébove form the expression applies principally to the
tall mast, in which allowance has to be mad¢ for variations in the wind
velocity with height and in the section of the mast. In the suspensgion
bridge both of these generalities are unnecessary and both the wind
velocity and the section can be assumed constant across the span. The
expression then becomes simply

§- (z2€°» v>) | (a.z)»

N, v m
Here the numerator represents the drag per unit length in a steady wind

——

of velocity V (provided that the drag coefficient can be taken as for

quasi-steady flow).

For the vertical vibrations the expression is found to be

§ = q__ ] _ , .
T de 2.n,.Vm , (7.3)
dz

vhere Ju is the rate of change of the lift force per unit length of

the deck with the angle of attack & (in r.diann).
Evidently, the damping varies directly as the mean wind velocity
and inversely as the frequency of vibration. The latter implies that the

higher modes of vibration are more lightly damped.
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The values these formulae give for the fundamental-mode,
logarithmic decrement for the tall ﬁast con#ide:ed later in the worked
example, are .4 and .7, for open countfy, and city conditions regpectively:
for the suspension bridge the values are .4 for the‘first veftical mode
and .18 for the first lateral mode. These results (which are presumably
typical) suggest that the aerodynamic drag and l1ift damping makes a far

larger contribution to the total damping than does the inherent mechanical

damping.
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8.0 TIME-HISTORY RELATIONSHIPS
8.1 GENERAL

The aims of this discussion so far have been to estimate the
spectra of the bending moments, shears and deflexions at all pointlvon
the span. 1In addition methods for determining the bending wmoments,
shears and deflexions under the action of the mean wind load have been
described. The problem now is to estimate the critical quantities needed
in design from this basic information.

The qeastion first to be considered is what quantities are
critical? Answers to this may be several. 1If the structure is liable
to failure through brittle fracture, then probably peak values of stress
are most important. If on the other hand the structure is more vulnerable
to fatigue failure the number of stress repetitions ;111 be more vital.
It will again depend to some extent on the design precepts: that is to
say whether the structure is §¢£ng analysed fﬁr ultimate collapse conditions
or for a more limiting condition such as the onset of plastic yleld of
the material, with resulting permanent plastic set.

| The particuiar criteria most relevant to the design of the

suspension bridge and tall mast are again debatable. Por the sake of
argument, however, it will be assumed that the instantaneous peak values
" of stress are those that are most important in determining th‘ sufficiency
of the structural members.

A number of expressions are available for predicting, not omnly
the pesk values, but also such ifcna as the number of excesses and
maxima of a random series occurring in a given time. Several of these

were arrived at in studies of noise in communications (Rice - 1945) and

in ocean vaves (Lénguet Higging - 1952). Three which seemed relevant
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to civil engineering problems were given by Davenport (1961), and are
now repeated here for convenience.

As noted elsewhere, the statistical distributions of ail the
stochastic variables considered here are assumed to be normal i.e.
Gaussian. This follows immediately from the normal or near-normal
digstribution of the wind velocity and from the quasi-linear relationships
which have been assumed to exist with all other variables - pressure,

deflexion, shear, moment etc.

8.2.1 The Number of Excesses per Unit Time

Rice (1945) has shown that for a stationary random series of

the normally distrtbuted stochastic variable x that the number of times,

N(x,) , @ given value x, is exceeded in unit time is

2
Xo

o' - To%w
Neo= = ¢ *° (8.1)

vhere O (x) = gtandard deviation of x ;

[ [ see o]

T - [ J“n‘. S,.. du] h
° (8.2)

and S5,(") = spectrum of x .

8.2.2 The Distribution of the Peak Vglues Occurring Within a Given Period

If a number of periods, each of duration T , are chosen from
the same stationary random series, the proportion of them in which the
latgbut values are less than x_is | — T.N(x,) (osus—;). Using
Rice's expression for N(:,) it follows that the distribution of the peak,

or largest, instantaneous values fl for all the periods is
2

QY = 1- vT e 5% 8.3
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where Q(q) = the probability that the maximum value during period

is less than Q ,

O(X) = the standard deviation of the parent population of variable X,

g ')
G )
The frequency density function is

and Y =

2
vT T 26%e)
Y = cr@"l' < (8.4)

VT will be termed the response factor. The mean of the distribution is

found to be
_ {

Il = G‘(x)[VZl.sevT‘ + W-._.J (8.5)

and the standard deviation

G (x)

o) =
(n —

The form of the distribution and its relation to the parent

population can be seen from Pig. 8.1.

8.2.3 The Distribution of Largest Average Values Occurring Within a Given
Period

I1f, instead of the peak values, the largest value averaged over

a finite interval of time, A T , is required, the same formulae as above
in Section 8.2.2 are used, only a modified form of spectrum for determin-

ing O(*) and O°(x) is adopted, namely,

SN NT.AT _]2

5;@*)= 51("’)[ AT AT (8.6)

8.3 THE GUST FACTOR
The expression derived for the probability distribution of the
peak values (equation 8.3), is seen to be a function of <(x), the r.m.s.

fluctuation, which, for the wind depends on the mean value, X . Due to




- ¢ST ~

3.0
> [~—— DISTRIBUTION OF
o DISTRIBUTION OF P 2.0 INS TANTANEOUS
7] ALL SAMPLE VALUES ;7 N PEAK VALUES
W \ / \ (VT = 100)
/ \
> I/ - .30 \\
!
) \
=2 / \
w / ,
P f— O —rf— o’-——A\
e / - .20 \ 1.0~ g
w / \\ V2invr
/
/) e————— gJ2In VT
/ \
/ - 10 \ | MEAN PEAK
// \ L \—
p \
7 \\ l
’/ ~ []
—— | 1 | 1 ~~ 1 1
-3¢0 =20 =g o 20 3¢ 40 5d
SAMPLE  MEAN >
FIG. 9.1 FREQUENCY DISTRIBUTIONS OF ALL SAMPLE VALUES
ANQ QF MAXIMUM INSTANTANEOUS (PEAK) VALUES

FOR YT (ie. RESPONSE FACTOR x SAMPLE DURATION) = 100




- 153 -

climatological variations the mean value is itself likely to be a chance
occurrence with its own probability distribution (as discussed in Section
2.3) To find the absolute probability of a given peak value, therefore,
requires knowing the combined probability of the mean values as well as
their associated peaks. This is not impossible to. determine knowing the
properties of each distribution separately. 1In practice, however, the
labour involved is hardly justified, and it is felt that in most cases
perfectly adequate estimates can be made using certain approximations
which enable the complications to be avoided.

As can be seen from Fig. 8.1, the distribution of maximum
values is narrow one, and in practical cases 95% of the peak values lie
within an interval much less than half the standard deviation of the
parent population on either side of the mean peak value. This suggests
tha£ not muéh error will be involved if this slight spread of peak
valuas is disregarded and the peak value in any given period is taken

'.qun» to the mean peak value. The total peak value X p (referred to the
true origin) can then be written ,
Xp = x ’{ I+ ¢3(v'r) S[g?} }

where X = mean value of population and (from equation (8.5) and Fig. 8.1)

g T) = m + fé‘!’i?:s_»? (8.7)
( 90917 is plotted as a function of YT in Fig. 8.2)
'9-!%?> is not necessarily constant, and may have a slightly different
value for every value of X ; {n practical cases, howaﬁer, the variation
is not likely to be great and it will normally be adequate to choose a

suitably conservative value corresponding to a value of X  close to the

mean value of the X distribution. The absolute peak values will then
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have a distribution similar to the mean values, exceﬁt that the variable
will be increased by the factor [] + g qg?)J

The assumptions this involves are not severe. Measurements of
peak gust velocities for example appear to follow the extreme value
distribution (equation 2.2) just as well as the mean velocities themselves,
and the two velocities are in more or less a constant ratio to one another
for all return periods.

The qumtityg will be defined as the gust factor, since it
measures the additional deflexion, force, velocity, moment, shears etc.
which can be attributed to the gustiness of the wind. It is.a crucial
quantity in estimating wind loads. In beam like structures it willlvary

across the span and with the variable being considered.
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9.0 _APPLICATIONS
9.1 THE WIND LOADING OF A SUSPENSION BRIDGE

9.1.1 Descrigtion of Bridge
The suspension bridge analysed is illustrated in Fig. 9.1. The

essential structural details are also given. This bridge (on which con-
struction began in 1958) is typical of modern trends in suspension bridge
design: the stiffening girder consists of a box-shaped, open lattice
truss with two levels of horizontal wind brac;ng, one being at deck level,
the other below. Due to the closed box-shape, the torsional rigi&ity of
the stiffening girder is high: this fadt, together with the epen latfice

construction, contribute towards a bridge section that is aerodynamically 1

stable against catastrophic forms of aercelastic vibration.

9.1.2 Aerodynamic Properties

Although the aerodynamic properties of the Forth Bridge were not
available, those for the Severn River Bridge, a sister project of almost
identical span, were published in a detailed report by Frazer and Scrutom
(1952), and these are taken to be representative of the Forth Bridge also.
Summar ized results of the 1ift, drag and pitching moment on a 180 ft.
section of the deck in a 100 mi./hr. wind for.various angles of yaw
and attack are given in Fig. 9.2.

It is seen that the horizontal drag force in a beam wind re-
mains almost constant for changes in wind direction up to 20° and for.

changes in angle of attack of up to about 10°. The variation of 1lift

force with angle of attack is more or less linear for all wind directiona.
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(including cables) 1b/ft 10.6 x103 15.0 X103
Weight of both cables 1b /ft 2.52 x 103 2.56 X 103
Horizontal force per cable 1b 24. 67 x 100
Vertical curve radius ’

of truss : ft 90,757 62,167

FIG. 9.1 DETAILS OF SUSPENSION BRIDGE OVER FIRTH OF FORTH.

(By courtesy of Freeman Fox and Partners )
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9.1.3 Descr‘iptgon of Site and Ground Roughhels
The bridge is situsted in approximately a North-South direction

across the Firth ‘of Forth which itself, runs approximately East-West.

The fetch of the prevailing westerly wind is probably somewhat rougher

than the Severn Bridge site owing to the fact that the latter has open

water to the ﬁeotward, vhereas at the PForth Bridge the river narrows to

- the westward and 1is flang/by hilly country. It was concluded in Section XQ“/
4.3,3 that the surface drag coefficient at the Severn Bridge site might

| be taken as H=>~005; on account of the slightly greater roughness, a

value of H=-0l0 has been assumed for the Forth Bridge. Site investi-

gation would improve this estimate.

9.1.4 Estimation of Design Mean Wind Velocity

From Fig. 2.4 the parameters of the. extreme hourly gradient
wind speed at the Firth of Forth are seen to be approximately (U“t 84 "'E.. =%-4-)
The extreme hourly gradient wind speed occurring on average once every ’
r years is then

VG(r) = 84 + 8.4 log,r Mi./hr
where r is known as the return period. For a return period of 50 years
the gradient wind speed is 117 mi./hr., for S00 years, 136 mi./hr. From
Table 2.1 the gradient height Z. and power law exponent © , coregponding
to a terrain having = rpughnéu factor of K = .Ol are seen to be approxi-
mately 1000 £t. and .20 respectively. The élevation of the stiffening
girder is about 200 ft. above mean sea level at which height the design
hourly wind velocity for a 50 year return period is found from equation
(2.1) to be 85 mi./hr, (124 ft./sec.), and for a 500 year return ppriod,

99 mi./hr. (145 ft./sec.)
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The question of what return period is appropriate cannot, of

.course, be decided without reference to a number of factors, such as the
duration the structure i1s expected to last, the design stress limitations,
the cost of insurance, and the cost to the community if the structure fails.
(For a discussion of these points see Pugsley - 1951; Preudenthal - 1954,)
For arguments sake, the gust and mean wind loading have been determined

in this example for a mean wind velocity of 100 ft,/sec. The wind loading
at other mean wind velocities will be approximately in proportion fo the

mean wind loads (ife. to the square of the mean velocities).

9.1.5 The Response to Horizontal Winds

Tﬁe determination of the response of the suspension bridge to
horizontal winds falls into two parts - the response to gusts and to
mean winds. The quantities that need to be determined are as follows:

art Gust responsge:
1, The horizontal gust spectrum,
2. The aerodynamic admittances and hence, the spactrum of pressure
on a "otrip“.
3. The lateral moaes of the bridge and natural frequencies of

vibration. . B

4, The joint mode acceptances and of the spectra of pressure in
phase with the modes. | :

5, The damping and dynamic magnification for each mode.

6. The dynamically magnified mode components of pressure.

7. | The shears and bending moments in each mode of vibration.

8. The total R.M.S5. shears and bending moments across the span by
superposition of the shears and bending moments due to individual

modes.
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9. The response factors and gust factors and hence the peak values

of the bending moments and shears due to gusts.

Part 2 Response to mean wind:

1. The relative deformations of the cable and deck and hence the
proportion of the mean wind load taken by truss.
2. The shear and bending moments.

These steps are now amplified and illustrated.

9.1.5.1 The Lateral Modes and Natural Frequencies of Vibratiom

To determine the lateral modes of vibration the analysis of
Section 6.2.1 is followed.

The hanger length h(x) at mid span ig 9 ft. Assuming the
cable is parabolic the hanger length at any other station x is

hx) = © + 12.6 (§-.9)

From this the following integrals are soon found (by numerical integration)
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fotQ"+ S) = odd numbers.

Substituting in equations 6.8 and 6.9, the equations for determining

the first and third modes are found to be

151 a, + 19.2 (a,-b) - 3e.3(a,-b,)
44.4 b, - 119.2 (a,-b) + 26.3(az-b,)
1223 a, - 3&.3(@, -b) +ic49(ay-b,)
399 b, + 3¢.3(c,-b,)- 1043 (az-b,)

262.a,. o
787. b, Wt
22 o, w?
78.7 by '

1

The equations for the second (and fourth) modes are

24l @a, + 435 (5, -b,) - 29.5(ay-b) = 22 .0, '
177.6 b, — 43.0 (a,-b) + 29.3(c¢,-b,) 787 b,. ot
3o a, - 295 (6,-b) * 694 (a,-b,) = 262 a, *
Tio by + 29.5 (a,-b)—60.4(0e-b) = 787 5, "

L]

The equations may be solved by successive approximation. For example, a
first approximation to the first mode may be found by assuming that the

deck and cable move integrally. Adding the first two equations then

glves a first approximation to w which may be used to solve the remaining
equations simultaneously to find the ratios of the coefficients d,: as;b'-. bs'
These in turn lead to an improved estimate of o . The procedure 1is

~repeated until no further changes take place in the value of " and the

coefficients, The results are tabulated below:



centreline of deck.

------ centreline of cables.

FIG 9.3 FIRST THREE LATERAL MODES OF SUSPENSION BRIDGE CENTRE SPAN.
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TABLE 9.1
LATERAL MODES AND NATURAL FREQUENCIES OF SUSPENSION BRIDGE
Harmonic Prequency Period Mode
cy./sec. secs./cy.

. M | .
Yy = Sin{ #-00as2 smé—'{:l" (truss)

lst .0636 15.7 Yo = 74 si-“!(x_ Ol4 Sin 3_\';_& (¢able)
= 3™, oo%23 ’c'm‘";‘ (truss)

2nd 164 6.10 3: ='3l4's;fz!(“’- 030 ’;_4;_;; (cable)
e = =-0I179 DI L Sin nn (truss)

3rd 348 2.88 j: . oce s‘.“}_;_.‘ +'%;";‘a%. (cable)

The forms of these modes are illustrated in Fig. 9.3.

The period of the lst lateral mode of the Golden Gate Bridge (4,200 ft.)
was observed to be between 23 - 18 secs., (Vincent - 1959). Thus the spans
and periods of the two bridges are in roughly the same ratio) as might be

expected.

9.1.5.2 Determination of Lateral Responge to Horizontal Gustsg

The basic procedure in determining the response to horizontal

gusts is shown diagramatically iq Fig. 9.4.

The first step is to specify the spectrum of horizontal gustiness.
The expression suggested in equation 4.3 (see Fig 4.1) is used and is
repeated in the top right hand of Fig. 9.4 (a logarithmic scale is used
to enable the multiplications incurred to be done graphically).

The next step is to determine the pressure acting on a trans?
verse ""strip” or "slice" of the bridge. The velocity correlation function
given in Fig. 5.4 (see also equation 5.5) in conjunction with equation 5.25
gives the Adrodynamic Admittance, (top left hand diagram) which when
multiplied by the gust spectrum gives the spectrum of pressure on a "slice"

or "strip" of the bridge deck (eq. 5.22), (right hand centre diagram).
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The spectra are also drawn on a linear ordinate scale in Fig. 9.3.
The third step is to determine the spectra of the components
of pressure acting in phase with the various modes of the bridge. The

joint mode acceptances are given in the form

2 | ‘r!
lJrU‘)[ S N j f Row®)  ape) mp@) da. dax
in which the cross corre'l.';tior‘x c;efficient, Q.‘,.,‘ Q) has been given
by equation (4.12), _ Fjm-atln
Qzu' (n = € v
Since the mode forms have been derived in Section 9.1.5 in terms of sine

functions, the above expression for the joint mode acceptance can be

rewritten in terms of integrals of the type

141 -c "&—1" .
fj e Sin r__(__ﬂx . Sin sTlcz. dx. dx'
o’® ’
where C.-7L‘.;Q . From Fig. 4.1 it is seen that over the important
n

range of the horizontal gust spectrum, the wave number v » 1s greater
than about 2 x 174 cy./ft. The main span of the Firth of Forth
suspension bridge is 3,300 ft., consequently in the range of interest

c 7 S , for which values,the correlation is concentrated over
fairly short intervals of the span. As ¢ increases, the average correla-
tion over these intervals tends towards %- . Furthermore, since these
intervals are small, < and =' will not be widely separated over regions

of significant correlation, and consequently for larger velues of ¢ the

above integral tends towards

]
_2_ LALR . efix
€ _LSM ¢ ST dx
This integral has a value only for r=9% when it tends to the value E'," .
Hence the only significant terms in the joint mode acceptance will be of
the type [x -x'l

! ' - ¢ ! . ntx . N )
o Jg e S SAE SR Ll R clx. dx
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Exact values of this integral for R = I,Z ,> are given.in Fig. 9.6.
The joint mode acceptances found directly from this (making use of the
mode forms given in Section 9.1.5) are shown in Fig. 9.4. The spectra
of the mode components of pressure are shown in the middle right diagram
of Fig. 9.4.

The next step is to determine the dynamic magnification for
each'mode, and a crucial part of this is the determination of the damping.
The expression necessary for determining the logarithmic decrement of the

aerodynamic damping is given in equation 7.2,
6. 1€ V'D)
S v

The numerator is simply the horizontal wind load in the 100 ft./sec.

mean wind and is found from Fig. 9.2 to be approximately 336 1b./ft.
With the mass r™ = 341 slugs/ft. and the natural frequencies given‘in
Section 9.1.5,the aerodynamic damping in the various modes are found
to be as follows:
Logarithmic damping decrements
for suspension bridge in lateral modes

Mode Aerodynamic Mechanical Total
damping damping " damping
lst .155 .02 175
2nd .060 .02 .080
3rd .028 ' .02 .048

The values of the mechanical damping decrement are minimum values
suggested in the discussion of Section 7.2. The aerodynamic damping is
seen to be far more important than the mechanical damping. The dynamic

magnification factors are calculated from equation 3.21,

%ol = [ C-@p)e g1
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and are plotted in the lower left diagram of Fig. 9.4. These factors
are used as multipliers, and the resulting apect}a of the dynamically
magnified pressures for the various modes are shown in the bottom right
hand diagram. The spectra are redrawn on a linear ordinate scale in
Pig. 9.5.

It is noticed that almost all the enmsrgy of the spectrum is
concentrated in the immediate neighbourhood of the natural frequency.
This enables the areas of the spectra to be computed from the following
simple expression, which is valid for small values of 9 and for values

of S(n) which do not vary rapidly over the neighbourhood of the peak.

fSQﬂ dn T
3 = n,. 2(r,)
a-l‘ 5y\2/n r
j {1- +(8)(2) 2s,

Applying the formula, the normalized variance of the dynamically

magnified mode components of pressure,

@) = [Tolt et 25 de

are found to be:

Mode ‘ Normalized Variance of Presgure
o@ /Pt
r
1 .936
2 .502
3 .128

Evidently the higher modes are less important which gives some (but not
complete) justification for neglecting modes higher than the third.
Applying the same formula, the second moments of the pressure
spectra, 2
| C
ey P T ()
____r..=_(_—)- = j. nz(lx'@”‘.'l.}r(ﬂ)\ . -—-ﬁ-‘;)dn
P o
required in caleculating '"the response factors", VT , of equation 8.2,

are found to be:
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Mode Normalized 2nd Moment of Pressure Spectrum
2 = 2
. c,*P)Y/P
1 ' .00358
2 .01313
3 .01547

The estimation of the peak bending moments and shears can now
be considered. 1In Fig. 9.7 the bending moments and shears arising from
unit load distributions for the first three lateral modes are plotted:
the lateral load taken directly by the cable (found from equation 6.6)
is also shown. These shears and bending moments are repeated in Table
9.2. To determine the total mean square bending moments and shears
arising across the span, the squares of the shears and bending moments
for unit mode load distributions are combined in proportio.n to the mean
square inteneity of each of these load components, found above. Thus
the root mean square shear and bending moment at station x, O‘Q ) and

G () can be written
Tew) = V2 oi(P)q;w

and OCm () = (Z a7 (P). m} @)

vhere q4y and m (x) = shear force and beanding moment at station x due

to unit vth mode load distribution (from Fig. 9.7). Similarly, the

second moments of the shear and bending moment spectra are given by
To) = VZ o). 4l

and oL = {2 ') q}ey

Details of the calculations appear in Table 9.2.

The response facgg_:;rv , 18 found from the ratio of the secand
S )
T (%)

moment of the spectrum to the root mean square fluctuation (i.e.
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TABLE 9.2
ANALYSIS OF LATERAL WIND-LOADING OF SUSPENSION BRIDGE
Mean Wind-load P = 336 1b./ft.
Mean Wind Velocity V = 100 ft./sec.
Roughness factor W= .01

SHEAR LB. x 10

"Unit mode load" R'eq,\onae Gust | Peak | Mean | Total
factors factor |factor| gust peak
V= shear | shear | shear
X Op(®) |oqw | o3 -
= Q Q™ 0'3@') (\) T Koy

L] % | 2] % | 5|7 |5 i 3%

0 680 | -390 | -408 | 728 | 79 | .108 | 3.75 91| 3.20| 4.11
1 746 | -315 | -258 | 761 | 65 | .085 | 3.69 .95 { 2.10{ 3.05
.2 848 | - 84 56 | 824 | 52 | .063 | 3.60 | 1.00{ 1.05| 2.05
.3 937 170 294 [ 920 70 | .076 | 3.65 | 1.13 .10} 1.23
4 858 290 238 | 860 | 68 | .079 | 3.65 | 1.05 45| 1.50
.5 0 250 0 177 | 29 | .162 | 3.86 .23 0 .23

&)

J— _
= [-936,%?@) + .%072 q:QL) + .uzaq:@) : _%?)z l-sstq':q.) +|.s|sq‘,a)+-.s 4.71';@3,,:5‘

-

BENDING MOMENT LB.PT. x (O

L
"Unit mode load" RspcmL Gust Peak | Mean |Total
gazﬁtgrs factor| factor Gust peak
x O 0';4(3‘) q_.9=‘ !Homent Manent | Moment
- | ™ | mm P |TF |2 gD g0
t * > Tral®) g( 35
o 0 0 0 0 0 - - 0 0 0
.1 2.2611.19(1.19 | 2.39{ .243] .102| 3.75] 301 892 {1,193
2! 4.85]1.95}11.62| 4.93]| .418] .085) 3.69 610 | 1,404 | 2,014
.3 7.86]1.70 .96 7.73 1 .523] .068) 3.63] 945 1,586|2,531
4| 10,93 85| -.06 | 10.60 | .660| .062| 3.60{1,281 | 1,503 2,784
.5]12.58 ol -.32|12.18| .755| .062| 3.60§1.472 | 1,403 |2,875
Ot N N -
= (28 mir e Bormin + uRuied 2. [ssmnlers B3min sis 4Tmrn % 1S
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as outlined in Section 8.1. The gust factor, 9(&13 is found from Fig. 8.2.
( T is taken as 3600 secs. since we are interested in the hourly gust
factor). The peak shears and bending mowents due to gust action only are
found by multiplying the R,M.S. values by the appropriate gust factors.

(The calculations again appear in Table 9.2).

9.1.5.3 Response to Mean Wind

The response to the mean wind is carried out according to the
method described in Sectiom 6.5.3.

The quantities appearing on the left hand sides of equations
6.49 and 6.50 have been evaluated already in Sectiom 9.1.5.1 in connection
with the determination of the modes and natural fraqpencico. The mean
wind loadiné on the truss and cable are ‘BT = 336 lb./ft. and Fi =
38 1b./ft. respectively (for a 100 ft./sec. mean wind). Substituting

in 6.49 and 6.50 the equations for determining the deflected form of

the truss and cable are:

15.1a, + no.2 (@,-b) -:3@3(ag-by) = 136°

daab — 119.2 (a,~b,) + 3.8(oy-by) 'S .4 '
1223 0y - 36.3(a,-b,) 4 1949 (a,.b}) - 45.3

399 b, + 3e3(a,-b) - 1543 (ay-b) - 5.1

From these equations the static deflexion of the bridge (in feet)

is found to be given by

. 3T X
y = 3,12 sin? 4+ .0%528 sain T £t,
(i.e. a mid span deflexion of 3.17 ft.)
It is also found that
«,=-b, = .77 &t ) Qy—by= 089 ft,

The wind load taken directly by the cable, q,(x), can now be

found from equation 6.6 viz.
rRx

4@ = wr 2 la,-b,) sin
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The distribution of the load taken by the cable is shown in
Fig. 9.8. It is seen to be concentrated around the mid -span region,
where, in fact, the counteraction by the cable is found to be greater
than the wind load itself for a short region.

The moments and shears produced by these loads on the stiffening
truss are found straight forwardly and are also shown in Pig. 9.8. It
is noticed that one effect of the cable load is to displace the positions
of maximum bending moment from the mid-span to nearer the quarter points
and at the same time to produce a central zone (nearly three quarters
the span in length)having nearly constant bending moment. (This fact is
referred to again in the discussion below).

The moments and shears shown in Fig. 9.8 are repeated in

Table 9.2.

9.1.5.4 Discussion of the Effects of Horizontal Wind

Final results of the bending moments and shears due to both
gust and mean wind loading are combined in Fig. 9.9 to show the maximum
peak bending moments and shears across the span of the bridge. Certain
features of the diagram seem noteworthy.

In the first instance it should be emphasized that the magnitude
of the gust loading is dependent on the surface roughness (proportional
to ’4’& ). Thus if the bridge under discussion was situated in a more
open site, such as the Severn River, where we have seen 2 .008 ,
the gust loading would be roughly 70% of that shown, (for the same mean
wind loading). At rougher sites - such as those occupied by the Thames

bridges in London, the Clifton Bridge at Bristol, or the East River
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bridges in New York -~ a value of F% nearer .04 might be appropriate and
the gust load, consequently, twice as great (for the same mean wind load).
On the other hand it must be remembered that the roughness of the surface
also governs the attainable mean wind loads. Thus at the smoother Severn
bridge site, although the gust loading mly’Be relatively less, the mean
loading will be higher and as a consequence the total loading may be
higher. Conversely, the rougher city sites the mean wind loading will

be less.

It should also be noted that the mean wind velocity of
= 100 ft./sec. was chosen arbitrarily. At any other wind velocity the
wind loading (gust as well as mean) will be in proportion to the squares
of the velocities, or very nearly so, Thus if the once-in-five-hundred
year wind was felt appropriate, which for the Forth Bridge site was
shown to be approximately 99 mi./hr. or 145 ft./sec. (see Section 9.1.4),
the values of the wind loading would be %%E;)z, or 2.1, times those
shown in Fig. 9.9.

It is also seen that the effects of the gust and mean wind-
loading on the shear and bending moment diagrams are not similar. Where-
as the shear due to the mean wind loading varies considerably across the
span, from a maximum at the ends to no value at the mid-span, the shear
due to gusts is almost constant across the span except very close to the
centre where only the second mode vibration makes any contribution.

The bending moments due to the mean and gust loads are again
dissimilar. Whereas the mean bending moment is relatively constant over

" a broad central region, with slight maxima near the quarter points; the

bending moment due to gusts, is peaked with a maximum at the nid-span.
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It is worth observing that the form of the bending moment and
shear diagrams are dependent on the proportion of the load taken by the
cables. The latter is determined by the length of the hangers in other
words, the dip to span ratio and the distance the deck is hung below the
lowest point of the cable. In fact it would seem that the shorter the
central hanger and the smaller the dip to span ratio, the greater is the
lateral load taken by the cable and consequently the smaller need be the

lateral stiffening truss.

9.1.6 Response of Suspension Bridge to Vertical Gusts

In broad outline, the procedure for determining the response
of the suspension bridge to vertical and to horizontal gusts ara similar.
Certain details, however, such as the expression used for vertical gusts,
and the method for determining the vertiéal modes of vibration differ,
and the aerodynamic forces developed depend on variations in wind-
inclination rather than velocity. There is, of course, no mean wind

effect to consider unless the vertical forces happen to be asymmetrical.

9.1.6.1 The Vertical Modes and Natural Frequencies

The procedure used is due to Steinman and is described. in S8ection

6.2.2. Prom the data of Pig. 9.1 the following are calculated:

ain Span Side Span
5-1[;'-‘ b/ 6" 1.875 50.5
o;tt_g‘ b/ $¢* b4 .4 269.0
‘—;—’ slugs [FE 341 469

From these data the equivalent stiffness, I , the. natural

frequency, n , and the mode for each antisymmetric mode can be found from
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equations (6.11), (6.10) and (6.12) respectively, The results are as

follows:
TABLE 9.3 a
ANTISYMMETRIC VERTICAL MODES AND NATURAL

FREQUENCIES OF SUSPENSION BRIDGE
Harmonic K n _ Period Mode

1b./fe.2 cy./sec. sec./cy.
2nd 207 124 8.10 y = a sinZix

< 4AMx

4th 1190 .293 3.38 Yy=a sn T

To determine the symmetric modes it is necessary to compute

the following:

A A L N Y

P e
Main Span Side Spans
d f Ib/ft* 470 223
W, (r=) (r=9) (r=0
—~ K, 46.3 552 233

Substituting, the basic equation for determining the stiffness (equation

6.13) now reads '

4+
1?(K-46@.3) M 3*( K-552) I* (K- 233)

This equation can be solved rapidly as follows. Suppose we require to find

K  for the lst mode. Assume a good approximation to K 1s K, .- in this
case 46.3. Substitute this for K in the 2nd and 3rd fractions on the
left hand side (the less significant ones) but still ieaviug K as an\
unknown in the first fraction. Solve for K t-hus obtaining a better
approximation. Repeat the procedure until K settles down to a constant
value.

Oncd K has been found the relative sizes of the coefficients

of the mode expressions can be found from equation (6.16). The following
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results were found:

TABLE 9.3 b

SYMMETRIC VERTICAL MODES AND NATURAL FREQUENCIES FOR
SUSPENSION BRIDGE

Harmonic K N Period Mode

1b./ft.2 cy./sec. sec./cy. Main Span Side Spans
st 132 .098 10,02 y=sinf -0eBsinRt  ym - 4SBT
3rd 518 .196 5.10 5.—.—.7.09;-‘-%:* s;.‘.‘!.‘ y= -.347 s.'.;"'-‘!:

These modes are depicted (to a somewhat exaggerated vertical scale) in
Fig. 9.10. It is noted that only the symmetric modes involve side~span
and tower participation.

The inertia loading and the loading taken by the cables are
now determined from the expressions given in Section 6.4. The shear
forces and bending moments (with loading diagrams) for unit mode load

distributions are shown in Fig. 9.11, and are repeated in Table 9.4.

9.1.6.2 Regponse to Vertical Gusts

As in the case of horizontal gusts the first step in estimating
the gust loading 1s to define the spectrum of gustiness. Panofsky's
spectrum (see Fig. 4.5 and equation 4.5) is uséd with the height
taken as the deck height of lpproxinateiy 200 ft. This is shown in
Fig. 9.12. The aerodynemic admittance function is assumed to be the
same as in the case of horizontal gusts, and the vertical force is
calculated according to equation 5.25,.. The resulting spectrum of the
pressure on a transverse strip is also shown in Fig. 9.12. The joint
mode acceptances are almost precisely the same as those for the lateral
modes.

Before the dynamic magnifications can be computed it is necessary

~
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to determine the damping. These are computed from equation 7.3. The
quantity gﬁi is found from Fig. 9.2 to be 2,730 1b./ft./rad. in a beam
wind of 100 ft./sec. mean velocity. This results in the following
logarithmic damping decrements (allowing .02 for mechanical damping)

LOGARITHMIC DAMPING DECREMENIS FOR
VERTICAL MODEZS OF SUSPENSION BRIOGE

Harmonic $ . )
(aerodynamic) (mechanical) (total)
lst .408 .02 .428
2nd o .323 .02 . 343
3rd .210 .02 .230
4th .137 .02 .157

The mechanical damping is seen to be small compared to the asrodynamic
damping. |

The dynamic magnification factors can now be calculated from
equation 3.23 and the resulting spectra of the dynamically magnified
mode components of load are shown in Fig. 9.12. Again all the energy
is seen to be concentrated at or near the natural frequency, n, , which
enables the simple approximate formula to be used for determining the

variance, viz,

o 1 3
2 Sy . dn I
o= [ a1t 2 3 = L :SQ, )
o (@Y +drEs P -

We find from this that the normalised variance of the dynamically

Y
magnified mode components of pressure, O'LP)ﬁg-:)‘ and the normaligsed second

1} dz’
moments of the spectra O (?)/(B-’J have the following values:
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VALUES OF O'I(Pz/(gé)z AD o tp)/ (g)l

(VERTICAL RESPONSE OF SUSPENSION BRIDGE)

" Harmonic U'tkp) (_g;z‘)l o-”iP) (%;);
1st .0132 .000128
2nd .0126 .060194
3rd .0108 000414
4th .0053 .000452

When combined with the unit mode load factors of shear and
bending moment, the variance of shears and bending moments (and the second
moments of the spectra) are obtained for all points on the beam as
indicated in the Table 9.4. The response factor, » , enables the
gust factor, VT , to be found which in turn determines the peak values
of shear and bending moment. These peak values of shear and bending

moment (given in Table 9.4) are plotted in Fig. 9.13.

9.1.6.3 Discussion

From a comparison of Fig. 9.9 and 9.13 it appears that the peak
vertical and lateral shear forces and bending moments are of a similar
magnitude. This result may seem surprising in view of the generally
much smaller depth to span ratio of the vertical stiffening trues. Fig.
9.11, and the unit mode load factors of Tab2e 9.4 indicate that by far
ﬁhc largest contribution to the moments and shears in the stiffening
truss is made by the first wmode componedt. Further examination of Fig.
9.11 shows that thermaction developed in the cable is mainly responsible
for this,

It was shown in Section 6.4 that the cable reaction was com-

posed of two components, one of which was due to a change in the géometry
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TABLE 9.4
ANALYSIS OF VERTICAL GUST-LOADING OF SUSPENSION BRIDGE

Mean Wind = velocity

= ,100 ft./sec.. .
dz (from Fig. 9.2) =

2730 1b./fr./rad.

dx
Roughness factor KW = ,01
SHEAR
Uait mode load factors V=
(e g/ t.‘) c-' (}; ' T) Peak
. R R To@®) | 90T shear
= >
L | Y | ¥ % | % ()| ) | e
0 1731 -75 ~119 -105 199 19.6 .099 3.72 2.02
.1 1295 -60 - 50 - 33 149 14.7 .099 3.72 1.51
.2 955 -22 37 35 110 10.7 .099 3.72 1.12
.3 657 22 90 85 76 7.4 .099 3.72 JT7
N4 337 60 73 |- 33 39 4.2 .108 3.75 .40
.5 0 75 0 -105 11 2.5 .227 3.95 .12
T _ [ Vo Tew = x Jy
—d—%—- = '-qu: + l-lbc‘: -+ l.°5<‘:+.s.36': X180 : e J l.28qr ¢ 1.34%;4-4.14%; +4.52q2 %10
du dw
BENDING MOMENT
Unit mode load factors v
Peak
L]
. T | o | T gor)| s
I3 m, Myl My | My (%‘ ) (dg-:) Tm@) 1S
0 0 0 Q 0 - - - -
.1 5.00§-.231-.28 {-.26 .57 .57 .099 3.72 5.8
.2 8.7 | ~.37 |-.30 |-.16 1.00 .99 .099 3.72 10.2
.3 11,37 | -.37 | -.09 .16 1.31 1.29 099 | 3.72 13.3
.4 13.01} -.23 .18 .26 1.50 1.47 .099 3.72 15.2
.5 13.56 0 .30 0 1.56 1.53 .099 3.72 15,6
%_"’a{r.’,z M+ 126 mE + OB u )y .53“:‘,‘.6' Tm® =ﬁ;g““+ l.b4u:'4-4.¢6w\;‘4-4-.82u2ﬂ';1
an aw
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of the cable ( H %;E{) and the other due to a change in cable tension
z&#l,%;f; ( n being the original coordinate of the cable). The
symmetric modes of vibration involve both tower and side span participagion,
as well as stretching of the cable, accompanied by an increase in tension.
The latter has the effect of inducing a uniformly distributed load across
the deck which, in the first vertical mode, is relatively large. In all
other modes the change in cable tension is either small or jathe asymmetric
modes, non-existent.

This predominance of the first mode oscillations in producing
moments and shears suggests that consideration of more than two modes
is superfluous, and makes calculation of the peak values relatively
simple. The distributions of maximum shears and bending moments are
similar to those for the lateral modes, insofar as the maximum shear
forces occur at the ends of the span and the maximum moments at the
centre,

It is worthwhile to consider the peak vertical deflexions

under the same wind conditions. These are given by
aP). g™
K

Por the first mode, 9(\)7) = 3.72 ;0(— a\% =132 x 18" ;

‘é—: = 2730 1b./ft./rad. and K = 132 1b./£t.2
Hence the peak deflexion is found to be approximately 9.0 ft. (from
centre line). The peak second mode deflexion is found to be about 5 ft.
It seems §uite likely that oscillations of this magnitude could be
mistakenly ascribed to an sercelastic phenomenon of the flutter type
ingtead of to the 1ift induced by the vertical components of gustiness.
In the past, thig has been largely due to the fact that there has been
no satisfactory method for estimating the effects of vertical changes

in wind direction.
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9.2 THE WIND LOADING OF A TALL MAST

9.2.1 Description of the Mast

The mast, illustrated in Fig. 9.14, is 500 ft. high and consists
of a slender elastic column supported at three levels by guys spread
around the base §t 120° horizontal spacing. All the guys in the same
vertical plane terminate in common anchorages. The top section of the
mast is cantilevered and, as a consequence, is considerably stiffened
at the top guy level as indicated in Fig. 9.14. The base of the mast
rests on a ball seating, enabling the mast to pivot freely. All

relevant statistics of the mast and guys are given in Table 9.5.

9.2.2 Wind Loading Conditions

The wind load on the mast in a steady wind of 100mph is taken
as 200 1b./ft. The ground roughness is significant because it determines
both the gust intensity, the mean wind velocity variation with height,
and, consequently, the mean wind load distribution. To study the effects
of both extremes of surface roughness the wind loading in both city and
open country conditions is investigated. For illustrative purposes it
is assumed that the mast is situated on the U= 80 ;%:8 contour of
Fig. 2.4 and that it is to be designed to resist the once-in-fifty year
wind load. The mean wind loads at a 30 ft. datum are then 89 1b./ft.

and 10 1b./ft. in open country and city conditions respectively.

9,2.3 Behaviour of the Guys «

From the data of Table 9.5 the following are evaluated:

Bottom Guy Middle Guy Top Cuy
k= E!i}_’_’_‘-’- Ib/fris* 2,97 2.39 3.21
< cos B cosr ‘
os+ ‘!' T . 500 . 395 . 308
Fa 22T sing
s*wk T .0339 .0675 .0915
151-3

Sl o yw 2.74 2.72 2.37
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TA2LE 9.5

DETAILS CF GUYED LAST

Rigidity at reference section EI_ = L4 »10® |b &t*

Lass per unit length at reference section mo * 8.0 slugs/fe.

Guy data: Bottom Middle Top
Guy length s fe. 278 3L1 L26
Inclination o 2245 L2°45" 54200
Wt./unit length w  Ib/ft 1.7 2.57 6.73
Cross section Ag in* .500 «755 1.98
Nodulus Eq Ib/in® 20 x 108

Tension T b €,200 12,000 30,000
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Bottom Guy Middle Guy Top Guy
-
wor 513 rodfsec 4.39 3.56 2.79
N, cy/scc .698 .567 Jbb4

The guy moduli are calculated, for a vibration coplanar with one
of the guy set; and therefore inclined at 60° to the other two guy sets.
The modulus for the guy in the plane of vibration is calculated from
equation 6.21 and, for the other two guys, from equatien 6.22. Thesge
expressions make no allowance for damping. The combined moduli for
each set of guys in the frequency range 0 - 2.5 cy./sec, are shown in
Fig. 9.15 by the dashed lines, which, except in the vicinity of the odd
numbered modes, coincide with the full line. If damping is taken into
account the modulus is calculated from equation (6.27). For 10 per cent
critical damping the moduli are given in Fig. 9.15 by the full lines.
Damping is seen to be significant only in the vicinity of the odd modes.
For practical purposes it would seem to be adequate to assume that the
modulus is approximately equal to its static value for 'frequencies less

than the fundamental, and approximately equal to the '"taut wire" value

k , at higher frequencies.

9.2.4 Determination of the Natural Modes

It is assumed that the modes can be adequately represented by
four Basic functions as follows:

= a,.Bx) + a,.B@) + 03.B0 + 04800

The first step in determining the natural modes is to calculate
the integrals appearing in equation 6.46, written for each value of r
from 1 to 4. Using Simpson's integration formula and the tables of Basic

function products given by Davenport (1959), together with the Basic
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function properties in Table 6.1,

(Units - 1b./ft.2)
Lm. Bﬁdzﬂ = 3216
LI m Bl drgy = 42853
j: m. B, dagy = 4.57;
J: m.E’;j.du./z = 4.470
f; m. BB, dxft= -264
.r;m.b,.63.dx/(=—.(.as
L: m.B.B, dxf=

J: m.B,.B,.dafl= - 387
f; m.B, B dail= —-073
.L' m ,63.5‘;\46: —.303

:("‘ J' al.p:dzjt =34.1
5‘ f TPl dxfl =3945

—{-:’, FT Bu- dxft

[
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the following values are calculated:

dx Yl -
T W Obldyt = 434
*
2 L S by da/t = i3.07
w. [’ x>
—g,'[ S.by.dn/t = 2857
o

“l (15 bbdnfts e

(s bubydxfc= 2.0
2 5 b bydeft <-52
_:;gf S.hbdrft= 678

%3 | EIpyPrdx/t= 202

-
> [
G [ EL G Badn/ts 22

'—’(“z*‘ ( ET .3 Ps.dnft=-72.5

The axial load terms, it should be noted, are much smaller than the bending

terms.

For the first mode the guy moduli are assumed to have approxi-

mately their static values.

"[(' = 73.0 (boﬂ'om)

59.0 (middie) = 70.0 (+ep)

Substituting in equation (6.46), the set of equations for

determining the first mode of vibration is found to be

49,00, + 43292 0, +30.35a, +20.iba, = ' 32lbe, + 2040, - -850, 4 .26Sa )LD

43.29a, +ll5.395. + 13.30 &y + 5.47@.:»" ‘2b4a, +4.2830,~ -357«;- -0‘130.‘}0':)

—30.35a, + 13.30 a;, +506.70 a5 -~ 7o.180,= u‘{~.685¢1|-.55713*4-.876013-.3030.}0"."

20.l6o, + 8.47 %7z = 70.18 6, +1i642.4 ‘4="‘L{'1G5a,-—-073q1_

~.303 0, + 4.41'%}""’)'
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These equations can be solved by successive approximations.
Initially it {s assumed that a,=a, =a,=© and a first approximation
for w" is obtained from equation (1). This is then substituted in the
remaining three equations to obtain values for °¥/a', °3/°| , and ""‘“/c\l
Substitution of these ratios into (1) leads to a new estimate of w?’
which may or may not agree with the first estimate. If it does agree
’the approximation is completed; if a discrepancy still exists the process
1s repeated. (Sometimes a better estimate can be obtained'by assuming
only @i and a4=0 and solving for w" from the first two equations).
The result of this analysis gives for its first mode: N = ‘456 cy/sct.
The mode form (normalised to give unit deflexion at the top) is

(x)= 540 B) - .284 B,x) +.0388,6) — 003 B,x)
. For calculating the higher modes the guy moduli assumed above,
are unlikely to be appropriate (this will be established when the fre-
quencies are determined). Instead the taut wire moduli (i.e. elastic

stiffness )' are assumed; These give

!!(—2 2.0 (bo”‘.m) = 74.0 (MIdd(() = 940 (+°p) 'b/ptz

The resulting equations are:

€706 0, +57.54aq, - 4201ay + 28P3a, = u‘[&vba, *-.7-54%-‘-6850; +-265°4]
57.84.q, + \42.7%0, +24.20a3 + T.12q, = w"[-l“a‘ +4.253q, - -357<\3—-07.30‘]
—4z2.0la, + 24.204, *54-8.7003 - 63.4%, = w’}_-.saS«.— .3573.14-4,87663—.3030"1

28.03a, + T.120," @343+ (e42.400,° u‘)_-?-bsos,—. °73 q, -303414-4.47“‘]
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Solving these in the fashion described above, the 2nd and 3rd natural
frequencies are formed to be respectively 1.012 cy./sec and 1.710 cy./sec.

The mode forms (having unit mast top deflexions) are:

Ap(Z) = 8T B &) + 120 By(x) —. U3 B x) —.037 B,69

Ana@) = 100 By + led Bey + 8338500 +.o25.B®

The forms of these modes are shown in Fig. 9.16. The next step is to
determine the shears and bending moments corresponding to these deflexions.
This requires integrating the loading acting on the mast. As discussed

in section (6.4) thig lodding is supplied by the inertia loading —\3/ ao"yv.@;)
the guy reactions, K./u(c)and the axial loading -g-*{ S, E{oe*} . Each

of these can now be evaluated, and the mowments and shears formed in the
usual way. The shear and bending moment diagrams for the first three

modes for unit mast - top deflexion are shown in Fig. 9.17.

9.2.5 Response to Static Windload

The mean wind pressure at height x ft. is

i

- T
P. = P Va
”w ] V"
where P = mean wind pressm"e at a 30 ft. reference height,

From equation (2.1) this can be written
- . x | e
P.= P ('-Z')
Substituting for © from Table 2.1, in open country,
= = x \'32
Px = p| (';_l)
and in city conditions,
- ~ 3 \R0
Py = P, (1‘)

These loadings are shown in Pig. 9.18.
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The solution now follows the analysis of Section 6.5.3.

Evaluating the necessary integrals it is found that:

Open Country City

=

P
L B B dF = 1.021 3.116
' P
L P Bux)ydi = .329 .255
v By
f, B, Bax)dy = .138 .0928
LB ol

s B, Bedy = .0768 .0198

Following equation (6.51) the equations for determining the static

deflected shape for unit load at 30 ft. are

45.00a, + 43.2%a, - 30.35 a; + 20.lea, = LOZ1 (3.u6)

43.290, + 11S5.390, + 13.30 &5 + .47 a, = -329 ,(.zss)
-3.3Sa, + 13.30 a4, + 56604y —~. TR,y = 138 (. 533)
2016, + .47 a, - 10,8 a, + tes2.saa, = 077 (.020)

(Bracketed values are for city conditions).

The static deflexion under unit load at 30 ft. in open country
is found to be

y= 583 B6) —. B B,&) + 045 B0 — o044 B0 L£r,
and, in the city,

y= D63 Bey — -7o8 Be) + 138 Bg) -.015 B, £t

These curves are illustrated in Fig. 9.18b. From thig in-
formation the bending moments and shear diagrams are drawn and they are

shown in Fig. 9.18c and d.

9.2.6 Regponse to Horizontal Gusts

The procedure for determining the response of the mast to
horizontal gusts is similar to that for the suspension bridga. The
spectrum of gustiness is given by Fig. 4.1 (repeated in Fig. 9.19).

The aerodynamic admittance is assumed to be given by equation (5.23)
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and resulting spectrum of aerodynamic pressure on a transverse strip is
given in Fig. 9.19 also. The joint mode acceptances also take a similar
form to those for the suspension bridge. The major contributions are

made up of terms of the type;

(I -cﬁT’_‘_
J. 1 e B> Bae) dn d

o Jo
Values of this integral for P=1,2  and 3 are shown in Fig. 9.20. Using

the known values of the constituents of the Basic functions, the Joint Mode
acceptances are calculated and from these the mode components of preésuré.
The next step is to compute the damping in each mode so that the dynamic
magnification can be found. At this stage it is necessary to specify the
mean wind velocity, and for purposes of illustration a mean wind velocity
of 100 ft./sec. at a 30 ft. datum has been chosen in both city and country.
In practice it would be better to use the actual design mean wind velocity,
corresponding to the return period considered appropriate for the structure. i
The basic expression for the aerodynamic damping is given by

equation 7.1, The integrals involved are found to be

city Country
' |
L '”('.-)/h."@) d% z 1196 slvss[ﬂ .f,v" d’{ = 423 .226 1
L' mE) oy ) d,t‘ <28 - SL{I’ Mrd7 = 2,638 1.497
(
Va
ro b@)/u;@)d’{ = 415 s ) I 7/% :: .90 .555

Hence the logarithmic damping coefficients are found to be as follows: *

LOGARITHMIC DAMPING DECREMENTS FOR GUYED MAST
~

Mode 2aero .8Mcoh 5 +atel
Country - City Country City
lst 397 745 .02 417 765
2nd .140 . 246 .02 .160 .266
3rd .082 .153 .02 .102 .173

*agsumed minimum
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The dynamic magnification for each mode is now calculated from
equation (3.23). The resulting spectra of the dynamically magnified mode
components of pressure are given in Fig. 9.19. The areas under the spectra

were measured planimetrically and found to be as follows:

k3
g, )
VALUES OF —'-(;- FOR GUYED MAST
P .
] o, (P
Mode -
Country ! City
lst .420 4.50
2nd .033 .36
3rd .036 .39

The above values take into account the different roughness coefficients,
viz. B = 005 in open country and B = .060 in the city. The second

moment of the spectra are as follows:

o A (P)
VALUES OF ——3— FOR GUYED MAST ‘
\ o.r : (P>

MODE T

Country ! Cicy
lst - .0207 .136
2nd .0072 .052
3rd .0258 .187

The peak values of the bending momenté and shears due to the gustiness are
calculated in Table 9.6 and combined with the bending moments and shears

due to the mean wind. As noted already the values calculated in this table
refer to a mean velocity at the 30 ft. datum of 100 ft./sec. In practice

it would be logical to calculate the peak gﬁsts for the chosen design wean
velocity at the site (e.g. thc'“once-in-so-years" mean velocity).‘ As
mentioned in Section 9.2.2 it was the intention to compare the "once-in-
50-year" wind loads in open country and city conditions for a site where the

parameters of t;he extreme hourly gradient wind velocity are (Vg =%0:

%)



TABLE 906 a

ANALYSIS OF WIND LGADING OF GUYED MAST (SHEAR FORCE)
Mean wind at 30 ft.V=100 ft./sec.

Mean wind load at 30 ft. P, = 95 1b./ft.
Roughness YBz.coS (open country): = .os4o (city)
Unit mode load OPEN COUNTRY CITY
factors v
S‘Q Mean [Total Mean | Total
peak L peak
< . 8 hear . 94 shear shear
1.0 0 0 o} - - 0 0o 0 o oy - - 0 0 0
.9 LO.1}=-27.6{ 28. 7.7|.28}L4.00]108] 100| 208 88.5120.1{.23{3.951350{ 418 | 768
.8 69.3}-27.9] 26 11.1}.24{3.97{160| 228 LO9 148.8128.7(.19{3.91 (582} 800 | 1382
7 92.9]t 6.5|- 3 14 .5).24}3.96]2LO| 336 576 198.2137.51.19]3.901773] 1150 | 1923
* -50.0}-98.8] 24 11.8].32|4.02|150(=-250 | 40O || 122.5]/31.0].25 L .00490(~ 800 | 1290
.6 =30.0}-10.9}=-28.2 6.3].31|L.01] BL{-1Ls5 | 226 66.4116.71.25/L.00{265{- LSO | 755
.5 ~27.9] 72.31-L8.7 10.7).44]|4.13]100]- 51 | 151 79.4128.71.36{4.07|323|- 230 | 553
oh .2709 -120‘4 -11500 8.3 .h2 h.lO 82 -lhO 222 65.9 22.2 03)4 h.OS 267 - hlB 785
.3 -28.6] U6.8|=26.8 6.31.31|L4.00} 82|~ 75| 157 67.6|16.71.25|3.98 [269|- 227 | L96
o3| -28.6| 80.1}12.3 8.2{.35{k.05[ 96| 0f-98 {I 77.7|22.7(.28/Lk.50[311|- 120 | L}
02 - 3.6 -2700 "1508 305 056 ho18 26 - 80 1% 2001& 903 -L‘s h-lZ ah - 200 28h
ol - 5.0 hoé 20.1 303 065 h021 21 - 20 hz 1607 8.9 OSL‘ h.ZO 70 - 70 ].hO
0 - 5.7 L.OJ 3L. 5.51.7h]4.25] 32| 30| 62 2h.6 1.9 (-61{L.21 103|- 50| 153
- -/;2_0$7 *3_3%: + 3_‘,$;:,°": O—-Rg'l [4.50$ + bbc“: +.53qv

-vz

o7q,’+-72q: + z.seEw&': 0_:%29 = 53.61.

- 902 -



TABLE 9.6 b
ANALYSIS OF WIND LOADING OF GUYED MAST (BENDING MCMENT)

Mean wind at 30 ft. V=100_ft./sec.
Mean wind load at 30 ft. #,= 95 1b./ft.

Roughness i . R--005 (Open country) R =.040 (city)
Unit mode load OPEN COUNTRY CITY
factors
Mean | Total - ' Mean |[Total
o 3T t "Zﬁt 9.9, et
x T | o momenty mo T [a'@) T nt [momen
] m, | My | Myl =] v [qD e =it [NV IPVEC) o ] YR TR TR TR
G I O T =Y o R il = R
1.0 0 01.00 0 o] - - 0 0 0] 0 o} - 0] 0] 0 0
«9 | 1.04} .75}.088 .69} .16].2L4]|3.98] 2.7] 3.1 | 5.8 2.251 .Lh2{.19|3.90| 8.8 14.1 | 22.9
.8 3.84 ) 2.28}.23] 2.52} .59}.23|3.96]10.0 | 10.1 }20.1 8.2611.51}.18}3.90|32.2 | L3.2 15.2
.7 7.71] 2.88|.30} 5.02 1.1} 1.23{3.96]19.9 | 24.0 |L3.9 || 16.L3|2.92|.18{3.90}6L.1 | $1.7 155.8
6 | 5.80[5.66(e260 3.90| .961.25|3.99|15.6 | 12.0 {27.6 || 12.77{2.50[.20{3.91 [19.9 | 55.0 [10L.9
5 Le29{ L11]19(| 2.88] .71 {.25{3.99{01.5 | 6.5 [18.0 9.4311.841.2013.91 [36.9 | 39.5 T76.4
A7 13.731 2.L0] Off 2,46} 57 {.23]3.96] 9.7 | 6.0 |15.7 8.0411.48].183.90{31.4 | 38.0 | 69.4
4 3.11] 3.31{.18) 2.10§ .53 }-25|3.99] 8.4 | L.3 |12.7 6.8911.371.2013.91]26.9 | 23.0 | 49.9
3 1.61 | 2.43 (.34}l 1.1} .311.28|L.00| L6 | 3.1 T.7 3.72 .831.2213.92 014.6] 13.0 27.6
.23 .59 = 451.35 L0] 111.271Lk.00] 16| 2.2 | 3.8 1.30| .28}.22]3.92| 5.1 | 10.4 15.5
o2 5k 061.38 o36| .10[.28(4.,00( 1.k | 1.0 | 2.4 1.17] .26].22]3.92| L.6| 6.2 | 10.8
.l 321 JT1{.32f .25] .09].36]L.07] 1.0 .5 { 1.5 67! 2436|407} 2.7} 140 3.7
(0] 0 0] O 0 o} O 0 0 0 0 0 o] © 0 0 s 0
4@ {a4zom?s zamd + 3.«.;;“ Aty 0-:'-‘3(33= Ya.s0 mt+ 3emy 4 30m)

. L] IS * z o
q__l Ya (2'07’“:4_ 72 m: + 2.56!&;‘4((6—' 0_"4-(1:2__ .Il3,b m” + 52m, ] + 4%.7»\3 *® 1
P, i
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mi./hr. For such a locality, the mean wind loads at 30 ft. are 89 1b./ft.
and 10 1b/ft. in open country and city conditions respectively. The wind

loads adjusted to correspond to these values, are plotted in Fig. 9.21.

9.2.7 Discussion

The results of Fig. 9.21 indicate some of the differences between
the wind loads on a tall mast in open country and city conditions, the
probability of occurrence being the same in both localities. Both the
peak shear forces and bending moment envelopes are seen to be less in the
city - the maximum peak shear force in open coumntry is three times as
large as that in the city while the maximum peak bending moment is 2 1/2
times as large. The relative contributions to the peak shears and bending
moments made by gusts and mean wind are seen to be different: for instance,
of the total peak bending moment in open country only a third is attributable
to gusts which in a city the proportion is nearer to a half.

There are two main reasons for these differences. In the first
place the mean wind load at 30 ft. in the city is only 10 per cent of
that in open country whiié at the top of the mast (500 ft.) it is nearer
66 per cent. Seéondly, in spite of the fact that the drag coefficient in
the city is taken to be .060 whereas in open country it is only .005, the
drag force between the air and the ground generating the gustiness is only
1 1/2 times that in open country. This means that the R.M.S. gust velocities
are only about 20 per cent greater in the city and the R.M.S. gust loads
actually smaller, being probably only 40 per cent of that in open country.

Because the mean wind velocities in the city are less, the damping
is also less meaning that the dynamic magnification is larger: however,

this ias largely offset by the‘fact that the natural frequencies of the mast
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then correspond to higher wave numbers %% » for which the gust spectrum
generally contains less energy.

Since the gust spectrum has been assumed invariant with height,
the height of the mast is not likely to greatly affect the ratio of the
gust loading in city and country. On the other hand a taller mast generally
means that the natural frequencies are slower so that the dynamic magnifi-
cation occurs at lower wave numbers and hence higher gust energies. (In
this connection it should perhaps be mentioned that the mast considered
in the worked example is probably somewhat stiffer in relation to its
mass than the majority of masts of a similar height,and consequently
the natural frequencies tend to be somewhat higher). 1In contrast, the
effect of increasing the height will be to make the mean wind effects in
city and open country more nearly equal.

The envelopes of peak bending moment are seen to be more or less
similar to the distribution of mean wind bending moment (in both city and
country). The same is not however go true of the shear forces. Here it
would appear that the additional shear due to gusts is nearly constant
between guy points (except for the top cantilevered section) whereas the
mean shear is more or less triangular. Since the bending moment is
probably more critical, it seems that with proper selection of the ratio
of peak to mean moments the peak moments can be satisfactorily estimated
from the moments due to the mean wind load only. The study of various
mast configurations would be necessary to determine the value of this
ratio for masts of various types and for specified roughness conditions.

No comparison was made with the peak shear and moment envelopes

obtained from loading patterns such as those shown in Fig. 1.1, used in

conjunction with the '"gust profiles" suggested by Sherlock (1947) and
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Deacon (1954). (The characteristic of the latter being a steeper slope

than the mean velocity profile, the suggested power law index being .085

instead of .14 - .16 for open country). It is to be expected that any

similarity would be largely fortuitous.
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10.0 EVALUATION AND SUGGESTINNS FOR FUTURE RESFEARCH

10.1 GENERAL

The aims of this study have been to provide first, some under-
standing of the physical processes involved. in the wind loading of two
slender beam-like structures, second a comprehensive, rational treatment
of the problem on which engineering design might be based, and third the
data needed to apply the latter. WUe now consider briefly to what extent
the goals have been achieved.

Alth§ugh it is believed that them is a satisfactory framework
of ideas upon which a physical understanding of wind-loading can be based,
mwuch is unknown about the details. At tﬂe root of the wind-loadiné problem
is the question of the climate of extreme winds. Although some of the
characteristics are recognizable - it not explainable - the problem.of
finding a general statement of the climate of a territory suitable for
adaptation to particular localities still remains largely unsolved. An
empirical method for doing so has been suggested,(to demonstrate the nced
as much as for any other reason): it is, however, based on limited evidence
and experience and may later prove to be imperfect. Although knowledge of
the structure of turbulence near the ground is steadily improving, it is,
nevertheless, still deficient. In investigations on this subject, the
statistical theories of turbulence undoubtedly provide the necessary
framework. A third area, about which possibly even less is properly
understood, is the formation of aerodynamic forces on bluff objects in
turbulent flow.

By comparison, the mechanical aspects of the wind-loading problem,
concerning the behaviour of the structure under dynamic and static loads,

are better understood, although some of the more far reaching questions -
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such as what form of loading is most critical in these structures - have
scarcely been touched.

The statistical treatment of wind loading has revealed several
facts not previously widely recognized or possibly even suspected. The
worked examples for instance have shown that gusts of wind are‘relatively
ineffectual in producing large momentary pressures on a structure (contrary
to what common design precepts would suggest). The regularity with which
they occur, however, is such as to maintain oecillations over a fairly
wide range of frequencies, those near the natural frequencies being
particularly large, resulting in large inertia forces. The most important
role of the gust loads is to overcome the damping. The treatment has also
enabled the vertical gust forces on the suspension bridge to be evaluated
in a way that has not hitherto been managed.

The worked examples have indicated that only the first and
second modes cawse significant stresses and deflexions. This suggests that
simplifications are possible leading to adaptations of the method to meet
design needs. (The question has not yet been considered in detail). On
the whole, the merits of the statistical approach are that it is rational,
it gives a true reflection of the physical processes involved, and is
suitable for practical application.

For applying the method it has only been possible to provide a
bare minimum of data. Where information has been uncertain or imprecise -
a8 in the determination of cross-correlation coefficients and the forces
in fluctuating fdew - values have been suggested in the belief they are
slightly on the conservative side, although this inmight not necessarily
be so. 1In this respect i§ is worth noting that many of the quantities

introduced (cross-correlation coefficients, spectra, aerodynamic admittance etc.)
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appear finally in square root form which appreciably reduces any initial
errors. In gemeral, the aim has been more to evaluate the probable value

4
of the wind loading rather than a value circumscribed by natural design-

office cantiousness.

A few selected topics for research now follow.

10.2 SUGGESTIONS FOR FUTURE RESEARCH

Wind Structure and Climate

1. The investigation of high-wind structure up to 1000 ft. in rougher
regions such as the centres of large cities. This has never been
thoroughly studied, it appears,although it is obviously of interest
for many applications.

2. The amalgamation of the results of 1 with those for more open regions
to improve estimates of climate made from anemometer records.

3. The investigation of the spectra and cross-correlation coefficients
(both vertical and horizontal) under different roughness conditions -
with particular reference to strong winds.

Aerodynamics

1. Investigation of the buildup of aerodynamic forces in turbulent flow.
Structural
General
1. Investigation of the modes of failure of flexible beam-1ike structures
due to wind-type loading.

Suspension Bridges

2. Investigation of the lateral modes and natural frequencies of the
complete suspension bridge,including the possibility of coupled

vertical-lateral oscillations.
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Observation of the behaviour of full scale structures including

study of their internal structural damping.

Mast

Investigation of the behaviour of guy wires under dynamic load,
(experimental and theoretical).
Investigation of the behaviour of full scale structures including a

study of their internal damping and modes of vibration.
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APPENDIX 1

USE _OF THE PEAX GUST RATIO AS AN INDICATOR OF SURFACE ROUGHNESS

Reference was made in Section 2.4 to the possibility of using
the ratio of peak gust velocity to mean velocity as an indicator of the
surface roughness of an anemometer site - or for that matter the site
for a structure at which exploratory wind investigations have been made.
The premises for this vare as follows.

In Section 8.3 it was shown that the average peak fluctuation
of a random process during a period T was S(VT) .9, where 9("T)
was the '"'gust factor'" and & , the R.M.S. fluctuation. The random
process in this instance is the indicated wind speed. If the "admittance"
of the anemometer (defining its response to different frequencies) is
lel then the spectrum of the indicated velocity will belXA[z. S¢) where
S(r\) 1s the velocity spectrum of the actual wind. Hence the indicated
R.M.S. fluctuation is

o = [ ,r:ale(D)lt. S . dn]z

and the "response factor", Y =

aja

where
oo 2 X
o'= [ L nt IYA(?‘)I LS. dn]
The expreseion for the horizontal gust spectrum suggested in

Section 4.2 is of the form

S(h) dn » R.-\-/|z. :(x) dx

where % was pronortional to the wave-number.
Using the power law to relate the mean velocity at reference height, V,

-

to that at anenometer height VA we can write

Sh) dn = RVA"(%)Z“ 'c(x).dx
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4

If the anemometer response is not too sensitive to changes in mean wind

velocity the R.M.S. fluctuation can be written
) )
% T [ Z \* %
= K -\Qv('ik) {. J; ‘):AQ7),23 -CQQ .da;} :

= REVL(Z2) ¢

A
where ¢ is the value of the definite integral. The peak gust ratio

is now found to be

Va T %2, %
= 1+ qT). RA(Z). ¢

Provided again that the anemometer response is moderately insensitive to
changes in wind velocity, then g(vr) and ¢ will both be constants for
the anemometer and for the sampling period T . Hence the peak gust
ratio is seen to be more or less independent of wind speed, but dependent
on the anemometer height 2, , and on & and B which are functions of
the roughness of the site.

Thus, it appears that if the gust factor 9(\77) and the resgsponse
characteristics of the ingtrument are known, the peak gust ratio can be
used to define a function of M and « , from which the roughness can
be ascertained. Another function of K and & can be formed by
interpolation of the values given in Table 2.1, B and & can then
be evaluated by simultaneous solution of the two expressions. Once
the value of & is established the roughness factor, kA , for the
anemometer site (the ratio of the gradient velocity to the mean ve'locity

at the anemometer height) can be found from

[V .,
Va Za
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ZG can be expressed as a function of « using the values in
Table 2.1. A nomogram for the complete solution of the roughness factor

from the peak gust ratio is given in Fig. A-1. The dashed line illustrates
the solution for an anemometer installation at which |
Zp =75 ft., gvm)= 3.2

and the peak gust ratio = 2.06. It is found that Q& = .37 and K\- 3.2.

In applying these results the question arises as to how best
to estimate the peak gust ratio appropriate to an anemomater installation.
Fortunately, in the United Kingdom it is the practice at most meteorological
stations to record not only the maximum mean hourly wind speeds but algo
the peak gust speeds.

Values of the peak gust ratio determined from indi&idual
observations of peak and hourly speeds will obviously vary from one
estimate to the next. Possibly a better way to estimate the peak gust
ratio is to determine the ratio of the parameters (mean, mode, etc.,)
of the statistical distributions of both extreme hourly wind speeds and
of extreme gust speeds. From an examination of Shellard's data (1958),
for example, it appears that the modes of the two distributioﬁs are in
approximately the same ratio as the "once-in-50-year' quantiles. (This
can be seen from the few sample values given in Table A-1). This ratio
is probably as representative a value for the peak gust ratio as can be

4
obtained.

The gust recording anemometers installed at most British
meteorological stations would appear to be of the Dine's pressure-tube
variety. Some frequency response data for this instrument are given in
the "Handbook of Mctaorological Instruments", from which it appears that

the response is "flat" up to a critical frequency (about 2 cy./sec. in a
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60 mi./hr. wind) at which point the falling-off of the response to higher
frequencies is so rapid that it might almost be regarded as a high frequency
"cut-off". This cut-off frequency increases with wind speed and over the
range of extreme wind speeds encountered in practice it seems reasonable
to assume that it occurs at constant wave-number. The lensth and cross-
section of the pressure tubing connecting the instrument head to the
recording gear has a large effect on the instrument response. For this
reason the response characteristics of the Dines anemometers in service

at meteorological stations may vary. However, if it is assumed that the
"high-frequency cut-off" referred to above ig reasonably representative

of the installed anemometers then it is found that the '"gust factor" is
approximately 3.83. It is also assumed that the Dines anemometer indi-
cates the instantaneous value of the horf{zontal wind speed (and not merely
the velocity component in the mean wind direction), so that the spectrum
of horizontal gustiness cited above is applicable.

Using the nomogram, some estimates of the roughness factors for
a few anemometer stations in Southern England are given in Table A-l. The
stations are seen to range in roughness from the centre of a city
(Kingsway-London) to the open sites of Lympne (airfield) and Dover
(on a pier over the sea). The instrument heights range from 160 ft. to
36 ft. '

It is seen that there is a reasonably good correlation between
the "roughness factors" found by these means and those found by the sub-
jective evaluation of the site and surroundings made previously (Davenport -
1960). When the roughness factors are used to estimate the mode of the
extreme hourly gradient wind velocity the results all lie withln a few

miles/hour of one another and of the 70 - 75 mi./hr. contour for this



TABLE A-1

DETERMINATION OF ROUGHNESS FROM PEAK GUST RATIO

Station Ht.] Mean Peak Peak Roughness |Gradient Exposure

hr'ly gust Gust Factor |[Velocity
velosity|velogity| Ratio mi /e
L 9 t
za|Vu |, U 2 |18 | kP |k, U
ot Y %9 | Uu Y, \so) A A
Shoeburyness| 104 [L5 | L.5|66 | 6.8]1.L46]|1.48].12{1.30 (1.57)] 60® [Flat lowland on coast
Birmingham |118|3L | L.1|63 | 7.4{1.85]|1.84].32]2.15 (2.40) 74 |City Suburb
London Kw 160128 | 4.1{56 | 9.9(1.98{2.13].33{2.LLk ( =) 70 City centre
(Kingsway)|
Croydon 105§37 | L.3|65 | 6.5]1.7L]|1.68].26{1.93 (2.15) 72 Suburban airfield
Kew Obs'ty 75130 | 2.4}61 | 5.3]2.06|2.09]|.32|2.60 (2.75) 76 City park
Dover 36{L2 | 2.9163 | 6.2]1.51{1.65].12{1.L45 ( =~ ) 61¥ |Pier on sea front
Lympne 76143 | 3.7169 | 6.0{1.61[1.60].18|1.62 (1.75)] 70 |Open airfield
Manston h6 bo 307 67 507 1.68 106h o18 1079 (2.00) 71 Open shore
Calshot g8olk2 | L.6|6L | 7.7]1.51|1.57].15]1.L8 (1.60) 63* |Lowland verging on Solent
Boscombe D. | 55{39 | 3.7|65 | 6.2]|1.66]|1.66].18]1.72 (1.90) 67 Kilitary station in open grassland
Larkhill 51|39 | 3.1/68 | L4L.8]|1.72]1.68].18]1.75 (1.60) 68 Military station in open grassland

-‘[‘zz-

1 Bracketed values previously obtained from subjective evaluation of site and surroundings
(Davenport = 1960)

*1¢{ woulc appear that stations on the coastline give somewhat larer estimates.
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general region given in Fig. 2.4

Thus it would seem that the peak gust ratio may prove to be a
useful predictor for determining the roughness parameters of anemometer
sites. With further confirmation regarding the response of the anemometers
in service and with the analysis of extreme winds extended to include the
records of more recent years, it might prove profitable to make a wider

survey of the‘extreme wind climate along these lines.
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APPENDIX II

HORIZONTAL VELOCITY SPECTRA AT THREE HEIGHTS ON A TALIL MAST

The following six figures show the spectra of the horizontal
components of gustiness computed from records of 20 occasions of strong
wind at heights of 40, 210 and 503 ft. on a tall mast. The experimental
details have been fully described by Davenport in a paper entitled "The
spectrum of horizontal gustiness near the ground in high winds'" to be
published in the Qu&rterly Journal of the Royal Meteorological Society.
The spectra have been computed using 6, 9 and 18 anto-correlation
coefficients. The summarised estimates of the normalised logarithmic °

spectrum !1t;§59 at specific wave numbers appearing in the above

paper were obtained from the '"by eye" curves shown in the diagrams.
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| Bleich, McCullough, (1950) "The mathematical theory of the vibration
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Davenport, A.G. (1959) "The wind induced vibration of guyed and

self supporting cylindrical columns" -
Transactions Eng. Inst. Canada 3

pp. 119 - 141
den Hartog, J.P. (1954) "Recent technical manifestations of von
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of U.S.A. 40, No. 3

Farquahson, F. B.  (1952) ""Model verification of the classical flutter
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Frazer, R.A. . (1952) "A summarised account of the Severn Bridge

Scruton, C.S. aerodynamic investigation'' - HMSO
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