
SUPPORT LOGIC PROGRAMMING

AND ITS IMPLEMENTATION IN PROLOG

by

M. R. M. MONK

A thesis submitted to the University of Bristol, in accordance with

the requirements, in application for the degree of Doctor of

Philosophy in the Faculty of Engineering, Department of Engineering

Mathematics, June 1989.

ABSTRACT

The modelling of uncertainty in Expert Systems and other Artificial

Intelligence applications has been addressed in a number of different ways with

varying degrees of success. Some of the better known of these are described along

with other aspects of decision process modelling, particularly knowledge

representation and inference. Certain problem areas are highlighted and considered

in terms of producing a theoretically justifiable uncertainty mechanism that is also

computationally manageable.

The theory of Support Logic - Programming is described and its derivation

from probability theory and the Dempster-Shafer theory of evidences is explained.

Fuzzy Set theory is used as a means of providing a method of semantic unification,

whereby differing terms of similar meaning can be unified with partial support.

A Support Logic interpreter, written in Prolog, is described highlighting the

advantages of using the unification and theorem proving capabilities of the

language. To improve the efficiency of Support Logic programs, a translator is

described that converts Support Logic programs, 'that are queried through the

interpreter, to Prolog programs that can be queried directly from Prolog. These

translated programs maintain, the -same -behaviour as the original Support Logic

programs, returning supports with proved queries, but run at up to thirty times the

speed.

Two simple applications are implemented: one demonstrating the suitability

of Support Logic to the modelling of a naval weapon control system (the area of

interest to the industrial sponsor) and the second demonstrating the robustness of the

system under varying degrees of uncertainty, by comparison with other mechanisms.

i

ACKNOWLEDGEMENTS

I am very grateful to my supervisor, Dr. Jim Baldwin, for his

constant enthusiasm for this work and for his insight and

understanding that brought it all about,

I would also like to thank Dr. Trevor Martin and Dr. Bruce

Pilsworth for their input along the way, particularly concerning some

of the implementation details.

I am also grateful to my colleagues in the A. I. group of. the

Information Technology Research Centre for their interest in my

work and many stimulating and animated discussions.

I am indebted to my wife, Chris, for' her patience' and

encouragement, particularly in the latter stages of completing this

thesis.

This work was carried out under a CASE studentship, funded

by the Science and Engineering Research Council and the Dynamics

Division of British Aerospace p1c, of whom I am grateful to Paddy

Sterndale for her suggestions for the naval application.

ii

MEMORANDUM

The accompanying dissertation entitled "Support Logic

Programming and its Implementation in Prolog" is based on work

carried out by the author at the University of Bristol between

October 1984 and June 1989.

All work and ideas in this dissertation are original unless

otherwise acknowledged in the text or by reference.

This work has not been submitted for a degree or diploma at

this or any other university.

Signed

Date
2..........
...

iii

TABLE OF CONTENTS

Abstract

Acknowledgments

Memorandum III

Table of Contents IV

List of Figures Vili

List of Tables Ix

Chapter 1. Introduction 1-1

1.1 Threat Evaluation Weapons Assignment 1-1

1.2 Knowledge Representation 1-4

1.3 Inference 1-13

1.4 Uncertainty Modelling 1-18

1.5 Summary 1-36

Chapter 2. The Theory of Support Logic Programming 2-1

2.1 Introduction 2-1

2.2 Support Logic Representation 2-3

2.3 Combining Supports across the Logical Connectives 2-6

2.3.1 Conjunction and Disjunction 2-6

2.3.2 The IF Conditional 2-15

2.4 Combining Supports for Identical Solutions 2-20

2.4.1 Belief Functions 2-21

2.4.2 Dempster's Rule of Combination 2-24

2.4.3 Independent Viewpoints 2-30

2.4.4 Bundles 2-32

2.5 Semantic Unification 2-36

iv

Chapter 3. Support Logic Programming In Prolog - Slop 3-1

3.1 Introduction 3-1

3.2 Basic Form of Interpreter 3-2

3.2.1 Representation 3-2

3.2.2 Interpreting a Slop Knowledge Base 3-4

3.2.3 Support Logic Disjunction 3-9

3.2.4 Negation 3-14

3.2.5 Prolog System Predicates 3-16

3.2.6 The Cut - "! " 3-21

3.2.7 Summary of Use of Prolog System Predicates 3-26

3.3 Extra Characteristics and Constructions 3-27

3.3.1 Free Variables in Goals 3-27

3.3.2 Probabilistic Pairs 3-29

3.3.3 Cutoffs 3-30

3.3.4 Equivalence 3-32

3.3.5 Semantic Unification 3-36

3.3.5.1 Representation 3-37

3.3.5.2 Use of Probabilistic Pairs in Semantic Unification 3-41

3.3.5.3 The Level of Application 3-42

3.3.6 Bundles 3-48

3.4 User Interface 3-54

3.4.1 Introduction 3-54

3.4.2 Top Level 3-55

3.4.3 Tracing 3-59

3.4.4 Error Checking 3-62

3.4.5 Listing the Support Logic Knowledge Base 3-65

V

Chapter 4. Translating Support Logic Programs 4-1

4.1 Introduction 4-1

4.2 Support Pairs on Prolog Goals 4-1

4.3 Optimising the Translation 4-3

4.3.1 Single Clause Relations 4-3

4.3.2 Multi-Clause Relations 4-6

4.3.3 Clause Ordering 4-11

4.4 Creating a Knowledge Base Module 4-14

4.5 Generating Solution Sets 4-16

4.6 Ordering and Translating Clauses 4-20

4.7 Semantic Unification 4-25

4.8 "Solutions" and other Declarations 4-29

4.9 Querying Translated Programs 4-34

4.10 Conclusion 4-36

Chapter 5. Determining Support Pairs 5-1

5.1 The Voting Model for Support Pairs 5-1

5.2 Possibility and Necessity Measures Using Fuzzy Set Theory 5-2

5.3 Disjunctions 5-3

5.3.1 Body vs. Clausal Disjunction 5-5

5.3.2 Body Disjunction 5-6

5.3.3 Clausal Disjunction 5-8

5.3.4 Bundles 5-8

5.4 Conditional Supports in Bundles 5-9

5.5 As Sure as Eggs is Eggs 5-12

5.6 Jabberwocky 5-20

vi

Chapter 6. Two Applications I- 6-1

6.1 Threat Evaluation Weapons Assignment - TEWA 6-1

6.1.1 The Model 6-2

6.1.2 Translating the TEWA System 6-16

6.2 Fault Diagnosis in Oil-Drilling Rigs 6-20

Chapter 7. Further Work and Conclusions 7-1

7.1 Conclusions 7-4

Ref erences R-1

Appendix I Slop - Implementation of a Support Logic Programming

interpreter in C-Prolog version 1.4

Appendix IT Translator - Program for translating Support Logic programs

into executable Prolog code IT- 1

Appendix III TEWA - Slop program for Threat Evaluation Weapons

Assignment with translation declarations

Appendix IV TEWATR - Translated version of the Slop program TEWA in

Appendix III IV- 1

vii

LIST OF FIGURES

Figure 2.1 Liquid support model. 2-8

Figure 2.2 Two basic probability assignments depicted by segments of the

unit line. 2-24

Figure 2.3 Orthogonal sum of two basic probability assignments. 2-24

Figure 2.4 Support pair combination using Dempster's rule. 2-27

Figure 2.5 Support pair combination in bundles. 2-34

Figure 2.6 Evaluation of supports representing "fast given quite_fast" using

fuzzy set theory. 2-39

Figure 2.7 Evaluation of supports representing "fast given not quite_fast"

using fuzzy set theory. 2-39

Figure 2.8 Comparison of fuzzy sets for fuzzy and non-fuzzy definitions of

fast. 2-41

Figure 3.1 Most general allowable fuzzy set for semantic unification. 3-38

Figure 3.2 Allowable fuzzy sets for semantic unification. 3-38

Figure 3.3 The minimum of two fuzzy sets. 3-39

Figure 3.4 Example fuzzy set combination. 3-40

Figure 5.1 Evaluation of supports representing "most" using fuzzy set

theory. 5-3

Figure 6.1 Fuzzy set for any number N. 6-3

Figure 6.2 AL/X Inference network - Fault Diagnosis on oil rigs. 6-21

viii

LIST OF TABLES

Table 1.1 Set of relations proposed by Quinlan for INFERNO. 1-26

Table 2.1 Example belief function and basic probability assignment. 2-23

Table 5.1. Distribution of men (M) and women (W) in the chess

tournament. 5-10

Table 5.2 Sample of 130 eggs tested for being bad 5-13

Table 5.3 Support pairs for eggs being bad for four - different Support

Logic representations. 5-18

Table 6.1 Possible interpretations for the conditional probabilities of the

AL/X model. 6-26

Table 6.2 Comparison of results for oil rig, fault diagnosis. 6-27

ix

Chapter 1. Introduction

The purpose of this thesis is to address the use of uncertainty in Expert

Systems and to propose a new system that provides a theoretically justifiable

calculus that at the same time is computationally manageable. The research was part

funded by the Dynamics Division of British Aerospace at Filton, Bristol, whose

particular application demonstrated two important areas of difficulty in Expert

Systems development - uncertainty and reasoning in a dynamic context. The theory

and programs presented in this thesis were designed as tools towards such a

development but were also intended to have much greater applicability.

This introductory chapter explains the fundamentals of the application under

investigation by British Aerospace and the problems which it raises. Subsequent

sections discuss work that has been carried out in the field of expert systems, and

its contribution to the current state of development. Rather than attempting to

review a large number of systems, several well-known systems and applications have

been considered. These illustrate the topics of relevance to this thesis - knowledge

representation, inference techniques and uncertainty modelling.

1.1 Threat Evaluation Weapons Assignment

The survival of a naval ship in a battle situation is dependent on the way in

which it can determine what is going on around it, but, more importantly, on the

decisions made to deal with such activity. A Threat Evaluation Weapons

Assignment (TEWA) system is an automatic aid to such a decision-making process.

It would be required to analyse the input data to assess the threat posed by any

outside activities and then to decide the optimum way of eliminating that threat. In

this context, optimum refers to the overall survival of the ship and not just survival

with respect to the single threat under consideration. For example, the ship would

I-I

not assign all its'weapons to a single target if this could leave it open to other

threats that, may arise. In brief the job of TEWA is to maximise the probability of

escaping a significant hit.

The first problem in the design of such a system is the interpretation of the

input data, particularly that from electronic devices such as radar and sonar. The

information provided by these devices can tell us something about the position and

speed of the target, but it is difficult to decide what the target actually is from this

information alone. A radar reflection profile may reveal a bit more, along with any

radar emissions from the target itself, however for every possible identifying

characteristic there will probably be a system deployed, by the target itself, for

distorting such information. The end result of all this electronic activity is that

none of the on-board detection devices are likely to be able to identify a target with

any certainty. At best, each will only be able to provide a likelihood of a target

being of a certain type. Uncertainty is also introduced on account of the fact that

there will not be a definitive way of deploying the weapons so that the rules within

the decision process will have uncertainties associated with them. 1ý ý-

Other sources of input, apart from electronic surveillance, may also exist.

These could be intelligence reports, or satellite information, or visual or other

observations from other support vessels. The presence of other vessels (e. g. in

convoy) can also introduce variations on the weapons assignment decisions,

depending on whether the prime concern of the convoy is to protect one or more

particular vessels, or to carry out some subsequent operation that - requires the

conservation of particular weapon systems,, or -something else. All these sorts of

considerations need to be built into the TEWA system andýwill form an important

part of the tactical model that TEWA will exercise.

The majority of practical expert systems existing today are essentially static

in nature: the decision Process is based upon a fixed set of input data. In a battle

1 -2

situation there will be a continuous stream of information from the detection

devices, showing up new targets or change in activity of current targets etc, all of

which can have a significant effect on a previous set of decisions. For example a

weapon may have been assigned to a target when a new, more dangerous target is

observed. The previous decision should be overridden and the weapon redeployed,

leaving a secondary weapon system to address the original target. Alternatively a

weapon system may become inoperative, thus negating a previous assertion that the

weapon was an available resource. In logic terms, such a system, in which a

previously deduced theorem (e. g. weapon available) can become invalid, is called

non-monotonic. TEWA can not therefore be implemented totally using first order

logic, which, by definition, must be monotonic.

Uncertainty and some form of non-monotonic reasoning for, modelling a

dynamic system are, then, the two, main theoretical -considerations for the

development of an automatic TEWA system. Of course it is probably possible to

create such a system without calling on logic programming, - but by using a standard

procedural programming language. The idea behind this work, however, was to

devise a mechanism in which the tactical model was not too closely entwined with

the control of the system. This allows a better understanding of the interactions of

the various aspects of the model and, hopefully, an easier mechanism for providing

justification of decisions, as well as allowing greater scope for adjusting the model.

A limited TEWA system is presented in chapter 6, using the theory proposed

in chapter 2, and this is run under the interpreter described in chapter 3 and in a

translated form as provided by the translator described in chapter 4. To provide a

more sophisticated model, significant effort is required in the construction of a

tactical model that will entail a far greater understanding of the data and weapon

systems available on the ship. Such work could not be performed by British

Aerospace at the time the Support Logic theory was being developed and thus the

I-

system presented in chapter 6 is merely put forward as an example of how the

problem might be approached.

1.2 Knowledge Representation

Knowledge representation may at first appear to be a rather trivial aspect of

Expert Systems design - the important part is surely how to access and use this

knowledge. One could be forgiven for thinking this, as it is a trap that AI

researchers have fallen into, to varying degrees, since the science began. The truth

is that it has a large influence on all other areas of expert system design -

inference, understanding, and uncertainty, as well as knowledge acquisition and

explanation. It is possible to select a representation scheme to improve any of these

areas, but, as yet, no scheme has been found that improves all of them

simultaneously; there are trade-offs between each. Furthermore, there is no

evidence to suppose that such a scheme will ever be discovered or invented. To

optimise all of these areas, we may have to use several representation schemes in

conjunction or in parallel. The evidence from-psychology is tending towards this

being the case in the human mind, however it has not shown up any suggestions of

how this is best simulated in a computer program.,

Before looking at the various ways of representing knowledge that are

currently being investigated, let us consider what it is we are actually trying to

represent. Barr and Feigenbaum (1981) suggest that knowledge can be partitioned

into

(i) objects: including classes or categories, and descriptions of objects,

(ii) events: including the time course and cause-effect relations,

(iii) performance: how to carry out tasks and use skills, and

1 -4

meta-knowledge: knowledge about what is known, particularly limitations,

sources, reliability, importance.

These categories are suitably vague so as not to be taken as definition, but they are

good guide-lines of what it is that we are trying to achieve. Indeed, the authors

point out that, on analysis, it is hard to differentiate between object and

performance knowledge.

Knowledge representation techniques can, broadly, be split up into logic,

rules and structured objects, of which rules consist of production systems and

procedural systems, and structured objects can be further split into semantic nets

and frames. It is not easy, in the context of expert systems, to trace the course of

any of these individually, because of the way techniques have been taken from more

than one theme to produce domain specific systems. This brief survey will

therefore consider these representation methods in the light of the systems in which

they have been used.

One of the first contributions to the modelling of human problem solving

was the General Problem Solver (GPS) begun in 1957. This was applied originally

to the domain of manipulation of logic statements and so could be considered as a

logic representation. However, it was generalised from this to other domains, (Ernst

and Newell, 1969), which generally had the structure of objects and operators, with

varying degrees of success. Using means-ends analysis, problems were solved by

considering the differences between objects. The system could also thus be

considered to be rule-oriented, and fit into the category of production systems

(Newell and Simon, 1972)

Another major contribution was that of QA3 (Green, 1ý
1969), a language that

used the predicate calculus of first order logic. The success of this system however

was hampered by the inference mechanism, which could only handle simple

I-

problems. It was followed by STRIPS, the Stanford Research Institute, Problem

Solver, (Fikes and Nilsson, 197 l, ' Fikes; Hart and Nilsson, 1972). This was a system

for guiding a robot through an environment and allowing it to plan how to

rearrange objects in this environment. The system consisted of two knowledge

representation schemes; first-order predicate calculus for establishing the truth of

facts about the environment and objects to be handled by means-ends analysis.

- None of the systems so far mentioned can be considered 'to show much

"intelligence" or judgement. The first such project -was probably DENDRAL.

Begun in 1965 at Stanford University, this is a system for identifying the molecular

structure of unknown organic compounds by considering mass spectrograms

(Buchanan and Feigenbaum, 1981)., The representation used here was essentially a

Production system that generated potential candidates for the structure and tested

them. The "intelligence" was in the way it was able to apply constraints, supplied

by the chemist using the system, at an early stage, to filter out a large proportion of

unwanted structures, thus preventing a combinatorial explosion. DENDRAL is still

being applied as a useful tool in structural analysis of molecules and its success is

perhaps due, to a large extent, to its explicit representation of domain-specific

knowledge. It is, however, a symbol manipulating system and so does not lend itself

so readily to other problems where more judgemental decisions are required.

The first system to achieve this successfully was MYCIN (Shortliffe and

Buchanan, 1975). This was a system made up of hundreds of IF ... THEN... rules for

diagnosing bacterial infections and prescribing suitable drug therapy. Its success can

be pinned down to three features. First, its rule-based structure lent it, particularly

well, to explaining its decisions. This did not amount to much more than

regurgitating the rules it had used, but it was a step in the right direction. Secondly

it was robust due to its ability to handle uncertain data, and thirdly it was relatively

efficient due to its inference mechanism, discussed in the next section. Out of

I-

MYCIN came EMYCIN, (van, Melle, 1979), the shell of the system without the

domain knowledge, which saw reasonable success in similar diagnostic systems, for

example PUFF (Feigenbaum, 1977).

The advantage of procedural over declarative systems, such as those

mentioned above, is a better control structure for using the knowledge: problem-

solving is more highly directed. The main disadvantage manifested itself as systems

became more complex -the knowledge base became difficult to understand due to

the presence of the procedural code. Amending and updating the knowledge was

very hard because of the large degree of interaction between the pieces of

knowledge; the user could not easily establish the effect of adding new data. Out of

this came attempts to mix a logic representation with procedural information. One

such system was PLANNER (Hewitt, 1969) which is "a language for proving

theorems and manipulating models in a robot".

Semantic nets emerged from the areas of cognitive psychology (Quillian,

1968) and computer science (Raphael, 1968) at much the same time. Raphael

implemented a system for Semantic Information Retrieval (SIR) which had a basic

comprehension of English so that it could accept statements, and answer questions

about relationships between objects, deducible from those statements. The most

well-known subsequent system that uses semantic nets is PROSPECTOR (Duda et al,

1978 and 1979). This used semantic nets to build models of geology and prospecting

knowledge, incorporating inference rules between nodes. INTERNIST (Pople, 1977)

used a form of network to represent the hierarchical structure of disease categories,

and the causal, temporal and other, relationships between disease entities.

Frames were suggested as a form of knowledge representation by Minsky

(1975) and were used in the knowledge representation language, KRL (Bobrow and

Winograd, 1977). A frame represents an object, or concept, and its noteworthy

characteristics. These, typically, will include the class to which the object or

I-

concept belongs, classes into which it can be split,, description/definition, as well as

procedures for establishing more information about it, and'for drawing conclusions

from it. -

A more recent application of frames is in CENTAUR (Aikins, 1983), a

development from the PUFF system (Feigenbaum, 1977). This uses frames to

provide a representation of the context in which the system is working, and within

these are production rules to carry out the reasoning process. There is a hierarchy

of frames which at the top level consists of prototypes representing mainly disease

patterns, but also meta-knowledge about running a- consultation 'and reviewing

evidence. Prototypes have slots for components, which themselves are frames

pointing to sub-frames of knowledge at the object level. Straight rule systems, such

as MYCIN, were shown by Clancey (1983) to have limitations in the explanation

and justification facilities. The representation allows structural and strategic

knowledge to be embedded in the rule without explicit justification, and thus some

of the rule-author's knowledge is lost. Aikins (1983)ýapplied similar arguments to

justify the use of frames. Although CENTAUR has proved fairly successful, the use

of frames does have its critics (Hayes, - 1981 and Brachman, 1985). The criticisms are

mainly towards the inheritance of properties and 'whether they are ý essential or

accidental. There are properties that may be necessary conditions for an object to

be an instance of a concept, and properties that may, just happen to be true of all

instances of a concept. There can also be typical properties of'a concept that can be

overridden at other places in the hierarchy. There is a, danger that all three forms

will have the same representation.

There is another structured representation which has arisen out of semantic

nets and frames, as well as logic. This is conceptual graphs, first proposed by Sowa

(1976) as a representation that "can describe data according to the user's view and

access data according to the system's view". The idea was that the user need not

I-

have to know how data are stored in the knowledge base, thus forming a better

natural language link between user and machine. In the following years the subject

did not receive as much attention as it probably deserved and thus when a

comprehensive text was produced (Sowa, 1984) it did not show -many significant

advances from the 1976 paper. It is however now receiving more attention, though

there are still no significant expert systems using the technology. Research

involving the techniques can be found in Morton (1987), Morton and Popham (1987)

and Ralescu and Baldwin (1987).

The problem of dealing with defaults, as explained above with respect to

frames, is one that crops up in all knowledge representations, and is -commonly

called default reasoning (Reiter, 1978). In PLANNER there is a primitive THNOT

which is used in the form:

(THNOT UNDER_EIGHTEEN (X) ASSUME CAN_VOTE(X))

This expression reads "unless it can be shown that a person, X, is under eighteen,

assume that person can vote". ý Default functions of this form can only work

correctly if the knowledge base is complete with respect to the default condition.

That is the system must be able to prove UNDER_EIGHTEEN(X) for all values of

X for which this is true. Notice that provability and truth within a system are not

necessarily the same. Valid deductions from a system that allows default reasoning,

can be made invalid by adding new facts, and this violates the monotonicity

property of classical logic. The new facts could come from new information

supplied to the system, but they could also arise as side-effects from the system

itself. McCarthy and Hayes (1969) identified this as the frame problem when

considering the possibility of robots affecting the world around them.

Doyle (1979) proposed a truth maintenance system that kept track of all the

beliefs justifying another belief. This "justification" consisted of an ordered pair of

1 -9

sets of beliefs; those that supported the consequent belief by being provable, "in",

and those that supported it by being not provable, "out". Whenever a new belief

arose, its effect on the rest of the knowledge could be assessed and the knowledge

base adjusted to ensure consistency. This does, however, prove very unwieldy and a

lot of work is required to prevent circular arguments.

In 1980, volume 13, numbers I and 2 of, Artificial Intelligence were devoted

to non -monotonic: logic., McCarthy (1980) discussed the theory of circumscription, a

rule of conjecture such that "the objects that can be shown to, have a certain

property P by reasoning from certain facts A are all the objects that satisfy P, " thus

avoiding theý need to investigate all objects that'may have, a bearing on P. The

theory is proposed as a means of remaining within first order logic without having

to modify it to a modal logic. Also in this volume Reiter (1980) proposes a "logic

for default reasoning" and develops a complete proof theory and a resolution

theorem prover for a particular class of defaults. McDermott and Doyle (1980)

developed model and proof theories for one non-monotonic logic, introducing the

operator M, meaning "is consistent", and followed this with McDermott D (1982).

This approach was, however, perhaps too ambitious. Moore (1983) discusses the two

main problems that arose; (i) that the notion of consistency that they defined

allowed both MP ("P is consistent") and -, P ("P is false") to be theorems and (ii) that

the system with the notion of consistency that McDermott D (1982) wanted, non-

monotonic S5, collapsed to ordinary and therefore monotonic S5. For a more

thorough appreciation of the current practices in non-monotonic logic, the reader

should see Non-monotonic Reasoning Workshop (1984).

ý, Knowledge representation involving both logic and procedural information

resulted in not only PLANNER (Hewitt, 1969) but also inJogic programmin& first

suggested by Kowalski (1974). In this paper he proposes predicate logic as a good

declarative representation of procedural information. The logical statement

I- 10

B if A, and ... and An

can be interpreted as the definition of a procedure B involving the sub-procedures

A, to An. The result was the programming language PROLOG, first implemented

by Roussel (1975). Since then Kowalski has produced a comprehensive text on the

subject (Kowalski, 1979) and there have been a large number of further

implementations both academic and commercial. PROLOG has become a very

popular AI programming language on this side of the Atlantic, however one of its

most significant failings with respect to L ISP is its speed. This is changing, though,

as faster implementations are produced and work progresses on a parallel

implementation. LISP also has the advantage of hardware designed specifically for

running the language efficiently - to-called LISP machines.

The main criticisms of PROLOG come. from logicians and those who

misunderstand how to use a declarative language. The answer to both these, as

energetically expressed by Kowalski (1987), is that PROLOG is a declarative

representation, but of procedural information. In fact, he goes further than this and

claims that "all knowledge is inescapably procedural, " that is, it is inherently

explaining how to do something or what to do to achieve something, given certain

conditions. The logicians dislike of negation as failure not being logical

(Shepherdson, 1984) is answered by the fact that it is not meant to be; it is a

procedural negation expressing the lack of provability of a theorem. Kowalski puts

the apparent inefficiency of Prolog down to misuse of the language. It is not

enough to write a declarative rule and expect it to be an efficient algorithm. The

rule has to be written as a procedure, and therefore will be as efficient as the

programmer's algorithm, but it will still have a declarative reading., This is

illustrated by the difference between a naive-sort using permutation generation and

a quick-sort using partitioning.

I- 11

The other main criticism from the logicians is the confusion between "if" and

"if and only if", which arises out of negation as failure. The true meaning of a

Prolog rule involves "if". i. e. the body of the rule defines a necessary condition. If,

however a theorem can not be proved within the database then negation as failure

declares the negation of that theorem to be true, thus suggesting that the bodies of

rules implying a theorem are the sufficient conditions i. e. "if and only if". The

objection is that this is not what has been explicitly stated, but it is the assumed,

and unavoidable, interpretation. The only answer to this is that this is unfortunately

the case, but PROLOG, should be accepted for what it is, which is useful and

powerful, rather than for what it was, unfortunately, made out to be. Shepherdson

(1987), in answer to Kowalski (1987), accepted these views of PROLOG's

Procedural interpretation and instead criticised the way the language had been

"sold", as a tool for representing logic, which, in the classical sense, it does not

achieve.

Despite these academic criticisms of PROLOG, it is becoming increasingly

popular as an expert systems development language. One of the systems which most

emphatically showed the way, must be MECHO (Bundy, 1978 and 1983). MECHO

is a system for predicting behaviour in Newtonian mechanics, but it included

elements of natural language understanding and algebraic manipulation, as well as

the necessary mechanics problem solving capabilities. It was developed in

PROLOG, but with an intervening interpreter between the "clever" part of MECHO

and PROLOG itself.

The work for this thesis has been developed in PROLOG in order to make

use of a representation relying on logical connectives, essential to Support Logic

Programming. It also provides the necessary unification and backtracking facilities.

I- 12

1.3 Inference

The essential requirements of an expert system are a suitable representation

of the knowledge and an inference mechanism for reasoning with that knowledge.

As expressed before, however, the two can not be separated and each has to be

designed with the other in mind. In logic- and rule-based systems, the inference

mechanism and knowledge representation are more dissociated than in procedural

systems or frame-based systems, in both of which the knowledge itself can play a

large part in directing the reasoning process. , Each has, its advantages and

disadvantages. The less closely associated are, the inference and representation, the

more modular the system is and'the easier it is to assess the effect of adding extra

information to the knowledge base. When the two are closely entwined with, one

another, as in purely procedural systems, then one can arrive at more efficient

systems for reasoning in particular domains. These systems, however, in which the

control is embedded in the knowledge itself,, are less easily generalised to other

domains.

Classically, inference is a term that should probably only be applied to logic,

however its general use is due to the idea that a system makes deductions from

known information (or axioms); it is hoped that conclusions drawn by an expert

system are logical. The rules of first-order logic ensure that any true theorem

within a theory can be deduced (completeness) and any false theorem will not be

deducible (soundness). To produce automatic theorem provers we must also try to

achieve these two goals, but in an efficient mechanism. The most important

contribution came from Herbrand in 1930 whose theorem, given in van Heijenoort

(1967), states that

A formula, A, in conjunctive normal form is unsatisfiable if and

only if there exists a contradiction consisting of a finite conjunction,

A', of instances of clauses of A.

I- 13

The significance of this is that in order to prove a'theorem from a set of clauses, it

is sufficient to prove that the negation "of that theorem is false, and leads to a

contradiction, when taken with that set of clauses.

This idea was first implemented in a program by Gilmore (1960) but it was

extremely inefficient and therefore not very useful. It did, however, show the way

and the next major advance was Robinson's (1965) Resolution procedure used in

QA3 (Green, 1969). This worked by deriving new clauses from the original set of

clauses in an attempt to derive the empty clause. In order to prove that a

conjunction is false it is sufficient to prove some part of it false, and thus it is only

necessary to deduce the empty clause. The Resolution procedure led to a series of

refinements that were able to prove more and more complicated theorems, however

it soon became apparent that automatic theorem proving had a limited contribution

to Al 'in general. -' This became more -obvious as the 'problem of generating

completely new theorems was considered. ' Resolution and its refinements are good'

at proving known theorems, but can not achieve the task at which humans are so

adept, that of thinking up new and interesting theories.

Before leaving Resolution, it is important to stress that it has still made a

significant contribution. One of its refinements is Linear, Input Resolution, which

is complete for sets of Horn clauses. This always resolves using the most recently

derived resolvent (linear) with one of the original (input) clauses. A further

restriction on this produces Lush-Resolution and this with a depth search is the

basic inference mechanism of the Logic Programming Language, PROLOG,

discussed above and described by Clocksin and Mellish (1981). Although this

combination of Lush-Resolution and depth search only produces a very weak

theorem prover (that is, it blindly goes down the first path it comes to, and can

easily fall into a loop) it provides a very good tool for producing more sophisticated

mechanisms, hence its popularity.

I- 14

Another early form of inference was called means-ends analysis and was

essentially a bi-directional chaining mechanism. This was first employed in GPS

(Ernst and Newell, 1969) mentioned above. The system had four types of goals that

it could attain, each describing the current and desired situations and a history of

attempts to go from one to the other. These goals in turn were processed using four

different types of methods. In the manner of forward-chaining the system would

apply an operator to minimise the difference between the current and required goal

states to produce a new goal. If this was not immediately possible then the goal

would be split into subgoals as in backward-chaining. The inference mechanism

was therefore separate from the knowledge to an extent, but the knowledge had to

be expressed to fit in with the types of goals.

MYCIN (Shortliffe and Buchanan, 1975) -is a system that uses backward-

chaining alone. In attempting to, establish a conclusion, the system locates a rule

with that conclusion and then attempts to deduce the antecedents of that rule. Such

a method is efficient if one knows what one is trying to discover, as in MYCIN, but

sometimes it is the case that one wants to know the consequence of a-particular set

of data. In such a case forward- chaining is more appropriate -- the system starts

with some items of knowledge and looks to see what it can conclude. Forward-

chaining alone is unusual, though, because of its aimlessness - there are an awful lot

of conclusions that one can draw from a little data, and it could take a long time to

generate an interesting one. There is such a system, however, designed for

configuring VAX computers, called RI. McDermott J (1982) describes the system
I

in detail and raises some interesting points concerning the way humans approach

similar tasks. RI is a particularly successful system and is still used. Most of the

established expert systems, however, tend only to use forward chaining in

conjunction with another inference scheme.

I- 15

An intuitive Joint scheme might employ a heuristic search, in which the

search is guided by meta-level rules, or heuristics. The search space in a system

like DENDRAL (Buchanan and Feigenbaum, 1981) can be vast because the system

has to generate all the possible molecular formulae. However it is able to reduce

this set by applying rules, derived from mass spectrometry, to the structures

generated, to determine whether they could produce a mass spectrum similar to that

of the unknown molecule.

Another form of search is best-first in which chaining, either forward or

backward, is governed by the values of the rules to be employed: These values can

be calculated, to reflect what a particular rule can achieve towards a conclusion, or

to indicate which rules will reach the desired- conclusion most quickly, ýand will

take into account what data is present. In the early days of expert systems, game-

Playing and, puzzle -solving programs involved similar ideas. A measure could be

evaluated for the current state and for all the states to which the system could

transform. The best move would be the one that had the highest measure, and thus

this is sometimes called hill-climbing. The difficulty in this method, as in all search

mechanisms governed -by state or rule values, is deciding on an algorithm for

evaluating the measure.

STRIPS, described by Fikes and Nilsson (1971), can effectively be divided

into two parts, each of which has its own inference mechanism. It uses Resolution

theorem proving to deduce the truth of facts about the world, as in QA3, and

means-ends analysis to search for a state satisfying the required conditions, as in

GPS. PLANNER (Hewitt, 1969) is another system that extends its inference beyond

just Resolution and, in the words of Hewitt, "permits both the_ imperative and

declarative aspects of statements to be easily manipulated"., For example,

superficially the staterne nt'(i m plies a b) is just declarative, but to PLANNER it can

set up aýprocedure to consider whether to assert b if, a is asserted, or another that

I- 16

will consider whether, I given the goal b, it is wise to create the subgoal a. Within

PLANNER it is possible to have procedures that will guide the deduction of

theorems down what is hopefully a sensible and efficient path.

Systems using frames rely heavily on a form of procedural knowledge

representation, however in this case the user is in a position to define these

procedures. The language KRL (Bobrow and Winograd, 1977) uses this form of

knowledge. The procedures associated with a particular frame can allow the system

to find out more information about the concept it define5 perhaps to further

understanding of the concept or to act as a proof of its truth. More interestingly,

there could be a procedure that determined the applicability or relevance or

importance of the current frame given the known data. CENTAUR (Aikins, 1983)

combines frames, with production rules. As a'refabrication of PUFF (developed

with EMYCIN), it uses similar rules with certainty measures, however, these occur

in -the slots of the frames, or prototypes, so that they are only used when in the

particular context of that prototype. In this way rule invocation is controlled locally

by prototypes rather than globally as in PUFF and MYCIN. Prototypes can ask the

user for information and, using this, create a hypothesis list consisting of further

prototypes ranked according to certainty measures. Selecting the most favourable

prototype allows old information and new information to be considered in the light

of a new context and certainty measures can be adjusted accordingly. The inference

mechanism of this scheme is therefore locally controlled and also directed by

certainty measures making full use of domain specific knowledge.

This section has shown some of the current (and early) techniques for

inference within a knowledge base. In the broadest terms, inference can be based

either on logical theorem proving and Resolution, or on more locally directed

deductions using a procedural format. Neither can be considered "correct", but

when used in conjunction, each can enhance the other, as shown by systems like

I- 17

STRIPS and PLANNER. The current trend is however towards- a closer

representation of domain specific knowledge resulting in more locally controlled

inference, but it is still desirable to keep the basis on a more general and well-

founded theoretical footing. An expert system that only contributes to solutions in

its own particular domain, does not amount to much more, than a custom-written

computer program. Although it may be the final, solution in its own area, it does

not make many ý inroads to the ultimate goals of Al.

1.4 i Uncertainty Modelling

The ne ed to model uncertainty arises when we start to write programs that

deal with the real world and the consequent incompleteness of information. This

incompleteness can be split into two general. types: Incompleteness of - data and

incompleteness of definition. , The most common methods for dealing with

uncertainty are numerical, however problems involving-only incompleteness of data

can be dealt with to some extent by non-numerical techniques such as truth

maintenance systems and non-monotonic logics, mentioned in section, 1.2. , These

will not be considered here, as the emphasis of this thesis is on the numerical

modelling of uncertainty, however Bhatnager and Kanal (1986) present a review of

both numerical and non-numerical techniques.

Incompleteness of data is probably the most obvious source of uncertainty -

trying to make decisions without knowing the full story, reasoning from facts which

are not known to be true for sure but are qualified by terms such as "likely" or

"possibly" etc. Numerical techniques attempt to propagate this uncertainty, about

the ground data, through the decision tree or reasoning process to establish the

certainty of the final decision. Incompleteness of definition arises from situations

like deciding if something is a bush or a tree, or assessing the likely success of legal

arguments (this may seem a surprising example due to the attempts at precision, but

I- 18

the law -is bound by language which is riddled with imprecisely defined terms

resulting in multiple interpretations). These situations can be modelled using

numerical values representing likelihoods or frequencies, or one can try to resolve

the problems of definition, but this latter technique is dependent on restricting the

domain, of application and therefore shies away from the real world. These

distinctions between sources of uncertainty, however, do not need to be treated

separately. Indeed, this thesis proposes a calculus that handles, and can combine,

pieces of uncertain information regardless of their sources. Some expert systems,

though, work in a domain where the uncertainty is of only one type and thus the

distinction is worth appreciating.

Numerical methods for handling uncertainty have traditionally been based on

probability theory and, more, particularly, the -use of Bayes' theorem. Despite this,

the first successful expert system that used inexact reasoning was based on a

relatively ad hoc model of certainty factors - MYCIN- (Shortliffe and Buchanan,

1975). Zadeh's (1978) theory of possibility was one of the first major departures

from probability, along with the Dempster-Shafer theory -(Shafer, 1976), however

this latter paper stemmed from work of Dempster in'the mid 60's, directly related to

probability theory (Dempster 1967,1968). In fact, Adams (1976) asserts that a

substantial part of the MYCIN model of certainty factors can also be derived from

probability theory. This leaves us with the theories of probability (and its

derivatives'or pseudo -derivatives) and possibility which has not often been used as

the primary calculus in expert systems. That we do not have many uncertainty

calculi--to use needn't matter, provided that the systems produced give sensible

results. The ad hoc, nature of certainty factors does not make it any worse a

technique - MYCIN works. There is, however, the concern that such techniques are

certainly not what we humans use when reasoning with incomplete knowledge.

Furthermore, as with knowledge representation ý techniques, there is no reason to

suppose that there is a unique uncertainty calculus which will be the "correct"

I- 19

method and will solve all the problems. As well, there are those who believe that

we should be looking to non-numerical methods. So far the evidence from

psychology leaves us in the dark and we can only pursue those techniques which

appear to work. This section describes various inexact reasoning techniques as they

have been applied to expert systems.

The obvious place to start is MYCIN, in which the knowledge base consists

of statements each of which has an associated measure of belief (MB) or disbelief

(MD) between zero and one. When the statement is a rule, these measures are

applied to the consequents dependent on the truth of the antecedents, and thus are

taken to be measures of increased belief (or disbelief) in a hypothesis (the

consequent) based on the evidence represented by the antecedents. ' The antecedents

themselves can be hypotheses deducible from other rules and do not have to be

observed data. The reason for having measures of -both belief and disbelief is to

allow rules to express belief in a conclusion without the complement having to be

taken as disbelief, and vice versa. Since one piece of evidence, e, can not both

favour and disfavour a single hypothesis, h, when MB[h, e]>O, MD[h, e]=O, and when

MD(h, e]>O, MB[h, e]=O. These measures are defined by

MB[h, e] - WHO - P(h) I- Nel-, h) (1.1)
I- P(h) P(e)

and

MD[h, e] P(h) - P(h1e) I- F(gjhj (1.2)
P(h) P(e)

In order to be able to compare and rank hypotheses, these two measures are

combined into the single value, CF[h, e] - MB[h, e] - MD[h, e], called the certainty

factor. Adams (1976) looks at the calculus of certainty factors in the light of

probability, with a view to assessing the differences between 'the two and the

relative limitations. By deriving, directly from probability theory, the MYCIN

I- 20

formulae for combining evidence, he was able to consider the behaviour of MYCIN

by direct comparison with known theory.

Shortliffe and Buchanan (1975) state the formulae for combining measures of

belief (MB) and disbelief (MD) for hypothesis, h, given evidences, el and e 21 as

MB[h, e, &e 21
0 if MD[h, e, &e2l =1

(1.3)
MB[h, el] +. MB[h, e 21*(' - MB[h, e,])

otherwise

and

MD[h, el&e 23

0 if MB[h, e, &e
21 =1

(1.4)
MD[h, e,] +. MD[h, e 21'(' - MD(h, e, 3)

otherwise

and define "the measure of increased belief in the hypothesis h, based on the

evidence el and e2" (Shortliffe's wording) by

MB[h, el&e2l m P(hle P(h) I-E ýe& I-, h) (1.5)
P(h) P

elVeL
2
L

using (1.1). Adams then demonstrates that, by assuming independence between the

two pieces of evidence el and e 2, and using Bayes' rule, we can rewrite (1.5) as

follows

MB[h, el&e2l -I - EM-C
p

k.
)

1 2)

I- We -nhl We
21, h)

Pýe P(e 2)

-eI EL I U=hL -h-k2l
P(-, hj P(-, h)

P(-, hle I P(-, hle. 1
+ P(-, hie I P(-, hle I

P(-, hj P(-, h) P(-, hý P(-, hý

"7h (I - P(-, hle, l P(-, hlell
P(. nh

+ P(-, hý j P(-, h)

MB[h, ell + MB[h, e,](l - MB[h, e, l)

I- 21

which is the same as, the, original definition given in equation (1.3), but for the

exceptional cases when a piece of evidence conclusively proves (MB[h, e] = 1) or

disproves (MD[h, el -1) a hypothesis.

Having shown this analogy between probability and the measures of belief,

Adams considers the implications, and comes up with three major criticisms. The

first is that the necessary assumption of independence of evidence is violated when

a piece of evidence is conclusive one way or the other, in that no other evidence

can contribute, and thus the choice of MB and MD is restricted. The remaining

two criticisms concern the uses of the certainty factors which are (i) in ranking

hypotheses and (ii) in providing a weighting when ýa hypothesis is supported, by

another hypothesis as antecedent. The counter- intuitive behaviour of the ranking is

shown up by a simple example that Adams proposes.

Take the prior probabilities to be P(h) - 0.8 and P(h2) ý 0.2, and the

posterior probabilities to be P(hjje) - 0.9 and P(h 2 le) = 0.8, then

MB[hl, e] - ffhlle) - P(hll -0.5
1- P(hl)

MB[h 21 e] - RLh2le) - P(h
21 - 0.75

1- P(h
2) '

Since MD[hj, e] and MD[h 2, e] must be zero, the certainty factors will be

CF[hl, e] - 0.5 and CF[h 2 e] - 0.75 resulting in h2 being the preferred hypothesis.

This is obviously not desirable since the prior and posterior probabilities for h2 are

both less than those for h,, and suggests that certainty factors are not adequately

defined to represent confidence in hypotheses. The remaining criticism about

certainty factors concerns the way that they are used in intermediate hypotheses in a

chain of reasoning. The rules proposed are

MB[h, e] - MB[h, i]. max(O, CF[i, e]) and

MD[h, e] - MD[h, i]. max(O, CF[i, e]),

I- 22

where I is the ý intermediate hypothesis suggesting hypothesis h and suggested by

evidence e. Adams points'out that this is similar to using a rule

P(hle) - P(hli). P(ile)

when the certainty factor is positive, but that this rule only holds under the

particular condition that the population showing h is a subset of that showing I is a

subset of that showing e.

Adams concludes that it is a weakness of MYCIN that there is an "inobvious

interdependence restriction" on the values of the measures. Furthermore he suggests

that MYCIN's empirical success, in the face of these theo retical objectio ns, is due to

short chains of reasoning and simple hypotheses. Let us then consider another

successful system, in a different domain, in which the theoretical basis is

probability.

PROSPECTOR (Duda, Gaschnig and Hart, 1979) is a system for weighing up

geological data to determine the presence or absence of particular minerals. This

uses semantic nets to represent an inference network of relations between field data

and geological hypotheses. There are three types of relations: logical, plausible and

contextual. The third of these is used to indicate when data (field data or

hypotheses)' should be derived in a particular order and does not involve

uncertainty. Logical relations represent the logical connectives AND, OR and NOT

with uncertainty being evaluated for the relation using fuzzy logic (minimum for

AND, maximum for OR and complement for NOT). Plausible relations represent

implications between an antecedent and consequent, and the propagation of

uncertainty through these uses Bayes' rule. Associated with each relation is a

sufficiency measure (LS) and a necessity measure (LN) defined by

LS'- P(EIH) LN - P(, EIH)
P(El-, H) P(-, El-, H)

I- 23

In statistics these are also called likelihood ratios, for evidence E and hypothesis H.

The posterior odds (O(HIE)) of a hypothesis are calculated from the prior odds

(O(H)) using the "odds - likelihood" form'of Bayes' rule

O(HIE) = LS. O(H)

and these new odds can be re-expressed as a posterior probability using the formula

P- 0/(l + 0)

A similar calculation using LN allows the evaluation of O(HIE). The posterior

odds'of a hypothesis that is antecedent to another hypothesis can then be used to

deduce new odds-for the consequent hypothesis, and thus strength of evidence can

be propagated through the semantic network to confirm or disconfirm the top level

hypothesis. For more precise details of this see Duda, Hart and Nilsson (1976).

PROSPECTOR has enjoyed a fair amount of success and in'1981 had seven

ore deposit models defined for it. It inevitably suffers from the same difficulties as

any numerical representation technique, that of assessing the values on the rules,

and hence the phrase "subjective ý-Bayesian inference". Furthermore the use of

Bayes' rule means that not only'does one have to put values on the inference rules,

but also to estimate the prior probabilities of all deducible', hypotheses. These would

be particularly difficult to assess because it is hard to define what is your sample

population; is it the whole world i. e. all sites or is it all sites that appear to be worth

considering? If it is the latter, then there must be some deductive information that

has already been used to establish that the site is "worth considering". Two other

drawbacks of a system that uses Bayes' rule in this way are that (i) the system

depends on point probabilities and therefore there is no way of expressing the

precision of any of the values or ignorance in any data. and (ii) the evidence for

and the evidence against a hypothesis are combined into a single value so that it is

not possible to determine how much there is of each.

1 -24

These last two points are also raised by Quinlan (1983) in a paper in which

he proposes INFERNO, a system that avoids these two criticisms and does not

assume independence between assertions. INFERNO uses probability intervals (say

[s(A), p(A)]) to represent uncertainty, so that precision is evident from the width of

the interval (p(A) - s(A)), and the lower (s(A)) and upper (p(A)) limits of the

interval can stand for the evidence for (t(A)) and the complement of the evidence

against (I - f(A)), respectively. This, however, is not a new idea and does not

address Quinlan's main concern, the independence assumption. To avoid this he

defines a set of relations (given in table 1.1),, that he contends are "sufficient to

express common interdependences" between propositions, and he associates

propagation constraints with each relation type.

When the bounds on a proposition change, the effect of this can be

propagated through the knowledge base in both directions causing adjustments in

the bounds of other related propositions. The relative adjustments will be restricted

by the propagation constraints so that the bounds do not violate the fundamental

rules of probability. This propagation can, however, cause inconsistencies, which

manifest themselves as negative intervals i. e. s(A) > p(A) or t(A) + f(A) > 1. When

an inconsistency occurs it is pointed out to the user and the system looks at ways of

rectifying it. Rectification involves establishing how values should be changed in

the knowledge so propagation of uncertainty does not throw up the inconsistencies.

Several schemes may be possible and these are ranked according to how little the

values need to be adjusted.

I- 25

Relation Intermetation

A enables S with strength X

A inhibits S with strength X

A requires S with strength X

A unless S with strength X

A negates S

A conjoins (S1. ... oSd

A conjoins- independent (S1, ... 'Sn)
A disjoins (Sl, ... 'Sd

" disj oins- independent (S,, ... ISd

" disjoins -exclusive (S1. ... 'S n)
(Sp ... ISn) mutually exclusive

P(SIA) 2! X

P(, SIA) >X

P(, AI, S) 2: X

P(Al-, S) 2: X

Aa -S

&iSi

A sm &iSi; Vi#j P(Si&Sj)=P(Si). P(Si)

Aa ViSi

Aa ViSi; Vi: #j P(Sj&ý-)=P(Sj). P(S

Aa Visi; vi*j P(Si&sj)=O

vioj P(si&ý.)=o

Table 1.1 Set of relations proposed by Quinlan for INFERNO.

Liu and Garnmerman (i987) highlight two deficiencies of INFERNO and

attempt to correct them. The most important of these is INFERNO's criteria for

terminating the propagation, which Quinlan uses to prevent a situation equivalent to

positive feed back. They show that a side-effect of these criteria is the final results

being order dependent, to correct this they employ a relaxation method that

increases the work necessary quite considerably and also, in their own words, "is

difficult to apply to real problems since it is at the expense of losing some very

useful features of INFERNO".

Quinlan compares the behaviour of INFERNO with that of AL/X (Reiter,

198 1), -a system that works -similarly to PROSPECTOR described above. The

example he takes is a fault diagnosis scheme consisting of eleven implication rules

and six pieces of ground-data, of which five are provided on which to
lbase

the

diagnosis. The problem is defined in AL/X using the conditional probabilities

P(HIE) and P(HI-, E). represented by prior probabilities for the hypotheses, H, and

1 -26

sufficiency and necessity measures on each implication. As a result of using

Dayesian inference, the conditional probabilities defined for H and E also define the

,I conditional probabilities -1
for -, H and E, P(--, HIE) and P(-, Hl-, E), and consequently a

very small value for P(Hl-., E) leads to a very large value for P(-'Hj-'E). As

mentioned above we can not-tell whether the probability given was derived, as low

.
support for the hypothesis given false evidence (low P(Hl-, E)) or high support

against the hypothesis given false evidence (high P(--, Hl-, E)). Consequently it is not

reasonable to reformulate the problem, in terms of probability intervals, directly

from the AL/X formulation. It is impossible to tell what the human expert had

been trying to represent - small support for, or large support against. If we do

reformulate it directly in INFERNO terms, we can use either P(HIE) or P(-, HIE),

and P(Hj-, E) or P(-, Hl-, E) - an enables or an Inhibits relation, and a requires or an

unless relation (see table 1.1) - the choice is arbitrary. Quinlan in fact chooses to

use a combination of enables and requires relation (those for which on average the

probabilities are largest, and therefore those that provide most information) and

INFERNO produces the correct diagnosis. There can be no justification for one

choice or another, without going back to the original expert and thus the

comparison Quinlan gives is not completely valid. The intervals remain quite tight

because of the almost strict implication between -, E and -, H (P(-, Hl-, E) almost

unity), whereas had the'unleis relation been used, the evidence being false would

"have provided very little information and it is likely that the intervals would have

widened dramatically, and the diagnosis would not have been supported very

strongly, if indeed it would have got it right.
'The

same example is formulated in

support logic in chapter 6 using each of the possible probability interpretations, and

the diagnosis is correct in both cases that the equivalent of the enables relation is

used. The Inhibits and unless relations taken together provide so little information

that a diagnosis_ is not justifiable, and the Inhibits and requires relations produce the

wrong diagnosis on the strength of counter- evidence alone.

I- 27

II,
Apart from the fact that Quinlan's formulation did not provide a valid

comparison, the example showed up two other noteworthy points. The diagnosis

produced, required a rectification that was brought about by changing a piece of

input data from false to a probability of 0.204. The first point is that this small

chan, ge, -was enough'to get rid of all the inconsistencies and reverse the probability

interval
-on what was ultimately deemed the correct diagnosis, from false to

[0.80,0.881, hence suggesting that the system is fairly sensitive to input data. The

second; point. is that the adjustment was from false to a point probability of 0.204.

Such overspecification was exactly one of the issues that INFERNO was intended to

address. -eý. . 1.1 t

It is accepted that the assumption of independence between propositions is

not true in general, however it provides the least Prejudiced approximation in

situations when the actual dependence relationship is not known. INFERNO allows

independence to be explicitly asserted and also the two extremes of dependence -

strict implication and mutual exclusion - but otherwise the probability interval on

conjunction will range from the probability of one extreme to that of the other.

Without very tightly defined intervals on the relations these intervals will rapidly

expand when propagated through a chain of inferences. This did not occur in the

AL/X example, because of the small intervals on the requires relations and there

being, at most, three levels of implication.

The idea of rectification to get rid of inconsistencies does not really seem

necessary. Real-life problems do throw up inconsistencies and conflicting evidence,

however we are quite capable of resolving these in order to arrive at conclusions.

They arise mainly because we do not have a complete model or understanding of the

area we are considering, for example economics or medicine. There can be no

inconsistencies in the human anatomy and its reactions to the outside world; the

inconsistencies arise because our current model of this is inadequate. INFERNO can

I- 28

only get rid of inconsistencies by adjusting the input data or adjusting the model

itself. On the whole the input data is likely to have been thoroughly evaluated so

that the particular combination of values is correct. This leaves adjusting the

model, but can this be justified on the evidence of one set of data? Perhaps if the

same inconsistencies occur very often, or this same data combination occurs very

often then the model should be adjusted, but if it works for most cases then there is

no point weakening it for one special case. It is better that the system should

attempt to resolve this conflict itself without detracting from the behaviour of the

model in other cases. If later the special case is explained, then it can be added to

the model, with extra rules or links, thus enhancing its capabilities, but without

calling for adjustments to the rest of the model. Any resulting conflict could be

resolved. INFERNO, in short, does not provide any improvements in system

behaviour. The AL/X example Quinlan states is not a good comparison, and other

examples he cites do not demonstrate improvements but merely show that

INFERNO can achieve the same results at greater expense.

Szolovits and Pauker (1978) compare, what they call, categorical reasoning

with probabilistic reasoning with reference w four systems; PIP, INTERNIST.

CASNET and MYCIN. All of these work in a similar way using numerical scoring

techniques to rank or focus attention"on diagnoses in a medical domain. The actual

techniques differ from system to system, as explained in the paper, 'but the overall

effect is similar. An interesting aspect of PIP (Present Illness Program) is the way it

combines categorical with probabilistic (or at least numerical) reasoning. The

categorical reasoning involves using findings about patients (equivalent to symptoms)

to trigger investigation of particular hypotheses which can then trigger other

hypotheses through causal relationships. Hypotheses are scored according to how

well the observed findings fit a hypothesis (matching score) and to how well the

observed findings are accounted for by a hypothesis (binding score). These scores

can be propagated through the system to affect related hypotheses, and a final

I- 29

diagnosis is provided byý comparing the scores of candidate hypotheses. Thus, as

Szolovits 'and Pauker state, "PIP proposes categorically and disposes largely

probabilistically".

Dempster's rule of combination, first proposed in Dempster (1967), is

becoming increasingly popular as a means for combining evidence that may involve

conflict. The details of the rule are most clearly explained by Shafer (1976) along

with a theory of belief functions in a set theoretical context. The set of all possible

outcomes is called the frame of discernment, 0, and the power set, 2(), is therefore

the set of all possible combinations of outcomes, or the set of all subsets of 9.

Defined over the frame of discernment are two types of function for representing

the belief in possible outcomes, based on bodies of evidence: the belief function

(Bel) and the basic probability assignment (m). -,

Bel: 2E) -+ [0,1]

m: 28 - [0, I]

Each element of 2E), being a subset of E), represents the union of several

outcomes and in logic terms is equivalent to the disjunction of those outcomes. The

belief assigned to each element therefore represents the belief that one of the

component outcomes will occur. Although it is the, belief -functions that represent

our actual-belief in possible outcomes, the basic probability assignment provides an

easier mechanism for defining that belief.

Belief in a set of outcomes has to account for all the belief in any sets of

outcomes that are subsets of the set we are considering, and, in particular, it has to

account for any belief in any of the individual outcomes in the set; for instance,

belief in A must contribute to belief in the set - (A, B), or in logic terms, the

disjunction A or B. The basic probability'. assignment, however, defines the amount

of belief that is committed exactly to a subset of 0-i. e. the probability mass that is

I- 30

committed to that -set 'and to ý nothing else - and is called the basic probability

number. This function is bound by the restrictions that, there can be no belief in

the empty set, and the total probability mass must be unity:

M(O) -

E m(x)
Xce

The two functions are related by

Bel(X) E m(Y);
YCX

the belief in a set of propositions is the sum of all the basic probability numbers

assigned to subsets of that set.

The purpose of Dempster's rule is to provide a means of combining bodies

of evidence to produce a single overall representation of all the available evidence.

In Shafer's formulation this was applied as the combination of belief functions to

provide an overall belief function, which is called the orthogonal sum. The two

component belief functions must be defined over the same frame of discernment

and must represent belief derived from distinct bodies of evidence. The resultant

belief function will reflect the combined weight of the two bodies of evidence and

will have resolved any conflict that may have existed between the two component

belief functions. Dempster's rule combines belief by taking the product of

component basic probability numbers and conflict is resolved by renormalising the

total probability mass involved in conflict, across the rest of the system (the exact

details of the rule are given in section 2.4.2).

By using multiplication in Dempster's rule we are assuming that component

basic probability, numbers are independent and hence the requirement that the two

belief functions to, be, combined using Dempster's rule should - be derived from

distinct bodies of evidence. It is this requirement that has attracted the most

I- 31

concern about Dempster's rule; for probability we can define independence, but to

define, independence of- evidence is more difficult. It is also subject to the same

criticisms of assuming independence, as discussed above, however, as mentioned, it

is an approximation for when we do not know what dependence relationship, if any,

there is between evidence.

One of the earliest practical applications of Dempster's Rule was presented

by Garvey, Lowrance and Fischler (1981). This involved identifying from a set of

five known emitters, which one emitted a particular electromagnetic signal. The

received signal can be matched to the possible emitter signals, providing a

probability interval for each. Further receivers can provide similar information and

the evidence from each can be combined using Dempster's Rule.

Shafer's theory of belief functions combined with Dempster's rule does have

a serious computational drawback, as pointed out by Barnett (1981). Belief

functions ý are defined 'over ,a frame, of ý discernment 0 the - elements of which

represent all the possible values of some quantity 0. As Shafer (1976) states, "the

propositions of interest are precisely those of the form 'The true value of 0 is T',

where T is a subset of E), " thus every member of the power set 2e is assigned a

belief. In general, Barnett-points out, the computation of a belief function from a

basic probability assignment - perhaps derived from some experiment - will require

time exponential in the size of the frame of discernment., This complexity is

exaggerated when belief functions are combined using Dempster's rule. Barnett's

proposal to reduce this from exponential to linear time involves partitioning the

problem space in several independent ways. In Shafer's terms he reduces the

problem from general belief functions, for which there may be several focal

elements, to simple support functions, those which have only one focal element,

called the focus. Simple support functions assign support to a single possible value

of the quantity of interest, 0, and its negation.

I- 32

One of the most interesting applications of Dempster's rule and the theory of

evidence is towards non-monotonic reasoning. The idea of using uncertainty values

in default reasoning had previously been presented by Rich (1983) when she

proposed using certainty factors to label the arcs of semantic nets, thus qualifying

the properties which they represented. This was extended by Ginsberg (1984) using

probability intervals and using Dempster's rule to resolve conflict. One of the main

issues of non-monotonic reasoning is coping with situations in which different

pieces of information provide contradictory evidence for the same conclusion.

Dempster's rule provides a method for dealing with such conflict with the following

advantages:

(a) its commutativity and associativity ensure that it is not order dependent -a

failing of some non-monotonic systems,

(b) Inapplicable rules provide no knowledge about a conclusion and therefore do

not affect the final conclusion drawn from relevant rules,

(C) When two intervals are not in conflict (i. e. both in favour or both against)

Dempster's rule corresponds to probabilistic disjunction,

(d) Application of a non-monotonic rule can never outweigh, or affect a logical

certainty (true or false), however the combination of definitely 'true with

definitely false is undefined. Such a situation can only occur when there, is

an inconsistency inherent in the database. --

Ginsberg then goes a stage further and constructs meta-rules to be applied

using Dempster's rule. In general we may have rules

rule 1: if X isa Y then X isa Z [a b]

rule 2: if W isa Y then W isa Z [c d]

I- 33

where [a bl'and Ic di are probability intervals on the rules, and W, X, Y and Z are

some properties. 'We are essentially defining the Z-ness of something due to its

Y-ness according to whether'it is an X or a W. However if X is a class that is a

superset of W, or X is a supertype of W, then we should not apply rule I when we

can apply rule 2. As it stands'both would be applied to obtain a new interval from

combining [a bi and Ic d]. To avoid this Ginsberg proposes a rule of the effect '

rule 3: if rule 2 can be applied then

rule I can be applied [0 0] (i. e. it can not)

On proving that aW is aY the system would evaluate rules I and 2

combining [a b] and [c d], however it would also evaluate rule 3 which would have

the effect of taking away again the [a b] of rule I to leave Ic d]. This would thus

generate the correct probability interval on W being a Z. This use of Dempster's

rule does depend on it being reversible which Ginsberg states it is, in his own

words, "nearly". However, he does not explain how and nor does he give any

worked examples. Although an interesting application, it seems rather misdirected.

Shafer (1976) discusses at length the concept of "independence of evidence" as a

requirement for the use of Dempster's rule, it being an adaptation of the disjunction

of independent probabilities. The non-monotonic use of Dempster's rule, that

Ginsberg is proposing is for situations in which the evidence is quite clearly not

independent - the application 'of rule 2 precludes the use of'rule I when the X and

W can be the 'same thing. Under these circumstances they are in fact mutually

exclusive.

Gordon and Shortliffe (1984) apply the Dempster-Shafer theory of belief

functions to the bacterial organism identification problem that was modelled by

MYCIN (Shortliffe and Buchanan, 1975). The theory was applied to this area

because of the way in which it could be used to handle evidence bearing on

categories of diseases, as well as specific diseases. Defining the domain in terms of

I- 34'

a strict hierarchy of hypotheses allows the subsets of 2() to be restricted. They

consider an example in which one is trying to identify the cause of a liver disorder,

cholestatic jaundice. It could be due to intrahepatic cholestasis (i. e. a problem in

the liver itself) or extrahepatic cholestasis (external to the liver). These two could

be caused by hepatitis (H), cirhossis (C) or Oral contraceptives (0) in the first case,

or gallstones (G) or pancreatic cancer (P) in the second. From this information we

construct the hierarchy for Cholestatic Jaundice:

HCOGP

HCO GP

HC0GP

where HCOGP represents, cholestatic jaundice itself, and is the disjunction of all

possible causes, HCO represents intrahepatic cholestasis and GP extrahepatic

cholestasis. The frame of discernment, E0, is (H, C, O, G, P) and the set of all subsets

in the hierarchy of-hypotheses, excluding E), is called T, (HCO, GP, H, C, O, G, P)

which is a subset of 2E). By considering only this subset of 2e, some of the worst

computational inefficiencies of the Dempster-Shafer. theory can be avoided.

The only difficulty arises when considering disconfirmatory evidence, which,

when combined with the evidence for the elements of T, can provide evidence for a

diagnosis that does not belong to T. It is the generation of such non-interesting

subsets, that causes the computational inefficiency of the Dempster-Shafer theory,

and that this hierarchy based approach attempts to avoid. Gordon and Shortliffe

therefore propose an approximation to Dempster's rule that attributes any evidence,

that would otherwise be attributed to a set not in T, to the nearest ancestor of that

set that is in T. For example the basic probability assignment for NOT H combined

with that for T could assign non-zero belief to CO. This belief would instead be

assigned to HCO. The scheme provides a good way of evaluating belief in problems

which can be represented in this hierarchical manner, however, under certain

1-35

circumstances, the combination of disconfirmatory evidence can be order dependent.

The authors state that this is avoided by combining evidence in a breadth-first

fashion, from higher to lower levels, through the tree. in conclusion, they suggest

further conventions would be required for an actual reasoning system and also that

the techniques probably do not have general appeal-but could be very suitable for

hierarchical knowledge bases. They also briefly, mention the problem, associated

with any interval belief system, that there is not likely to be a "Correct" approach to

how beliefs should be used and compared, once evaluated.

Summary

There are a variety of ways of representing knowledge and of reasoning

within that knowledge and all probably have their uses under different

circumstances. The approach of the research for this thesis, to address the problem

from a logic programming stand-point, was to provide a mechanism in which the

domain knowledge is separate enough from the control of the reasoning process to

allow an easier analysis of the knowledge and its interdependences. The uncertainty

mechanism is designed to have enough generality to broaden its applicability beyond

a limited domain, ý but at the same time to define bounds so that applications

maintain the, theoretical justification of the mechanism. -It is also hoped that the

potential for non-monotonic applications can be exploited within -the system,

however, this was of less importance than the provision of a general open-world

uncertainty calculus. The result, was the-theory, of Support Logic -Programming

(Baldwin, 1986, Baldwin and Monk, 1987, Baldwin - 1988) which is defined, and an

implementation explained in the following chapters.

V- 36

Chapter 2. The Theory of Support Logic Programming

2.1 Introduction

In Prolog we assume a closed world in which the non-assertion of a fact is

equivalent to the assertion of its negation. This does not allow for the possibility of

representing information to be unknown i. e. neither true nor false. To represent

such information we need a multi-valued logic, and logics involving the use of

probabilities and possibility values etc. have been produced. Both these, however,

are still equivalent to using a closed world assumption because of the constraints

Prob(p) -I- Prob(NOT p) and Poss(p) -I- Poss(NOT p). In Support Logic we

relax this constraint to S(p) :51 S(NOT p) where S(x) stands for the "support" for

x. In this way every assertion requires a support for and a support against in order

for it to be fully specified within the system. This corresponds to an open world

and allows us to express not only uncertainty of information (truth values between

zero and one), but also ignorance of information where the truth values are defined

only to be within a certain range and not necessarily to have a point value.

Another characteristic of Prolog is - that its proof mechanism uses a depth

search of the proof tree. This works well in a system where assertions are either

true or false because, in order to prove a theorem which has several different proof

paths, the first proof path used proves the theorem as well as any other., By

backtracking, Prolog , allows alternative proof paths to -be "used thus providing

different proofs and these further proofs of a theorem may result in different

variable instantiations or may reprove the theorem using the same variable

instantiations.

In Support Logic Programming each proof path may provide only partial

support for particular variable instantiations., The proof paths, so involved, each

2-1

correspond to a method by which a query can be satisfied or a theorem can be

proved. Whereas in Prolog reproving a goal for the same variable instantiations is

of little value, in Support Logic it is of enormous importance and we will therefore

define a distinction between the terms "solution" and "proof". The solution of a

query is the particular combination of variable instantiations necessary to answer the

query or prove the theorem whereas a proof is the chain of argument, through the

knowledge base, that generated the solution. In this way a theorem may have more

proofs than solutions and, in particular, a query containing no variables can

necessarily have only one solution but may have several proofs.

As a Support Logic query, is reproved,, more support for or against a

particular solution may be obtained and these individual supports need to be

combined to provide an overall support for the solution. In a court case, a suspect

may be found guilty due to the weight of evidence against him or her, however it is

possible that none of the evidence,, when taken alone, would be sufficient to make a

conviction. Similarly, in a Support Logic Programming system we have to consider

together all proof paths, for the solution to a query, in order to be able to compute

an overall support for the solution. The calculus for this computation must reflect

the intuitive idea that extra Positive support from an independent source must

increase the overall support, and negative support should decrease it, while at the

same time resolving any resultant conflict. This is equivalent to weighing up

evidence in court. When considering non-independent evidence, the different

proofs are used to converge to the overall support. Each proof provides a different

aspect on the same problem and, when taken together, can provide a more accurate

picture and resultant support pair. I

In this chapter, we will first lay out a syntax in which Support Logic

statements can be represented within the style of syntax of logic programming. By

so doing, it is intended that a knowledge base can be constructed that maintains its

2-2

reading as a series of logical rules and facts, but, at the same time, allows the truth

of these to be qualified.

Having established a representational syntax, we will define the way in

which supports are combined through a logic proof path, and how supports from

different proofs are combined to provide an overall support for a particular

solution. These effectively have their own calculi because the underlying

assumptions for each need not be the same, however the model defining each

calculus is based on the same principles: there are two statements with associated

support pairs which are to be combined to provide a new support pair. In the case

of the logical connectives, the resultant statement, will be a new statement; in the

case of combining supports for the same conclusion, the resultant and two original

statements will all be the same, however the support associated with the resultant

statement will represent the overall support obtained from the two proofs

corresponding to the original statements.

'The last part of this chapter defines a mechanism for semantic unification

whereby non-identical terms that describe the same concept can be partially unified.

In this way, there can be support associated with not just the truth of the statement,

but also the degree to which that statement matches the goal under consideration.

2.2 Support Logic Representation

To represent a statement in the open world of Support Logic we require two

pieces of information - the support for and the support against the statement. To

do this we have a lower and an upper'support, Sl and Su respectively, for every

statement. The lower, or necessary, support is that amount of support, between zero

and one, that can definitely be attributed to the truth of the assertion.. The upper,

or possible, support, also between zero and one, is that amount of support that can

Dossibly be attributed to the truth of the assertion. The support for a statement is

2-3

interpreted as being at least as high as the necessary support, SI, but possibly as high

as the possible support, Su, thus lying in the range Sl to Su, where Su must be

greater than or equal to SI. The support pair on a statement also provides us with

the negative information by using the complement of the two values. The support

for the negated statement lies in the range I-Su to I-SI. In general we have the

following rule which will be important in the derivation of the calculus for

combining supports (, means not):

SU(P) -I- Sl(-, P) (2.1)

The size of the range of values, between Sl and Su, associated with the assertion, we

will call the "unsureness", and this represents the-ignorance of information about the

assertion. Notice the difference between unsureness and uncertainty: uncertainty is

the abstract notion concerned with the inability to determine whether an assertion is

true or false, whereas unsureness is a quantity measuring the degree to which an

assertion can neither be determined to be definitely true nor definitely false: it is

not a measure of uncertainty. Point probabilities can be used to model uncertainty

but they can not represent unsureness. - ,IIý. III

Consider the following examples, in which the syntax used is that of the

Prolog implementation of Support Logic Programming, Slop, described in chapter 3.

The support pair, enclosed in square brackets, to represent a closed interval, is

preceded by a colon and forms the body of a Prolog goal. The assertion

good_at_tennis(john): - : [0.8,1].

says that the support for "john is good_at_tennis" is 0.8 but gives ý no support for

john being not good_at_tennis. -

2-4

good_at_tennis(peter): - : [0,0.31.

says that there is no support for "peter is good_at_tennis" but that there is support

of 0.7 (1 - 0.3) for the assertion that peter is not good-at-tennis.

good_at_tennis(geoff): - : [0.6,0.7].

says there is support 0.6 for asserting that geoff il good_at_tennis, but also support

0.3 (1 - 0.7) for asserting that he is not good_at_tennis, leaving unsureness of 0.1.

Such a situation may arise from watching geoff on two separate occasions, at one of

which he looked quite good, at the other of which he did not look very good.

A support pair of [0, I] corresponds to complete unsureness - nothing at all is

known abouv the assertion - and is the default support pair associated with all

statements not explicitly declared in the knowledge base. The support pairs [1.1]

and [0,0] correspond to definitely true and definitely false respectively, so that if a

support logic program consisted -entirely of assertions with these support pairs it

would be equivalent to a Prolog program. When the necessary and possible supports

for an assertion are equal, we are stating that there is no unsureness associated with

the assertion and, by forcing this equality upon an entire knowledge base, we reduce

the model from an open to a closed world system. In general, the supports

themselves are not probabilities, but the support pair can be considered to be an

interval which contains the probability of the assertion.

In a Support Logic rule the support is interpreted as the support for the head

of the rule given that the body is definitely true and is called a conditional support.

The syntax in Slop is to have a Prolog rule in which the body is followed by a colon

and then the square - bracketed support pair., For example

good_at_tennis(X): -

accurate_server(X) : [0.8,1].

2-5

This rule is interpreted as "X is good_at_tennis" is supported to a degree between

0.8 and I if "X is an accurate_server" is true, where true means supported to degree

2.3 Combining Supports across the Logical Connectives

2.3.1 Conjunction and Disjunction

In a multi-valued logic, such as Support Logic the truth value attributable to

the conjunction of two statements will be a function of the truth values of each

statement. A t-norm, T, generalises "and":

T: [0,11 x [0,1] -ý+ [0,11 sUW thaiý'-

(i) T(aj) ma

(ii) T(a, b) m T(b, a)

(iii) T(a, T(b, c» = T(T(a, b), c)

(iv) T(a, b) k T(c, d) if a 2: c, bkd

Examples of t-norms are, T(a, b) -aAb where A means minimum, as used in fuzzy

logic, and T(a, b) - a. b where ". " means product, as used in probability under

independence. Associated with a t-norm there is also a t-conorm, S, which

generalises the disjunction, "or".

S: [0,1]x [0,1]
. --# [0,1] such that

(ij S(a, O) -a

(iii'), (iv') as (ii), (iii), (iv) for the t-norm, T.

The t-conorm is related to the t-norm, by the duality condition

S(a, b) =- I-T ((I -a), (I-b)) (2.2)

and examples corresponding to those above are

2-6

S(a, b) -avb, where v means maximum, and

S(a, b) -a+b-a. b.

Further discussion of t-norms can be found in Baldwin (1985) and Yager (1982).

In Support Logic, we are defining an interval rather than just a point value

and we must therefore establish how to evaluate both the lower and upper supports

for compound propositions. Using the notation laid out in the previous section, the

lower support is the support for the proposition and the upper support is the

complement of the support against the proposition. The support for is therefore the

truth value for the proposition and a t-norm can be used directly to evaluate the

support for a conjunction of propositions, or the necessary support for the

conjunction. The possible support needs to be evaluated by relating it to the

support against the proposition using equation (2.1), Su(A) -I- Sl(, A).

Su(A & B) -I- SIHA & B)) ý, ý

=I- Sl(-, A or -, B)

Since, for a particular t-norm characterising the conjunction there will be an

associated t-conorm, S, characterising the disjunction, we can evaluate the possible

support for a conjunction as

Su(A & B) -I- Sl(, A or -, B)

=I- S(Sl(-, A), Sl(-, B))

=I- S(I - SU(A), l - Su(B)) using (2.1)

- T(Su(A), Su(B)) using (2.2)

The support pair for a conjunction is therefore evaluated by combining the

necessary supports of the component propositions and the possible supports of the

component propositions using the same t-norm.

UN IVZP -31TY
OP rr *, I, roL

UtDrAIRY

SI(A&B) T(SI(A), SI(B))

Su(A&B) T(Su(A), Su(B))

For a disjunction, the support for, or necessary support, will by definition

be evaluated using the corresponding t-conorm

SI(A or B) = S(SI(A), SI(B))

as, in fact, will the possible support:

Su(A or B) I Sl(-4A or B))

I Sl(-, A & -, B)

I T(Sl(-, A), Sl(-, B))

I T(I - Su(A), I- Su(B))

S(Su(A), Su(B))

Apart from the restrictions imposed by the definition of a t-norm, there are

further constraints determining the limits of the values assigned by a t-norm. These

are most easily appreciated by considering the liquid support model represented by

figure 2.1.

A -, A A or -, A
Sli I-Sul Sul-Sli

S12

I -SU2 ,

SU2-SI2 B or B

P,
A&B

P2
&B

P3
B

P4 ps pe
A& &

P7 P8 Pq
A A or -, A

Figure 2.1: * Liquid support model.

2-8

In this model, each piece of information about the two supported statements,

A and B, is associated with a section of the box, thus A, A and A or -, A are

associated- with the vertical strips, and B, ý, B and B or -, B are associated with the

horizontal strips. Where the strips overlap to form a cell in the box, the proposition

represented by that cell is the conjunction of the propositions associated with the

two strips. The supports assigned to that-cell will be defined by a t-norm evaluated

for the supports on the two component propositions.

The box contains a unit amount of liquid support that is free to flow

between any of the cells subject to the-constraints that the total support in each

strip must be equal to the support assigned to, the proposition associated with that

strip. If we denote the supports in each cell, by p, to p., as labelled, then we have

PI + P2 + P3 ý S12

P4 + PS + P6 w I- SU2

P7 + Ps + P9 ý SU2 - S12

P, + P4 + P7 = Sli

P2 + ps + P8 M I- Sul

P3 + P6 + PO m Sul - sh

Furthermore we know that

i pi -I for i-I to 9 F

(2.3)

(2.4)

(2.5)

(2.6)

(2.7)

(2.8)

(2.9)

however this is deducible from the equations above and does not provide any extra

information.

Since each strip contains a fixed amount of support, the support assigned to

any particular cell, by a t-norm,, can not exceed the support for either of the two

component strips, thus the maximum value must be the minimum of the two

component supports, e. g. P, :5 Sll A S12, P2 :5 I-SUl A S12, where A again means

2- 9

minimum. We can immediately see that the lower limit on the support for a cell

can not be less than zero, however, it may have to be greater than this, depending

on the component supports. Let us consider support pl, derived from Sli and S12.

If p, is zero then from (2.3), P2 + P3 - S12 and from (2.6), P4 + P7 ý Sli. However,

the only constraints on Sli and S12 are that they lie between zero and one, thus the

sum of the two can be greater than one, and (2.9) would be violated. To insure that

this does not happen we must assign to p, at least as much support as the total

support would otherwise exceed unity, i. e. P, ý: S11 + S12 - 1. In this case

P2 + pS = S12 - (Sll + S12 - 1) im I- Sll

P4 + P7 = S11 - (Sh + S12 - 1) -I- S12, and

P1 + P2 + PS + P4 +P7 ý S" + S12 -I+I- Sll +I- S12 -I

and (2.9) is not violated. In general the constraints on the value of a cell, p, are

characterised by

a+b-IvO: 5p: 5aAb

where a and b are the supports on the component propositions and v means

maximum. This restriction must similarly be imposed on the t-norm, so that

a+b-Iv0 :5 T(a, b): 5 aAb

Notice that we do not necessarily use the same t-norm on each cell in the box since

with each t-norm there is an associated, assumption about the relationship between

the component propositions. ,
In -every case except independence, the dependence

between A and B will not apply to A and -, B and thus a different t-norm would be

applied to each. The choice of the t-norms will not, however, be arbitrary since the

dependence between A and B will determine the dependence between A and -'B.

For instance if A implies B then A and -, B are mutually exclusive; the t-norm for

10

p, will correspond to the maximum possible value, the minimum function, and for

P4. to the minimum possible value, T(a, b) =a+b-IY

Although the range of values for the t-norm are restricted, the choice of t-

norm is not uniquely determined and we have to make some assumption about the

relationship between the statements for which we are combining supports; are they

independent, or mutually exclusive, or do we not know? To produce a general

support logic system, it may be considered desirable to 'allow the users to define

their own t-norm for particular models, however there is perhaps a limit to how far

one ought to take the generalisation. A difficulty with such a system is that users

may want to use different assumptions in different places and this would lead to

immensely complicated models as well as making it very difficult to produce an

efficient evaluation mechanism in the Support Logic system itself. Furthermore, it

is the algorithm for the evaluation of the supports that is going to determine the

validity of the model and in proposing the theory of Support Logic, the aim is to

provide a system in which the support evaluation mechanism is mathematically

justified. This can not be guaranteed if the user is able to define the algorithm

himself.

in general, in the absence of any extra information, we want to define a t-

norm that makes no explicit assumption about the relationship between the

component statements. The t-norm should not show any sort of bias or prejudice to

a particular relationship, and this we achieve by maximising the entropy of the

system with respect to the supports to be assigned to each cell, subject to the

constraints of the model. The entropy of the system is defined by

-K. F, Pj. In Pi (2.10)

where In is the natural logarithm function. The constraints of the model are

defined by the equations (2.3) to (2.8) and we can find the maximum entropy

2- 11

subject to these constraints by using the mechanism of Lagrange multipliers. This is

performed by differentiating and equating to zero the sum of the entropy equation

and all the constraint equations to give the following, in which the Ai are the

Lagrange multipliers on the constraints:

In Pi dpi +

, \, (dp, + dP2 + dp.
1) +

A2(dp4 + dps + dpe) +

)ý3(dP7 + dp8 + dpg) +

)ýjci p, + dp4 + dP7) +

AS(dP2 + dps + dp8) +

A,
B(dp, 3 + dp,

5 + dpg) =0

We now group together the different terms to obtain

(In p, + Al + '\4)dpl + (In P2 + '\l + A6)dP2 + (in P3 + '\l + \6)dP3 +

(In P4 + A2 + \4)dp4 + (In P, + ý2 + AS)dps + (In P6 +"\2 + A6)dp6 t

(In P7 + '\3 + '\4)dP7 + (In p. + A3 + AS)dps + (In p. + A3 + A6)dpq =0

in which we can equate the brackets to zero and so derive an equation for each of

the supports in the liquid support-model.

In pl + A, + X, 4 - 0 pl - e-)ýl-A4

In p� + \i + \s - 0 p2 -

In p. +, A, + \6 - 0 P, 3 -

In P, + 'X2- + Ä4 0 P, 4 - e-A2-\4

in P, + 'ý2 + xs " 0- . -. X2-. XS PS -e

In P6 + x2 + 'ý6 ý 0 P6 -

In P7 + '\S + \4 ý 0 P7 - e-'

In p. + A's + AS - 0 P8 - e-Ä3-As

,, In p. + \� + ', \6 - 0, , pg - e-'\3-'\6

12

These values for the supports can be substituted into the constraint equations (2.3)

to (2.9) to give

S12 -+ e-ý' +
I -SU2 =+ e--ý' +
SU2-SI2 = e-A'(e-A' + CA' + e-A')
sh = e-A(e-A' +e -A2 + CA).

I -Sul - e-AS(e-Al + e-A2 +e -A3)

Sul-sh = e-A6(e-Al +e -A2 + e-
A3)

(e-'\' + e-
A2

+e -A3)(e-A" + e-\' + e-\')

Multiplying the equation for p, by one, as defined by this last equation, gives

e -Al-A4 (e-'\' + e-
A2

+ e-'\3)(e -A4 + e-Ar' +e -A6)

which can be rearranged to give

PI -e -A4 (e-Al + e-A2 + e-AS)e7A'(e-A4 + CAS + e-A6)

= SILS12

The support, p,, is defined by the product of the component supports, which

corresponds to using the t-norm of multiplication. This turns out to be the case for

all cells in the model.

By using maximum entropy considerations we deduce that the least

prejudiced t-norm. to use in the combination of supports in conjunction is

multiplication, which in fact corresponds to an- assumption of independence. This

does not mean that the statements are independent but only that such an assumption

shows the least bias towards any of the propositions represented by the cells in the

box. Furthermore by using this model, if we impose a closed world on the system,

so that necessary and possible supports are always equal, and there is no unsureness,

Support Logic will reduce to a probability model.

13

We now have the following definitions for the-combination of supports for

conjunction and disjunction:

SI(A&B) SI(A). SI(B)

Su(A&B) Su(A). Su(B)

SI(A or B) SI(A) + SI(B) - SI(A). SI(B)

Su(A or B) Su(A) + Su(B) - Su(A). Su(B)

As an example, let us assume the following data from a sample of one

hundred teenagers:

53/100 are described as good at tennis

28/100 are described as not good at tennis

the ability of the remaining 19 is unknown

37/100 are described as good at hockey

45/100 are described as not good at hockey

the ability of the remaining 18 is unknown

From this data-we can define the two support logic facts

good_at_tennis: - : [0.53,0.72]

good_at_hockey: - : [0.37,0.55]

With the above data alone there is nothing to suggest any correlation between being
I

good at hockey and good at tennis and therefore, using the maximum entropy

argument, we assume that the two skills are independent. The support pair for the

conjunction

good_at_tennis and good_at_hockey is [0.196,0.396]

and for the disjunction

14

good_at_tennis or good_at_hockey is [0.704,0.874].

If. rather than the statistical data above, we were given the actual

distributions so that we knew which teenager was good at what, the supports for the

conjunction and disjunction could be derived directly from the data itself and it is

likely that the independence assumption would be shown to be invalid. This does

not, however, mean that the original assumption was unjustified, because we had no

information from which to define what other dependence relationship there may

have been. Furthermore, we are designing a system for which we want one

assumption to be generally applicable across the whole model -and thus it can not

reflect the specific dependences within a conjunction such as that above. By

maximising entropy, we have a system that is applicable across most of the model,

and where there is a known dependence, this can be, expressed explicitly in the

structure of the model.

2.3.2 The IF Conditional

The other situation for which we must define how to evaluate supports in a

proof path is in rules. A rule is used to derive support for a conclusion (the head

of the rule) using the support for the body of the rule and the conditional supports.

For example we can evaluate support for good_at_tennis(X) from the rule

good_at_tennis(X): -

III., , good_forehand(X) : [0.7,1].

and the fact

good_forehand(henry): - : [0.8,0.9].

The most important point to notice about supports on rules is exactly what

they refer to. They are called conditional supports because they represent the

15

support for the head of the rule conditional on the truth of the body. They are not

the supports on an implication. in the above example, the rule states that the

support for someone, X, being good at tennis, given that they definitely have a

good_forehand, is [0.7,11. It does not mean that the statement "good_forehand

implies good_at_tennis" has support [0.7,1]; such an interpretation only allows us to

qualify the truth of the derivation of good _at _tennis
and not the truth of the

conclusion, good_ at_ tennis, itself. Because the supports on rules are conditional

supports we are able to evaluate support for a conclusion directly from the rule. If

the support for a person having a good_forehand is less than certain, then the

support for that person being good_at_tennis must be correspondingly reduced; this

is the intuitive notion that the calculus must represent.

Using the supports on a rule as conditionals, the support for the head of a

rule can be evaluated using the theorem of total probabilities,

P(A) - P(AIB). P(B) + P(Al-., B). P(-, B)

or, in support logic form,

SI(A) - SI(AIB). SI(B) + SI(Al-, B). Sl(-, B)

where SI(AIB) is the necessary support on the rule A: -B and SI(Al-, B) is the

necessary support on the rule A: - not B, and each is a totally separate piece of

information. Multiplication is used for the same maximum entropy arguments as

expressed in the previous section. The rule

good_at_tennis(X): -

good_forehand(X) : [0.7,1].

tells us nothing about X being good_at_tennis if X does not have a good_forehand

because, in this rule, we are only concerned with the truth of goodJorehand and

not with the truth of not good_forehand. For instance, if we have the assertion

16

good_forehand(philip): - 10,01.

(i. e. that philip definitely does not have a good_forehand) we will deduce from the

rule complete ignorance for philip being good_at_tennis (unsureness of 1) - philip

may in fact be considered to be very good_at_tennis, because he has a brilliant

backhand so that the weakness of his forehand does not matter. If, however, we

decide that having a weak forehand does suggest that one is not good_at_tennis

then we need to assert this explicitly with a rule such as:

good_at_tennis(X): -

not good_forehand(X) : [0,0.4].

i. e. if "not X has a good_forehand" is true, or "X has a good_forehand" is false,

then we can deduce that "X is not good_at_tennis" is supported to a degree

between 0.6 (1 - 0.4) and I (I - 0). By having this particular pair of rules in our

knowledge'base we are stating that a weak forehand does not detract from one's

game (0.6) as much as a strong forehand can add (0.8). Such a pair of rules is a

called a "probabilistic pair" and is identified by one rule having a body that is the

exact negation of the body of the other rule.

In short the first rule only carries conditional supports of the form SI(AIB),

and not of the form Sl(AJB) and similarly the second rule only carries supports of

the form SI(Al-, B) and not Sl(AjB). If this second rule has not been defined, the

system behaves as though the rule has been declared with completely uncertain

support, [0, I], in accordance with the open world assumption. In this case the

necessary support for the head of the rule becomes

Sl(A) - Sl(AjB). Sl(B)

since SI(Al-, B) - 0. To evaluate the possible support for the head of a rule, we use

the relationship defined by equation (2.1), as follows:

17

Su(A) -I- Sl(-, A)

= I- (Sl(-, AIB). SI(B) + Sl(-, Al--, B). Sl(-, B))

- I- ((I- Su(AIB)). SI(B) + (I- Su(Al-, B)). (I- Su(B))

In the case of the second rule, of the form A: - not B, being absent, we again

assume a support pair of [0,1], so that

Su(AI, B) I and thus

Su(A) -I (I-Su(AIB)). SI(B).

Referring to the knowledge base

good_at_tennis(X): -

good__., forehand(X) : [0.7,0.9].

good_forehand(john): - : [0.6,0.7].

we can derive support for john being good_at_tennls of [0.42,0.94]. If we now add

the rule

good_at_tennis(X):

not good_forehand(X) : [0.2,0.4).

to make a probabilistic pair, we can now deduce how good john is at tennis, with

more accuracy, as [0.48,0.76]. With only the second rule of the pair, - we would

deduce support of [0.06,0.821. Notice that the support pair derived from both rules

together is contained by each of the support pairs derived from the rules taken

alone. In each case, the extra information provided by the pair to the particular

rule serves to tighten the interval.

A special case is when the rules have supports, definitely true and definitely

false as in

18

B: [I, I].

A: - not B: [O, O].

SI(A) - SI(AIB). SI(B) + SI(Al-, B). Sl(-, B)

= I. SI(B) + O. Sl(-, B)

= SI(B)

Su(A) -I-(0- Su(AIB)). SI(B) + (I - Su(Al-, B)). (l - Su(B))

=I-((I - 1). SI(B) + (I - 0). (l - Su(B))

=I- (I - Su(B))

= Su(B)

The support for the head of the rule is identical to the support for the body and

therefore this particular probabilistic pair is a type of equivalence. it is nof a true

equivalence because the support evaluation can only be carried out in one direction,

but the supports are equivalent.

In general the supports for the head of a rule (e. g. A: - B : [S1(AjB), Su(AjB)].)

are evaluated as

SI(A) = SI(AIB). SI(B)+ SI(Al-, B). (I-Su(B))

Su(A)'- I-((I -Su(AIB)). SI(B) + (I -Su(Al-, B)). (l - Su(B)))

where SI(Aj-, B) and Su(Al-, B) may be zero and one respectively in the absence of the

extra rule.

In order to make use of the extra' information that two rules form a

probabilistic pair, rather than representing separate proof paths, it is necessary for

the system to search the knowledge base to find the pairs. This search has to be

carried out every time a rule' is used and therefore reduces the efficiency of the

system. This can be avoided by using a shorthand whereby the rule

19

A: - B: [SI(AIB), Su(AIB)], [SI(Al-, B), Su(AIB)I.

is used to represent the probabilistic pair of rules

A: - B: [SI(AIB), Su(AIB)].

A: - not B: [SI(Al-, B), Su(Ai-, B)].

Using this syntax a rule with only one support pair,

A: - B : [SI(AIB), Su(AIB)].

is in fact equivalent to the rule

A: - B: [SI(AIB), Su(AIB)], [0,11.

representing a probabilistic pair. In this way all Support Logic rules can be

considered to be probabilistic pairs, but in most of which the support on one of the

rules is [0,1].

2.4 Combining Supports for Identical Solutions

The calculus described in the above two sections provides a mechanism for'

evaluating supports through a proof path to provide a support for7a solution. ý'- The

second calculus of the Support Logic system is concerned with combining supports

for identical solutions, to provide one overall supporVpair representing the support

derived from the entire knowledge'base. ý Whereas- the Onsureness introduced at

different levels of a proof path, on the whole, increases through the proof path, the'

second calculus provides a mechanism whereby different sources'of uncertainty can'

be combined to produce a more accurate overall picture, ' than that provided by any

of the individual 'components. " , One such' mechanism' is' Dempster's, rule of

combination as used in the Dempster-Sfiafer theory of beliefs (Shafer, 1976). ''

2- 20

2.4.1 Belief Functions

The theory approaches the problem of uncertainty from the p oint of view of

set theory by assigning a belief to each of the valid propositions. The following

terms are defined:

0 is the set of'all possible outcomes (exactly one of which corresponds to the

truth) the frame of discernment,

2() is the set of all subsets of G, the power set,

Bel: 2@ -- [0, I] is a belief function over e if and only if

Bel(o) - 0, where 0 is the empty set,

Bel(B) -I

(2.11)

(2.12)

Vn and VAj, ... gAn subsets of 0

Bel(AjU ... uAd 2: EBel(Aj) - EBel(AjnA
i)+_... +(_ I)n+'Bel(A, n ... nAd (2.13)

i<j

The belief in a proposition A, represented as a set of possible outcomes and

being a subset of 0, is the total belief for the proposition derived from all the

propositions that imply A, i. e. all subsets of A. For example, suppose we select an

envelope from a box knowing it contains the number, one, two or three, our frame

of discernment 0 is the set (1,2,3). Using clues on the envelope, or previous

statistical information, we may have a more informed opinion of what is in the

envelope than just an assumption of equal probability; this information can be

represented by a belief function Bel, over the power set 2 E). A belief of 0.1 that

the number, will be, one, i. e. Bel((I)) - 0.1, must also contribute to the belief that

the correct number will be contained in any of, the subsets of 0 -of which the

number one is a member, i. e. (1,2), (1,3) and (1,2,3,), the last of which must, by

(2.12), have a belief of I because it is the frame of discernment, 0. It is this

21

condition, that the belief in a proposition must contribute to the belief in any

consequences of that proposition, that necessitates the third constraint (2.13) on the

definition of a belief function. Because of the interdependence of beliefs in the

elements of the power set 29, it is not particularly easy to define a belief function

directly from the available information. Another quantity, is the basic probability

assignment (bpa). This function is uniquely associated with a belief function and

therefore by defining a bpa, one can evaluate the corresponding belief function. A

basic probability assignmqnt, m, is defined as m: 2E)---[O, I] such that

MM =0

EM(A)
ACO

(2.15)

m(A) is the basic probability number (bPn) of the'set A and is understood to be the

measure of belief that is committed exactly to A and NOT the total belief in A.

The two conditions tell us respectively that our belief committed to the empty set

should be zero, and our total belief has measure one. Furthermore, the total belief

in A is the sum of all the beliefs committed exactly to subsets of A,

Bel(A)- E m(y)
.

YCA

and this uniquely defines the relationship betWeen belief functions and basic

probability assignments.

Going back to the example of the number in an, envelope, we, can now

define the bpa. We stated that Bel((I)) - 0.1 and, being a single element set, the

bpn must be the same, thus m((I)) - 0.1. Similarly for the sets (2) and (3), the

belief and the bpn will be the same, let us say m((2))=0.2 and m((3))=O. The whole

bpa is defined below, in table 2.1 along with the corresponding belief function.

2- 22

A M(A)

0.1

(2) 0.2

(3) 0

(1,2) 0

(1,3) 0.2

(2,3) 0.3

(1,2,3) 0.2

Bel(A)

0.1

0.2

0

0.3

0.3

0.5

Table 2.1: Example belief function and basic probability

assignment.

When we commit no belief to exactly (3), we are not stating that the number

will not be a three, we are merely stating that we have no evidence that points only

to the number being a three. From the table we see that we are in fact committing

a belief of 0.2 exactly to the number being either a one or a three (m((l, 3))=0.2).

The subsets for which the bpn is non-zero are called the focal elements of the belief

function. In this case they are (1), (2). (1,3). (2.3) and (1,2,3). The belief of 0.2

committed exactly to (1,2,3) reflects that the residue belief, after committing belief

exactly to other subsets of 8, must be committed exactly to the frame of

discernment itself, so that our total belief has measure one. Notice also that the

sum of the beliefs Bel(A), for all A belonging to 219, is greater than one. Another

important point about belief functions is that they, like Support Logic, are defined

in an open world so that Bel(A) + Bel(-, A) :51. For example Bel((3)) =0 but

Bel(-, (3)) . Bel((1,2)) - 0.3, not 1.

2- 23

2.4.2 Dempster's Rule of Combination

Suppose we have two basic probability., assignments, m, and. m with focal
21

elements A to, A and B to B respectively, then the bpn's-of each focal, element 1k11ý-

can be depicted as segments of a line segment of unit length as -in
figure 2.2.

0
ml(A) ... m, (A,)

... ml(A k)

0TT

m2 (131) m2 (B Pm2 (BI)

Figure 2.2 Two basic probability assignments depicted by segments

of the unit line.

The orthogonal combination of m, and m2 can then. be represented (figure 2.3) as

the unit square with total probability mass 1, in a, manner similar to. that of figure

2.1.

ý.
ýýI M2 (Bl)-

M2(B

1(A1). rn2(B)

M2 (BI)-
01,1

1ý
IIII

0TT
m, (Al) ... mj(Aj) ... ml(A k)

Figure 2.3 Orthogonal sum of two basic probability assignments.

The bpa, m, commits vertical strips of probability mass to its focal elements, and

m. commits horizontal strips to its elements. The intersection of two strips, say

2 24

those of probability mass ml(Ai), committed to A*, and (Bj), ýý committed to Bj-
I M2 I

forms a cell of probability mass m, '(A',). m2(B i), as picked out in the figure. This-

probability mass'is committed to both Ai and Bi and therefore we say that the joint

effect of the two bpa's is to commit probability mass of ml(A 1)'M2 (Bj) to AinBi.,

The probability mass and the subset to which it is committed can, thus be evaluated

for every cell in the 'grid. A particular subset of E), say A, ' may in fact have -

attributed to it the probability mass of more than one of those cells,, and so the total

probability mass exactly committed to it must be the sum of these:

m(A) E m, (A,)
-M2

(B (2.17)
A, nB, =A

Notice that multiplication is again used for evaluating the bpn on individual cells.

Although not explained by Shafer, this use of the product is justified by the same

entropy maximisation arguments as those in section 2.3.1. The assumption of

independence between propositions is the least prejudiced relationship that can be

assumed when there is no information to suggest what the actual dependence

relationship might be.

A complication of this orthogonal sum arises when the intersection of some

A, and Bj is empty, and therefore the associated probability mass ml(A,). m2(B i) is

committed to false, thus violating the constraint on bpa's (2.14), that m(O)=O.

Probability mass so committed must therefore be redistributed; it can not'simply be

discarded because'the' total probability mass would then be less than one, violating

constraint (2.15). There are a number of ways of'performing this redistribution of

what we shall call the conflict: -(i) We could commit it all'exactly to the frame of

discernment, E), itself. This would have the effect of attributing all the -conflict to'

uncertain and is the most pessimistic approach. - it could also however commit

support to an element of 0 that was not actually one of the focal elements of m,

and rn 2
(A, to Ak and B, to BI). (ii) We could commit all the conflict to the union

of all the focal elements Of m, and m2, i. e. Alu ... UAkUBjU ... UBI, This

25

resolves committing belief to elements of E) that are not focal elements of m, and

m2. (iii) We can redistribute the conflict among the, cells that do not generate

conflict. This could be done either by attributing the same amount to each cell or

such an amount as to maintain the relative proportions. This last method is known

as Dempster's rule and is the method used by Shafer in combining belief functions.

Its advantages are - that it maintains the relative importance of the various

propositions and also does not add undue amounts of uncertainty into the system.

The total conflict, x will be the sum of all probability masses committed to

the empty set, Le

x-E ml(A,)
*M2 (Bj) (2.18)

AinB i =o

and this is redistributed around the system by multiplying by the renormalising

factor K, given by

IAI - x) (2.19)

Dempster's rule states that, if m, and m2 are bpa's over the same frame E), then m,

defined by,

m(A) - K. E ml(Ai) 'M2 (B VA*ý, (2.20)
AinB i =A

with K defined by (2.19) and (2.18), is a bpa, also over the frame e, provided the

conflict is less than one: x<1. This last condition ensures that there is not total

conflict and therefore that the factor K is defined. When there is total conflict in

the system, the two bpa's are in complete contradiction of each other and the

orthogonal sum can not be defined; allowing such a sum to exist would be

equivalent to admitting the logic statement A&-, A.

2- 26

Dempster's, rule is used in Support Logic by considering the frame of

discernment to be a Support Logic proposition and its negation, and the bpa is given

by the support pair. Thus the support logic fact

, A: - : [SI(A), Su(A)].

yields a frame of discernment E) - (A, -, A) and bpa

M((A)) = Sl(A)

M((-, A)) =I -Su(A)

m((A, -, A)) = Su(A)-SI(A)

If A is established from two separate proof paths with support pairs [Sll, Sui) and

[S12, SU2], we can derive the two bpas (in equivalent logic syntax)

ml(A) = Sh -

ml(-, A) = I-Sul

ml(Av-, A) = Sul-Sh

m2 (A) S12

m2 (-, A) I- SU2

m 2(Av-, A) = SU2-S12

A -, A A or -, A
Sli I -Sul Sul-sh

S12 A

I -SU2 -nA

SU2-SI2 A or -, A

A&-., A

:: 7A &A -nA

A A or -, A

Figure 2A Support pair combination using Dempster's rule.

Dempster's rule can now be used to combine these to obtain an overall support for

A, that accounts for both proof paths.

2- 27

SI(A) = m(A)

Su(A) =I- Sl(-, A) =I- M(-, A)

The renormalising constant is K- 1/(I-ic) where X- Sll(I-SU2)+SI2(1-SUI), the sum

of the two shaded cells in figure 2.4.

SI(A) = K. E ,m 1(X)*M2(y)
Xr)Y=A

= K. (Sll. S12 + Sll. (SU2-SI2) + S12. (SUI-Sli))

= K. (Sli. Su2 + S12. (SUl-Sll))

Su(A) =I-

I-K. ((I-Sul). (I-SU2) + (I-SUI). (SU2-SI2) + (I-SUO(SM-Sll))

K. (I/K - (I-SUl). (I-SU2)-(I-SUI). SU2-(I-SU2). SU1+(I-SUI). SI2+(I-SU2). Sll)

K. ((l IC), - (I-SUl). (I-SU2)-(I-SUl). SU2-(I-SU2). SUI + PC) using (2.19)

K. (l (I + SULSU2 - SM - SU2) - SU2 + SULSU2 - SM + SUl. SU2)

K. Sul. SU2
.IýII

As in belief theory, if there is total conflict between the two conclusions

being combined (i. e. the support pairs are [1.1] and [0.0]) then the renormalising

constant, K, and thus the overall support, will be undefined. We can try to rectify

this situation by considering the limiting case and assuming supports of [0,61 and

[I-c, ll and letting 6 and c tend to zero. Ignoring second order terms,

Sll. (I-SU2) - S12. (I-SUI))

+e+

+ E)

si - K. (Sli. SU2 + S12. (SUI-Sll))

= L(o + (I +

- 6/(S + f)

28

Su - K. Sul. SU2

= 6.1/(6 + C)

= Sl

As always, when there is no unsureness in the support pairs to be combined, the

overall support pair has no unsureness, and Sl = Su = 6/(6 + e). Since the order of

combination is immaterial, we should allow 6 and e to tend to zero at the same rate,

i. e. set them to be equal, thus

St - Su = 6/26 - 1/2

and in the limit the overall support pair is [0.5,0.5). We can perhaps justify the

derivation of this support pair, and its interpretation that the conclusion is accepted

or rejected with a fifty-fifty chance, but it is in fact derived from a knowledge

base that contains an inherent inconsistency. In practical applications, such

inconsistencies in the knowledge demonstrate that the model under investigation has

not been properly defined, and are thus highly undesirable. We do not therefore

want to gloss over them by deriving valid supports from invalid data, by evaluating

the overall support as [0.5,0.5], the model would be able to produce supports for the

top level conclusion. and, the inconsistency would go undetected. It is better

therefore that, in an implementation of this calculus, the inconsistency shouldý be

indicated, and the support evaluation terminated.

An important point to notice, is the situation when one of the support pairs

is completely uncertain, say [Sli, Sull - [0,1]:

K- 1/(l - Sll. (I-SU2) - S12. (I-SUI))

- 1/(l - 0. (I-SU2) - S12. (I-I))

i. e. r. - 0, no conflict

2- 29

si m K. (Sli. Su2 + S12. (Sul-Sli»

- I. (0. SU2 + s12. (1 -0»

= S12

Su - K. SUI. SU2

= I. I. SU2

= SU2

The overall support pair evaluates as the second support pair and thus the support

pair of [0, I] contributes nothing to the overall support.

2.4.3 Independent Viewpoints

The evaluation of belief or support using Dempster's rule is performed by

taking the product of the component beliefs or supports, and this is based 'on'an

assumption of no knowledge about the actual relationship between pieces of

evidence. It is used on the grounds of maximum entropy, but also corresponds to

an assumption of independence. This relationship is coincidental, however the

design of any model under this theory must account for the fact that the rule is

used under the assumption of aý lack of alternative information. If further

information is available that suggests some other relationship between evidence, then

the design of the model must accommodate this. 'Shafer (1981) states that when

using Dempster's rule "one is making a judgement that the two bodies of evidence

are sufficiently unrelated that pooling them is like pooling stochastically

independent randomly coded messages". The important point is that it is the

evidence itself, and not the proposition, for which one has to consider whether an

assumption of independence is valid. When creating, a knowledge' base involving

uncertainty under an open world assumption, it is the uncertainty values, whether

belief functions or support pairs, that carry most of the information. Any

proposition can be derived within the knowledge base, and the truth of it will be

30

reflected in the uncertainty value attributed to it. In most cases this will correspond

to completely uncertain -a vacuous belief function or a support pair of (0,11 -

because the knowledge base contains no rules for or against the conclusion. Thus

we can see that to judge independence we must look at the proof path that led to

the evaluation of the particular uncertainty values.

. In Support Logic we consider proof paths, for which this assumption is

valid, to represent independent viewpoints. For example, there may be a number of

ways of establishing the value of a particular design for a vehicle, it could'be based

on fuel efficiency, ease of production, looks, safety and many other factors. All of

these are independent and should be correspondingly combined to provide overall

support-for the value of the design. Furthermore, independence of evidence does

not mean that proof paths can not share intermediate goals, the looks of the vehicle

may be improved by the use of a particular material, and this same material may

have important effects reducing the cost, but at the same time the material could be

highly inflammable and therefore dramatically impair the safety of the vehicle. One

component of the design impinging on three different design considerations does not

prevent those considerations from being independent because each one is concerned

with a different aspect of that component. In designing a support logic knowledge

base, such independence must be carefully considered in order to maintain the

validity of the information being modelled. There are many occasions, however,

when the knowledge should be modelled using an assumption other than

independence, for instance mutual exclusion or strict implication. The first of these

is not an-assumption under which one is often likely to work, and thus has not been

implemented. The second, however provides a useful extra facility and is

implemented using an alternative evaluation procedure in a construction called a

bundle.

31

2.4.4 Bundles

Bundles do not provide a different calculus for combining supports for

identical solutions, but use an alternative evaluation method within the same

calculus. This evaluation corresponds to an assumption of complete dependence.

The original use of bundles, which gave rise to the name, was in circumstances

where a subgoal of a rule was undefined in the knowledge base. This subgoal

would thus be attributed support of [0, I] which would cause the support for the

head of the rule to be evaluated as [0, l) as well. It is quite possible though that we

could derive some support for the head considering only the remaining subgoals,

and in this way the. lack. of a single piece of information would not have such a

dominating effect.

Consider a rule that attempts to establish that a car battery is flat;

flat-battery: -

car_will_not_start,

lights-do-not_work,

battery-ýonnected : [0.95,1].

The rule states that if the battery is connected but the car will not start and the

lights do not work, then the battery is almost certainly' flat. We can also deduce

support for the battery being flat if we have not checked if it was connected or if

we have not tried the lights, or both. Thus we can define the rules:

flat-battery: -

car_will_not_start,

lights-do-not-. ýWork : [0.7,1].

flat-battery: -

car_will_not_start : [0.3,1].

32

We have three valid rules for determining support for a battery being flat,

each corresponding to a different proof path, but they are not independent; the first

is a special case of the second, which is a special case of the third. Proving the goal

using the first rule means that it will necessarily be possible to prove it from the

second and third rules, and, similarly, the third rule necessarily proves the goal if

the second does. To ensure that the correct evaluation procedure is used, these rules

are taken together as a bundle:

flat_battery: -

car_will_not_start,

lights-do-not-work,

battery__qonnected : [0.95,11.

car_will_not_s tart,

lights-do-not-work : [0.7,1]

car_will_not_start : [0.3,11.

A gain the syntax used is that of Slop, the Support Logic Programming system

described in chapter 3. The body of each rule in the bundle is separated by a left

arrow, <-, and the head of the bundle is taken as the head for every rule body.

We can again consider the evaluation with reference to a unit square, of

probability mass, figure 2.5, similar to figure 2.4 in section 2.4-2.

33

Aý -, A A or -, A
Sli I-Sul Sul-sh

S12

I -SU2

SU2-SI2 A or '-, A

A&-, A

-, A. &A -, A

A or -, A

Figure 2.5: Support pair combination in bundles.

Using Dempster's rule under the assumption of independence we used the product

to evaluate the support in each cell in the grid, however, since the, support so

evaluated is characterising the conjunction of two propositions we can -use any t-

norm as defined in section 2.3. '1. In' the case of, bundles; we, are working on -an

assumption of strict implication between the pieces of evidence generating, the

ition A, and thus the support attributed to the cell corresponding to the proposl

conjunction of A, from one proof path, with A from'another (cell . 1) needs to be

maximised. The appropriate t-norm is therefore the minimum function. - as shown

in section 2.3.1, and the support is SIIAS12. The same strict implication condition

exists for the cell 5, ""A, and the support for this cell is (I-SUI)A(I-SU2). When-

assuming independence, the same t'norm (product) could'be - used for all cells,

because it follows that if A and A are independently derived, then so are A and -, A.

However with a bundle, when we say A and A are derived with strict implication

between evidence, then the evidence for A&-, A must be minimised and this is

reflected in the t-norm T(a, b) - Ov(a+b-1), also shown in section 2.3.1. The

supports attributed to the remaining cells can then be evaluated using the knowledge

that each strip must contain the support attributed to the proposition associated with

that strip as defined by the general constraint equations (2-3) to (2.8).

34

Before considering how to evaluate the total support for the proposition A,

let us first look at how we should deal with any conflict that may arise. The

support in cells 2 and 4 is already minimised and both may have zero support,

however this is guaranteed for only one of the cells. If there was positive conflict,

wýat would this mean? Our rules, between which we have stated there is a very

strong dependence of information, have generated conflicting conclusions. If one of

these rules is based on information (i. e. a set of subgoals) that forms a subset of that

used, by another rule, then it should not be possible to generate conflict. The rules

based on less information are included in the knowledge base in order to supplement

the more informed rules in the absence of complete information, and not to

contradict them. When evaluating overall support from bundles, the occurrence of

conflict is therefore not permitted. As with Dempster's rule, where the occurrence

of total conflict indicated an inconsistency in the knowledge base, so, in bundles,

the occurrence of any conflict at all indicates that the rules have not been defined

with the implicit relationships in mind. The support attributed to the cells which

stand for an impossible conclusion must be zero. This now makes it easier to

evaluate the overall support for a bundle, since the support can be taken to be all

the support in the horizontal and vertical strips attributed to the proposition A, i. e.

cells 1,2,3,4 and 7. Since these strips contain all the cells that provide any

support for A, they must represent the support for the disjunction of the two pieces

of evidence and thus the support can be evaluated using the t-conorm, S:

S(a, b) -I- T(I-a, l-b)

=I- (1-a)A(I-b)

avb

giving the general formulae

2- 35

SI(A) SIIVS12, and

Su(A) -I- Sl(-, A)

-I- (I-SUI)V(I-SU2)

= SUlASU2

and there can be no conflict.

It is interesting to observe that this support combination corresponds to

intersecting the contributory support pairs. If there was positive conflict, say

conflict -0v S12+(l -Sul)- I>o,

then S12 > SM, or, by symmetry, Sli > SU2. We see that the lower support of one

support pair will -be greater than the upper support of the other and therefore the

intersection will not exist. The idea of combining supports by intersection ties in

nicely with the interpretation of support pairs as probability intervals. A proof path

for a proposition defines a way in' which the probability of that proposition can be

narrowed down from the interval [0, I]. Different proof paths will provide different

intervals, but each is known to contain the, true probability of the proposition in

question, therefore this probability must be contained in the intersection of all the

intervals. If any two support pairs do not overlap then the probability will be

undefined suggesting that the knowledge base has not been properly constructed.

This allows us to generalise the use of the bundle construction to include all rule

forms and not just those for which there are common subgoals.

2.5 Semantic Unification

The standard form of 11 unification in Prolog 'and' other similar systems is

syntactic. For two terms to unify, they must have the same structure - i. e. be the

same predicate with the same number of attributes - and all the terms within that

structure must also unify. One special case of unification is that a variable can

2- 36

unify with anything. The idea of semantic unification is that terms that pertain to

the same concept, but that do not match exactly, should be allowed to unify to some

degree according to how close they are in meaning. For instance if we know a car

goes "very fast"- then we also know that it goes "fast". On the other hand, if we

know only that it goes "fast", we can not conclude definitely that it goes "very fast",

but we can perhaps support the unification to some degree. We present here a way

of carrying out such semantic unification within the Support Logic system, however

its dependence on the use of Fuzzy Set Theory means that it can only be applied to

quantifiable concepts such as "speed", "height", "brightness" etc. - Concepts like

"beauty". "ferocity", "trustworthiness" etc. are not so easily, if at all, quantifiable and

thus can not be used in the following theory.

Let us assume the following knowledge base:

sports-car(X): -

goes(X, fast) : [Sll, Sui].

goes(astra, quite_fast) : [SI2, SU2].

Querying the knowledge base, as it stands, with

?- sports-car(X).

would return

sports-car(X) : [0,1]

because the clause goes(X, fast) is not in the knowledge base and so is completely

uncertain. However fast and quite_fast are semantically unifiable, and we could

represent this piece of information with a clause of the form

fast: - quite-fast : [SIS, SU3].

2 --37

where S13 and Su3 represent the closeness in meaning of fast and quite_fast. Fuzzy

set theory provides the means for evaluating S13 and Su3 - the degrees of support

for the semantic unification. Remembering that the supports for a rule, say p: - q,

are written SI(p1q) and Su(p1q), we can say that

S13 = SI(fastlquite_fast)

- I-Su(not fastlquite_fast) and

SU3 = Su(fastlquite, fast).

Fuzzy set theory states that the possibility ý of one fuzzy concept, say A.

given another, say B, is defined as follows:

Poss(AIB) w V(XA(71) A XB(17)) Poss(BIA) (2.21)
17

- max value of combined min set, and

Poss(NOT AJB) V(XNOT
A(17) A XB(ý)) Nec(AIB), (2.22)

?I

where XA(q) and Xa(rj) are, the fuzzy sets defining concepts A and B respectively,

XNOT AW m1- XA(q), and V is the maximum function over all values of the

index (in this case q). Thus to find the supports representing "fast given

quite_fast", we need to evaluate

Poss(fastlquite_fast) V(XFAST(17) A XQUITE_FAST(17)) and
77

Nec(fastlquite_fast) I Poss(not fastiquite_fast)

V(x ,
NOT-F-AST(17) A XQUITE FAST(17))*

77

The relevant fuzzy sets and the evaluation of S13 and Sm are shown in figure 2.6.
1

38

not fast quite_fast fas t

........... I -S13
......... SU3

0
0123456789

speed (arbitrary units)

Figure 2.6: Evaluation of supports representing "fast given

quite_fast" using fuzzy set theory.

We can go a stage further than this by using the probabilistic rule pair

fast: -

not quite_fast : [S14, SU4].

10

where

S14 SI(fastInot quite_fast)

I-Su(not fastInot quite fast) and

SU4 Su(fastInot quite_fast).

the evaluation of which is shown in figure 2.7.,

not fast fast
SU4

1 -S14

not quite-fast

0
0 23456789

speed (arbitrary units)

Figure 2.7: Evaluation of supports representing "fast given not

quite_fast" using fuzzy set theory.

10

2- 39

Using these two support pairs ([SI3, Su3] and [S14, SU4]) we can proceed with, the

support evaluation for sports_car as though we had asserted in the knowledge base

the pair of rules

goes(X, fast): -,

goes(X, quite_fast) : [S13, SU3].

goes(X, fast): -

not goes(X, quite_fast) : [S14, SU4].

or, using the shorthand, the single rule

goes(X. fast): -

goes(X, quite_fast) : [S13, SU3], [SI4, SU4].

A drawback of such a system is that it introduces quite large amounts of

unsureness because we are unifying two fuzzily defined concepts. This is most

noticeable in the case in which we carry out semantic unification between two terms

that are the same e. g. fast and fast. Using normal syntactic unification these would

unify exactly and completely, and it may be thought that they should do so in

semantic unification as well. In fact the supports we would obtain are [0.5,1] for

fast: - fast and [0,0.5] for fast: - not fast and not [1,1] and [0,0]. The non-fuzzily

defined fast is equivalent to "fast is absolutely true", for which the fuzzy set is

shown in figure 2.8a, whereas the fuzzy "fast" is equivalent to "fast is fuzzy true",

with fuzzy set shown in figure 2.8b. Unification of "fast is absolutely true" with

itself would be supported to degree [1.1] but, in semantic unification, we can only

represent fast by "fast is fuzzy true" thus introducing the unsureness.

40

00

(a) fast is absolutely true (b) fast is fuzzy true

Figure 2.8: Comparison 'of fuzzy sets for fuzzy and non-fuzzy

definitions of fast.

2- 41

Chapter 3. Support Logic Programming in Prolog - Slop

3.1 Introduction

One of the most important aspects of Support Logic Programming is that it

should represent a reasoning process based on logical deduction. Support Logic

itself is derived as a theory for combining supports across logical connectives to

provide overall support for a theorem. A system implementing the theory should

therefore be based on a logical proof mechanism , and 'an obvious language to choose

for this is Prolog. The advantages of using Prolog are that it has a syntax that is

easily adaptable to incorporate support pairs, and it has a built in proof mechanism.

The main disadvantage is that, it uses a depth search mechanism, whereas a'Support

Logic system must find all proof paths to a query. which is best carried out by a

breadth search. The'reason for Prolog behaving in this way is tha It the requirement

is only to prove a query, and a single proof path is all that is needed to achieve this.

There is no point in finding' several proof paths and thus-Prolog directs its search to

find just one, as efficiently as possible. This predictable depth search mechanism

gives the programmer the control necessary for writing systems programs, and is

exploited in this implementation of Support Logic. At the same time however, it

has to be adapted to produce all proof paths as in a breadth search, and this does

raise problems.

The description of this implementation is divided into three sections: the

first describes the basic form of an interpreter for-extending the logical behaviour

of Prolog to a system for Support Logic, in which the usual logical operators of

conjunction, 'disjunction and negation, 'and' the if conditional, are interpreted with

support evaluation. The second section describes those parts of the interpreter that

are required for dealing with constructions that are peculiar to Support Logic -

3-1

bundles, semantic unification etc. The final section briefly describes the user-

interface for the system.

3.2 Basic Form of Interpreter

3.2.1 Representation

Support Logic is a generalisation of logic programming to include the use of

uncertainty, and thus the syntax used in this implementation has been designed as a

superset of that of Prolog. By doing this Slop can be used to query standard Prolog

knowledge bases as well as Support Logic knowledge bases. A Prolog knowledge

base is equivalent to a Support Logic knowledge base in which every rule and fact

has support of [1, I]. When the knowledge base is queried, a theorem that would be

proved in Prolog would be returned with a support of [1, I] in Slop, and one which

failed in Prolog would be returned with support [0, I] - completely uncertain - by

Slop. The open-world assumption of Slop means it only proves a theorem false if it

returns support of (0,01, but in Prolog a theorem is assumed false if it is unprovable

within the existing knowledge base -ý uncertain in Slop. The syntax of Slop is shown

below in BNF notation and those parts that extend the Prolog syntax to that of Slop

are emboldened.

<statement> :: - <atom> .I
<atom> :- <supported- atomilst>,

<atom> <-> <atomllst> .I

<atom> :- <- <bundle> .

<supported- atomilst> : <support-pair> I

<atomllst> : <Support-pair>

<atoinlist> : <support-pair> o <support-pair>

<atomlist>,

3-2

<support-pair>

<atomlist>

<bundle>

<atom>

<explist>

<exp>

<query>

:: = ['<number> , <nu: nber>' I

:: = <atom> I

<atom> , <atomlist> I

(<atomlist> sup_or <atomlist>

<supported- atornlist> <- <supported- atomlist>

<supported-atomllst> <- <bundle>

<pred>

<pred> <explislt>

<exp>

<exp> <explist>

<const>

<var>

<fn>

:: = <supported-atomilst> .

The clauses of a Slop knowledge base that are to be supported as definitely

true, can be written as Prolog clauses with no supports, so that <atom>. is

equivalent to <atom> :- : 11,11. and <atom> :- <atom-list>. is equivalent to

<atom> :- <atom-list> : 11,11.

The remaining clauses of a Slop knowledge base, that need the supports to be

explicitly declared, consist, in Prolog terms, of a clause with a single goal as body.

The functor of this goal is : (colon) and is either unary, for facts, or binary, for

rules. In both cases the colon is declared as an operator of precedence 1150 (for C-

Prolog) so that it is the principal functor of all the clauses in which it occurs. The

only operators with higher precedence are the prefix operators :- and ? -, for giving

Prolog directives, and the infix operators : -, for defining clauses, and for

defining grammar rules (see Clocksin and Mellish, 1981). By using operators in

such a way, the system maintains a readable syntax, while also providing a

3-3

straightforward mechanism for -accessing the supports and, where necessary, the

body of the Slop rules. -'

3.2.2 Interpreting a Slop Knowledge Base

When a Prolog knowledge base is queried, it is searched for a clause that will

unify, with the query. This involves finding a relation with the same predicate and

arity (number of attributes), and then, within that relation, a clause for which the

attribute values unify. If 'this clause has no body then the query is satisfied and no

, then the subgoals of more processing is necessary. If the clause does have a body,

that body must in turn, be: interpreted to 'complete the proof of the query. Using

the clause predicate of Prolog (see Clocksin and Mellish, 1981 for details of -use), a

simple Prolog interpreter can be written as follows: -III-

interp((X, Y)): -

interp(X),

interp(Y).

interp(true): -

interp(X): -

clause(X, Y),

interp(Y).

, -This interpreter is, run by calling the Prolog goal lnterp(<query>) in which

-<query> can be a single goal or a conjunction of goals. If it is a conjunction, the

first clause will be used, causing variable X to be instantiated to the first conjunct,

and variable Y to be instantiated to the remaining conjuncts. For example

3-4

<query> = a(P), b(P, Q), c(Q, R)'

x= a(P)

Y- b(P, Q), c(Q, R)

A recursive call to Interp is now made, with the first conjunct as attribute value

(a(P) in the example) matching the third clause of the relation (assuming this was

not the tautologous conjunct true). This searches the knowledge base for a clause

with a matching head. The body of the clause it finds will then be passed to

another recursive call of'Interp. If the'clause was a fact, the attribute value to this

call of Interp will be true, and the"goal will be satisfied using the second clause of

interp. If the clause found is a rule, then the body of this, in being passed to

interp, will initiate the interpretation process again. The cuts, in clauses one and

two of the relation Interp, insure that conjunctions and the atom true are not

processed by clause three. Were this to happen, Prolog would search the knowledge

base for a clause with predicate /2 (comma) or true/0, both of which would

generate database errors. By placing the cuts before the body of the rule,

backtracking is still possible so that all solutions to a query can be found. This

relation, Interp, provides a very simple interpreter that can deal with any

conjunction of goals in a query, and will allow backtracking to search for all

solutions. It will not, however, cope with disjunctions, negations, or goals involving

Prolog system predicates. All of these have extra significance, and thus pose extra

problems to the Slop interpreter, and will be dealt with later. To adapt this

interpreter for querying Slop knowledge bases, we need to introduce a new attribute

for the support associated with a satisfied query. , Let us define'the predicate for

interpreting Slop knowledge bases to be

slop-interp(<query>, <support>).

3-5

To evaluate the support, we must pick out the support pair associated with a clause

and perform the necessary calculations between it and the support for the body of

the clause. We can start with an interpreter defined as follows:

slop-interp((X, Y: S_cond), S): -

slop_interp(X, Sx),

slop-interp(Y, Sy),

andcombine(Sx, Sy, S-body),

condcombine(S-cond, S_body, S).

slop_interp((X, Y), S): -

slop_interp((X, Y: [1,1]), S).

slop-interp((: S), S): -

slop_interp(true, [1,1

slop-interp(X, S): -

clause(X, Y),

slop_interp(Y, S).

in which the two goals_ andcombine and condcombine evaluate the support for a

conjunction and the support for the head of a rule, respectively.

There are several things wrong with this initial form of the interpreter, the

most important of which is that it does not combine supports that are derived from

different proof paths,
-
for a single goal. Different proof paths for a goal can be

found using different clauses for that goal, so, to evaluate the support, we must find

all the clauses satisfying that goal, evaluate the supports from them and then

combine the supports to provide an overall support for the goal as a form of

3-6

breadth search. This we can do by using the Prolog system predicate bagof in the

final clause of slop_Interp:

slop_interp(X. S): -

bagof(S l, support(X, S 1), S-list),

samecombine(S_Iist, S).

support(X, S): -

clause(X, Y),

slop-interp(Y, S).

This generates a list of all the supports for goal X, evaluated from all the possible

proof paths, and this list is then recursively processed by the relation sarnecombine

which carries out the orthogonal combination of Dempster's rule. The other main

shortcoming of slop_jnterp is that it does not allow the user to query the Slop

knowledge base without a conditional support. If the user does not supply a

conditional support then the system assumes one of [1, I], but it is likely that the

user may want to know the support for a particular conjunction without a

conditional support. To do this we have a clause for evaluating the support for a

conjunction that can be called either from the top level by a query, or by the clause

evaluating support from a Slop rule. The query itself is tested for having a

conditional support and processed accordingly, but this has to be done by a

different relation. The interpreter becomes:

query__ýupport((X: S-cond), S): -

I

body_ýupport((X: S_cond), S).

query__ýupport(X, S): -

slop-interp(X, S).

3-7

slop-interp((X, Y), S): -

slop_interp(X, Sx),

slop-interp(Y, Sy),

andcombine(Sx, Sy, S).

slop_interp(X, S): -

bagof(St, support(X, Sl), S_Iist),

samecombine(S_Iist, S).

support(X, S): -

clause(X, Y),

body_. ýupport(Y, S).

body__ýupport((X: S-cond), S): -

slop_interp(X, Sx),

condcombine(S_cond, Sx, S).

body_ppport((: S), S): -

bodý_SUPPort(true, [1,

body__wpport(X, S): -

slop_inierp(X, Sx),

condcombine([1.1], Sx, S).

This, then, is the basic form of the interpreter for querying Slop knowledge

bases, but it has to be adapted further to cope with more complicated queries.

These are discussed below and the full listing of the interpreter is given in

Appendix 1. Full details on the use of Slop are given in Monk and Baldwin (1987).

3-8

3.2.3 Sup'port Logic Disjunction

A Prolog disjunction is proved true if either of the disjuncts are proved

true, consequently if the first, is proved true, the second need not be queried. In

Support Logic, allowing the truth of the disjunction to be qualified by a support

pair means that both disjuncts can contribute support to the disjunction, and thus

both must be evaluated, always. This distinction requires Slop to have its own

disjunction operator, sup_or (or is not used because in some versions of Prolog it is

nat asý'the 'Prolog a reserved word). This operator' is declared in the same forr

disjunction operator, so that it , 'is used in exactly the same way -

op(1l00, xfy, sup_or). In the simplest case, a Slop disjunction can be interpreted

using

I

slop-interp((X_ sup__pr, Y), S): - "I I

slop_jnterp(X, Sx),

slop-interp(Y, Sy),

orcombine(Sx, Sy, S).

where orcombine performs the calculations for, Support, Logic disjunction.,, The

complications arise when the disjuncts have variables in them, because variable

instantiations occurring in satisfying the first disjunct will be carried over to the

second. For instance, the knowledge base

predl(a): - : [0.3,0.4]

predl(b): - : [0.5,0.7]

pred2(a): - : [0.6,0.8]

pred2(c): - : [0.8,0.9]

could be queried by

3 -9

predl(X) sup__pr pred2(X).

This should produce the three solutions:

predl(a) sup__pr pred2(a) : [0.72,0.88]

predl(b) sup_or pred2(b) : [0.5,11

predl(c) sup_or pred2(c) : [0.8,1]

however, with the interpreter as defined above, the first disjunct (predl(X)) will

only be satisfied for X=a and X=b after which the first call to slop_interp will fail

and the solution X=c will not be found. If, on the other hand, the disjunction is in

the opposite order the instantiations of X would be a and c. This order dependence

may arise whenever there are common' variables in the disjuncts, however when

there are no common variables the above definition will work. To correct this, the

relation requires an extra clause that checks for the existence of common variables

and then evaluates the query correctly. Checking for the existence of common

variables is straightforward enough, but the support evaluation requires rather

unorthodox Prolog code in order to keep tabs on variable instantiations that have

already occurred.

The checking is carried out by a dedicated relation dIsj_sup, so the part of

the interpreter for dealing with disjunctions becomes somethinglike:

10

slop_jnterp((X sup__pr Y), S): -

common_vars(X, Y, Tx, Ty),

disj_ýup((X sup__pr Y), Tx, Ty, S).

slop-interp((X sup__gr Y), S): -

slop-interp(X, Sx),

slop-interp(Y, Sy),

orcombine(Sx. Sy, S).

The goal common_yars fails if there are no variables common to both X and Y,

otherwise it succeeds, generating variable lists for each disjunct - Tx and Ty.

Given that there are common variables in the disjuncts, the system queries

the disjuncts independently to obtain a list of the solutions and the associated

supports, for each disjunct. These lists are then processed to generate all the

possible permutations of Solutions under the restrictions defined by the common

variables. This processing is helped by using the ordering properties of the system

predicate setof in querying the two disjuncts. When finding the common variables,

the lists of the variables encountered in each disjunct, called templates, have the

variables that are common to both disjuncts, at the beginning of the list. Thus if

there are N common variables in the disjuncts then the first N elements - no more

and no less - of one template will match identically the first N elements of the

other template, and in the same order. For example the query

p(A, B, C, D, E,) sup__pr q(X, D, Y, A).

will produce the -two templates IA, D, B, C, El and IA, D, X, Y], A and D being the

common variables. These templates, plus a variable for the support pair, then

become the terms for which all instances are to be generated, in finding solutions to

3- 11

each respective disjunct, using setof. For the above example this would produce the

two calls

setof([A, D, B, C, E]-Sl, slop_jnterp(p(A, B, C, D, E), Sl), Setl) and

setof([A, D, X, Y]-S2, slop-interp(q(S, D, Y, A), S2), Set2)

generating the two sets, Setl and Set2, in which there would be no variables

common to both Se I ts. These are then processed to produce all the possible

disjunctive combinations by backtracking. This first stage can all be carried out at

the top level, so the interpreter becomes

slop-interp((X sup__gr Y), S): -

common_vars(X, Y, Tx, Ty),

setof(Tx-Sx, slop_jnterp(X, Sx), SetX),

setof(Ty-Sy, slop-interp(Y, Sy), SetY),

disj__ýup(Tx, Ty, SetX, SetY, S).

slop_jnterp((X sup_qr Y), S): -

slop_jnterp(X, Sx),

slop-interp(Y, Sy),

orcombine(Sx, Sy, S).

The second stage is carried out by unifying the templates with the elements

of their respective solution sets, thus identifying which disjuncts can occur together

according to'-the instantiations of the common variables. The fact, 'however, that the

sets have been produced using setof means that the solutions are ordered according

to the common variables and this causes possible disjunctions to occur together. For

example suppose we have generated the two sets,

12

[solution I -Sl, solution2-S2], and

[solutionA-Sa, solutionB-Sb, solutionC-So]

where S1, S2, Sa, Sb and Sc are the supports associated with the solutions. If

solutionl and solutionA can be taken together as disjuncts, then it is possible that

solutionl and solutionB, and solution2 and solutionA could form a disjunction. If

however solutlonl and solutionil can not form a disjunction, then, due to the

ordering of solutions, we now also know that solutionl and solutionC can not form

a disjunction, so that this check need not be carried out. The only occasion when

this does not hold true arises when the solution to a disjunct incorporates free

variables, however, as explained in section 3.3.1, this is a highly undesirable

occurrence in a Support Logic system and should be avoided anyway.

Consequently this implementation assumes that such situations will not be

encountered. The system, operates by checking the head of Setl against each

element of Set2 until a possible disjunction pair is found. The same checking is

then continued until there is a clash between common variables, at which point all

Possible disjunctions involving the head of Setl will have been found, and the

Process is repeated on-the next elements of Setl until there are no more. If any

element of Setl fails to form a disjunction with elements of Set2 then the

disjunction is proved with the most general instance of the second disjunct

supported [0, I]. Similarly, when Setl is exhausted, any elements of Set2 that have

not yet formed a disjunction, are used to prove the disjunction with the most

general instance of the first disjunct supported to degree [0, I]. To insure these

solutions are found, the system has to keep track of which elements have and which

have not formed disjunctions.

The unorthodox aspect of the code is due to having the system backtrack to

Produce further solutions to the disjunction. Should the first elements of each set

produce a valid disjunction, then a solution is generated. This is handled by a

13

single, clause which is satisfied by carrying out the relevant unification and support

evaluation. Backtracking for more, solutions will result in this clause failing, losing

any variable instantiations and the next clause in the relation being tried. The

problem is that this backtracking looks no different from that caused by the first

clause never succeeding at all, but each situation has to be dealt with differently.

The distinction between the two situations is whether or not variable instantiations

clash and this can only be tested by unification, which , results in unwanted

instantiations. Since the test has to be carried out and the only way instantiations

can be lost is by failing the goal, a double negative has to be used -a clumsy

construction, but, in fact, highly effective for, carrying out this comparison. The

beginning of the relation therefore looks something like

disj___ýup(Tx, Ty, [Tx-SxlRx], [Ty-SylRy], S): -

orcombine(Sx, Sy, S).

disj-sup(Tx, Ty, [Hx-SxlRx], [Hy-SylRy], S): -

not not (Tx=Hx, Ty-Hy),

"�

disj__ýup(Tx, Ty, [Hx-SxlRxl, Ry, S).

Further clauses deal with the situations where a disjunction is not found, causing

more checking of the templates against elements in the sets and the final version of

the relation also has extra attributes introduced to keep track of disjuncts used and

not used.

3.2.4 Negation

The other logical construct common to both Prolog and Slop is negation, but

again a clear distinction has to be made between the use of each. Prolog uses a

convenient, if non-logical, way of representing negation, negation as failure. This

corresponds to the closed world assumption as expressed by Reiter (1978). In

14

Support Logic we use an open world assumption and, by the use of support pairs,

can express negative information explicitly in the database; the definite Horn clause

syntax of Prolog is relaxed. Furthermore, the inability to prove a theorem causes

the system to conclude that it is completely uncertain of that theorem - support

[0, I]. In Support Logic, proving the negation of a theorem still requires proving the

theorem, however the supports for the negation are the complement of those for the

theorem itself. For example, if p is supported [SI, Su], then not p will be supported

[I-Su, I-Sl], but any variable instantiations resulting from proving the theorem will

be maintained. In Prolog, a query consisting of a negated theorem, with free

variables can cause, problems and this is one of the main objections of negation as

failure (Shepherdson, 1984). The Prolog query not p(X) can never instantiate X: if

p(X) fails, thus proving not p(X), X. can clearly not be instantiated; if P(X)

succeeds, instantiating X, not p(X) will fail and the instantiations will be lost. A

Support Logic query of the form not p(X) will always succeed, thus maintaining any

instantiation of X, but the truth of the theorem will be reflected by the support

pair.

The implementation of negation in Slop must distinguish between the Prolog

and Support Logic negation. In the earliest implementation this was done, by having

not used for Prolog negation, and, sup_not, for Support Logic negation. Later,

however, the use of Prolog system predicates was ý changed so that they had to be

used as, argument to call (see 3.2.5). This allowed not to be used for Support Logic

negation avoiding the rather, cumbersome, s. u p_not, however for, consistency with the

earlier version, the
'use

of sup_not, was still allowed. The clauses for interpreting

negated theorems are

15

slop_interp(not X, [SI, Sul): -

slop-interp(X. [SI I. Su I

St is I- Su I.

Su is I- Sl I.

slop_interp(sup_not X. ISI, Sul): -

slop_interp(X. [SI I. Su 11).

Sl is I- Su 1.

Su is I- Sl 1.

3.2.5 Prolog System Predicates

The interpreter, as defined so far, reduces queries to single goals and then

tries to satisfy these goals by looking for a clause defining each one. Prolog system

predicates, however, can not be satisfied in this way, but instead have to be called

using the predicate call. Detecting them and initiating the call is fairly

straightforward to implement, but a support pair has to be associated with the

success or failure of the goal. Success means that the goal has been proved

definitely true and therefore is attributed support 11,11, as in Support Logic rules

and facts with support (1,11. Failing to prove a Support Logic goal means that it

has not been proved true, as opposed to it having been proved false, and to' reflect

the open-world assumption it would be attributed support of [0,11 - completely

uncertain. Prolog system predicates, on the other hand, are designed to answer

queries of the knowledge base itself, rather than the information it contains. This

distinction means that if a Prolog system predicate fails, it has been proved false for

the particular knowledge base and should have support [0,01.,

Most Prolog system predicates are deterministic and are therefore either tests

or exist only to perform a side-effect function (e. g. writing to the terminal, opening

a file for output, storing clauses in the knowledge base etc.). Those system

16

predicates provided for their side-effects should almost always succeed unless they

have been misused, in which case the associated support evaluation will be invalid.

Slop rules defined using a Prolog side-effect predicate should be written so that

support evaluation following the Prolog system predicate will assume that the system

predicate succeeded. Proving the system predicate false will mean that the

particular side-effect will not have been carried out and therefore that certain

presupposed conditions may not hold. Under these circumstances, it would be more

desirable if the goal actually failed, and initiated backtracking as in Prolog, than if

it returned support [0,01. Side-effect system predicates are provided for control and

therefore should be used as such rather than to provide support.

The same can not be said of a Prolog test for which a support of [0,01 has a

much better interpretation, however proving a test false will be of greater

importance than just providing support [0,01. Support evaluated subsequent to a

Prolog test and within the body of a clause will have no significance unless that test

succeeds. If any conjunct has support [0,01 then the conjunction will have support

[0,0]; if the body of a rule has necessary support of zero (regardless of possible

support) then the head of the rule will be completely uncertain; and a disjunct with

support [0,01- will contribute nothing to the overall Support of the disjunction.

Would it - therefore be better if Prolog tests failed. rather than succeeded with

support [0,0]?

Proving a Prolog test false (support [0,01) in a conjunction proves the

conjunction false, and if this conjunction were the body of a rule, then the rule

head would be attributed completely uncertain support. Had the test failed and

caused backtracking instead. the result would have been the same. In the case of

disjunction there might be a case for proving a test false being valuable in

continued support evaluation, however the use of Prolog tests within a Support

Logic disjunction can easily be avoided. Consider the rule

17

a(X): -
(X> 10, b(X) sup_pr c(X»: [SI, Sul.

If the test XAO succeeds, then the support for the rule will be the same as

that if the test had never been called. If the test goal is false, the first disjunct will

have support [0,01 and the disjunction will have the same support as the second

disjunct. The rule can be replaced by

X> 10,
(b(X) sup_pr c(X)) : [SI. Su].

a(X): -

X- 40

C(X) : [SI. Su)

[Note that this is a special case in which body disjunction can be replaced by clausal

disjunction - see section 5.3.11. This transformation can be applied to any body

disjunctions, with tests in either first or second disjunct and will have the same

outcome whether the test fails or returns support [0,0]. With rules for which there

is a large conjunction preceding the disjunction, using this transformation may

result in superfluous processing due to the duplication of the conjunction. This can

be avoided by using the following form of transformation, where b(X, Y) represents

the large conjunction:

a(X): -
b(X, Y).

(Y>10, c(Y) sup. _gr
d(Y)). Sc.

becomes

3- 18

a(X): -
b(X. Y)

e(Y): Sc.

e(X): -

X>10,

(c(X) sup__pr d(X)) :[1,1], [0,01.

e(X): -
X-40,

d(X) :[1.1], [0,01.

This makes use of a special case of probabilistic pairs in which the support for the

head is the same as that for the body - see section 2.3.2.

A probabilistic pair is the other occasion in which a test may valuably

provide support of [0,0). A rule of this form might be

a(XY): -
b(X),

c(Y) : Sj. Sk.

where Sj is the conditional support for a(X, Y) given b(X), c(Y), and Sk is the

conditional support for &(X, Y) given not (b(X), c(Y)). If b(X) is the Prolog test

then, if it succeeds, the support for a(X, Y) will be that of c(Y) probabilistically

conditioned on SJ, Sk; if not, the support for &(X, Y) will be Sk, so proving the test

false-can still provide support for the head of the rule. The way of rewriting this

rule so that the supports evaluate to be the same, when the test fails, rather than

being supported [0,01, is by negating the test in a second clause:

19

a(X, Y): -

b(X),

c(Y) : Sj, Sk.

a(X, Y): -

- not b(X) : Sk.

This new form of the relation provides the same supports, however it does not

behave in quite the same way. If the variable Y is to be instantiated by calling

c(Y), then, if the test fails, Y will remain uninstantiated. The second clause does

not call c(Y), because it can not contribute support due to the falsehood of the test

b(X). The head of the rule, i(X, Y), will have support Sk, and Y uninstantiated,

but this is in fact a better representation of the information. For the particular

value of X that meant the test b(X) was false, the support for a(X, Y) will be Sk for

all values of Y, not just those for which Y might be instantiated by the goal c(Y).

I
The remaining type of Prolog system Predicates is the resatisfiable

predicates. On the whole these are predicates that query the state of the knowledge

base such as clause/2, recorded/3 and current_atom/l. Their use is limited to

testing the existence of information in the knowledge base - in which case they

should be treated in the same way as deterministic tests as described above - or to

extracting information from the knowledge base by instantiating variables. In this

latter situation it is unlikely that the user will want support evaluation to continue

when the goal is proved false, as the variable instantiations that should have

occurred must have been intended to be relevant. Resatisfiable system predicates

can therefore reasonably be failed to initiate backtracking rather than returning

support of [0,01. The resatisfiable system predicates lead to one further consideration

when they are called within a Slop - relation. Because support pairs for a given

solution are all combined to provide overall support for the solution. no solution can

be generated more than once. In order to remain consistent within the system, this

3 -20

must also be true of Prolog system predicates, and for all but the resatisfiable

system predicate's this constraint is met naturally. The resatisfiable system

predicates can however produce the same variable instantiations more than once and

so the system must cope with this. This is achieved by using the Prolog system

predicate setof to find all solutions to a Prolog system predicate in one go. without

any duplicates. In so doing however, the solutions occur in standard order rather

than the order in which they were found. To insure that this distinction is

appreciated, the only Prolog system predicate that is allowed within the system

(apart from the cut) is call. All other Prolog system predicates have to be called as

argument to call. This also allows the user to call user-defined Prolog rules, from

within a Slop program, without support pair evaluation taking place, thus improving

efficiency. Such rules are of course subject to the 'same constraints on

resatisfiability as Prolog system predicates.

It is shown above that the two different ways of dealing with calls to Prolog

system predicates that cannot be proved in the knowledge base, can both be

implemented without loss of information. In some cases, 'returning support of (0,0]

can lead to less cumbersome rules, but in other cases it can lead to a less good

interpretation of the information. The crucial factor in deciding how to treat such

goals comes down in the end to what they are most likely to be used for, and this is

primarily for exercising control over support evaluation in association with the cut.

The system is therefore defined so that unprovable calls to Prolog system predicates

fail causing backtracking. rather than returning support [0,0].

3.2.6 The Cut - "! "

This is the one Prolog system predicate that requires special analysis and

treatment. It is provided in order to control backtracking in Prolog programs and is

therefore specifically designed for a depth-search mechanism. In Support Logic,

21

essentially a breadth-search system, problems arise as to how it should be used and

with what interpretation, and whether, indeed, it should be used at all.

Let us consider what the cut means in Prolog:

pred(X): - bl,!.

pred(X): - b2.

If bl is true then the cut is evaluated and clause 2 can, effectively, be discarded.

(i) The cut is dependent on the truth of the goals before it, and

(ii) It discounts all further solutions to the goal (in this case).

The first of these points is readily applicable to Slop, the second is less obvious.

The cut could be thought to apply to one of two things - either the solution to the

goal (variable instantiations created) or to the truth of the goal; i. e. the cut can

either be thought to be saying "this is the right solution - look no further" or "this is

a proof of the particular solution, do not try to prove it again". The Prolog

interpretation takes the first meaning, not just because it provides useful control

facilities, but also because, in Prolog, if a goal is proved then it is completely

proved and proving it again by a different path does not (usually) add any

information. Furthermore the second use of the cut described above is a special

case of the first in which the cut applies to just one solution instead of all of them.

in Slop it is a different story. every extra proof path for a goal can provide

extra information so the two possible applications of the cut are significantly

different. Consider the example

3-22

P(X): -
Q(X): Si.

p(a): -

: si.

P(X): -

s(X) : Sk.

q(a).

q(b).

s(a).

s(b).

r.

for which we will use the Prolog interpretation of the cut. The query p(a) will be

solved with support Sl from clause I and Sj from clause 2; the query p(b) will be

solved with support Sl from clause I and Sk from clause 3; however, the query

p(X) will be solved for X-a with Support SI from clause I and Sj fro m clause 2,

and for X-b with support SI only, from clause 1. The support evaluated for a

solution depends on the form of the query. which is certainly not a desirable

property. The example demonstrating this may not be particularly useful or

sensible, but it is perfectly good code and so should be considered. In the example,

the goal r was true so the cut should definitely be evaluated. What if r was false

(supported [0,01) or unknown (supported [0,11)? Should the cut be evaluated and

prevent backtracking? If it should in both these cases then there would be no

situation when it was not evaluated. Suppose we decide not to evaluate the cut if

the support for the preceding goals is 10,01 - what about including [0,0.011 or

[0,0.05]? Where do we draw the line? The second possible interpretation of the use

of the cut becomes "if this clause evaluates a support for a goal, then the other

clauses should not be considered'. This amounts to a form of mutual exclusion -a

3- 23

solution or Support from the first clause precludes those from a subsequent clause -

however it does this in an artificial manner rather than combining the supports

under the assumption of mutual exclusion. Further to this, in Prolog the cut

effectively excludes further solutions to a goal rather than extra support, since once

a solution is found the support is equivalent to [1.1] anyway. In Slop, extra proof

paths become -important, but'we have to decide what we want to cut out. The

clause containing the cut in the example above, could only provide support for p(a),

so perhaps the cut should only cut out further support for p(a), rather than for all

X in p(X), thus allowing support Sk for p(b), regardless of the form of the query.

These problems have to be addressed if we are to be able to use the cut in a manner

consistent with the rest of the system, however they are all due to the fact that we

are trying to implement a non-logical predicate into a system that is more dependent

on a logical structure than Prolog itself. The reason for this is that Slop effectively

uses a breadth search and the scope of the cut becomes less easy to define. - In

general, it is better that the cut is not used at all, however there are occasions when

it is valuable and can be used in a way that does not produce the problems outlined

above. The cut is therefore allowed in Slop but its use is exactly as in Prolog, and

thus it should be used only under that interpretation: it is always evaluated when

encountered and cuts out all subsequent clauses and previous goals at the same level.

The only way for a cut not to be evaluated is if a preceding goal fails (rather than

returning support of definitely false) and the only goals for which this can occur are

Prolog system predicates.

The most important use of the cut under such conditions is in recursive

definitions. Such a relation might be

24

fast

call(X> 100),

fast-speed(X): -

call(Y is X+ 5),

fast-Speed(Y) : [0.9,1

In this definition we'recursively increment the speed until it is a value for which

we know'the support. ' This support is then adjusted, according to the number of

recursive calls, by the conditional support of [0.9,11. The cut is necessary to prevent

the second clause being called when the first clause succeeds, ' because this could

result in infinite looping.

There is a situation in which the use of the cut has to be prohibited

Support Logic disjunction. In Prolog disjunction, only one of the disjuncts needs to

be proved to prove the disjunction. If the first disjunct has been proved, then

subsequent backtracking could reprove the disjunction by proving the second

disjunct. This can be prevented by putting a cut in the first disjunct. In Support

Logic disjunction, both disjuncts must always be tested to evaluate an overall

support for the disjunction. Putting a cut in the first disjunct is therefore-

meaningless, as the second disjunct has to be evaluated. If the purpose of a cut so

placed is to allow only one solution to the disjunction, then the cut can be placed

immediately after the disjunction. The system checks for cuts placed in a Support

Logic disjunction and eliminates them issuing a warning message to the user: -, -

CUTS are not allowed in Slop disjunctions

The CUT(S) in the goal

a, b,! sup_. pr c

have been ignored.

25

3.2.7 Summary of Use of Prolog System Predicates

Prolog system predicates are rarely likely to be involved as an integral part

of support evaluation within a Support Logic knowledge base, however they are

essential in the development of certain applications. Situations in which any

program control or arithmetic is required, will necessarily involve system predicates.

A system might require database manipulation during program execution, and,

perhaps most obviously, it might require its own input/output capabilities, all of

which have to be done with the Prolog system predicates. They clearly have to be

incorporated into a Support Logic system but need to be used with care in order not

to affect the overall logical structure of a knowledge base. The way in which Slop

has been designed to cope with Prolog system predicates is based primarily around

allowing the use of the cut - in order to avoid evaluating a cut, a preceding goal

must fail and this must be a Prolog system predicate. Such a definition of the use

of Prolog system predicates can be maintained without impairing the support

evaluation, though it would be more logically correct for failed Prolog system

predicates- to return support of [0.01. The FRIL system (Baldwin, Martin and

Pilsworth, 1988) uses this approach and handles the cut by looking at the support

preceding the cut. If the support is [0,0], the cut is- not evaluated, otherwise it is.

This has the advantage of allowing Support Logic rules to control the evaluation of

a cut, as well as Prolog system predicates, but the implementation problems when

programming in Prolog meant it was better not to do it this way for Slop.

All Prolog system predicates apart from the cut have to be called as

argument to call, primarily in order to impress on the user, that they will be treated

in a closed world fashion. If this is violated, the system issues a warning message

and continues with the call having been made properly (showing that it is not

essential to the behaviour of the system). The practical difference between using

call and not doing so, is that it allows not to be used as a Slop predicate and it

3- 26

makes for clearer readability of a Slop knowledge base if there is only one goal that

is interpreted in a closed-world fashion. This goal itself though can be used to

extend the closed-world assumption to any Prolog rules.

3.3 Extra Characteristics and Constructions

3.3.1 Free Variables In Goals

Section 3.2.4 on negation mentioned the problems of'freýe variables in Prolog

negation and explained how Support Logic does not give ris-e to such problems.

There is, however, another problem associated with free variables, which was

touched on concerning Support Logic disjunction in section 3.2.3. The depth search

of Prolog generates solutions one at a time and thus it is possible for a theorem to

be proved more than once with the same variable instantiations or solutions. It is

also possible for a theorem to be proved for particular instantiations and for free

variables, even though the latter proof may imply the former. This is acceptable in

Prolog, Since a true theorem is still true however many times it is proved. In

Support Logic, a theorem can be proved to be partially true, an Id so , reproving it will

affect the truth of that theorem. For this reason, all possible proofs of a solution

must be taken together to provide an overall support for that particular solution.

The problem with free variables in the solution to a Support Logic theorem is that

this solution can give support to several other solutions. For example the query

P(X) may have four proof 'paths producing the following:

p(a) : Sl

p(b) : S2

p(a) : S3

p(X) S4

From these we can derive solutions

27

p(a) : Sa

p(b) : Sb

P(X) : Sc

where Sa is the renormalised combination of Sl, S3 and S4, Sb is the renormalised

combination of S2 and S4, and Sc is S4.

The normal interpretation of this data would include that p(X) is supported

to degree Sc for all X, however this is not true: for X=a, p(X) is supported to

degree Sa and for X=b, p(X) is supported to degree Sb. The correct interpretation

should be p(X) is supported to degree Sc for all X except X=a and X=b. We, the

human users, can just about cope with this at the top level, but the system would

have great difficulty., It would be necessary to recognise that the variable X,

subsequent to proving p(X) could be instantiated to anything except a or b, because

solutions involving X=a and X=b are generated independently. Such behaviour

could be useful, but to implement it in Prolog, in which all unification is carried

out automatically would produce an extremely complicated system in which most of

the effort would be involved in adapting Prolog to behave in a fashion totally alien

to it. Instead of this, Slop has been arranged to issue a warning message when free

variables are encountered in proved goals, but to continue support evaluation for the

query. There are occasions when solutions involving free variables will behave

correctly, so it seems reasonable that the user should be able to make use of this,

but should be warned of the possibility of unpredictable behaviour.

This warning mechanism'is implemented by a, rewritten form of the system

predicate bagof - slop_bagof. Every proof of a goal must be checked, rather'than

just every different solution, because it is possible that a proved ýgoal with a free

variable will be unified with another proved goal and cause the variable to be

instantiated. Although this custornised bagof does not resolve this problem, it does

alert the user on every occasion that it may occur.

3'- 28

3.3.2 Probabilistic Pairs

A probabilistic pair is two rules, for which the body of one is the

complement of the body of the other as defined in section 2.3.2. The two rules

then define the dependence of the head on the body, for the whole of the

possibility space. For example the rule

p(X): - a(X), b(X): [Sli, Sull.

defines the way in which p(X) is implied by the conjunction a(X), b(X) but says

nothing about p(X) when the conjunction is false. This information is provided by

the second rule, making up a probabilistic pair.

p(X): - not(a(X), b(X)) : [S12, SU2].

When a rule is not part of a probabilistic pair, then the system assumes a

support of [0, l] for the rule that would make up the pair, otherwise the support on

that rule would be as defined by the user. It is necessary therefore for the system

to check whether a rule is part of a pair before calculating the support for the head

of the rule. In the original version of Slop, there was no shorthand for probabilistic

pairs and so they had - to be defined ý by two rules in the knowledge - base 7 This

necessitated the interpreter being able to recognise when two, rules were part of a

pair and when they were independent rules from which supports would be

combined using the renormalisation combination. The only way to implement this

was to search, every time a valid rule was found, for a rule that complemented, it as,

part of a probabilistic pair, and perform the support * evaluation - according - to

whether or not this was found. This results in a great deal of extra searching of the

knowledge base, not only when looking for pairs but also when checking that a rule,

has not already been used as part of a probabilistic pair.

29

The shorthand for probabilistic pairs involves allowing two support pairs on

a rule; the first being the conditional supports for the rule as written, and the

second being the conditional supports for the rule with negated body. For example

p(X): - a(X), b(X) : [Sll, SUI], [SI2, SU2].

is equivalent to the pair of rules given above. As well as improving efficiency, this

also greatly improves the readability of a knowledge base, as a probabilistic pair is

now a single entity, and not two rules that may easily be separated thus obscuring

the dependence between them. The final version of Slop allows this syntax but also,

in fact, allows the original format of two complementary rules. This of course

means that any efficiency improvements that may have resulted from the shorthand

are not realised, but this particular implementation of Support Logic was designed

as a development and demonstration tool. Considering this, it seemed more sensible

to maintain compatibility with knowledge bases that may already have been written

using an earlier version of the system.

3.3.3 Cutoffs

A necessary consequence of the open world assumption in Support Logic is

that a goal can never fail. It will always succeed but the truth of it will be

qualified by a support and may represent anything from definitely false, to

completely uncertain, to definitely true. The fact that all goals succeed means that

every branch of a proof-tree will be searched, to the tip of every leaf, however the

search space could be cut down to avoid searching branches that cannot contribute

information. As discussed in section 3.2.5, proving a goal definitely false - [0,0] -

or completely uncertain - [0, I) - can have a dominant effect on the rest of the

query. In all rules but probabilistic pairs, a necessary support of zero for the body

results in the head of the rule being supported [0, l] - i. e. nothing is known at all.

Furthermore, proving a conjunct definitely false, [0,01 or completely uncertain, [0, I]

3- 30

or anything in between, results in the conjunction having, necessary support of zero

regardless of the other conjuncts. If this is the body of a rule, we prove nothing

about the head.

The system can be improved by some method of cutting off searches when a

goal is encountered that provides no information. This is done by checking the

support evaluated for-a goal against a, use r- definable cutoff value. If the cutoff

condition is satisfied then the system fails the goal just, evaluated, thus, preventing

further processing down the associated branch of,, the-; proof, tree. The cutoff

definition takes the form of a predicate, cutoff, with one attribute, a support pair,

and has the default definition

cutoff([O, I]) -

This default has the effect of cutting off a proof path if a goal is evaluated with

support of [0, I] exactly. The cutoff is redefined by reconsulting a new definition

for the predicate cutoff/l. This could be, for example,

cutoff([X, Y]): -

call(U is Y-X, U >- 0.8).

cutoff([X, Y]): -

call(X=<0.4).

" Proceed only if the unsureness

" is less than O. S.

% Proceed only if the necessary

% support is greater than 0.4.

One important application of cutoffs is in running Prolog programs with the

Slop interpreter. A Prolog program in which there are deterministic tests, generally

depends on these tests for the control of execution. It is therefore desirable that

these tests should succeed only if the. test holds true, and thus, that they should fail

otherwise. The Support Logic, equivalent of Prolog failure is a proof with support

[0, I], therefore in order to fail unprovable Prolog tests, we need a cutoff, that

includes [0,11 (Notice that cutoffs of the form cutoff(IO. 3,0.91) do not include [0,11

because this does not define a range, but exact values). By having no cutoff at all

31

the system will perform an exhaustiýe search of the entire proof tree in as much as

the goals in it allow (the cut or closed-world predicate call can also affect the

control of the searc h).

3.3.4 Equivalence

A, useful characteristic of Prolog is that large terms (6onjunctions or

disjunctions) can be made up into smaller and more'readable ones by splitting the

term up into subgoals, and defining new rules for these subgoals. For instance the

rule

p(X, Y, Z): -

a(X), b(X, Y), c(Y, Z), d(Z), e(X, Z), f(Z).

can be replaced by the rules

p(X, Y, Z): -

i(X, Y), j(Y, Z), k(X, Z).

i(X, Y): -

a(X), b(X, Y).

j(Y, Z): -

c(Y, Z), d(Z).

k(X, Z): -

e(X, Z), - f(Z).

Although this increases the size of the knowledge base, in terms of the number of

rules, it can dramatically improve the understanding of the knowledge base, and

ease the testing of its component parts. When a large rule, as in the example,

behaves in an unexpected way, each of the subgoals a to f have to be investigated.

The smaller version of the same rule can be checked by considering just the

32

subgoals I to k. Using similar methods to form rules in Slop, however, leads to

difficulties.

The truth of the head of a Prolog rule is dependent on the truth of the body

- if the body can be proved true, the head is true; if the body fails then the head is

false, for that definition. Consequently, if a Prolog relation consists of only one

rule, then that rule corresponds to a form of equivalence between the head and the

body, and the head can be used as a shorthand for the body. The same is not true

of Slop owing to the fact that all rules are qualified by conditional supports. A rule

can only be considered to represent equivalence if the head has the same truth, or

support, as the body, however this is not possible of a single rule. When a rule has

conditional -possible support of one, then the head ý of that rule will always have

possible support of one, regardless of the support for the body. Thus the rule -

p(X): - a(X), b(X): [I, I].

does not correspond to an equivalence between p(X) and the conjunction a(X), b(X);

if the conjunction has support ISI, Sul then the head of the rule, p(X), will be

supported IS1,11. Because of its value in Prolog, there is good reason to introduce

an equivalence relation to Slop, however it is done on a slightly ad hoc basis and in

fact can be simulated by another, construction as explained at the end of this section.

To represent equivalence, a construction similar to Slop rules was required

but one that could easily be distinguished. The obvious thing to do is to use

another operator in place of : -, but that can be used in a very similar way. The

operator chosen is <->. Thus a Slop rule might be

p(X): - a(X), b(X): Sl.

whereas an equivalence would be

p(X) <-> a(X), b(X).

3- 33

obviously without a support pair. The operator declaration for <-> is

op(1200, xfx, -<->). Although it looks reasonable to the user, to Prolog it has a

different significance. Prolog rules and facts differ by whether or not the infix

operator :- has been used - if it is not present, then the assertion is interpreted as a

fact. Thus the Slop equivalence definition above is, to Prolog, a fact with predicate

<->/2, which in standard syntax would be written

<->(p(X), (a(x), b(x))).

As a result, all Slop equivalence definitions look, to Prolog, as though they are part

of the same relation. This has two important consequences:

When the system checks if a goal is defined by an equivalence relation,

rather than looking for a clause the head of which unifies with the goal, it

has to look for a clause with predicate <-> for which the first argument

unifies with the goal.

If an equivalence definition is reconsulted then all previously defined

equivalences will be lost. New equivalence definitions should therefore

always be consulted rather than reconsulted.

The second of these is, unfortunately, something that the user has to remember for

him- or herself, as there is no straightforward method, generally applicable to all

Prologs, for adapting the way in which files are consulted or reconsulted, so that

warnings cannot be issued. Implementing equivalence in the interpreter is not too

difficult, and the appropriate clause takes a form very similar to that for

interpreting ordinary Slop rules.

siop-interp(X, S): -

body__support(Y. S).

34

An important difference, though, is that it is not necessary to use slop_bagof. This

is because (i) it is not possible to have more than one equivalence definition for a

particular goal, thus X<->Y can only be proved once, and (ii) the right-hand side of

the equivalence should not be provable more than once for a given left-hand side.

In order that these restrictions are not violated, it is necessary to carry out some

verification of the database.

The first restriction simply requires making sure that there is no more than

one equivalence definition for a given goal. The second can be tested by checking

that there are no variables on the, right hand side of the equivalence that do not

occur on the left. When there are, it is possible to generate new support for the

same left-hand side for every new instantiation of those unbound variables that are

local to the right-hand side of the equivalence. For example

P(X, Y) <-> q(X, Y, Z). I

q(1,2, a): - : Sa.

q(1,2, b): - : Sb.

will produce supports Sa and Sb for the goal p(1,2) and thus the equivalence does

not hold. Such a violation does not occur when there are no extra unbound

variables on the right-hand side because Slop can only produce one overall support

for any particular solution to a goal. Extra unbound variables on the left-hand side

will have no effect, as they will simply remain uninstantiated. The system checks

that these restrictions are met, and if they are not, issues a message and fails the

goals.

As mentioned above, there is a construction that can be used to simulate this

equivalence, for which the support evaluation is fully justified. This involves using

a probabilistic pair with the supports [1,11 and 10-0] (section 2.3.2). The equivalence

definition

3- 35

p(X) <-> a(X), b(X).

can be replaced by

p(X): - a(X), b(X): [1,11, [0,01.

The reason this simulates equivalence is because the rule states that p(X) is true if

the conjunction a(X), b(X) is true, but furthermore that p(X) is false if a(X), b(X) is

false. For this construction to be used as an equivalence, the same restrictions apply

i. e. number of rules and local unbound variables - however, as a standard Support

Logic rule, it can be used in any way the user likes, that does not violate any of the

basic restrictions of Slop.

Providing a construction specifically for representing equivalence can lead to

greater clarity of the knowledge base, but it does have certain drawbacks. The most

obvious of these is that it reduces the efficiency of the system by increasing the

amount of error checking necessary. More importantly though, it can be slightly

misleading as it does not represent equivalence properly. A rule defined using <->

allows us to attribute the same support to the head as was attributed to the body,

thus suggesting some form of equivalence. In the strictest sense, though, it should

be possible to evaluate support for the left-hand side of an equivalence and then

attribute it to the right-hand side representing the other half of the equivalence.

This is not permissible using a Horn Clause representation and so the rule does not

represent true equivalence. In the light of these points the FRIL implementation of

Support Logic (Baldwin, Martin and Pilsworth, 1988) does not support an

equivalence operator, but the probabilistic pair construction can be used instead.

3.3.5 Semantic Unification

In a system that allows the representation of uncertainty, it is possible to

introduce a form of partial unification. This means that, rather than terms having

3- 36

to match exactly in order for unification to succeed (syntactic unification), the

terms can match to varying degrees according to how similar they are. This

similarity could be measured in a number of ways - length of term, closeness in

spelling, structure of term but for the Support 'Logic system the most obvious

similarity to be looking for is closeness in meaning. Thus two terms that have

similar meaning can be partially matched or semantically unified. The way in

which this is done in Stop involves the use of fuzzy Set theory and, as explained in

section 2.5, it is therefore limited to concepts that can be quantified.

3.3.5.1 Representation

The first thing the system has to be able to do is recognise the fuzzy terms

(those that can undergo semantic unification) and those terms with which they can

be unified. This can be done by looking up whether there is a fuzzy set definition

for the term and if so what it is. The definition itself needs to be' structured in

such a way as to optimise the evaluation of the supports representing the semantic

unification. This optimisation is achieved by restricting the fuzzy sets that can be

defined so that they can all be expressed by a limited number of parameters. These

restrictions are as follows:

the fuzzy sets must be piece-wise linear,

(ii) all change points must occur at p6s'sibility values of zero'or one,

(iii) there can be no more than four change points.

Of the six parameters, the first and last (a and f in figure 3.1) are the starting and

finishing possibility values respectively, and the middle four (b, c, d, and e in figure

3.1) are the domain values at which change points occur.

37

Possibility

a0f
bCde

Figure 3.1: Most, general allowable fuzzy set for semantic

unification.

In order to represent fuzzy sets with less than four change-points, the values

of some of the parameters b, c. d and e can be the same, thus allowing the possible

general forms shown in figures 3.2a and b.

A

0
(a)

b=c=d*e b*c=d*e
or b*c=d=e

a=O, f-I a=f. O

b*c*d*e

a=f-0 , .,
I

--II-

0
(b)

,
b=c=doe b*c=d#e b#c*doe

or b*c=d=e
a=l, f=O a=f. I a=f-I

Figure 3.2: Allowable fuzzy sets for semantic unification-

Notice that this does not allow for vertical sections in the set.

38

The definition of a fuzzy term consists of three things; (i) the fuzzy term,

(ii) the concept or semantic class to which that term refers, and (iii) the fuzzy set

definition. These are expressed in a clause of the form

fuzzy(<semantic-class>, <fuzzyjerm>, <fuzzy_set>).

for each fuzzy term in the system. Terms which do not have a fuzzy set definition

are taken to be non-fuzzy and are unified syntactically. The semantic class is put as

first attribute to the predicate fuzzy, to improve readability, and also because the

Prolog search is sometimes driven by the first argument of a goal and thus, semantic

class being more often instantiated, the search is improved.

Using these parametric descriptions of fuzzy sets, the system has to evaluate

the maximum value of the minimum of the two sets (as described in section 2.5) to

establish the conditional possibilities. For example in figure 3.3 the two sets marked

by broken lines have the minimum, marked by the full line, with maximum value P

for domain value D.

I ------------------- %%%
/e

.1
-- -----------------

P.......................

Figure 3.3: The minimum of two fuzzy sets.

In, order to evaluate the maximum, the system only needs to , find the

intersection of two lines and in most -cases, this will occur at a possibility value of

zero or one. For instance, figure 3.4 shows three such examples.

39

(a) (b)

/- (C)
--Z- I'l,

=:. -
el , b2 el c2

Figure 3A Example fuzzy set combination.

These examples, in which the possibility is one, can be characterised simply

by comparing the relevant domain parameters - for example el :5 b2 in (ii) and el :5

c2 in (iii). The predicate for evaluating this possibility value is maxminset/3 with

the two fuzzy sets and possibility value as attributes. The three examples above are

characterized respectively by

maxminset([O, _, _, _, _,
I]�[O,

_,, _, _,
1], 1): - !.

maxminset([O, _, _, _,
E 1,1], [1, B2,

_, _, _,
O], I): -

EI -< B2,!.

maxminset([O, _, _, _,
E I, I], [O,

_,
C2,

_, _,
O], I): -

EI -< C2,!.

All the possible ways of intersecting two fuzzy. sets can be represented, and the

possibility values evaluated, by twenty clauses. Of these, only six actually involve

any calculation to evaluate maxima that lie between zero and one. ,

Deriving the conditional supports representing the unification between two

fuzzy terms involves using the negation of a fuzzy set. This calculation is also

greatly eased by the use of a parametric representation of fuzzy sets. Since the four

domain parameters (b to e in figure 3-1) only represent the values at which a change

point occurs, they are unaffected by the negation operation. The only changes that

occur, are to the first and last parameters (a and f) which are simply switched

between zero and one. Thus for example, the negation Of the fuzzy set

[0, BI, Cl, DI, EI, O] is [1, BI, CI, DI, El, ll, and the negation of [0, B2, C2, D2, E2, l] is

[I B2, C2. D2, E2, O].

40

3.3.5.2' Use of Probabilistic Pairs' In Semantic Unification

Consider the following knowledge base:

conditions(uncomfortable): -

temperature(fairly_hot) : [0.7,1].

temperature(fairly__qool): - : [0.1,0.21.

fuzzy(temp, fairly_hot, [0,55,70,70,70, I

fuzzy(temp, fairly_cool, [1,65,65,65,75,0]).

Querying the knowledge base with the goal conditions(X) will generate the sub-

query temperature(falrly_ýhot) and this will be satisfied by the rule

temperatureffairl y-ho t): -

temperature(fairly_qool) : [0,0.8].

generated by semantic unification. The conditional support pair 10,0.81 is evaluated

using possibility theory described in section 2.5. The goal temperature(falrly_cool)

is proved with support 10.1,0.21 thus proving ternperature(fairly_ýhot) with support

10,0.981, and conditions(uncomfortable) with support 10,11, completely uncertain.

This can be improved if we consider the relationship, not just between fairly-hot

and fairly 'cool but also between fairly_hot and not fairly_cool, and generate the

rule

temperature(fairly-_hot): -

not temperature(fairly__2cool) : [0.8,1].

This forms a probabilistic pair with the previously derived rule, so that we can now

deduce support of 10-64,0-981 for temperature(fairly_hot) and consequently support

of [0.449,11 for conditlons(uncomfortable). In order to obtain the full information

from the relationships between two fuzzy terms it is necessary to generate a

41

probabilistic pair of rules. So doing reduces the amount of unsureness that can

creep in.

3.3.5.3 The Level of Application

It is often the case that a query will be asked with a free variable and that

this variable will be passed through several layers of rules before becoming

instantiated. If, at this point, it is instantiated with a fuzzy term, then the top level

goal could be resatisfied by semantic unification with that term. The question is at

what level should this occur? At the highest level, where the variable was

introduced, or at the lowest level, that at which the variable was instantiated?

Unfortunately, the level at which the semantic unification is carried out does affect

the supports.

Consider the following knowledge base:

light(T, L): -

time_of_day(T),

status(T, W, L).

time_of_day(I 1.5).

status(T, W, dark): -

night(T),

weather(T, W).

status(T, W, L): -

not night(T),

weather(T, W),

brightness(W, L).

42

night(T): -

call((T>20, T<7)),

1 : [1,1].

night(T): - : [0,0].

weather(T, stormy): -

call((T>'=IO, T<13)).

weather(T, cloudy): -

call((T>= I 3, T< 15)).

brightness(stormy, quite_dark).

brightness(cloudy, grey).

brightness(sunny, bright).

brightness(patchy_Sloud, quite_b right).

fuzzy(brightness, quite_dark, [1,3,3,3,5,0]).

fuzzy(brightness, grey, [0,2,4,4,7,0]).

fuzzy(brightness, quite_bright, [0,4,7,7,7, I

fuzzy(brightness. bright, [0,6,8,8,8, I

Asking the query light(T, L), the variable, L, originally introduced in light/2

is passed through two levels, via status/3 to brightness/2, before being instantiated

by a fuzzy term. For the given time of day (11.5), this term would be instantiated

to quiteJark. Let us suppose that we have asked the query light(T, grey) and

therefore we have to carry out semantic unification between the terms grey and

quite_dark. The basic form of the assumed unification rules is

grey: - quite_dark : [0,0.75].

grey: - not quite-dark : [0,0.8]

and from these we can deduce one of the Probabilistic pairs

3- 43

brightness(stormy. grey): -

_
brightness(stormy, quite_dark) : [0,0.75], [0,0.8].

and

light(I 1.5, grey): -

light(I 1.5, quite_dark) : [0,0.75], [0,0.8].

Taking the first pair, which corresponds to applying the semantic unification

at the lowest level, we obtain support for brightness(stormy, grey) of 10,0.751 which

results in supp'or'Cof [0, '11 for' status(Il. 5, stormy, grey) and also therefore for

light(11.5, grey). On the other hand using the second pair of rules, the support of

[1,11 from brightness(stormy, qulte_dark) is maintained up to the top level where

semantic unification then yields support of 10,0.751 for light(11.5, grey). Semantic

unification will always introduce extra uncertainty, owing to the nature of matching

fuzzy terms, but by doing this at a low level in the proof path, the unsureness is

increased, possibly resulting in no information at all ([0,1]) at the top level. This

increase in unsureness can be avoided by carrying out semanticl unification at the

highest level.

The query light(T, L) can be proved for a particular T, for all values of L

that are fuzzy terms defined for brightness, fori example' 'all of the solutions:

light(II. 5, quite_dark) : [0.5,1]

light(II. 5, grey) : [0,0.75]

fight(I 1.5, quite_bright) : [0,0.2]

light(I 1.5, bright) : [0,0]

light(I 1.5, not quite_dark) : [0,0.5]

light(I 1.5, not grey) [0.25,1

light(I 1.5, not quite_bright) [0.8,1

light(I 1.5, not bright) 1,1

44

If the semantic unification is carried out at the lowest level then all these possible

values of L could be proved at every intermediate level of the proof path. In this

way we , could prove light(l 1.5, grey) via, status(I 1.5, storm y, brigh t) and

brightness(stormy, not quite_bright) ýý which would have been derived from the

original assertion brightness(stormy, quiteJark). Using semantic unification at

every level like this, - not only would we -be introducing a large amount of

unsureness, but we would also be allowing eight separate branches of the proof, tree

at each level, resulting in 64 distinct proof paths for proving light(11.5, grey) from

the single assertion brightness(stormy, quiteJark). Clearly this is not a reasonable

method for proving the goal. The semantic unification is therefore carried out at

the highest level at which the fuzzy term occurred. Notice that the same fuzzy

term may be introduced more than once in a particular proof path, each time

distinct from the other occurrences. On these occasions, each instance should be

treated totally separately as though they were different terms.

Since the semantic unification has to be carried out at the highest possible

level, it is necessary for the system to identify where all terms in a proof path are

originally introduced. In the above knowledge base, if either T or L in the

definition of Ilght/2 are instantiated to fuzzy terms, the semantic unification should

occur after proving light(T, L). If the W, introduced by status/3, is instantiated to

a fuzzy term then semantic unification on that term should occur immediately after

proving status(T, W, L). The way in which the system copes with this is by keeping

a list of all the terms that have been introduced before the current position, and

passing this list to all subsequent invocations of the interpreter, slopjnterp, which

thus needs an extra attribute. The arguments of all goals that are about to be called

by the interpreter, are compared against this list for the introduction of newterms,

constant or variable. In the case of constants, the term can be shown to be fuzzy or

not, immediately. If it is fuzzy, then it is replaced by a variable so that the goal

can be proved using the syntactic unification of Prolog. Having proved the goal,

45

the original constant and the instantiation of -, the - variable can be semantically

unified. ' Non-fuzzy constants are left alone. When a goal introduces a new

variable, this variable is treated as though it were a, fuzzy constant and replaced by

another variable, because at this stage it is not known whether or not it -will, be a

fuzzy term., Once the goal'is proved and the replacement variable instantiated with

a constant, then'this constant can be tested, for fuzziness. If non-fuzzy then it is

unified with-the original, variable. If it is fuzzy, then the original variable can be

instantiated with all the possible semantic unifications of that constant.

This processing for semantic unification has to be put into the interpreter in

the clause which evaluates support for a non-multiple goal. Without semantic

unification this clause stands as (section 3.2.2)

slop_interp(X, S): -

- -slop__ýbagof(Sl, support(X, SI), Sý_list),

samecombine(S_Iist, S).

To accommodate semantic unification, an extra argument is'put in representing all

the parent terms (those introduced by earlier goals in the query), variable P-ts, and

two new subgoals, all of which are emboldened in the following definition:

slop_interp(P_ts. X, S): -

new_terms(P_ts, X, XI, X_terms, New_P_ts),

slop_bagof(Sl, support(New_P_ts, X I, S 1), S_Iist),

samecombine(S_Iist, S2),

semunif y(X, XI, X_terms, S2, S).

The subgoal new-terms/5, finds all the new terms introduced by goal X,

and puts them in the list, New 'P-ts. Variable X1 is the new -form of -goal X with

all newly introduced fuzzy constants and variables replaced by new- variables. ' For

instance if X was light(I 1.5, grey), then, referring to the above knowledge base,, XI

46

would be light(11.5,
_123),, _123

being the variable replacing the fuzzy term grey.

The variable X_terms is a list of all the pairs of new terms with their replacement

variables, thus, for the above example, the list X_terms would contain igrey,
_1231.

The goal-X1, instead of X, is now proved as usual and the overall support evaluated

using samecombine. ý At this point any semantic unification that can take, place

between X and X1 is performed by semunify/5. The list X_terms would, for this

example, now contain [grey, quite- dark] and the semantic unification would be

represented, by the assumed rule

light(I 1.5, grey): - % goal X

light(l 1.5, quite_dark) : Sa, Sb. ýA goal XI,

in which the supports Sa and Sb represent the probabilistic pair of supports

generated from the fuzzy sets. The variable S2 will be the support for goal XI

(light(11.5, quite-dark)) and S will be the support for X (light(Il. 5, grey)) evaluated

using the assumed semantic unification rule.

The'list, X_terms, can contain more than one pair of terms, though not all

of these will necessarily lead to semantic unification - an unbound variable in the

original goal may have been instantiated to a non-fuzzy term by the proof -

however computational difficulties arise when there are two or more pairs for which

semantic unification can occur. A fuzzy set is defined by a mapping of the values

of the domain on to the possibility, in the range [0, I]. For a single term, this is

equivalent to mapping one-dimension on to the range, producing a curve, for a

tuple of two fuzzy terms it is two-dimensions, producing a surface, and for an n-

tuple it is n-dimensions producing an (n+ I)-dimensional space. In order to carry

out semantic unification on a goal containing n fuzzy terms, the system would be

required to combine two n-dimensional spaces and find the maximum value of the

mapping of this onto the (n+l)th-dimension. Such analysis is computationally

extremely expensive and consequently it has not been implemented. The system is

47

designed to handle only one fuzzy term in, any goal. This does not restrict the size

of the list X_term to only one pair since there could, be pairs that will not involve

semantic unificationg 'however when the, list, is processed by semunify/5, semantic

unification is only carried out for the first allowable pair encountered. All

remaining pairs are treated as though- they were non-fuzzy and are syntactically

unified. This can result in the query failing if one of these subsequent pairs

consists of two fuzzy terms that are not syntac tically unifiable. It is left to the user

to construct the knowledge base so that the system can handle semantic unification

according to these restrictions.

The processing necessary to carry out semantic unification can increase the

time taken to answer a query by about 50%, because every term in the query goal,

and every subgoal subsequently generated, has to be compared against the fuzzy set

definitions. Since in many applications semantic unification will not be used, a

switch has been provided to enable and disable semantic processing. This switch

asserts a flag ý in the knowledge base - that disables semantic unification, and by

retracting the flag, semantic unification is enabled.

3.3.6 Bundles

The* introduction of a calculus for dealing with uncertainty in a logic

programming environment means that we have to consider the dependences between

pieces of information in the knowledge base. In Prolog, since a theorem can only

be proved true or false for sure, it does not matter if this proof involves dependent

proof paths. The Support Logic calculus has to be derived using some assumption

and we apply a maximum entropy argument to justify using Dempster's

renormalisation rule (section 2.4-2) to evaluate the overall support for'a goal. This

corresponds to an assumption of independence, used only because of a lack of

information to the contrary, however there are situations when rules providing

48

support for the same conclusion are known to be dependent. The most typical

circumstances for this are when there is a rule with a conjunction of subgoals and

another rule whose body consists of a subset of. these subgoals. The dependence

between these two is that the body of the first strictly implies that of the second

and we use the form of the calculus laid out in section 2.4.4.

The system defaults to assuming independence between rules, so it was

necessary to define a syntax which would distinguish bundles of rules from ordinary

rules. This was achieved by defining a bundle as one Prolog rule made up of

several bodies, each separated by a left arrow. For example

p: -

a, b, c : Sl

a, b : S2

b : S3.

represents a bundle of the three Support Logic rules

p: - a, b, c : St.

p: - a, b : S2.

p: - b : S3.

The advantages of this syntax are that

(i) it is easily distinguishable from normal Slop rules,

being a single Prolog rule, all the subgoals are together, so that none need be

queried more than once, preventing duplication of effort, and

any variable instantiations will be affected in the bodies of all the bundled

rules.

49

As with ordinary Support Logic rules, the body of a rule defining a bundle

has a different syntax from the way Slop portrays it. The left arrow (<-) is defined

as an operator of precedence 1175 so that it is less than that of :- but more than

anything that may occur to the right of : -. It also has to be declared as both prefix

and infix:

op(l 175, fy, (<-)).

op(l 175, xfy, (<-)).

The, hierarchical structure of the above bundle would be

(a)

(b)

a, b, c: Sl (C)

a, b: S2 b: S3

where each branch of the tree represents the relationship between predicate and

attribute value, so that the left arrow at level (a) is prefix and those at (b) and (c)

are infix. A bundle is therefore characterised by a Prolog rule with a body

consisting of the single predicate <-/I. In order to interpret bundles, a new clause

is introduced to the relation body__ýsupport/3 (section 3.2.2), which evaluates the

overall support from a bundle of rules. This clause in turn calls the relation

bundle_wp/S which is dedicated to finding the support for a bundle of rules.

body__wpport(Pjs, (<- Bundle), S): -

bundle_sup(Pý_ts, (<- Bundle), no-bundle,
_,

S).

3- 50

The term no_bundle -is present to tell the system that this is the top level call to

bundle_sup and that no other parts of the bundle have been evaluated.

in order to avoid duplication of effort, the system stores all solutions to all

the subgoals in the bundle, in the Prolog knowledge base, as they are found. Thus

when a subgoal is encountered again in a subsequent rule in the bundle, the

appropriate solution with support can simply be looked up in the knowledge base.

Interpreting bundled rules is therefore carried out in two stages. Each bundled rule

(<- a, b, c : S1 or <- a, b : S2 or <- b : S3 in the above example) is passed to

bundle_support/3, to find all the solutions to the subgoals, and this in turn calls

bundle -body/2 to evaluate the support for, the-bundied rule.

bundle_sup(P_ts, (<- BI <- B), BO, SO, S): -

bundle_support(Pý_ts, B I, S 1),

intersect((<- BO), (<- BI <- B), SO, SI, SA),

bundle_sup(Pý_ts, (<- B), BI, SA, S).

bundle_sup(Pý_ts, (<- Bl). BO, SO, S): -

bundle_support(P_ts, B1, Sl),

intersect((<- BO), <- BI), SO, SI, S).

All variables beginning with uppercase B are the bundled rules for which support is

evaluated by bundle-support, and Intersect/5 is the predicate that performs the

calculation of overall support from dependent rules. This predicate also issues a

message when the illegal situation of conflict arises. The relation bundle-support is

defined as

51

bundle ýsupport(Pý_ts, Head_args, (: Y), S): -

bundle_support(P_ts, Head_args, (call(true): Y), S). I
bundle_support(Pý_ts, Head_args, (X: Y), S): -

record_solns(X, P_ts, [],
_),

slop_bagof(S, bundle_body(Head_args, X, S), Sups),

cond bundle(Y. Sups, Supsl),

samecombine(Sups 1, S).

where record_soins recursively finds and records all the solutions to the subgoals of

the bundled rule X, and the call to slop_bagof is in a similar form to that made

from slopjnterp for standard Slop rules. The only difference in the call to

slop_ýbagof is in where the solutions are found to generate the list of supports,

S_11st. In this case, the argument to slop_bagof is bundle_body, which looks for

solutions in the knowledge base as recorded by record_solns, whereas when called

from slop_Interp it is support, which evaluates the solutions directly from the

clauses in the knowledge base. The two relations support and bundle_body

otherwise behave and are defined very similarly. Finding and recording solutions

and supports to subgoals is done in such a way as to improve the ease with which

bundle-body can evaluate support for the rule body. Every subgoal in a rule body

is passed to slopjnterp to evaluate all the solutions and related supports, and these

are stored using the call

recordz($bundle, Goal-S, R)

By using recork the solutions are stored in the order that they are found, however

this often has no effect on the order in which solutions are presented at the top

level, owing to the way in which slop_bagof uses ý the Prolog system predicate

keysort., The variables, Goal and S are instantiated to the solution of the subgoal

and its associated support respectively, and R is the database reference number.

3- 52

The first argument $bundle is the, database key. When all the solutions to a subgoal

have been recorded they are checked against the solutions of all subgoals that have

had solutions recorded up to this point. If a solution to the most recently, recorded

goal has generated a new variable instantiation then all the previously recorded

subgoals have a new solution recorded with this variable instantiation and an

associated support of [0, I]. Thus for the following knowledge base

p(X): -

a(X), b(X): Sl

a(X) : S2.

a(l): - : S3.

b(t): - : S4.,

b(2): -,: S5.,

we would get the record

$bundle a(l)-S3 Ref I

followed by

$bundle b(l)-S4 Ref2

$bundle b(2)-S5 Ref3

which would then cause the new record

$bundle a(2)-[O, I] ReN

to be created. By doing this, when the system comes to evaluating support for the

ruie body, it can apply a straight depth search without losing any solutions.

The system works
.
through the bundle taking each rule body individually and

evaluating the support as described above. Every time a new subgoal is encountered

during this process all its solutions are stored in the database. A new subgoal is

3- 53

clearly identified by the absence of solutions in the database. This leads on to one

final detail,
-though,

that all records must be erased when all the required solutions

from a bundle have been found. The database could be amended between calls to

the bundle, allowing new solutions to be generated by it, however these would not

be found if the system still held the records of solutions from a previous bundle

evaluation.

3.4 User Interface

3.4.1 Introduction

The preceding two, sections have described the implementation of an

interpreter for querying Support Logic knowledge bases, however as it stands, it is

slightly cumbersome to use. To. query the knowledge base with the goal pred(S, Y)

would require the Prolog query

?- query-support(pred(X, Y), S).

This can be avoided by designing an interface that allows the user to' query

the system in a manner similar to that of Prolog. The interface'could then include

some tracing facility for following the way in which the Support Logic 'query is

evaluated, and also predicates for inspecting the knowledge base and carrying out

some form' of error checking. From the top level of Prolog the Support Logic

interpreter could be called up and it would prompt'the user for a Support Logic

query. Once the query-was answered the user would be prompted again until some

terminating cOmmandwas given.

54

3.4.2 Top Level

There are two ways that this top level can be designed (i) as a recursive

loop, or (ii) using a repeat-fail loop. The first of these is a more logical

construction and is therefore a more elegant way of writing the interface, however

it can be very expensive on memory. Such a design could be something like:

slop: -

setup,

query_ýdatabase.

query__Oatabase: -

prompt_user,

read_query(X),

query_wpport(X, S),

print-solution(X, S),

query__4atabase.

The top level goal slop carries out any initialisation of the system (setup) and then

calls the recursive goal query-database to read and solve queries. To solve this

goal, a query must be read in, evaluated, have its solution printed, and then initiate

a new query cycle and the proof tree will get larger and larger. Such memory usage

is wasteful, since, once a particular query has been solved, any processing associated

with it is no longer required. Some sort of tail-recursion optimisation may improve

this situation by pruning the tree of all branches tha't can' be esta I blished as having

no backtrack points, however, it would have to be an extremely efficient mechanism

to achieve the same results as a repeat-fail loop:

3- 55

slop: -

setup,

repeat,

query__database,

fail.

query__4atabase: -

prompt-user,

read_query(X).

query_ýupport(X, S),

print-solution(X, S).

The Prolog system predicate repeat is a goal that always succeeds and furthermore is

(theoretically) infinitely resatisfiable. By ensuring the goal query-database itself is

not resatisfiable, the call to fail will cause backtracking to repeat and the user will

be prompted for a new query. The advantage of this is that all branches of the

proof tree, through which the system backtracks, are lost and can be erased from

memory. This is the method used in Slop, but the above form is not sufficient.

As in Prolog, queries might be resatisfiable for different variable

instantiations, so a mechanism is needed whereby the user can see more solutions, or

not, at will. It, is also desirable to be able to terminate the Support Logic session by

finally succeeding the goal slop. This is not possible while the call to fall is

present, so this needs to be replaced by some goal which fails when a particular

condition is met. In section 3.2.5, the use of Prolog system predicates within

Support Logic clauses was explained, however it would be convenient if they could

also be called from the top-level but without the need to use call in the query. To

accommodate these requirements, the goal query_support/2 has been put at a lower

level and is called by slopcall/l. This relation takes as argument the query read in

and identifies it as a Support Logic query, a command to end the session or a Prolog

3- 56

system predicate. Support Logic queries are passed to query_., support, whereas

Prolog system predicates are called directly. Either way, slopcall imitates the

printing of the solution to the terminal, -and waits for the user to type semi-colon or

carriage-return to cause more solutions to be found (or not). If the query read in is

the term quit or the end_of_file character,, slopcall is proved simply by asserting

the clause stop. in the knowledge base. The goal slop succeeds, and ends, if this

clause can be retracted, but if not, the system backtracks to repeat.

slop: -

setup,

repeat,

reset,

prompt-user,

read_query(X),

slopcall(X).

retract(stop).

slopcall(quit)*- -, _% end session

assert(stop).

slopcall(end_of_file): - % end session

assert(stop).

slopcall(X): - % Prolog system predicates

sys-call(X),

solution_type(X, W),

call(X).

writeans(X, W),

37 57

slopcall(X): - % Prolog system predicates

sys-call(X),

write('no more solutions').

slopcall(X): - % Support Logic query

solution_type(X, W),

query_support(X, S),

print-solution(X, S, W),

slopcall(X): - % Support Logic query

write('no more supported solutions').

- 'The goal 'sys_call(X) establishes -whether the query is to'be satisfied as a

Prolog system predicate by looking at'the first goal in the query. If this is a Prolog

system predicate, then sys_call succeeds and the 'query is passed to the Prolog

interpreter via call. To make this check it is necessary, to have all Prolog system

predicates identified as such in the relation sys/1.

e. g. sys(write/1).

sys(clause/2).

sys(halt/0).

The goal solut1on_tyPe(X9W) in clauses 3 and 5 of slopcall looks at the query goal,

X, for any variables and instantiates W to vars, or'novars accordingly. If there are

variables present then goal X may be resatisfiable and the user should have the

option of looking for more solutions. If there are no variables then there can only

be one solution and the user should not be prompted to look for more. The variable

W is passed to the two goals writeans/2 and printsolution/3 which output solutions

to Prolog system queries and Support Logic queries respectively. If call(X) or

query_. ýsupport(X, S) fail to provide a solution when requested then backtracking will

58'

cause a new clause of slopcall to be used to print that there are no more solutions,

supported or otherwise. On the ý other hand when they are satisfied and no more

solutions are required, the cuts in the respective clauses of slopcall prevent further

backtracking in this relation, and the system backtracks to repeat.

3.4.3 Tracing

The system described so far is capable of evaluating supports for a query

from a Support Logic knowledge base, however there is no way for the user to

inspect how particular supports were derived, for instance what was the most

significant contributor? What information was missing? etc. The ideal way of

implementing such a facility would be for the user to be able to say why? or how?

or what if? having evaluated a query, however this would necessitate holding all the

proof paths involved in the solution to the query. The simpler method, which

mimics that of Prolog, was employed, whereby the query can be traced as it is

evaluated. The user initiates this trace, by preceding a query with the goal trace.

The points at which the user will want to have control over the trace are

when a goal matches a Support Logic rule. Here the user is given the option of

tracing through the subgoals or skipping them to the stage where the support for the

head has been evaluated from the particular rule. The user can not skip the entire

support evaluation for a goal, but only that associated with a particular proof path,

thus the user will be prompted for every rule encountered for any goal. This is

considered necessary so that one can inspect the support evaluation from particular

rules without having to work through the subgoals of every defining rule. On the

other hand all the support evaluations for conjunctions, disjunctions and negations

that have not been skipped are displayed. An example knowledge base is shown

below and this is followed by a trace of a query in a Slop session. The numbers

3- 59

down the left hand side are added to facilitate comment in the text but do not

usually appear as part of the trace.

P(X): - c(l): - : [0.4,0.5].

a(X), c(2): - : [0.6,0.81.

b(X) : [0.6,0.8]. c(3): - : [0.2,0.4].

P(X): - d(l): - : [I, I].

c(X) : [0.5,0.7]. d(2): - : [0.9,11.

a(l): - : [0.8,1]. e(l): - : [0.8,0.9].

a(2): - : [0.7,1

b(X): -

d(X) : [0.9,0.95].

b(X): -

e(X) : [0.7,0.81.

Support Logic Programming - Version 1.2
M. R. M. Monk and J. F. Baldwin
I. T. R. C., Dept. of Engineering Mathematics,
University of Bristol, England.
February 1987

query? trace, p(X).

I p(_123): -
2 aLl 23),
3 b(_123) : [0.6,0.8].
4 TRACE subgoals -y (yes), n (no), q (quit tracing)? y
5
6 a(l) : [0.8,1]
7 a(2) : [0.7,11
8 OVERALL SUPPORT -> a(l) : [0.8,1]
9
10 NO: -
II d(l) : [0.9,0.95].
12 TRACE subgoals -y (yes), n (no), q (quit tracing)? y
13
14 d(l) : [I, ll
15 OVERALL SUPPORT -> d(l): [I, I]
16
17 b(l) : [0.9,0.951
is b(l): -
19 e(l) : [0.7.0.8].
20 TRACE subgoals -y (yes), n (no), q (quit tracing)? n
21

3- 60

22 b(l) : [0.559999,0.84]
23 OVERALL SUPPORT -> b(l): [0.946859,0.963768]
24
25 a(l),
26 b(l) : [0.757487,0.9637681
27 p(l) : [0.454492,0.848502]
28 -OVERALL SUPPORT a(2): [0.7, I)
29
30 b(2): -
31 d(2) : [0.9,0.95].

n (no), q (quit tracing)? n 32 TRACE subgoals -y (yes),
33
34 b(2) : [0.809999,0.954999]
35 b(2): -
36ý 1ý e(2) : [0.7,0.81.
37 TRACE subgoals -y (yes), n (no), q (quit tracing)? y
38
39 OVERALL SUPPORT -> e(2): [O. ll
40 ** FAILED AT CUTOFF
41 OVERALL SUPPORT -> b(2): [0.809999,0.954999]
42ý
43 a(2),
44 b(2) : [0.566999,0.954999]
45 p(2): [0.340199,0.8866]
46 p(_123): -
47 c(_123): [0.5.0.71.
48 TRACE subgoals -y (yes), n (no), q (quit tracing)? y
49
50 c(l) : [0.4,0.5]
51 c(2) : [0.6,0.81
52 c(3) : [0.2,0.4]
53 OVERALL SUPPORT c(l): [0.4,0.51
54
55 p(l) : [0.2,0.88]
56 OVERALL SUPPORT c(2) : [0.6,0.8]
57
58 p(2) : [0.3,0.82]
59 OVERALL SUPPORT c(3): [0.2,0.41
60
61 p(3) : [0.1,0.941
62 OVERALL SUPPORT p(l) : [0.523137,0.81590 11

p(l) : [0.523137,0.8159011 ;

OVERALL SUPPORT -> P(2): [0.489512,0.8035551

p(2) : [0.489512,0.803555] ;

OVERALL SUPPORT -> p(3): [0.1,0.941

p(3): [0.1,0.941 ;

no more non-cutoff solutions

query?

61

Implementing the trace I involved the introduction' of three new relations:

clauseprint/l, traceprint/4 and tracegoal/l. ' All three of these always succeed,

doing nothing when trac in g is switched off, btit *printing 'their respective messages

when a trace has been invoked as indicated above. The difference between these

two states is recognised by the presence or absence, respectively, of the clause

notrace. This is retracted by slopcall when a traced query is encountered, but

always reasserted by reset to maintain a default state of no tracing. The two goals

clauseprint and tracegoal always appear together in those clauses of the interpreter

concerned with evaluating the support from a rule. The first prints out the rule

about to be evaluated and the second asks-the user what action is to be taken. The

goal traceprint occurs at the end of every clause which evaluates for a Support

Logic construction in the relations slopjnterp, body__ýupport, bundle_sup and

bundle_body.

This method of tracing queries does have a drawback because of the effects

of breadth searching, using a depth search mechanism. Referring' to the above

trace, lines 6 and 7 show that a breadth search is applied to find the two solutions

to a(X), however these are then taken individually in a depth search fashion while

solving b(X); lines 8 to 23 and 28 to 41. This does not make for great readability of

the trace but is not easily avoidable in a simple system such as this. Without fancy

graphics techniques the trace has to be laid out in a linear and sequential fashion

but this does not fit in closely enough with the way the system works.

3.4.4 Error Checking

Built in to the Prolog system is a syntax error checking mechanism that is

used every time a term is read in - consulting, reconsulting, querying or any time

the read predicate is used. This mechanism checks for badly placed brackets and

the misuse of operators etc, but for Slop it would be useful to check the use of the

3- 62

colon operator to make sure that a clause or query actually means something, in

Support Logic terms. The restriction on the colon in the body of a rule is

essentially that it should only be followed by one or two support pairs, and no other

construction. Note, however, that this is not violated by bundles because the left-

arrow is given a higher precedence value than the colon.

Slop error checking is carried out by, the relation bad_colon/4 which

succeeds if. there is a Slop syntax error, but otherwise fails. Having the relation

work this way round, rather than failing when an error is encountered, allows the

location of the error to be detected and printed out with the error message. The

first attribute of the relation is the term to be tested, and the remaining three are

partitions of the term indicating where the error occurs. For example if X was the

query

a(V), b(V) : [0.7,0.8], c(V).

in the goal bad_colon(X, J, K, L), then J, K and L would be instantiated as follows:

J- a(V), b(V): [0.7,0.8]

K. =

L- c(V)

K is bound to the operator connecting the correct part (J) with the incorrect part

(L). Queries are tested in slopcall by putting the goal not bad_colon(X, J, K, L) as

the first subgoal. If the test for a wrongly used colon fails, support evaluation

continues, but if it succeeds, the system backtracks to a clause of slopcall that prints

out the error message. The incorrect query above would have caused the message

3- 63

... SLOP syntax error ...

a(X), b(X) : [0.7.0.81

... here ...

, C(X)

Applying the error checking to relations being consulted or reconsulted is not

possible in all versions of Prolog, without specifically rewriting the consult and

reconsult predicates. In C-Prolog, in which Slop was originally implemented, there

is a user-definable ý predicate, expandjerm/2, which is called, during the consult

and reconsult process. It is not however definable in all Prologs and so the following

method is not generally applicable. The purpose of this predicate is to allow the

user to define a method for expanding terms from one form (first attribute) to

another (second attribute) which can be asserted in the knowledge base. For the

error checking, the terms are not in fact altered to produce the second attribute, but

instead are processed by bad_colon. If the term being investigated shows a Slop

syntax error then the call to expandjerm will fail and the term will not be

asserted. The system then backtracks to find the next clause in the file.

Another check that is carried out using expand_term is designed to ensure

that the user does not try to define a relation which clashes with any of those

defining the Slop system. In the same way that all Prolog system predicates are

identified in the relation sys/1, all Slop system predicates (e. g. slopcall,

query__support, etc.) are identified in the relation slop/I:

e. g. slop(slopcall(_I)).

slop(query_ýupport(_1,2)).

etc.

3- 64

All relations consulted 'or reconsulted by the user are then checked against this

"dictionary" and any that match are not -asserted in the knowledge base and a

message is printed to the terminal.

3.4.5 Listing'the Support Logic Knowledge Base

one final requirement is for the user to be able to list out all or part of the

knowledge base, but without seeing all the clauses defining the Slop system itself.

This precludes using listing/O since this will list all the clauses in the Prolog

knowledge base, and also Ilsting/1 is not as useful as it might be because of the way

Prolog understands Support Logic rules. Although listing is designed to print each

subgoal of a clause on a separate line, the body of a Support Logic rule will be on

one line because, as explained in section 3.2.1, it consists, in Prolog terms, of a

single goal with functor :. The Support Logic rule

b,

c : [I. I].

would be printed

a: -

b', 'c : [1,11.

The new predicates, slist/O and slist/l, are defined to list out the Slop

knowledge base (not list because it is a reserved word in some Prologs). Both can

be used in the same way as listing, but, as well, slist/l has been defined as a prefix

operator of precedence 900 so that the predicates to be listed need not be in

brackets (i. e. slist(goal) and slist goal are equivalent). The way that slist/O avoids

printing out the clauses defining the Slop system is by checking each relation it is

about to print against the dictionary defined by slop/l. Both slist/O and slist/I call

3- 65

portray/2 to print out the clauses. This predicate copes with peculiarities of the

colon, as well as the operators defining bundles and equivalences. The first of the

two attributes is an indentation level (starting at zero) to achieve an easily readable

layout for bundles and disjunctions etc. The relation portray is also called from

some of the tracing'relations and clauses that print error messages.

3'- 66

Chapter 4. Translating Support Logic Programs

4.1 Introduction

The Support Logic interpreter described in chapter 3 was explained in terms

of extending a simple Prolog interpreter to accommodate the evaluation of supports

at each stage of a proof path and to perform a breadth search over the knowledge

base. Querying a knowledge base through such an extra level of interpretation

significantly impairs the efficiency. of 'the query evaluation, because a large

proportion of the time is spent doing exactly what Prolog itself is designed to do -

carry out a theorem resolution procedure. If the support evaluation and breadth

search mechanism could be incorporated into the Support Logic knowledge base

itself, then very much more efficient programs could be generated. The Support

Logic translator is designed to perform this function: converting Support Logic

knowledge bases that need to be queried through Slop, to Prolog programs that,

when queried from Prolog, return supports with the solutions to proved goals.

4.2 Support Pairs on Prolog Goals

For a Support Logic goal to be queried from Prolog directly and to return a

support pair, the goal must have associated with it a variable to which this support

pair can be bound. This is in contrast to Slop, for which supports on goals are

implicit, and are handled and printed by the interpreter itself. The only way to do

this is by incorporating an extra argument into all the goals being translated, thus

the Slop goal pred(X, Y) becomes pred(S, X, Y) where S will be bound to the support

pair. The support evaluation for a rule has to be incorporated into the body of that

rule as an extra subgoal, or subgoals, and must contain the conditional support pair

of the rule. For example the rule

4-1

pred(X, Z): -

subgoall(X, Y),

subgoal2(X, Y, Z) : S-Cond.

will become

pred(S, X, Z): -

subgoall(SI, X, Y),

subgoal2(S2, X, Y, Z),

support-eval([S 1, S2], S_Cond, S).

where support-eval is assumed to evaluate, the support for the conjunction of the

two subgoals, from S1 and S2, and condition this on S-Cond to produce the

support, S for the head of the rule. The problem arises when a goal can be proved

in more than one way, from a single rule (as above),, or from more than, one rule,

and we have. to implement the calculus for evaluating supports across a breadth

search to obtain the overall support. Since it is necessary to effect a breadth search

of the knowledge base, the most obvious solution would be to use bagof, or a

variation of it, as in Slop itself. A correct translation of the above example, that

would ensure that the support evaluated was an overall support, would be

pred(S, X, Z): -

bagof(SI, sub_pred(S I, X. Z), L),

samecombine(L, S).

sub_pred(S, X. Z): -

subgoall(SI, X, Y),

subgoal2(S2, X, Y, Z),

support_eval([SI, S2], S_Cond, S).

This translation involves the introduction of an intermediate level that causes

a breadth search on the original translation (now sub_pred) before the overall

4-2

support is evaluated using samecombine. Although this is a correct translation and

all Slop rules could be translated in this way, it is still not very efficient, because

for every relation in the knowledge base an extra level of proof has been

introduced. This situation can be improved if we know something about the actual

solutions that'can be generated.

4.3 Optimising the Translation

. The purpose of carrying out a breadth search over the knowledge base is to

generate all the solutions to the relevant goals and to insure that the support

associated with each solution accounts for every possible proof path. However,

provided this is achieved, it does not matter what search mechanism is used, and

under certain circumstances it can be achieved equally well with a depth search - if

there is only one proof path to a solution breadth and depth searches will achieve

the same result. The key, then, to optimising a translation is knowing- how

individual solutions can be generated and by how many different proof paths., -1

I

4.3.1 Single Clause Relations

Let us consider the example knowledge base:

pred(X, Y): -

subgoall(X),

subgoal2(X, Y. Z) : S-Cond.

subgoall(a): - : SA.

subgoal2(a, b, l): - : SB.

There is only one solution to the query pred(X, Y), and furthermore only one proof

path generating it, which binds a to X and b to Y. The translation

4-3

pred(S, X, Y): -

subgoall(SI, X),

subgoal2(S2, X, Y, Z),

support-eval([S 1, S2], S-COnd, S).

subgoall(SA, a).

subgoal2(SB, a, b, 1).

will thus correctly evaluate the support for this solution. We can also add a new

clause for subgoal2:

subgoal2(a, c, 2): - : SC.

and the translation, with the extra clause

subgoal2(SC, a, c, 2).

will still remain valid without. having to include any specific breadth searching

mechanism. The depth search of Prolog will happily find the solution X=a, Y=b

with associated support bound to S, and then back-track to find the new solution

X=a, Y=c with new support bound to S. The translation becomes invalid if the new

clause to subgoal2 is

subgoal2(a, b, 2): - : SD.

which translates to

subgoal2(SD, a, b, 2).

In this case Prolog will generate the solution X=a, Ymb with Z having been bound to

the number 1, and on backtracking will generate the same solution with Z having

been bound to the number 2. For each proof path to the solution, S will have been

bound to a support pair and these should be combined to produce''a single support

pair to the single solution X-a, Yub. In such a case, it is unavoidable but to

4-4

introduce the intermediate level and use bagof, in what we will call a bagof-form

translation;

pred(S, X, Y): -

bagof(Sl, sub_pred(SI, X, Y), L),

samecombine(L, S).

sub_. pred(S, X, Y): -

subgoall(SI, X),

subgoal2(S2, X, Y, Z),

support-eval([SI, K], ý_Cond, S).

subgoall(SA, a).

subgoal2(SB, a, b, 1).

subgoal2(SD, a, b, 2).

There is a restriction, then, on translating a relation consisting of a single clause: if

this clause can generate the same. solution more than once then a bagof must be used

in the translation, otherwise a depth search type translation will be valid.

it is also worth observing here, that the validity of the translation was

altered by the assertion of particular extra clauses to relations defining the subgoals.

This means that a translated support logic knowledge base should not be extended

by the assertion of new translated clauses, because subsequent queries are very likely

to produce wrong supports to solutions. This should not be considered an undue

restriction, because translation of Support Logic knowledge bases is on a par with

compilation of Prolog modules. A Prolog program can be amended, but the system

will still correctly resolve theorems from top level queries. However, once Prolog

code has been built into a module, it is untouchable, and to be amended, it must be

recompiled. Translating Support Logic knowledge bases is very similar, the main

difference being that the translator generates Prolog code, whereas module compilers

do not. This means that, although being very ill-advised, it is possible to tamper

4-. 5

with the translated code or to assert new clauses with which it will interact. The

purpose of translating Support Logic knowledge bases is to provide a way of

producing more efficient code from a complete Support Logic program. Slop can be

used for developing and tracing the knowledge base in the first instance, and when

complete, it can be translated to produce a faster finished application.

4.3.2 Multi-Clause Relations

When a relation consists of more than one clause, it is necessary to compare

the solutions generated by the different clauses in order to optimise the translation.

There are three possible ways in which two sets of solutions for different clauses

can compare: they can be completely different, exactly the same. or they can

overlap, i. e. share common solutions. In the first two cases, it is possible to perform

the translation without the need to use the bagof-form.

Let us consider the following relation:

pred(X, Y): -

subgoall(X),

subgoal2(X, Y) : Sc I.

pred(X, Y): -

subgoal3(X, Y) : Sc2.

and assume that clause I provides the solutions X=a, Y=b and X=a, Y=c and that

clause 2 provides the solutions X-b, Y-c and Xmb, Y=d, which we will represent by

the two lists

I [[a, b], [a, c)] and

2 [[b, cj, [b, dl]

4-6

Each element of the lists I and 2 correspond to a, solution from the

particular clause and each solution is represented by a list of terms to which the

arguments of the goal will be bound, in generating a solution. In this case there are

no elements common to both list I and list-2 reflecting that the two clauses generate

completely different solutions from each other. When generating support for

solutions from a relation with such clauses, there is no need to consider the two

clauses together and they can be translated individually according to the restrictions

explained in the previous section (4.3.1). In fact with these particular clauses, it is

possible to see on inspection that neither clause can generate any solution more than

once. The reason for this is that there are no variables local to either rule, i. e.

variables that are used in the body but do not occur in the head of the clause.

Compare these clauses with the definition of, pred in section 4.3.1 in which the

variable Z is local to the rule. It was when this variable had two, different

instantiations (I and 2),, -for the same bindings on X and Y, that a bagof-form

translation was required. Since neither of the two clauses we are considering here

have local variables the following translation for the relation is guaranteed to be

valid:

pred(S, X, Y): -

subgoall(SI. X),

subgoal2(S2, X, Y),

support-eval([S 1, S2], Scl, S).

pred(S, X, Y): -

subgoal3(S3, X, Y),

support-eval([S31, R2, S).

If there are local variables in either rule and the rule, generates a solution more, than

once, then the above translation of the relevant clause would simply be replaced by

4-7

the bagof-form. If this were true of both rules then the two bagof-forms could be

combined into one by using the same top level rule for both clauses:

I
pred(S, X, Y): -

bagof(S l, sub_pred(S I, X, Y), L),

samecombine(L, S).

The second situation is when the two clauses generate exactly the same

solutions so that our solution set lists might be

I [[a, b], [a, c]] and

2 [[a, b], [a, c]]

In this case, again providing neither clause generates the same solution more than

once, the' two clauses can be translated, without using bagof, by building them

together as one translated clause. This of course has the added advantage of

reducing the time taken searching the knowledge base and unifying clause heads.

The translation would now become

pred(S, X. Y): -

subgoall(SI, X),

subgoal2(S2, X, Y),

support-eval([SI, S2], Sc 1, Sa),

subgoal3(S3, X, Y),

support-eval([S3], Sc2, Sb),

samecombine([Sa, Sb], S).

which we will call a one - clause- form. If either, or both, of the clauses could

generate the same solution more than once then the translation would have to be

split and a bagof-form used.

4-8

The third and final relationship between the sets of solutions of two clauses

is that they have solutions common to both, but also some unique to one or other

clause. For example the two clauses might have solution set lists

I

2 [[a, b], [a, c], [a, d]]

In this case the two clauses can not be translated individually because it is necessary

to combine the supports from the two proof paths for each of the solutions [a, b] and

Similarly the two clauses can not be combined into one because the body of

clause I would fail for the variable bindings X=a, Y=d and thus this solution would

not be generated. We could use a combination of the two that would use a one-

clause-form for the two solutions [a, b] and [a, c] plus an individual clause for the

solution [a, d]. This individual clause would, though, have to insure that the

variables in the head of the clause could be bound to nothing but [a, d], so that the

solutions [a, b], [a, c] would not be generated twice.

pred(S, X, Y): -

subgoall(SI, X),

subgoal2(S2, X, Y),

support-eval([S 1, S2], Sc I. Sa),

subgoal3(S3, X, Y),

support_eval([S3], SC2. Sb),

samecombine([Sa, Sb], S).

pred(S, a, d): -

subgoal3(S3, a, d),

support-eval([S3], Sc2, S).

The drawback of this particular translation is the duplication of code from the

second clause of the original Support Logic relation, otherwise it is a relatively neat

4-9

translation. As a translation technique to be used in general, however, it has two

significant failings.

The first failing concerns the second clause of the translation in which the

variables X and Y are replaced by the terms a and d respectively thus guaranteeing

the clause could not generate support for solutions [a, b] and [a, c]. If, however, the

solution set lists had been

I [[a, bl, [a, c]], and

2 [[a, b], [a, c], [a, dl, [a, e]]

then this clause would have had to provide the solution [a, e], by introducing some

sort of solution check:

pred(S, X, Y): -

member([X, Y], [[a, dl, [a, e]]),

subgoal3(S3, X, Y),

support-eval([S3], Sc2, S).

Again this would work fine, but one can see that with predicates of larger arity,

arguments of greater complexity and larger sets of solutions, the checking might

start to override the extra efficiency we are trying to achieve.

The second failing is when such overlapping solution sets occur not just

between two clauses. but between three or more. We would then have perhaps

several one-clause- forms as well as several individual clauses and the code

duplication would escalate, with the number of clauses involved. The simplest

general structure, and in some circumstances probably the most efficient, is the

bagof-form; the relation is translated as individual clauses with a different predicate

name and an intermediate level clause that calls bagof on that new predicate name:

4- 10

pred(S, X, Y): -

bagof(S l, sub_pred(S I, X, Y), L),

samecombine(L, S).

sub-pred(S, X, Y): -

subgoall(SI, X),

subgoal2(S2, X, Y),

support-eval([S 1, S2], Sc 1, S).

subý_pred(S, X, Y): -

subgoal3(S3, X, Y),

support-eval([S3], Sc2, S).

An advantage of always using the bagof-form when solution sets overlap, is

that it is sufficient for the translator to establish that there is an overlap; it need

not find the particular solutions that are common to both clauses. The translator

also does not need to consider the possibility of any clauses, so involved, providing

duplicate solutions since this will be dealt with by the bagof-form anyway'.

4.3.3 Clause Ordering

The previous two sections have discussed how we can use knowledge of the

solution sets of individual clauses within a relation to produce neater and more

efficient translations. The examples given, however, consisted of no more than two

clauses, thereby guaranteeing the juxtaposition of clauses that could be translated as

a group. We could have a relation, pred(X, Y), with six clauses and the following

solution set lists

4- 11

I [[a, b], [c, d]] 1

2 [[e, f]] 2

3 [[a, b], [g, h]] 3-1

4 Hilill 4

5 [[a, b], [c, d]] 1

6 [[a, bl] 5-3-1

The numbers to the right of the solution sets are clause solutlon numbers (CSN's)

and are used to identify the relationships between solution sets. A CSN consists of

a solution set identifier for the particular solution set, followed by the solution set

identifiers of those solution sets with which it overlaps. Clauses I and 2 have

totally differing solution sets and therefore no overlaps, and have different, single

figure CSN's. Clause 3 has a new solution set (solution set identifier 3) but one that

overlaps with solution set I (for clause 1) and therefore has the suffix "-I", making

a CSN of 3-1. Clause 4 has a new and, so far, unique solution set giving it a CSN

of 4. Clause 5 has a solution set that is already identified as solution set 1, and thus

the same CSN, while that of clause 6 is new (solution set identifier 5) but overlaps

with solution sets 3 and I giving it a CSN of 5-3-1. We can see that the largest

number involved in a CSN can not be greater than the number of clauses and also

that the number of "-n" suffices signifying overlaps is limited by the number of

previously identified unique solution sets. -

In -a relation with solution sets as above, the order of the clauses does not

immediately lend itself to any efficient translation and the only correct translation

would require a bagof-form. We would prefer the clauses to be in an order such

that clauses I and 5, having CSN 1, were together to be translated using a one-

clause-form, and clauses 1,3,5 and 6 were together to be combined to accommodate

the overlap of solution sets. Clauses 2 and 4 could then be translated individually.

There is, in fact, nothing to stop us reordering the clauses so that this is the case:

4- 12

original CSN's
clause nos.

I [[a, b], [c, d]] 1

5 [[a, b], [c, d]] I

3 [[a, b], [g, h]] 3-1

6 [[a, b]] 5-3-1

2 [[e, f]] 2

4 4

Because we are going to carry out a breadth search over the knowledge base.

the order of clauses becomes immaterial to the proof. The depth search of Prolog is

used in order that the known order in which goals will be queried can be utilised to

produce procedural programs. The Prolog system predicates that perform side-

effects would be of no use if we could not guarantee this order. In a Support Logic

knowledge base, we are not trying to represent procedural information, but the

relationships between data and conclusions and thus the order in which the supports

for different conclusions, or the support for proof paths of like conclusions, is

evaluated, does not matter. The reordering shown above provides us with a

translation consisting of a bagof-form calling three clauses (the one-clause-form of

clauses I and 5, plus clause 3 and clause 6) and two individual clauses (2 and 4).

As always there is an exception to this rule - when the cut is used. This is a

Prolog system predicate with the very special side-effect of removing back track

points. Although very specifically a depth search control mechanism it does have its

uses in the breadth search of Support Logic as discussed in section 3.2.6. The use

of the cut means that the clause order is again important, but only with respect to

the clause containing the cut; clauses before this cut-clause must remain before it,

and those after it must remain after it. Within this restriction clauses can still be

reordered, however to implement this, the translator has to know in which clauses

13

cuts occur. This information can be obtained as the knowledge base is read in from

file, at which time another important function is carried out.

4.4 Creating a Knowledge Base Module

The most obvious way of generating the solutions to all clauses in the

knowledge base is by evaluating all the possible queries. This requires the
I

knowledge base to be consulted into Prolog at the same time as the translator itself

and we thereby risk predicate names clashing and relations being redefined. In a

Prolog that has a modules facility, whereby sections of code can effectively be

partitioned in the knowledge base, this could be achieved by building the translator

into a module and loading the file to be translated into a -separate part of the

knowledge base., In the version of Prolog (C-Prolog 1.4) in which Slop and this

translator have been developed., such a facility is not available and an alternative

scheme has been built into the translator itself, and is called by the goal readin with

the file-name as argument.

The purpose of creating a module is to prevent code from clashing with any

other code that is required in the knowledge base, and a clash only occurs if two

relations have the same predicate name and arity. A pseudo-module can be created

if the predicate names of all relations are changed to something that can be

guaranteed to be unique. The translator achieves this by using the name of the file,

containing the Support Logic program, as a prefix to all the predicates in the

program. Thus the predicate reliability in the file design would become

design reliability in the module. A double underscore is used between the file-

name prefix and the original predicate name, to guarantee distinction from any

predicates in the translator, ' none of which contain a double underscore. ' Using this

mechanism, we can guarantee that no clashes will occur between files of a different

name. It is assumed that if a file has the same name, then it is the'same file and

14

any redefinitions. that might occur are intended. This renaming of predicates has to

be performed, throughout the file, to all instances of the original predicate and thus

every clause in the file has to be investigated goal by goal. An extra, function

carried out by the module creating facility is the introduction of an extra argument

to every non-system predicate call and definition. This argument is put at the

beginning of the argument list and is an anonymous variable in all instances but the

clause head. It serves no purpose, in the uniqueness of relations in the module, but

is used to assign a clause number to each clause in the relation. For the first clause

it is 1, the second, 2 etc. This numbering is used at a later stage in the evaluation

of solution sets to clauses.

..
Calls to three system predicates have to be treated in individual ways

because they are predicates that refer to predicate names alone, i. e. without their

arguments; these are functor and abolish. The predicate names so referenced

would usually be interpreted as data terms and not predicates, and thus they would

not be altered, however as arguments to these three system predicates they must be

altered. To achieve this the three system predicate calls are replaced by calls to

PA=.. ', 1,11unctorl and '^abolish' respectively, which are defined to perform the

appropriate alterations to predicate names at run time. All other system predicates

must be left alone and their names left unaltered. The main reason for this is that

the predicate name, must remain the same in order for the appropriate call, to be

carried out at run time. As well, as this, since system predicates can not be

redefined anyway, there is no chance of a name clash occurring and therefore no

need for the predicate name to be altered.

The above mechanism allows code, both Prolog and Support Logic, to be

loaded into the knowledge base without causing name clashes and accidental -relation

redefinitions. To create a full-blown module, it would also be necessary to allow

import and export predicates for the module -predicates that can be defined outside

15

and called within the module, 'and predicates that can be defined within and, called

from outside the module, respectively., This is not necessary for translation, though,

because we do not intend to create otherýmodules at the same time, and we do not

need access to the original predicates because all the new predicate names can be

recorded by the translator. As all clauses in the file have to be considered goal by

goal, we can, at the same time as building the module, locate all calls to the cut and

identify the clauses in which they occur. This information is also recorded, along

with a list of all the clause definitions for each relation.

The first part of' the' translation ý process creates -a modular form of the

Support Logic program being translated and, - for every relation in the program,

stores in the knowledge base a clause holding the following information: ,---

the most general clause head, MgH, i. e. that with all arguments variable,

the modular form of the most general clause head, ModH,

a list of all the clause definitions, Cs, and

the cut list, Cuts (a list of terms n or c, one for each clause, where c means

there is a cut and n means there is no cut):

relation([MgH, ModH, Cs], Cuts).

These clauses can then be accessed one at a time to provide the'relevant information

for generating solution sets and translating the Support Logic relations.

4.5 Generating Solution Sets

%

Having read in the file, the next task is to generate the solution sets for all

the relations and their clauses. A mechanism is provided in the translator, for

declaring the solution sets to the clauses of a relation in the original file, thereby

avoiding the lengthy process of querying every relation and this is described in

16

section 4.8 below. In this section we will describe how solution sets are generated

from the modular form of'the Support Logic program. Because 'of the possible

presence of cuts-in clauses of the knowledge base, this is performed in two stages.

The first stage is carried out by create' soln-sets and establishes the solution

sets for all, the relations (not individual clauses) and records them in 'clauses

soln-set(ModH, Ss) where ModH is the module form of the most general head, and

Ss, is the list of solutions. The -solutions are found using, a revised form of the

system predicate setof, called for every relation in the Support Logic file. This

revised predicate is called reln_soln_setof and the main revision is the way in

which it determines a set. In setof this is determined by whether or not solutions

unify, thus a set as produced by setof will have no two elements that are unifiable.

The set produced by reln_soln_setof determines the uniqueness of elements by the

comparator <=>. This comparator is a slightly relaxed form of the system predicate

which tests for two terms being "identical". Identical, in Prolog, means that

corresponding elements of the two terms under comparison refer to the same item.

Thus strings 'term 11 and 'term 1' are identical, and variables X and X are identical,

but variables X and Y are not, because, although they are both variables and can be

bound to the same value, as differently named variables, they refer to different data

items. It is this constraint that is relaxed in the comparator <=>, so that any two

unbound 'Variables will be satisfied by <=>. It is not relaxed as far as ordinary

unification (modelled by the comparator =) under which any unbound variable will

compare with any other term, variable or otherwise. Using the comparator <=> in

reln_soln_setof, variables in solutions are equivalent to the universal quantifier,

"for all". Thus the solution la, b, X] is the solution, argument I has value a, argument

2 has value b, for all values of argument 3, as is la, b, Yl. On the other hand la, b, cl

is the solution, argument I has value a. argument 2 has value b and argument 3 has

the particular value c, not any value. Solutions [a, b, X1 and la, b, cl are different

because, although the first is true when the second is true, the first can also be true

4- 17

when the second is'not. This distinction'is important in Support Logic, because

support -for the solution ja, b, XJ lends support to the solution [a, b, cl, but the

converse is not true.

I
Another difference in reln_soln_setof is that it contains a clause that looks

to see if the solutions have already been recorded by a specific declaration in the

file, so that solution, evaluation can be avoided where possible. , The other

differences in the definition of reIn_soln_setof are for streamlining the definition

by taking out that computation, performed by the more general setof, that is

unnecessary in reln_soln_setof.

An important aspect of the generation of solution sets for relations is that

the relations can be queried as Prolog goals and do not have to be queried as

Support Logic goals. The reason for this is that we are not interested in the

supports but only in the possible solutions and, furthermore, because we want all

the solutions and the order is not important, it does not matter if we carry out a

depth or breadth search. By querying as Prolog goals, the process is a great deal

quicker as no extra interpretation, as carried out by Stop, is necessary. We do

however have to provide definitions for the special Support Logic operators that

Slop interprets, :, both prefix and infix, sup__qr and sup_not, as follows:

: (X).

: (X, J: - call(X).

sup--not(X): - call(X).

SUP-or(X, Y): - call(X), call(Y).

sup__pr(X, _): - call(X).

sup__pr(_, Y): - call(Y).

Having established the solution sets for all relations in the Support Logic

knowledge base, it is now possible to generate the solution sets for the individual

18

clauses within a relation. This and all necessary processing up to and including

translation is carried out in one go for each relation being translated, by the

predicate trans-relations., The generation of solution sets for clauses is described

here, -and the remaining functions of trans-relations are described in the sections

below.

The solution sets of each clause in a relation are generated using

clause-soln_setof, another customised version of setof. This predicate has also

undergone some streamlining, but its most important differences are the way in

which it treats solutions as they are found, and the way in which it evaluates the

query for which solutions are being found. As with reln_soln_setof, the set

generated by clause_soln_setof is based on the comparator <=>, however another

function is also performed when solutions are compared. The first argument of the

solutions being generated will be the number of the clause from which a solution

was evaluated, thus identifying the clause under consideration. If this solution is

shown to be the same (according to <=>) as a previously evaluated solution, then it

must have been evaluated from the same clause (since the argument representing the

clause number is included in the comparison) and we have a situation where a single

clause generates the same solution more than once. As explained above in section

4.3.1 such a situation has to involve a bagof-form of translation and so we record

the occurrence ý by storing in the knowledge base , the clause

dol-bagof_clause(C - No) where C-No is the number of the clause in which the

duplication of solutions occurs. Such a record also needs toýbe made if we find-a

solution that does not satisfy <=>, but will unify with a previous solution, as well as

provide support for another solution generated by the same clause. For example the

solutions discussed above, la, b, XI and la, b, cl would fall into this category.

The other main difference in the definition of clause_soln_setof from that

of, setof, is, that the solutions are not evaluated using call, - which performs an

19

ordinary Prolog query, but solve. The purpose of solve is to get round the problem

of the cut-removing backtrack points and therefore preventing the evaluation of

solutions to clauses following a clause containing a cut. , This is achieved by solve

acting as a type of interpreter, but a very efficient version because it uses the

solution sets evaluated by rein-soln_setof. In this way it does not have to. look

deeper than the subgoals of the clause under investigation but instead obtains the

solutions, for them directly from the clause soln_set(ModH, Ss) in the knowledge

base, where ModH is the subgoal, and Ss the list of its possible solutions. By

accessing each clause of a relation-using clause, -any cuts encountered will have no

effect on the evaluation of solutions and the solution sets for all clauses can -be

generated.

4.6 Ordering and Translating Clauses

When the solution sets for all the clauses in a relation have been generated,

they are straight away used to establish the optimum order of clauses and optimum

translation, and therefore do not need to be recorded in the knowledge base. The

solution set for each clause is compared with the solution set of every other clause,

and according to how solution sets compare (same, different or overlapping) clauses

are allocated a clause solution number (CSN) as described in section 4.3.3. This

process is performed by translation_types, called by trans_relations, and returns a

list of CSN's corresponding to the list of clauses. The CSN's are also Used to flag

whether the clause has a cut in it, (suffix "-c") and whether the clause generates the

same solution more than once (suffix "-s"), both pieces of information being needed

to generate the optimum order.

Clause re-ordering is performed by order_clauses and involves two stages.

First, clauses are grouped together according to their need to be translated using a

bagof-form, thus all CSN's with common solution set identifiers are grouped

4- 20

together and clauses that are flagged by "-s" on their CSN's are grouped together.

Those CSN's which do not involve any overlaps or "-s" flags are grouped at the end

and are identified as being non-overlapping by the presence of the term

non_overlap before the group. The second stage is then to optimise the order

within each group so that clauses with identical solution sets can be translated using

the one -clause -form. The grouping procedure also takes account of cuts in clauses

(flagged by "-c" on the CSN) so that the effect of the cut on backtracking remains

the same in the translated knowledge base as in the original. If the clause

containing the cut is involved in an overlap of any sort, so that it will be translated

using a bagof-form, or if a clause prior *to the cut has a solution set overlapping

with that of a clause subsequent to it, then all the clauses currently under

consideration are grouped together for translation using the bagof-form. By doing

this the cut is kept at the same level with respect to all clauses over which it is

meant to have an effect, and the correct behaviour is maintained in the translation.

As discussed in section 3.2.6, the interpretation and use of the'cut within a breadth

search mechanism raises a lot of problems and it should be approached %ý'ithýgreat

care. It is not surprising, ý therefore, that it creates -difficulties when translating

Support Logic programs and on the whole it will be translated ý using a bagof-form.

However, it should only be in exceptional circumstances that the cut is used at all,

and the associated problems should be infrequent.

The following example demonstrates how a list of CSN's (not involving a

cut) would be reordered to provide an optimum translation.

[1,2,3-s, 4,5-1,6-2,7-s, 4,8,1]

is a list of ten CSN's with which there is a corresponding list of clauses to be

translated. All actions performed on this list of CSN's will be shadowed on the list

of clauses so that the correspondence is maintained, and the clauses will be in the

correct order for translation. The list is first grouped into sublists of CSN's:

21

[6-2,2] non_overlap, [3-s, 4,7-s, 4,8]]

where those lists before the term non_overlap are groups of clauses with common

overlaps, identified by the CSN's 5-1 and 6-2, and the list after the term

non_overlap is the group of clauses whose solution sets have no overlap with the

solution sets of any other clauses. Notice that the "-s" flags on the CSN's are

disregarded at this stage, and in this example both CSN's involved identify unique

solution sets and are therefore grouped in the final list. Each sublist is now sorted

into the best order within each group to give

[[1,1,5-1], [6-2,2], non_overlap, (4,4,8, [7-s, 3-s]]]

The "-s" flag is now used to group all such CSN's together in a list, identifying that

the bagof-form should be used.

The ordered lists of CSN's and corresponding clauses, produced by

order_clauses is now passed to trans-relation which performs the actual translation

of clauses in their groups. Coming before the term non_overlap, the first two

groups will be translated using the bagof-form. This involves defining the top level

goal that calls bagof and samecombine and defining the relevant clauses with their

new predicates. The new predicate is generated by prefixing the original predicate

by bag_N where N is a number that is incremented each time a new predicate name

is generated. Thus if the predicate of the relation, with list of CSN's in the above

example, is pred, then the predicate name used in translating the group identified

by [1,1,5-11 would be bag_lpred, and the group identified by'[6-2,21, bag *2pred.

The clauses themselves can then be -translated using either the one-clause -form,

where there are duplicate CSN's, or as individual clauses where there are not. The

group given by 11,1,5-11 would thus produce a translation something like

22

pred(S, X): -

bagof(S l, bag_l pred(SI, X), L),

samecombine(L, S).

bag_lpred(S, X): -

subgoall(SI, X),

subgoal2(S2, X),

andcombine(S 1, S2, Sa),

condcombine(S, Condl, Sa, SA),,

subgoal3(S3, X),

condcombine(S-Cond2, S3, SB),

samecombine([SA, SB], S).

bag_lpred(S, X): -

subgoal4(S4, X),

subgoal5(S5, X),

orcombine(S4, S5, Sa),

condcombine(S-Cond3, Sa, S).

Notice that subgoals are always evaluated in conjunction whether or not the support

is to be combined as a conjunction (using andcombine in clause I of bag_lpred) or

as a disjunction (using orcombine in clause 2 of bag_lpred). The translation of the

second group will look similar, but will use the subsidiary predicate bag__, 2pred and

will not use a one -clause- form.

The remaining group of clauses (identified by [4,4,8, j7-s, 3-sjJ) do not

involve any overlapping, however the sublist 17-s, 3-sl is a list of all the clauses

which are able to generate the same solution more than once. These should be

translated using another bagof-form, while-the rest, 14,4,81, can be translated as a

one-clause-form and an individual clause. The overall impression of the final

translation, with relevant CSN's to the right of each clause, will be

23

pred(S, X): - '

bagof(Sl, bag_l pred(SI, X), L),

samecombine(L, S).

pred(S, X): -

bagof(S2, bag_2pred(S2, X), L),

samecombine(L, S).

pred(S, X): -

.... condcombine(S-Cond I, S I, SA),

..., condcombine(S-Cond2, S2, SB),

samecombine([SA, SB], S).

pred(S, X): -

..., condcombine(S-COnd3, S3, S),

pred(S, X): -

bagof(S3, bag_3pred(S3, X), L),

samecombine(L, S).

bag_l pred(S, X): -

..., condcombine(S_Cond4, SI, SA),

.... condcombine(S_Cond5, S2, SB), ý

samecombine([SA, SBI, S).

bag_l pred(S, X): -

..., condcombine(Sý_Cond6, S, S).

bag__2pred(S, X): -

..., condcombine(S-Cond7, S 1, S).

bag_2pred(S, X): -

.... condcombine(S-Cond8, S2, S).

bagjpred(S, X): -*_

..., condcombine(Sý_Cond%S 1, S).

[1,1,5-11

[6-2,21

[4,41

181

[7-s, 3-sl

[5-11

[6-2]

[21

[7-s]

4- 24

bag_3pred(S, X): - [3-s]

..., condcombine(S-Cond I 0, S2, S).

When a relation has been translated, the data for the next relation to be

translated is retrieved from the knowledge base (stored in clauses of relation by

readin, see section 4.4) and the process is repeated until the whole Support Logic

program has been translated. The translated clauses are printed using write and can

therefore be directed to the screen or to a file. The latter is achieved by redirecting

the output to a file using the Prolog system predicates tell and told. Af urther

option is to have the translation directly asserted into the knowledge base. This is

done by writing the translation to a file which is automatically reconsulted at the

end of the translation.

4.7 Semantic Unification

The purpose of translating Support Logic programs is so that they can be, run

directly as Prolog programs, while still evaluating the supports, making use of the

built-in unification and resolution mechanisms of the language. In implementing

semantic unification in translations we do not want to rely on checkingifor fuzzy

arguments at run time, so we must locate where they occur by looking at the

solution sets. Those goals that do involve semantic unification must then be

arranged so that the standard unification process is interrupted, and the only way to

achieve this is by defining an intermediate level between the call and the goal itself.

This intermediate level, which is similar, in construction, to the bagof-form, will

intercept a call, evaluate the goal independently and then perform semantic

unification where necessary.

When a goal is called, the fuzzy argument of the goal can either be, a

variable or some fuzzy term. In both cases the intermediate level must evaluate the

goal with a variable in place of that argument, so that the goal does not fail as a

25

result of an inability to syntactically unify the fuzzy argument. The term for which

the goal generated a solution can then be semantically unified, in the first case, with

all possible semantic unifications, and, in the second case, with the term involved in

the original call. The intermediate level for the Support Logic goal pred(X, Y), with

second argument fuzzy will look something like:

pred(S, X, Y)-. -

fuz-pred(SI, X, Z),

semunify(S, S1, Y, Z).

where fuz_pred is the predicate of the* subsidiary relation, and semunify performs

the semantic -unification between terms Y and Z. This intermediate clause will

intercept all calls'to pred and semantically unify on the evaluation of fuz_pred. It

will not, however, allow the fuzzy term to be passed directly through the call for

evaluation at a higher level as explained in section 3.3.5.3. The definition needs to

be modified, but we also need to introduce some mechanism for identifying whether

the'fuzzy term is at its highest level of reference. If it is not, then semantic

unification should not take place, and the variable binding from the evaluation of

the goal fuz_pred'should be passed straight up; i. e. Y and Z should be unified.

Let us consider again the two possible cases, Y being variable or Y being

bound. If, Y is non-variable, then the fuzzy term must have been introduced at the

level of the call and thus it must be the highest level; as soon as a fuzzy term

reaches a second level of evaluation it becomes a variable by the action of the

intermediate level clause. This highlights the problem with a variable fuzzy term in

a call; is it a variable on account of the action of an intermediate level call, or is it

a new variable local to the clause making the call? The only place where it is

possible to determine this is at the call itself, and this we can do during translation,

and do not have to carry out at run time. One way to do this would be to

investigate every subgoal in a clause to see if it is called with a local variable, rather

4- 26

than a variable frorn the head of the clause. This would involve complicated

comparisons of variables using the identicality comparator, ==. A much neater way,

which does not- involve any, searching makes use of the syntactic unification of

Prolog. Suppose pred(X, Y) is defined as

pred(X, Y): -

subgoall(X),

subgoal2(X, Y) : [0.7,0.9]

where the second argument is fuzzy. If we bind any term to Y, then all instances

of Y throughout the clause will be replaced by this term, immediately identifying

those subgoals that are called with a fuzzy argument not at its highest level. If we

make this term a variable -with a flagi then it will identify itself at run time as a

call involving a fuzzy term not at its highest level, but will still have a variable to

which the evaluated term can be bound. We do not however want pred itself to

return the flag, as the flag only has any meaning when a goal is called. What we do

then is replace (not unify) Y in the head by another, new variable, say Z, and then

bind all other instances of the variable Y to Z-Afuzzy. "Afuzzy" is the flag. bound

to Z by the minus operator, and is deliberately obscure to minimise the chance of it

being duplicated coincidentally by the user. A new clause now has to be introduced

to the intermediate level, handling the occasions when the fuzzy term carries this

flag. Using the following facts,

subgoall(a): - : [0.9,11.

subgoal2(a, high): - : [0.8,0.91.

with the knowledge base above, in which high is a fuzzy term, thus making

argument 2 of both pred and subgoal2, fuzzy, the translation would be:

4- 27

pred(S, X, Y): -

var(Y),

fuz-pred(SI, X, Z),

semunify(S, S1, Y, Z).

pred(S, X Y_'AfUZZyl): _

fuz-pred(S, X, Y).

pred(S, X, Y): -

fuz, red(SI, X, Z),

semunify(S, S1, Y, Z).

fuz-pred(S, X, Y): -

subgoall(SI, X),

subgoal2(S2, X, Y-'Afuzzy'),

andcombine(SI, S2, SA),

condcombine([0.7,0.9], SA, S).

subgoal 1([0.9,1], a).

subgoal2(S, X, Y): -

var(Y),

fuz-Subgoal2(S I, X, Z),

semunify(S, S1, Y, Z).

subg6al2(S, X, Y-'Afuzzy'): -

fuz-Subgoal2(S, X, Y).

subgoal2(S, X, Y): -

fuz-subgoal2(S I, X, Z),

semunify(S, SI, Y. Z).

fuz-subgoal2([0.8,0.9], a, high).

Translations of relations involving fuzzy arguments are cumbersome since

every such relation, regardless of how large or complicated it might be, requires its

own three, intermediate level clauses. Clause 2, in each case, handles fuzzy terms

28

not at their'highest level, clause' I therefore has to be put -in to intercept variable

fuzzy' terms before they are satisfied by clause 2. and clause 3 deals with all other

values for the fuzzy term., The simplification of dropping clause 2, and merging

clauses I and 3 could only be allowed if the relation is NEVER called except with

its fuzzy term at its highest level and' this would necessitate investigating every

relation in the program to establish that this is the case. Such a search would be

enormously time-consuming and would only really improve the efficiency of the

translation with respect to the amount of code it generates, and not the speed of

that code. Such a simplification is therefore not performed.

4.8 "Solutions" and other Declarations

For a knowledge base consisting of more than about five levels of rules, the

evaluation of solution sets starts to be the most time-consuming aspect of the

translation process. The time taken by other aspects, such as solution set

comparison. clause ordering and clause translation, are generally independent of the

overall size of the Support Logic program. Solution set comparison does increase

dramatically with the size of the relation, however large relations (i. e. large numbers

of clauses) are not particularly common, except as ground data (Support Logic

facts), in which case the solution sets being compared have only one element and

the process is trivial. The translation itself can therefore be significantly speeded

up by explicitly stating the solution sets in the file containing the Support Logic

program. This is unlikely to involve the user in an inordinate amount of extra work

since, in developing the knowledge base, the user will have defined the solution sets

anyway.

To determine the optimum translation, solution sets for each clause in a

relation are needed. and also for the relation as a whole. The latter can of course

I be evaluated from the solution sets for the clauses, so it is those that we have to

4- 29

declare. The declaration is performed by a directive in the file, calling the goal

solutions. This can take two or three arguments, in which the third argument

defines a shorthand using a type declaration. The other two arguments identify the

predicate of the relation to which the declaration relates, and specify the solution

sets for the clauses of the relation. For example, solution sets for the relation

pred(X, Y), given in section 4.3.3, would be declared by

:- solutions(pred/2, [[[a, b], [c, d]],

[[a, b], [g, h]],

[[a, b], [c, d)],

[[a, bl]]).

The list contains elements each corresponding to a clause in the relation and

each of 'which is a list of solutions that can be generated by the- particular clause.

The three argument form would -be used in association with one or more type

declarations and allows particular solutions to be replaced by a variable. The main

use for this structure is in relations that can generate complicated solutions and in

large Support Logic programs in which the same solution can be generated by

several different relations, thus preventing the need for the same solution being

repeated in the different solutions declaration. Given the simplicity of the solutions

in the above relation,, the use of the three argument form is of little saving unless

used with other solutions declarations. It would, however, be used as

30

type(l, [a, b]).

type(2, [c, d]).

type(3, [e, f]).

type(4, [g, h])

type(5, [i, j]).

solutions(pred/2, [[A, B], [C], [A, Dl, [E], [A, B], [A]],

[(I, A), (2, B), (3, C), (4, D), (5, E)]).

The third argument consists of a list of pairs relating a solution type to a variable.

In the example the solution type 1 (being [a, b]) is bound to the variable A, type 2

(being [c, d]) to B etc. By binding the variables in this way, the list of solution sets

eventually becomes the same list as the list in the original two argument form of the

declaration.

Another shorthand that can be used depends upon the fact that in the

comparison of solutions, it does not matter what the solutions actually are, provided

they compare in the same way. Thus, for example, the lists of solution sets,

[[[a, b], [c, d]], [[e. fl], [[a, bl, [g, h]], [[a, b], [c, d]], [[a, b]]] and

[[1,2], [3], [1,4], [5], [1,21, [1]],

would generate exactly the same structure of translation. The second list is the first

list with la, b] replaced by 1,1c, dj replaced by 2, le, f] replaced by 3,1g, h] replaced

by 4 and 11, J] replaced by 5. This use of a solutions declaration is essential for

those relations in which arguments have to be bound when the goal is called, most

typically when the argument is a list or a number. In such cases it is not possible to

establish what the solutions to a clause are, simply by using reln_soln_setof and the

solutions have to be explicitly declared. Furthermore, if the argument can be a list

or a number, there are an infinite number of possible values that it could take, all

of which would be treated in the same way. To make the declaration, we therefore

31

need to use some symbol to represent the whole class of possible values. A relation

that needs such a declaration is fast-speed, defined in section 3.2.6 and repeated

below:

fast-speed(X): -

call(X > 100),

fast-speed(X): -

call(Y is X+ 5),

fast-speed(Y) : [0.9,1].

The variable X has to be bound when the goal is'called in order for the subgoals

call(X > 100) and call(Y Is'X + 5) to be evaluated. We would therefore use a

solutions declaration such as

:- solutions(fast_speed/l, [[n], [nl]).

when n is used to stand for number.

A Support Logic program can- have solutions declarations for just some of its

relations or indeed for all of them. In this latter case, it is no longer necessary to

store the program, in the knowledge base since the reason for doing this was to

allow relations to be queried to evaluate solution sets. In order to prevent the

translator storing the program, one can use the declaration

:- nostore.

and save the time that would have been taken converting predicate names to their

modular form. Instead, it is only necessary to check clauses read in for the presence

of 'cuts, which can be performed by a very simple search of the clause bodies.

A similar time-saving device -is'' invoked by the declaration

4- 32

:- top , level(P/A). ,, 1

which asserts in the knowledge base that the relation with predicate, P, and arity,

A, is not called by another relation in the program, i. e. it is a top level goal that is

only invoked by a query. -' This assertion is detected by create_soln_sets and the

evaluation of the solution set for the relation, P/A, is skipped. The only purpose of

evaluating solution sets for an entire relation is to make the process of evaluating

solution sets for individual clauses easier, but if no clauses call a relation, then the

solution set for that relation is not needed. Notice, however, that the solution sets

for the individual clauses of the relation are still required in order to perform the

correct translation. Such a declaration can be of great value, because top level

relations are, by definition, going to be those that require most work to evaluate

solution sets.

Another declaration that can produce time savings in the translation process,

and also generate more efficient translations, is that declaring that a relation is a

Prolog type relation -a relation that is not used for the evaluation of support but is

accessed using the Prolog system predicate call, or from some other Prolog type

relation, to perform some procedural action. The declaration is not always essential

because, if such a relation can have its solutions evaluated or it has them declared,

then the Support Logic translation would still work in the same way but would

include support calculations in the body of the rules. These are obviously not

necessary if the goal is called via call and can be left out. The declaration takes the

form:

:- prolog(P/A).

where P/A specifies the predicate P with arity A.

ý The two remaining declarations are required for semantic unification. As

with the interpreter, it is worth providing the capability to turn off the semantic

33

unification feature, as it requires a large. amount of extra processing. This can be

done in two ways: the first is by using a straightforward switch invoked by the

declaration

:- semantic-un ificat ion.

This causes every argument of every relation in the Support Logic program to be

checked to see if it is a fuzzy term, based on whether or not there is a Support

Logic fuzzy term definition, as used by Slop and explained in section 3.3.5. The

second method avoids the need to check all the arguments by explicitly declaring

the fuzzy terms associated with specific relations:,

fuzzy goal(P/A, N).

The relation is represented by P/A, where P is the predicate name and A the arity,

and the position of the fuzzy term is represented by N being the argument number.

For example, the declaration

:- fuzzy-goal(pred/4,2).

states that the second argument of the arity 4 relation, pred, is a fuzzy term. If all

the relations involving fuzzy terms are so declared, then the system need not search

arguments of the other relations. However, if the semantic_unification declaration

has also been used, then all those relations for which there is no fuzzy_goal

declaration will be checked for fuzzy terms.

4.9 Querying Translated Programs

The purpose of translating Support Logic programs is to allow supports to be

evaluated by using Prolog queries directly, rather than running queries through the

Support Logic interpreter, Slop. The translator generates the appropriate Prolog

code from a Support Logic program, but it is not sufficient for evaluating queries

4- 34

alone. - There are certain procedures that are required, by all translated programs and

these are collected together as a front end for running translated programs, rather

than building them into every translation. These procedures, bar one., are all

associated with the actual calculation of supports from the component support pair.

andcombine, orcombine, condcombine, probcombine and samecombine are taken

from'Slop itself, and are used in exactly the'same contexts of -evaluating support

across the logical connectives. The relations semunify, maxminset, max and min are

also taken directly from Slop and are used for the support evaluation associated with

the semantic unification of two f UZZY terms. Intersect-list and

trans_conflict_warning are specifically defined for translated programs for

evaluating support in bundles, and issuing a warning when conflict arises in

bundles. The remaining procedure is dol-bagof, which is a customised form of

bagof, for performing the breadth search mechanism in the bagof-form translations.

The custornisation primarily involves streamlining of the definition to remove any

unnecessary code, but also includes the warning mechanism to alert the user when

solutions contain variables. The need for this is explained in section 3.3.1.

The other aspect of a front end that could be provided, but in fact has not

been, is a top level query interpreter. As it stands, translated Support Logic

programs are queried from Prolog top level and require an extra argument in the

query, which will be bound to the support pair. It would be nicer, however, if the

Support Logic query of a translated knowledge base was the same as that of a Slop

interpreted knowledge base, in which supports are returned automatically. Since the

translation depends upon the presence Of the extra argument, the only way this

could be achieved would be by passing queries through a query interpreter.

This query interpreter would read in queries, which would be the same as

those read by Slop, and would convert them to the correct form for querying the

translated knowledge base. The converted query could then be called directly as a

35

Prolog goal and the solution printed out,, with support pair., as is done by Slop. In

the case of 'a single goal, the query conversion 'would only involve putting in the

extra argument. With compound goals -. conjunctions, disjunctions and negations -

the converted query would also have to include some support evaluation goals (e. g.

andcombine for conjunction, orcombine for disjunction) so that the support for the

overall query goal could be evaluated, rather than just its component goals.

4.10 Conclusion

The translator described in this chapter provides a way of converting

Support Logic programs, that need to be run through the rather slow interpreter,

into Prolog code while still carrying out the correct search mechanism and support

evaluation. The increase in speed of support evaluation is entirely dependent upon

the structure of the original knowledge base and how much of the translation

involves the bagof-form, but it is generally at least an order of magnitude and can

be as much as thirty times.

The translation does not provide any mechanisms for debugging Support

Logic knowledge bases, akin to the tracer provided by Slop, because the translator is

not intended for use before an application is complete, and such tracing by this

stage is considered unnecessary. There is however strong argument for allowing

some justification mechanism to be built into translations. When reasoning with

uncertainty, rather than just true and false, one may often wish to establish why

support is low or high, or why it is different from support for another proposition,

and it is quite reasonable to wish to do this with a completed application. The

tracer of Slop was able to double up to provide such a capability as well as a

debugging tool, but the inclusion of such a mechanism in translated programs is

more difficult to achieve while still maintaining the improved efficiency of support

evaluation. A possible solution might be to include spypoints, similar to those of

36

the Prolog trace, such that when a relation is spied, it prints out the supports

evaluated for each solution. A full listing of the translator is given in appendix Il.

37

Chapter 5. Determining Support Pairs

The theory of Support Logic proposes a way in which uncertainty in

knowledge can be represented and combined in a reasoning system. As with all

general uncertainty mechanisms, however, it can not provide a definitive way in

which the uncertainty values can be determined. This is largely going to be decided

by the particular domain of application and the readiness with which numerical

uncertainty values occur. For instance a problem involving a process such as

sampling from some data source may implicitly provide probability intervals,

whereas a problem such as medical diagnosis may be entirely dependent on heuristic

rules on which uncertainties are fairly subjective. This chapter briefly describes

some of the ways support pairs might be derived and, with reference to this,

explains some of the semantic differences between the Support Logic disjunction

constructions.

5.1 The Voting Model for Support Pairs

We can consider that every time we want to decide on a support pair for a

statement, fact or rule, we can give the evidence to a group of people whose job it

is to vote for or ag ainst the proposition, but they do have the right to abstain to

allow an open world. We can allocate to the necessary support that proportion of the

vote for the proposition, and to the possible support one minus that proportion of

the vote against, the proposition. The difference between the two will then be the

proportion of abstentions. For facts the voters are presented with an unconditional

proposition; for rules like, for example, p: - q, they are asked to vote on p given

certain conjunctions, disjunctions. or both, of propositions represented by q. For

example, to obtain a support pair for the rule

5-1

good_at_tennis(X): -

accurate_server(X) : [SI, Su].

the voters consider any evidence available to decide if being an accurate server

makes someone good at tennis. The evidence may be their own experience or it may

be film clips of people playing tennis and, depending on the background of the

voters, different voting patterns may be obtained. If they had no evidence of the

effect of an accurate serve on a game of tennis, then they would be unable to vote

either way and we would obtain, a support pair of [0, I] on the rule - 100%

abstentions. The voting interpretation can be represented as follows:

P: - : [S, (P), Su(p)].
SIM . proportion of group vote for p,

I- Su(p) - proportion of group vote for NOT p,

SUM - SIM - proportion of abstentions

P: - q : [Sl(plq), Su(plq)].

SI(plq) - proportion of group vote for p given q

I- Su(plq) - proportion of group vote for NOT p given q

Su(plq) - Sl(plq) - proportion of abstentions

5.2 Possibility and Necessity Measures Using Fuzzy Set Theory

We may want to represent in our knowledge base an observation like "most

adults can drive". The proposition in this is "adults can drive" and this has a

support "most". To represent this in Support Logic, we assert the clause

can_drive(X): - adult(X) : [SI, Su].

for which S1 and Su have to be chosen to represent what we mean by "most".,

Intuitively, we want S1 to be large and we probably want Su to be one as the

5-2

assertion says nothing about adults not being able to drive. If we have a fuzzy set

defining the linguistic support-"most", then we can use fuzzy set theory to derive the

possibilities for the proposition. IIIII ýý I

Using equations (2.21) and (2.22) of section 2.5 we can find the supports

representing "most", to be

Poss(most) Poss(mostltrue) m V(XMOST(17) A XTRUE(17)) and
17

Nec(most) I- Poss(NOT most) -I- Poss(mostj false)

-
VXMOST(ý) A XFALSE(ý))*

17

I false most Su -I

: -! I-SI - 0.25

0
01

Figure 5.1: Evaluation of supports representing "most" using fuzzy

set theory.

Our fuzzy set definition for "most" is shown in figure 5.1 along with the definitions

for "true" and "false". From this we can read off the values for Poss(most) and

Poss(NOT most) to give us the support pair for the original proposition. Thus the

statement "most adults can drive", can be represented in support logic programming,

by

can_drive(X): - adult(X) : [0.75,1].

5.3 Disjunctions

A Prolog knowledge base consists of a series of Horn Clauses which may or

may not have subgoals as conditions of the implication. The interpretation is that

the heads of all the clauses are true if their subgoals or conditions are true. If there

5-3

are no conditions, then the clause represents a statement of fact and the head of the

clause is true regardless of the rest of the knowledge baseý When a clause is

conditioned by certain subgoals i. e. it is a rule - the head is true only when the

conditions, or body of the rule, can be proved to be true within the knowledge base.

When two clauses have the same head, then we have a disjunction in which the head

can be proved true either by proving the body of the first clause or by proving the

body of the second clause.

Let us suppose we have the knowledge base

fast-car(X): -
has large_engine(X).

fast-car(X): - -

has-Spoilers(X).

This is interpreted as "X is a fast car if it has a large engine or it has spoilers". The

disjunction can be absorbed as part of, the body of a single clause

fast-car(X): -

has_large_engine(X)

has-Spoilers(X).

where the semi-colon (;) is the Prolog symbol for disjunction. Proving either one of

the two disjuncts proves the body of the clause and therefore the head. In Prolog

these two forms of disjunction are equivalent within a strictly logical context - that

is, one which does not use non-logical predicates such as "cut" (!) and "fail". In

Support Logic, these two forms of disjunction are, in general, no longer equivalent

and the semantics of the two diverge. Furthermore the bundle construction of

Support Logic provides another form of disjunction owing to the fact that it uses an

alternative evaluation method within the calculus. The Support Logic system

therefore has three ways of representing disjunction - (i) within the body of a rule

5-4

using the disjunction operator (body disjunction), (ii) using independent rules with

the same clause head (clausal disjunction), and (iii) using dependent rules within

bundles.

5.3.1 Body vs. Clausal Disjunction

Let us consider again the example above concerning fast cars. Within

Support Logic, we can qualify the truth of the two rules to reflect that, though they

may be true in most cases, they are not, true in every case. Suppose we put a

support pair of [0.7,1] on eachrule:

fast-car(X): -

has-large_engine(X) : [0.7,11.

fast-car(X): -

has-Spoilers(X) : [0.7.11.

If a particular vehicle under inspection has a large engine but no spoilers, then we

deduce that it is a fast car with support [0.7,1]. Similarly, should it have spoilers but

not a large engine we would make the same deduction with the same support. If on

the other- hand it had spoilers and a large engine, we derive two support pairs of

[0.7,1] which, assuming independence, combine to produce an overall support of

[0.91,1] for the vehicle being a fast car. The assumption of independence means that

the two subgoals has_Iarge_eng1ne and has_spollers do not affect one another -

i. e. one does not imply or discount the other.

Suppose, now, that instead of putting the supports on each rule individually,

we had formed one rule with a disjunction in the body, similar to the Prolog

example:

5-5

fast-car(X): -

(has large_engine(X)

sup__pr

has-spoilers(X)) : [0.7,1].

In this case, still assuming independence, the body of the clause is definitely true if

both subgoals are true or if only one of the subgoals is true. The support for

anything being a fast car could never be greater than [0.7,1].

The 'difference, in interpretation, between these two forms, of disjunction,

although they both assume independence, is the scope of the conditional support

pairs. In the latter case the disjunction itself is conditioned by the support pair,

whereas the first example is a disjunction of two conditionally supported rules. It is

also important to appreciate the effect of the independence assumption in each case.

With two rules, we derive two support pairs for a conclusion and assume that they

are independently derived in order to calculate an overall support pair; the

assumption applies to the support pairs associated with the conclusion. With a single

rule consisting of a disjunction of subgoals, the assumption applies to the

relationship between the disjuncts. * The way in which the disjuncts imply the

conclusion, however,. can not be considered independent. These differences are best

illustrated by a further example.

5.3.2 Body DisJunction

A ptarmigan is a type of grouse found in the Scottish Highlands, and in

summer the colouring of its back varies from grey to buff. We can estimate that,

should this colouring be detected, we can conclude with support [0.4,1] that the bird

is a ptarmigan. The low support is due to the fact that quite a few birds in the

region have similarly coloured backs, and so the detection of such colouring should

not provide a large degree of support for the bird being a ptarmigan (shape and

5-6

behaviour would be better distinguishing characteristics). In order to incorporate this

information in a bird identification system, we construct the rules

bird(ptarmigan): -

back(grey) : [0.4,11. 'II,

bird(ptarmigan): -

back(buff) : [0.4,11. '

Using these rules, a bird seen to be definitely both grey and buff on its back would

be identified as a ptarmigan with support [0.64,1]. The support is increased due to

finding both grey and buff in conjunction. This is an incorrect deduction because

we did not wish to attribute more support than 0.4 to the conclusion that a bird was

a ptarmigan, given that it had this colouring. The scope of the support pair should

include the disjunction. The rule we want uses body disjunction:

bird(ptarmigan): -

(back(grey)

sup__pr

back(buff)) : [0.4,11.

The greyness and buffness of the bird's back are still independent concepts

but the rule, now correctly, reflects that the presence of either does not directly

increase the support for the conclusion, but only indirectly, in as much as it

increases the support for the bird having grey or buff colouring. The rule is

dependent on the single piece of information, the colouring of the bird's back. The

disjunction occurs because this colouring can take on a range of shades defined

between grey and buff.

5-7

5.3.3 Clausal Disjunction

In the above example, using clausal disjunction created a situation in which

the truth of either subgoal contributed directly to an increase in support for the

conclusion. This is a situation in which not only are the subgoals themselves

independent, but the ways in which they affect the support for the conclusion are

also independent. Two identification marks of a house sparrow are a black chin and

a grey crown. If either of these marks are seen on a bird, then we should provide

support for that bird being a house sparrow, however each mark can also provide

support for an alternative identification. If both marks are seen, then each piece of

evidence should reinforce the other to provide greater support for the bird being a

house sparrow. This is exactly how clausal disjunction behaves, so we can use the

rules:

bird(house_sparrow): -

chin(black) : [0.4,11. cf. tits

bird(house_sparrow): -

crown(black) : [0.5,11. cf. whitethroat, wheatear

We are assuming that the colours of chin and crown are independent (which

they are) and that the degrees to which they lend support to a bird being a house

sparrow are also independent. This latter assumption is less obvious and depends on

the information under consideration, but with no information to the contrary, it is

least prejudiced to assume independence.

5.3.4 Bundles

Two identification marks of the jay are a distinctive blue wing patch and a

distinctive white wing patch. We could represent this information as two rules, like

the rules for identifying a house sparrow, however there is a third rule which tells

5-8

us that the jay is the only European bird to have both blue and white, distinctive

wing patches, though several species have either one or the other. To represent this

information we must construct a bundle of three rules:

bird(jay): -

wing-patch(blue),

wing_patch(white) : [I, ll

wing-patch(blue) : [0.6,1]

wing_patch(white) : [0.4,1].

The rule based on the most information (the conjunction), which we will call

the primary rule, uses the same evidence as the two other rules and therefore is not

independent. It is able to derive a more confident conclusion because it uses the

extra information of the two marks occurring in conjunction. This latter point is the

key issue in the use of bundles and leads to important restrictions on the supports of

the component rules of a bundle.

5.4 Conditional Supports In Bundles

For a bundle to have a reasonable interpretation in a knowledge base, it is

necessary that the conditional supports reflect the known dependence between rule

bodies. Consider the bundle

head: -

<- goal 1,

goa12 : [Sli, Sui]

goall : [S12, SU2].

The supports on the primary rule will be

5-9

Sli = SI(Headlgoall, goal2)

Sul -I SI(NOT headl goal l, goal2)

in choosing the supports on the secondary rule, it is necessary to consider the effect

of goa12 on the support for the head of the rule. Given that goa12 is important in

the bundle, but of unknown significance in the secondary rule, we can not attribute

more support to the rule than the worst case defined by the truth of goa12. Thus we

define the supports on the secondary rule by

S12 = SI(headlgoall*, goal2) A SI(headlgoall, NOT goal2)

SU2 = SI(NOT headlgoall, goal2) A SI(NOT headigoall, NOT goal2)

= Su(headigoall, goal2) v Su(headlgoall, NOT goal2)

This means that S12 :5 Sli and SU2 ?: SUI, in other words the support pair on a lower

order rule must contain that on a higher order rule. Rules of the same order need

only have intersecting conditional support pairs. These two relationships, between

conditional support pairs in bundles., are enough to prevent the occurrence of

conflict, but do not guarantee meaningful bundles.

These definitions for the supports on_ lower order rules avoid the assumptions

that produce the paradox of confirming evidence. Salmon (1983) illustrates this

paradox using a simplified version of Carnap's (1962) original example:

There is a chesslournament of locals'and out-of-towners and the men and women,

and juniors and seniors are distributed as in table 5.1.

Local Out-of-towner

Junior mww mm

Senior mm www

Table 5.1. Distribution of men (M) and women (W) in the chess

tournament.

10

We are'also given the evidence, e, that all the competitors are equally likely to win.

From these 'pieces of information, we can say that the confirmation of a man

winning (event h) given evidence, e, is given by

c(hle) - 1/2

If we now find out that a local player wins (evidence 1), we can deduce

c(hle, i) . 3/5 > ýL/2 . *. positive confirmation,

or if we find out that a junior wins (evidence J), we can deduce

c(hle, j) . 3/r, > 1/2 . *. positive confirmation.

However, when given both pieces of evidence, I and J, we deduce

c(hle, ij) = 1/3 < 1/2 '. *. negative confirmation.

The paradox is,, how can two pieces of positively confirming evidence become

negatively confirming when taken together?

The paradox
-occurs I

because the confirming evidences, I and J. when taken

alone, do not account for the possibility of the other piece of evidence being

known. If we only know that the tournament was won by a local, then we can say

that the chances of that player being a man are 3/5. If, on the other hand, we are

told that we may know later whether the player was a junior or senior, we would

say that the chances of the player being a man are in the range 2/3 to 1, depending

on that evidence. This is exactly equivalent to following the above rules, for

defining supports in bundles, to produce

winner(man): -

local,

junior : [1/3,1/3]

local : [1/3.1]

<- junior

5- 11

Defining supports according to these restrictions can also tell us something

about whether the bundle has been constructed sensibly. Should we find that, in the

rule at the beginning of this section, SI(headlgoall, goal2)*: 5 SI(headlgoall, NOT goal2)j

then S12 would have the same value as Sli, and the primary rule would never

provide necessary support for the head. The necessary support would never be more

than that provided by the secondary rule. In this case, we might want to switch the

bundle round so that it was

head: -

goal 1,

NOT goal2 : [Slia, Sula]

<- goall : [S12, SU2].

Notice that the supports on the primary rule have now changed, but those on the

secondary rule have not. On the other hand, the original format may have been

what was wanted, because the crucial information provided by the primary rule

could be negative, and therefore contained in the value of the possible support. To

choose supports in this way. we really need to be provided with some statistical

information. Once we have the statistics, though, we have to be very careful how

we formulate it in Support Logic so that dependency relationships are accurately

represented. We also want to ensure that the rules we create represent as much of

the data as possible.

5.5 As Sure as Eggs Is Eggs

Let us suppose we have a lorry load of eggs of varying sizes, and varying

shades from white to brown. The eggs have been there a while and some have gone

bad, but we believe that the rate at which they have gone bad can be related to the

size and colour. We therefore sample and test the eggs so that we can construct some

12

rules to determine if an egg is bad or not. The sampling produces the following

data:

w w w -nw -nw -1w Uw Uw Uw total
1 -11 Ui I -, I ui 1 11 UI

bad 7 6 7 2 4 2 2 2 5 37
-, bad 2 1 1 12 3 1 8 8 3 39
Ubad 1 7 8 9 3 4 12 6 4 54

total 10 14 16 23 10 7 22 16 12 130

Table 5.2: Sample of 130 eggs tested for being bad; w- white, I-

large, -, means negation and Ux means uncertain with

respect to property x.

From this we could represent just the proportion of bad eggs, regardless of size or

colour, by the rule

bad: - : [37/130, - 91/130]. or

bad: - : [0.29,0.7].

however, this tells us practically nothing, as the proportions of "bad" and "not bad"

eggs are almost the same and there is about 40% unsureness. Instead we can make

rules relating bad eggs to their colour or their size using the two probabilistic pairs:

bad: - white : [0.5,0.9], [0.2,0.6).

bad: - large : [0.2,0.61, [0.3,0.7].

A white egg will be concluded to be bad with support [0.5,0.9) and a large egg, bad

with support [0.2,0.61. An egg that is both white and large will have support

[0.49,0.69] for it being bad. Looking at the statistical data, though, we can see that

between seventy and eighty per cent of eggs, that are both white and large, are bad

-a higher proportion than our support pair suggests. This tells us that the two

properties, size and colour, are not independent with respect to the eggs being bad

or not - even though large eggs are more often not bad, a white, large egg is likely

13

to be bad. The statistical data indicates a dependence between the properties and so

we use a bundle.

Since the primary rule of a bundle can only model one form of conjunction

(e. g. "white and large", "white and not large" etc.), we must consider which

conjunction we most want to represent, or which provides most support for the head

of the rule. In some situations, a subgoal of the primary rule may only ever have

positive support (possible support restricted to 1), in which case the primary rule

should not be composed using the negation of that subgoal. In the eggs example, the

support for white and large can vary from [0,01 through [0, I] to [1, I), so we can not

use this criterion'. In deciding how to form our bundle, we must decide, which form

of conjunction in the primary rule will provide us with most information. We can

deduce the following support pairs, for the conjunctions, from table 5.2:

white and large

white and not large

not white and large

not white and not large

[0.7,0.81

[0.43,0.931

[0.09,0.48]

(0.4,0.7]

The, conjunction does not have to provide positive support for the head of the rule;

we merely want it to Provide reasonable support one way or the other with not too

much unsureness. For example, a support pair of [0.45,0.55] is not very useful,

although it has low unsureness, because it does not help us draw a conclusion one

way or the other., In this example, though, it is fairly clear that "white -and large"

would produce the best primary rule.

5- 14

bad: -

<- white,

large : [0.7,0.8]

<- white : [0.5,0.9]

<- large : [0.2,0.8].

The conditional support, pair on the secondary rule bad: - large has had to be

changed from'[0.2.0.6] to [0.2,0.8] to meet the restrictions, and so we have lost the

information that large eggs are usually not bad. Thisý is unavoidable, because the

rule has to allow for the-possibility that the egg is white. Large eggs are bad with

support contained by [0.2,0.8] regardless of colour, however,, if weýknow the egg is

not'white, a large egg is bad with'support [0.2,0.61, but this we can only represent

with a primary rule. This bundle gives reasonable supports for eggs that are white

or large or both, but if an egg is neither, we will deduce no support at all for the

egg being "bad" or "not bad". At this point, we may be tempted to put in the

probabilistic pair for the primary rule:

bad: - not (white, -large) : [0.23,0.64].

using the data in columns 2,4,5,6 and 8 of table 5.2. Doing this, though, changes

the dependency between the primary rule and lower order rules. The rule body "not

(white, large)" is equivalent to "not white or not large" which does not have the

relationship of strict implication with either "white" or "large". Consequently, the use

of the dependence assumption can not be justified, and such rules should not be

constructed. On the other hand we might be able to use the probabilistic pairs on

those rules for which the body consists of'only one goal. This would give us a

bundle:

15

bad: -

white,

large : [0.7,0.8]

white : [0.5,0.9], [0.2,0.8]

large : [0.2.0.8], [0.3.0.8].

In this bundle, the secondary rules now provide support for "bad" considering the

whole of the possibility space, which is still an implication of the primary rule. The

advantage is that the possibility space is split in such a way as to allow us to draw

support from two complementary properties. The conditional supports on the

probabilistic pairs are bound by the same restrictions, so that we will probably not

be able to represent all the available information, but the support pair evaluation

will still be improved. In the above example, the possible supports on both

probabilistic pairs have had to be raised to 0.8 to satisfy the restriction.

There are a number of ways of representing the information and, of these,

we have seen none can represent it completely. The dependence between properties

and the fact that properties can be partially supported, means we are unable to say

definitely to which class an egg belongs; it might belong to all classes to some extent

and this is why we use Support Logic. The price we pay for being able to deal with

the cases when properties are not true or false for sure, is that1we can no longer,

necessarily reproduce the exact support pairs when properties are true or false for

sure. By choosing the construction of our rules sensibly, however, we are able to

provide reasonable approximations to the supports.

In the eggs example, there are four possible ways of modelling the data:

16

A. bad: -

white,

large : [0.7,0.8]

white : [0.5,0.9]

large : [0.2,0.8].

B. bad: -

white,

large : [0.7,0.81

white : [0.5,0.9], [0.2,0.81

large : [0.2,0.8], [0.3,0.8].

C. bad: -

white,

large : [0.7,0.8], [0.23,0.64).

bad: -

white : [0.5,0.9], [0.2,0.6]

bad: -

large : [0.2,0.6], [0.3,0.7].

For each of these, we will consider how well they represent the data for the

situations when the properties white and large are known to be either definitely

true, or definitely false or completely uncertain. Table 5.3 shows the support pairs

generated by each representation, for each of these situations. Column 3 of the table

shows the logical representation of the conjunctions of white and large, where w

and I stand for white and large respectively, and -, stands for negation as in table

5.2.

17

supports ý I-I
white large Conj'n. deduced Model A Model B Model C Model D

from table 5 .2

WAI [0.7,0.81 10.7,0.81 10.7,0.81 10.7,0.81 [0.49,0.69]

[I'l] (0,0] WA-, I [0.43,0.93] [0.5,0.91 [0.5,0.8] [0.23,0.64] [0.57,0.77]

[0,0] [1,1] WA1 [0.09,0.48] [0.2,0.8] [0.2,0.8] (0.23,0.64] [0.24,0.431

[0,0] [0,0] --MA--d [0.4,0.7] [0,1] 10.3,0.81 [0.23,0.64] [0.32,0.511

[0,1 W [0.5,0.9] 10.5,0.91 10.5,0.91 [0,1] 10.5,0.91

[0,0] [0,1 --IW [0.2,0.6] [0,1] [0.2,0.81 [0,1] 10.2,0.61

[0,1] [I'l] 1 [0.2,0.61 10.2,0.81 [0.2,0.81 [0,11 10.2,0.61

[0111 [0,0] ,1 ý [0.3,0.7] [0,11 10.3,0.81 [0,11 10.3,0.71

[0,1] [0,11 U [0.28,0.70] [0,1] [0,1] [0,1] [0,11

Table 5.3: Support pairs for eggs being bad for four different

Support Logic representations.

In the table, those support pairs that match exactly or contain the support

pairs derived directly from the statistics (column 4) have been emboldened. The

remaining support pairs in the table are either completely uncertain ([0,1]) or

provide support that disagrees with the statistical information. This occurs in the

form of a more restricted support pair, either contained by the statistically derived

pair or intersecting it, and arises because the bundle can only represent one form of

the conjunction in its primary rule - in this case "white and large". The support

pairs for "white and not large", "not white and large" and "not white and not large"

can only be approximated using the secondary rules and thus are likely to be wrong.

The support pairs that best approximate the statistical information for these

conjunctions are in italics so we can now make a judgement of which rules best

represent the data.

18

Model C is clearly a bad approximation, and this is because it is unable to

consider the properties alone. Model D, although providing exactly the right support

pair for the four occasions characterised by one of the properties being completely

uncertain, it only provides a good approximation to one of the possible

conjunctions. Models A and B are similar, but B has a clear advantage because of its

capacity to provide support for the head when either property is known not to hold.

Model A, in such circumstances, provides no support at all. The data is best

represented by model B:

bad: -

<-' white,

large : [0.7,0.8]

white : [0.5,0.9], [0.2,0.8]

large : [0.2,0.8], [0.3,0.81.

This bundle, however. does not provide support when nothing is known about an

egg, whereas the statistical data does. This can be enhanced by adding the extra rule

to the bundle the lowest, and in this case, tertiary order of rule - that was our

first attempt to represent the data:

bad: - : [0.29,0.7].

Adjusting the values, in the support pair so as to satisfy the restrictions explained

above, the bundle now becomes I

bad: -

<- white,

large : [0.7,0.81

white : [0.5,0.9], [0.2,0.81

large : [0.2,0.81, [0.3,0.81

: [0.2,0.9].

19

With this new bundle, the only support pair ý that will be changed for model B in

table 5.3 will be that corresponding to the case when nothing at all is known about

the size or colour of the'egg. Instead of being [0, I], this will now be [0.2,0.9] - not

a huge improvement, but an improvement none the less.

5.6 Jabberwocky

The three types of disjunction shown in the preceding sections all provide a

different way of interpreting disjoint information. To summarise, we will represent

some knowledge, using each form of disjunction and indicate the different

interpretations that should be drawn.

According to Lewis Carroll (1877), "the slithy toves did gyre and gimble in

the wabe", so we can construct a Support Logic-knowledge base to deduce whether

something is a slithy tove, according to how it gyres and gimbles. Using body

disjunction -

slithy_jove(X): -

(gyre(X)

sup_or

gimble(X)) : Sa.

we provide support Sa (representing a support pair) for X being a slithy tove if it is

carrying out some action that is characterised by gyring or gimbling. In other words

this action can take the form of either gyring or gimbling, or any combination of

the two. Using clausal disjunction,

slithy_tove(X): -

gyre(X) : Sbl.

slithy__tove(X): -

gimble(X) : Sb2-

5- 20

the two actions of gyring and gimbling can not be taken to be as closely related, but

something doing either will have support for its being a slithy tove, and if it is

doing both the event will be even more likely. In conceptual graph terms, it is the

concepts of gyring and gimbling themselves that imply being a slithy tove, not a

common supertype as in the case of body Aisjunction. Constructing a bundle to

represent the information -

slithy_tove(X): -

<- gyre(X),

gimble(X): Sc I

gyre(X) : Sc2

gimble(X) : Scl

we would be assuming that there was greater significance in something, both gyring

and gimbling than in either of the previous forms of disjunction. If SO provides

strong positive support, we could be representing that to gyre and gimble

simultaneously is so uncommon that it could only be done by a slithy tove, whereas

several other creatures can do one or the other.

Which of thewrules is most appropriate for representing the knowledge, is

dependent on the interpretation of the poem itself. It could be that none of them

are correct because we have ignored the fact that at the time the particular - sli thy

toves were doing their gyring and gimbling, "'twas brillig". It is possible to indicate

the way the various forms of disjunction should be interpreted, but the original

information itself needs to be considered very carefully to insure that the available

data has been represented as fully as Possible.

21

Chapter 6. Two Applications

6.1 Threat Evaluation Weapons Assignment - TEWA

The program explained here was developed as a pilot study and therefore is

based on a simplified version of the problem, as put forward by British Aerospace,

Dynamics Division. The system operates on a static knowledge base and does not

attempt to reason from a knowledge base that is continually changing. This is partly

because of the, support logic implementation itself, Slop, which does not allow the

knowledge base to be updated and accessed simultaneously, but also because this is,

in this simple case, more closely in line with how the human operator might

approach the problem; the deployment decision is based on the threats at a

particular time and if this situation changes then a new decision is made.

, TEWA can be split into the two components of target Identification and

weapon deployment. The first of these will make the appropriate deductions from

the data provided externally, and the second will then act on these deductions. The

uncertainty involved in this first part, however, is not on the whole carried over to

the second. It gives rise to a ranking of possible targets and the specific

identification is taken as that with the strongest support. Once the identifications

are made, they are taken to be definitely true and asserted in the knowledge base.

The reason for this is that the uncertainty in the weapon assignment is designed to

reflect the likelihood of survival of the ship and this is not directly affected by the

confidence of the identification. It could be included, if the weapons assignment

was evaluated for all possible combinations of target identification, but this would

be computationally extremely expensive.

6-1

6.1.1 The Model

In this restricted TEWA system, the possible targets attacking the ship are as

follows: I

Target I

sea-skimming missile (sea_skim)

velocity - 300 m/s

altitude - 15 m

unopposed ship kill probability in the range 0.45 to 0.55

Tarzet 2

supersonic missile (super)

velocity 500 m/s

altitude 12 krn and then diving at range 21 km

unopposed ship kill probability in the range 0.65 to 0.75

TarRet-I

aircraft

velocity - 300 m/s

altitude - 500 m

releases weapons at 2 km and turns away

unopposed ship kill probability in the range 0.15 to 0.25

The data for the targets is'provided in'the form of supported facts associated with

the c harac teris tics, i. e.

range(X, R): - : Sl.

velocity(X, V): - : S2.

altitude(X, A): - : S3.

A

6-2

where X is the target identifier and R, V and A are fuzzy numerical values that can

be used in'semantic unification. The definition to allow fuzzy numbers is

fuzzy(number, N, [O, NI, N, N, N2,0]): -

number(N),

> 1,

NI is N- N*0.1,

N2 is N+ N*0.1.

and is valid for all numbers greater than one. This restriction prevents supports that

are passed as arguments from being semantically unified. The fuzzy set for

numbers, as defined above, is a curve allowing a 10% error either side of the actual

number (see figure 6.1).

IIA

0
N-10% N N+10%

Figure 6.1: Fuzzy set for any number N.

The values for the range, velocity and altitude can be semantically unified with the

following:

fuzzy(number, '>2km', [0,500,2000,2000,2000,1)).

used for identifying aircraft by their range

fuzzy(number, '-300', [0,250,290,310,350,0]).

fuzzy(number, '-500', [0,450,490,510,550,0]).

used for identifying all targets by their velocity

fuzzy(number, '- 15', [0,10,14,16,20,0]).

fuzzy(number, '- 12000', [0,11500,11900,12100,12500,01).

used for identifying missiles by their altitude.

6-3

Because of the need to perform calculations using the range and velocity (not

the altitude), the data for these is also stored as unsupported facts with the same

attributes:

range_data(X, R).

velocity ..
4ata(X, V).

and these are queried using the call predicate, thus suppressing semantic unification.

This duplication of data is not essential when using the interpreter, although it helps

to clarify the use of the data, but it is necessary when translating the knowledge

base, as explained below. All the data about targets is accessed by the following

rules to provide support for each possible identification:

target(X, sea_skim): -

velocity(X, '-300') : [0.5,1], [0,0.2].

target(X, sea_skim): -

altitude(X, '- 15') : [0.9,1], [0,0.1

target(X, supersonic): -

velocity(X, '-500') : [0.9,1], [0,0.1].

target(X, supersonic): -

call((range_data(X, R),

R >-'21000

range(X, R),

altitude(X, '-12000') : [0.7,1], [0,0.1].

target(X, supersonic): -

call((range_data(X, R),

R< 21000,

AM is R/1.73205

range(X, R),

altitude(X, Altl) : [0.6,1], [0,0.2].,

, 6- 4

target(X, airc raft): -

velocity(X, '-300') : [0.5,11, [0,0.21.

target(X, aircraft): -

sup_not range(X, >2km') : [0,0.1].

targe t(X, aircraft). - -

altitude(X, '-500') : [0.7,1], [0,0.31.

These rules themselves are called by ldentify(X, Target) which, for a, particular

target identifier, X, evaluates support for X being of each target type and selects the

one with the strongest support. The final support on the goal is the support for X

being of type Target. In order to prevent the support from the more weakly

supported identifications affecting the final support, the calls to predicate target are

put in a Support Logic disjunction with the goal support(11,11) and the supports for

each possible identification are accessed using the "' operator.

identify(X, Target): -

target(X, sea_skim)^Sl sup_or

target(X, supersonic)AS2 sup_. pr

target(X, aircra ft)A S3 sup_or

support([I. I])

call(best([SI, S2, S3], [sea_skim. supersonic, aircraft], Target. S)),

support(S) : [1,11, [0,0].

The purpose of the goal support(S) is to force the evaluation of the support S in the

particular context. This is achieved by defining the goal as

support(S): - -:
S.

and acts as a support logic equivalent to the Prolog system predicate true. In the

Identify clause, this structure is used twice: (i) to evaluate support for one of the

disjuncts, and therefore the whole disjunction, to be 11,11 and (ii) following the

6-5

Prolog call to best which selects the most positive identification, to succeed with

support corresponding to that identification, S. Since the disjunction and the Prolog

call are both supported [1, I], the body of the rule has the support of the most likely

identification and, with the conditional supports being 11,11,10,0], the head of the

rule also has this support.

The goal Identify itself is called by update(X, Target) which is evaluated

with the same variable bindings and support as Identify, but asserts the new

identifications in the knowledge base as clauses target-type(X, Target) replacing any

old identification data.

The ranking of ,
identifications is based on the definition of

stronger_support(Sl, S2), which is a Prolog type rule called by best that succeeds if

S1 is a stronger support than S2. The definition in this example is

stronger_support([SII, SU11, [SI2, SU2]): -

Sll >- S12.

and only considers the lower supports. This could be redefined to reflect some

other judgement of strength of support: for example, comparing the quantities

Sl*(I-(Su-Sl)) reduces the strength of support as unsureness increases, and

comparing the, quantities Sl-(I-Su) reduces the strength of support as the support

against increases. This latter, quantity is similar to the idea of certainty factors in

MYCIN.

Having identified the targets and stored the information in the knowledge

base, the next stage is to evaluate the threat posed by each and work out the most

effective allocation of weapons. 11 The ' initial threat is' evaluated by

unopposed_threat(X, Target) and is based on the kill probability of the target and

the time to impact. ' The kill probability is that defined'at the beginning of this

section and is represented in Slop by

6-6

kill-prob(sea_skim): - : [0.65,0.75].

kill_prob(supersonic): - : [0.45,0.55].

kill-prob(aircraft): - : [0.15,0.25].

whereas the threat due to the time until impact is a linear function decreasing with

time, defined by

impact-time(X): -

calW range_data(X, R),

modify__jange(X, R, Rl),

velocity__Oata(X, V),

Time is RI/V,

(Time < 100, Sl is 1);

(Time > 1000, Sl is 0);

(SI is (1000-Time)/900)

Notice the trick of evaluating a conditional support in the body of the rule. The

unopposed threat is the support, for the - conjunction of these two elements as

follows:

unopposed ý threat(X, Target): -

kill_prob(Target),, -5

impact_time(X) : [1,11, [0,0.2].

the second support pair of 10,0.21 acts to increase slightly the possible threat,

indicating that this rule is not necessarily totally accurate.

Knowing the threat posed by each target, the overall threat to the ship can

be evaluated as the complement of the Support for escaping all the targets. The

support for escaping one target is the complement of the unopposed threat, and the

support for escaping all the targets will be the support for the conjunction of

6-7

escaping each target. With each new target the support for escaping goes down and

thus the overall threat goes up. In order to evaluate support for a conjunction of

unknown length we use a recursive definition with a list of targets,

escape([]): - : [1,11.

escape([[X, Target]lTargets]): -

sup-not unopposed_threat(X, Target),

escape(Targets) : [I, I], [0,01.

where the list is obtained by calling bagof on the goal target type.

threatened: -

call(bagof([X, Target], target-type(X, Target), Targets)

escape(Targets) : [0,0], [1,1].

threatened: -

undefended : [0.9,1].

threatened: -

call(not clause(target_type(_,
_), _)

)

The second clause of threatened, provides the different viewpoint that the ship is

under a large degree of threat when it is left undefended. The third clause states

that when there are no targets there is no threat, information which the first clause

would not be able to provide because, if there were no targets, the call to bagof

would fail and the support from the clause would be [0, I). The effect of the third

clause succeeding, because it has support definitely false ([0,0]), is to override the

support from all other clauses. In this way, if the ship is undefended, there may be

a threat of [0.9,1), but if there are no targets this is overridden and there is

considered to be no threat.

The relation threatened provides an evaluation of the overall unopposed

threat to the ship, but does not propose any defence. This is performed by

6-8

defence(D) which is satisfied for all possible ranked plans of defence, D, with the

first solution being the best plan. Similar to the relation threatened, a list of targets

and a list of available weapons are established using bagof and these are then

recursively processed.

defence([NIPlan]): -

call(abolish(plan, 2)),

call(bagof([X, Target, Wl, target-type(X, Target), Plan)

call(bagof([W_Type, W_id, S], weapo n(W-Type, W_id, S), Weapons)),

ordered_survival_plan(N, Plan, Weapons) : [1,1], [0,0].

The list of targets is used to form the plan by associating with each target a variable

that can be bound to the weapon that will be deployed against it. A plan is

therefore of the form I

[[target-id l, target_type I weapon I], [target-id2, targe t-type2, wea po n2], ... I

and a ranked plan is the same but with a ranking term, Plawcn><n><n>, as first

element. The list of weapons has a support associated with each weapon reflecting

the condition of the weapon. A low support means that the weapon is in poor

condition and likely to be less effective than normal, and this will correspondingly

reduce the support for the weapon destroying the target. Because the list of

weapons is established using bagof, the weapon data is stored with support as an

attribute of the relation, rather than in the conventional way, e. g.

weapon(area, area 1 9[
1,1]).

weapon(point, pointl, [0.9, I]).

weapon(area, area2, [0.7,0.9]).

weapon(gun, gunl, [19, I]). ,

6-9

The first argument is the weapon type and the second the particular weapon

identifier.

The goal ordered_survival_plan(Plan, Weapons) evaluates support for all the

possible defence plans, ranks them and stores them in the knowledge base, but it is

the goal survlyaI_plan(Plan, Weapons) that performs the recursive processing of the

lists of targets and weapons.

survival_plan([],
_): -

: [I, I].

survival_.. ýplan([[X, Target, W_idIlPlan], Weapons 1): -

deploy(X, Target, W_Type, W_id, Weapons 1, Weapons2),

sup_not((unopposed_threat(X, Target),

sup_not kill_prob(W_Type, Target))),

survival-plan(Plan, Weapons2) : [1,1], [0,0].

The first clause states that an empty plan, corresponding to no targets, has support

for survival of [1,11. The second clause selects a weapon for deployment against the

first target. evaluates the support for surviving that target 'under this deployment,

and then recursively evaluates support for the remaining targets. -This definition of

survival_plan does not admit the possibility of running out of weapons or of having

to use the same weapon twice in succession, however in a full implementation this

would be essential., ý Weapons are selected for deployment simply by going through

the list of weapons one at a time, and the support associated with each deployment

is the support reflecting the condition of the weapon. The other way of querying

the knowledge base to establish how to defend the ship is by calling the goal

defence with arity zero. This relation prints out all the plans in descending order of

effectiveness, and associates with each weapon deployment the time until that

weapon can be launched. The calculation for this is performed by the Prolog goal

tlme_to_deployrnent which calls range_data and velocity_4ata as well as the

6- 10

relation acquisition which has the acquisition range and reaction time for each type

of weapon against'each type of target, for example,

acquisition(area, sea_skim, 25000,5).

acquisition(area, supersonic, 50000,5).

acquisition(point, sea_skim. 25000,2).

acquisition(gun, sea_skim, 10000,0).

etc.

The plans themselves are found by defence by calling defence(Plan) unless they

have already been asserted in the knowledge base, in which case they are accessed

directly. I-

This TEWA system makes extensive use of Prolog type relations for list

processing as well as some numerical calculations, clearly showing the advantage of

combining the uncertainty calculus with conventional logic programming. A feature

that would be useful, however, is the ability to initiate a support logic query from

within a Prolog call. This would have allowed, for instance, the weapon data to be

stored in a conventional support logic manner, and still to be accessed by a Prolog

call to build a list with supports correctly associated with the weapons. The input

data to run. this TEWA system consists of the relations range, velocity, altltude,

range_data and velocityjata, which allow the system to identify the targets, and

the relations weapon, acquisition and kill-prob (with arity two), which specify the

weapons and their capabilities. A sample run of the system is shown below, with

the following input data:

range(a, 60000).

velocity(a, 495).

altitude(a, 12500).

6- 11

range(b, 50000).

velocity(b, 250).

altitude(b, 18).

velocity_. 4ata(a, 495).

velocity__ýata(b, 250).

range_data(a, 60000).

range_data(b, 50000).

weapon(area, area Ij 1,1]).

weapon(area, area2, [O. S,

weapon(point, pointl, [1, I]).

weapon(point, point2, [0.9, I

weapon(gun, gun 1, [1.11).

weapon(gun, gun2, [O, O. l]).

kill_prob(area, sea_skim): - : [0.25,0.35].

kill-prob(area, supersonic): - : [0.55,0.65].

kill_prob(area. aircraft): - : [0.85,0.95].

kiH_prob(point, sea_skim): - : [0.45,0.55].

kill_prob(point, supersonic): - : [0.65,0.75].

kill_prob(point, aircraft): - : [0.85,0.95].

kill_prob(gun, X): - : [0.15,0.25].

kiH_prob(gun, aircraft): - : [0,0].

12

acquisition(area, sea_skim, 25000,5).

acquisition(area, supersonic, 50000,5).

acquisition(area, aircraft, 50000,5).

acquisition(point, sea_skim, 25000,2).

acquisition(point, supersonic, 50000,2).

acquisition(point, aircraft, 50000,2).

acquisition(gun, sea_skim, 10000,0).

acquisition(gun, supersonic, 10000,0).

acquisition(gun, aircraft, 10000,0).

C-Prolog version 1.4
[Restoring file /mnt6/renOOs/MonkMR/d -slop 1.2/slop. ss

Support Logic Programming - Version 1.2
M. Rowland M. Monk
Information Technology Research Centre (I. T. R. C.),
Dept. of Engineering Mathematics,
University of Bristol, England.
February 1987

query? 1-tewal.
tewa reconsulted 9656 bytes 7.25 sec.

yes

query? 1-weaponsi.
weapons reconsulted 1392 bytes 1.68333 sec.

yes

query? 1-targetsli.
targetsl reconsulted 360 bytes 0.666672 sec.

yes

query? update(X, Target).

update(a, supersonic) : [0.392539,0.867463]
update(b, sea_skim) : [0.185974,0.413274]

no more non-cutoff solutions

query? threatened.

threatened : [0.763299,0.927999]

query? defence(Plan).

13

defence([PlanOOI, [a, supersonic, areal], [b, sea skim, pointl]]) : [0.399,0.626] ;
defence([Plan002, [a, supersonic, pointl], [b, sei- skim, point2]]) : [0.391,0.659]
defence([Plan003, [a, supersonic, point2], [b, sea

- skim, pointl]]) : [0.391,0.659]
defence([Plan004, [a, supersonic, area I], [b, sea

- skim, point2]]) : [0.359,0.626] ; defence([Plan005, [a, supersonic, area2], [b, sea
- skim, pointl]]) : [0.319,0.626] ; defence([Plan006, [a. supersonic, pointl], [b, sea
-

skim, areal]]) : [0.310,0.556] ; defence([Plan007, [a, supersonic, area2], [b, sea skim, point2]]) : [0.287,0.626] ; defence([Plan008, [a, supersonic, point2], [b, se3- skim, areal]]) : [0.279,0.556] ; defe nce([Plan009, [a, superson ic, gun I], [b, sea Tkim, pointl]]) : [0.255,0.496] ;
defe nce([PlanO I 0, [a, su personic, point I], [b, sia

- skim, gunl]]) : [0.248,0.504] ;
defence([PlanOll, [a, supersonic, pointi], [b, sea skim, area2]]) : [0.248,0.5561
defence([Plan012, [a, supersonic, gunl], [b, sea Tkim, point2]]): [0.230,0.496]
defence([Plan013, [a, supersonic, areal], [b, sea_skim, gunl]]) : [0.228,0.4801
defence([Plan014, [a, supersonic, area2], [b, sea

- skim, areal]]) : [0.228,0.528]
defence([Plan015, [a, supersonic, areal], [b, sea_skim, area2]]) : [0.228,0.528]
defence([Plan016, [a, supersonic, point2l, [b, sea

-
skim, guni]]) : [0.223,0.504]

defence([Plan017, [a, supersonic, point2], [b, sea skim, area2]]) : [0.223,0.5561
defence([PlanOIB, [a, supersonic, gunl], [b, sea Tkirn, arealfl) : [0.182,0.419] ;
defence([Plan019, [a, supersonic, area2], [b, sea_skim, gunl]]) : [0.182,0.4801 ;
defence([Plan02O, [a, supersonic, gunll, [b, sea_skim, area2]]) : [0.146,0.4191 ;

no more non-cutoff solutions

query? defence.
[a, supersonic, areal, 25.2021
[b, sea_skim, pointl, 102]
[0.39872,0.6261961

[a, supersonic, point 1,22.202)
[b, sea-skim, point2,102]
[0.391104,0.658712]

[a, supersonic, point2,22.202]
[b, sea skim, pointl, 102]
[0.3917104,0.658712]

[a, supersonic, area 1,25.2021
[b, sea skim, point2,102]
[0.359-848,0.626196]

[a, supersonic, area2,25.2021
[b, sea skim, pointl, 1021
[0.3 10-76,0.626196]

[a, supersonic, point 1,22.202]
[b, sea skim, areal, 105]
[0.3164ý0.55585]

[a, supersonic, area2,25.2021
[b, sea skim. point2,1021
[0.28fO-78,0.626196]

[a, supersonic, point2,22.202]
[b, sea skim, areal, 105]
[0.27§-36,0.555851

14

fa, supersonic, gun 1,101.011
[b, sea skim, pointl, 102]
[0.255736,0.496136]

(a, su personic, point 1,22.202]
[b, sea_. ýkirn, gun 1,1601
[0.24832,0.5044191

[a, supersonic, pointl, 22.2021
[b, sea_skim, area2,1051
[0.24832,0.555851

[a, supersonic, gunl, 10 1.0 1
[b, sea___, skim, point2,102]
[0.229824,0.4961361

[a, supersonic, area 1,25.202]
[b, sea__., skim, gunl, 160]
[0.22784.0.47952]

[a, supersonic, area2,25.2021
[b, sea skim, areal, 1051
[0.221-84,0.5284121

[a, supersonic, area 1,25.202]
[b, sea skim, area2,1051
[0.22ý8-4,0.528412]

[a, supersonic, point2.22.2021
[b, sea skim, gunl, 1601
[0.22ý4-88,0.5044191

[a, supersonic, point2,22.202]
[b, sea skim, area2,1051
[0.22S4-88.0.55585]

[a, supersonic, gunl, 101.01]
[b, sea skim, areal, 1051
(0.18f4-Ol, O. 4186621

fa, supersonic, area2,25.2021
[b, sea skim, gunl, 160]
[0.1827272,0.479521

fa, supersonic, gun 1,10 1.0 1
[b, sea_skim, area2,105]
[0.14592,0.4186621

yes

query? halt.

[Prolog execution halted]

15

The query defence(Plan) in the above session took about 325 seconds of

CPU time and, when running in a time sharing environment, takes even longer in

real time. This is, clearly unacceptable, especially when considering that the system

recommends firing weapons within about 100 seconds, and sometimes 25 seconds, of

the query being asked (not answered). Most of the targets would have reached the

ship by the time the recommendation was made! The translator described in chapter

4 can be used to translate this code to a Prolog program that can be run directly

without the need for the interpreter, Slop. Having done this, the resultant code

took only 11 seconds of CPU time to achieve the same results. The following

section describes the necessary declarations that are essential for translation and also

those that can be made to improve the efficiency of the translation.

6.1.2 Translating the TEWA System

To translate the TEWA system, a number of declarations have to be made.

Some of these
_are.

obvious, such as those identifying the use of fuzzy terms and

those that declare a relation to be a Prolog type goal that does not evaluate supports,

but in some cases it is also essential to have a solutions declaration as well. If a

relation does not have_a solutions declaration, then the translator has to query that

goal to find the solutions to each clause. This query is generated with all the

arguments to the goal being variables, but in recursive list processing relations, this

will result in an infinite loop and the translator running out of memory. Such

relations are escape/1, survival_plan/2 and deploy/6 and all must have a solutions

declaration. As explained in section 4.8, these declarations do not necessarily have

to declare the actual solutions, as long asý' they imply the correct comparisons

between solution sets, i. e. same, different or overlapping. When doing this,

however, one must also be careful that the substitute terms are not used to deduce

solutions sets for a higher level relation, because they'wouldý almost' certainly be of

the wrong type and would corrupt the solution evaluation or cause it to fail -

16

altogether. For clarity, all relations in the translation of TEWA have corresponding

solutions declarations and therefore this risk is avoided. The solutions declarations

for escape/1, survival-plan/2 and deploy/6 are

solutions(escape/l, [[[Iistl]], [[Iist2]]]).

solutions(survival_plan/2, [[[Iisti, list2]], [[Iist3, list4]]]).

solutions(deploy/6, [[[-, target, weapon_type, weapon_id, listl, list2]],

[[-, target, weapon_type, weapon_id, lis B, lis W]]]).

in each case, where a list occurs as argument to the goal, the term llst<n> is used in

which n is, a different number to show that each clause generates a different

solution.

Another situation in which a solutions declaration is essential is in a relation

in which a clause always fails, but needs to be evaluated to initiate some side-

effect, such as output or knowledge base alterations. Such a relation in TEWA is

ordered_survival_plan/2, the first clause of which generates all the plans and stores

them in the knowledge base before failing and allowing the second clause to rank

the plans and return them as solutions one at a time. Without a solutions

declaration, the first clause would be seen to have no solutions and would be

ignored, so to prevent this we use the declaration,

:- solu tions(o rdered_survival_plan/3, [[[rank, list I Iist2j], [[ran k, I ist3, I is N]]]).

which marks the two clauses as generating different solutions.

The third situation in which a solutions declaration is essential is when an

arity zero relation 1 has more -than one clause, and any one of these clauses can fail

outright without evaluating a support. - Very often an arity zero relation can be

translated using a one-clause form since, with no variables, there can only be one

solution, however this does require each clause providing only one proof. If, on the

17

other hand, one of the clauses contains a Prolog goal using call, then it is possible

for the goal, and therefore the clause, to fail, and if this were put in a one-clause

form then the whole relation would fail in its translated form and no support would

be generated. The two relations defence/0 and threatened/O are in this category

and therefore have solutions declarations as follows:

solutions(defence/O, [[al, [a, b]]).

solutions(threatened/O, [[a], [a, b], [b]]).

All the remaining relations are given appropriate solutions declarations and the

following are also declared as Prolog goals because they are ý either accessed using

call or from another Prolog goal:

best/4,

stronger_support/2

modify_range/3,

collect-Plans/2,

rank/4,

partition/g,

append_lists/6,

pick/6,

time_to_deployment/4,

print_plans/0 and

priw_plan/l,

Semantic unification can be incorporated into a translation either by the

declaration semantic-unification, which causes all terms to be tested to see if they

are fuzzy terms, or by explicitly stating which arguments of which relations are

fuzzy terms using the fuzzy_goal declaration, or both. The first of these depends

on solutions declarations using the correct terms when they are fuzzy, and not using

18

non-fuzzy substitute terms. "It could be used in the translation of TEWA, but it is

far more efficient to use the second form alone since only the three input goals,

range, 'Velocity and altitude, have fuzzy terms (in this case numerical values). These

are declared as follows:

:- fuzzy_goal(range/2,2).

fuzzy-goal(velocity/2,2).

:- fuzzy-goal(altitude/2,2).

There are two declarations we can use to improve the overall efficiency of

the translation process - top_level and 'nostore. ' The first of these is used to

identify relations which are only called as top level queries and not as subgoals to

another relation. In such cases it is not necessary to evaluate the solution sets for

the relation and this time can be saved. The relevant goals in TEWA are update/2,

threatened/O and defence/0, however, given that these relations have solutions

declarations, ' this only produces a small saving. More significantly, the nostore

declaration can be used. Because all relations have a solutions declaration, none

need to be queried to establish solutions and therefore the program does not need to

be converted into a module and stored.

Another advantage of all relations having solutions declarations is- that the

input data does not have to be translated'with the TEWA system. Were there no

solutions declarations, then the input data would need to be available to allow

solutions to be evaluated, and for every new set of input data the entire system

would need to be translated. As it is, the target data and weapon data files can be

translated separately from the TEWA system and from each other, provided any

fuzzy_goal and prolog declarations occurring in the data files are also in the system

file. These are necessary to ensure that the goals are translated correctly at the

point at which they are called.

19

The translation of the TEWA system reduces the run time from 325 to II

seconds of CPU time representing a vast improvement in efficiency, but this is

probably'still unacceptable. There are however a number of improvements that

could still be made. The two most obvious involve the hardware and host software,

both of which for this implementation were fairly outdated, being a DEC VAX

mini and version 1.4 of C-Prolog. Apart from this, increases in speed can also be

achieved by implementing the system in a customised Support Logic programming

system such as Frit (Baldwin, Martin and Pilsworth, 1988), and by running it on a

dedicated processor. Of course a full implementation of a TEWA system would be

considerably larger than that discussed here, but there is definitely potential for

solving the TEWA problem using Support Logic. A full listing of the TEWA system

with the appropriate declarations is given in appendix 111, and of the translated

version in appendix IV.

6.2 Fault Diagnosis In Oil-Drilling Rigs

This section describes the implementation of a simple diagnosis model in

Support Logic, and compares it with its original implementation in AL/X (Reiter,

1981) and its subsequent implementation', in INFERNO (Quinlan, 1983), as

mentioned in section 1.4. Figure 6.2 shows the terms involved and the causal

relationships as an AL/X inference network. Each proposition is represented by a

labelled box with an associated number, being the prior probability of the

proposition. These boxes are the nodes of a network of two kinds of directed links

which define the relationships between propositions. Those links that have a pair of

values associated with them correspond to antecedent-consequent implications, and

the numbers are likelihood ratios like those in PROSPECTOR (section 1.4). If the

antecedent holds, the odds of the consequent are multiplied by the first value, if the

antecedent is false the odds are multiplied by the second value, and if the

antecedent has some probability, p, the odds are multiplied by an interpolated value

6- 20

SCIVCAUSE . 002 ýPCV302EQERR. 003RVLIFTEARLY . 001 RVSOLSHORT . 001 RVSWSHORT . 001

The closing of a There is an The V-01 relief The relief valve The relief valve
scrubber inlet equipment failure valve opened early solenoid has switch has
valve caused high in the pressure (the set pressure shorted shorted
separator pressure controller area has drifted)

5000. . 001

LP&SCIVSHUT . 002

SCrVSHUT_. 002

A scrubber inlet
valve has shut

100.

100)0.. 001 2000-001

PCV302FTBAD
. 001 LIFT&NLIFTP . 005

A function test of
k! LD]

the pressure
controller indicate!
a problem

1.5

LIFTPRESS . 005

NLIFTPRESS . 995

Relief valve lift
pressure (175 psi)
has been reoChed
in the separator

. 05 1000D. . 001

VOlSDHP . 01

The separator has
shut down due to
high pressure

V01CCRCHART. 005

The separator pressure
chart indicates that
relief valve lift
pressure (175 psi) has

,
been reached

-1

II
1000. . 001 400, . 001

NLIFT&IND
.
01

NRELM-IFT . 995

RELM-IFT . 005

The relief valve
has lifted

. 5, sootool

RVNOISECOOL .
001

Noise or cooling
(due to gas flow)
is noticeable near
the relief valve

RVI-IFTIND . 01

The relief valve
lift indicator is on

Figure 6.2: ALIX Inference network - Fault Diagnosis on Oil Rigs

6- 21

determined by - p, the prior probability of the antecedent and the two odds

multipliers. The other type of link has no uncertainty values associated with it and

is used to'clefine Boolean combinations of propositions.

The network can straightforwardly be transposed to a logic rule format using

the syntax of Prolog:

scivcause: -
liftpress, scivshut.

pcv302eqerr: -

liftpress.

pcv302eqerr: -

pcv302ftbad.

rvliftearly: -

relvlift, not liftpress.

rvsolshort: -

rvliftind, not relvlift.

rvswshort: -

rvliftind, not relvlift.

liftpress: -

volsdhp.

liftpress: -

volccrchart.

6- 22

relvlift: -
liftpress.

relvlift: -

rvnoisecool.

relvlift: -

rvliftind.

The required input data, which will be defined as facts, are

rvliftind.

vo I ccrchart.

volsdhp.

pcv302ftbad.

scivshut.

rvnoisecool.

Suppose we have an antecedent-consequent implication from A to 13 with

likelihood ratios LS (if A is true - sufficiency measure) and LN (if A is false -

necessity measure), and a prior probability on B of prior(B). The Prior odds of B

are defined by

odds(B) = prior(B)/(l - prior(B)),

and the odds of B when A is true are given by

odds(BIA) - LS*odds(B).

From these odds we can deduce the posterior probability as

posterior(BIA) - odds(BIA)/(l + odds(BIA)),

and similarly when A is false. In this way we can evaluate the conditional

probabilities on the rules as follows:

6- 23

P(scivcausellp&scivshut) - 0.909

P(scivcausel-, Ip&scivshut) =0

P(pcv302eqerrlliftpress) = 0.231

P(pcv302eqerrl-, Iiftpress) - 0.002

P(pcv302eqerrlpcv3O2ftbad) - 0.968

P(pcv302eqerrl--. pcv3O2ftbad) =0

P(rvliftearlyllift&nliftp) - 0.667

P(rvliftearlyl, lift&nliftp) =0

T(molshortInlifMind) ,-0.5

P(rvsolshorti, nlift&ind) =0

P(rvswshortinlift&ind) = 0.286

P(rvswshortl-, nlift&ind) =0

P(liftpresslvolsdhp) - 0.668

P(liftpressl-, vo I sdhp) m0

p(liftpresslvo I ccrchart) - 0.98

P(liftpressl-, vo I ccrchart) m0

P(relvliftilif tpress) - 0.668

P(relvliftl--ilif tpress) =0

P(relvliforvnoisecool) - 0.501

P(relvliftl, rvnoisecool) = 0.003

P(relvliftirvliftind) - 0.801

P(relvliftl-, rvliftind) m0

6- 24

where the three new terms lp&scivshut, Ilft&nlIftp and nllft&ind represent

conjunctions as follows:

lp&scivshut liftpress and scivshut

lift&nliftp - relvlift and not liftpress

nlift&ind - rvliftind and not relvlift.

There are a number of ways that we can implement this data because of the

possibility of representing ignorance within Support Logic, but we can not tell, by

looking at the data alone, with what accuracy it was originally established. The

original implementation had no way of expressing or using such information and it

is therefore lost. To develop a serious model in Support Logic we should go back

and examine the source of the original information. For the sake of comparison,

therefore, we will look at several different versions of the Support Logic model.

The first two versions, called oilrig-pt and oilrig_int, are the most

appropriate for direct comparison with the AL/X version: oilrig-pt defines all

supports as point values so that lower and upper probabilities are equal and there is

no unsureness, and oilrig_int introduces an error margin of 5% to every probability,

giving rise to support pairs with unsureness of up to 0.1. Both versions achieve

results very similar to those of the AL/X version (see table 6.2), thus showing the

greater flexibility of Support Logic to produce sensible results from incomplete

information. The remaining versions, oilrigI to oilrig4, compare more closely with

Quinlan's version using INFERNO, in which the conditional probabilities are taken

as upper and lower bounds.

Consider the rule

pcv302eqerr*-

pcv302ftbad : SI, S2.

6- 25

in which S1 and S2 are the two support pairs making up a probabilistic pair. The

conditional probabilities associated with this rule are

P(pcv302eqerrlpcv3O2ftbad) - 0.968

P(pcv302eqerrl, pcv3O2ftbad) -0

Using point value supports, as in oilrig-pt, we have Si - [0.968,0.9681 and

S2 - [0,0], and allowing a 5% error, as in oilrig-int, we have S1 - [0.918,11 and

S2 - [0,0.051. If, however, we take the probabilities to be upper or lower bounds,

then there are four possible combinations as shown in table 6.1.

Si S2 WHIE) P(HI-, E) Proarnm

[0.968,1] [0,0] lower upper oilrigI

[0.968,1] [0,1] lower lower oilrig2

[0,0.968] [0,01 upper upper oilrig3

[0,0.968] [0,1] upper lower oilrig4

Table 6.1: Possible interpretations for the conditional probabilities

of the AL/X model.

The unsureness associated with each interpretation varies dramatically and,

when applied across the whole knowledge base, the supports associated with the

possible diagnoses are greatly affected (see table 6.2). The above rule, in version

oilrig4, can be seen to contain practically no information whatsoever and would be

unlikely to provide a satisfactory conclusion, whereas the same rule in version

oilrigi has practically no unsureness and therefore should provide very accurate

information. The implementation of this model in INFERNO assumes P(HIE) to be

a lower bound and P(HJ-, E) to be an upper bound corresponding to the Stop version,

oilrigl. Needless, to say it provides a tightly defined conclusion that tallies closely

with that of the AL/X version, however this is only achieved by changing a piece

of ground data; the probability of pcv302ftbad is adjusted from zero to 0.204. This

6- 26

suggests that ihe accuracy with which this' item was assessed must have involved an

error of greater than 20%. Without making such an assumption INFERNO could

not have established a result, 'however
the Support Logic model is able to resolve the

conflict that gave rise to this adjustment and still obtain sensible results.

version scivcause rvswshort rvsolshort pcv302-
egerr

rvliftearly pcv302-
eaerr'

AL/X 0.909 false false false 0.057

oilrig_pt [0.85,0.85] [0.04,0.04] [0.06,0.06] [0.04,0.041 [0,0] (0.06,0.06]

oilrig_int [0.78,0.891 [0.03,0.11] [0.07,0.14] [0.04,0.10] [0.01,0.021 1 [0.08,0.09]

INFERNO 0.80-0.88 0.03-0.20 0.06-0.2 0-0.12 - 10.204

oilrigl [0.87,0.961 [0,0.07] [0,0.07] [0.02,0.04] [0,0) 1 [0.23,0.241

oilrig2 [0.87,1] [0, l] [0, l] [0,1] [0.22,11 1 [0.38,1]

oilrig3 [0,0.59] [0,0.62] [0,0.74] [0,0.47] (0,0] [0,0.12]

oilrig4 [0,11 [0,0.861 [0,0.90] [0,11 [0, l] [0,0.99]

Table 6.2: Comparison of results for oil rig fault diagnosis.

As another comparison, the last column of table 6.2 shows the support for

pcv302eqerr (the only conclusion affected by pcv302ftbad) when the support for

pcv302ftbad is [0.204,0.204], as in INFERNO, instead of [0,01 as used by AL/X.

Interestingly, the most marked change in support for pcv302eqerr occurs in oilrigi,

the version closest to the INFERNO version. The change in support is from (0.0] to

[0.235,0.241], which is closer to the value deduced by INFERNO but further form

that deduced by AL/X (0.057).

This type of model in which we have an inference network with associated

uncertainties, lends itself nicely to implementation using Support Logic. Any doubt

about any of the values can be represented and the model will still generate answers

to a query. These may not provide us with a satisfactory conclusion, as in oilrig3

and oilrig4, but they still provide information about the inaccuracy of the model or

6- 27

the input data. In these two cases it is the model having very imprecisely defined

rules that gives rise to the unsureness in the results.

To assess accurately the value of Support Logic in systems of this kind, the

model should be designed, from the outset, in a Support Logic context. No true

reflection can be gained by using a model that does not make use of all the

characteristics of Support Logic, however we can see from a comparison of this sort

that there is enormous potential.

6- 28

Chapter 7. Further Work and Conclusions

The main area of the theory that could benefit from extra work is the

generality ofý its applicability. The use of the product rule and Dempster's rule in

support evaluation carry the assumption of independence even though it is only

because it is the least prejudiced assumption to take. Allowing a variety of t-norms

to be used under different circumstances was avoided in the development of Slop

because of the complexities of implementation and the effect it would have had on

the speed. it would, however, be worth investigating the possibility either of

reducing the overheads due to allowing different t-norms, or of performing some

form of generalised assignment of supports that assumes no more than is necessary.

The advantage of this latter approach is that it would provide an alternative to the

renormalisation of Dempster's rule, the theoretical basis of which is'in doubt. With

this, however, comes the danger that such an assignment would be too general and

would introduce unacceptable amounts of unsureness. All these considerations -

efficiency of implementation. theoretical basis, tightness of support intervals - have

to be balanced against each other.

One way in which Support Logic could be generalised would be to remove

the Horn Claus e restriction and model in predicate logic. Support Logic would then

be a type of probability logic and the consequent of a statement within it could be a

conjunction of propositions and need not be a single proposition. This would allow

dependences between propositions to be represented directly by defining not just the

supports -for the individual propositions, but those for the propositions in

conjunction as well. There would then be no need to define different t-norms, but

one could instead use a generalised assignment that takes account of the extra

information. This in turn would tighten the intervals so generated, and reduce the

unsureness resulting from the use of a generalised assignment. The drawback of

such a system is the efficiency with which it can be implemented; the resolution

7-1

method of Prolog (Lush) is dependent on the use of Horn Clauses, as discussed in

section 1.3.

The semantic unification 'procedure could also be generallsed by the use of

conceptual graphs. This involves defining a graph, for the term containing all the

attributes thought to contribute to the term. This is then matched with another

similarly defined term and the closeness of this match can be quantified to provide

a support pair for the unification (Maher, 1987). A mechanism similar to this can

however be implemented directly in Support Logic, as discussed in Baldwin (1988).

The TEWA problem showed up an area which Slop was not adequately able

to address, that of time-sensitive applications in which the actual sequence of events

is important. This showed itself in the need to be able to allow targets to rack up

before being engaged by the same weapon. Such problems involve fairly complex

analysis, but can occur quite frequently and therefore the uncertainty mechanism

should be extended where necessary, to admit such, problems.

Work on support derivation, though not directly related to the theory itself,

could greatly enhance the development of applications. Chapter 5 mentioned two

simple techniques for determining supports subjectively, but more rigorous methods

could be developed that have more general applicability. These could be directed

from statistical ana lysis and also from psychology using such techniques as Kelly's

Personal Construct Theory (Kelly, 1955, Barry and Baldwin, 1986).

The implementation of Support Logic could itself be improved both in its

interpreted and translated forms. Trivially, this involves slight alterations to some

of the Slop constructions such, as negation and probabilistic pairs each of which

currently have two representations. Using only the shorthand form of probabilistic

pairs will prevent the need to examine the other clauses of a relation. At present,

in order to establish that a particular rule does not have a probabilistic pair defined

7-2

for it, the body of the rule has to be compared with the bodies of every other

clause in the relation, resulting in a great deal of extra searching and unification

tests. This shorthand also makes the equivalence structure (using <->) redundant as

it can be simulated by the probabilistic pair with supports 11,11, [0,01. This structure

was implemented before the shorthand for probabilistic pairs was devised and has

only been left in for the sake of continuity and upwards compatibility. Another

simple alteration would allow Support Logic queries to be called from within Prolog

calls allowing, full switching between the two types of query. Currently, once a

Prolog query is invoked, support evaluation can not occur until that query is

satisfied. More important improvements however could be made to the overall

interaction and justification facilities.

In its-simplest form, interaction with a knowledge base should allow missing

data to be provided at run time, either in the form of rules or supports on facts.

This facility should not be something that the rule-author has to build into the

particular application, but an automatic action by the interpreter on detecting

complete unsureness associated with some goal. Such interaction should tie in with

an explanation so that, the user can ask why extra information is required and what

would be the effect if it was, not provided. A more complex interaction process

could address the behaviour of the system, when an, inconsistency occurs. This

might involve an explanation of the likely source of the inconsistency or suggestions

of how support intervals could, be adjusted to eliminate the inconsistency. These

interactive facilities should also be provided in translated knowledge bases, but here

the problem is greater as the necessary code has to be hooked into the application

itself. Certain facilities may in, fact, be considered unnecessary because they are

only concerned with the development of applications, which would be carried out

using the interpreter, Slop, however there is no doubt that an explanation facility is

essential, for justifying the reasoning processes of the application to the end-user.

To provide this without slowing down the query execution and without increasing

7-3

the size of the application to unwieldy proportions may prove difficult, but it needs

addressing.

7.1 Conclusions

The theory of Support Logic and the implementation presented in this thesis

attempt to meet three main criteria. The first of these is a solid theoretical

foundation to the rules of uncertainty propagation. The second is that models

implemented under the mechanism should closely represent the structure of the

original knowledge to facilitate their development and optimise their clarity. The

third criterion is that the mechanism should be efficient to, implement, so that there

are not unacceptable computational overheads.

Support Logic, being derived in the general terms of t-norms, comfortably

meets the first requirement of solid theoretical justification, however in order to

select a particular t-norm, some assumption had to be made about the relationship

between propositions. In so doing there is the likelihood that the assumption will be

inappropriate in some circumstances thus affecting the validity of the knowledge

base under development. This can be avoided by allowing different t-norms to be

used to reflect the different assumptions. Such a scheme was not adopted in Slop

because of the effect it would have on the efficiency of the implementation,

demonstrating that there can be a trade-off between the three criteria laid out

above. Instead no assumption was made about what was the dependence between

propositions, but rather that the dependence was completely unknown. In order to

minimise the bias towards any proposition the t-norm was derived that would

maximise the entropy. This function turned out to be the product, which in fact

corresponds to an assumption of independence. By using this t-norm for support

combination throughout a proof path we have to be careful that this assumption is

not violated. Notice, however, that we do not have to establish that two

7 -A

propositions are, independent, ' but merely that we can not prove that they are not.

While we know nothing about the dependence between two propositions,

independence is the, least prejudiced assumption to adopt. We still have a

theoretically justifiable system, but we have lost some of the generality.

The one departure from such firm justification is the conflict resolution of

Dempster's rule using renormalisation when considering independent viewpoints.

When there is no conflict, the rule amounts to a disjunction combination, however

the conflict is dealt with in a rather ad hoc way, its main justification being that it

achieves intuitive results. This is not however always the case as shown by an

example of Zadeh using belief functions in which two well supported propositions

are rejected, due to conflict, and a third, that was poorly supported by both pieces

of evidence is given total support (support of one) as a result of renormalisation.

This particular'situation cannot arise in Support Logic because it depends on the set

theoretic representation of propositions, but the underlying effect still applies - that

the renormalisation of conflict can result in exaggeration of support allocation. -

In order to meet the second criterion, Support Logic and the implementation,

Slop, use an extension of Horn Clause Logic. This maintains the logical structure of

a knowledge base by allowing the direct representation of antecedent-consequent

relationships in the form of rules. This provides a clear Aeclarative reading of the

statements in the'knowledge base, and the associated support pairs provide an easily

understood qualification of the information. Furthermore Horn Clause syntax

provides the means of writing - recursive definitions, the usefulness of which was

demonstrated in the TEWA application.

Another asset of Support Logic is that it does not depend on the provision of

prior probabilities, or supports, as required by Bayes' rule. Apart from the support

on the antecedents, the only information needed to evaluate support for a

conclusion, is the conditional support on the rule. Compare this with a Bayes' rule

7-5

system which requires likelihood measures and prior odds, associated with the rule

and conclusion. The-strength of such a rule supporting the conclusion has to be

gauged using both these latter values rather than just the conditional supports of a

Support Logic rule. - Bayes' rule comes into its own when the conditional supports

are only known in terms of symptoms given a diagnosis, when we are constructing a

rule concluding the diagnosis given the symptoms. If this is the case, then we can

use Bayes' rule to evaluate Jhe, appropriate conditional supports, using a prior

support, but we do-not have to express the knowledge directly using Bayes' rule,

and thus the readability is improved. It is also possible to implement a Bayes' rule

system directly in Support Logic, demonstrating that the latter is a more general

uncertainty model. -

The final aspect of Support Logic that allows closer representation of

knowledge is its ability to handle ignorance by assuming an open world. As it is so

often the case that the uncertainty associated with data is not definitely known, it is

necessary to be able to represent such lack of knowledge in order to obtain a model

closer to the real problem. When such ignorance is not present, the intervals can be

reduced to zero and Support Logic becomes a Horn Clause probability logic.

The requirement of efficiency of implementation can be of varying -

importance depending on the applications to which the system is being addressed,

however most applications involving uncertainty reasoning are going to involve

interactive usage, in which case it is very important that the mechanism can be

efficiently implemented. This was one of the drawbacks of Shafer's (1976) theory

of beliefs as discussed by Barnett (1981). The implementation, Slop, described in

Chapter 3 demonstrates the potential of Support Logic although it is probably

unacceptably slow for many applications. The use of the translator, of Chapter 4,

however provides a mechanism for generating very much more efficient code, as

demonstrated by the TEWA application which showed a thirty times improvement in

7-6

speed. Although further work is required to provide a comprehensive reasoning

justification mechanism for translated knowledge bases, the basis of an efficient

system is in place. The speed can also be improved simply by transposing the

system to a better Prolog, of which there are- several to choose from and more being

developed. With the advent of parallel Prologs, even more dramatic improvements

may be obtainable by exploiting the parallelism that must be inherent in such a

breadth search system. The advantage of a Prolog implementation of Support Logic,

such as Slop, over other implementations, ý such as FRIL, may be realised with the

development of the Warren Abstract Machine (Warren, 1983). This is intended to

optimise the architecture of the Prolog and the hardware on which it runs, thus

providing a good platform on which such an implementation could sit.

The theory and implementation described in this thesis form a sound basis

for an uncertainty reasoning mechanism. The use of Prolog provides ready

interaction with standard logic programming, and the associated procedural

programming capabilities, from within an uncertain knowledge base. The speed

limitations due to the use of an interpreter can be overcome by translating a Support

Logic knowledge base into Prolog code that can be run directly. The system is not

excessively large and translated knowledge bases maintain a compactness that is

perhaps surprising considering the extra work that has to be performed.

7-7

References

Adams, J. B. (1976), A probability model of medical reasoning and the MYCIN

model, Mathematical Biosciences 32: 177-186.

Aikins. J. (1983). Prototypical knowledge for expert systems, Artificial Intelligence

20: 163-210.

Baldwin J. F. (1985), Fuzzy sets and expert systems, Information Sciences36: 123-156.

Baldwin, J. F. (1986), Support Logic Programming, in: Jones A. I. et al (eds.), Fuzzy

Sets Theory and Applications, Proc of NATO Advanced Study Institute 1985,

Reidel Publishing Co.

Baldwin, J. F. (1988), Fuzzy Sets in Artificial Intelligence, Proc IFSA Conference 88,

Japan, (main speaker).

Baldwin, J. F., Martin, T. P. and Pilsworth, B. W. (1988), FRIL Manual, Fril Systems

Ltd.

Baldwin J. F. and Monk M. R. M. (1987), Evidence Theory, Fuzzy Logic and Logic

Programming, Information Technology Research Centre internal report ITRC

109, *University of Bristol.

Barnett, J. A. (1981), Computational methods for a mathematical theory of evidence,

Proc 71h IJCAI. 868-875.

Barr, A. and Feigenbaum, E. A. (1981), (eds.) The Handbook of Artificial

intelligence. Vol 1, Pitman.

Barry J. and Baldwin J. F. (1986), Rule Acquisition using Personal Construct Theory,

Information ý Technology Research Centre internal report ITRC , 83,

University of Bristol.

R-1

Bhatnagar, R. K. and Kanal, L. N. (1986), Handling uncertain information: a review

of numeric and non-numeric methods, in: Kanal, L. N. and Lemmer, J. F.

(eds.), Uncertainty in Artificial Intelligence, North-Holland.

Bobrow, D. G. and Winograd, T. (1977), An overview of KRL, a Knowledge

Representation Language, Cognitive Science 1: 3-46.

Brachman, R. J. (1985), "1 lied about the trees", or defaults and definitions in

knowledge representation, The Al Magazine 6: 80-93.

Buchanan, B. G. and Feigenbaum, E. A. (1981), DENDRAL and META-DENDRAL:

Their applications dimension, in: Webber, B. L. and Nilsson. N. J. (eds.),

Readings in Artificial Intelligence, Tioga Publishing Co.

Bundy, A. (1978), Will it reach the top? Prediction in the mechanics world,

Artificial Intelligence 10: 129-146.

Bundy, A. (1983), The Computer Modelling of Mathematical Reasoning, Academic

Press.

Carnap R. (1962), Logical Foundations of Probability, University of Chicago Press.

Carroll L. (1877), Through the Looking Glass, MacMillan & Co.

Clancey, W. J. (1983), The epistemology of a rule based expert system -a framework

for explanation, Artificial Intelligence 20: 215-251.

Clocksin, W. F. and Mellish, C. S. (1981), Programming in Prolog, Springer- Verlag.

Dempster, A. P. (1967), Upper and lower probabilities induced by a multi-valued

mapping, Annals of Mathematical Statistics 38: 325-339.

Dempster, A. P. '(1968)ý A Generalisation of Bayesian inference, J. Royal Statistical
I

Sociely B30: 205-247.

R-2

Doyle, J. (1979), A truth maintenance system, Artificial Intelligence 12: 231-272.

Duda, R. O., Gaschnig, J. and Hart, P. E. (1979), Model design in the PROSPECTOR

consultant system for mineral exploration, in: Michie, D. (ed.), Expert

Systems in the Micro-Electronic Age, Edinburgh University Press.

I
Duda, R. O., Hart, P. E. and Nilsson, N. J. (1976), Subjective Bayesian methods for

rule based inference systems, Proc. 1976 American Fed of Information

Processing Systems) 45: 1075-1082.

Duda, R. O., Hart, P. E., Nilsson, N. J. and Sutherland, G. L. (1978), Semantic network

representations in rule based inference systems, in: Waterman, D. A. and

Hayes-Roth, F., Workshop on Pattern- Directed Inference Systems, Academic

Press. -,,

Ernst, G. W. and Newell, A. (1969), GPS: A Case Study in Generality and Problem

Solving, Academic Press.

Feigenbaum, E. A. (1977), The art of artificial intelligence: themes and case studies

of knowledge engineering, Proc 51h IJCAI: 1014-1029.

Fikes, R. E. and Nilsson, N. J. (1971), STRIPS: A new approach to the application of

theorem proving to problem solving, Artificial Intelligence 2: 189-208.

Fikes, R. E., Hart, P. E. and Nilsson, N. J. (1972), Learning and executing generalised

robot plans, Artificial Intelligence 3: 251-288.

Garvey, T. D., Lowrance, J. D. and Fischler, M. A. (1981), An inference technique for

integrating knowledge from disparate sources, Proc 7th IJCAI., 319-325.

Gilmore, P. C. (1960), A proof method for quantificational theory, IBM J. of

Research and Development 4: 28-35.

R-3

Ginsberg, M. L. (1984), Non-monotonic reasoning using Dempster's rule, Dept

,
Computer

,
Science,

-
Stanford, University, California, working paper

HPP84-30.

Gordon, J. and Shortliffe, E. H. (1984), A method for managing evidential reasoning

in a hierarchical hypothesis space, Depts of Medicine and Computer Science,

Stanford University, California, internal report HPP84-35.

Green, C. C. (1969), Application of theorem proving to problem solving, Proc. Ist

IJCAI: 219-237.

Hayes, P. J. (1981), The logic of frames, in: Webber, B. L. and Nilsson, N. J. (eds.),

Readings in Artificial Intelligence, Tioga Publishing Co.

_Hewitt,
C. E. (1969), PLANNER: A language for proving theorems in robots, Proc

ist IJCAI: 295-301.

Kelly G. A. (1955), The'Psychology of Personal Constructs, New York. W. W. Norton.

Kowalski, ' R. A. (1974), Predicate logic as programming language, Proc Int.

Federation for Information Processing 74: 569-574, North-Holland.

Kowalski, R. A. (1979), Logic for Problem Solving, Elsevier North-Holland.

Kowalski, R. A. (1997), Is logic programming possible?, talk to British Society for

the Philosophy'of Science 87, Bristol, UK.

Liu, X., and Garnmerman, A. (1987), On the validity and applicability of the

INFERNO system, in: Bramer, M. A., (ed.) Research and Developtnent it,

Expert Systems III, Proc 6th Annual conference of BCS SGES 1986,

Cambridge University Press.

Maher, P. E. (1987)9' A Prolog Implementation of Conceptual Graphs, PhD Thesis,

The University College of Wales, Aberystwyth, UK.

R-4

McCarthy, J. (1980), Circumscription -a form of non-monotonic reasoning,

Artificial Intelligence 13: 27-39.

McCarthy,, J. and Hayes, P. J. (1969), Some philosophical problems from the

standpoint of Artificial Intelligence, in: Michie, D., and Meltzer, B. (eds.),

Machine Intelligence 4: 463-502.

McDermott, D. (1982), Non-monotonic logic IT: non-monotonic modal theories, J.

ACM 29: 33-57.

McDermott, D., and Doyle, J. (1980), Non-monotonic logic 1, Artificial Intelligence

13: 41-72.

McDermott, J. (1982), RI: A rule based configurer of computer systems, Artificial

Intelligence 19: 39-88.

Minsky, M. (1975), A" framework for representing knowledge, in: Winston, P. H.

(ed.), The Psychology of Computer Vision, McGraw Hill.

Monk M. R. M. and -Baldwin J. F. (1987), Slop User's Manual, Version 1.2.

Information Technology Research Centre internal report ITRC 106,

University of Bristol.

Moore, R. C. (1983), Semantical considerations on non-monotonic logic, Proc 8th

IJCAI: 272-279.

Morton, S. K. (1987), Conceptual Graphs and Fuzziness in Artificial Intelligence,

PhD Thesis, University of Bristol, Bristol, UK.

Morton, S. K., and Popham, S. j. (1987), Algorithm design specification for

interpreting segmental image data using schemas and support logic, Image

and Vision Computing 5: 206-216.

R-5

Newell, A. and Simon, H. A. (1972), 'Human Problem Solving, Prentice-Hall.

Non-monotonic Reasoning Workshop (1984), Proceedings of, October 17-19,1984,

New Paltz, N. Y., sponsored by AAAL

Pople, H. E. Jr. (1977), The formation of composite hypotheses in diagnostic problem

solving: an exercise in synthetic reasoning,, Proc Jth IJCAI: 1030-1037.

Quillian, M. R. (1968), . Semantic Memory, in: Minsky, M. (ed.), Semantic

Information Processing, MIT Press.

Quinlan, J. R. (1983), INFERNO: A cautious approach to uncertain inference, The

Computer Journal 26: 255-269.

Ralescu, A. L. and Baldwin, J. F. (1987), Concept learning from examples, with

applications to a vision learning system, Proc 3rd Alvey Vision

Conference'. 57-63.

Raphael, B. (1968), SIR. Semantic Information Retrieval, in: Minsky, M.

Semantic Information Processing, MIT Press.

Reiter, J. (1981), AL/X- An inference system for probabilistic reasoning, MSc

Thesis, University of Illinois at Urbana-Champaign.

Reiter, R. (1978), On reasoning by default, Theoretical Issues in Natural Language

Processing 2: 210-218.

Reiter, R. (1980), A logic for default reasoning, Artificial Intelligence 13: 81-132.

Rich, E. (1983), Default ý' reasoning as likelihood reasoning, Proc. American

Association of Artificial Intelligence - 83: 348-351.

Robinson, J. A. (1965), A machine oriented logic based on the resolution principle,

J. ACM 12: 23-41.

R-6

Roussel, P. ý (1975), PROLOG., Manuel de Reference et d'Utilisation, Groupe

d'Intelligence Artificielle, -Universite d'Aix- Marseille, Luminy.

Salmon, W. C. (1983), Confirmation and -Relevance, in: Achinstein P. (ed.), The

Concept of Evidence, Oxford University Press.

Shafer, G. (1976), A Mathematical Theory of Evidence, Princeton University Press.

Shafer, G. (1981), Constructive probability, Synthese 48: 1-60.

Shepherdson, J. C. (1984), Negation as failure (with addendum), Inference Workshop

ICL 19-20 Sept.

Shepherdson, J. C. (1987), Reply to Kowalski (1987), British Society for the

Philosophy of Science 87, Bristol, UK.

Shortliffe, E. H. and Buchanan, B. G. (1975), A model of inexact reasoning in

medicine, Mathematical Biosciences 23: 351-379.

Sowa, J. F. (1976), Conceptual graphs for a database interface, IBM J. of Research

and Development 20: 336-357.

Sowa, J. F. (1984), Conceptual Structures, Information Processing in Mind and

Machine, Addison-Wesley.

Szolovits, P. and Paulker, S. G. (1978), Categorical and probabilistic reasoning in

medical diagnosis, Artificial Intelligence 11: 115-144.

van Heijenoort, J. (1967), From Frege to Odd: A Source Book in Mathematical

Logic 1879-1931, Harvard University Press.

van Melle, W. (1979), A domain independent production rule system for consultation

programs, Proc. 6th IJCAI: 923-925.

R-7

Warren D. H. D. (1983). An Abstract Prolog Instruction Set, Tech. report 309,

Artificial Intelligence, SRI International.

Yager, R. R. (1982). General multiple objective decision functions and linguistically

quantified statements, Technical report MII-302, Iona College, New

Rochelle, N. Y.

Zadeh, L. A. (1978), Fuzzy sets as a basis for a theory of possibility, Fuzzy Sets and

Systems 1: 3-28.

R-8

Appendix Iýý Slop -Implementation of a Support Logic Programming Interpreter
In C-Prolog version 1.4

/* Settfng up operator precedences for 'coton', Isup_not', Isup_orf, 14-1 and

op(1150, xfx, (:)).

op(1150, fx, (:)).
op(900, fy, supji0t).
op(1100, xfy, (sup_or)).
op(1200, xfx, (<->)).
op(1175, xfy, (<-)).
op(1175, fy, (, c-)).

/* The 'colon', Isup_not' and Isup_orI operators are here given definitions so that support
Logic programs can be called as protog programs and still succeed.

: (X,
_): -

CaLLM.
: (X).
sup_not(X): -

sup.. pr(X, Y): -
ca(L(X),
catt(Y).

sup_or(X, _): -
c&tL(X).

sup_or(_, Y): -
caMY).

-M: -

ca(LCX).
c-(X, Y): -

ca[L(Y).

/* default trace mode - no_trace

no-trace.

/* goat tests for cutoff and prints trace message if satisfied.

cuttlng_qff(Sup_jpalr): -
cutoff(Sup_pair),

(noý_trace, I; sup_skip), I;

put(9),
write(' ** FAILED AT CUTOFF')

/* clefautt cut-off at support pairs of E0*11 necessary for the use of
protog_ýsystemL_predlcates

cutoff(IO, 11).

I-I

/* FRONT END

/* The goat that runs the support Logic programming interpreter.
ALWAYS SUCCEEDS (eventuatty)

stop: -
sup. yersion,
pre_process(on),
sementicsCoff),
(cutoff(_); assert(cutoff(co, l]))),

prompt(_, '> 0),

repeat, I

eraseatt(Sbundle),
detracfng,

abolish(LastcLause, l),

nL, wrfte(lquery? 1),

read(X),
stopcaLL(X),
retract(stop),
nt, write(IsLop execution termfnateds), nt.

/* prints message saying which version of SLOP is being used.
ALWAYS SUCCEEDS

sup_version: -
nt, write('Support Logic Programming

write(lVersfon 1.21), nt,
write(IM. RowLand M. Monkf), nt,
write(fInformation Technology Research Centre (I. T. R. C.), '), nt,
write(IDept. of Engineering Mathematics, l), nL,
write(#Universfty of Bristol, EngLand. %M,

write(#February'19871), ni, ni.

/* 'IsLopcatt" checks for special queries, e. g. quit$ end. of_ffte, pro tog. systemý_Predf Cates,
and then queries the knowledge base in the appropriate way. If there Is a stop syntax
error then the system Is unable to make the query and returns an error message.
ALWAYS SUCCEEDS

/* These two'cause the stop session to be terminated

stopcatt(en4_of -
fite): -

assert(stop).
sLopcatt(quit): -

assert(stop).

/* These two deal. with system predicate queries

stopcatL(X): -
Sys-catt(X),
soLution_type(X, W),
catt(X),
wrfteans(X, W),
1.

I-

stopcatt(X): -
sysý_Catl(x),
1,
nt, write(Ino more soLutions'), nL.

/* This ctause copes with the user caLLfng a trace on its own

stopcatt(trace): -
nL, write(Itrace can not be invoked

write(lwithout a goat to tracel), nt,
1.

/* These four deal with stop queries

stopcatt(X): -
tracfng(X, Y),
not bad_coton(Y,

_, _, _),
condý_query(Y, 2, Cond),
solution -

type(Z, W),
gup([], SLipport, Z,

_),
not cuttfng_off(Support),
condcombfne(Cond, Support, Supportl),
printsoLution(Z, Supportl, W),
1.

stopcatt(X): -
tracfng(X, (: S)),
printsotution((], S,

_), nL,
1.

sLopcatt(x): -
bac!

_coLon(X,
OK, Op, NotOK),

nL, write(I... SLOP syntax error ... 1), nt,
wrfteCOK), nt,
wrfteC,... here ... 1), nt,
write(Op), wrIte(NotOK), nL,
1.

stopcatt(X): -
nL, wrfte(Ino more non-cutoff SoLutionst), nt.

/* catted by stopcatt for printing out soLutfons to system predicate queries

writeans(X, novars): -
nL, wrlte(lyes'), nL.

writeans(X, vars): -

nL, write(X),
gets(G),
not Gw E591. /* 59

I-

/* prints the solution, with support pair, to a support logic programming (Stop) query if It
does not satisfy the cutoff restrictions.

prfntsolution(_, support,
_): -

cutoff(Support),
1,
fait.

prfntsotutfon(X, Support, W): -
C(nq_trace; sup_ýskfp), I; nI),
nt, write(X), wrfte((' ': Support)), tab(l),

Wx novars, nt, l;
gets(G), not Ga E591 /* 59

/* reads in a list of ASCII character codes until it is given a carriage return (code
N. B. <CR> alone returns 11.
ALWAYS SUCCEEDS

gets(EX I Y1

getocx),
not X- 10, /* 10 x <CR>

getscy).
getsc(l): -

/* called by stopcatt to see if a trace Is required for the stop query. If so the f tag
unq_trace" in the knowledge base is removed.
ALWAYS SUCCEEDS

tracing((X: Y), (Z: Y)): -
X \z= trace,

tracing(X, Z).
tracfng((trace, Y), Y): -

(retract(nq_trace); true),
1.

tracing((trace: X), (: X)): -

tracfng(X, X).

/* calted by siopcalt to see If the query has been gfven a corditionaL support

corio_query((Q: C), Q, C): -
1.

coriq. query((: _), _, _): -
I, faiL.

cor)o_query(Q, Q. nocond).

1 -4

/* catted before the system asks for a query., to return the system to a non-tracfng mode.
ALWAYS SUCCEEDS

detracing: -
(no-trace; assert(no_trace)),
(retract(sup_skip); true),
1.

/* calted by sup and support to print out supports as they are evatuated when in trace mode.
ALWAYS SUCCEEDS

traceprfnt(_, _, _,
(I,

_)): -
1.

traceprfnt(GoaL, Sup, Skip,
_): - (no-trace; sup_skip),

not Skip -- a,

traceprint(GoaL, Sup, o, _): -
1,
nt, wrfte(IOVERALL SUPPORT
portray(O, (GoaL: Sup)), nt.

traceprfnt(X, Y,
_, _): -

nL, wrfte('-> 8),
portray(l, (X: Y)).

/* catted by sup ard support to print out stop rutes prior to cattIng tracegoal.
ALWAYS SUCCEEDS

clauseprint(X): -
(no

-
trace; sup_skfp),

1.

ctauseprfnt((<- BundLe)): -

nt, portray(O, (<- SundLe)), nL.
ctauseprfnt(X)., -

nL, portray(O, X).

/* queries the user as to whether a particular ruts is to be traced or skipped.
ALWAYS SUCCEEDS

tracegoat(n): -
(nq_trace, -sup. ýskIp),
1.

tracegoaL(R): -
wrfte(ITRACE subgoaLs
writeVy (yes), n (no), q (quit tracing)? 1),
gets(G),
option(G, R).

I-

/* carries out the particuLar option requested by the user In answer to the caLl to
"tracegoat"

option([1101, s): -
assert(sup_skfp).

option((1101, _): -
retract(sup_skip),
I, faft.

optfon((1131, q): -
assert(no-trace),
1.

option(El, y): -
1.

optfonCE121l, y): -

option(_, R): -
write(linvalid option'), nt,
tracegoat(R).

/* caLLed by semunify_or_not for asking the user if semantic unification on a partfcuLar goaL
is to be traced or not.
ALWAYS SUCCEEDS

trace_sem_un(_,
_, _, _, _): -

(no-trace; sup_skip),
1.

trace_sem_un(_, _, _, _,
Goat): -

nL, write(#Semantic Unification on 1), wrfte(GoaL),
write(' TRACE - y/n? '),
getsCG), /* 110 an
Ga (1103,
1.

trace-sem-un(X, Y, S, Sn,
_): -

portray(O, ((X: -Y): S)),

portray(O, ((X: -not Y): Sn)).

/* this r*Latfon is for turning on and off the semantic unification facitfty.
ALWAYS SUCCEEDS

semantics(off): -
rjoý. sem_un#
1.

semantfcs(X): -
var(X),
Xa on,
1.

semanticsCoff): -
asserta(no. _sefft_un)-

semantics(on): -

retract(no_sem_un).
semantfcs(on).

1-6

/* succeeds onty if the first term In the argument is a protog_system_predfcate or speclat
stop goat. CaLLs "sys", a reLation stored in fite Isyspred', which is true for aLL
protog. ýsystemLpredicates except 'tracel/O and 1,1/2, which are used by stop itseLf. The
speclat. stop predicates for which it aLso succeeds are: vf/l ex/l x/l cat/l more/l Is/0
Ls/l - defined and exptafned in the fiLi $system, sLfst/O sLfst/l gets/1 - defined in this
fite and sys/l itself.

sys-caLt(CX, Y)): -
1,

syspred(X).
sys-caLL(X): -

syspred(X).

syspred(X): -
functor(X, Pred, Arity),

sys(Pred/Arity).

/* checks for badLy positioned cotons

bad_coLon((<- BundLes), (<- X), Y, Z): -
bad coLon(BundLes, X, Y, Z);

bad_coLon((Bundlel - SundLe2), X, Y, (Z 4- Bundle2)): -
bad_coLon(BundLel, X, Y, Z),
1.

bad_coLon((Bundlel <- BundLe2), (BundLel <- X), Y, Z): -
bao_coLon((<- BundLe2), X, Y, Z),

bad_coLoni(Body: Cond, NCond),
-, -, -): -'

Cond [St, Sul,
NCond EStn, Sun],
1,
faiL.

bad_coLon((Body: Extras), (Body: Sup_pfr), Op, Rest): -
Extras a.. EOp, Sup_pair, Rest],
OP \, a

bad_coton((Sody: Sup_pair), (Body: ' 1), Sup_pair, f I). -
not Sup_palr - (St, Sul,
1.

bact. caton((: Extras), (: Sup_pair), Op, Rest): -
Extras (Op. Sup_j)air, Rest],

OP \82
1.

bad_coton((: Supjmir), (:), Sup_pair, I

not Sup_pair - ESt, Su3,

bacLcotc)n((G,: S), (G, l 1), (: S), ' I): -

b&cLcolonC(G;: S), (G; l 1), (: S), ' I): -

bacLcoton((G sup_or : S), (G sup_or I

bad_coton((G -2, W, 011" ')#(: S)ol

I-7

bad_coton((G, G2), (G, G3), (S), ' I): -
bad_coLon(G2, G3, S, l 8),
1.

bad_coLonCCG; G2), (G; G3), CS), ' I): -
bacLcoLon(G2, G3, S, f 1),
1. .-

bad_coLonC(G sup_or G2), CG sup_ýor G3), CS), ' I):.
bad_coLon(G2, G3, S, f 1),

bad_coLonCCG->G2), CG->G3), (S), ' I): -
bad_coLon(G2, G3, S, l f),
1.

/* SUPPORT - EVALUATION

/* sup is catted by siopcaLL and evaLuates supports for att stop queries. arguments are: I-
a List of terms that have been introduced at a higher tevet of the stop query. This is
necessary to ensure that semantic unification is carried at the right tevet in a query. 2
- the support pair after it has been evaLuated. 3- the goat for which a support pair Is
required 4-a fLag used to force the 'cut$ (1) to be evatuated in the proper way on
backtracking.

/* for finding supports for a disjunction of goats

sup(Parent_terms, Support, (GoaLl sup_or Goat2), true): -
any_cuts((Goall sup_or GoaL2), (GoaLla sup_or Goat2a)),

I
d; sjww_sup(Parent_terms, Support, (Goatia sup_or Goal2a), true),
traceprint((Goatia sup_qr Goat2a), Support, d, true).

/* this is put in to prevent crashing if the user tries to trace from the middle of a query

sup(Parent_terms, Support, (trace, GoaL), True_or_cutfaft): -
nL, write(Itrace can not be invoked 0),

write(lexcept as first goal to a query'),

nL, wrfte(IcaLl to "trace, ' Ignored), nt,
1,

sup(Parent-terms, Support, Goat, True_or_cutfaiL).

/* this is put in to prevent an attempt to turn on semantic unification half way through a
query

sup(Parent_terms, Support, (semantfcs(_), GoaL), True_or_cutfaiL): -
nt wrfte(Isemantics can not be switched %

wrfte(lexcept at the begfnning of a query'),

nt, write(tsemantfcs switch ignoredr), M,

1,

sup(Parent_terms, Support, Goat, True_or_cutfafL).

I-8

/* for finding supports for a conjunction of goats

sup(Parent_terms, Support, (Goatl, Goa(2), True_or_cutfait2): -

sup(Parent_terms#Supportl, Goatl, True_or_cutfaill),
not cutting_off(Supporti),
supl(Parent_terms, Support2, GoaL2, True-or-cutfafLI, True-or-cutfaiL2),
not cutting_off(Support2), -
andcombine(Supportl, Support2, Support),
traceprfnt((Goatl, GoaL2), Support, d, True_or_cutfait2).

/* for finding supports for a negated goat

sup(Parent_terms, ESn, Spl, not(GoaL), True_or_cutfaft): -

sup(Parent_terms, [Snl, Spl], Goat, True_or_cutfaiL),

not cutting_off(ESnl, Spli),
Sn is I- Spl,,
Sp Is I- Snl,
traceprint(not(GoaL), [Sn, Spl, d, True_or_cutfaIL).

sup(Parent_terms, [Sn, Spl, sup_not(GoaL), True_or_cutfafL): -
1,

sup(Parent_terms, [Snl, Spl], GoaL, True_or_cutfait),

not cutting_off([Snl, Spl]),

-Sn Is I- Spl,
Sp is 1- Snl,

traceprint(not(GoaL), [Sn, Spl, d, True_or_cutfait).

/* returns E1,11 as support pair for 'cut' (1) when it is first queried

sup(_, (I, Ilol, true): -
traceprint(I. El, ll, o, true).

/* returns [0,01 as support pair for tcutl (1) when the system backtracks to the 'cut$

sup(_, (0,03ol, (I, f&iL)): -

/* For ctearfng. up more semantic switching rubbish

$up(_, El , 1l, semantics(_), true): -
nt, wrfte(Isemantics can not be switched 8),
wrfte(lexcept at the beginning of a query'),
nt, write(Isemantlcs switch fgnoreds), nt,

1-9

/* returns, E1,11 for a satisfied system goaL the way in which Stop deaLs with system
predicates has been changed to make caLL an aLLowabLe ctosed worLd predicate that faits
when it can not be proved. ALong with this aLL other system predicates have been banned so
that the system does not have to consider the semantics of system predicates. If a system
predicate is caLLed then the system issues a message and with the caLt as though It had
been made using calt as It shouLd have been. This may seem pedantic but atLows for a more
generat, and portabte system in which system predicates can not effect the supports. N. B.
cut can stitL be used as before.

sup(_, [1,1I, caLt(GoaL), true): -
setof(dummy, GoaL,

_),
traceprfnt(Goat, (1,11, o, true).

/* prints out a trace message when a system goat faRs
ALWAYS FAILS

sup(_, _, c&LL(Goat), _): -
((nq_trace; sup_ýskip);
M, write('Catt. to Protog Goat
wrfte(caLtCGoaM,
write(' FAILED')),

fait.

issues message when a system predicate is caLted ittegalty and catts the goat property
using "catt".

sup(_, Sup, Goat, true): -
sys_catt(Goat),

write(OILLegaL use of Protog system Preclfcate'), nL,
write(Goat), nt,
wrfte(Ocontfnufng with goat reptaced by'), nL,
wrfte(caLI(GoaL)), nl,
sup(_, Sup, catL(GoaL), true).

/* For ctearing up more "trace, ' rubbish

sup(_, El, ll, trace, true): -
nt, write(Itrace can not be invoked

wrfte(lexcept as first goat to a query,),

nt, write(Icatt to "trace" ignoredi), ni,

/* for ffnding the supports for a goat and attowing the user access to that Support

sup(Parent_terms, Sup, support(Goat, Sup), True-or_cutfall): -

sup(Parent -
terms, Sup, Goat, True_or_cutfaiL),

traceprint(support(GoaL, Sup), Sup, d, True_or_cutfait).

sup(Parent_terms, Sup, (GoaL4Sup), True
- or_cutfaiL): -

1,

sup(Parent'terms, Sup, GoaL, True_or_cutfaiL),

traceprfnt((GoaL^Sup), Sup, d, True_or-cutfafL).

I- 10

/* for ffnding the supports for a non-muttipte goat

sup(Parent_terms, Sup, GoaL, true): -
functor(GoaL, Pred, Arity),
functor(GoaLl, Pred, Arity),
excess-tern(Goat, Goatl, Parent_terms, [], E_Ts, Parent_terms, Ts_now),
stop. bagof(Supsesupport(Ts. nOwlGoatl, Sups), Supstist),
samecombfne(Supstist, Sup1),

semunify_orý_not(Goat. GoaLi, E_Ts, Supl, Sup),
traceprint(GoaL. Sup, o, true).

common_vars([XlYll, Y2, EXIZII, EXIZ2], NCVs, [XICVs]): -
fdent_removeCX, Y2, Y3),

common_vars(Yl, Y3, ZI, Z2, NCVs, CVs).
common_vars((XIYII, Y2, ZI, Z2, NCVS, CVS): -

common_vars(Yl, Y2, ZI, Z2, [XINCVsl, CVs).
conmn_vars((], Y2, NCVs, Y2, NCVs, []).

fdent-remove(X, EXIIYI, Y). *-
X ax X1,
1.

fdent-remove(X, EXIIYI, [XlIZI): *
fdent_remove(X, Y, Z).

disjLr-i;
_sup(Fý_ts,

Support, (GoaLla sup_or Goat2a), true): -
dot_excess_vars(Goatla,

_,
[], Vls),

doL_nonempty(VIS),
doL_excess-vars(GoaL2a,

_,
[], V2s),

doL_nonempty(V2s),

cwvork_varsCVls, V2s, Vlas, V2as, 11, CVs),
dot_rxxmnpty(Cvs),

: etof(Vlas-S, sup(Pý_ts, S, Goatla,
_),

Setl),
etof(V2as-S, sup(Pý_ts, S, GoaL2a,

_),
Set2),

d; sj_sup(Vlas, V2as, Setl, Set2, (], Set2, Set2, Support).
dfsjLr)c.

_sup(Parent_terme,
Support, (Goatia sup_or GoaL2a), true): -

1,

: up(Parent_terms, Supportl, GoaLla,
_),

up(Parent_terms, Support2, Goat2a,
_),

orcombine(Supportl, Support2, Support).

dfsj_sup(Vls, V2s, [Vls-SlIYII, EV2s-S2lY2], NI, NM2, Z2, S): -
orcoinbine(SI, S2, S).

dfsj_sup(vls, V2s, (XI-SIIYII, EX2-S2lY2], Ml, NM2, Z2, S): -
not not (Vls x XI, V2s a X2),
I,
remove(X2-S2, NM2, Nm2a).
dfsj_sup(Vls, V2s, [XI-SIIYII, Y2, (XiIMII, NM2a, Z2, S).

dfsj_sup(Vls, V2s, [Xl*SlIYII, Y2, [XllMll, Nm2. Z2, S). --
1,
disj_sup(vls, v2s, YI, Z2, (]. NM2, Z2, S).

dfsj_sup(Vls, V2s, [XI-SilYll, EX2-S2lY2], E], NM2, Z2, S): -
disj_ýsup(Vls. V2s, EX1'SIIYII. Y2, E]. NM2, Z2, S).

df sj_sup(Vls, V2s, (VIS-Sl JYII, (1, (1, NM2, Z2, S): -
orcombine(SI, EO, I], S).

I- 11

dfsj_sup(Vls, V2s, [XI-SIIYII, (], (], NM2, Z2, S): -
1,
disj_sup(Vls, V2s, YI, Z2, (], NM2, Z2, S).

dfsj_sup(Vls, V2s, El,
_,

Ml, (V2s-S2lNm2], z2, s): -
orcombine(10,11, S2, S).

dfsj.. ýsupCVls, v2s, El,
_,

Ml, E_lNm2]. Z2, S): -
dfsj_sup(Vls, V2s, [], E], MI, NM2, Z2, S).

remove(X, E1, E3).
rernove(X, EXIYI, Y): -

1.

remove(X, EWIY], EWIZ3): -
remove(X, Y, Z).

/* catted by $sup' for conjunctions because It is necessary to have two 'True-or-cutfait,
f tags

supl(Parent-terms, SLkoport, Goat, true, True_or_cutfaft): -
sup(Parent_terms, Support, Goat, True_or_cutfait).

/* determines whether support Is to be evaLuated from an ordinary reLatfon or an equivatence
reLation and passes evaLuation appropriateLy

support(Parent_terms, Goat, Sup): -
not not cLause(GoaL, _),
not (Goal. <->
1,
cLause_sLipport(Parent_terms, GoaL, Sup).

support(Parent_terms, GoaL, Sup): -
not not (Goal, <-> _), -
not cLause(GoaL, _),
1,
equfv-gupportCParent-terms, GoaL, Sup).

support(_, GoaL,
_): -

not not CGoal. <->
not not cLause(GoaL, _),
1,
write('*** ILLEGAL EQUIVALENCE DEFINITION
writeV MIXTURE OF EQUIVALENCE ANDO), nL,
writeV ORDINARY CLAUSES IN PREDICATEI), nL,
write(lý - %write(Goal.), nl.,
writeV GOAL FAILINGI), nL,
1,
fall..

/* firds the support for an ordinary reLation

c Lause_support(Parent_tems, Goa L, Sup): -
cLause(GoaL. Body),
evat_support(Parent_terms, GoaL, Body, Sup, True_or_cutfaft),
(Trueý. or_cutfafl. a(l, _),

I, falL ; true).

1- 12

/* finds the support for an equivalence relation

equiv-support(Parent_terms, Goat, Sup): -
bagof(duTvny, E^(Goal - E), L),
tength(L, Num_equfvs),
Num_equivs \-- 1,

NI is Ntxy!
_equivs - 1,

write('*** ILLEGAL EQUIVALENCE DEFINITION ***'), nL,
write(' 1), write(Nl),

write(* EXTRA EQUIVALENCE DEFINITION(S) FOR PREDICATEI), ni,
writeV 9), write(Goat), nt,
writeV GOAL FAILINGI), nt,

fall.

equfv_support(Parent_terms, GoaL, Sup): -
(Goat <-> SubgoaLs),
dot_excess vars(GoaL, _,

[], Vars'Lhs); '
doL_excess_vars(SubgoaLs, Vars_Lhs, [], Extra-vars-rhs),
doL_nonempty(Extra_vars_rhs),
1,

writeV*** ILLEGAL EQUIVALENCE DEFINITION ***'), nt,
write(' EXTRA VARIABLES IN RKS OF EQUIVALENCEI), nL,
portray(l, (GoaL 4-> Subgoats)),

writeV GOAL FAILINGI), nL,
fait.

equiv-Support(Parent_terms, Goat, Sup): -
(Goat <-> SubgoaLs),

evat_support(Parent_terms, GoaL, (Subgoats: equiv), Sup, True_or_cutfaft),

(True_or_cutfait z (1,
_),

I, fa! L; true).

/* evatuates the support pairs for atL the possfbte types of cLause as passed to the rotation
by $support'

/* cottects supports associated with facts'

evat_support(Parent_terms, Goat. (: Sup), Sup, true): -
1,
traceprint(Goat, Sup, d, true). -

/* collects supports associated with definitely true facts - I. e. (1,11

evaL. ýsupport(Parent_terms, GoaL, true, [1,11, true): -

traceprfnt(GoaL, E1,1), d, true).

I- 13

/* finds the support pair associated with a pair of generatised probabitity ctauses

evat_support(Parent_terms, Goat, (Subgoats: Cord, NCord), Sup, true): -
1,
cLauseprint((Goat: -(SubgoaLs: Cond, NCond))),
tracegoaL(Skip),
sup(Parent_terms, Supsub, SubgoaLs,

_),
not cutting_off(Supsub),
probcombine(Supsub, Cond, NCord, Sup),
traceprint(Goat, Sup, Skip, true).

/* finds the support pair associated with a pair of generaLlsed probabItity cLauses

evaL_support(Parent_terms, Goat, (Subgoats: Cond), sup, true): -

ciause(Goat, (not Subgoats: NCord))

ciause(Goat, (sup_not Subgoats: NCond))

ciauseprint((Goat: -(Subgoats: Corid))),

cLauseprint((GoaL: -(not Subgoats: NCond))),.
tracegoat(Skip), ,
sup(Parent_terms, Supsub, SubgoaLs,

_),
not cutting_off(Supsub),
probcombine(Supsub, Cond, NCond, Sup),
traceprint(Goat, Sup, Skip, true).

/* evaLuates supports for goats defined by an equivaLence reLation

evat_support(Parent_terms, Goat, (SubgoaLs: equiv), Sup, True-or-CutfaiL): -
It
cLauseprint((Goat - SubgoaLs)),
tracegoal(Skip), -
sup(Parený_terms, Sup, Subgoats, True_or-CutfaiL),
not cutting_qffCSup),
traceprint(GoaL, Sup, Skip, True_or_cutfall).

/* EVALUATES SUPPORTS FOR A BUNDLE - CHANGED FROM SLOP

evaL_support(Parent-terms, GoaL, (, c- Bundte), Sup, true): -

cLauseprint((GoaL <- gundte)),

tracegoaL(Skip),
GoaL 2.. C_lHead_args],

(bundLe_sup(Parent_terms, Heac!
_args,

(A- BundLe), nq_bundle,
_,

Sup);

eraseaLt(SbundLe), faIL),

traceprfnt(GoaL, Sup, Skip, true).,.

I- 14

/* evaLuates supports for rutes with conditionat supports

evat-support(Parent_terms, GoaL, (SubgoaLs: Cond), Sup, True_or_cutfait): -
negate(Subgoats, NotSubgoaLs),

not ctause(Goat, (NotSubgoats:
_)),

1,

ctauseprint((Goat: -CSubgoaLs: Cond))),
tracegoal(Skip),

sup(Parent_terms, Supsub, Subgoats, True_or_cutfalt),

not cutting_pff(Supsub),
condcombine(Cond, Supsub, Sup),
traceprint(Goat, Sup, Skfp, True_or_cutfafL).

/* evaluates supports for rules wfthout conditional supports

evat_support(Parent_terms, Goai, SubgoaLs, Sup, True_or_cutfait): -
not Subgoats a true,

not functor(Subgoais, (:),
-),

1,
cLauseprint((Goat: -(SubgoaLs: El, ll))),
tracegoat(Skip),
sup(Parent_terms, Supsub, SubgoaLs, True_or_cutfall),
not cutting_ýoff(Supsub),
condcombfne((1,11, Supsub, Sup),
traceprfntCGoat, Sup, Skip, True_or_cutfait).

/* carries out semantic unification on a goat. I. e. tests if any of the arguments can be
semantfcatty unified and if so carries out the unification.
ALWAYS SUCCEEDS

semunify_or_not(_, _, _,
S, S): -

noý_sem-un,
1.

semunffy_orý_not(_, "l(3, S, S)-

semunify-or - not(Goat, Goatl, [[X, YllRest_E_TSI, Supl, Sup). -
fuzzy(C'Y. Ptsl,

-)#

fuzzy(C, X, Pts2,
_),

fuzzynot(Ptsl, Ptsin),
fuzzynot(Pts2, Pts2n),

maxmfnset(Ptsl, Pts2, Su),

maxmfnset(Ptsl, Pts2n, Stl),
St is 1- SO, -
m&xmInset(Ptsln, Pts2, Sun),

maxmfnset(Ptsln, Pts2n, Stn%
Stn is I- Stnl,
strafght-unify(Rest_E_Ts),
trace_serR_un(X, Y, [St, Sul, (Stn, Sun], Goatl),

probcombine(Supl, ESt, Sul, EStn, Suni Sup).

semunify_or_not(Goat, Goatl, [[X, XIlRest_E_Tsl, Supl, Sup).. -
semunify_ýýnot(Goat, Goatl, Rest-E_Ts, Supl, sup).

I- 15

straight-unify(13).
straight_unify(EEX, XIIRI): -

straight-unify(R).

/* called by the last clause of sup to find if the body of a clause introduces any new terms.
This is needed for semantic unification in order to ensure that the unification is carried
out at the right moment I. e. at the highest Level at which a new term was introduced.
excess_terms and rem

-
excess

-
terms are slight variations on excess_vars and rem_excess_vars

which are used in the system definition for bagof and setof.
ALWAYS SUCCEEDS

excess-terms(G, G,
_, _, _, _,

dLmnmy): -
nq_sem_un,
1.

excess-terms(T, T,
_,

L, L, M, M): -
T
1.

excess-terms(T, T, Terms, E_Ts, E_TsoTs_sofar, Ts-sofar): -
(var(T); atomic(T)),
identmem(T, Terms),
1.

excess-terms(T, T1, Terins, LC, E(T, TIJILOI, Ts_sofar, [TIITs_sofar]): -
(var(T); at(xnic(T), fuzzy(_, T,

_, _)),
1.

excess_terms(not T, T1, Terms, L0, E(not T, Tl]ILOIOTs-sofar, ETlITs-Sofarl): -
1. -

excesý_terms(T, T, Terms, E_Ts, E_Ts, Ts_sofar, ETITs-Sofarl): -
atomic(T),
1.

excess_terms(T, T1, Terms, L0, Li, Ts-sofar, Ts-now): -
functor(T,

_,
N),

reiý_excess_terms(N, T, 71, Terms, L0, LI, Ts-Sofar, Ts-nOw),
1.

excess_terms(T, T, Terms, E_Ts, E_ýTs, Ts-sofar, ETITs_sofarl): -
functor(T..,

-).

rem excessý_terms(O, _, _, _,
L, L, Ts_sofar, Ts-sofar). --

1. -
rem-excess-terms(N, T, T1, Terms, L0, L, Ts_sofar, Ts-nOw): -

rg(N, T, Ta),

rg(N, T1, Tla),
1,

excessý_terms(Ta, Yla, Terms, L0, Ll, Ts_sofar, Ts_int),
wl fs N-1,

reaLexcesý_terms(NI, T, T1, Terms, L1, L, Ts-int, Ts-now).

rem-excessý_terms(W, T, T1, Torms, L0, L, Ts-sofar, Te-nOw): -
functor(T, Pred, Arity),
functorCT1, Pred, Arity),

reffL. excess-terms(N, T, Tl, Tems, L0, L, Ts_sofar, Ts-nOw).

1- 16

/* these reLations are catted by slopcaLl. to find aLl. the variables in a system_predicate
catt so that the soLution can be printed out in the right form

soLutfon_type(X, vars): -
any_vars(X),
1.

sotutfon_"(X, novars).

any_yars(T): -
var(T), '

any_varsCT): -
functor(T,

_,
N),

any_other_vars(N, T).

any_pther_vars(o, -): -

fait.
any_other_vars(N, T): -

rg(N, T, Tl),

ny_yars(TI).
any_pther_vars(N, T): -

NI Is W-1,

any_other_vars(Nl, T).

/* tooks through a'Stop disjunctfon removfng cuts and prfnts a message when necessary

any_ýcuts((A sup_or 8), (Cýsup_or D)): -
no.

_cuts(A,
C, T_or_Fl),

noý_cuts(B, D, T_or_F2),

T_or_Fl, T_or_F2,1

ni, write(ICUTS are not allowed 0),
wrfte(Ifn Stop disjunctfonst), ni '
write('The CUT(S) in the goat'), nL,
put(9), writeC(A suMr 8)), nL,
wrfte(Ihave been ignored. 1), nt

noý_cutsC(I, GI), G2, fai0. -
1,

noý_cuts(Gl, G2,
_).

rip_cuts((Gl, G2), (G3, G4), T_or_F): -
nq_cuts(G1, G3, T_or_FI),

rR_cuts(G2, G4, T_or_F2),

(T_or_FI, T-or_F2, T_or_F true;
T_or_F m fait),

nq_cuts((GI, _),
G2, faI0: *

noý. cuts(GI, G2,
_)-

I- 17

nq_cuts((GI; G2), (G3; G4), T_or_F): -
1,
ncý_cuts(GI, G3, T_or_Fl),

no-cuts(G2, G4, T_or_F2),
CT_or_Fl, T_or_F2j_or_F = true;
T_or_F x faR).

no-Cuts(G, G, true): -
not Ga1.

/* succeeds if the first argument Is an identical. member of the List as second argument i. e.
no variabte instantiations can occur. CaLted by excess_terms

fdentmem(X, [Ylj
X xx Y,
1.

fdentmem(X, E_ILI): -,
identmem(X, L).

bundte_sup(P_ts, Head_args, (<- BundLel - Sundte), BundteO, SO, S):.
cond_sup(Sundlel, aundtela),,

cLauseprint((<- BundLela)),
tracegoaL(Skfp),
10,
bundLe_support(Fý_ts, Head_args, BundLela, Sla),
traceprintC(<- SundLela), Sla, skip, true),
end_skfpCSkfp),
intersectCC- SundLeO), (<- BundLela <- SundLe). SO, Sla, SI),
bundLe_sup(P_ts, Head_args, C<- BundLe), BundLela, S1, S).

bundLe_sup(Fý_ts, Head_args, (, c- Bundtel), BundLeO, SO, S): -
cond_sup(BundLeloBundLela),
ctauseprint((g- BundLela)),
tracegoat(SkiP).

bundLe_support(Fý_ts, Head_args, BundLela, Sla)o
traceprfnt((<- Bundtela), Sla, Skfp, true),
end_skfp(Skfp),
fntersect((4- SundteO), (<- oundLela), SO, Sla, S).

end_skfp(s): -
retract(sup-skip),

end_skfp(_).

burdLe_support(P_ts, Mead_args, (: Y), S): -
bundLe_support(Fý_ts, Head_args, (caLt(true): Y), S).

bundLe-support(Pý_ts, Hesd_args, (X: Y), s): -
record_soLns(X, P-ts, (],

_),
1,

stop_ý)agof(S, buridLeý_body(Head_args, X, S), Sups),
corO-bundLeCY, Sups, Supsl),
samecwbfneCSupsl, S).

I- 18

bundte_body(Read_args, (GoaLl sup_or Goat2), Support): -
any_ýcuts((GoaLl sup_or GoaL2), (Goatla sup_pr Goat2a)),
doL_excess_vars(Goatla,

_,
[], Vls),

dot-nonempty(Vis),
doL-excess-vars(Goat2a,

_,
[]. V2s),

dot_nonenpty(V2s),
common_vars(Vls, V2s, Vlas, V2as, [], CVs),
doL_nonempty(CVs),
setof(Vlas-S, bundteý_body(Mead_args, GoaLla, S), Setl),
setof(V2as-S, bundteý_body(Head_args, Goat2a, S), Set2),
I
d; sj_sup(Vlas, V2as, Setl, Set2, [], Set2, Set2, Support),
traceprint((Goatia sup_or GoaL2a), Support, d, true).

bundLe_body(Head_args. (GoaLl sup.. pr GoaL2), Support): -
1,
any_, cuts((Goatl sup_or Goat2), (Goatla sup_or Goat2a)),
bundLe_body(Read_args, GoaLia, Supportl),
bundLeý_body(Head_args, Goat2a, Support2),
orcombine(Supportl, Support2, Support),

-traceprint((Goalla sup_or Goat2a). Support, d, true).
bundte_body(mead_args, (X, Y), S): -

bundLe_body(Head_args, X, SI),
bundbý_body(He&d_args, Y. S2),
andcombine(Sl, S2, S),
traceprint((X, Y), S, d, true)., -

bundte_body(Head_args, (sup_pot X), ESt, Sul): -
1,

bundLe_body(Mead_args, X, ESLn, Sun]),,,
SL is 1 Sun,
su is I Sln,
traceprfnt(sup_pot X, ESL, Sul, d, true).

bundL, k_body(mead_args, X, S): -
recorded(SbundLe, X-S,

_),
traceprint(X, S, d, true).

bundLeý_body(Nead_args, X, E0,11): -
not recorded(%bundLe, X-_,

_),
traceprint(X, 10,11, d, true).

cor4_bundLe(_, Cl. 11).

c«)cLbundte(cond, Nx JR], CSI Z])-

condcoffbine(C«d, SX, S),

cond_bundte(Cond, R, Z)i

fntersect((<- no_bundte), _,
(], SL, SL): -

1. -
fntersect(BundLel, Bundte2, [SL1, Sull, (SL2, Su2l, [SL, Sul): -

1,4

not conftfct_warning(Bundiel. Bundte2, [Stl, sul], [St2, Su2l),

max(SLI, SI2, SL),

minCSul, Su2, su).

1- 19

conftfct_warnfng(BLindLel, Bundte2, [SLI, Sul], ESL2, Su2]). -
Ml > Su2; St2 > Sul), -

nL, write($*** WARNING - CONFLICT IN 8UNDLEI), ni,
write(' - BETWEEN 0), nL,
portray(I, BundLel), nL,
write(and), nt, portrayCI, Bundte2), nt,
nL, write('*** BUNDLE EVALUATION FOR THIS SOLUTION FAILINGI), nL, nt.

cond-sup((X: Y), (X: Y)): -
1.

cond-Sup(C: Y), C: Y)): -
1.

cord-suP(X, (X: 11,13)).

record_soLns((X sup_or Y)#Pý_ts, Prev-Subs, Newsubs): -
1,

record_sotns(X, P_ts, Prev_subs, Newsubsl),

record. sotns(YOP. ts, Newsubsl, Newsubs).

record_soins((X, Y), Fý_ts, Prev-Subs, Newsubs): -
1,

record_soLns(X, P_ts, Prev_subs, Newsubsl),

record_sotns(Y, P_ts, Newsubsl, Newsubs).

record_soLns((not X), P_ts, Prev-Subs, Newsubs): -
1,

record_soLns(X, P_ts, Prev-Subs, Newsubs).

recorc!
_soLns((sup.

jiot X), P_ts, Prev_subs, Newsubs): -
1,

record_sotns(X. P_ts, Prev-Subs, Newsubs).

record_sotns(X, P_ts,
_, _): -

not recorded(SbundLe, X-S,
_),

(sup(Pý_ts, S, X,
_);

recorda(SbundLe, Snew,
_),

fait),

recordz(SbundLe, X-S,
_),

faiL.

record_soLns(X,
_,

E], EXI). *

recorded($bundLe, Snew, R),

1,

erase(R).

recorCsoLns(X, -,
EHITI, Newsubs): -

recorded($bLrdLe, Snew, R),

erase(R),

check_recorded_soLns(X, H, T, Newsubs).

record_soLns(X,
_,

Prev-subs, EXIPrev-subs]).

check_recordecLsoLns(X, H, T,
_): -

recorded(SbundLe, X-_,
_),

not recorded($bundLe, H-_,
_),

recordz($bundLe, H-[0,11,
_),

check_recorded-so(nsl(T).
check_recordecLsoLns(X, H, T, JX, HITI).

I- 20

check_recorded_soLnsl([HITI): -
not recorded(SbundLe, H-_,

_),
recordz(SbundLe, H-[0,11,

_), 1,

check_recorded_soLnsl(T).

eraseatL(Key):
recorded(Key,

_,
R),

erase(R),
fail.

eraseatt(-).

/* bagof for Stop for warning against predicates being sotved with unfnstantiated variables

sLop-bagof(X, P, Bag): -
dot-excess-vars(P, X, (], L),
dot_nonempty(L),
1,
Key

stop-bagof(X, P, Key, Bag).

sLop_bagof(X, P, Bag): -
doL_tag('Sbagl, 'Sbag'),

catL(P),
doL_tag('Sbag', X),
faiL.

sLop_oagof(X, P, Bag): -
doL_reap([], Bag),
dot-nonempty(Bag),
1.1

stop_oagof(X, P, E(0,111).

stop-Oagof(X, P, Key, Bag): -
dot_tag('Sbagl, 'Sbag'),

caLL(P),
var_warnfng(Key, P),
dot_tag('Sbag', Key-X),
fait.

sLop_Oagof(X, P, Key, Bag):,
doL_reap((], BagsO),
keysort(SagsO, Bags),
dot-nonempty(Bags),

dot_pick(Sags, Key, Bag).

slop_ý, agof(X, P, Key, ((O, llD.

var_warning(Key, bundLeý_body(_, Goat,
_)): -

Key a.. (SILI,

any_vars(L),

nL, write('***** WARNING - UNINSTAWTIATED VARIABLES IN SOLUTION TO 0),
nt, portray(I, GoaL), nL, nL.

I- 21

var_warning(Key, support(_, Goat, j):
Key a.. MILI,

any_yars(L), -
1,

nL, write('***** WARNING UNINSTANTIATED VARIABLES IN SOLUTION TO
nl, write(GoaL), nt, nI.

var_warnfng(_,
_).

doL-nonempty([_I_]).

dot_reap(LO, L): -
dot-untag('Sbag', X),
1,
dot_reapl(X, L0, L).

dot_reapl(X, L0, L): -
X \xz '$bag',
1,
dot_reap([XILOI, L).

dot_reapl(_, L, L).

dot_pick(8aqs, Key, Bag): -
dot_parade(Bags, Keyl, Bagl, Bagsl),
dot-decide(Keyl, Bagl, Bagsl, Key, Bag).

dot_. paradeC Eltem ILI 1 K, IX I BI L): -
dol_itemCltem, K, X),
1,
doL_paradeCLI, K, B, L).

dot_paradeCL, K, [], L).
I

dot_item(K-X, K, X).

dot_ýdecide(Key, Bag, Bags, Key, Rag): -
(Bagsa(l, I; true).

dot-decfde(_,
_,

Bags, Key, 8aq): -
dot_pfck(Bags, Key, Bag).

doL-excess-vars(T, X, L0, L): -
var(T),
I,
C dot_n, ý_occurrenceCT, X), 1, dot_introduceCT, L0, L)
;La LO).

dol-excess-vars(support(_, Goat,
_),

X, L0, L): -
1,
dot_excess-vars(GoaL, X, L0, L).

dot-excesý_vars(bundleý. body(Head_args, BodY, S), X, LO, L): -
1,
doL-excess_vars(Head_args, X, L0, L).

doL_excesý_varsCT, X, L0, L): -
functor(T,

_,
N),

dot_reaLexcess-vers(N, T, X, L0, L).

I- 22

dot-rem-excess-vars(O,
_, _,

L, L): -
1.

dot-rem_excess_vars(N, T, X, L0, L): -
arg(W, T, TI),

, dot_excess_vars(TI, X, L0, Ll),
NI iS N-1,
dot_rem_excess_vars(NI, T, X, L1, L).

dot-introduce(X, L, L): ----
dot_fncluded(X, L),
1.

dot-fntroduce(X, L, EXILI).

dot-incLuded(X, L): -
doL_doesnt_incLude(L, X),
1,
fafL.

dot-incLuded(X, L).

doL_doesnt_Inctude(CI, X).
doL_doesnt_IncLude(CYILI, X): -

Y \zz X,

cloL-dOesnt_Inctude(L, X).

doL-no_occurrence(X, Term): - -,
doL_contains(Term, x),
1,
fafL.

dot-no-occurrence(X, Term).

dot-contains(T, X): -
var(T),

T an X.
dot_contains(T, X): -

functor(T,
_,

N),
doL_upto(N, I),

a rg(I, T, Tl),
doL_contains(TI, X).

doL_upto(N, N)»-
N >, 0.

dot_upto(M, 1): -
m>0,
Nl 18 N-1,
doL-Upto(M1,1).

doi_tag(Key, Vatue): - ,
recorda(Key, VaLue,

_).

doL_untag(Key, Vatue): -
recorded(Key, Vatue, Ref),

erase(Ref).

I- 23

/* returns the support logic negation of the first argument as second argument.
ALWAYS SUCCEEDS

negate(not Goat, GoaL): - 1.
negate(sup_not Goat, GoaL): - 1.
negate(Goat, not Goat).
negate(Goat, sup_not Goat).

/* finds the fuzzy set associated with the term X of ciass C

fuzzy(C, X, Y,
_): -

fuzzy(C, X, Y).
fuzzy(C, not X, Y,

_): -
fuzzy(C, X, Yl),
fuzzynot(YI, Y).

/* finds the negation of a fuzzy set

fuzzynotC(X, A, B, C, D, YI, EXI, A, B, C, D, Yll): -
X1 Is I-X,
Yl is I-Y.

/* evatuates the max vatue of the min combination of two fuzzy sets

maxmfnset([O, X, X, X, X, 01.
-,

O): -I.
maxminset(_, EO, X, X, X, X, 01,0): -I.

1): -I.
ma)uninset([l, _, _, _, _,

11,

maxminset((I, Bl,
_, _,

El, ll, [O,
_,

C2, D2,
_,

01,1): -
02 >z El; C2 a< Bl),
1.

maxminsetC[1,81, CI, DI, Ei, ll, [O, B2, C2. D2, E2,03, Z): -
X Is (Cl - 82)/(Cl - 81 + C2 - 82),
Y Is (E2 - Dl)/(E2 - D2 + El - DI),
max(X, Y, Z),

maxmfnset(U_,
_, L, E1,03#EO, B2,

_, _, _, _],
O): -

62 >a El,

III -*a E2,
1.

maxmfnset(EI, Bl,
_, -. _,

D], [O,
_,

C2,
_, _,

01,1): -
BI 3- C2,
1.

maxmfnset((1,81, _, _,
EI, O], EO, B2,

_, _,
E2,11, X): -

X is (El - B2)/(El - 81 + E2 - 82),
1.

maxminset([I, Bl,
_, _,

EI, O], EO, 82, C2,
_, _,

O], X): -
X is (El - 82)/(El - 61 + C2 - 82),
I.

maxmfnset(EO, _, _, _,
El, ll, [O,

_, _,
D2,

_,
01,1): -

D2)- El,
1.

24

mxminset(Eo, al,
-, -,

'_, I], EO,
-, _, _,

E2,01,0): -
81 - E2,
I. -

maxminset(EO, 81,
_, _,

El, ll, (O,
_, _,

D2, E2,01, X): -
X Is (E2 - 81)/(E2 - D2 + El - 81),
1.

maxmfnset(EO, _, _,
Dl, El, 01, [O, 62, C2,

_, _,
O], X): -

C2 > DI.

X is (El - B2)/(El - DI + C2 - 82),
I.

maxmfnset([O, _,,
Cl,

_, _, _3,
[O,

_, _,
D2,

_,
01,1): -

D2 >- Cl,
1.1

maxmfnset([0,81, Cl,
_,

El, O], EO,
_, _,

D2, E2,01, X): -
E2 > 81,
X is (E2 - Bl)/(E2 - D2 + Cl - 81),
1.

maxminset(SI, S2, X): -
maxminset(S2, Sl, X).

max(X, Y, X): -
X
1.

max(X, Y, Y).

mfn(X, Y, X): -
X u< Y,
1.

mfn(X, Y, Y).

/* for pretty printing sLop ctauses

portray(I, X): -
varM,
1,
fndent(l),

writeM.
portrayCl, (X: -true)): -

1,
frident(l),

wrlteq(X),
wrfte(I. 1), nL.

portray(l, (X: - : Y)): -

frident(l),

writeq(X),
write(O-)),
portray(O. OM.

wrfte('. '), nL.

I- 25

portray(l, (X: - (<- Bundle))): -
1,
indent(j),

writeq(X),
write((: -)), n(,
11 Is I+1,

portray0l, (-c- Bundle)),
write(O. 0), nt.

portray(l, (X: -Y)): -
11
indent(f),

writeq(x),
write((: -)), n1,
It is I+1,

portray(11, Y),

wrfteV. %nl.

portray(l, ((X: -Y): Z)): -
1,
f rident(l),
wrfteq(X),
write((: -)),
wrlteq(Y),
write((: Z)), nt.

portray(l, (X <-), Y)): -
1,
indent(l),

writeq(X),
write(* -%nt,
11 is I+1,

portray(11, Y),

write(I. 1), nt.
portray(i, (X <- Y)): -

1,
portray(I, X), nt,
11 is I-1,
frident(II),

write((-c-)), nt,
portray(I, Y).

portray(1, C<- X))%-
1,
Indent(l),

wrfte((, c-)), nl,
11 is I+1,

portray(11, X).

portr&y(I, (X: Y)): -
1,

portray(I, X),

writeV : 1),

write(Y).
portray(t, (: Y)): -

1,
indent(l),

write(o : 9),

write(Y).

1 -26

portray(l, (X sup_or Y)): -
1,
Indent(l),

write('('), nL,
11 is I+1,
portray(ll, X), nL,
fndent(l), write(Isup_orl), nt,
portray(ll, Y), nt,
fndent(l), wrfte(')').

portray(l, (X ; Y)): -
1,
fndent(l),

wrfte('('), nt,
11 is I+1,

portray(ll, X), nt,
indent(l), wrfte('; '), nL,
portrayCI1, Y), nt,
fndent(l), write(*)').

portray(l, (X, Y)): -

portray(I, X),

wrfte(l, l), nL,
portray(I, Y).

portray([, X): -
fndent(l),

wrfteq(X).

indent(O): -
I.

indent(l): -
put(9),
11 fs I-1,
fndent(II).

/* for ifsting out stop retations using portray. It atso checks that the rotation to be
printed is not one of the ctauses defining the system.

current_predicate(X, Y),
not stop(Y),
not X

nt,
ctause(Y, Z),

portray(O, (Y: -Z)),
faft.

Wist): -
ciause((x <-)- Y), true),

nt,
portray(O, (X -c-3- y)),
WL.

I- 27

stist(0).
st I st(EX L]

stfstl(x).
stfst(E-IYI): - ,

stist(Y).

sList(X): -
M,
sL f stl(X),

$I ist(-)

stfstl((<->)): -
clause((X -c-), Y), true),
nt,
portray(O, (X c-> y)),
fail.

$tfst1(c<->)).
stistl(x): -

current_predicate(X, Y),
not stopCY),
nt,
ctausocy, z),
portrayCO, CY: -Z)),
fail.

stfstlcx): -
cLause(Cxl -, Y), true),
functor(XI, X,

_),
nt,
portray(0, (XI <-> Y)),
fail.

stfstl(P/A): -
functor(X, P, A),
M,

clause(X, Y),

portray(O, (X: -Y)),
fait.

stfsti(P/A): -
functor(X, P, A),

ctause((X <- Y), true), '

nt, -

portray(O, (X 4-> Y)),
falL.

:- cp(900, fx, (stist)).

1- 28

/* this predicate is for clearing the database of ail Stop relations

ctear_data: -
current_predicate(X, Y),

not Xa cutoff,
not sLop(Y),
functor(Y, P, A),

abotish(P, A),
faiL.

cLear_data.

/* this predicate is for clearing the database of Stop relations specified by their predicate
(and arity). -It is necessary to cope with equivaLence relations.

cLear_data(X): -
current_predicate(X, Y),

not sLop(Y),
functor(Y, P, A),

aboLish(P, A),
fail.

cLear_data(P/A): -
functor(Y, P, A),

not stop(Y),
aboLish(P, A),

retract((Y
felt.

ctear_data(-).

/* MULTIPLICATION MODEL

/* evaluates the support pair for the conjunction of two support pairs

andcombfne((Snl, Spll, [Sn2, Sp2l, (Sn, Spl): -
Sn Is Snl*Sn2,
Sp is Sp1*Sp2.

/* evaluates the support pair for the disjunction of two support pairs

orcombfne([Sni. Spll, [Sn2, Sp2l, [Sn, Spl): -
Sn is Sni + Sn2 - Snl*Sn2,
Sp is SpI + Sp2 - Spl*Sp2.

/* finds the conflict associated with two support pairs assumed to be supporting the same
conctusion

conftict((Snl, Spll, [Sn2, Sp2l, C): -
C is Snl*0 - Sp2) + Sn2*(l - spl).

29

/* combines support pairs which aLt support the same conctusion caLls conftfct

samecombine(Ell, l): -
1.

samecombine(EESnl, Spl]ISListl, (Sn, SP3). -
samecombine(SLfst, ESn2, Sp2i),
conftfct([Snl, Spl3, [Sn2, Sp2l, C),
Sn is (Snl + Sn2 - Snl*Sn2 -C) c),
Sp is Spl*Sp2 /0- C).

/* combines the support pairs for a rute and the body of that rute

condcombine(ESnc, Spcl, (Snl, Spll, [Sn, Spl): -
Sn is Snc*Snl,
SP Is 1-0- Spc)*Snl.

condcombine(nocond, Supports, Supports).

condcombfne(([Snl, Spl], ESn2, Sp2l), (Sns, Sps], [Sn, Spl): -
probcombine([Sns. Spsl, [Snl, Spi], [Sn2, sp2i, (Sn, Spl).

/* combines the support pairs for a pair of probabitistic rutes and their bodies

probcombine([Sns, Spsl, [Snl, Spll, (Sn2, Sp2], ESn, Spi): -
Sn is Snl*Sns + (I - Sps)*Sn2,
Sp is 1-M- Sps)*(l - Sp2) +0- Spl)*Sns).

1* **

: -LoadfiLes.

/* "Loadf f tes" toads the necessary utf Lity and data f ites having checked whether or not they
are already present. Called at the end of this file.
ALWAYS SUCCEEDS

LoadffLes: -
retract((toadfites: -_)),
(ctause(pre_process(_),

_);
reconsult(pre_process)),

(cLause(more(_),
_);

reconsutt(system)),
(ctause(sys(_/_), _);

reconsutt(syspred)),
(cLause(stop(_),

_);
reconsuit(stoppreds)),

(ctause(nostore,
_);

reconsuLt(trans_decLs)).

I- 30

/* ***** UTILITY FILE PRE_PROCESS ***** */

/* The syntax error checking ctauses for (re)consulting

asserta((
expandý. term((Head: -Body), _): -
bad_coton(Body, OK, Op, NotOK),
nt, write(I... SLOP syntax error ... 1), nL,
write((Head: -OK)), nt,
writeCl... here ... 1), nt,
write(Op), write(NotOK), nt,
I, fait

/* turns on and off the name-ctash check procedures
ALWAYS SUCCEEDS

pre_process(on): -
cLause(expario_term(_, _),

(findhead(_,
_), _)), 1.

pre_process(X): -
var(X),
xa off,
1.

pre_process(on): -
asserts((

expanq_term(X, X): -
ffndhead(X, Xl),
SLOP(M),

not LastcLause(XI)
abottsh(tastctause: 1),
wrfte(Xl), putC9),
write(IIS A SLOP SYSTEM PREDICATE'),
nt,
assert(tasteLause(Xl)),
I, fafl.

pre_process(off): -
retracM

expanq_term(X, X): --
findhead(X, XI),
stop(xl),

not lasteLause(Xl),
aboLish(Lastetause, l),
write(XI), put(9),
wrfte(OIS A SLOP SYSTEM PREDICATE'),
M,
assert(tastctause(Xl)),
1, fait

I.
pre_process(off).

I- 31

/* finds the most generaL form of the head of a ctause
ALWAYS SUCCEEDS

findhead((X: -Y), Xl): -
functor(X, P, A),
functor(Xl, P, A),
1.

findhead(X, Xl): -
functor(X, P, A),
functor(Xl, P, A).

/* ***** UTILITY FILE SYSTEM ***** */

VIM: -

vi (-).

ex(X): -

exc_).

catcx): -

name(X, L),
write('Editing Me - $), write(X), nL,
system([118,105,321LI),
write(freconsuLt Me 1), write(X), wrfte(I y/n? *),
gets(Y), (Y x (I ,Ya E1211),
reconsuLt(X),
1.

name(X, L),
write('Editing Fite - 1), write(X), nL,
system(ElOl, 120,321LI),
write(freconsuLt fite 1), write(X), write(I y/n? '),
gets(Y), (Y z (I ;Y
reconsuLt(X),
1.1

name(X, L),
write('Ffie - 1), write(X), nL,
system([99,97,116,32ILi).

more(X): -

(ts): -

ts(X): -

x(X): -

x(-).

nameCX, L),
write(fFfte - 0), wrfte(X), nL,
system([109,111,114,101,321LI).

systernC [108,1153).

name(X, DL),
system(EI08,115,32IDL3).

nwie(X, L),
system(L),

I- 32

op(900, fx, vi).
op(900, fx, ex).
op(900, fx, x).
op(900, fx, cat).
op(900, fxmore).

op(900, fx, ts).

/* ***** DATA FILE SYSPRED ***** */

sys(abotish/2). sys(nofiteerrors/0).
sys(abort/0). sys(nonvar/1).
sys(arg/3). sys((nospy)/I).
sys(assert/1). sys(number/1).
sys(assert/2). sys(op/3).
sys(asserta/1). sys(primitive/1).
sys(asserta/2). sys(print/1).
sys(assertz/1). sys(prompt/2).
sys(assertz/2). sys(put/1).
sys(atom/1). ,, sys(read/1).
sys(atomic/1). sys(reconsutt/1).
sys(bagof/3). sys(recorda/3).
sys(break/0). sys(recorded/3).
sys(catt/1). sys(recordz/3).
sys(ctause/2)- sys(rename/2).
sys(ctause/3). sys(repeat/0).
sys(ctose/1). sys(retract/1).
sys(coinpare/3). sys(save/1).
sys(consutt/1). sys(see/1).
sys(current_atom/1). sys(seeing/1).
sys(current_functor/2). sys(seen/0).
sys(current_predicate/2). sys(setof/3).
sys(dbýjeference/l). sys(sh/0).
sys(debug/0). sys(skip/1).
sys(debugging/0). sys(sort/2).
sys(display/1). SYSC(SPY)/l).
sys(erase/1). sys(statistics/0).
sys(erosed/1). sys(system/1).
sysCexpario_exprs/2). sys(tab/1).
sys(expario_term/2). sys(teLt/1).
syscexfsts/i). sys(tetting/i).
sys(fait/0). sys(toLd/0).
sys(fiteerrors/0). sys(true/0).
sys(functor/3). sys(var/1).
sys(get/1). sys(write/1).
sys(geto/1). sys(writeq/1).
sys(hatt/0). sys(ILCI/0).
sys(instance/2). sys(INOLCI/0).
sys(integer/1). SYSCII/0).
sys(Is/2). SYS((, \+,)/l).
sys(keysort/2). sys(141/2).
sys(teash/1). sys(la<1/2).
sys(Listing/0). Sys('), 1/2).
sys(tisting/l). - sys(I-1/2).
sys(name/2). sys(lal/2).
sysCnt/0). sys(lo.. 1/2).
sys(nodebug/0). sys(Inal/2).

I- 33

sys(lz\xl/2). /* The speciaL $Lop predicates
sys(12<1/2). sys(pre_process/1).
sys(12-1/2). sys(semantics/1).
sys('S>1/2). sysc(stlSO/0).
sys(12-1/2). SYSC(SUM/1).
sys(III/2). sys(cLear -

data/0).
sys((': -')/2). sys(ctearý_data/l).
sysV-->1/2). sys((vi)/l).
Sys((,: -,)/I). sys((ex)/l).
Sys((,? -,)/i). sys((cat)/l).
sys(1; 1/2). sys((more)/l).
sys('->1/2). sys((Ls)/I).
sys(la; ul/2). sys((Is)/O).
sys('\--1/2). sys((x)/I).
sys(C'. ')/2). sys(sys/1).

/* ***** DATA FILE SLOPPREDS ***** */

sLop(andcombine(_I, _2, _3)). stop0dentmem(_l, _2)).
sLop(any_cuts(_I, _2)). sLop(frdentC_I)).
sLop(any.. ýother_vars(_l, _2)). sLop(intersect(_J, _2, _3,4, _5)).
stop(any_vars(_l)). sLOP(LastcLause(_I)).
stop(bad_coLon(_l, _2, -3, -4)). stop(ts -1).
sLop(bundLe_body(_l, _2, -3)). stop(Ls).
stop(bundLe_sup(_l, _2, _3, _4, _S, _6)). stop(max(-I, -2, -3)).
sLop(bundLe_support(_l, _2, -3, -4)). sLop(maxminset(_l, _2, _3)).
stop(cat -1). sLop(min(_I, _2, _3)).
stop(check_recorded_sotns(_l, _2, -3, _4)). stop(more _1).
sLop(check_recorded_soLnsl(_I)). stop(negate(_I, _2)).
stop(ctause_support(_I, _2, -3)). stop(noý_cuts(_J, _2, _3)).
stop(clauseprint(_I)). SLOP(ný_sem-un).
stop(ctear_data(_l)). sLop(no-trace).
stop(cLear_data). stOP(optfon(_I, -2)).
sLop(common-vars(_I. _2,

j,
_ý, _S, _ý)). sLop(orcombine(_I, _2,3)). -

stop(cond_bundLe(_I, _2,
j)). sLop(portray(_I,

_2)).
sLop(cono_query(_I, -2, -3)). sLop(pre_process(_l)).
sLop(cond_sup(_I, _2)). sLop(printsotution(_I,

_2, _3)). sLop(condcomblne(_J, _2, _3)). sLop(probccmbine(_l,
_2, _3,4)).

sLop(conftict(_I, 2,
_3)). stop(record

- soLns(_I,
_2, _3, _4)). stop(confLict-Warning(_l, _2, _3, -4)). sLop(rem_excessý_terms(_i,

_2, -3, -4, _5, _,
6,

_7, _B)). sLop(cutting_off(_I)). stop(remove(_l,
_2, _3)).

sLop(detracing). slop(samecomblne(_l,
_2)).

stop(disj_sup(_I, _2, _3, -4, -S, -6, _7, -8)). stop(semantics(_l)).
sLop(disjunc-sup(_I, -2, -3, -4)). stop(semunify_orý_not(_1,2,

_3, _ý, _5)). sLop(er-4_sklp(_I)). stop(sList(_I)).
slopCequivý_support(_l, _2, _3))- stop(stist).
stop(craseaLLC_I)). sLop(stistl(_l)).
sLop(evat_support(_I, _2, _3, -4, _5)). sLop(sLop(_I)).
stop(ex -1). stop(sLop).
stop(excess_terms(-I, _2,

ý3,
_4. _5, _6, _7)). stop(stopcatt(_l)).

slop(expancý_term(_I, _2)). sLop(sotution type(_l,
_2)). sLop(findhead(-i, -2)). SLOP(SUP(-I, - stop(fuzzy(-I, -2f..

3#-0)- stop(supl(_I, _2,
ý3,

_4, _5)). stop(fuzzynot(_I, _2)). sLop(sup_not(_I)).
stop(gets(_I)). slop(suppr(_l, _2)). sLop(ident_remove(_I, _2,..

3)). sLop(sup_skip).

I- 34

stop(sup_yersion). I''

s top(support(_I,
_2, -3)).

sLop(sys(_l)).

stop(sys-catt(_I)).
stop(syspred(_I)).
stopCtrace_sem_un(_I, _2, _3, -4, _5)).
stop(tracegoat(_l)).
sLop(traceprfnt(_l, _2, _3, -4)).

/* variable warning bagof predicates

stop(stop_bagof(_I, _2, -3)).
stop(stop_bagof (_I,

_2, -3, -4)).
stop(straight_unify(_l)).
stop(var_warning(_I, _2)).
stop(dot-contains(_I, -2)).
stop(dot-decide(_l, _2, _3, _4,

'-5)).

stop(dot-doesnt-inctude(_I, _2)).
stop(dot-excess_vars(_I, _2, -3, -4)).
stop(dot_fnctuded(_I, -2)).
stop(dot_introduce(_I, _2, _3))., -
sLop(dot_item(_I, -2, -3)).

stop(tracing(_I,
-2)). top(vi

-1).
top(wrfteans(_l,

_2)).
stop(x -1).
: top((_I:

_2)). top(:
_l).

stop(ýC-(-l)).
stop(4-(X, Y)).

stop(dol-no-oCcurrence(_I,
_2)).

siop(dot-nonempty(_l)).
stop(doL_parade(_I,

_2, -3, -4)).
sLop(doL_pfck(_l,

_2, _3)).
sLop(dot_reap(_I,

_2)).
stop(dot_reapl(_l,

_2, _3)).
stop(doL_rem-excess-vars(_I,

_2, -3, -4, _5)).
sLop(dot_tag(_l, _2)).
stop(doL-untag(_I,

_2)).
sLop(dot-uPto(_I,

-2)).

/* ***** UTILITY FILE TRANS-DECLS ***** */

/* Overtay of transtation dectarations to attow them to be ignored by Stop

nostore.

semantic-unificatfon.

fuzzy_goaL(_,
_).

type(_, _).

top_Levet(_).

solutions(
solutions(_, _, _).

proLog(_).

I- 35

Appendix Il ,- Translator - Program for translating Support Logic programs Into
executable Prolog code

Setting up operator precedences for 'coton', 'sup_notl, 'sup_orl, f<-' and '<->#, and
for the comparator

op(1150, xfx, (:)).

op(1150, fx, (:)).

op(900, fy, sup_not).
op(1100, xfy, (sup_or)).

op(1199, xfx, (<->)).

:1 op(700, xfx, <=>).

:- op(1175, xfy, (<-)).

:1 opCll75, fy, C<-)).

TOP LEVEL

transtate(F) reads in a Stop program from the file F and translates It into optimised
ProLog code with the support Logic evaluation built into the rules. This translation can
be written to a file, printed to the screen or reconsuLted directly into the knowledge
base.

transL&te(File): -
reset,
readin(FiLe),
where_to(SLopfite),
create_soLn_sets,
operators,
trans_retations,
reset,
ffnfsh_teLIfng(StopffLe).

transtate(-): -
seen,
fait.

READING IN

readInCF) reads in the file named F and stores the program in the knowledge base as a
module - i. e. with all predicates given a new name made up of the file name and the
original name. ALL directives In the file are called as usual.

readfn(FfLe): -
name(Fite, Fn),

append(Fn, 11_11, F),

assert(modname(F)),
see(Ffte),
read(X),
assert(nextctause(X)),
retract(nextcLause(Y)),
storeý. clause(Y),
retract(ffte_read),
1, seen.

Il -I

store - ctause(T) takes as argument a term and processes it as follows:
the end - of -

file character causes a flag to be set in the knowledge base,
directives are called causing responses as if they were being called in ordinary consult
or reconsutt, except for 'lop",
the directive ll: -op(X, Y, Z)ll is Intercepted and called via l1newop(X, Y, Z)l1 which makes a
record of the operator declaration so that it can be put into to the file containing the
translation,
aLL other terms are taken to be clauses in a relation. If the clause belongs to a
relation that has already been read In (i. e. a relation has been split up) a message Is
output and the the goal fails. If not the clause is passed to "readreLation" which reads
the remaining clauses in the relation. At this point the flag "current-retation" is
stored in the knowledge base to be picked up by scrap_reLatfons, where necessary. The
List of clauses thus returned Is stored with other information as a clause in the
relation "relation".

store_cLause(end_of-fiLe): -
assert(fite-read),
1.

store_cLause((: - op(X, Y, Z)
1,
catt(newop(X, Y, Z)),

read(C),
assert(nextctause(C)).

store_cLause((: - X)): -

cat M),
I, -
read(C),
assert(nextctause(C)).

storq_clause(C: - _)): - dfsptay(?), dfsptaynL, dispLaynt,

read(C),
assert(nextetause(C))..

store_ctause((? - op(X, Y, Z)
1,
caLL(newop(X, Y, Z)),
disptayCyes), dispLaynt, dispLaynt,
read(C),
assert(nextclause(c)).

storeý_cLause((? - X)): -
caLL(X),
dispLay(yes), dispLaynL, displaynt,

read(C),
assert(nextclause(C)).

stora_cLause(0- -)): -
disptay(no), dispLaynt, dispLaynt,

read(C),
assert(nextcLause(C)).

11- 2

store_cLause(C): -
heads(C,

_,
MgH,

not retation((M9H, _, _j, _),

assert(current_retation(MgH)),
readretation(RC, Cut_tfst, MgH, C, J), -
functor(MgH, P, A),
newname(P, ModP),
Al Is A+1,
functor(ModH, ModP, Al),
nt,
assert(retation(tMgH, McdH, RC3. Cut_tfst)),
retract(current-retation(MgH)).

store_ctause(C): -
heads(C,

_,
H,

_, _), functor(H, P, A),
dfspLay(lThe retation 1),
dispLay(P/A),
dispLay(I has been spHt up'),
displaynt,
dispLaynL,
dfspLay('***** TRANSLATION ABORTED
dispLaynt, fait.

newop(X, Y, Z) performs the operator declaration op(X, Y, Z) required for program being
translated and asserts this new operator declaration as a clause in the relation
trans_current-op

newop(X, Y, Z): -
op(X, Y, Z),
(retract(current-Op(_, Y, Z));
retract(trans-current-op(_, Y, Z))),

assertCtrans-current-oP(X, Y, Z)),
1.

newop(X, Y, Z): -
assert(trans-current-oP(X, Y, Z)),
1.

Checks that argument 3 Is the "most general head" of the clause in argument 1, which has
head matching argument 2, body matching argument 4 and a print form matching argument 5.

heads((X c-> B), X, MgH, B, (X -> 8)): -
1,
functor(X, P, A),
functor(MgH, P, A).

heads((X: -B), X, MgH, B, (X: -B)): -
I
functor(X, P, A),
functor(MSH, P, A).

heads(X, X, MgH, true, CX: -true)): -
functor(X, P, A),
functorCMgH, P, A).

11 -

reads in from a fite aLL cLauses that. have the same predicate and arity as the ctause Cl
with umost generat head" MgH. The first argument is buitt up as a List of cLauses so
read in, and the second argument is a List of n's (No cut) and cls (Cut) corresponding
to each cLause in argument i. The Last argument is a count of which ctause in the
reLation is currentLy being processed. Each cLause, as it is read in, is converted Into
a moduLe form, for uniqueness, and stored In the knowtedge base.

readreLat Ion([Ca I CLausesl [Cut I Cuts] MgH, Cl, Nun): -
heads(Cl, H, MgH, Body, C_prInt),
1,
portrayl(C_print),
read(C2),
prob_pair(Body, Cl, C2, Ca, C3, Num, Cut),
Numl is Nun + 1,
readretation(CLauses, Cuts, MgH, C3, Numl).

readreLation(El, t], MgH, end_of_fiLe, Num): -
1,
Numl is Num
test_reL_Length(MgH, NLxnl),
assert(fiLe_read).

readreLation((], [3, MgH, Next_cLause, Num): - --
Numl is Num , 1,
test_reL_tength(MgH, Numl),
assert(nextctause(Next_cLause)),
1.

processes the clause In argument 2 with body in argument 1. If the clause Is not to be

stored the body of the clause Is checked for any cuts and argument 4 bound to ov, (cut)

or 'In" (No cut) accordingly. Otherwise this is carried out white the clause is being

stored.

processing(B, _, _,
Cut): -

not-storing,

cuts(B'Cut),
c-or_n(Cut).

processing(_, C, N, Cut): *
modutarise(C, N, Cut).

11- 4

Checks1f the next clause read (argument 3) is a probabilistic pair of the previous
clause read in (argument 2, with body in argument 1). if it Is, argument 4 is bound to
the short-hand representation, which is then stored in the knowledge base. Argument 5 is
bound to a new clause read from the file. Argument 6 is bound to the flag c or n
depending on whether the body of the probabilistic pair contains a cut. if the clauses
do not form a probabilistic pair, then the clause in argument 2 is processed and the
clause in argument 3 Is returned as the next clause (bound to argument 5).

prob_paIr(_, (H: -BI), (H-- 82), (H: -B. -Sl, S2), NextcLause, Num, Cut): -
no. _sup_pair(82, sumot 8, S2),
no-Sup_pairCB1, B, S1),
1,
dIspLayV Second clause in Probabilistic pair ***'), dispLaynt,
dispLayV WARNING - This second clause should ***f), displaynt,
display(' not have an entry in the solutions ***1), dispLaynL,
display(' declaration ***1), disptaynL,
portrayl((H: - 82)),
processing((B: SI, S2), (H: - 8: SI, S2), Num, Cut),
read(Nextctause),
1.

prob_. pair(_, (H: - B2), (H: -81), (H: -B: Sl, S2), NexteLause, Nun, Cut): -
no.. sup_. paIr(82, sup_. pot B, S2),
nq-Sup_. pafr(81, B, S1),
1,
displayV Second clause in Probabilistic pair ***,), disptaynL,
display(' WARNING - This second clause should ***'), displaynt,
display(' not have an entry in the solutions ***'), disptaynL,
dispLay(I declaration ***'), dispLaynL,
portrayl((H: - 81)),
processfng((B: SI, S2), (H: - B: Sl, S2), Num, Cut),
read(Nextctause),
1.

probý_pair(BodY, Cl. C2, Cl, C2, NLin, Cut): -
processfng(Body, C1, Num, Cut).

Tests that the length of a relation read In by "readretatfon" Is the same as the length
defined by a "solutions" declaration for the relation.

test_ret_tength(MgH, Numl): -
roI, -tengthCMgH,

Num2),

test_ret_tengthl(MgH, Numl, Num2).
test_ret_tength(_, _).

Il -5

Tests that arguments 2 and 3 are equal. If they are not a message is printed and the
goat faits.

test_reL_tengthl(_, N, N): -

test_ret-Lengthl(MgN, NI, N2): -
functor(MgH, P, A),
dispLaynL, dispLay('*** Discrepancy between number of clauses (1),
disptay(NI), dispLay(l) in relation 1),
disptay(P/A), dfsptaynt,
dispLay(I and "solutions" declaration (0),
dfspLay(N2), disptay(l). '), disptaynt, disptaynt,
dispLay(f***** TRANSLATION ABORTED ***** 1), dfspLaynL,
fail.

checks for cuts in the body of a ctause given in argument 1. Returns "C" in argument 2
if a cut is found, otherwise argument 2 remains unbound.

cuts(l, c): -

cuts((I, _), C): -

cuts((GI, G2), Cut): -

cuts(Gl, Cut),
cuts(G2, Cut).

cuts((Gl; G2), Cut): -
1,
cuts(GI, Cut),
cuts(G2, Cut).

cuts(-, -). -

Used for binding the "cut present" argument to either "c" or 'In". If a cut was present
then the argument wouLd aLready be bound to "clo, otherwise it becomes bound to "W'.

c or n(n): -

c-or-n(c).

Il- 6

MODULARISATION

modutarise(X, N, C) succeeds If the cLause X, being the Nth cLause read in for the
reLation, can be converted into a form that can be stored, and binds C to c or n,
according to whether or not, respectiveLy, the cLause has a cut in it. Notice that atoms
(terms with arity zero) do not have their names converted but are Left the same. This Is
because, on the whote, most atoms are constants within the program and do not therefore
need to be changed, as weLL as being undesirabLe If they are constants within some
output.

Equivatence retationshfp

modutarise((X - Y), N, C): -
convert(X, X1, N,

_),
convert(Y, Yl,

_,
C),

assert((XI Yl)),
(C an c; C n),
1.

RuLe or Supported fact

modutarise((X :- Y), N, C): -
convert(X, X1, N,

_),
convert(Y, Yl,

_,
C), --

ýassert((XI :- Yl)),
(C xx c; Cx n),
1.

Fuzzy definition

moduLarise(fuzzy(A, B, C),
_, n): -

assert(fuzzy(A, B, C)),

Unsupported fact

moduL a rf se(X, N, n): -
convert(X, Xl, N,

_), -
assert(Xl),,

convert(X, Y, A, C) converts the goat X into the goat Y by changing the predicate name to
include that of the file name for uniqueness, and by putting In the extra first

rgument, A, i. e. increasing the arity by 1. When convert Is called, if X is the head of
clause, then A will be the number of the clause in the relation, otherwise A wilt be

an anonymous variable. C Is bound to c if the goat X is, or contains, a cut.

Argument I Variabte

convert(X, X,
_, _): -

var(X),
1.

IT- 7

Argument Iz Support Pair

convert([St, Sul, (St, Sul,
_, _): -

number(SO,
number(Su),

Argument I Cut

convert(1,1, _, c): -
1 .

Argument I Atom or number

convert(X, X,
_, _): -

atomic(X),
1 .

The following three clauses for convert deal with those system predicates that access
the name of a predicate that will have been changed by the goal convert.

Argument I- 11-.. (X, Y)11

convertC'u.. '(X, Y), I^z.. '(XI, Yl, M),
_, _): -

modname(M),
convertCX, Xl,

_, _),
convertCY, Yl,

_, _).
Argument I- "functor(X, Y, 2)11

convert(functor(X, Y,
_Z),

I^functor'(XI, Yl, Zl, M),
_, _): -

modname(M),
convert(X, Xl,

_, _),
convert(Y, Y1,

_, _).
Argument 1 'a 11aboHsh(X, Y)11

convert(abolfsh(X, Y), I^abolish'(X, Y, M),
_, _): -

modname(M).
convert goals with supports accessed by user

convert (Goa L4S, (X, dummy.. ýsupport(S)), _,
C): -

convert(Goat,, X,
_,

C).
convert(support(GoaL, $), CX, dunvvy_supportCS)),

_,
C): -

convert(Goat, X,
_,

C).
issue a warning message if "not" is used

converMnot
display('*** WARWING - the translator can not ***'), disptaynt,
display('*** currently handle the use of "nov ***%d1spLaynt,
dfspLay('*** as a support logic negation because ***'), dispLaynL,
dfspL&y('*** of the confusion that arises with ***1), dfspLaynL,
display('*** the ProLog negation. This occurrence ***1), d1spLaynL,
dfsptayCl*** of "not" should be changed to , sup-pot,, ***%dispLaynt,
dfsptayCl*** unless It is within the scope of the ***'), dfsplaynt,
dispLayC'*** call predicate. ***1), dfspLaynt,
fail.

Il -

do not convert operators

convert(X, Xl,
_,

C): -
X z.. [NamelRest],
current-oP(_, Optype, Name),
functor(X,

_,
No),

(No a l. mem(Optype, Efxfy, xf, yfl);
No a 2, mem(optype, rxfx, xfy, yfx])),

each(Rest, L, C),
Xl a.. (NamelLI.

do not convert system predicates

convert(X, Xl,
_, _): -

X u.. (NamelRest3,
functor(X,

_,
No),

sys(Name/No),
syseach(Name/No, Rest, LI),
X1 a.. ENamejL11.

convert the rest

convert(X, X1, N,
_): -

X a.. [NamelRest],
newname(Name, Newname),
each(Rest, L,

_), X1 a.. [Newname, MILI.

each(X, Y, C) converts each element of the List X to produce the list Y, flagging the
presence of any cuts by binding C, to c

each(EI. El.
-).

each(EHITI, EHIIRI, C): -
convert(H, Hl,

_,
C),

each(T, R, C).

syseach(S, X, Y) converts the List of arguments X, of system predicate S to the list Y,
unless S is 'lop/311

syseach(op/3, [A, B, C], EA, B. Cl).

syseach(_, L, Ll): -'
eachCL, Ll,

_).

newname(X, Y) is true Iff X1 is the moclute name for the predicate X, created by adding
the filename (heLd in the ciause "modname(L)") to the front of the predicate name

newname(X, Xi): -
modname(LI),
name(X, L2),

apperid(LI, L2, L),

name(Xl, L).

11 -

OUTPUT REDIRECTION

Prompts the user as to where the translated program should be output - screen, a file or
reconsulted directly into the knowledge base. Called by the top Level goat 11transtate"

where_to(Stopffie): -
repeat,
dfsptay(lenter fitename for translation -%dispLaynt,
disptay('("screen" to send output to terminaLI), dispLaynt,
display(' "user" to assert translation in knowledge base) 1),

read(Stopffie),
output(Stopfite),

I Sets up the output stream to which the translated program should be directed. The way In

which the translation is directly reconsutted is by writing the translation to a file

called "transtated_f I tell and then reconsuLtfng this at the end of the translation

output(user): -
1,
teLt(transtated_ffLe).

output(screen): -
nt,
1. ,

output(X): -
existsCx), dispLaynt,
display('*** File already exists ***'), dfspLaynL, dispLaynt,

fait.

output(X): -
teli(X).

Closes the file to which the translation was being written, unless it was being written
to screen. If the argument is "user" then the file to which the translation was being

written is transtated_fite and this file is reconsutted and then deleted.

ffnfsh_telling(user): -
told,
reconsuttCtrangLated -

file),

systemC"rm transLatecLULe"),
1.

f1n1sh_teMngCscreen): -
1.

f1nish-teLL1ngC-): -
told.

11 - 10

RELATION SOLUTION SETS

CalLed by the top LeveL goaL transLate, this goaL creates soLutfon sets for att
reLations in the program being transLated

create_soLn_sets: -
reLation(EH, ModH,

_], _),
not, functor(H, fuzzy, 3).

ModH u.. EMod_P,
_IArgs],

functor(H, P, A),
display(P/A), dfspLaynL,

not not-caLLed(P/A),
reLn_sotn_setof(Args, ModH, Ss),
dfsptay(I '), dfsplayCSs), dlspLaynL,

assert(soLn_set(ModH, Ss)),
fuzzfes(P/A, Ss),
falL.

create_sotn_sets: -
dfsptaynL.

A customised version of setof for finding the solution sets to goals. The first clause
deals with the zero-arity predicates. The second clause checks to see if the solutions
have been stored in the clause I'soLn

-
set" via a user declaration using "SolutionO.

Clauses 2 and 3 are similar to those of a conventional setof. The usev produced by this

goal is based on whether or not terms are the same according to 11<z>64.

retn_soLn_setof(E], P, EEII): -
(retract(soLrj_set(P,

_)):
true),

retn_soLrý_setofC_, P, Set):,

retract(soLn_set(P, Set)),

1. -
retn_soLn_setof(X*P, _):

- -
recorda(ldoL_rein -

bagl, ldot_retn_bagl,
_),

P -.. [Pred, C_Nol_],.

caLt(P),
reLn_soLn_tag(X),
faiL.

rel%soL%s*tofC-#-, Set):,

reL%soL%reap((I Set).

I-ýTI
Rercords Value, provided it does not match, according to a term that has already
been recorded.

ret%sotn_tag(Vatue): -
recordedVdol_reln_bagf, Y,

_),
retn_sotn_tagI(VaLue, Y),
1.

ii - 11

Succeeds if the term Y is the terminating Rag I'dol_retn
-
bag" (in which case the term X

is recorded in the knowtedge base), or if terms X and Y match according to 11<2>11.

reLn_sotn_taglCX, Y): -
Y IdoL-reLn_bag',
1,
recorda(ldoL-reLn_bag,, X,

_).
retn_soLn_tagl(X, Y): -

X cx> Y,

Cottects together aLL terms stored under the key "dot_retn_bag" and adds them to those
in the List L to produce the list Ll.

retn_soLn_reap(L, Ll): -
doL-untag(ldoL_retn-bag', X),
1,
reLn_soLn_reapl(X, L, Ll).

retn_sotn_reapl(X, L, Ll) adds the term X into the t1st L and caLts reLn_soLn_reap untess
X is the term "dot_retn_bag", in which case it binds the terms L and I. I.

reLn_soLn_reapl(ldoL_reLn_bag,, L, L): -
1.

retn_soLn_reapl(X, L, Ll): -
loý

retn_soLn_reap([XILI, Ll).

Called by create_sotn_sets, fuzzies(P/A, Ss) establishes whether any of the solutions, to
the relation specified by predicate P and arity A, in the List Ss have any elements that
are fuzzy terms. These can have been explicitly declared by the user using the
declaration fuzzy_goat/2, or, If the declaration "semantfc-unificatfon" has been made,
can be searched for by considering the fuzzy term definitions fuzzy/3. When a fuzzy term
is detected, the clause fuzziness(P/A-M) is asserted in the knowledge base, where N is
the argument that is fuzzy. Unless there Is a fuzzy_goat declaration, every solution
set is processed. Given the right arguments, ALWAYS SUCCEEDS

fuzzies(-, E]). **
1.

fuzzies(P/A, _): -
user_fuzziness(P/A-M),
(N =4 A, assert(fuzzfness(P/A-N)):
dispLay('*** WARNING - out of range for fuzzy_goaL decLaratfons),

dispLaynL,
dispLay(largument %dispLay(N), dIspLayV for predicate 1),

dfsptay(P/A),
display(' - declaration ignored'), displaynt, faIL),

1.
fuzzies(-,

-): -
not semantfe-unificatfon_on,

II - 12

fuzzfes(P/A, [SllSsi):
fuzzy.., args(P, 1, Sl,

_,
FN),

(fuzzfness(P/A-FNI), doubte_fuz(P, FN1, FN);

assertCfuzzfness(P/A-FN))),
1,

fuzzies(P/A, Ss).

fuzzfes(P/A, E_lSs3): -
fuzzfes(P/A, Ss).

fuzzy_args(P, N, EBIIBsl, FN, FNI) looks for fuzzy argumentys in the list 18118s], being the
arguments to the predicate P from N onwards. FN is bound to the number of an argument
that has already been found to be a fuzzy term. This is initially Cf. e. at the highest
call of fuzzy_args) a variable. Succeeds if any of the terms in the List E8119s] are
fuzzy, otherwise fails.

fuzzy_args(P, N, (BllBsl, FN, FNI): -
fuzzy-arg(P-N, 81),

doubLejuz(P, FN, N),
N1 is N+1,
fuzzy_args(P, NI, Bs, FN, FN1).

fuzzy_args(P, N, E_18s], FN, FNI): -
N1 is N+1,
fuzzy-args(P, NI, BS, FN, FNI).

fuzzy-args(_,
_,

[], FN,
_): -

var(FN),
I, fafl.

fuzzy_argsC-,
_,

E], FN, FN).

fuzzy-arg(P-A, X) succeeds if term X, being argument A of predicate P, Is a fuzzy term,
otherwise fafts.

fuzzy_arg(_, X):,

var(X),
I, fafL.

fuzzy_arg(_, X): -
atomic(X),
1,
fuzzy(_, X,

_, _).
fuzzy_arg(P-A, EHITI): -

not fuzzyarg(P-A, H),

1,

fuzzy_arg(P-A, T).

fuzzy_ýarg(P-A, (-jTD: -
fuzzy_, arg(P-A, T),

1,

doubLe
-

fuz(P-arg-A, a, b).

fuzzy_arg(P-A, X): -
x a.. UArgs],

fuzzy-arg(P-A, Args).

11 - 13

finds the fuzzy set associated with the term X of cLass C

fuzzy(C, X, Y,
_): -

fuzzy(C, X, Y).
fuzzy(C, not X, Y,

_): "
fuzzy(C, X, Yl),
fuzzynot(YI, Y).

finds the negation of a fuzzy set

fuzzynot(EX, A, B, C, D, Y3, EXI. A, B, C, D, Yll): -
X1 is 1-X,
Yl is I-Y.

For printing error messages if a goat has two fuzzy terms, doubLe-fuz(GoaL, Na, Nb) tests
if Na and Nb can be unified, and prints a message if not. The second cLause deats with
the situation when two fuzzy terms have been used in a singLe term and therefore within
one argument. ALways succeeds.

doubLe_fuz(_, N, N): -

,
1.

doubLe_fuz(P-arg-N,
_, _): -

10
dfspLaynL, dispiay('*** WARNING - two fuzzy terms in argument 1),
dispLay(N), dfspL&y(I of 0), dfspLay(P),
clfspLaynL, dfspLay(lOnLy the first witt be taken as fuzzy. 1), nL.

doubLe_fuz(GoaL, Na, Nb): -
disptaynt, displayC'*** WARNING - two fuzzy terms In one goat; '),
disptaynt, dispLayC'arguments 1),
dfspLay(Na), dfspLayC# and 8), dispLay(Mb),
dfspLay(l of 1), dfspLay(Goat),
clfspLaynL, dfspLay(lOnty the first OLL be taken as fuzzy. '),
dJsptaynL, dfspLaynt.

DEFINITIONS TO ALLOW SOLUTION EVALUATION

*1

#^u.. o(X, Y, Z) is the, modular form of the system predicate "a.. " and allows the predicate
of the goaf being built to be converted to Its modular form with the fRename
Incorporated Into its name

nonvar(X),
1,

-
X M.. Y,

X (y],
1.

Il - 14

'^=.. '(X, EHITI, L2): -
name(H, Ll),

apperd(L2, _,
Ll), NaN

apperd(L2, Ll, L), name(N. L)

1,

X a.. ENITIt
I.

$A functor'(X, Y, Z) Is the moclutar form of the system predicate "functor" and attows the
predicate of the goat being anaLysed to be accessed In its mocluLar form with the
fitename incorporated into its name

I^functor'(X, Y, Z,
_): -

nonvar(X),
1,
functor(X, Y, Z),
1.

'A functor'(X, Y, O,
_): -

Iv
functor(X, Y, O),
1.

O^functor'(X, Y, Z, L2): -
name(Y, Ll),

append(L2, _,
Ll), Na

_H

append(L2, LI, L), name(N, L)

1,
functor(X, N, Z),
1.

lAaboLish'(X, Y, Z) Is the modutar form of the system predicate "aboLish" and ensures that
the predicate being abotished has been converted to Its moduLar form with the fflename
incorporated into its name

I^aboLish'CX, O,
_): -

1,

aboLlshCX, O),

1.

*Aabol. Ishl(X, Y, L2): -
name(X, LI),

append(L2, _,
Ll), Na

_H

append(L2, Ll, L), name(N, L)

abotish(N, Y),
1.

II - 15

Used when evaluating solutions to clauses in which an intermediate subgoat support Is
required. H: - GI, G2^Sl, G3 : S2 is converted to ModH: -Gl, G2, dummy_support(Sl), G3 : S2 when
It Is read In and stored in the knowledge base.

dummy_suppo rt(E1,11

The 'colon', Isup_not' and Isup_ort operators are here given definitions so that support
logic programs can be called as protog programs and still succeed.

CaLM).
: (X).

sup_not(X): -
caLt(X).

sup_or(X, Y): -
caL«X),
catt(Y).

sup_or(X, _): -

ca(L(X).

sup_ýor(_, Y): -

catt(Y).

OPERATORS IN TRANSLATION

writes-to the output device any operator declarations that are made In the file that is
being translated. These are recovered from the retation "trans-current_op" stored as the
file is read in.

operators: -
M,

trans-current-op(X, Y, Z),

writeC(: - op(X, Y. Z))),

write(I. 1), nt.
fait.

operators: -
M.

11- 16

TRANSLATION

Essentiatty the core of the translation itself. This predicate evaluates the solutions
(IIcLause_soLns") for each clause of. each retation read in from the file, establishes
what predicate type each retation is ("trans Lat i on_types"), reorders the clauses in the

relation to optimise the order for breadth searching ("order-CLauses"), and then
translates it accordingly ("trans-reLation").
The second clause deals with any relations that have been declared to be proLog goats,
that is they are not for evaluating supports but are to carry out some procedural
function using the depth search of ProLog. These goats wilt have been called using the

system predicate catL.
The third clause deals with any fuzzy term definitions by simply writing them to the

output device.

trans-reLations: -
relationCIH, ModH, Cs1, Cut_tIst),

not functor(H, fuzzy, 3),

not proLog_goai(H),
cLause-solns(H, ModH, Ss),

transLation_types(Cs, Cut_tfst, Ss, Ts),

order_cLauses(Ts, TSI, Cs, Ordered-Cs),
bagmsrý_reset,
trans-reLation(H, Ordered_Cs, Tsl, non_fuzzy), nL,
fail.

trans-retations: -
protog_goat(H),
retation(jH, _,

Cs3,
_),

M,

write_clauses(Cs),
fail.

trans-retations: -
reLation(Efuzzy(_, _, _), _,

Fs3,
_),

11 1
nt,
wrfte_ctauses(Fs).

trans_reLations.

Resets the argument of bagnum to be 1. This argument Is used to generate new and unique

names for clauses that are to be translated using dot-bagof. See bag_name.

bagrxsR_reset: -
aboLish(bagnum, l),

assert(bagnum(l)),
1.

11 - 17

CLAUSE SOLUTION SETS

ctause-SoLns(H, ModH, S) finds the list S of lists of all the different solutions to each
clause of the predicate H, currently stored as the predicate ModH. The sub-lists take
the form EM, SI, SZ,..., Sn] where N is the number of the clause and SI to Sn are the
solutions. Each of these Lists is pretty printed to the standard output and stored in
the knowledge base, as it is found. The second clause then collects these up into the
List S.

ctause_soLns(H, ModH,
_): -

functor(H, P, A),
ModH a.. L, NlArgs3,

ctouse_sotn_setof(N, ENIArgs], ModH, Bag), '

assert(clause_sotn(CH, NIBagl)),
dispLay(P/A), dispLay(I 1),
dispLay(cLause-N), dispLaynL,
dispLay(Bag),

check_empty(Bag),
dispLaynt,
fail.

cLause_soins(H, _,
(H, Xl): -

dispLaynL,

get_soLns(H, X),

A customised version of setof for finding the soLution sets to fndfvfduat ctauses. The
definition Is sfmiLar to that of a conventional, setof but soLutfons to cLauses are found

using "sotvell rather than caLL. The "set" produced by this goat is based on whether or

not terms are the same according to 14-11. 'Ictause_soLn-setof" is resatisffabte based on

argument I of the goat under investigation which Is used to identify the cLause numbers.
The first two cLauses deaL "cificaLty with zero-arity predicates.

etause_soLn_setof(C_No, [C_Nol, GoaL. Set): -

soLs(Goat, Set).

cLauseý_sotn_setof(t; _No,
[C;

_Nol,
Mod_H,

_): -
not sots(Mod-H, _),
ruv! _reset(l),
abotfsh(doL_bagof_cLause, l),

recorda(ldot_ctause_bagl, ldot_ctause_bagf,
_),

retation(EH, Mod_H, Csl,
_),

mem(_, Cs),
newnum(C_No),
clause-soLn_tag((C_Nol, C_No),
falL.

ciause_sotrý_setofCC_No, (Cý_No, FfrstiRest], H,
_): -

abotishCdoL_bagof_ctause, i),

recorda(ldoL_ctause_bagl, ldoL_ctause_bagi,
_),

solveCH),
etause-soLn_tagCECý. No, FfrstIRest], Cý_No),
falL.

ctause_sotn_setofCC_No, _, _,
Set): -

cLause_sotn_reapCl1. Sots),
mjM_resetC2),
1,
ctause_sotn_pickCl, C_No, Set, Sots).

il - 18

Like "reLn
-

sotn_tag", rercords Value, provided it does not match, according to If<=>", a
term that has already been recorded. If Value will match according to 11<2>11, or wilt
unify, with another solution already recorded then the clause number, C_No, is stored In

a clause "dot-bagof-clausell marking the fact that this clause wilt have to be translated
using a bagof form.

ciause_sotn_tag(VaLue, C-No): -
recorded(ldoL_cLause_bag', Y,

_),
cLause_soLn_tag1(VaLue, Y, C-No),

ctause_sotn tag(X, Y, C-No) records X under the key doL_cLause_bag if Y is identical to
doL_cLause_bag and the goal succeeds. If X matches Y (<->), or X will unify with Y, then
the clause number C-No is stored as argument to dot

-
bagof

-
clause. The goal succeeds If X

and Y match, but fails if X and Y wilt not match but wilt unify, otherwise the goal
faits.

cLause_sotn_tagl(X, Y,
_): -

Y as Idot_cLause_bag',
1,

recorda(ldoL_cLause_bag', X,
_).

clause_sotn_tagl(X, Y, C_No): -
X <=> Y,
1,
(dot-bagof-ctause(Cý_No); assert(dot_bagof-ctause(Cý_No))).

ctause_sotn_tagl(X, Y, C_No): -
witt_unify(X, Y),
(dot-bagof_ctouse(Cý_No); assert(dot_bagof_ctouse(C_No))),
I, fait.

Collects together all terms stored under the key 11dot_ctause-bag" and adds them to those
in the list L to produce the list L1.

ctause_sotný_reap(L, LI): -
doL_untag(ldot_ctause_bag', X),

clause_sotn_reapl(X, L. Ll).

ciause-SoLn_reapl(X, L, Ll) adds the term X into the list L and calls ctause_sotn_reap
unless X fs-the term "doL_retn_bag", in which case it binds the terms L and U.

etause_sotn_reaplCldot_cLause_bag', L, L): -
1.

cLause_sotný_reapI(X, L, LI): -

cLause_sotn_reap(EXILI, Ll).

11- 19

Picks out sets of solutions for each clause on backtracking. N is bound to the clause
solutions currently being sought. C No is bound to that number when some solutions are
found. Set is bound to that set of

;
oLutions. Argument 4 is the List of solution sets

picked up by ', clause -
coin

- setof".
Clause I deals with those clauses for which the the same solution was generated more
than once and the flag -s is tacked on to the clause number.
Clause 2 deals with those for which this was not the case.
Clause 3 deals with clauses for which there were no solutions.
Clause 4 increments the clause count and looks for the solution set of the next clause.

cLause_soLnLpick(N, C_No, Set, EENJAIlSoLsl): -
retract(doL_bagof_ctause(N)),
1.

cLausiý_soLnL_pfckl(N, Setl, SoLs, Rest),

ctause_sotn_pick2(N-S, C_No, (AlSetl], Set, Rest).

cLause-soLn_pick(N, C-No, Set, (ENIAllSoLsl): -
1,

cLause_soLnLpfckl(N, Setl, SoLs, Rest),
1,

ctause_soLnL. pick2CN, C_No, EAlSetl], Set, Rest).

cLause_soLn_pick(N, N, 13 , 1-1-1).

cLause-SoLn_pick(_, C_No, Set, [HlSotsl): -
newnum(N),
1,

cLause_soLn_pfck(N, C-No, Set, EHISoLs]).

clause - sotn_pickl(W, Set, Sots, Rest) binds Set to a list containing the tails of all the
elements in Sots for which the heads are N. Rest Is bound to a list containing the
remaining elements of Sots.

ctause_sotnL. pickl(N, CAIRII. EENIAIIR2], Rest): -

ctauseý_sotn_picki(N, R1, R2, Rest).
cLause-Sotn_pickl(N, (], Rest, Rest).

Atways succeeds once by binding arg 1 to arg 2 and arg 3 to arg 4. Backtracking
increments the ctause counter to attow search for sotutions to remaining sotutfons.

ctause-sotn_pfck2(N, N, Set, Set,
_).

ctausok_sotnL. pfck2(-, C_No,
_,

Set, Rest): -
newnum(N),
1,

clause_sotn_pfck(N, C_No, Set, Rest).

11 - 20

P Finds all the possible solutions to a goat, one at a time on bactracking, Irrespective
of any cuts that may be in any of the clauses.
Clause I makes use of "sots" stored by a "solutions" declaration if possible.
Clause 2 causes the goat to fall if it Is not possible to find the solutions from the
relevant "sots" clause.
clause 3 finds the solutions by using the solutions to the goals in the body.

soLve(GoaL): --
sots(GoaL, SoLS),
Goat -.. (_,

_ISoL].
mem(Sot, SoLs).

soLve(Goat); -
soLs(Goat. _), 1, faIL.

sotveCGoaL): -
ctause(Goat, Body),
soLveý_body(gody).

sotve_body acts as a form of interpreter by finding the solutions from a clause body.
The solutions and associated variable bindings are found for each goal in the body, by
Looking at the solutions stored in "sotn_set" created by a "solutions" declaration or by
"create_sotn_sets". Cuts are ignored so that all. possible solutions are found, however
other system predicates are evaluated using "call".

soLve_body((: _)): -
1.

solve_body((X: -)): -
sotveý_body(X).

soLve_body(M-)): -
I'fait.

sotve_body(C<- X)): -

sotve_bodyCX).
soLve-body(CX <- y)): -

sotveý. bodyCX),
solve_bodyCY).

soLve_body((X, Y)): -
sotyeý. bodyCX),
sotve. _bodyCY).

soLveý_bo, dy(CX, Y)): -
l, faiL.

soLve-body(suP-not x): -
solve_body(X).

soLve_body(sup_pot X): -
I, fafl.

sotve_body((X sup_or Y)): -
sotva-body(X),
soLveý_body(Y).

soLve_body((X sup_or Y)): -
I'falL.

soLveý. body(dumrry_support(0,11
1.

sotve_body(l): -
I.

II - 21

sotve_body(X): -
syspred(X),
calt(X).

sotv4ý_body(X): -
X a.. [-,

-IS] fird_sotn(X, S;.

Evatuates sotutions to goats one by one from "sotn_set"

ffnd_sotn(X, S): -
sotn_set(X, Ss),

mem(S, Ss).

Prints a message if its ar gument is the empty list, otherwise does nothing. ALways
succeeds.

check_empty(El): -

.I
dfsptaY(I M. S. EMPTY SOLUTION SET - THIS CLAUSE WILL BE OMITTED FROM'),
disptay(f THE TRANSLATION').

check_empty(_).

BuiLds up a list of all the clause solution lists, currently stored as clauses of the
relation uctause_sotn", asserted by "cLause_soLns, 4

get-soLns(H, EXIZI): -
retractCcLause_sotn([HjXD),
1,

get-sotns(H, Z).

get-soLns(_, E]).

TRANSLATION TYPES

transtatfon
-

types(Cs, Cuts, (H, Ll, [H, Ts]) estabLishes the cLause SoLution numbers,
identifying the transtation types, for the list of cLauses, Cs and puts them in the List
Ts. Cuts is the cut List for the List of cLauses, L is the List of soLutfon sets for the
cLauses. and N is the most generaL head of the ctauses.

transtatforl_types(CS, Cuts, EH, L1, EH, Tsl): -
maiL. reset(l),
abotish(cut, O),
abotfsh(overtap, l),

sots_type(Cuts, Cs, L, (1, V, Ts),
1.

11 - 22

/* -sot s-type(Cuts, Cs, L, Prev_Ss, Mums, Ts) compares the solution sets (elements of L) of each
clause in Cs (with corresponding cut flag in Cuts) with previously considered solution

sets (elements of Prev
-

Ss) which are identified by the elements of Mums. The list Ts is

produced and this Identifies any overlaps between solution sets of clauses: e. g. 1-2

wans, solution sets for clauses 1 and 2 overlap. The suffix -s means that one of the
relevant clauses produces duplicate solutions. The suffix -c means that the clause has a
cut in ft.

so I s-type(D, El , El
sot s-type(EC I Cuts], I_ I Csl I 1_-s I S11 I Ssl Prev_Ss, Nums, ET-s I TO

comp(C, S1, Prev_Ss, NUMS, Newnums, O, T, New_prev-Ss),
sots_type(Cuts, Cs, Ss, New_prev-SS, Newnums, Ts).

sols-type(ECICuts3, (_ICs3ott_lSlllSsl, Prev_Ss, Nuns, (TlTsl): -
comp(C, S1, Prev-Ss, Nums, Newnums, O, T, New_prev-Ss),
so Ls-type(Cuts, Cs, Ss, New_prev-Ss, Newmins, Ts).

comp(CF, S, Prev-Ss, Nums, Newnums, N, Type, SO compares the solution set (S), of a clause,

with each element of the list of solution sets (Prey
-

Ss), being the solution sets found
for previously investigated clauses of the same relation. Nums is a List of identifiers

each corresponding to a solution set in the Prev-Ss. N is an identifier of the solution
set or sets with which S has already been found to coincide (same or overlap). Aile S
has not been found to match any solution sets, this value will be 0 (zero). Newnums,
Type and Ss are all unbound at the outset and are bound as follows when the goal Is

satisfied: 1. d,
Ss is the new List of solution sets formed by combining S with Prev-Ss,

-Newnums is the corresponding List of solution set identifiers, and
Type is the type Identifier for the solution set S with notation

if it ends In u-c" then the clause has a cut in it,

if it is of the form On-mll then the solution set overlaps with solution sets n and m,
if it Is just a number then it is either the first occurrence of a new solution set

which has no overlaps with previous ones or it Is exactly the "same" as a previous one.
losamess is defined as having exactly the same number of elements matching according to

coM(_, (], Ss, Ns, Ns,
_,?,

Ss): -
1.

comp(c, _.
E], [1, E3, O, N-c, E3): -

newnum(N),
(cut; assert(cut)), -

newnum(N),
assert(overtap(M-Ni)),
(cut; assert(cut)),

corrp(_, S, El 0, ENI O, N, ESI
newrKim(N),
I. -

cceip(_, S, El , El , ENI Nl, N-Nl, ESI

newrun(N),
assert(overtap(N-Nl)),
1.

Il - 23

comp(CUT_FLAG, Sl, [SalSsl, [NaINsl, [NalNew_Nsl, N, NC, ESaiNew_prev-Sotsl): -
List_conq)are(SI, Sa, same, Conip, Na, N, Nb, t]),
(Cwp ma diff; Conip an overLap),

comp(CLJT_FLAG, S1, Ss, Ns, New
-

Ns, Nb, Nc, New_prev-SoLs).

comp(n, _Sl,
Ss, [NaINSI, (NaINS1,0, Na, $s): -

1.

comp(n, -SI,
Ss, [NalMs], (NaINsl. Nl, Na-NI, Ss): -

assert(overLap(Na-Nl)),
1.

-I comp(c, -Sl,
(_SalSsl, [NaiNsl, Ns,

-N,
Na-c, Ss): -

(cut; assert(cut)),

list-compare(SI, S2, Conipl, Comp2, NI, N2, N3, Sames) compares the two lists of solutions, S1

nd S2. to determine whether they are the "same", I'diff" or "overlap". Compi is the

urrent status of comparison, Comp2 is the final state of comparison. NI is the solution
: et Identiffer, for S2 and N2 Is the clause solution number so far established for the

oLution set S1, I. e. the solution set numbers with which S1 has already been shown to
have an overlap. N3 is the new clause solution number obtained from N2 and the result of
copparing S1 and S2. Sames Is a List of elements from previously investigated elements
of the rest of S1 and S2, that have been shown to occur in S2, or it Is the term
"overlap$, when the two Lists S1 and S2 are shown to overlap.

tfst-coinpare(-,
-, -oovertap,

ml, O, Nl, overLap): -
1.

Lfst-compare(_,
_. _, overLap, Nl, N2, NI-N2, overtap): -

1.

tist-compare([], El, same. same, Nl, G, Nl.
_): -

1. -
List-compare(E], [I, sanw, swie, N1, N2, NI-N2,

_): -
1.

List-corr4)are(EHITI. Li, same, Conp, N1, N2, N3, Sames): -
test_eLts(H, L1, L2, Sames, Comp_ýor_Sames),
1,
tist. compart(TIL2*same, Comp, N1, N2, N3, Ccmp. ofý. Sanws).

List-coffq)are((HILI, Ll. same, Comp, N1, N2, N3, (]): -

tist-coq)areCL, Ll, diff, Comp, N1, N2, N3, E]).

List_compare(_,
_, same, ov*rLap, NI, O, Nl,

_): -
1.

L fat-coinpare(_,
_, sw-e, over Lap, N1, N2, N I -N2, _): -

1.

tfst_coppare(EHI_I, Ll, diff, overtap, NI, O, Nl,
_): -

test. etts(H, Ll, L2,., Comp. orý. Sames),

tfst_compare([Hl_], Ll, diff, overtap, N1, N2, NI-N2,
_): -

. test_etts(H, L1, L2,
_,

Comp_orý_Sames),
1.

tfst-coq)are(E]#_L, diff, diff,
_Wl,

N2, N2,
_): -

1 1.
tfst-coqmre(EHILI, Ll, diff. Conp, N1, N2, N3,

_): -
1,
t Is t-coq)are(L, Ll, diff, Cwp, N1, N2, N3, El

11 - 24

test-ettsCX, L, LI, Sames, Sames1) tests if X matches (according to -C-) any element in L.
If so Ll is bound to the list of all other elements in L and Samesi is bound to a list

with head X and tail Sames. If X will unify but not match (<a),) an element of L then
Samesl is bound to the term "overlap" otherwise test fails.

test_etts(X, EYILI, L, Sames, EXISamesi): -
X ýC=)P, Y,

test-eLts(X, EYILI,
_, _,

overLap): -
wM_unffy(X, Y),
1.

test-eLts(X, EY11.1, [YjL13, Sames, Comp_or_S&mes): -
test_eLts(X, L, L1, Sames, Comp_orý_Sames).

ORDER CLAUSES

Puts the clauses in Cs Into an optimum order for translation in Ordered-Cs and the
corresponding CSNs in Ordered_CSNs

order_ctauses((_, CSNsl, Ordered_CSNs, Cs, Ordered-Cs): -
overtaps(Ols),
overtap_groups(019,0-Gs),
group_overtap_retation(O. _Gs,

CSN9, CSN_Gs, Cs, overtapping_Cs),
order_groups(CSN_Gs, Overtappfng_Cs, Ordered_CSNs, Ordered-Cs).

collects together all the overlap identifiers (01s) for the relation currently being
processed. An overlap identifier is a term of the form N-M in which M Is a number
identifying a clause and N is an overlap Identifier or another number.

overtaps(E0110183): -
retract(overtap(Ol)),
1,
overtaps(Ols).

overlaps([]).

overtap_groups(Ols, O-Gs) creates the optimum list of clause groupings (Cý_Gs) from the
list of overtop Identifiers (01s). The clause groupings will consist of a list of lists
of solution set identifiers (not overlap Identifiers, clause numbers or clause solution
numbers).

overtap_groupsCE1,13).
overtap_groupsC(OlIOISI, (O.

_GICLGsl): -
break_up(01, Ns),
overtap_group(Ns, Ols, Ns, Cý. G, (], R-Ols, []),
overtap_groups(R-Ols, O-Gs).

breaks up an overlap identifier into a list of clause numbers

break_up(N-M, EN181): -
1,
break_up(M, B).

break_up(W, END-

11- 25

overlap-group(Ns, Ols, O-G_sofar, O
-

G, R
-
Ols

- sofar, R_OIS, Ns_new)
Ns is a List of solution set identifiers in the overlap group.
Ols is a List of overlap identifiers that are to be tested against the List of clause
numbers No.
0G- sofar is the overtop group sofar built up before the call.
O_G Is the overlap group after the call with any numbers from relevant overtop
identifiers incorporated, i. e. O_G_Sofar plus any new numbers generated by the colt.
R Ols_sofar is a list of any overlap identifiers that have so far been tested but do not
belong in the overlap group.
R_OIs is R_Ols_sofar plus any new overlap identifiers coming from this call that do not
belong in O-G
Ns_new is a t; st of new numbers that have been found to belong in the overlap group.
The goat works by testing overlap identifiers in the list 019 against the List of
numbers No. If there are any numbers common to the 01 and Ns, then all new numbers in
the 01 are added to Ns to produce Ns2, to 0G- sofar to produce O-G_sofar2, and to Ns_new
to produce Ns-new2; these are then passed cursively to another call to overtap_group.
If there are no common numbers then the 01 is added to R_Ols_sofar to produce
R Ols

- sofar2 and this Is passed recursively to another call to overtap_group. When the
list Ols is empty overLap-group is again coiled recursively with the list of overlap
identifiers, R_01s-Sofar, as the new Ols list and the List of new numbers, Ns_new, as
the list of numbers No, to check whether there is now an overlap between any of the
overtop identifiers previously passed over. When the List Ols is empty and also the List
Ns-new is empty then the whole overlap group has been established; 0.

_G_sofar
Is bound to

O_G giving the overtop group and R_Ols_sofar is bound to R_OIs giving a List of those
overtop identifiers that did not overtop with any of the clauses identified by 0.

_G.
This

list can then be passed to overiap-groups to find any more overtop groups.

overtap-group(Ns, [], O,
_G,

O.
_G,

R_Ols, R_Ols, (]): -
1.

overtap_group(Ns, [], O_G_sofar, O_G, R_Ols_sofar, R_Ols, Ns_new): -
1,
overtap_group(Ns-new, R_Ols_sofar, O_G_sofer, O-G, [], R-Ols, []).

overtap_grotip(Ns, [N-Mlols]. O.
_q_sofar,

O_G, R_Ols_sofar, R_019, Ns_new): -
overtap_jmem(N-M, Ns),
1,
add_overtap(N-M, Ns, Ns2, Ns_new, Ns_new2,0_G_sofar, O_G_sofar2),
overtap-group(Ns2, Ols, O-G_sofar2. O_G, R_Ots_sofar, R_Ols, Ns_new2).

overtap_groupCNs, EN-MIOI&I, O_G_sofar, O_G, R_Ols_sofar, R_Ols, Ns_new): -
overLap_groupCNs, Ols, o-G_sofar, O_G, [N-MIR_Ols_sofar], R_Ols, Ns_new).

Tests If any of the clause Identifiers in the overlap identifier N-M are in the list of
clause numbers, Ns. If so succeeds, otherwise falls.

overtap-mein(W-M, Ns): -
overtap_mem(M, Ns),
1.

overLap_pmn(M-M, Ws): -
1,

overtap-mem(N, Ns).

overtap_mem(M, Ns): -
mein(N, Ns).

11- 26

add_overtap(N-M, OL1. OL2, ONsl, oNs2,0-Gl, O-G2) adds the components of the overLap
identifier N-M to the Lists M to produce the lists ?? 2.
List ?? 2 Is formed from list M by adding on the component numbers of N-M without
generating duplicates: they are all Lists of numbers.
OL? are the overlap Lists with which the Ols are being compared.
ONs? are the lists of new clause numbers generated from comparing Ols with the overLap
Lists 00.
O-G? are the overlap groups themselves

add_overLap(N-M, OLI, OL2, ONsl, ONs2,0-GI, O-G2): -
overLap_mefn(M, OL1),
1,
add_overLap(N, OLI, OL2, ONsl, ONs2,0-Gi. 0-G2).

add-overLap(N-M, OLI, OL2, ONsl, ONs2, O_Gl, O_G2): -
1,
add_overLap(N, [MIOL11, OL2, [MIONsl], ONs2, EMIO_Gll, O_G2).

add_overLap(N, OL1, OL1, ONsl, ONsl, O_Gl, O-Gl): -
mem(N, OLI),
1.

add-overtap(N, OLI, ENJOL13, ONS1, ENIONsl], O.. Gl, ENJOLG11).

group_overtap_reLatfon(O. _Gs,
CSNs, ln-CSNs, Cs, O

-
Cs) collects together clauses in Cs, with

clause solution numbers, CSNs, according to each overlap group in O-Gs and puts them in

.
O_Cs. The clause solution numbers corresponding to this List are in In_CSNs. If the list

of remaining clause solution numbers includes a clause with a cut AND another clause
that generates the same solution set, then all the remaining clauses are grouped
together to ensure that clauses involving the cut and identical solution sets are
properly translated and the scope of the cut is properly maintained.

group_overtap_reLation(_, [], E], E], E]): -
1. %

group_overLop-reLation(ECL. GIOý. Gsl, CSNs, tln_CSNsllln_CSNsl, Cs, ECý-CsIloý. Cs]): -
group_overtap_pLauses(O.. G, CSNs, ln_CSNSI, tl, out_CSNs, Cs, O_Csl, E], Non-0-CS),

group_overLap_reLation(q_Gs, out_CSNs, ln_CSNs, Non-O-Cs, O-Cs).

group_overtap_reLation((], CSNs, ECSNsl, C$, [Csl): -
mem(X-C, CSNS),

mem(X, TO-CSNS),

group_overtap_reLition(E], CSNs, Enon_overLap, CSNsl, Cs, ECs]).

11 -27

/* group_overLap_ctauses(Oý_G, CSNs, ln-CSNs, New-Out_CSNs, Out_CSNs, Cs, O-Cs, New-Non_O_Cs, Non-O-Cs)
Collects together all. clauses in Cs (with clause solution numbers in CSNs) which are
involved In the overlap group Oý_G and puts them in O-Cs; the remaining clauses go in

Non-O-Cs.
In_CSNs and Out-CSNs are the lists of clause solution numbers corresponding to the
clauses in O-Cs and Non_O_Cs respectively.
New_Out_CSNs and New_Non_O_Cs correspond and are the Lists of new "out" items as they

occur. When a clause has a cut in it (i. e. its CSN ends in -c or -c-s) then the system
checks. to see if that clause or any subsequent clauses have any overlaps with previous
clauses. If it, or they, do, then all subsequent clauses are taken to be overlapping, in

order to maintain the correct scope of the cut. The "in" items are returned as:
the current out items (New-Out_CSNs and New_Non_O_Cs) followed by the clause with the

cut followed by all the remaining clauses, and the "out" items are returned as the empty
list. This maintains the correct order of clauses with respect to the clause with the

cut. if it, or they, do not, then the 'Ifni' Items are returned as the empty List and the
"out" items are returned as:
the current out items (New-Out-CSNs and New-Non_O_Cs) followed by the clause with the

cut followed by all the remaining clauses. Thfs maintains the correct order of clauses
with respect to the clause with the cut.

group_overLap_ctauses(_, (I , (I Out_CSNs, Out_CSNs, (I , (I Non_O_Cs, Non-O-Cs):,
I .*

group_pvertap_ctauses(El CSNs, (I
_,

CSNs, Cs, 0
_,

Cs): -

group_overLap_cLauses(Cý_G, ECSN-c ICSNsl , ln_CSN&, New_Out_CSNs, 0, ECIC&I O_Cs, New_Non-O-Cs, (I

overtap, -mem(CSN,
O-G),

append(New-Out_CSNs, [CSN-CICSWsl, ln_CSNs),

append(New-Non-O-Cs, [ClCs3,0_Cs).

group_overLap_cLauses(O. _G.
(CSW-cICSNsl , ln_CSNs, New_Out_CSNs, 0, (CICs] 0.. Cs, New_Non-O-Cs, (I

'group_overLap_cLauses(O_G, CSNs, ln_C$Nsl, (],
_,

Cs,
_,

13,
_),

non_empty(ln_CSNSI),
1,

append(New-Out-CSNs, (CSN-cICSNsl, ln
-

CSNs),

append(New-Non-O-Cs, [ClCsl, O.
_Cs).

group_overLap-clauses(O_G, ECSN-cICSNsl, [], New-OUt_CSNs, Out-CSNs, Cs, E1, New-Non_O_Cs, Non-O-Cs): -
1,1 -I

append(New-Out-C$Ns, ECSW-cICSNsl, Out_CSNs),

append(New-Non_O_Cs, Cs, Won_O_Cs).

group_pver tap-c Lauses(O.
-G,

ECSN-c-sICSNs3, ln_CSNs, New-Out_CSNs, (3, (CjCs], Cý_Cs, New-Non-O-Cs, 11

overtap_Mm(CSN, O-G),
1, -
append(New-Out-CSNs, ECSN-c-sICSNsl, ln_CSNs),

append(New-Non_O_Cs, [ClCsl, Oý. Cs).

group_overtap_CL&uses(Cý_G, (CSN-c-sICSNs3, ln
-

CSNs, New
-

Out
-

CSNs, (], (CIC$3, P_Cs, New-No%O_Cs, [)): -
group_overtap_ctauses(O_G, CSNs, ln_CSNsl, (],

_,
Cs,

_,
(],

_),
no%empty(ln_CSNs1),
1, -
append(New_Out_CSNs, ECSN-c-sICSNsl, ln_CSNS),

append(New-Non-O-Cs, ECICs], oý. cs).

group_overLap_ctauses(O. _G,
ECSN-c-sICSNsl, t1, New-Out-CSNs, Out_CSNSI

Cs, E1, New-Norý_Oý. CS, Non-O-Cs): -

append(New_Out_CSNs, (CSN-c-91CSNSI, Out_CSNs),
append(New-Non_O_Cs, CS, Non-O-Cs).

11 - 28

group_overtap_ýctauses(C. _G,
ICSNICSNsl. [CSNlln_CSNSI, New-Out_CSNs, Out_CSNs,

(CICSI, (CIO.
_CSI,

New_Non_O_Cs, Non-O-Cs): -
overtap-mem(CSW, O-G),

group_overLap_ctauses(O_G, CSNs, ln_CSNs, New_out_CSNs, Out_CSNs,
Cs, O-Cs, New_Non_O_Cs, Non-O-Cs).

group_overtap_ctauses(O. _G,
ECSNICSNsl, ln_CSNs, New-Out-CSNs, Out_CSNs,

ECICsl, O_Cs, New_Non_O_Cs, Non-O-Cs): -
group_overLap_ciauses(O_G, CSNs, ln_CSNs, [CSNINew-Out_CSNsl, Out_CSNs,

Cs, O_Cs, ECINew_Non_O_Csl, Non_O_Cs).

order_groups(CSN_Gs, Cs, Ord_CSNs, Ord_Cs) orders the ctauses in Cs within their existing
groups to create the tist of ordered ctauses, Ord_Cs. CSNs_Gs and Ord_CSNs are the tfsts

of corresponding cLause soLution numbers.

order_groups(11 , El, E3, El

order_groups(Enon_overtapICSN_Gsl, Cs, Enon_overtaplord_CSN_Gsl, Ord-Cs): -
It.
order_groups(CSN-Gs, Cs, Ord-CSN

-
Gs, Ord-Cs).

order_groups(ECSNsICSN_Gsl, ECsllCs3, EOrd_CSNslOrd_CSN_Gsl, EOrd_CsIlOrd-Csl): -
group_CSNsC_, CSNs, Csl, E], [], Ord_CSNs, Ord_Csl, (], E], E], []),

order_groups(CSW-Gs, Cs, Ord_CSN_Gs, Ord-Cs).

/* group_CSNs(CSN, CSNs, Cs, Non_CSNs, Non
-

Cs, ord
-

CSNs, Ord
-

Cs, Bag_CSNs, Bag_Cs, CSNs_from
-

cut, Cs_from
-

cut)
This goat sorts the list of clauses, Cs, into an optimum order for translation according
to the corresponding list of clause solution numbers, CSNs. For every List of CSNs there
is a List of the corresponding clauses identified by "Call for "CSNs". The first argument
CSM does not have a correspondence because it is only used as a current reference. The
sorting depends upon the fact that the order of clauses is inuteriat unless one of the
clauses has a cut in it (identified by, "-c" in the CSN), in which case this clause must
maintain its same relative position with respect to Individual clauses. in the following
description the sorting will only be explained in terms of the lists of CSNs, however
every action performed on a CSN is exactly shadowed on the corresponding clause In the
lists of Ca. Assuming no cuts in any of the clauses:
Group together all CSNs that exactly match CSN which, at the start, will, be the head of
the list CSNs, and put them in the list Ord_CSNs. Any non-matchfng clauses encountered
on the way through the list CSNs are put In the list Non_CSNs. When all clauses matching
CSN have been found, A. e. the list CSNS is empty, then the same process Is performed on
the list Non_CSNs, those clauses that did not match CSN, and the ordered clauses are
appended to the list Ord_CSNs. Any CSNs that have the suffix 11-s" are put in the list
Bag_CSNs and are eventually put at the end of the list Ord_CSNs when all other clauses
have been property sorted. These clauses are those that can generate the same solution
more than once and therefore have to be translated using bagof to operate in a breadth

search manner.
If a cut Is encountered in the CSNs (identified by 11-0 in the CSN) then all CSNs up to
the cut are processed as above, the CSN involving the cut is appended to the list
Ord_CSNs, and then all CSNs after the cut (which are held in CSNs_after_cut) are
processed as above and appended to the list Ord-CSNs.

group_CSNs(-, II* (It Do [I): -

group_CSNsC_, [], [], E], (], [Bag_CSNsl, [Bag_Cs], Bag_CSNs, sag_Cs, El, (]): -
1.

11 - 29

group_CSNs(', [], (], [], [], -ECSN'CutlOrd_CSWsl, [C_cutlOrd_Csl, [], [],
ECSN_cutICSNs_from-cutl, [C_cutICs_from-Cuti): -

group_CSNs(_, CSNs_from_cut, Cs_fr(xn_cut, (], [], Ord
-

CSNS, Ord-Cs, (], (], [], (]).

group_CSNs(-, [], E], E], (], EBag_CSNs, CSN_cutlOrd_CSNSI, (Bag_Cs, C-cutlOrd
-

CS),
Bag_CSNs, Bag_Cs, (CSN_CutICSNs_from_cutl, (Cý_cutICs_from_cut]): -

group_CSNs(_, CSNs_fr(xn_cut, Cs_from_cut, (], [], Ord_CSNs, Ord
-
Cs, 13 , El ,D, 11

group_CSNs(_, (], (], Non_CSNs, Non_Cs, Ord_CSNs, Ord_Cs, Bag_CSNS, Bag_Cs,
CSNs_from-Cut, Cs_fr(xn-Cut): -

group_CSNs(_, Non_CSNs, Non_Cs, (], [], Ord_CSNs, Ord_Cs, Bag_CSNs, Bag.. ýCs,
CSN9_from-cut, Cs_from-cut).

group_CSNs(_, ECSN-ciCSNsl, [ClCsl, Non_CSN9, Non_Cs, Ord_CSNs, Ord-Cs, [], [], E], E]): -
1,
group_CSNs(_, Non_CSNs, Non_Cs, [], [], Ord_CSNs, Ord-Cs, [], El,

ECSN-cICSNsl, ECICSI).

group_CSNs(_, (CSN, cICSNsl, [ClCs3, Non_CSNs, Non_Cs, [Bag_CSNalOrd_CSNsl, [13ag. ýCslOrd-Cs],
Bag. ýCSNs, Bag_Cs, (l, E3): -

group_; SNs(_, Non_CSNs, Non_Cs, E], (], Ord_CSNs, Ord_Cs, (], [], ICSN-cICSNsl, [ClCs]).

groupý_CSNs(_, (CSN-C-SICSNsl, [ClCsl, Non_CSNs, Non_Cs, Ord_CSNs, Ord-Cs, (], [], E3, E3): -
1,
group_CSNs(_, Non_CSNs, Non_Cs, (], (], Ord_CSNs, Ord_Cs, (], E], ECSN-c-sICSNs), ECICSI).

groupý_CSNSC_, ECSN-C, SICSNsl, [ClCsl, Non_CSNs, Non_Cs, [Bag_CSNsiOrd
-
CSNsl, [Bag_CsIOrd-Cs],

Bag_CSNs, Bag_Cs, E1,13): -

group_CSNs(_, Non_CSNs, Non_Cs, (], (], Ord_CSNs, Ord_Cs, El, (3, [CSN-c-sICSNsl, ECICs)).

group_CSNS(CSN-S, ECSN-sICSNS3, [ClCsl, Non_CSNs, Non_Cs, Ord_CSNs, Ord_Cs, Bag_CSNs, sag-; S,
CSNs_from-Cut, Cs_from-cut): -

group_CSNs(_, CSNs, Cs, Non_CSNs, Non_Cs, Ord_CSNs, ord_Cs, [CSN-slBag_CSNsl, EC113ag_CS],
CSNs-from-cut, Cs_from-cut).

group_CSNs(CSN, ECSNI-sICSNsl, (ClCsl, Non_CSNs, Non_Cs, Ord_CSNs, Ord_CS, Bag_CSNs, Bag_Cs,
CSNs-from-cut, Cs_from-cut): -

group_CSNS(CSN, CSNs, Cs, Non_CSWs, Non_Cs, Ord_CSNs, Ord_Cs, [CSNI-slBag_CSNsl, [Cloag_Cs],
CSNs_frcxn_cut, Cs_from_cut).

group_CSNs(CSN, E? ICSNsl, (ClCsl, Non_CSNs, Non_Cs, Ord_CSNs, ord_Cs, Bag_CSNs, sag. ýCs,
CSNs_from_cut, Cs_from-Cut): -

group_ýCSNs(CSN, CSNs, Cs, Non_CSNs, Non_Cs, Ord_CSNs, Ord_Cs. Bag_CSNs, Bag_Cs.
CSNs_froM_Cut, Cs_frcxn-cut).

group_CSNs(CSN, ECSNICSNsl, ECICsl, Non_CSNs, Non_Cs, ECSNIOrd_CSNsl, (ClOrd-Cs],
Bag_CSNs, Bag_Cs, CSNs_from_cut, Cs_from-Cut); -

group_CSNs(CSW, CSNs, C8, Non_CSNs, Non_Cs, Ord_CSN9, Ord_Cs, gag_CSN9, Bag_Cs,
CSNs_from_cut, Cs_from_cut).

group. _CSNs(CSN,
ECSN11CSNs], ECICsl, Non_CSNs, Non_Cs, Ord_CSNs, Ord_Cs, Bag_CSNs, Ba9-CS,

CSNs_from_cut, Cs_from-cut): -
group_CSNS(CSN, CSNs, C&, ECSNIINon_CSNsl, ECINon_Cs], Ord_CSNs, Ord_Cs, Bag_CSNS, Bag_Cs,

CSNs-from_cut, Cs_from_cut).

II - 30

TRANSLATE RELATION

trans_reLation(H, Gs, CSNs, F) Gs Is a List of groups of clauses (with head H) representing
an entire relation, and has corresponding list (of same structure) of CSNs. F is a flag
identifying whether there Is a fuzzy argument In the goal and if so which argument It
is. The relation is translated according to the structure of the list:

- Lists of clauses are translated using a do(-bagof call to ensure that they are breadth

searched
- clauses not in a subList and preceded by "non_overLap" need not be translated using a
doL-bagof call and are passed as a group to be translated by trans_groups.
The first clause of trans-reLation is always used at the beginning of a relation
translation in order that the relation can be checked for any fuzzy terms for which
semantic unification can be performed. This is Identified by argument 4 being the term
non_fuzzy. If a translation does have a fuzzy argument then the argument number is

passed as arg 4 in a recursive call to trans
-

relation.
The translation is written using portray which directs output to whatever is the current
output stream defined by tetL(X) and retrievable by tetLfng(X). This output stream will,
previously have been set up by where_to. Note that the translation Is not returned as an
argument of the goal.

trans_reLation(H, Gs, CSNs, non-fuzzy): -
functor(H, P, A),
fuzziness(P/A-N),
H a.. IPJArgs3,

trans_fuzzy(EPIArgs], N, FH),

trans_reLation(FH, Gs, CSNs, N).

trans-reLation(H, Gs, EnorLovertapiCSNsl, F): -
1,

-Ha.. [PlArgs]
trans-groups(P: Gs, CSNS, F).

trans_retation(H, EGlIGsl, [CSNslICSNsl, F): -
bagof_form(H, G1, CSNsl, F),
trans_reIatIon(H, Gs, CSNs, F).

trans_retatfon(_, (3, (],
_).

Il - 31

trans -
fuzzy(EPIArgs], N, FH) generates the top level part of the translation of a retation

which has a fuzzy argument. The retation has predicate P and Args Is a List of variables
for arguments. N is the argument number of the fuzzy term and FN is the fuzzy head
generated for the tower level part of the translation. Three clauses are generated:
- the first deals with a call to the goat when the fuzzy argument is a variable, and
performs the semantic unification,
- the second with a call. In which the fuzzy argument has the suffix -^fuzzy" and does
not perform the semantic unification,
- the third deals with a call to the goat when the fuzzy argument is non-variable, and
performs the semantic unification.
The sufffx, , _AfUZZy, l, used fn the second clause Is for the special case when a fuzzy
term evaluated in a subgoat is also an argument of the head of the clause, I. e. It (s

not a term tocat to the particular clause being translated. In this case the semantic
unification is not performed because it can be performed at a higher level and should
always be performed at the highest level possible.

trans_fuzzy(EPIArgs3l, N, FH): -
name(P, LP), I
append(11fuz_", LP, LFP),
name(FP, LFP),
fuz-arg(l, N, Argsl, FI, Args2, F2, Args3),
FH IFPjArqs11,
H1 EP, S1jArgs11,
FNI (FP, S1jArgs11,
FH2 EFP, S2lArgs2l,
H3 EP. SilArgs3l,
p. ortray(CH1: -var(Fl), I, FH2, semunify(Sl, S2, Fl, F2))),
portray(CH3: -I, FHI)),
portray((Hl: -FH2, semunify(SI, S2, Fl. F2))).

Translates the list of groups of clauses according to their groupings

transý_groups(P, [GllGsl, ECSNslICSNsl, F): -
trans_group(P, G1, CSNsl, F),
trans_groups(P, Gs, CSNs, F).

trans_groups(_, E], [],
_).

trans_group(PI, CS, CSNS, F) transtates a group of cLauses CS (with corresponding CSNs)

with the pridicate P1 which may or may not be the same as the original. The first three

clauses deat, with those CSNs with the suffix 11-911 Indicating that the translation

requires the use of doL_bagof. At the start such cLauses will be In a subtist of Cs: if

the predicate of the first clause Is different from the predicate to be used (PI) then

the cLauses are already being translated under a doL_bagof call and need not be

translated using the bagof_form, Instead they are passed to clauses 2 and 3 of

trans_group; otherwise (i. e. predicate of Cx PI) they must be translated using
bagof_form and the translation is performed by the first clause of trans-group. Clause 4

of trans_group takes all clauses which can generate the same solution O. e. have the

same CSN) and translates them as one clause. Clause 5 of trans_group translates a single

clause directly. Clause 6 of trans_group is the terminating condition.

trans_group(PI, EECICS]IRCSI, EEN-sICSNs]IRCSNs], F): -
heads(C, H,

_, _, _),
functor(H, Pl,

_),
I" .
bagof_formCH, ECICSI, [N, 91CSNsl. F),
trans_gr(wp(PI, RCs, RCSNs, F).

11 - 32

trans_group(Pl, (CsIRCsl, [EN-sICSNsIIRCSNsl, F): -
1,
trans_group(PI, Cs, EN-SICSNsl, F),

trans-group(PI, RCs, RCSNs, F).

trans_groLip(Pl, (CiCsl, EN-sICSNsl, F): -
1,

trans-ctause(Pl, C, T_C, N-s, F),

portray(T-C),

trans_qroup(PI, Cs, CSNs, F).

trans_group(Pl, (CICSI, ENICSNsl, F): -

ati-Ns(N, Cs, CSNs, N_Cs, N_CSNs, Other_Cs, other-CSNs, [], E]),

nor%. empty(N-Cs),
1,

one-ctause-form(H, ECIN_Csl, Body, Sups, Sups, S, F),

H [PlArgs],

MI EP1, SlArgs],

portray((Hl :- Body)),

trans-group(PI, Other_Cs, Other_CSNs, F).

trans_group(P, (ClCsl. [NICSNsl, F): -
trans-ctause(P, C, T_C, N, F),

portray(T_C),
trans_group(P, Cs, CSNs, F).

trans_group(_, E]tllo_).

TransLates a group of ctauses using a dot-bagof caLt to ensure that a breadth search is

performed when the goat, is queried. N Is the head of the reLatfon being transtated. A

ctause is defined that has this head, caUs doL_bagof on a new and unique predicate name
(determined by bag_name) and then caLLs samecombine to combine the support pairs. The

new predicate name is used to form the head of the cLauses transtated by trans-group.
Argument 4M Identifies a fuzzy argument In the goaL.

bagof_form(H, Cs, CSNs, F): -
1.
H (PlArgs3,
Hl EP, SIlArgs],
bag_name(P, P1, S, Args, Bag_goat),

portray((Hi":, doL_bagof(S, Bag-goaL, L), samecombine(L, Sl))),
trans-group(Pl, Cs, CSNs, F).

Determines a new and unique predicate name to be used for a goat being caLLed by
dot-bagof in a bagof form for transLating a reLation. PI Is the new predicate name of
the form bag-, cn-P), where <n> is a number generated by incrementfng the vatue of the
argument of bagnum, and P is the originat predicate name. Args Is a list of the original,
arguments and S is the support argument tacked on to the front of this tist, Bag_goat Is

the new goat head defined by Bag_goat EPI, SlArgs].

bag_name(P, PI, S, Args, Bag_goat): -
retract(bagnun(W)), '

NJ Is N+1,

asserta(bagnum(Ml)),
name(N, LN),

append(Ilbag2l, LN, LB),

name(P, LP),

append(LB, LP, LPl),

name(PI. LPI),
Bag_goat a.. EPI, SlArgs].

11 - 33

trans-cLause(P, C, T_C, CSN, F) translates the clause C, with clause solution number CSN, to
have predicate P and the translated clause Is T_C. F is a fuzzy argument identifier.

/* 1 Uses a bagof
-

form on a clause which generates the same solution more than once
(Identified by the 11-s" suffix on the CSN) unless the predicate P does not match the
predicate of the clause C, in which case the clause is already subordinate to a
dot_bagof. */

trans-ctause(P, C, T_C, N-s, F): -
heads(C, H,

_, _, _),
H x.. [PlArgs],
1,
H1 u.. EP, SIlArgs],
bag_pame(P, P1, S, Args, Bag_goaL),
trans-cLause(PI. C, T_C, N, F),

portray((HI :- doL_bagof(S, Bag_goaL, L), samecombine(L, Si))).
/* 2 Translates a non-fuzzy equivalence clause, identified by the equivalence operator <->

trans_cLause(_, (X <-), Y), (Xl: -YI, SL is SLs, Su is Sus),
_, non-fuzzy): -

1, -
X u.. [PlArgs].
X1 a.. IP, ESL-, SullArgs],
trans_subgoaLs(Y, Yl, both, [1,11, ESts, Sus]).

/* 3 Translates a non-fuzzy bundle, identified by the bundle operator <-

trans-etause(_, (X: - <- 8), (Xl: - 81),
_, non-fuzzy): -

1,
X (PlArgs],

X1 (P, SjArgs),
buftcLbody(9,81, S).

/* 4 Translates a non-fuzzy rule for which the upper conditional support Is I

trans_ctause(Pl, (X: -Y: ESLC, 11), (Xl: -YI), _, non-fuzzy): -
1,
X -.. [PlArgs] ,
X1 a.. EPI, (St, 11JArgs],

trans-subgoaLs(Y, Yl, st, Stc, SL).

/* 5 Translates a non-fuzzy rule for which the tower conditional support Is 0

trans_ctause(Pl, (X: *Y: (O, Sucl), (Xl: -Yl, Su is I- Sul),
_,

non-fuzzy): -

X [PlArgs],

X1 EPI, (O, SullArgs],

trans-Subgoals(Y, Yl, st, (I-Suc), Sul).

/* 6 Translates a non-fuzzy rule for which there is positive conditional support both for and
against

trans-ctause(Pl, (X: -Y: ESLC, Sucl), (Xl: -Yl, su Is I- (I - Suc)*SL/Stc),
_, non-fuzzy): -

1,
X (PlArgs],
X1 (P1, (St, Su3jArgs3,

trans-Subgoats(Y, Y1, st, S(c, Sj).

II - 34

/* 7 Translates a probabilistic pair of non-fuzzy rules, identified by the two support pairs
on the singLe rule

trans-ctause(Pl, (H: -8: S, Sn), (Nl: -Bl, probcombine(Sp, S, Sn, Sl)),
_, non-fuzzy): -

1,
H EPIArgs],
HI EPI, SllArgs],
trans-subgoaLs(8,81, both, (I, l], Sp).

/* 8 Translates a supported fact - fuzzy or non-fuzzy

trans_ctause(Plp(X: - : S), (Xl; -true), _, _): -
1,
X [PlArgs],
XI EPI, SlArgs].

/* 9 Translates an unsupported rule - fuzzy or non-fuzzy

trans-cLause(Pl#(X: -Y), 7ý_C, N, F): -
not functor(Y, (:),

_),

trans-cLause(Pl, (X: -Y: El, ll), T_C, N, F).
/* 10 Translates any sort of fuzzy rule (bundLe or ordinary) by sorting out the fuzziness and

then passing it to a recursive call of trans-cLause as a non-fuzzy

trans_cLause(Pl, (H :- B), T_C, N, FN): -
1,
N z.. EPIArgs],
fuz-arg(l, FN, Argsl, Fl,

_, _,
Args),

81 a.. -EPjArgsI1, -
trans-clauseCP1, (Hi :- B), T

-
C, N, non -

fuzzy).
/* 11 Translates a fuzzy equivalence by sorting out the fuzziness and then passing it to a

recursive call of trans_cLause as a non-fuzzy

trans_ctause(Pl. (H -, 6), T_C, N, FN): - -
1,
H a.. [PlArgs],
fuz_argCI, FN, Argsl, Fl,

_, _,
Args),

H1 a.. (PjArgs1j,,

- trans_ctauseCPI, CHI <- B), T_C, N, non-fuzzy).
/* 12 Translates an unsupported fact - fuzzy or non-fuzzy

trans_cLause(PI#X, (Xl: - true),
_, _): -

X (PlArgs],
xj (PI, (1,11JArgs].

trans-subgoaLsCSG, T_SG, NorP, Sups_fn, Sups. ýout) translates the subgoal, SG, of a clause to
produce the translated subgoaL, T_SG.
NorP Is a flag Cequal, to "both", "st" or 41suls) indicating which of the individual
upports is of importance - sometimes either of the supports may not be used in the
aLcuLatfon of supports for the head of a rule, because of the conditional supports.

Sups_fn Is a support pafr Cor single support depending on NorP) representing the support
calculation for the body of the clause prior to the particular subgoaL under
consideration;
sups.. put is the support pair (or single support depending on NorP) representing the
support calculation for the body of the clause including the particular subgoat.

II - 35

/* 1 Translates a support logic disjunction when both supports are being considered

trans_subgoats((X sup_or Y), (Xl. Yl), both, ESLmutt, Sumutt], ESLmuLtl, Sumuttll): -

simpLifyjwit(((Stx+SLy-SLx*Sty)*SLmult), SLmutti),
simpLify. yutt(((Sux+Suy-Sux*Suy)*Sumult), SumuLtl),
trans-subgoaLs(X, Xi, both, (I, l], ESLx, Sux]),
trans-subgoals(Y, Yl, both, E1,11, Esty, suyl).

/*2 Translates a support Logic conjunction when both supports are being considered

trans_subgoaLs((X, Y), (XI, Yl), both, [SLffult, Sumutt], ESLmuttl, SumuLtil): -

trans-subgoaLs(x, xl, both, (I, l], ESix, Sux]),
trans_subgoats(Y, Yl, both, li, l], ESty, Suyl),
simplify_puLt((Stx*Sty*StmuLt), StmuLtl),
simptifyjwtt((Sux*Suy*SumuLt), SumuLti).

/* 3 Translates a support Logic negation when both supports are being considered

trans_subgoaL&(sup_not X, Xl, both, ESImuLt, Sumuttl, (SLmuLtl, SumuLtll): -
1,
sfmptffy. yuLt(((l-Su)*SLmutt), StmuLtl),
simpLify2uLt(CCI-St)*SumuLt), SumuLtl),
trans_subgoats(X, Xl, both, (I, ll, (St, Sul).

/* 4 Translates a support logic disjunction when only one of the supports is being considered

trans_subgoats((X sup_or Y), (XI, Yl, S is SupmuLtl), NorP, SupmuLt, S): -
1,
sinipLify_MuLt(((Sx+Sy-Sx*Sy)*SupmuLt), Supmuttl),
trans-subgoaLs(X, X1, NorP, I, Sx),
trans_subgoals(Y, Y1, NorP, I, Sy).

/* 5 Translates a support Logic conjunction when only one of the supports is being considered

trans_subgoals((X, Y), (XI, Yl), NorP, SupmuLt, S): -
- 1,

trans-subgoatsCX, XI, NorP, I, Sx),
sfmpLifyjwtt((Sx*Supmutt), SupmuLtl),
trans-subgoaLs(Y, Y1, NorP, SupmuLtl, S).

/* 6 Translates a support Logic negation when only one of the supports is being considered.
Notice that this causes the single support that is being considered to be replaced by
the other support

trans_subgoaLs(sup.. pot X, (XI, S is SupmuLti), NorP, SupmuLt, S): -
1,
switch_supports(NorP, PorN),
simpLify_puLt(((I-Sn)*supmuLt), SupmuLtl),
trans_subgoals(X. XI, PorN, I, Sn).

11 - 36

/* 7 This and the next four clauses deal with the structure whereby the support pair on an
individual subgoat can be accessed within the rule using the ^ operator. Notice that the
translation itself is not very difficult because in a translated rule, the supports are
necessarily available for use by subgoats in the rest of the rule. This clause
translates the subgoat under the circumstances that both supports are being considered

trans_subgoaLs((X^ISL, Sul), Xl, both, [SLmutt, SumuLtl, [SLMULtl, SumuLtll): -
1,
trans-subgoaLs(X, Xi, both, [I, l], ESL, Sul),
simpLify_puLt(SL*SLmuLt, stmutti),
simpLify_ýuLtCSu*SumuLt, Sumutti).

/* 8 Translates the subgoaL when only the Lower support is being considered and support
previously evaluated for this is I

trans_subgoaLsCCX^ESL, Sul), Xl, st, Supmutt. St): -
Supmutt -- 1,

trans_subgoatsCX, Xl, both, [1,11, [St, Sul).
/* 9 Translates the subgoaL when only the Lower support is being considered and support

previously evaluated for this is NOT 1

trans_subgoatsCCX^ESLI, Sull), CX1, SL Is SLI*SupmuLt), sL, SupmuLt, St): -

trans_subgoatsCx, xl, both, (1.11, [SLI, Sull)
/* 10 Translates the subgoaL when only the upper support is being considered and support

previously evaluated for this is I

trans_subgoats(CX^ESL, Sul), Xl, su, Supmutt, Su): -
SupmuLt an 1,
1, ýI
trans-subgoaLsCX, Xl, both, El, ll, (St, Sul).

/* 11 Translates the subgoaL when only the upper support is being considered and support
- previously evaluated for this is NOT I

trans_subgoaLSCCX^ESLI, Sull), CXI, Su Is Sul*Supmutt), su, SupmuLt, Su): -
It ý
trans_subgoaLsCx, xl, both, Ei, l], ESLI, Sull).

/* 12 Translates the calls within the system predicate call so that support logic goats can
also be que ried for the data they contain without having to combine the support. Any
goats that are meant to be called as protog goats should have been declared as such and
will therefore be intercepted by the clause two after this one. This clause deals with
a ftuations when both supports are being evaluated.

trans_subgoats(CSLL(X), c&LICXI), both, S, S): -
1,
trans_subgoats(X, Xi, both, (1,13,

_).

11 - 37

/* 13 Translates the calls within the system predicate call so that support logic goals can
also be queried for the data they contain, without having to combine the support. Any
goals that are meant to be called as proLog goals should have been declared as such and
will therefore be intercepted by the clause after this one. This clause deals with
situations when only one support is being evaluated.

trans-Subgoats(caLt(X), Ccatt(XI), S is Sl),
_,

Sl, S): -

trans-subgoats(X, xl, both, EI, 13,
_).

/* 14 Leaves atone those predicates that have been declared to be proLog goats (i. e. run using
an ordinary depth search via call) and leaves the support atone if both are being
evaluated

trans_subgoaLs(X, X, both, S, S): -
protog_goat(X).

/* 15 Leaves atone those predicates that have been declared to be protog goats (i. e. run using
an ordinary depth search via call) and evaluates a single support

trans_subgoaLs(X, (X, S is Sl),
_,

Sl. S): -
protog_goat(X),

/* 16 Leaves system predicates as they are when evaluating both supports.

trans_subgoats(X, X, both, S, S): -
syspred(X),
1.

/* 17 Leaves system predicates as they are and evaluates the single support

trans_subgoaLsCX, (X, S Is Sl),
_.

SI. S): -
syspred(X),
1.

/* 18 Leaves user-defined operators as they are when evaluating both supports.

trans_subgoaLs(X, X, both, S, S): -
functor(X, Op, A),
trans-current-oP(_, Optype, Op),
(A = i, mem(Optype, [fx, fy, xf, yf1);
Aa2, mem(Optype, txfxxfy, yfxl)),

1.
/* 19 Leaves usir-defined operators as they are and evaluates the single support*/
trans_subgoats(X, (X, S is SI),

_,
Sl, S): -

functor(X, Op, A),
trans-current-oP(_, Optype, Op),
(A a l, mem(Optype, lfx, fy, xf, yf]);
Az2, mem(Optype, lxfx, xfy, yfxl)),

1.1
/* 20 Translates a single goat when both supports are being considered

trans-subgoat&(X, Xl, both, (StmuLt, Sumuttl, [sLmutti, sumuttil): -
simpLffy. jnutt(St*SLinuit, StmuLtl),
sfmpLffy_mutt(Su*SumuLt, SumuLtl),
X EPIArgs],
X1 EP, ESt, SullArgs].

11 - 38

/* 21 Translates a single goat when only the Lower support is being considered and support
previously evaluated for this is I

trans_subgoals(X, Xi, sL, Supmutt, St): -
Supmutt -- 1,
1,
X a.. EPIArgs],
X1 a.. EP, ESt,

_IlArgs].
/* 22 Translates a single goat when only the lower support is being considered and support

previously evaluated for this is NOT I

trans_subgoaLs(X, (Xl. St is SLI*Supmutt), st, Sup(nuLt, SL): -
1, -
X EPjArgs3,
X1 [P, ESt1,

_jjArgs1.
/* 23 Translates a single goat when only the upper support is being considered and support

previously evaluated for this is I

trans_subgoats(X, Xi, su, Supmutt, Su): -
SUPMULt an 1,

11
X EPIArgs3,
xj EP, [_, SullArgs].

1* 24 Translates a single goat when only the upper support is being considered and support

previously evaluated for this Is NOT 1*/

trans-subgoats(X, (XI. Su is Sul*SupmuLt), su, Supmutt, Su): -
1,
x a.. EPIArgs],

xi a.. EP, [_, SulIlArgs].

bultc!
_body(Bodies,

GoaLs, S) constructs the body, GoaLs, of a transtated bundLe from the
bundLe bodies, Bodies, with the support to be evaLuated being bound to S.

buiLd_body(Bodies, (GoaLs. Catcs. intersect_List(Sups, S)), S): -
buiLd_bodies(Bodies, GoaLs, CaLcs, Sups).

build
-

bodies(godieso'Goats, catcs, sups) constructs the goals, Goats, and the calculation

goals, Catcs, necessary for evaluating the bundle given by the bundle bodies, Bodies,

and builds a List of supports, Sups, for the bundle bodies.

buiLd_bodies((B<-BR), Goals, (CaLc, Catcs), ESupISupsl): -

rjq_sup-paIr(B, Ba, S8),

trans-subgoaLs(Ba, Bal, both, ti, l], SBI),
buftd_bodies(SR, BRI, CaLes, Sups),

unfop_goaLs(BR1, BaI, GoaLs),
body_eatc(SB, SB1, Catc, Sup).

buiLd_bc)dfes(B. Bal, CaLc, ESupl): -
nq_sup_. pair(B, Ba, SB),

trans_subgoaLs(Ba, Bal, both, [1,11, SBJ),
body_calc(S8. S8I, CaLc, Sup).

11 - 39

unio%goats(Gsl, Gs2, U) birds U to the union of the two goat Lists GO and Gs2. N. B. - A
goat list is a series of goals'-separated by commas and therefore the functor of args I
and 2 is the comma (,), and not the full stop which is the functor of a list as held
in square brackets.

uniorý_goaLs((X, Y), Goats, Union): -
goat-member(X, Goats),

ý;
iop_goaLs(Y, Goats, Union).

union_goaLs((X, Y), Goals, (X, Union)): -
1,
unfoq. _9oats(Y,

Goats, Union).
union_goats(X, Goats, Goats): -

goat-member(X, Goals),

unfo%goats(X, GoaLs, (X, GoaLs)).

Tests if arg 1 is a member of the goat list, arg 2. N. B. A goat list Is a series of
goats separated by commas and therefore the fUnctor of arg 2 is the comma (,), and not
the full stop (.) which is the functor of a list as held in square brackets.

goal-member(X#'(X, Y)).

goat-member(X, (Y, Z)): -
1,

goal-member(X, Z).

goat-member(X, X).

_goat,
Sup) forms the support calculation goat, Catc_goat, from 'body , catc(Cond Sup, S8, Catq

the conditional supports, Cord-Sup (whether probabilistic or not), and the support for

the body, SB; Sup is bound to the support so evaluated.

body_catc((S, Sn), Sa, probcombine(SB, S, Sn, Sup), Sup): -

bo dyý_catc(Sc, Sa, condcombine(Sc, S8, Sup), Sup).

att-Ns(N, Cs, CSN$, N_Cs, N_CSNs, NonNCs, NonNCSNs, Bag. ýCs, Bag.. ýCSNs)
collects together from Cs all those clauses of which the CSN In CSNs matches N, and puts
them in W_Cs and the CSN in N_CSNs. Those that match but whose CSNs have the suffix -s
(indicating they need dot_bagofing) are put In Bag_Cs and the CSN in 8ag_CSN9. All

remaining clauses and CSNs are put in NonNCs and NonNCSNs respectively.

att_Ns(N, [C[Csl, [NICSNsl, [CIN_Csl, [NIN_CSNsl, NonNCs, NonNCSNs, Bag_Cs, Bag_CSNs): -
1, -
att-Ns(N, Cs, CSNs, N-Cs, N_CSWs, NonNCs, NonNCSNs, gag_Cs, Sag_CSNs).

att_Ns(N, ECICSI, EM-cICSNSI, (CIN_Csl, EN-CIN_CSNsl, NonNCs, NonNCSNS, Bag_ýCs, Bag_CSNs): -

att_Ns(N, Cs, CSNs, N_Cs, N_CSNs, NonNCs, NonNCSNs, Bag_C$, Bag-PSNs).

att_Ns(N, [ClCs], [N-SICSNsl, N_Cs, N_CSNs, NonNCs, NonNCSNs, Bag_Cs, Bag_CSNs): -
I, -
att_Ns(N, Cs, CSNs, N_Cs, N_CSNs, NonNCs, NonNCSNs, [ClBag_Csl, EN-slBag_CSNs]).

alt-Ns(N, Cs, CSNs, Bag_Cs, Bag_CSNS, Cs, CSNs, Bag.
_Cs,

Bag_; SNS).

11 - 40

one_ctause_form(H, Cs, T_SGs, Ss, Sups, Sup, F) translates the bodies of the clauses Cs, with
head H, to produce the single body, T_SGs, which witt, be given the head H to form the
one_ctause_form translation of a group of clauses.
Ss is the list of the support pairs that will be evaluated from each clause in Cs.
Sups is a List of the support pairs of all the clauses for which the one

- clause form is
being constructed; thus when the goat is first called (from trans_group) Ss and Sups are
bound to the same thing. This is a trick to be able to access the complete List at the
very end of the recursion, i. e. at the terminating clause of one_ctause_form. This List
is-used to put in the samecombine subgoaL to produce the support pair for the head, Sup.
F is the fuzzy argument identifier. ALL but the Last clause of one_cLause_form deal with
non T

fuzzy goats. The last clause sorts out the fuzziness and then calls one_cL&use_form
again with Fa non-fuzzy.

/* I Translates an equivalence retation, by treating It as an ordinary Stop retation, as
equivalence and Stop relations are not supposed to be mixed

one-ctause-form(H, ECH (-2' 13)lCsl, (BI, Bs), (SlSslSups, Sup, non-fuzzy): -
display('*** equivalence relations should not be defined for Stop 1),
disptay(retations), disptaynL,

portray((H<-), B)),
dispLay(lis being treated as a Stop retation'), dfsptaynt,
1,
trans-SubgoaLs(B, Bl, both, (1,13, S),

one_cLause -
form(H, Cs, Bs, Ss, Sups, Sup, non_fuzzy).

/* 2 Translates a probabilistic pair
*1

one_cLause_form(H, I(H: -B: S, Sn)lCsl, (Bl, probcombine(Sp, S, Sn, SI), Bs),
[SlISsl, Sups, Sup, non-fuzzy): -

1,

., trans_subgoats(B, Bl, both, [1,11, Sp),
one_cLause-form(H, Cs, Bs, Ss, Sups, Sup, non-fuzzy).

/* 3 Transtates a support togic fact

one_ctause_form(H, E(H: - : S)ICSI, Bs, [SlSsl, Sups, Sup, non-fuzzy): -
- 1,

or)eý_ctause_form(H, Cs, Bs, Ss, Sups, Sup, norý_fuzzy).
/* 4 Translates a supported or unsupported rule

one_ctause_form(H, E(H: -B)lCslo(Bl, condcombine(Sc, SI, S2), Bs), ES2lSsl, Sups, Sup, non-fuzzy): -
1,

noý. sup_pa1r(B, Ba, S0,

trans_subgoaLs(8&, Bl, both, (1,11, Sl),

one_ctause -
forin(H, C&, Bs, S&, Sups, Sup, non-fuzzy).

/* 5 Incorporates an unsupported fact, I. e. puts [1,11 In Ss

oneý. cLauseý. form(H, EHICsl, Bs, [El, lllSsl, Sups, Sup, non-fuzzy): -

one_cLause -
form(H, Cs, Bs, S9, Sups, Sup. norý_fuzzy).

/* 6 Terminating clause (Cs a (1) that puts in the call to samecombine that wilt combine
together all the supports derived from each Individual rule that has been translated and
incorporated into the one clause form

one_ctause-form(_, El. samecombfne(Sups, S), (3, Sups, S, non-fuzzy): -

11 - 41

/* 7 Sorts out the fuzzy arguments before reinvoking one_ctause_form with the adjusted
ctauses

one-ctause-form(H, Cs, Bs, Ss, Sups, Sup, FN): -
fuz_args(FM, Cs. Csl),
1,
one-ctause-form(H, Csl, Bs, Ss, Sups, Sup, non-fuzzy).

fuz
- args(N, Cs, Csl) is called by one_cLause_form to sort out the fuzzy arguments in the

heads of all the clauses, Cs, that are to be translated to form a single clause. The
clauses so produced are Cs1 and N Is the argument number of the fuzzy term.

fuz_args(N, E(H <-> B)ICsl, ((HI <-> B)ICsll): -
1,
H [PlArgs],
fuz.., arg(l, N, Argsl,

_, _, _,
Args),

H1 a.. [PlArgsil,
fuz_args(N, Cs, Csl).

fuz_args(N, ((H - : S)ICSI, '((H': -': S)ICS11): -
1,
fuz_args(N, Cs, Csl).

fuz_args(N, E(H,: - B)ICsl, [(Hl :- B)ICsll): -

H (PlArgs]
fuz_arg(I, N, Argsl,

_, _, _,
Args),

HI a.. [PlArgsll,
fuz-args(N, Cs, Csl).

fuz_args(N, ECICSI, [CICSII):,

fuz-args(N, Cs, CSI).
fuz_args(N, [], El).

fuz
-

arg(M, N, Argsl, Fl, Args2, F2, Args3) Args3 Is the List of arguments to a goal containing
fuzzy term, N is the argument number for the fuzzy term, M is a counter for

stabtfshing the element of the List Ar'gs3 that Is the fuzzy term: the head of Args3 Is

the fuzzy term when M and N are the same. Argsl is then bound to the List Args3 with the
fuzzy term replaced by the variable F1, Args2 Is bound to the List Args3 with the fuzzy

term replaced by the variable F2. The variable standing for the fuzzy term in the List

Args3 is bdund to the term Fl-^fuzzy, for use as explained in the comment describing

trans_fuzzy. -

fuz-arg(N, N, [FbIArgs], Fb, EF2lArgs], F2, [Fb-'^fuzzyllArgsi): -
1.

fuz-arg(Nl, N ' 'EHIArgsl], Fi, [HlArgs2l, F2, (HlArgs3l): -
N2 is NI + 1,

fuz_arg(N2, N, Argsi, F1, Args2, F2, Args3).

Argument I is an arithmetic expression which, If it is of the form "Pill, is simplified
to X. This new expression Is then passed recursivety untit no further sfmpLffication can
be performed. Argument 2 is bound to the simpLification. ALways succeeds.

sjmpLjfy_puLt(X*One, Y): *
one
1,

sfmpLify_muLt(X, Y)-

SJMPL If yjwLt(X, X) -

11 - 42

Birds argument 2 to the opposite support type from argument I- "SPI (lower support) for
"sull (upper support) and vice versa.

switch_supports(st. su).

switch_supports(su, sL).

Writes to the output device each clause in the List. Used for writing clauses that are
to be treated as ordinary prolog goats and also fuzzy set definitions.

wrfte_ctauses(ICH: -B)lCsl): -

portray((H: -B)),
write_ctauses(Cs).

wrfte_ctauses(EHICsl): -
portray((H: -true)),
write_ctauses(Cs).

wrfte_cLauses(ED. ý

GENERAL UTILITIES

Resets the knowtedge base ready for a new transLation, by deteting the moduLe form of
the fiLe that was Last transLated as weLL as aLt the transtatfon data, such as the

sotution sets and dectaration fLags etc.

reset: -
scrap_retations,
aboLish(not_storing, O),

aboLish(user_fuzziness, l),

aboLish(fuzziness, l),

aboLish(not-caLled, l),

aboLish(modname, l),

abotish(nextclause, l),

abotish(type_oectaraticm, 2),

aboLish(reL_Length, 2),

abotish(known-soLs, l),

abotfshCsols, 2),

aboLfsh(soLn_set, 2),

aboLfsh(cLause_soLn, 2),

aboLish(fite_read, l),

aboLlsh(dot-bagof, cLause, l),

abotish(proLog_goat, l).

Deletes all module forms of relations that were stored when the last file was
translated.

scrap_retations: --",
retract(current_retation(MgH)),
functor(MgH, P, N),
newname(P, Mod-P),
MI is N+1,
aboLish(Mod_P, Nl),
faiL.

11 -43

scrap_retations: -
retract(retatfonC[P, Mod_Hl_],

_)), functor(Mod_H, Mod
-

P, A),
(A a l, abotish(P, O); abotish(Mod_P, A)),
faR.

scrap_retations.

append(X, Y, Z) is true iff the tist Z is the resutt of appending the tfst Y to the tfst X

append([], L, L).

append([HITI. L, EHIRI): -
appendCT, L, R).

Acts as a filter for clauses that are to be portrayed. This clause does not actually do
anything, but allows for a new version to be defined easily, so that there can be a
fiLter., This was put in to get round the problem of translated files not being read in
property by making portray assert the clause directly into the knowledge base. Note that
clauses being read in are portrayed with portrayl and therefore do not go through this
filter, which is only used when portraying translated clauses.

portray(C): -
portrayl(C).

Prints Support Logic cLauses to the current output stream whether standard output or a
Me.

portrayl((X: -true)): -

writeq(X),
write(I. 1), nL.

portrayl((X: - : Y)): -
1,

writeq(X),
write((: -)),
portrayl((: Y)),

write(I. 1), nt.
portrayl((X: -Y)): -

1,

writeq(X),
write((: -)), nt,
put(9), portrayl(Y),
write(I. 1), nL.

portraylC(: Y)): -
I,

writeV : 1),

wrfte(Y).

portrayl(((X: -Y): Z)): -
1,

writeq(X),
write((: -)),
writeq(Y),
write((: Z)), nt.

11 - 44

portrayl((X <-), Y)): -
ý1,

writeq(x),
writeV -l), nl,
put(9), portrayl(Y),
write(I. 1), nL.

portrayl((X: Y)): -
1,

portrayi(X),
writeV : 1).

write(Y).
portrayl((X sup_or Y)): -

1,

write('('), nL,
put(9), portrayl(X), nL,
put(9), wrfteVsupý_or,), nL,
put(9), portrayl(Y), nL,
put(9), write(,),).

portraylC(X ; Y)): -
1,

wrlteClV), nL,
put(9), portrayl(X), nL,
put(9), write(l; l), nL,
put(9), portrayl(Y), nL,
put(9), wrfte(#)').

portrayl((X, Y)): -

portrayl(X),
write(l, l), ni,
put(9), portrayl(Y).

portrayl(X): -
writeq(X).

print& a new Line to the standard output device, the screen. Also allows compatibility
with the arity version.

disptaynt: -
displayV

I). I

SpLits the RMS of the ": -" operator (B: S) into the rute body, 8, and the support pair,
S. If there is no expticit support pair then the impLfcit support pair E1,13 is bound to
S..

no_sup_j)afr((B: S), B, S): -
--1.

no_sup_pair(6,8, (1,11

mem(X, Y) is true Iff X is a member of the tist Y

mem(X, EXI-!)- ,
mem(X, E_Iyl): '

mem(X, Y).

11 - 45

Checks'whether or not the two arguments OR unify without causing any varfabLe
bindings.

witt-unify(X, Y): -
not not XaY.

Resets the rumber stored by "nextnun" to N. "nextnum" is incremented by "newnum" which
is caLLed by "comp" and mclause_sotn_pick".

num-reset(N): -
abolish(nextnLin, l),

assert(nextnum(N)),
1.

Increments the counter "nextnum's in the knowLedge base. Used by "COmP" and
"cLause_sotn_pick"

newrKxn(N): -
retract(nextnum(N)),
Nl Is N+1,

asserta(nextnum(Nl)).

Succeeds onty if its argument is a non-empty tist

no%empty([_I-]).

recovers VaLue from the database under the key, Key, and erases the database reference.

dot_untag(Key, VaLue): -
recorded(Key, VaLue, Ref),

erase(Ref).

current-op(X, Y, Z) stores all the system default operator declarations for use by convert
when modutarising a program. Equivalent to the system predicate of the same name in
Arity Protog

current_op(1200, xfxo(: -)). current
-oP(700, xfx, -: -).

current_op(1200, xfxo(*-),)). current
-op(700, xfx, s\=).

current_op(1200, fx, (: -)). current
_op(700, xfx, <).

current-oP(1200, fx. (? -)). current
-op(700, xfx, >).

current-Op(1100, xfY, (;)). current
_op(700, xfx, a-c).

current-oP(1050, xfY, (-),)). current
-opC700, xfx,), =).

current_op(1000, xfY, (', ')). current _op(500, yfx, +).
current-op(900. fy, not). current

-oP(500, yfx, -).
current-oP(900ofY, \+)- current

-op(500, yfx. /\).
current_op(900, fYospy). current

-Op(500,
yfx, \/).

current-op(900, fy, nospy). current
-

op(500, fx, +).
current_op(700, xfxo=)- current

_op(500,
fx, -).

current_op(700, xfx, is). current _op(400, yfx, *).
current_opC700, xfxom--)- current

-op(400, yfx, /).
current_opC700, xfx. *n). current

-OpC400,
yfx. //).

current_op(700, xfx, \xz). current
-op(400,

yfx, <<).
current-oP(700, xfxo&<)- current -oP(400, yfx,],)-).
current_op(700, xfx, @>). current_ op(300, xfx, mod).
current_op(700, xfx, @z<). current op(200, xfy, ý).
currentý-oP(700, xfx, @>8)- _

current- oP(1150, xfx, (:)).

II - 46

current-oP(1150, fx, (:)).

current_op(900, fy, sup_yiot).

current-op(1100, xfy, (sup_or)).

current-op(1199, xfx, (->)).

current_op(1175, xfy, (ýc-)).

current-oP(1175, fy, (4-)).

current-op(700, xfx, -,).

current-oP(X, Y, Z): -
trans-current-op(X, Y, Z).

/* , -<z>(X, Y) tests whether the arguments, X and Y, match such that the arguments must be
uniflabLe but a variabLe in X must aLways be matched by a varfabLe in Y and vice versa.
This is effectfveLy a reLaxed form of zz, the difference being that in ax the goat onty
succeeds if variabLes used in the same tocation in X and Y are identfcaL (i. e. actuatty
refer to the same data item) whereas in the goat wiLt succeed if the varlebtes are
actuatty different varlabLes.

4z>(X, Y): -
X as Y,

4=>(X, Y): -
not X Y,
I, falt.

<2>(X, Y): -
var(X),
I, -
var(Y).

, cz>CEXIXLI, EYIYLI): -
1,

4z>(X'Y)'
<z>(XL, YL).

<=>(X, _): --
atomic(X),
I, fait.

Il - 47

X x.. EPIArgsX],
Y z.. [PlArgsYl.

<-), (ArgsX, ArgsY).

Binds or compares its argument with the head of a system predicate or one of the extra
predicates provided for Stop or the translator. The predicate sys, stored in the file
I/ffnt6/renOOs/MonkMR/d-sLopl. 2/syspred', Is defined In the form P/A, rather than
directly as the head of a system predicate, for compatfbiLity with Arity Protog.

syspred(X): -
functor(X, Pred, Arity),,

sys(Pred/Arity).

sys(P/A) Is true for aLL ProLog system predicates, P, with arity A. Relation can be seen
with the $Lop Listing

TRANSLATION DECLARATIONS

Called as a directive from the file being translated, nostore causes the flag
"not_storing" to be asserted into the knowledge base. This f Lag Is detected by "Process"
so that time is not wasted converting clauses that are not going to be stored in the
knowledge base. Clauses do not have to be stored If all the solutions are declared In
the file using "solutions"

nostore: -
assert(not_storing).

Called as a directive from the file being translated, semantic-unification causes the
flag "semantic-unification_on" to be asserted In the knowledge base. This flag Is
detected by "fuzzies" so that time Is not wasted Looking for semantically unifiable
terms when semantic unification is not being used

semantic_unification: -
assert(semantic-unification_on).

Called as a directive from the file being translated, fuzzy_goal(P/A, N) causes the
declaration that the predicate P with arity A has Nth argument that is a fuzzy term, to
be asserted in the knowledge base. This declaration Is detected by "fuzzies" so that
time is not wasted looking for semantically unifiable terms when it is known which
argument of the goal will be semantically unifiable

fuzzy_goat(P/A, N): -
assert(user_fuzzfness(P/A-N)).

Il - 48

Called as a directive from the file being translated, top_teveL(X) asserts In the
knowledge base a rule with head "not-caUed(X)" which, when called from
"create_soln_sets", prints a message to the standard ouput stating that this goal Is not
called. This saves the translator from having to query the particular predicate to
evaluate the solutions, since they will not be needed.

top_teveL(P/A): -
assert((not-caLLed(P/A): -

dispL&y('*** TOP LEVEL GOAL NOT CALLED
disptaynt)).

Called as a directive from the file being translated, proLog(P/A) causes the declaration

that the predicate P with arity A is to be queried as a proLog-type goat. This means
that the relation witL not be translated, but wilt be left exactly as It is, and that

all calls to the goat will also not be translated. Such goats will be accessed by the

system predicate call. Note that goats within the caLt predicate can still be

translated, so that it is possible to access the data of support logic goats without
having to acces the supports.

protog(P/A): -
functor(H, P, A),

assert(protog-goat(H)).

Called as a directive from the file being translated, type(X, Y) causes the declaration
that the atom X will be used to represent term Y in a solutions declaration, to be
asserted In the knowledge base. This declaration is detected by "find_types" allowing
the substitution to be carried through the solutions declaration

type(X, Y): -
assert(type_oecLaration(X, Y)).

Called as a directive from the file being translated, sotutions(P/A, L) asserts in the
knowledge base the solution sets deff . ned by L for predicate P/A. This saves the
translator from having to query the particular predicate to evaluate the solutions for
itself. The arity 3 form - soLutions(P/A, L, T) - has the extra argument T relating the
types stored In "type_oectaratfon" to the variables used in the List L.

soLutions(P/A, List):

sotutions(P/A, Lfat, t]).

sotutions(P/A, Lfst, Types): -
newname(P, ModP),
Al fs A+1,

, functor(ModH, ModP, Al),
functor(MgH, P, A),
tength(List. N),

assert(reL_tength(MgH, N)),
(ffro_types(P/A, Types); retract(ret_tength(MgH, N)), fait),
buftcj_list(A, A_List),

store_sots(I, ModH, P/A, A_tfst, List),
1,
flat_set(Lfst, Set, []),

assert(sotn_set(ModH, Set)).

sotutfons(_, _. -).

11 - 49

/* ý- find
-
types(R, L) takes the list of pairs, L, and unifies the second element In each pair

with the type represented by the first element of each pair. R is the relation name for

which the types are being sought, and is passed only for error message output

ff rio_typesC_, 0
I.

find_types(R, E(X, Y)ITsl): -
typejecL&ration(X, Y),,
1,
find_types(R, Ts).

find_types(P/A, E(X,
)I]): -

disptaynL, dfspLay('*** In the solutions declaration for relation 1),
dispLay(P/A), dfspLaynL,
dispLay('*** type 111), dispLay(X),
dispLay(I" is not defined. 0), dispLaynL,
dispLay('*** Continuing with solutions declaration ignored. '),
displaynL, dispLaynL,
1,
fait.

buitd_tist(N, L) binds L to the tist, of varfabtes, of tength N

buiLd-List(O, []): -
1.

buiLd_Lfst(N, (-jTD: -
Nl is N-1,
buiLd_tlst(NI, T).

store-sots(N, ModH, P/A, L) stores the head of the List L as the solution set for each
clause with module head ModH, starting with clause N. It calls Itself recursively,
Incrementing N by one and dropping the head of the list L each time. The P/A Identifies
the predicate in the userfs terms and is used for error messages only.

store_soL&(W, ModH, P/A, A-tist, (Sll_]): -
arg(1, Moc1H, N),
store-Sotsl(ModH, P/A, A-tist, sl),
I'fait.

store_sols(N, ModH, P/A, A-tist, (-ISsi): -
N1 is N+1,
store-sols(NI, ModH, P/A, A-List, Ss).

store_sots(-, -, -, -,
II)-

Asserts the List of solution sets EL110 Into the knowledge base If every element of the
list is the saw Length as the List A- List. ModH is used to identify the clause for

which solution sets are being asserted. P/A is used only In error messages. The goal
fails if the solution sets are successfully asserted, otherwise succeeds.

storeý. sotsl(ModH, P/A, A_Lfst, [HITI-s): -

store_sotsl(ModH, P/A, A_Iist, [H, HITI).
storeý_soLsl(ModH, _,

A_List, (LlILI): -
check_arity(A_tist, EL1jL1),
assert(soLs(ModH, EL1jL3)),
I'fait.

Il - 50

store_solsi(ModH, P/A,
_,

Sl): -

.I
dfsptaynt, disp(ay('*** The solutions declaration for retation 1),
dispLay(P/A), dispLaynL,
dispLay(lhas the wrong arity'), disptaynL,
dispLay('*** Continuing with solutions declaration Ignored. $),
displaynL, disptaynt,
bagof(_, retract(sots(ModH,

_)), _).

Succeeds if the non_empty list, argument 1, is the same length as all the elements
(Lists) in the list, argument 2. If argument I is the empty List the goat under
consideration must have arity zero in which case clause 1 is used to allow the user to
define how the clauses in the relation should be combined. Without this clause, it is

not possible for the user to affect the grouping of clauses in the translation and aLt
zero arity relations would be translated using the one clause form.

check_arity([], _): -

check_arfty(L1, EL2jLI): -
wftt-unify(Ll, L2),

check_arity(Ll, L).

check_arity(_, (3).

/* fLat_set(X, Y, T) is true Iff X, a list of Lists can be flattened to produce the list Y

with all, duplicates removed (i. e. a set). T is a list of terms that have sofar been

picked out of X to go into Y

ftat_set([S-slSsl, Set, Sofar): -
1,
fLat_set([SlSsl, Set, Sofar).

ftat-set(ESISsl, Set, Sofar): -
ftat_seti(Ss, S, Set, Sofar).

fLat-set(I3, I1,
-)-

Mutually recursive with 'Iftat-seti,

ftat_seti(Ss, (HITI, EHISet], Sofar): -
not_in(H, Sofar),

-
1,
fLat-set1(Ss, T, Set, [HjSofarD.

fIat_set1(Ss, 1-jTI, Set, Sofar): -
flat_seti(Ss, T, Set, Sofar).

fLat_seti(Ss, (], Set, Sofar): -
ftat_set(Ss, Set, Sofar).

not_in(T, L) is true iff the term T does not match according to the test any
0 lement of the List L

notjn(S, I3)-

not_in(S, (SlISSI): -
not S -, S1,
1,

not_in(S, Ss).

11 - 51

Put in so that the, transtator can ignore the command to turn on semantic unification in

Stop. This directive is often put In Stop programs in order that semantic unification is

enabled every time that the file is (re)consutted.

semanticsU.

FRONT END FOR RUNNING TRANSLATED PROGRAMS

Evaluates the support pair for the conjunction of two support pairs

ardcombineC[Snl, Spll, [Sn2, SP21. ESn, Spl). -
Sn is Sn1*Sn2,
Sp is Spl*Sp2.

Evaluates the support pair for the disjunction of two support pairs

orcombine([Snl, Spll, (Sn2, Sp2l, (Sn, Spi): -
Sn is Sn1 + Sn2 - Snl*Sn2,
Sp is SpI + Sp2 - Spl*Sp2.

Combines the support pairs for a rule and the body of that rule

condcombfne((Snc, Spc], ESnl, Spll, (Sn, Spl): -
Sn is Snc*Snl,
Sp is I-0- Spc)*Snl.

condcombine(nocond, Supports, Supports).

Combines the support pairs for a pair of probabilistic rules and their bodies

probcombfne([Sns, Spsl, [Snl, Spll, [Sn2, Sp2l, ESn, Spl): -
Sn is SnI*Sns +0- Sps) Sn2,
Sp is 1-M- Sps) * CI Sp2) + C1 - Spl) * Sns).

Finds the conflict associated with two 'support pairs assumed to be supporting the same
conclusion

confLIct([Snl, Spll, [Sn2, Sp2l, C): - C is SnI * (I - Sp2) + Sn2 *0- Spl).

p Combines support pairs which all support the same conclusion; calls conflict

samecombfne(Ell, t): -
1.

samecombine(EESnl, Spl]ISLIst], ESn, Sp]): -
, samecombine(SLIst, [Sn2, Sp23),
confLict(ESnl, Spl], ESn2, Sp2l, c),
Sn is (Snl + Sn2 - SnI*Sn2 -C) / (1 - C),
Sp is Spl*Sp2-/ (1 - C).

11 - 52

/* - This relation is the bundle equivalent of samecombine. it evaluates the overall support
(arg 2) from the List of individual supports (argl), by intersecting all the support
pairs.

intersect_tist(ES], S).
intersect_iist(E[Stl, SullISs3, [SL, Sul): -

intersect-List(Ss, [SL2. Su23),
not trans_confLict-warning([SLI, Sul], ESL2, Su2l),
max(SL1, SL2, SL),
min(Sul, Su2, Su).

Calted by fntersect_List to issue a warning if there is confLict In the support
evaLuation for a transtated bundte.

trans_conftict_warnfng(ESII, Sul], ES12, Su2l): -
(SLI 3, Su2; S12 > Sul),

dispLaynL, dfspIay('*** WARNING - CONFLICT IN SUNDLEI), disptaynt,
dispLay('*** RUNDLE EVALUATION FOR THIS SOLUTION FAILINGO),

, dispLaynL, dfsplaynt.

Performs the semantic unification between the two terms X and Y In a transtated goaL. Sl
is the support for the soLution that generated the term Y and S Is the support for the

sotution after semantic unification has been performed to evaLuate support for the term
X.

semunify(S, Sl, X, Y): -
fuzzy(C, Y, Ptsl,

_),
1,
fuzzy(C, X, Pts2,

_),
fuzzynot(Ptsi, Ptsin),
fuzzynot(Pts2, Pts2n),
maxminset(Ptsl, Pts2, Su),
maxminset(Ptsl, Pts2n, SLI),
V is I- SO ,
maxminset(Ptsln, Pts2, Sun),
maxminset(Ptsln, Pts2n, SLnl),
SLn is I- SIM,
probcombineCS1, [SL, Sul, ESin, Sun], S).

semunify(S, S, X, X).

EvaLuates the max vatue of the min combination of two fuzzy sets

maxminset(ED, X, X, X, X, Olp_, O): -I.
maxminset(-, EO, X, X, X, X. 01,0): -I.

maxminset(EI, 81,
_, _,

El, l], EO,
_,

C2, D2,
_,

01,1): -
02)- El; C2 ac Bl),
1.

maxminset(EI, 81, Cl, DI, El, il, [0,62, C2,02, E2,01, Z): -
X is (Cl - B2)/(Cl - 81 + C2 - B2),
Y is (E2 - DIME2 - D2 + El - Dl),
max(X, Y, Z),

11 - 53

B2 - El,

81 >a E2,
1.

maxminset(EI, 81,
_, _, _,

O], (O,
_,

C2,
_, _,

01,1): -
81 - C2,
1.

maxminset((1,61, _, _,
El, O], EO, 82,

_, _,
E2,11, X): -

X is (El - B2)/(El - 61 + E2 - 82),

maxmfnset(11,81, _, _,
EI, 03,10, B2, C2,

_, _,
O], X): -

X is (El - B2)/(El - 81 + C2 - B2),
I.

maxminset([O, _, _, _,
El, l], EO,

_, _,
D2,

_,
01,1): -

02 - El,
1.1 .-

maxminset([O, Bl,
_, _, _.

I]. EO,
_, _, _,

E2,01,0): -
BI >x E2,

maxminsetC[0,81, _, _,
El, l]; EO,

_, _,
D2, E2,01, X): -

X is CEi - 81)/(E2 - D2 + El - 81),
1.

maxmfnsetC[O, _, _,
DI, El, 01, [O, 82, C2,

_, _,
O], X): -

C2 > DI,

x is (El-- B2)/(El - Dl + C2 - 82),
1.

maxminsetC[O, _,
Cl,

_, _, _10[0, _, _,
D2,

_,
01,1): -

D2 >* Cl,
1.

maxmfnsetC(0,81, Cl,
_,

EI, O], EO,
_, _,

D2, E2,01, X): -
E2 3- al,
X is (E2 - Bl)/(E2 - D2 + Cl - Bl),

maxminsetCS1, S2, X): -
maxmfnsetCS2, Sl, X).

maxCX, Y, X): -
X Y,

maxCX, Y, Y).

mfnCX, Y, X):,,,
X-Y,

mfnCX, Y, Y).

11 - 54

A streamlined version of the system predicate "bagof" for use in translated goals for

warning against predicates being solved with uninstantiated variables. This is very
similar to that used in SLop itseLf. The remaining relations for which there are no
coomnts are catted by "doL_bagof" but are of insignificant difference from the original
definition of "bagof".
*1

dot-bagof(X, P, Bag): -
doL-excess-vars(P, X, E1, L),
doL_nonempty(L),
1,
Key
doL_bagof(X, P: Key, Bag).

doL-bagof(X, P, Bag): -
dot_tag(1Sbaq', 1$baq1),
caLl(P),
doL_tag('$bag', X),
fail.

dot_bagof(X, P, Bag): -
dot_reap([], Bag),
dot_nonempty(Bag).

dot-bagof(X, P, Key, Bag): -
dot_tag('Sbagl,, Sbag'),

catt(p),
var-warning(Key, P),
dot_tag(#Sbag', Key-X),
fait.

dot-bagof(X, P, Key, Bag): -
dot_reap([], BagsO),
keysort(gagsO, Bags),
dot_pfck(Bags, Key, Bag).

issues a warning message to the output stream if there are any variabLes in the key that
is the first argument of the goal..

var_warning(Key, Goat): -
Key z.. E$ILI#
any_yars(L),

retrieve_name(GoaL, Goati),
nL, write('***** WARNING - UNINSTANTIATED VARIABLES IN SOLUTION TO
nI,, write(GoaLl), nI,, nL.

var_warning(-, -).

Succeeds If the structure passed as argunent contains any varfabtes.

any_yars(T): -
var(T),
1.

any_yars(T): -"
functor(T,

_,
N),

any_other_vars(N, T).

11 - 55

/*
.

Succeeds If any arguments of the term as second argument contain any varfabtes.

any_other-vars(O, _): -.

faf L.

any_other_vars(N, T): -
arg(N, T, TI),

any_yars(Tl). '

any_other_vars(N, T): -
Nl Is N-1,

any_other_vars(NI, T).

Recovers the originat name from which the "bag_Nll name was derived, In the goat Goat and
binds It with the arguments to Goatl.

retrieve_name(Goat, Goatl): -
Goat z.. EPIArgs],

name(P, E98,97,103,951LI),

remove_teading.. pumbers(L, Ll),

name(PI, Ll),
Goatl EPIlArgs],

retrfeve_name(Goat, Goat).

Removes any leading elements of the first list that are numbers and binds what Is Left
to the second List. -

remove_teading_numbersC[HITI, L): -
H> 47, N< 58,

1,

remove_teading_numbersCT, L).

remove_leading_numbersCL, L).

dot_nonempty((_Ij). 11 -

dot_reap(LO, L): -
dot-untag('Sbag', X),
1,
dot_reapi(X, L0, L).

dot_reapl(X, L0, L): -
X \a= ISbag',
1,
dot_reap(EXILOI, L).

dot_reapl(_, L, L).

doL_pick(Bags, Key, Bag): -
dot-nonempty(Bags),
doL_parade(Sags, Keyl, Bagl, Bagsi),
doL-decide(Keyl, Bagl, Bagsl, Key, Bag).

doL_. parade(EltemIL11, K, EXIB], L): -
dot_ftem(item, K, X),
1,
doL_parade(LI. K, B, L).

doL_parade(L, K, (], L).

11- 56

dot-ftem(K-X. K, X).

dol-decide(Key, Bag, BagS, Key, Bag): -
(Bags2l], I; true).

dot-decide(_,
_,

Bags, Key, Bag): -
dot_pick(Bags, Key, Bag).

dot-excess-vars(T, X, L0, L): -
var(T),

dot-no-occurrence(T, X), 1, dol_Introduce(T, L0, L)
La LO).

dot_excess_vars(support(_, Goat,
_),

X, L0, L): -
1,
dot-excess_vars(Goat, X, L0, L).

dot_excess_vars(T, X, L0, L): -
functor(T,

-.
N),

dot_rem-excess-Vars(N, T, X, LO, L).

dot-rem_excess_vars(O,
_, _,

L. L): -
1.

doi_req_excess-vars(M, T, X, L0, L): -
arg(N, T, TI),
dot-excess-vars(TI, X, L0, Ll),
N1 is N-1,
dot_rem_excess_vars(Nl, T, X, L1, L).

doL-introduce(X, L, L): -
doL_incLuded(X, L),
1.

dot_introduce(X, L, EXILI).

doL_inciuded(X, L): -
doL_doesnt-incLude(L, X),
1,
fail.

dot_fncluded(X, L).

doL-doesnt_fnctude([], X).
dot-doesný_inctude((YjLI, X): -

Y \xz X,

dot-doesnt-fncLude(L, X).

doL_pp_occurrence(X, Term): -
dot-contains(Term, X),
1,
faiL.

dot_rwp_occurrence(X, Term).

11 - 57

dot-contains(T, X): -
var(T),
1,
T zu X.

dot
-

contains(T, X): -
functor(T,

_,
W),

dot_Upto(N, I),

arg(I, T, TI),
doL-contains(TI, X).

dot-Upto(N, N): - M>0.
doL-Upto(M. 1): -

m>0,
NI is N-1,
doL-Upto(M1,1).

dot_tag(Key, Vatue): -
recorda(Key, Vatue,

_).

II - 58

Appendix 111, TEWA - Slop program for Threat Evaluation Weapons Assignment
with translation declarations

semantics(on).
nostore.

TARGET IDENTIFICATION RULES

updates the knowtedge base with the current target identifications stored in the cLauses
target_type

sotutfons(update/2,111-, target]33).
update(X, Target): *

caLL(aboLish(target_type, 2)
identffy(X, Target),
caLLC assertCtarget_type(X, Target))) : [1,11, (0,01.

identifies the target by evaluating support for each different target type and selecting
that with the strongest support as defined by stronger_support.

sotutions(identify/2, [([-, targetlll).
identify(X, Target): -

target(X, sea_skim)^Sl sup_or
target(X, supersonic)^S2 sup_. or
target(X, aircraft)^S3 sup_or
support(E1,13)),

caU(best(ES1, S2, S3], Esea_skim, supersonic, afrcraft], Target, S)
support(S) : E1,11, E0,03.

EvaLuates support for each possibLe target identification:

sea_skim a sea skimming misslLe
supersonic a supersonic missite
aircraft a aircraft

sotutions(target/2,
EEV, sea_skiml1, EE-, sea_skfm3l,

ll-. superl], E-, super233,11-, superlil, [E-, super211.
LE-, afrcraftll, [E-, aircraftl], EE-, aircraftlll)-

target(X, sea_skim): -
velocity(X, 1-3001) : [0.5,11, EO, 0.21.

target(X, sea_skim): -

, aLtitude(X, 1-151) : EO. 9,11,10,0.13.

target(X, supersonic): -
vetocity(X, 1-5001) : [0.9,11, [0,0.11.

target(X, supersonic): - ý
caLL((rangeý. data(X, R),

R >= 21000

range(X, R),

&Ltitude(X, 1-120001),: (0.7,11, (0,0.11.

III -I

target(X, supersonic): -
CaLM rangeý_data(X, R),

R< 21000,
AM is R/1.73205)),

range(X, R),

attftude(X, ALtl) : [0.6,11, [0,0.23.

target(X, aircraft): -
vetocity(X, 1-3001) : 10.5,11, EO, 0.21.

target(X, aircraft): -,
sup_not rangeCX, 1>2kml).: EO, 0.11.

target(X, aircraft): -
aLtitude(X, 1-5001) : EO. 7,13. EO, 0.33.

PROLOG RELATION

best(listl, tist2, term, support) finds the term in LIst2 that has the best corresponding
support In Listl, as defined by stronger_support.

proLog(best/4)'.
soLutions(best/4,

EIEListl, List2, target, support_pair33,
(EList3, tist4, target. support_pairl],
(Elist5, Lfst6, target, support_pair3l]).

best(ESI, S2lSsl, [Termi, Term2lTerms], Term, S): -
stronger_support(Sl, S2),
1,
best(ESIlSsl, ETermllTerMS3, Term, S).

best(ESI, S2lSs3, [Terml, Term2lTerms], Term, S): -
best C ES2 I Ssl , ETerm2 I Terms3 jerm, S).

best(ES3, ETerm3, Term, S).

PROLOG RELATION

Succeeds if the first support palr is considered to represent stronger support than the
second support pair. In this case this is defined as bing when the tower support Is
greater.

prolog(stronger_support/2).
solutions(stronger_support/2, [[Esupport_pair, support_pairlll).

stronger_support([SII, Suli, ES12, Su23): -
SO >- SM

Fuzzy Set Definitions
Note the general definition for all numbers greater then one.

fuzzy(number, 1>2km,, EO, 500,2000,2000,2000,11).
-fuzzy(number, 1-3001, [0,250,290,310,350,01).
fuzzy(number. 1-5001,10,450,490,510,550,03).
fuzzy(number, 1-151, [O, 10,14,16,20,01).
fuzzy(number, 1-12000,, EO, 11500,11900,12100,12500,03).
fuzzy(number, N, [O, Nl, N, N, N2,01): -

number(N),
N>1,
NI is N- N*0.1,
N2 is N+ N*0.1.

111-2

supportCS) is a goal, that evaLuates with support pair S. It is a Support Logic

equivaLent to the Prolog system predicate true.

sotutionsCsupport/1, EEEsupport_pair]]]),

support(S): - : S.

THREAT EVALUATION

unopposed -
threat(target_fd, target_type) evatuates the threat posed by the target,

target_fd, which has been identified as type target_type.

soLutions(unopposed_threat/2, E[E-, targetlll).
unopposed_threat(X, Target); -

kiLL_prob(Target),
impact_time(x) : El, l], EO, 0.21.

evaluates a support associated with the time until the particular target will impact

with the ship.

sotutfons(impact-time/1,111-111)-
lmpact_time(X): - -I, -

call((range_data(X, R),

modffy-range(X, R, Rl),

velocity_Oata(X, V),
Time is R1/V,

(Time t 100, St is 1);
(Time),, 1000, SL is 0);
CSI is (1000-Time)/900) : ESL, 11.

Data givfng the LikeLy MI probabitity of each type of target.

soLutfons(kfLL_prob/l, ([Esea_skingl, [Esupersonfc]], (Eafrcraft3l]).
kiLL_prob(sea_skim): - : [0.65,0.751.
kitt_prob(supersonic): - : [0.45,0.553.
kftL_prob(afrcraft): - : EO. 15,0.251.

Evatuates the current extent to which the ship is threatened

top-tevet(threatened/0).
sotutfons(threatened/O, (ta3, la, bl, tbll).

threatened: *
CaM bagof(EX, Targetl, target_type(X, Target), Targets)
escapeCTargets) : [0,01, (1,11.

threatened: *
undefended : [0.9,11.

threatened: -
CaM not ctause(target_type(_,

_), : E0,03.

III -3

/* , Evaluates the support for escaping a hit from all of the targets. Works by using
recursion to evaluate support for a conjunction of undetermined Length.

solutfons(escape/l, (E[Listlll, (Etist2lll).

escape([]): - : 0,11-

escape(LIX, TargetIlTargetsl): -
sup_not unopposed T

threat(X, Target),
escape(Targets) : 0,13,0,01.

PROLOG RELATION

adjusts the range of the target from the ship to account for aircraft not coming within
2km of the ship.

protog(modify_range/3).
sotutfcms(modify_range/3,11[-. number, numberll, (E-, number, numberlll).

modify-range(X, R, Ri): -
target_type(X, afrcraft),
1,
Rl is R- 2000.

modify-range(X, R, R).

WEAPONS ASSIGNMENT PROCESS

Determines each possibLe ptan for defending the ship, ranks them and stores them in the
knowtedge base for future reference. In fact the ptans are not returned in order because

of the way SLop sorts sotutions, however they are stored in the knowtedge base in order.

sotutions(defence/1,1[Etfstill).
defence(INIPLanl): -

calt(aboLish(plan, 2)

caLt(begof(EX, Target, Wl, target_type(X, Target), PLan)

caLL(bagofC[W'_Type, 4_id, Sl, weapon(ý_Type, ý.. id, S), Weapons)

ordered_survivaL_pLan(W, Ptan, Weapons).: (I, ll, (O, 01.

Determines, and ranks according to the support, att the possibte ptans for defending the

ship, and prints them to the current output.

top-tevet(defence/0).
sotutfons(defence/O, [Eal, (a, bl]).

defence: *
cattC not ctause(ptan(_,

_), _)
defenceCPLan).

defence:,
cattC print_ptans

Determines each possibLe ptan for defending the ship with the given tist of weapons,
ranks them and stores them in order in the knowtedge base.. In fact the varlabLe
bindings caused by succeeding the the goal, does not return the pLans In order because of
the way SLop sorts soLutions.

solutions(ordered_survivat_pLan/3, [Elrank, listl, tist231, (Erank, tist3, List4111).

orderec! _survivaL_pLan(R,
PL&n, Weapons): -

survivaL_pLan(PLan, Weapons)'S,
caU(assert(pian(PLan, S))
caM fail,).

III -

ordered_survivat_ptan(R, Ptan, Weapons): -
caLL(cottect_pLans(Ss, Ptans)),
cattC rank(Ss, Ranked_Ss, PLans, Ranked_Ptans)),
catt((pick(Ranked

-
Ss, Ranked

-
PLans, S, PLan, l, R),

assert(ptan(PLan. S))
support(S) : [1,11, [O, Ol.

Determines each possibLe ptan for defending the ship with the given List of weapons.
*1 ,

sotutions(survivaL_pLan/2, [Ertfsti, Lfst2l], [(Lfst3, Lfst4lll).

survivat_ptan(El, _): -
1 : 0,11.

survfvalý, plan(EEX, Target, W-idliPtan], Weaponsl): -
depLoy(X, Target, W-Type, lý.

_fd,
Weaponsl, Weapons2),

sup_not((unopposed_threatCX, Target),
sup_not kil. L_prob(ý_Typejarget)

survivaL_ptan(Ptan, Weapons2) : (1,11, [0,01.

deptoy(target_fd, target_type, weapo%type, weaporý_fd, tistl, tist2) setects from tlstl,

weapon_fd, of type weapon_type, for deptoyment against target_id, of type target_type,

and returns in Hst2 att the remaining weapons. The support for the particuLar weapon

choice is evatuated.

sotutfons(depLoy/6,
Et(-, target, weapon_type, wespon_fd, tfsti, Lfst2l],

((-, target, weapon_type, weapon_id, ifst3, tfst4lll).

deptoy(X, Target, W
-

Type,; ý. fd, (Eý_Type, W_fd, SilWeapons2l, Weepons2): - : S.

depLoy(X, Target, ý_Type, ý_id, [WSliWeaponsll, [WSIlWespons2l): -
deptoy(X, Target, W-Type, tý_id, Weaponsl, Weapons2).

PROLOG RELATION
CoLtects up ail. the pLans stored In the knowtedge base to form a List of associated

supports and a List of ptans.

proLog(coLtect_ptems/2).
soLutions(cottect_pLans/2, EEEListl, tfst2l], EEList3, Lfst4lll).

coLtect_ptans(ESjLSI, EPjLP1): -
retract(pLan(P, S)),

1 1,
coLLect_ptans(LS, LP).

colLect_pLans(E], E]). -

/* PROLOG RELATION
rank(IIst1, tist2, tIst3, List4) ranks 1.1sti of supports, according to the definition
stronger_support, to produce tist3 and ranks the corresponding terms In LIst2, in

exactly the same way, to produce List4.

protog(rank/4).
sotutions(rank/4, [E[tlstl, tist2, tist3, List4l], (ItistS, List6, tfst7, tfstBill).

rank(U. (1, V. (D.

rank(ESISSI, Ranked_Ss, [PtanIPLans], Ranked_Ptans): -
partition(SS, S, P_Ssl, P_Ss2, Plans, Pian, P-Ptansl, P-Ptans2),
rank(Pý_Ssl, R_Ssl, P_Ptansl, R_Ptansl),
rank(Fý_Ss2, R_Ss2, P_Ptans2. R_Ptans2),
appervo_tigtS(R_Ssl, [SIR_Ss2l, Ranked_Ss, R_Ptansi, [PLanlR_Ptans2l. Ranked_Ptans).

111- 5

PROLOG RELATIOW

partition(Lista, support_pafr, Listb, Liste, tistd, plan, Liste, listf) partitions Lista into
Listb and tistc where att support pairs in Listb are stronger than support_pair, and att
in tistc are weaker. The comparison is performed by stronger-support. ELements of Lfstd
are acted on in the same way to produce Lfste and Ifstf. pLan Is the pLan with support
support_pafr.

proLog(partition/8).
soLutions(partftfon/8,

EEELista, support_pafr, tfstb, Liste, tistd, pLan, tiste, tfstfil,
E[Lfstg, support_pafr, Listh, Lfstf, Listj, ptan, Lfstk, ListL]I,
(EListm, support_pafr, listn, ifsto, Listp, pLan, tfstq, Listrlll).

part It ion([I,
-,

El, El , El
-,

E3,11).

partftfon(ESISsl, Sl, ESIPý_Ssl], Pý_Ss2, [PLanIPLans], PLanl, EPLanlP_Ptansll, P_PLans2): -
stronger_supportCS, SI),
1,

partition(Ss, S1, P-Ssl. P-Ss2, PLans, PLanl, P-Ptansl, P-PLans2).

partftfon(ESISSI, S1, P_Ssl, ESIP_Ss2l, EPtanIPlans3, PLanl, P-PLansl, (PLanlP_PLans21): -
partftfon(Ss, S1, P-Ssl. P-Ss2, Ptans, PLanl, P-PLansl, P-Pians2).

PROLOG RELATION

append(Lfsta, Listb, tfste, tfstd, Liste, Listf) appends Lista to tfstb to give Listc, and
appends Listd to t1ste to give Listf. tista and tfstd must be the same Length, as must
Lfstb and tfste.

prologCapperto_Lists/6).
soLutfonsCapperiq_Llsts/6,

EE(Lfsta, listb, Listc, Listd, liste, Listfl].

E(Listg, tfsth, Lfstf, tistj, Lfstk, ListL]II).

apperio_tistsCEI, Ss, Ss, (], PLans, Ptans).

apperio_tists(ESISsl3, Ss2, (SISSI, EPLanIPLansl], PLans2, (PtaniPLansl): -
append_Lfsts(Ssl, Ss2, Ss, Ptansl, PLans2, Ptans).

PROLOG RELATION

pfck(tfsti, tist2, support_pair, plan, N, Rank) picks from listl the next support_pair and,
from list2, the next pLan. The Lists must be the same tength. Rank is the ranking of the
ptan picked out and N Is the starting number for ranking the current List of pLans.

protog(pfck/6).
soLutfons(pick/6,

[[[Lfstl, tist2, support_. pair, pLan, num, rank]],
E[Lfst3, tist4, support_pair, ptan, num, ranklll).

pick(ESISSI, (PtanIPLans], S, Ptan, N, R): -
rank_name(M, R).

pick([_ISSI, E_lPtans], S, PLan, NI, R): -
N2 is W1 + 1,

pfck(Ss, Ptans, S, Ptan, N2, R).

111 -6

PROLOG RELATION
Generates a ranking name, R, from the number, N, of the form PlanNNN where the Ns are
numbers.

prolog(rank_name/2).
sotutfonsCrank_name/2, [[Enuml, namel33, Etnum2, name233, EEnum3, name3311).

rank_nameCN, R): -
N< 10,
1,

name(N, NL),

nameCR, [80,108,97,110,48,48INLI).

rank_name(N, R): -
N< 100,
1,

- name(N, NL),

nameCR, [80,108,97,110,48INLI).

rank_name(N, R): -
name(N, NL),

name(R, (80,108,97,110INU).

PROLOG RELATION

prints to the current output stream the plans that are stored in the knowledge base
along with the deployment times for each weapon associated with a target.

protog(print_ptans/0).
sotutions(print_ptans/0,11133,11333).

print_ptans: -
ptan(Ptan, S),
print_ptan(Ptan),
write(S), nt, nt,
fait.

print_pLans.

PROLOG RELATION

prints a plan to the current output stream with the deployment times for each weapon
associated with a target.

protog(prfnt_plan/1).
sotutions(print_ptan/l, [([Lfstll], Ettist2lll).

print_pLanC[]).
print_pLanCEEX, Target, Weapon]IR_PLanl): -

CattC time
-

to
-

depLoyment(X, Target, Weapon, Time)
write(EX, Target, Weapon, Time3), nt,
prfnt_pLan(R_PLan).

III -

/* - PROLOG RELATION

time_to_depLoyment(X, Target, Weapon, Tfme) evatuates the when, in seconds, Weapon can be
deptoyed against Target with identifier X.

protog(tfme -
to

-
deptoyment/4).

sotutfons(time_to -
deptoyment/4, [[(-, target, weapon, numberll, [[-, target, weapon, numberlll).

time_to_deployment(X, Target, Weapon, Time): -
deptoyment_time(X, Target, Weapon, Time),
1. -

time_to_deptoyment(X, Target, Weapon, Tfme): -
rangeý_data(X, R),
veLocfty_ýdata(X, V),
weapon(Weapon_type, Weapon,

_),
acquisitfon(Weapo%type, Target, Acqu_range, Acqu_tfme),
Time Is (R-Acqu-rango)/V + Acqu. time,
assert(deptoyment_tfme(X, Target, Weapon, Time)).

Dectaratfons for the Target data Necessary to attow the target data to be transtated and
Loaded as a separate Me

fuzzy_goaL(vetocfty/2,2).
fuzzy_goaLCaLtftude/2,2).
fuzzy_goaL(range/2,2).

protog(vetocfty_ýdata/2).
protog(attitude_data/2).
proLog(rangeý_data/2).
proLog(weapon/3).
proLog(acquisition/4).

111- 8

Appendix IV TEWATR - Translated version of the Slop program TEWA In
Appendix III

update(_224, -75, -76): -
catLCaboLishCtarget_type, 2)),
ldentifyCE_262,2631.

_75,76),
caLL(assertCtarget_typeC_75, _76))),
probcombine([I*-262,1*_2631, [1,13, (0,01,

_224).

identify(_228,
-75, -76): -

target(E_284,
-2861, _?

5, sea_skim),
target(U54,

-3561,..
n, supersonic),

target(E_ý24,
-4261, _75, aircraft),

support(E.,. 425,
-4271,

El, ll),
caLL(best(CEý_284, -2861,

E_354,
-3563,

E.. ý424, -42613,
Csea_skim, supersonic, aircraftl, _76, -80

support(Eý_525,
_5261 _ýBO),

probcombine(E(_284+(_. 354+(_424+-425-_424*-425)-_354*(_. ý24+-425--424*-425))-

_ý284*(j54+(..
ý24+-425--424*-425)-_354*(_424+-425--424*-425)))*Cl*_525), (_286+(_356+(-426+-427-

_426*427)-_356*(_426+427-426*427))-_286*(_356+(_426+427-426*427)-j56*(.. ý426+427-

_426*_427)))*(l*_526)],
El, l], EO, 01,

_228). ,

target(_1307,70, ý71). --.
dot_bagof(_1308, bag_ltarget(_1308,

_70, _71), _1310),
samecombine(_1310,

_1307).

bag_ltarget(_1443,
-T7, supersonic): -

vetocfty((_1473, _14741, _77,1-5001),
probcoffibine((_1473,

_14743,
[0.9,11,10,0.11,

_1443)- bag_ltarget(_1525,
-80, supersonic): -

catt((rangok_data(_80,
_81)1,1_ý1<210001,1_82

is
_81/1.73205)),

rangeC(j663, _16641, -80, -81),
attitude((_1665,

_16661, _,
82),

probcombine([l*(_1663*-1665), I*(_1664*_1666)], EO. 6,11, [0,0.23,
_1525).

bag_ltarget(_1772,
-78, supersonfc): -

catt(Crangý_data(jB,
79)8,1.

79>a2lOOO)),
ranqeC(_1876,

_18773, _78, _79),
attitudeilý. 1878,

_18791,
j8,0-120000),

probcombine(tl*(_1876*-1878), I*C_1877*-I879)3,10.7,11, (O, O. 11,
_1772).

target(_1997, _83, aircraft): -
attitude(lý_2047, -20481, _83,

$-5008),
probcombine((_2047, _20481,

[0.7,11, (0,0.33,
_2030),

range([_2103, _21021, _83,
$>2km'),

condcoinbine(ED, 0.11, El--2102,1--21031,.., 2082),
vetocity((_2167, -21681, _a3,1-3001),
probcoinbine(ý_2167, -21681,10.5,11,10,0.21, _2152),
samecombine([_2030, -2082, _21521, _1997).

target(_2253, I
75, sea skim): -

vetocity([_ý293, _22941, _75,1-3001),
probcombineC(_, 2293,

-22941,
(0.5,11,10,0.21,

_ý2276),
attitude(E..; 2344,

_23451, _75,1-151),
-probcombineC(_2344, _23451,

[0.9,11,10,0.11,
_2329),

samecombine(1_2276, -23291, _2253).

IV -I

support(_73, _73).

unopposed_threat(_224. -75, -76): -
kitt_prob(E_260,

-2611,
j6),

Impact. tfme(E.; 62,. 2631,. 75).
probccxnbine(Eý_260*-262,

-261*2631 , [1,11 , E0,0.21
_224).

impact_timeClý_224,11,73): -
cat t((ranqa_data(_73, j4) 1, 'mod! fy-range(. ýn,

_74, _75)
1, Ivetocf ty_data(_73,

_76)
1,1_77

is 75/_761,1(_77<1001,1_78 Is 1; ý">10001,1_78 Is 0;
_78

is (1000-_77)/900))),

_224
is

-78.

kiLL_prob(EO. 65,0.751, sea_skim).
kitt_prob(EO. 15,0.251, afrcraft).
kitt_prob((0.45,0.551. supersonic).

threatened(_571): -
dot-bagof(_572, bag_lthreatened(_572), j74),
samecombine(_574, -571).

bag_lthreatened(_706): -
catt(bagof([_71, -723.

target_type(_71,
_72), _73)),

escape(t_736, -7373, _.?
3),

probcombine((I* -
736,1*-73T3, EO, O1, El, ll,

_706). bag-lthreatened(EO,
-8161): -

catt(not clause(target_type(j4,.. 75), j6)),

_417
fs 1-0.

_416
fs 1-817.

bag lthreatened(C.. 478,11): -
tx-defended(1_494, _8981),
_878

fs
_894*0.9.

escape(11,11,101). -
escape(j56, E E_73, j4l 1_751

tsvpposecL. threat((ý. 410,
_4091, _ýn, _74),

escape(094.
-3953..

75),
probcombine(((I--409)*ý_394, (I-_410)*.. 3951,11,13, (O, O3,

_356).

defence(_U7, (_73jj4l): -
catt(abotfsh(ptan, 2)),
catt(bagof((_75, j6,

-77i,
target_type(_75, j6),

_74)), catt(bagof((_78, _79, _403, wespon(j8,
_79, _80),..,

81)),
ordered_survfvat_ptan((_ý27,

-3281, _73, -74, -81),
probcombfne(ll*(I*(l*-327)), I*(l*(l*-328))], (I, 11,10,01,

_227).
clefence(-ý68): -

dot-bagof(_369, bag_ldefence(_. ý69),
_371),

samecombfne(_. ý71,368).

bag_ldefence(E_504,11): -
cattCnot ctause(ptan(_71,

-72), _73)),
_523

fs 1,
defence(E_546,

-5501
j4).

_504
fs 546*523.

bag_ldefence([. fiO4,11): -
catL(prfnt_ptans),

_604
fs 1.

IV -2

ordered_survfvat_ptan((_ý51,11, _77,
j8,

_79): -
survivat_ptan((_ý78, _3871.

j8,
_79),

catt(assert(pten(_78.1_378, -3871))), is 1.
catl(fait),

_.
ý51 is 428*378.

ordered_survivat_ptan(_ý92, -81, -82, -83): -
catt(coUect_ptansC_§4, _A5)),
caII(rank(_84, _B6,..

A5,
-87)),

catMpIckC_86, _47, _88, -
82,1,

_81)#,
tassert(ptan(_82,

-88)))),
supportC U96,5971,

_m,
probcombine(El*(l*(l*_596)), l*(l*Cl*_597))], El, ll, (O, 01,

_492).

survivat_ptan(E. _433,11,,
'131,

_75): -
1,

_333
Is 1.

survivat_ptanC_. 483, [Ej6, ýn,
_7811_791, _40): - deptoy([_ý21,

-4223 _76,
ý",. fil,

-78, -80, -82),
unopposed_threat((_513, -

5141, j6,
_77), kiII.

_prob(1_558, -5571, _81, -77),
survivat_ptan([_480, -4811, _79, _82),
probcombine(E_ý21*((I-_514*(l-_558))*_480), _422*((I-_513*(I-

_557))*ý_481)1 ,
E1,11 , E0,03

_.
ý83).

deptcyC.. A7,
-83, -84, -85, -B6,

E Efi5,
-86, -873

1_883
_88).

deptoy(Eý_410,11,
_09, _90, _91, _92,

ý_931_941, (_ý31251): -
deptoyCE_ý10,

-4451, _A9, _90, _91, _92, _94, _95).

best(E.
_§5, -661..

071, (_88,
_§91_ý01, _91, _92): -

stronger_support(_85, -86), 1,
best(E_fi5l.

_473.
EjMl-. 903,91,92).

best(E_93,
-941_ý5],

E_96,
_971_ý81, _r, _100): - best(E_: 941_ý51, E_? 71_? 83,

_r, _100). best(E_1011, E-1021,
-102, _lO1).

strongeiý_support(E_79,. _40].
E_41.

-82]): -

_79), *_81.

modi fy_range(_R,
_P, _44): -

target_type(_A2, aircraft),
1,

_A4
is 83-2000.

modIfy_ranqe(_§5, -86, -86).

cottect_ptans(1_791_401, U11_421): -
retract(pian(.. 01,

-79)), 1,
cottect_pLans(_40, _A2).

cottect_ptans('Ell, 'Ell).

IV -3

rankV U 0.1111.111 ', v' 11 ') -
rankC E_85 1_861,47. C_M J_A91,

_ýO): -
part I ti on(_O,.. A5,

-91, _92, _89, _88, _93, -94)I
rankC21, _95, _93, _96),
rank (22,. y7.

_94, _98),
append_tfsts(_. ý5, E_85 j_y7l,

_p7, -96,1_881281,20).

part f tf onV El #,. y7,6 El Is I El so* El ',
_98,1

Ell, ID I).
part f tf on(E291_1001.

_101,
E_991_1021,

_103,
E_1041_1051,

_106,
Eý-1041_1071,

_108): -
stronger-support(_99, _101).
1.
partftfon(_100, _101, _102, _103, _105, _106, _107, _iO8).

partftion(E_1091_1101, _Ills_112#E_1091_113],
E_1141_1151,

_116, _117,
[_1141_1181): -

partftfon(_110, _111, _112, _113, _115, _116, _117, _118).

apperi4_tf StSC' El El 0,22,
-92).

appen4_tfsts(Eý931_941,
_95,

Eý931_y6l, E_y7j_y8l,
_99,

Eý-971_1003
append_tfsts(_y4, -95, -96, -98, -99, _100).

pick(E_911_92]. Eý_931_941.
_91. _93, _95, _96): -

rank_name(25, -96).
pfck(E271_981, E_ý91_1001.

_101, _102, _103, _104): -

_105
is

_103+1,
pick(_98, _100, _101, _102. _105, _104).

rank-name(ýM, -80): -

name(_79,. fil),
name(_AO. E8O. lO8,97,110,48,481.

_411).
rank_name(_42. -83): -

_42<100, 1,
name(_A2, _84),
name(_. 43, (80,108,97.110,481_841).

rank_name(_45, _86): -
nameC_85, _87),
nameC_M, EBO, 108,97,1 I olfi7l).

prfnt_ptans: -
pt&nCjl, -72),
print_ptan(_71),
writ*C_72),
nt,
nt,
fait.

prfnt_ptans-

prfnt_ptan('Ell).
prfnt_ptan([E_76, j7,

_7811_791): -
catt(tfme_tcý_deployment(_76. _77. _78, _AO))I
writeC
nt,
print_pLan(_79).

IV -4

time_to_deployment(_AS. _86, _87. _88): -
deployment_tfmeC_ý85.

-86, -87. -88), 1.
time_to_deptoyment(_A9, _90, _91, _92): -

ranq4ýýat&C_A9,93),
veloclty_ýdataC -

; 9,
-
94),

weapon(_95, J1,
_ý6),

acquisfticn(_ý5, _ýO, _ý97, _98),
_?

2 is (23-_97)/ý94+_98,
assert(deptoyment_time(_89, _90, _91, -92)).

fuzzy(mzber. 11>2kml. (0,500,2000,2000,2000,11).
fuzzy(minber, 1-3001, EO, 250,290,310,350,01).
fuzzy(number, 1-5001. [0,450,490,510,550,03).
fuzzy(mumber. 1-15,1, E0,10.14,16,20,01).
fuzzy(mimber, 1-120001.10. li5OO, ll9OO, l2iOO, l2500,01).
fuzzy(number,

-79,10. -80, -79, -79, -81,03): -
number(_: 79).

-?
9>1,

80 fs
-79--79*0.1,

_41
fs

-79+ý_79*0.1.

rI
ul

EU UNIVERSMY
OF BRISTOL

U13RARY

F-UNNG"IINEERING

OF
U

0

IV -5

