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ABSTRACT 

The modelling of uncertainty in Expert Systems and other Artificial 

Intelligence applications has been addressed in a number of different ways with 

varying degrees of success. Some of the better known of these are described along 

with other aspects of decision process modelling, particularly knowledge 

representation and inference. Certain problem areas are highlighted and considered 

in terms of producing a theoretically justifiable uncertainty mechanism that is also 

computationally manageable. 

The theory of Support Logic - Programming is described and its derivation 

from probability theory and the Dempster-Shafer theory of evidences is explained. 

Fuzzy Set theory is used as a means of providing a method of semantic unification, 

whereby differing terms of similar meaning can be unified with partial support. 

A Support Logic interpreter, written in Prolog, is described highlighting the 

advantages of using the unification and theorem proving capabilities of the 

language. To improve the efficiency of Support Logic programs, a translator is 

described that converts Support Logic programs, 'that are queried through the 

interpreter, to Prolog programs that can be queried directly from Prolog. These 

translated programs maintain, the -same -behaviour as the original Support Logic 

programs, returning supports with proved queries, but run at up to thirty times the 

speed. 

Two simple applications are implemented: one demonstrating the suitability 

of Support Logic to the modelling of a naval weapon control system (the area of 

interest to the industrial sponsor) and the second demonstrating the robustness of the 

system under varying degrees of uncertainty, by comparison with other mechanisms. 
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Chapter 1. Introduction 

The purpose of this thesis is to address the use of uncertainty in Expert 

Systems and to propose a new system that provides a theoretically justifiable 

calculus that at the same time is computationally manageable. The research was part 

funded by the Dynamics Division of British Aerospace at Filton, Bristol, whose 

particular application demonstrated two important areas of difficulty in Expert 

Systems development - uncertainty and reasoning in a dynamic context. The theory 

and programs presented in this thesis were designed as tools towards such a 

development but were also intended to have much greater applicability. 

This introductory chapter explains the fundamentals of the application under 

investigation by British Aerospace and the problems which it raises. Subsequent 

sections discuss work that has been carried out in the field of expert systems, and 

its contribution to the current state of development. Rather than attempting to 

review a large number of systems, several well-known systems and applications have 

been considered. These illustrate the topics of relevance to this thesis - knowledge 

representation, inference techniques and uncertainty modelling. 

1.1 Threat Evaluation Weapons Assignment 

The survival of a naval ship in a battle situation is dependent on the way in 

which it can determine what is going on around it, but, more importantly, on the 

decisions made to deal with such activity. A Threat Evaluation Weapons 

Assignment (TEWA) system is an automatic aid to such a decision-making process. 

It would be required to analyse the input data to assess the threat posed by any 

outside activities and then to decide the optimum way of eliminating that threat. In 

this context, optimum refers to the overall survival of the ship and not just survival 

with respect to the single threat under consideration. For example, the ship would 

I-I 



not assign all its'weapons to a single target if this could leave it open to other 

threats that, may arise. In brief the job of TEWA is to maximise the probability of 

escaping a significant hit. 

The first problem in the design of such a system is the interpretation of the 

input data, particularly that from electronic devices such as radar and sonar. The 

information provided by these devices can tell us something about the position and 

speed of the target, but it is difficult to decide what the target actually is from this 

information alone. A radar reflection profile may reveal a bit more, along with any 

radar emissions from the target itself, however for every possible identifying 

characteristic there will probably be a system deployed, by the target itself, for 

distorting such information. The end result of all this electronic activity is that 

none of the on-board detection devices are likely to be able to identify a target with 

any certainty. At best, each will only be able to provide a likelihood of a target 

being of a certain type. Uncertainty is also introduced on account of the fact that 

there will not be a definitive way of deploying the weapons so that the rules within 

the decision process will have uncertainties associated with them. 1ý ý- 

Other sources of input, apart from electronic surveillance, may also exist. 

These could be intelligence reports, or satellite information, or visual or other 

observations from other support vessels. The presence of other vessels (e. g. in 

convoy) can also introduce variations on the weapons assignment decisions, 

depending on whether the prime concern of the convoy is to protect one or more 

particular vessels, or to carry out some subsequent operation that - requires the 

conservation of particular weapon systems,, or -something else. All these sorts of 

considerations need to be built into the TEWA system andýwill form an important 

part of the tactical model that TEWA will exercise. 

The majority of practical expert systems existing today are essentially static 

in nature: the decision Process is based upon a fixed set of input data. In a battle 
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situation there will be a continuous stream of information from the detection 

devices, showing up new targets or change in activity of current targets etc, all of 

which can have a significant effect on a previous set of decisions. For example a 

weapon may have been assigned to a target when a new, more dangerous target is 

observed. The previous decision should be overridden and the weapon redeployed, 

leaving a secondary weapon system to address the original target. Alternatively a 

weapon system may become inoperative, thus negating a previous assertion that the 

weapon was an available resource. In logic terms, such a system, in which a 

previously deduced theorem (e. g. weapon available) can become invalid, is called 

non-monotonic. TEWA can not therefore be implemented totally using first order 

logic, which, by definition, must be monotonic. 

Uncertainty and some form of non-monotonic reasoning for, modelling a 

dynamic system are, then, the two, main theoretical -considerations for the 

development of an automatic TEWA system. Of course it is probably possible to 

create such a system without calling on logic programming, - but by using a standard 

procedural programming language. The idea behind this work, however, was to 

devise a mechanism in which the tactical model was not too closely entwined with 

the control of the system. This allows a better understanding of the interactions of 

the various aspects of the model and, hopefully, an easier mechanism for providing 

justification of decisions, as well as allowing greater scope for adjusting the model. 

A limited TEWA system is presented in chapter 6, using the theory proposed 

in chapter 2, and this is run under the interpreter described in chapter 3 and in a 

translated form as provided by the translator described in chapter 4. To provide a 

more sophisticated model, significant effort is required in the construction of a 

tactical model that will entail a far greater understanding of the data and weapon 

systems available on the ship. Such work could not be performed by British 

Aerospace at the time the Support Logic theory was being developed and thus the 
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system presented in chapter 6 is merely put forward as an example of how the 

problem might be approached. 

1.2 Knowledge Representation 

Knowledge representation may at first appear to be a rather trivial aspect of 

Expert Systems design - the important part is surely how to access and use this 

knowledge. One could be forgiven for thinking this, as it is a trap that AI 

researchers have fallen into, to varying degrees, since the science began. The truth 

is that it has a large influence on all other areas of expert system design - 

inference, understanding, and uncertainty, as well as knowledge acquisition and 

explanation. It is possible to select a representation scheme to improve any of these 

areas, but, as yet, no scheme has been found that improves all of them 

simultaneously; there are trade-offs between each. Furthermore, there is no 

evidence to suppose that such a scheme will ever be discovered or invented. To 

optimise all of these areas, we may have to use several representation schemes in 

conjunction or in parallel. The evidence from-psychology is tending towards this 

being the case in the human mind, however it has not shown up any suggestions of 

how this is best simulated in a computer program., 

Before looking at the various ways of representing knowledge that are 

currently being investigated, let us consider what it is we are actually trying to 

represent. Barr and Feigenbaum (1981) suggest that knowledge can be partitioned 

into 

(i) objects: including classes or categories, and descriptions of objects, 

(ii) events: including the time course and cause-effect relations, 

(iii) performance: how to carry out tasks and use skills, and 
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meta-knowledge: knowledge about what is known, particularly limitations, 

sources, reliability, importance. 

These categories are suitably vague so as not to be taken as definition, but they are 

good guide-lines of what it is that we are trying to achieve. Indeed, the authors 

point out that, on analysis, it is hard to differentiate between object and 

performance knowledge. 

Knowledge representation techniques can, broadly, be split up into logic, 

rules and structured objects, of which rules consist of production systems and 

procedural systems, and structured objects can be further split into semantic nets 

and frames. It is not easy, in the context of expert systems, to trace the course of 

any of these individually, because of the way techniques have been taken from more 

than one theme to produce domain specific systems. This brief survey will 

therefore consider these representation methods in the light of the systems in which 

they have been used. 

One of the first contributions to the modelling of human problem solving 

was the General Problem Solver (GPS) begun in 1957. This was applied originally 

to the domain of manipulation of logic statements and so could be considered as a 

logic representation. However, it was generalised from this to other domains, (Ernst 

and Newell, 1969), which generally had the structure of objects and operators, with 

varying degrees of success. Using means-ends analysis, problems were solved by 

considering the differences between objects. The system could also thus be 

considered to be rule-oriented, and fit into the category of production systems 

(Newell and Simon, 1972) 

Another major contribution was that of QA3 (Green, 1ý 
1969), a language that 

used the predicate calculus of first order logic. The success of this system however 

was hampered by the inference mechanism, which could only handle simple 
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problems. It was followed by STRIPS, the Stanford Research Institute, Problem 

Solver, (Fikes and Nilsson, 197 l, ' Fikes; Hart and Nilsson, 1972). This was a system 

for guiding a robot through an environment and allowing it to plan how to 

rearrange objects in this environment. The system consisted of two knowledge 

representation schemes; first-order predicate calculus for establishing the truth of 

facts about the environment and objects to be handled by means-ends analysis. 

- None of the systems so far mentioned can be considered 'to show much 

"intelligence" or judgement. The first such project -was probably DENDRAL. 

Begun in 1965 at Stanford University, this is a system for identifying the molecular 

structure of unknown organic compounds by considering mass spectrograms 

(Buchanan and Feigenbaum, 1981)., The representation used here was essentially a 

Production system that generated potential candidates for the structure and tested 

them. The "intelligence" was in the way it was able to apply constraints, supplied 

by the chemist using the system, at an early stage, to filter out a large proportion of 

unwanted structures, thus preventing a combinatorial explosion. DENDRAL is still 

being applied as a useful tool in structural analysis of molecules and its success is 

perhaps due, to a large extent, to its explicit representation of domain-specific 

knowledge. It is, however, a symbol manipulating system and so does not lend itself 

so readily to other problems where more judgemental decisions are required. 

The first system to achieve this successfully was MYCIN (Shortliffe and 

Buchanan, 1975). This was a system made up of hundreds of IF ... THEN... rules for 

diagnosing bacterial infections and prescribing suitable drug therapy. Its success can 

be pinned down to three features. First, its rule-based structure lent it, particularly 

well, to explaining its decisions. This did not amount to much more than 

regurgitating the rules it had used, but it was a step in the right direction. Secondly 

it was robust due to its ability to handle uncertain data, and thirdly it was relatively 

efficient due to its inference mechanism, discussed in the next section. Out of 
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MYCIN came EMYCIN, (van, Melle, 1979), the shell of the system without the 

domain knowledge, which saw reasonable success in similar diagnostic systems, for 

example PUFF (Feigenbaum, 1977). 

The advantage of procedural over declarative systems, such as those 

mentioned above, is a better control structure for using the knowledge: problem- 

solving is more highly directed. The main disadvantage manifested itself as systems 

became more complex -the knowledge base became difficult to understand due to 

the presence of the procedural code. Amending and updating the knowledge was 

very hard because of the large degree of interaction between the pieces of 

knowledge; the user could not easily establish the effect of adding new data. Out of 

this came attempts to mix a logic representation with procedural information. One 

such system was PLANNER (Hewitt, 1969) which is "a language for proving 

theorems and manipulating models in a robot". 

Semantic nets emerged from the areas of cognitive psychology (Quillian, 

1968) and computer science (Raphael, 1968) at much the same time. Raphael 

implemented a system for Semantic Information Retrieval (SIR) which had a basic 

comprehension of English so that it could accept statements, and answer questions 

about relationships between objects, deducible from those statements. The most 

well-known subsequent system that uses semantic nets is PROSPECTOR (Duda et al, 

1978 and 1979). This used semantic nets to build models of geology and prospecting 

knowledge, incorporating inference rules between nodes. INTERNIST (Pople, 1977) 

used a form of network to represent the hierarchical structure of disease categories, 

and the causal, temporal and other, relationships between disease entities. 

Frames were suggested as a form of knowledge representation by Minsky 

(1975) and were used in the knowledge representation language, KRL (Bobrow and 

Winograd, 1977). A frame represents an object, or concept, and its noteworthy 

characteristics. These, typically, will include the class to which the object or 
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concept belongs, classes into which it can be split,, description/definition, as well as 

procedures for establishing more information about it, and'for drawing conclusions 

from it. - 

A more recent application of frames is in CENTAUR (Aikins, 1983), a 

development from the PUFF system (Feigenbaum, 1977). This uses frames to 

provide a representation of the context in which the system is working, and within 

these are production rules to carry out the reasoning process. There is a hierarchy 

of frames which at the top level consists of prototypes representing mainly disease 

patterns, but also meta-knowledge about running a- consultation 'and reviewing 

evidence. Prototypes have slots for components, which themselves are frames 

pointing to sub-frames of knowledge at the object level. Straight rule systems, such 

as MYCIN, were shown by Clancey (1983) to have limitations in the explanation 

and justification facilities. The representation allows structural and strategic 

knowledge to be embedded in the rule without explicit justification, and thus some 

of the rule-author's knowledge is lost. Aikins (1983)ýapplied similar arguments to 

justify the use of frames. Although CENTAUR has proved fairly successful, the use 

of frames does have its critics (Hayes, - 1981 and Brachman, 1985). The criticisms are 

mainly towards the inheritance of properties and 'whether they are ý essential or 

accidental. There are properties that may be necessary conditions for an object to 

be an instance of a concept, and properties that may, just happen to be true of all 

instances of a concept. There can also be typical properties of'a concept that can be 

overridden at other places in the hierarchy. There is a, danger that all three forms 

will have the same representation. 

There is another structured representation which has arisen out of semantic 

nets and frames, as well as logic. This is conceptual graphs, first proposed by Sowa 

(1976) as a representation that "can describe data according to the user's view and 

access data according to the system's view". The idea was that the user need not 
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have to know how data are stored in the knowledge base, thus forming a better 

natural language link between user and machine. In the following years the subject 

did not receive as much attention as it probably deserved and thus when a 

comprehensive text was produced (Sowa, 1984) it did not show -many significant 

advances from the 1976 paper. It is however now receiving more attention, though 

there are still no significant expert systems using the technology. Research 

involving the techniques can be found in Morton (1987), Morton and Popham (1987) 

and Ralescu and Baldwin (1987). 

The problem of dealing with defaults, as explained above with respect to 

frames, is one that crops up in all knowledge representations, and is -commonly 

called default reasoning (Reiter, 1978). In PLANNER there is a primitive THNOT 

which is used in the form: 

(THNOT UNDER_EIGHTEEN (X) ASSUME CAN_VOTE(X)) 

This expression reads "unless it can be shown that a person, X, is under eighteen, 

assume that person can vote". ý Default functions of this form can only work 

correctly if the knowledge base is complete with respect to the default condition. 

That is the system must be able to prove UNDER_EIGHTEEN(X) for all values of 

X for which this is true. Notice that provability and truth within a system are not 

necessarily the same. Valid deductions from a system that allows default reasoning, 

can be made invalid by adding new facts, and this violates the monotonicity 

property of classical logic. The new facts could come from new information 

supplied to the system, but they could also arise as side-effects from the system 

itself. McCarthy and Hayes (1969) identified this as the frame problem when 

considering the possibility of robots affecting the world around them. 

Doyle (1979) proposed a truth maintenance system that kept track of all the 

beliefs justifying another belief. This "justification" consisted of an ordered pair of 
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sets of beliefs; those that supported the consequent belief by being provable, "in", 

and those that supported it by being not provable, "out". Whenever a new belief 

arose, its effect on the rest of the knowledge could be assessed and the knowledge 

base adjusted to ensure consistency. This does, however, prove very unwieldy and a 

lot of work is required to prevent circular arguments. 

In 1980, volume 13, numbers I and 2 of, Artificial Intelligence were devoted 

to non -monotonic: logic., McCarthy (1980) discussed the theory of circumscription, a 

rule of conjecture such that "the objects that can be shown to, have a certain 

property P by reasoning from certain facts A are all the objects that satisfy P, " thus 

avoiding theý need to investigate all objects that'may have, a bearing on P. The 

theory is proposed as a means of remaining within first order logic without having 

to modify it to a modal logic. Also in this volume Reiter (1980) proposes a "logic 

for default reasoning" and develops a complete proof theory and a resolution 

theorem prover for a particular class of defaults. McDermott and Doyle (1980) 

developed model and proof theories for one non-monotonic logic, introducing the 

operator M, meaning "is consistent", and followed this with McDermott D (1982). 

This approach was, however, perhaps too ambitious. Moore (1983) discusses the two 

main problems that arose; (i) that the notion of consistency that they defined 

allowed both MP ("P is consistent") and -, P ("P is false") to be theorems and (ii) that 

the system with the notion of consistency that McDermott D (1982) wanted, non- 

monotonic S5, collapsed to ordinary and therefore monotonic S5. For a more 

thorough appreciation of the current practices in non-monotonic logic, the reader 

should see Non-monotonic Reasoning Workshop (1984). 

ý, Knowledge representation involving both logic and procedural information 

resulted in not only PLANNER (Hewitt, 1969) but also inJogic programmin& first 

suggested by Kowalski (1974). In this paper he proposes predicate logic as a good 

declarative representation of procedural information. The logical statement 
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B if A, and ... and An 

can be interpreted as the definition of a procedure B involving the sub-procedures 

A, to An. The result was the programming language PROLOG, first implemented 

by Roussel (1975). Since then Kowalski has produced a comprehensive text on the 

subject (Kowalski, 1979) and there have been a large number of further 

implementations both academic and commercial. PROLOG has become a very 

popular AI programming language on this side of the Atlantic, however one of its 

most significant failings with respect to L ISP is its speed. This is changing, though, 

as faster implementations are produced and work progresses on a parallel 

implementation. LISP also has the advantage of hardware designed specifically for 

running the language efficiently - to-called LISP machines. 

The main criticisms of PROLOG come. from logicians and those who 

misunderstand how to use a declarative language. The answer to both these, as 

energetically expressed by Kowalski (1987), is that PROLOG is a declarative 

representation, but of procedural information. In fact, he goes further than this and 

claims that "all knowledge is inescapably procedural, " that is, it is inherently 

explaining how to do something or what to do to achieve something, given certain 

conditions. The logicians dislike of negation as failure not being logical 

(Shepherdson, 1984) is answered by the fact that it is not meant to be; it is a 

procedural negation expressing the lack of provability of a theorem. Kowalski puts 

the apparent inefficiency of Prolog down to misuse of the language. It is not 

enough to write a declarative rule and expect it to be an efficient algorithm. The 

rule has to be written as a procedure, and therefore will be as efficient as the 

programmer's algorithm, but it will still have a declarative reading., This is 

illustrated by the difference between a naive-sort using permutation generation and 

a quick-sort using partitioning. 
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The other main criticism from the logicians is the confusion between "if" and 

"if and only if", which arises out of negation as failure. The true meaning of a 

Prolog rule involves "if". i. e. the body of the rule defines a necessary condition. If, 

however a theorem can not be proved within the database then negation as failure 

declares the negation of that theorem to be true, thus suggesting that the bodies of 

rules implying a theorem are the sufficient conditions i. e. "if and only if". The 

objection is that this is not what has been explicitly stated, but it is the assumed, 

and unavoidable, interpretation. The only answer to this is that this is unfortunately 

the case, but PROLOG, should be accepted for what it is, which is useful and 

powerful, rather than for what it was, unfortunately, made out to be. Shepherdson 

(1987), in answer to Kowalski (1987), accepted these views of PROLOG's 

Procedural interpretation and instead criticised the way the language had been 

"sold", as a tool for representing logic, which, in the classical sense, it does not 

achieve. 

Despite these academic criticisms of PROLOG, it is becoming increasingly 

popular as an expert systems development language. One of the systems which most 

emphatically showed the way, must be MECHO (Bundy, 1978 and 1983). MECHO 

is a system for predicting behaviour in Newtonian mechanics, but it included 

elements of natural language understanding and algebraic manipulation, as well as 

the necessary mechanics problem solving capabilities. It was developed in 

PROLOG, but with an intervening interpreter between the "clever" part of MECHO 

and PROLOG itself. 

The work for this thesis has been developed in PROLOG in order to make 

use of a representation relying on logical connectives, essential to Support Logic 

Programming. It also provides the necessary unification and backtracking facilities. 
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1.3 Inference 

The essential requirements of an expert system are a suitable representation 

of the knowledge and an inference mechanism for reasoning with that knowledge. 

As expressed before, however, the two can not be separated and each has to be 

designed with the other in mind. In logic- and rule-based systems, the inference 

mechanism and knowledge representation are more dissociated than in procedural 

systems or frame-based systems, in both of which the knowledge itself can play a 

large part in directing the reasoning process. , Each has, its advantages and 

disadvantages. The less closely associated are, the inference and representation, the 

more modular the system is and'the easier it is to assess the effect of adding extra 

information to the knowledge base. When the two are closely entwined with, one 

another, as in purely procedural systems, then one can arrive at more efficient 

systems for reasoning in particular domains. These systems, however, in which the 

control is embedded in the knowledge itself,, are less easily generalised to other 

domains. 

Classically, inference is a term that should probably only be applied to logic, 

however its general use is due to the idea that a system makes deductions from 

known information (or axioms); it is hoped that conclusions drawn by an expert 

system are logical. The rules of first-order logic ensure that any true theorem 

within a theory can be deduced (completeness) and any false theorem will not be 

deducible (soundness). To produce automatic theorem provers we must also try to 

achieve these two goals, but in an efficient mechanism. The most important 

contribution came from Herbrand in 1930 whose theorem, given in van Heijenoort 

(1967), states that 

A formula, A, in conjunctive normal form is unsatisfiable if and 

only if there exists a contradiction consisting of a finite conjunction, 

A', of instances of clauses of A. 
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The significance of this is that in order to prove a'theorem from a set of clauses, it 

is sufficient to prove that the negation "of that theorem is false, and leads to a 

contradiction, when taken with that set of clauses. 

This idea was first implemented in a program by Gilmore (1960) but it was 

extremely inefficient and therefore not very useful. It did, however, show the way 

and the next major advance was Robinson's (1965) Resolution procedure used in 

QA3 (Green, 1969). This worked by deriving new clauses from the original set of 

clauses in an attempt to derive the empty clause. In order to prove that a 

conjunction is false it is sufficient to prove some part of it false, and thus it is only 

necessary to deduce the empty clause. The Resolution procedure led to a series of 

refinements that were able to prove more and more complicated theorems, however 

it soon became apparent that automatic theorem proving had a limited contribution 

to Al 'in general. -' This became more -obvious as the 'problem of generating 

completely new theorems was considered. ' Resolution and its refinements are good' 

at proving known theorems, but can not achieve the task at which humans are so 

adept, that of thinking up new and interesting theories. 

Before leaving Resolution, it is important to stress that it has still made a 

significant contribution. One of its refinements is Linear, Input Resolution, which 

is complete for sets of Horn clauses. This always resolves using the most recently 

derived resolvent (linear) with one of the original (input) clauses. A further 

restriction on this produces Lush-Resolution and this with a depth search is the 

basic inference mechanism of the Logic Programming Language, PROLOG, 

discussed above and described by Clocksin and Mellish (1981). Although this 

combination of Lush-Resolution and depth search only produces a very weak 

theorem prover (that is, it blindly goes down the first path it comes to, and can 

easily fall into a loop) it provides a very good tool for producing more sophisticated 

mechanisms, hence its popularity. 
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Another early form of inference was called means-ends analysis and was 

essentially a bi-directional chaining mechanism. This was first employed in GPS 

(Ernst and Newell, 1969) mentioned above. The system had four types of goals that 

it could attain, each describing the current and desired situations and a history of 

attempts to go from one to the other. These goals in turn were processed using four 

different types of methods. In the manner of forward-chaining the system would 

apply an operator to minimise the difference between the current and required goal 

states to produce a new goal. If this was not immediately possible then the goal 

would be split into subgoals as in backward-chaining. The inference mechanism 

was therefore separate from the knowledge to an extent, but the knowledge had to 

be expressed to fit in with the types of goals. 

MYCIN (Shortliffe and Buchanan, 1975) -is a system that uses backward- 

chaining alone. In attempting to, establish a conclusion, the system locates a rule 

with that conclusion and then attempts to deduce the antecedents of that rule. Such 

a method is efficient if one knows what one is trying to discover, as in MYCIN, but 

sometimes it is the case that one wants to know the consequence of a-particular set 

of data. In such a case forward- chaining is more appropriate -- the system starts 

with some items of knowledge and looks to see what it can conclude. Forward- 

chaining alone is unusual, though, because of its aimlessness - there are an awful lot 

of conclusions that one can draw from a little data, and it could take a long time to 

generate an interesting one. There is such a system, however, designed for 

configuring VAX computers, called RI. McDermott J (1982) describes the system 
I 

in detail and raises some interesting points concerning the way humans approach 

similar tasks. RI is a particularly successful system and is still used. Most of the 

established expert systems, however, tend only to use forward chaining in 

conjunction with another inference scheme. 
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An intuitive Joint scheme might employ a heuristic search, in which the 

search is guided by meta-level rules, or heuristics. The search space in a system 

like DENDRAL (Buchanan and Feigenbaum, 1981) can be vast because the system 

has to generate all the possible molecular formulae. However it is able to reduce 

this set by applying rules, derived from mass spectrometry, to the structures 

generated, to determine whether they could produce a mass spectrum similar to that 

of the unknown molecule. 

Another form of search is best-first in which chaining, either forward or 

backward, is governed by the values of the rules to be employed: These values can 

be calculated, to reflect what a particular rule can achieve towards a conclusion, or 

to indicate which rules will reach the desired- conclusion most quickly, ýand will 

take into account what data is present. In the early days of expert systems, game- 

Playing and, puzzle -solving programs involved similar ideas. A measure could be 

evaluated for the current state and for all the states to which the system could 

transform. The best move would be the one that had the highest measure, and thus 

this is sometimes called hill-climbing. The difficulty in this method, as in all search 

mechanisms governed -by state or rule values, is deciding on an algorithm for 

evaluating the measure. 

STRIPS, described by Fikes and Nilsson (1971), can effectively be divided 

into two parts, each of which has its own inference mechanism. It uses Resolution 

theorem proving to deduce the truth of facts about the world, as in QA3, and 

means-ends analysis to search for a state satisfying the required conditions, as in 

GPS. PLANNER (Hewitt, 1969) is another system that extends its inference beyond 

just Resolution and, in the words of Hewitt, "permits both the_ imperative and 

declarative aspects of statements to be easily manipulated"., For example, 

superficially the staterne nt'(i m plies a b) is just declarative, but to PLANNER it can 

set up aýprocedure to consider whether to assert b if, a is asserted, or another that 
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will consider whether, I given the goal b, it is wise to create the subgoal a. Within 

PLANNER it is possible to have procedures that will guide the deduction of 

theorems down what is hopefully a sensible and efficient path. 

Systems using frames rely heavily on a form of procedural knowledge 

representation, however in this case the user is in a position to define these 

procedures. The language KRL (Bobrow and Winograd, 1977) uses this form of 

knowledge. The procedures associated with a particular frame can allow the system 

to find out more information about the concept it define5 perhaps to further 

understanding of the concept or to act as a proof of its truth. More interestingly, 

there could be a procedure that determined the applicability or relevance or 

importance of the current frame given the known data. CENTAUR (Aikins, 1983) 

combines frames, with production rules. As a'refabrication of PUFF (developed 

with EMYCIN), it uses similar rules with certainty measures, however, these occur 

in -the slots of the frames, or prototypes, so that they are only used when in the 

particular context of that prototype. In this way rule invocation is controlled locally 

by prototypes rather than globally as in PUFF and MYCIN. Prototypes can ask the 

user for information and, using this, create a hypothesis list consisting of further 

prototypes ranked according to certainty measures. Selecting the most favourable 

prototype allows old information and new information to be considered in the light 

of a new context and certainty measures can be adjusted accordingly. The inference 

mechanism of this scheme is therefore locally controlled and also directed by 

certainty measures making full use of domain specific knowledge. 

This section has shown some of the current (and early) techniques for 

inference within a knowledge base. In the broadest terms, inference can be based 

either on logical theorem proving and Resolution, or on more locally directed 

deductions using a procedural format. Neither can be considered "correct", but 

when used in conjunction, each can enhance the other, as shown by systems like 
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STRIPS and PLANNER. The current trend is however towards- a closer 

representation of domain specific knowledge resulting in more locally controlled 

inference, but it is still desirable to keep the basis on a more general and well- 

founded theoretical footing. An expert system that only contributes to solutions in 

its own particular domain, does not amount to much more, than a custom-written 

computer program. Although it may be the final, solution in its own area, it does 

not make many ý inroads to the ultimate goals of Al. 

1.4 i Uncertainty Modelling 

The ne ed to model uncertainty arises when we start to write programs that 

deal with the real world and the consequent incompleteness of information. This 

incompleteness can be split into two general. types: Incompleteness of - data and 

incompleteness of definition. , The most common methods for dealing with 

uncertainty are numerical, however problems involving-only incompleteness of data 

can be dealt with to some extent by non-numerical techniques such as truth 

maintenance systems and non-monotonic logics, mentioned in section, 1.2. , These 

will not be considered here, as the emphasis of this thesis is on the numerical 

modelling of uncertainty, however Bhatnager and Kanal (1986) present a review of 

both numerical and non-numerical techniques. 

Incompleteness of data is probably the most obvious source of uncertainty - 

trying to make decisions without knowing the full story, reasoning from facts which 

are not known to be true for sure but are qualified by terms such as "likely" or 

"possibly" etc. Numerical techniques attempt to propagate this uncertainty, about 

the ground data, through the decision tree or reasoning process to establish the 

certainty of the final decision. Incompleteness of definition arises from situations 

like deciding if something is a bush or a tree, or assessing the likely success of legal 

arguments (this may seem a surprising example due to the attempts at precision, but 
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the law -is bound by language which is riddled with imprecisely defined terms 

resulting in multiple interpretations). These situations can be modelled using 

numerical values representing likelihoods or frequencies, or one can try to resolve 

the problems of definition, but this latter technique is dependent on restricting the 

domain, of application and therefore shies away from the real world. These 

distinctions between sources of uncertainty, however, do not need to be treated 

separately. Indeed, this thesis proposes a calculus that handles, and can combine, 

pieces of uncertain information regardless of their sources. Some expert systems, 

though, work in a domain where the uncertainty is of only one type and thus the 

distinction is worth appreciating. 

Numerical methods for handling uncertainty have traditionally been based on 

probability theory and, more, particularly, the -use of Bayes' theorem. Despite this, 

the first successful expert system that used inexact reasoning was based on a 

relatively ad hoc model of certainty factors - MYCIN- (Shortliffe and Buchanan, 

1975). Zadeh's (1978) theory of possibility was one of the first major departures 

from probability, along with the Dempster-Shafer theory -(Shafer, 1976), however 

this latter paper stemmed from work of Dempster in'the mid 60's, directly related to 

probability theory (Dempster 1967,1968). In fact, Adams (1976) asserts that a 

substantial part of the MYCIN model of certainty factors can also be derived from 

probability theory. This leaves us with the theories of probability (and its 

derivatives'or pseudo -derivatives) and possibility which has not often been used as 

the primary calculus in expert systems. That we do not have many uncertainty 

calculi--to use needn't matter, provided that the systems produced give sensible 

results. The ad hoc, nature of certainty factors does not make it any worse a 

technique - MYCIN works. There is, however, the concern that such techniques are 

certainly not what we humans use when reasoning with incomplete knowledge. 

Furthermore, as with knowledge representation ý techniques, there is no reason to 

suppose that there is a unique uncertainty calculus which will be the "correct" 
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method and will solve all the problems. As well, there are those who believe that 

we should be looking to non-numerical methods. So far the evidence from 

psychology leaves us in the dark and we can only pursue those techniques which 

appear to work. This section describes various inexact reasoning techniques as they 

have been applied to expert systems. 

The obvious place to start is MYCIN, in which the knowledge base consists 

of statements each of which has an associated measure of belief (MB) or disbelief 

(MD) between zero and one. When the statement is a rule, these measures are 

applied to the consequents dependent on the truth of the antecedents, and thus are 

taken to be measures of increased belief (or disbelief) in a hypothesis (the 

consequent) based on the evidence represented by the antecedents. ' The antecedents 

themselves can be hypotheses deducible from other rules and do not have to be 

observed data. The reason for having measures of -both belief and disbelief is to 

allow rules to express belief in a conclusion without the complement having to be 

taken as disbelief, and vice versa. Since one piece of evidence, e, can not both 

favour and disfavour a single hypothesis, h, when MB[h, e]>O, MD[h, e]=O, and when 

MD(h, e]>O, MB[h, e]=O. These measures are defined by 

MB[h, e] - WHO - P(h) I- Nel-, h) (1.1) 
I- P(h) P(e) 

and 

MD[h, e] P(h) - P(h1e) I- F(gjhj (1.2) 
P(h) P(e) 

In order to be able to compare and rank hypotheses, these two measures are 

combined into the single value, CF[h, e] - MB[h, e] - MD[h, e], called the certainty 

factor. Adams (1976) looks at the calculus of certainty factors in the light of 

probability, with a view to assessing the differences between 'the two and the 

relative limitations. By deriving, directly from probability theory, the MYCIN 
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formulae for combining evidence, he was able to consider the behaviour of MYCIN 

by direct comparison with known theory. 

Shortliffe and Buchanan (1975) state the formulae for combining measures of 

belief (MB) and disbelief (MD) for hypothesis, h, given evidences, el and e 21 as 

MB[h, e, &e 21 
0 if MD[h, e, &e2l =1 

(1.3) 
MB[h, el] +. MB[h, e 21*(' - MB[h, e, ]) 

otherwise 

and 

MD[h, el&e 23 

0 if MB[h, e, &e 
21 =1 

(1.4) 
MD[h, e, ] +. MD[h, e 21'(' - MD(h, e, 3) 

otherwise 

and define "the measure of increased belief in the hypothesis h, based on the 

evidence el and e2" (Shortliffe's wording) by 

MB[h, el&e2l m P(hle P(h) I-E ýe& I-, h) (1.5) 
P(h) P 

elVeL 
2 
L 

using (1.1). Adams then demonstrates that, by assuming independence between the 

two pieces of evidence el and e 2, and using Bayes' rule, we can rewrite (1.5) as 

follows 

MB[h, el&e2l -I - EM-C 
p 

k. 
) 

1 2) 

I- We -nhl We 
21, h) 

Pýe P(e 2) 

-eI EL I U=hL -h-k2l 
P(-, hj P(-, h) 

P(-, hle I P(-, hle. 1 
+ P(-, hie I P(-, hle I 

P(-, hj P(-, h) P(-, hý P(-, hý 

"7h (I - P(-, hle, l P(-, hlell 
P(. nh 

+ P(-, hý j P(-, h) 

MB[h, ell + MB[h, e, ](l - MB[h, e, l) 
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which is the same as, the, original definition given in equation (1.3), but for the 

exceptional cases when a piece of evidence conclusively proves (MB[h, e] = 1) or 

disproves (MD[h, el -1) a hypothesis. 

Having shown this analogy between probability and the measures of belief, 

Adams considers the implications, and comes up with three major criticisms. The 

first is that the necessary assumption of independence of evidence is violated when 

a piece of evidence is conclusive one way or the other, in that no other evidence 

can contribute, and thus the choice of MB and MD is restricted. The remaining 

two criticisms concern the uses of the certainty factors which are (i) in ranking 

hypotheses and (ii) in providing a weighting when ýa hypothesis is supported, by 

another hypothesis as antecedent. The counter- intuitive behaviour of the ranking is 

shown up by a simple example that Adams proposes. 

Take the prior probabilities to be P(h) - 0.8 and P(h2) ý 0.2, and the 

posterior probabilities to be P(hjje) - 0.9 and P(h 2 le) = 0.8, then 

MB[hl, e] - ffhlle) - P(hll -0.5 
1- P(hl) 

MB[h 21 e] - RLh2le) - P(h 
21 - 0.75 

1- P(h 
2) ' 

Since MD[hj, e] and MD[h 2, e] must be zero, the certainty factors will be 

CF[hl, e] - 0.5 and CF[h 2 e] - 0.75 resulting in h2 being the preferred hypothesis. 

This is obviously not desirable since the prior and posterior probabilities for h2 are 

both less than those for h,, and suggests that certainty factors are not adequately 

defined to represent confidence in hypotheses. The remaining criticism about 

certainty factors concerns the way that they are used in intermediate hypotheses in a 

chain of reasoning. The rules proposed are 

MB[h, e] - MB[h, i]. max(O, CF[i, e]) and 

MD[h, e] - MD[h, i]. max(O, CF[i, e]), 
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where I is the ý intermediate hypothesis suggesting hypothesis h and suggested by 

evidence e. Adams points'out that this is similar to using a rule 

P(hle) - P(hli). P(ile) 

when the certainty factor is positive, but that this rule only holds under the 

particular condition that the population showing h is a subset of that showing I is a 

subset of that showing e. 

Adams concludes that it is a weakness of MYCIN that there is an "inobvious 

interdependence restriction" on the values of the measures. Furthermore he suggests 

that MYCIN's empirical success, in the face of these theo retical objectio ns, is due to 

short chains of reasoning and simple hypotheses. Let us then consider another 

successful system, in a different domain, in which the theoretical basis is 

probability. 

PROSPECTOR (Duda, Gaschnig and Hart, 1979) is a system for weighing up 

geological data to determine the presence or absence of particular minerals. This 

uses semantic nets to represent an inference network of relations between field data 

and geological hypotheses. There are three types of relations: logical, plausible and 

contextual. The third of these is used to indicate when data (field data or 

hypotheses)' should be derived in a particular order and does not involve 

uncertainty. Logical relations represent the logical connectives AND, OR and NOT 

with uncertainty being evaluated for the relation using fuzzy logic (minimum for 

AND, maximum for OR and complement for NOT). Plausible relations represent 

implications between an antecedent and consequent, and the propagation of 

uncertainty through these uses Bayes' rule. Associated with each relation is a 

sufficiency measure (LS) and a necessity measure (LN) defined by 

LS'- P(EIH) LN - P(, EIH) 
P(El-, H) P(-, El-, H) 
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In statistics these are also called likelihood ratios, for evidence E and hypothesis H. 

The posterior odds (O(HIE)) of a hypothesis are calculated from the prior odds 

(O(H)) using the "odds - likelihood" form'of Bayes' rule 

O(HIE) = LS. O(H) 

and these new odds can be re-expressed as a posterior probability using the formula 

P- 0/(l + 0) 

A similar calculation using LN allows the evaluation of O(HIE). The posterior 

odds'of a hypothesis that is antecedent to another hypothesis can then be used to 

deduce new odds-for the consequent hypothesis, and thus strength of evidence can 

be propagated through the semantic network to confirm or disconfirm the top level 

hypothesis. For more precise details of this see Duda, Hart and Nilsson (1976). 

PROSPECTOR has enjoyed a fair amount of success and in'1981 had seven 

ore deposit models defined for it. It inevitably suffers from the same difficulties as 

any numerical representation technique, that of assessing the values on the rules, 

and hence the phrase "subjective ý-Bayesian inference". Furthermore the use of 

Bayes' rule means that not only'does one have to put values on the inference rules, 

but also to estimate the prior probabilities of all deducible', hypotheses. These would 

be particularly difficult to assess because it is hard to define what is your sample 

population; is it the whole world i. e. all sites or is it all sites that appear to be worth 

considering? If it is the latter, then there must be some deductive information that 

has already been used to establish that the site is "worth considering". Two other 

drawbacks of a system that uses Bayes' rule in this way are that (i) the system 

depends on point probabilities and therefore there is no way of expressing the 

precision of any of the values or ignorance in any data. and (ii) the evidence for 

and the evidence against a hypothesis are combined into a single value so that it is 

not possible to determine how much there is of each. 
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These last two points are also raised by Quinlan (1983) in a paper in which 

he proposes INFERNO, a system that avoids these two criticisms and does not 

assume independence between assertions. INFERNO uses probability intervals (say 

[s(A), p(A)]) to represent uncertainty, so that precision is evident from the width of 

the interval (p(A) - s(A)), and the lower (s(A)) and upper (p(A)) limits of the 

interval can stand for the evidence for (t(A)) and the complement of the evidence 

against (I - f(A)), respectively. This, however, is not a new idea and does not 

address Quinlan's main concern, the independence assumption. To avoid this he 

defines a set of relations (given in table 1.1),, that he contends are "sufficient to 

express common interdependences" between propositions, and he associates 

propagation constraints with each relation type. 

When the bounds on a proposition change, the effect of this can be 

propagated through the knowledge base in both directions causing adjustments in 

the bounds of other related propositions. The relative adjustments will be restricted 

by the propagation constraints so that the bounds do not violate the fundamental 

rules of probability. This propagation can, however, cause inconsistencies, which 

manifest themselves as negative intervals i. e. s(A) > p(A) or t(A) + f(A) > 1. When 

an inconsistency occurs it is pointed out to the user and the system looks at ways of 

rectifying it. Rectification involves establishing how values should be changed in 

the knowledge so propagation of uncertainty does not throw up the inconsistencies. 

Several schemes may be possible and these are ranked according to how little the 

values need to be adjusted. 
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Relation Intermetation 

A enables S with strength X 

A inhibits S with strength X 

A requires S with strength X 

A unless S with strength X 

A negates S 

A conjoins (S1. ... oSd 

A conjoins- independent (S1, ... 'Sn) 
A disjoins (Sl, ... 'Sd 

" disj oins- independent (S,, ... ISd 

" disjoins -exclusive (S1. ... 'S n) 
(Sp ... ISn ) mutually exclusive 

P(SIA) 2! X 

P(, SIA) >X 

P(, AI, S) 2: X 

P(Al-, S) 2: X 

Aa -S 

&iSi 

A sm &iSi; Vi#j P(Si&Sj)=P(Si). P(Si) 

Aa ViSi 

Aa ViSi; Vi: #j P(Sj&ý-)=P(Sj). P(S 

Aa Visi; vi*j P(Si&sj)=O 

vioj P(si&ý. )=o 

Table 1.1 Set of relations proposed by Quinlan for INFERNO. 

Liu and Garnmerman (i987) highlight two deficiencies of INFERNO and 

attempt to correct them. The most important of these is INFERNO's criteria for 

terminating the propagation, which Quinlan uses to prevent a situation equivalent to 

positive feed back. They show that a side-effect of these criteria is the final results 

being order dependent, to correct this they employ a relaxation method that 

increases the work necessary quite considerably and also, in their own words, "is 

difficult to apply to real problems since it is at the expense of losing some very 

useful features of INFERNO". 

Quinlan compares the behaviour of INFERNO with that of AL/X (Reiter, 

198 1), -a system that works -similarly to PROSPECTOR described above. The 

example he takes is a fault diagnosis scheme consisting of eleven implication rules 

and six pieces of ground-data, of which five are provided on which to 
lbase 

the 

diagnosis. The problem is defined in AL/X using the conditional probabilities 

P(HIE) and P(HI-, E). represented by prior probabilities for the hypotheses, H, and 
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sufficiency and necessity measures on each implication. As a result of using 

Dayesian inference, the conditional probabilities defined for H and E also define the 

,I conditional probabilities -1 
for -, H and E, P(--, HIE) and P(-, Hl-, E), and consequently a 

very small value for P(Hl-., E) leads to a very large value for P(-'Hj-'E). As 

mentioned above we can not-tell whether the probability given was derived, as low 

. 
support for the hypothesis given false evidence (low P(Hl-, E)) or high support 

against the hypothesis given false evidence (high P(--, Hl-, E)). Consequently it is not 

reasonable to reformulate the problem, in terms of probability intervals, directly 

from the AL/X formulation. It is impossible to tell what the human expert had 

been trying to represent - small support for, or large support against. If we do 

reformulate it directly in INFERNO terms, we can use either P(HIE) or P(-, HIE), 

and P(Hj-, E) or P(-, Hl-, E) - an enables or an Inhibits relation, and a requires or an 

unless relation (see table 1.1) - the choice is arbitrary. Quinlan in fact chooses to 

use a combination of enables and requires relation (those for which on average the 

probabilities are largest, and therefore those that provide most information) and 

INFERNO produces the correct diagnosis. There can be no justification for one 

choice or another, without going back to the original expert and thus the 

comparison Quinlan gives is not completely valid. The intervals remain quite tight 

because of the almost strict implication between -, E and -, H (P(-, Hl-, E) almost 

unity), whereas had the'unleis relation been used, the evidence being false would 

"have provided very little information and it is likely that the intervals would have 

widened dramatically, and the diagnosis would not have been supported very 

strongly, if indeed it would have got it right. 
'The 

same example is formulated in 

support logic in chapter 6 using each of the possible probability interpretations, and 

the diagnosis is correct in both cases that the equivalent of the enables relation is 

used. The Inhibits and unless relations taken together provide so little information 

that a diagnosis_ is not justifiable, and the Inhibits and requires relations produce the 

wrong diagnosis on the strength of counter- evidence alone. 
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II, 
Apart from the fact that Quinlan's formulation did not provide a valid 

comparison, the example showed up two other noteworthy points. The diagnosis 

produced, required a rectification that was brought about by changing a piece of 

input data from false to a probability of 0.204. The first point is that this small 

chan, ge, -was enough'to get rid of all the inconsistencies and reverse the probability 

interval 
-on what was ultimately deemed the correct diagnosis, from false to 

[0.80,0.881, hence suggesting that the system is fairly sensitive to input data. The 

second; point. is that the adjustment was from false to a point probability of 0.204. 

Such overspecification was exactly one of the issues that INFERNO was intended to 

address. -eý. . 1.1 t 

It is accepted that the assumption of independence between propositions is 

not true in general, however it provides the least Prejudiced approximation in 

situations when the actual dependence relationship is not known. INFERNO allows 

independence to be explicitly asserted and also the two extremes of dependence - 

strict implication and mutual exclusion - but otherwise the probability interval on 

conjunction will range from the probability of one extreme to that of the other. 

Without very tightly defined intervals on the relations these intervals will rapidly 

expand when propagated through a chain of inferences. This did not occur in the 

AL/X example, because of the small intervals on the requires relations and there 

being, at most, three levels of implication. 

The idea of rectification to get rid of inconsistencies does not really seem 

necessary. Real-life problems do throw up inconsistencies and conflicting evidence, 

however we are quite capable of resolving these in order to arrive at conclusions. 

They arise mainly because we do not have a complete model or understanding of the 

area we are considering, for example economics or medicine. There can be no 

inconsistencies in the human anatomy and its reactions to the outside world; the 

inconsistencies arise because our current model of this is inadequate. INFERNO can 
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only get rid of inconsistencies by adjusting the input data or adjusting the model 

itself. On the whole the input data is likely to have been thoroughly evaluated so 

that the particular combination of values is correct. This leaves adjusting the 

model, but can this be justified on the evidence of one set of data? Perhaps if the 

same inconsistencies occur very often, or this same data combination occurs very 

often then the model should be adjusted, but if it works for most cases then there is 

no point weakening it for one special case. It is better that the system should 

attempt to resolve this conflict itself without detracting from the behaviour of the 

model in other cases. If later the special case is explained, then it can be added to 

the model, with extra rules or links, thus enhancing its capabilities, but without 

calling for adjustments to the rest of the model. Any resulting conflict could be 

resolved. INFERNO, in short, does not provide any improvements in system 

behaviour. The AL/X example Quinlan states is not a good comparison, and other 

examples he cites do not demonstrate improvements but merely show that 

INFERNO can achieve the same results at greater expense. 

Szolovits and Pauker (1978) compare, what they call, categorical reasoning 

with probabilistic reasoning with reference w four systems; PIP, INTERNIST. 

CASNET and MYCIN. All of these work in a similar way using numerical scoring 

techniques to rank or focus attention"on diagnoses in a medical domain. The actual 

techniques differ from system to system, as explained in the paper, 'but the overall 

effect is similar. An interesting aspect of PIP (Present Illness Program) is the way it 

combines categorical with probabilistic (or at least numerical) reasoning. The 

categorical reasoning involves using findings about patients (equivalent to symptoms) 

to trigger investigation of particular hypotheses which can then trigger other 

hypotheses through causal relationships. Hypotheses are scored according to how 

well the observed findings fit a hypothesis (matching score) and to how well the 

observed findings are accounted for by a hypothesis (binding score). These scores 

can be propagated through the system to affect related hypotheses, and a final 
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diagnosis is provided byý comparing the scores of candidate hypotheses. Thus, as 

Szolovits 'and Pauker state, "PIP proposes categorically and disposes largely 

probabilistically". 

Dempster's rule of combination, first proposed in Dempster (1967), is 

becoming increasingly popular as a means for combining evidence that may involve 

conflict. The details of the rule are most clearly explained by Shafer (1976) along 

with a theory of belief functions in a set theoretical context. The set of all possible 

outcomes is called the frame of discernment, 0, and the power set, 2(), is therefore 

the set of all possible combinations of outcomes, or the set of all subsets of 9. 

Defined over the frame of discernment are two types of function for representing 

the belief in possible outcomes, based on bodies of evidence: the belief function 

(Bel) and the basic probability assignment (m). -, 

Bel: 2E) -+ [0,1] 

m: 28 - [0, I] 

Each element of 2E), being a subset of E), represents the union of several 

outcomes and in logic terms is equivalent to the disjunction of those outcomes. The 

belief assigned to each element therefore represents the belief that one of the 

component outcomes will occur. Although it is the, belief -functions that represent 

our actual-belief in possible outcomes, the basic probability assignment provides an 

easier mechanism for defining that belief. 

Belief in a set of outcomes has to account for all the belief in any sets of 

outcomes that are subsets of the set we are considering, and, in particular, it has to 

account for any belief in any of the individual outcomes in the set; for instance, 

belief in A must contribute to belief in the set - (A, B), or in logic terms, the 

disjunction A or B. The basic probability'. assignment, however, defines the amount 

of belief that is committed exactly to a subset of 0-i. e. the probability mass that is 
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committed to that -set 'and to ý nothing else - and is called the basic probability 

number. This function is bound by the restrictions that, there can be no belief in 

the empty set, and the total probability mass must be unity: 

M(O) - 

E m(x) 
Xce 

The two functions are related by 

Bel(X) E m(Y); 
YCX 

the belief in a set of propositions is the sum of all the basic probability numbers 

assigned to subsets of that set. 

The purpose of Dempster's rule is to provide a means of combining bodies 

of evidence to produce a single overall representation of all the available evidence. 

In Shafer's formulation this was applied as the combination of belief functions to 

provide an overall belief function, which is called the orthogonal sum. The two 

component belief functions must be defined over the same frame of discernment 

and must represent belief derived from distinct bodies of evidence. The resultant 

belief function will reflect the combined weight of the two bodies of evidence and 

will have resolved any conflict that may have existed between the two component 

belief functions. Dempster's rule combines belief by taking the product of 

component basic probability numbers and conflict is resolved by renormalising the 

total probability mass involved in conflict, across the rest of the system (the exact 

details of the rule are given in section 2.4.2). 

By using multiplication in Dempster's rule we are assuming that component 

basic probability, numbers are independent and hence the requirement that the two 

belief functions to, be, combined using Dempster's rule should - be derived from 

distinct bodies of evidence. It is this requirement that has attracted the most 
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concern about Dempster's rule; for probability we can define independence, but to 

define, independence of- evidence is more difficult. It is also subject to the same 

criticisms of assuming independence, as discussed above, however, as mentioned, it 

is an approximation for when we do not know what dependence relationship, if any, 

there is between evidence. 

One of the earliest practical applications of Dempster's Rule was presented 

by Garvey, Lowrance and Fischler (1981). This involved identifying from a set of 

five known emitters, which one emitted a particular electromagnetic signal. The 

received signal can be matched to the possible emitter signals, providing a 

probability interval for each. Further receivers can provide similar information and 

the evidence from each can be combined using Dempster's Rule. 

Shafer's theory of belief functions combined with Dempster's rule does have 

a serious computational drawback, as pointed out by Barnett (1981). Belief 

functions ý are defined 'over ,a frame, of ý discernment 0 the - elements of which 

represent all the possible values of some quantity 0. As Shafer (1976) states, "the 

propositions of interest are precisely those of the form 'The true value of 0 is T', 

where T is a subset of E), " thus every member of the power set 2e is assigned a 

belief. In general, Barnett-points out, the computation of a belief function from a 

basic probability assignment - perhaps derived from some experiment - will require 

time exponential in the size of the frame of discernment., This complexity is 

exaggerated when belief functions are combined using Dempster's rule. Barnett's 

proposal to reduce this from exponential to linear time involves partitioning the 

problem space in several independent ways. In Shafer's terms he reduces the 

problem from general belief functions, for which there may be several focal 

elements, to simple support functions, those which have only one focal element, 

called the focus. Simple support functions assign support to a single possible value 

of the quantity of interest, 0, and its negation. 
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One of the most interesting applications of Dempster's rule and the theory of 

evidence is towards non-monotonic reasoning. The idea of using uncertainty values 

in default reasoning had previously been presented by Rich (1983) when she 

proposed using certainty factors to label the arcs of semantic nets, thus qualifying 

the properties which they represented. This was extended by Ginsberg (1984) using 

probability intervals and using Dempster's rule to resolve conflict. One of the main 

issues of non-monotonic reasoning is coping with situations in which different 

pieces of information provide contradictory evidence for the same conclusion. 

Dempster's rule provides a method for dealing with such conflict with the following 

advantages: 

(a) its commutativity and associativity ensure that it is not order dependent -a 

failing of some non-monotonic systems, 

(b) Inapplicable rules provide no knowledge about a conclusion and therefore do 

not affect the final conclusion drawn from relevant rules, 

(C) When two intervals are not in conflict (i. e. both in favour or both against) 

Dempster's rule corresponds to probabilistic disjunction, 

(d) Application of a non-monotonic rule can never outweigh, or affect a logical 

certainty (true or false), however the combination of definitely 'true with 

definitely false is undefined. Such a situation can only occur when there, is 

an inconsistency inherent in the database. -- 

Ginsberg then goes a stage further and constructs meta-rules to be applied 

using Dempster's rule. In general we may have rules 

rule 1: if X isa Y then X isa Z [a b] 

rule 2: if W isa Y then W isa Z [c d] 
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where [a bl'and Ic di are probability intervals on the rules, and W, X, Y and Z are 

some properties. 'We are essentially defining the Z-ness of something due to its 

Y-ness according to whether'it is an X or a W. However if X is a class that is a 

superset of W, or X is a supertype of W, then we should not apply rule I when we 

can apply rule 2. As it stands'both would be applied to obtain a new interval from 

combining [a bi and Ic d]. To avoid this Ginsberg proposes a rule of the effect ' 

rule 3: if rule 2 can be applied then 

rule I can be applied [0 0] (i. e. it can not) 

On proving that aW is aY the system would evaluate rules I and 2 

combining [a b] and [c d], however it would also evaluate rule 3 which would have 

the effect of taking away again the [a b] of rule I to leave Ic d]. This would thus 

generate the correct probability interval on W being a Z. This use of Dempster's 

rule does depend on it being reversible which Ginsberg states it is, in his own 

words, "nearly". However, he does not explain how and nor does he give any 

worked examples. Although an interesting application, it seems rather misdirected. 

Shafer (1976) discusses at length the concept of "independence of evidence" as a 

requirement for the use of Dempster's rule, it being an adaptation of the disjunction 

of independent probabilities. The non-monotonic use of Dempster's rule, that 

Ginsberg is proposing is for situations in which the evidence is quite clearly not 

independent - the application 'of rule 2 precludes the use of'rule I when the X and 

W can be the 'same thing. Under these circumstances they are in fact mutually 

exclusive. 

Gordon and Shortliffe (1984) apply the Dempster-Shafer theory of belief 

functions to the bacterial organism identification problem that was modelled by 

MYCIN (Shortliffe and Buchanan, 1975). The theory was applied to this area 

because of the way in which it could be used to handle evidence bearing on 

categories of diseases, as well as specific diseases. Defining the domain in terms of 

I- 34' 



a strict hierarchy of hypotheses allows the subsets of 2() to be restricted. They 

consider an example in which one is trying to identify the cause of a liver disorder, 

cholestatic jaundice. It could be due to intrahepatic cholestasis (i. e. a problem in 

the liver itself) or extrahepatic cholestasis (external to the liver). These two could 

be caused by hepatitis (H), cirhossis (C) or Oral contraceptives (0) in the first case, 

or gallstones (G) or pancreatic cancer (P) in the second. From this information we 

construct the hierarchy for Cholestatic Jaundice: 

HCOGP 

HCO GP 

HC0GP 

where HCOGP represents, cholestatic jaundice itself, and is the disjunction of all 

possible causes, HCO represents intrahepatic cholestasis and GP extrahepatic 

cholestasis. The frame of discernment, E0, is (H, C, O, G, P) and the set of all subsets 

in the hierarchy of-hypotheses, excluding E), is called T, (HCO, GP, H, C, O, G, P) 

which is a subset of 2E). By considering only this subset of 2e, some of the worst 

computational inefficiencies of the Dempster-Shafer. theory can be avoided. 

The only difficulty arises when considering disconfirmatory evidence, which, 

when combined with the evidence for the elements of T, can provide evidence for a 

diagnosis that does not belong to T. It is the generation of such non-interesting 

subsets, that causes the computational inefficiency of the Dempster-Shafer theory, 

and that this hierarchy based approach attempts to avoid. Gordon and Shortliffe 

therefore propose an approximation to Dempster's rule that attributes any evidence, 

that would otherwise be attributed to a set not in T, to the nearest ancestor of that 

set that is in T. For example the basic probability assignment for NOT H combined 

with that for T could assign non-zero belief to CO. This belief would instead be 

assigned to HCO. The scheme provides a good way of evaluating belief in problems 

which can be represented in this hierarchical manner, however, under certain 
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circumstances, the combination of disconfirmatory evidence can be order dependent. 

The authors state that this is avoided by combining evidence in a breadth-first 

fashion, from higher to lower levels, through the tree. in conclusion, they suggest 

further conventions would be required for an actual reasoning system and also that 

the techniques probably do not have general appeal-but could be very suitable for 

hierarchical knowledge bases. They also briefly, mention the problem, associated 

with any interval belief system, that there is not likely to be a "Correct" approach to 

how beliefs should be used and compared, once evaluated. 

Summary 

There are a variety of ways of representing knowledge and of reasoning 

within that knowledge and all probably have their uses under different 

circumstances. The approach of the research for this thesis, to address the problem 

from a logic programming stand-point, was to provide a mechanism in which the 

domain knowledge is separate enough from the control of the reasoning process to 

allow an easier analysis of the knowledge and its interdependences. The uncertainty 

mechanism is designed to have enough generality to broaden its applicability beyond 

a limited domain, ý but at the same time to define bounds so that applications 

maintain the, theoretical justification of the mechanism. -It is also hoped that the 

potential for non-monotonic applications can be exploited within -the system, 

however, this was of less importance than the provision of a general open-world 

uncertainty calculus. The result, was the-theory, of Support Logic -Programming 

(Baldwin, 1986, Baldwin and Monk, 1987, Baldwin - 1988) which is defined, and an 

implementation explained in the following chapters. 
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Chapter 2. The Theory of Support Logic Programming 

2.1 Introduction 

In Prolog we assume a closed world in which the non-assertion of a fact is 

equivalent to the assertion of its negation. This does not allow for the possibility of 

representing information to be unknown i. e. neither true nor false. To represent 

such information we need a multi-valued logic, and logics involving the use of 

probabilities and possibility values etc. have been produced. Both these, however, 

are still equivalent to using a closed world assumption because of the constraints 

Prob(p) -I- Prob(NOT p) and Poss(p) -I- Poss(NOT p). In Support Logic we 

relax this constraint to S(p) :51 S(NOT p) where S(x) stands for the "support" for 

x. In this way every assertion requires a support for and a support against in order 

for it to be fully specified within the system. This corresponds to an open world 

and allows us to express not only uncertainty of information (truth values between 

zero and one), but also ignorance of information where the truth values are defined 

only to be within a certain range and not necessarily to have a point value. 

Another characteristic of Prolog is - that its proof mechanism uses a depth 

search of the proof tree. This works well in a system where assertions are either 

true or false because, in order to prove a theorem which has several different proof 

paths, the first proof path used proves the theorem as well as any other., By 

backtracking, Prolog , allows alternative proof paths to -be "used thus providing 

different proofs and these further proofs of a theorem may result in different 

variable instantiations or may reprove the theorem using the same variable 

instantiations. 

In Support Logic Programming each proof path may provide only partial 

support for particular variable instantiations., The proof paths, so involved, each 
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correspond to a method by which a query can be satisfied or a theorem can be 

proved. Whereas in Prolog reproving a goal for the same variable instantiations is 

of little value, in Support Logic it is of enormous importance and we will therefore 

define a distinction between the terms "solution" and "proof". The solution of a 

query is the particular combination of variable instantiations necessary to answer the 

query or prove the theorem whereas a proof is the chain of argument, through the 

knowledge base, that generated the solution. In this way a theorem may have more 

proofs than solutions and, in particular, a query containing no variables can 

necessarily have only one solution but may have several proofs. 

As a Support Logic query, is reproved,, more support for or against a 

particular solution may be obtained and these individual supports need to be 

combined to provide an overall support for the solution. In a court case, a suspect 

may be found guilty due to the weight of evidence against him or her, however it is 

possible that none of the evidence,, when taken alone, would be sufficient to make a 

conviction. Similarly, in a Support Logic Programming system we have to consider 

together all proof paths, for the solution to a query, in order to be able to compute 

an overall support for the solution. The calculus for this computation must reflect 

the intuitive idea that extra Positive support from an independent source must 

increase the overall support, and negative support should decrease it, while at the 

same time resolving any resultant conflict. This is equivalent to weighing up 

evidence in court. When considering non-independent evidence, the different 

proofs are used to converge to the overall support. Each proof provides a different 

aspect on the same problem and, when taken together, can provide a more accurate 

picture and resultant support pair. I 

In this chapter, we will first lay out a syntax in which Support Logic 

statements can be represented within the style of syntax of logic programming. By 

so doing, it is intended that a knowledge base can be constructed that maintains its 
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reading as a series of logical rules and facts, but, at the same time, allows the truth 

of these to be qualified. 

Having established a representational syntax, we will define the way in 

which supports are combined through a logic proof path, and how supports from 

different proofs are combined to provide an overall support for a particular 

solution. These effectively have their own calculi because the underlying 

assumptions for each need not be the same, however the model defining each 

calculus is based on the same principles: there are two statements with associated 

support pairs which are to be combined to provide a new support pair. In the case 

of the logical connectives, the resultant statement, will be a new statement; in the 

case of combining supports for the same conclusion, the resultant and two original 

statements will all be the same, however the support associated with the resultant 

statement will represent the overall support obtained from the two proofs 

corresponding to the original statements. 

'The last part of this chapter defines a mechanism for semantic unification 

whereby non-identical terms that describe the same concept can be partially unified. 

In this way, there can be support associated with not just the truth of the statement, 

but also the degree to which that statement matches the goal under consideration. 

2.2 Support Logic Representation 

To represent a statement in the open world of Support Logic we require two 

pieces of information - the support for and the support against the statement. To 

do this we have a lower and an upper'support, Sl and Su respectively, for every 

statement. The lower, or necessary, support is that amount of support, between zero 

and one, that can definitely be attributed to the truth of the assertion.. The upper, 

or possible, support, also between zero and one, is that amount of support that can 

Dossibly be attributed to the truth of the assertion. The support for a statement is 
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interpreted as being at least as high as the necessary support, SI, but possibly as high 

as the possible support, Su, thus lying in the range Sl to Su, where Su must be 

greater than or equal to SI. The support pair on a statement also provides us with 

the negative information by using the complement of the two values. The support 

for the negated statement lies in the range I-Su to I-SI. In general we have the 

following rule which will be important in the derivation of the calculus for 

combining supports (, means not): 

SU(P) -I- Sl(-, P) (2.1) 

The size of the range of values, between Sl and Su, associated with the assertion, we 

will call the "unsureness", and this represents the-ignorance of information about the 

assertion. Notice the difference between unsureness and uncertainty: uncertainty is 

the abstract notion concerned with the inability to determine whether an assertion is 

true or false, whereas unsureness is a quantity measuring the degree to which an 

assertion can neither be determined to be definitely true nor definitely false: it is 

not a measure of uncertainty. Point probabilities can be used to model uncertainty 

but they can not represent unsureness. - ,IIý. III 

Consider the following examples, in which the syntax used is that of the 

Prolog implementation of Support Logic Programming, Slop, described in chapter 3. 

The support pair, enclosed in square brackets, to represent a closed interval, is 

preceded by a colon and forms the body of a Prolog goal. The assertion 

good_at_tennis(john): - : [0.8,1]. 

says that the support for "john is good_at_tennis" is 0.8 but gives ý no support for 

john being not good_at_tennis. - 
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good_at_tennis(peter): - : [0,0.31. 

says that there is no support for "peter is good_at_tennis" but that there is support 

of 0.7 (1 - 0.3) for the assertion that peter is not good-at-tennis. 

good_at_tennis(geoff): - : [0.6,0.7]. 

says there is support 0.6 for asserting that geoff il good_at_tennis, but also support 

0.3 (1 - 0.7) for asserting that he is not good_at_tennis, leaving unsureness of 0.1. 

Such a situation may arise from watching geoff on two separate occasions, at one of 

which he looked quite good, at the other of which he did not look very good. 

A support pair of [0, I] corresponds to complete unsureness - nothing at all is 

known abouv the assertion - and is the default support pair associated with all 

statements not explicitly declared in the knowledge base. The support pairs [1.1] 

and [0,0] correspond to definitely true and definitely false respectively, so that if a 

support logic program consisted -entirely of assertions with these support pairs it 

would be equivalent to a Prolog program. When the necessary and possible supports 

for an assertion are equal, we are stating that there is no unsureness associated with 

the assertion and, by forcing this equality upon an entire knowledge base, we reduce 

the model from an open to a closed world system. In general, the supports 

themselves are not probabilities, but the support pair can be considered to be an 

interval which contains the probability of the assertion. 

In a Support Logic rule the support is interpreted as the support for the head 

of the rule given that the body is definitely true and is called a conditional support. 

The syntax in Slop is to have a Prolog rule in which the body is followed by a colon 

and then the square - bracketed support pair., For example 

good_at_tennis(X): - 

accurate_server(X) : [0.8,1]. 
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This rule is interpreted as "X is good_at_tennis" is supported to a degree between 

0.8 and I if "X is an accurate_server" is true, where true means supported to degree 

2.3 Combining Supports across the Logical Connectives 

2.3.1 Conjunction and Disjunction 

In a multi-valued logic, such as Support Logic the truth value attributable to 

the conjunction of two statements will be a function of the truth values of each 

statement. A t-norm, T, generalises "and": 

T: [0,11 x [0,1] -ý+ [0,11 sUW thaiý'- 

(i) T(aj) ma 

(ii) T(a, b) m T(b, a) 

(iii) T(a, T(b, c» = T(T(a, b), c) 

(iv) T(a, b) k T(c, d) if a 2: c, bkd 

Examples of t-norms are, T(a, b) -aAb where A means minimum, as used in fuzzy 

logic, and T(a, b) - a. b where ". " means product, as used in probability under 

independence. Associated with a t-norm there is also a t-conorm, S, which 

generalises the disjunction, "or". 

S: [0,1 ]x [0,1 ] 
. --# [0,1 ] such that 

(ij S(a, O) -a 

(iii'), (iv') as (ii), (iii), (iv) for the t-norm, T. 

The t-conorm is related to the t-norm, by the duality condition 

S(a, b) =- I-T ((I -a), (I-b)) (2.2) 

and examples corresponding to those above are 
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S(a, b) -avb, where v means maximum, and 

S(a, b) -a+b-a. b. 

Further discussion of t-norms can be found in Baldwin (1985) and Yager (1982). 

In Support Logic, we are defining an interval rather than just a point value 

and we must therefore establish how to evaluate both the lower and upper supports 

for compound propositions. Using the notation laid out in the previous section, the 

lower support is the support for the proposition and the upper support is the 

complement of the support against the proposition. The support for is therefore the 

truth value for the proposition and a t-norm can be used directly to evaluate the 

support for a conjunction of propositions, or the necessary support for the 

conjunction. The possible support needs to be evaluated by relating it to the 

support against the proposition using equation (2.1), Su(A) -I- Sl(, A). 

Su(A & B) -I- SIHA & B)) ý, ý 

=I- Sl(-, A or -, B) 

Since, for a particular t-norm characterising the conjunction there will be an 

associated t-conorm, S, characterising the disjunction, we can evaluate the possible 

support for a conjunction as 

Su(A & B) -I- Sl(, A or -, B) 

=I- S(Sl(-, A), Sl(-, B)) 

=I- S(I - SU(A), l - Su(B)) using (2.1) 

- T(Su(A), Su(B)) using (2.2) 

The support pair for a conjunction is therefore evaluated by combining the 

necessary supports of the component propositions and the possible supports of the 

component propositions using the same t-norm. 
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SI(A&B) T(SI(A), SI(B)) 

Su(A&B) T(Su(A), Su(B)) 

For a disjunction, the support for, or necessary support, will by definition 

be evaluated using the corresponding t-conorm 

SI(A or B) = S(SI(A), SI(B)) 

as, in fact, will the possible support: 

Su(A or B) I Sl(-4A or B)) 

I Sl(-, A & -, B) 

I T(Sl(-, A), Sl(-, B)) 

I T(I - Su(A), I- Su(B)) 

S(Su(A), Su(B)) 

Apart from the restrictions imposed by the definition of a t-norm, there are 

further constraints determining the limits of the values assigned by a t-norm. These 

are most easily appreciated by considering the liquid support model represented by 

figure 2.1. 

A -, A A or -, A 
Sli I-Sul Sul-Sli 

S12 

I -SU2 , 

SU2-SI2 B or B 

P, 
A&B 

P2 
&B 

P3 
B 

P4 ps pe 
A& & 

P7 P8 Pq 
A A or -, A 

Figure 2.1: * Liquid support model. 
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In this model, each piece of information about the two supported statements, 

A and B, is associated with a section of the box, thus A, A and A or -, A are 

associated- with the vertical strips, and B, ý, B and B or -, B are associated with the 

horizontal strips. Where the strips overlap to form a cell in the box, the proposition 

represented by that cell is the conjunction of the propositions associated with the 

two strips. The supports assigned to that-cell will be defined by a t-norm evaluated 

for the supports on the two component propositions. 

The box contains a unit amount of liquid support that is free to flow 

between any of the cells subject to the-constraints that the total support in each 

strip must be equal to the support assigned to, the proposition associated with that 

strip. If we denote the supports in each cell, by p, to p., as labelled, then we have 

PI + P2 + P3 ý S12 

P4 + PS + P6 w I- SU2 

P7 + Ps + P9 ý SU2 - S12 

P, + P4 + P7 = Sli 

P2 + ps + P8 M I- Sul 

P3 + P6 + PO m Sul - sh 

Furthermore we know that 

i pi -I for i-I to 9 F 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

(2.9) 

however this is deducible from the equations above and does not provide any extra 

information. 

Since each strip contains a fixed amount of support, the support assigned to 

any particular cell, by a t-norm,, can not exceed the support for either of the two 

component strips, thus the maximum value must be the minimum of the two 

component supports, e. g. P, :5 Sll A S12, P2 :5 I-SUl A S12, where A again means 
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minimum. We can immediately see that the lower limit on the support for a cell 

can not be less than zero, however, it may have to be greater than this, depending 

on the component supports. Let us consider support pl, derived from Sli and S12. 

If p, is zero then from (2.3), P2 + P3 - S12 and from (2.6), P4 + P7 ý Sli. However, 

the only constraints on Sli and S12 are that they lie between zero and one, thus the 

sum of the two can be greater than one, and (2.9) would be violated. To insure that 

this does not happen we must assign to p, at least as much support as the total 

support would otherwise exceed unity, i. e. P, ý: S11 + S12 - 1. In this case 

P2 + pS = S12 - (Sll + S12 - 1) im I- Sll 

P4 + P7 = S11 - (Sh + S12 - 1) -I- S12, and 

P1 + P2 + PS + P4 +P7 ý S" + S12 -I+I- Sll +I- S12 -I 

and (2.9) is not violated. In general the constraints on the value of a cell, p, are 

characterised by 

a+b-IvO: 5p: 5aAb 

where a and b are the supports on the component propositions and v means 

maximum. This restriction must similarly be imposed on the t-norm, so that 

a+b-Iv0 :5 T(a, b): 5 aAb 

Notice that we do not necessarily use the same t-norm on each cell in the box since 

with each t-norm there is an associated, assumption about the relationship between 

the component propositions. , 
In -every case except independence, the dependence 

between A and B will not apply to A and -, B and thus a different t-norm would be 

applied to each. The choice of the t-norms will not, however, be arbitrary since the 

dependence between A and B will determine the dependence between A and -'B. 

For instance if A implies B then A and -, B are mutually exclusive; the t-norm for 
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p, will correspond to the maximum possible value, the minimum function, and for 

P4. to the minimum possible value, T(a, b) =a+b-IY 

Although the range of values for the t-norm are restricted, the choice of t- 

norm is not uniquely determined and we have to make some assumption about the 

relationship between the statements for which we are combining supports; are they 

independent, or mutually exclusive, or do we not know? To produce a general 

support logic system, it may be considered desirable to 'allow the users to define 

their own t-norm for particular models, however there is perhaps a limit to how far 

one ought to take the generalisation. A difficulty with such a system is that users 

may want to use different assumptions in different places and this would lead to 

immensely complicated models as well as making it very difficult to produce an 

efficient evaluation mechanism in the Support Logic system itself. Furthermore, it 

is the algorithm for the evaluation of the supports that is going to determine the 

validity of the model and in proposing the theory of Support Logic, the aim is to 

provide a system in which the support evaluation mechanism is mathematically 

justified. This can not be guaranteed if the user is able to define the algorithm 

himself. 

in general, in the absence of any extra information, we want to define a t- 

norm that makes no explicit assumption about the relationship between the 

component statements. The t-norm should not show any sort of bias or prejudice to 

a particular relationship, and this we achieve by maximising the entropy of the 

system with respect to the supports to be assigned to each cell, subject to the 

constraints of the model. The entropy of the system is defined by 

-K. F, Pj. In Pi (2.10) 

where In is the natural logarithm function. The constraints of the model are 

defined by the equations (2.3) to (2.8) and we can find the maximum entropy 
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subject to these constraints by using the mechanism of Lagrange multipliers. This is 

performed by differentiating and equating to zero the sum of the entropy equation 

and all the constraint equations to give the following, in which the Ai are the 

Lagrange multipliers on the constraints: 

In Pi dpi + 

, \, (dp, + dP2 + dp. 
1) + 

A2(dp4 + dps + dpe) + 

)ý3(dP7 + dp8 + dpg) + 

)ýjci p, + dp4 + dP7) + 

AS(dP2 + dps + dp8) + 

A, 
B(dp, 3 + dp, 

5 + dpg) =0 

We now group together the different terms to obtain 

(In p, + Al + '\4 )dpl + (In P2 + '\l + A6)dP2 + (in P3 + '\l + \6)dP3 + 

(In P4 + A2 + \4)dp4 + (In P, + ý2 + AS)dps + (In P6 +"\2 + A6)dp6 t 

(In P7 + '\3 + '\4)dP7 + (In p. + A3 + AS)dps + (In p. + A3 + A6)dpq =0 

in which we can equate the brackets to zero and so derive an equation for each of 

the supports in the liquid support-model. 

In pl + A, + X, 4 - 0 pl - e-)ýl-A4 

In p� + \i + \s - 0 p2 - 

In p. +, A, + \6 - 0 P, 3 - 

In P, + 'X2- + Ä4 0 P, 4 - e-A2-\4 

in P, + 'ý2 + xs " 0- . -. X2-. XS PS -e 

In P6 + x2 + 'ý6 ý 0 P6 - 

In P7 + '\S + \4 ý 0 P7 - e-' 

In p. + A's + AS - 0 P8 - e-Ä3-As 

,, In p. + \� + ', \6 - 0, , pg - e-'\3-'\6 
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These values for the supports can be substituted into the constraint equations (2.3) 

to (2.9) to give 

S12 -+ e-ý' + 
I -SU2 =+ e--ý' + 
SU2-SI2 = e-A'(e-A' + CA' + e-A') 
sh = e-A(e-A' +e -A2 + CA). 

I -Sul - e-AS(e-Al + e-A2 +e -A3) 

Sul-sh = e-A6(e-Al +e -A2 + e- 
A3) 

(e-'\' + e- 
A2 

+e -A3 )(e-A" + e-\' + e-\') 

Multiplying the equation for p, by one, as defined by this last equation, gives 

e -Al-A4 (e-'\' + e- 
A2 

+ e-'\3)(e -A4 + e-Ar' +e -A6) 

which can be rearranged to give 

PI -e -A4 (e-Al + e-A2 + e-AS)e7A'(e-A4 + CAS + e-A6) 

= SILS12 

The support, p,, is defined by the product of the component supports, which 

corresponds to using the t-norm of multiplication. This turns out to be the case for 

all cells in the model. 

By using maximum entropy considerations we deduce that the least 

prejudiced t-norm. to use in the combination of supports in conjunction is 

multiplication, which in fact corresponds to an- assumption of independence. This 

does not mean that the statements are independent but only that such an assumption 

shows the least bias towards any of the propositions represented by the cells in the 

box. Furthermore by using this model, if we impose a closed world on the system, 

so that necessary and possible supports are always equal, and there is no unsureness, 

Support Logic will reduce to a probability model. 
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We now have the following definitions for the-combination of supports for 

conjunction and disjunction: 

SI(A&B) SI(A). SI(B) 

Su(A&B) Su(A). Su(B) 

SI(A or B) SI(A) + SI(B) - SI(A). SI(B) 

Su(A or B) Su(A) + Su(B) - Su(A). Su(B) 

As an example, let us assume the following data from a sample of one 

hundred teenagers: 

53/100 are described as good at tennis 

28/100 are described as not good at tennis 

the ability of the remaining 19 is unknown 

37/100 are described as good at hockey 

45/100 are described as not good at hockey 

the ability of the remaining 18 is unknown 

From this data-we can define the two support logic facts 

good_at_tennis: - : [0.53,0.72] 

good_at_hockey: - : [0.37,0.55] 

With the above data alone there is nothing to suggest any correlation between being 
I 

good at hockey and good at tennis and therefore, using the maximum entropy 

argument, we assume that the two skills are independent. The support pair for the 

conjunction 

good_at_tennis and good_at_hockey is [0.196,0.396] 

and for the disjunction 
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good_at_tennis or good_at_hockey is [0.704,0.874]. 

If. rather than the statistical data above, we were given the actual 

distributions so that we knew which teenager was good at what, the supports for the 

conjunction and disjunction could be derived directly from the data itself and it is 

likely that the independence assumption would be shown to be invalid. This does 

not, however, mean that the original assumption was unjustified, because we had no 

information from which to define what other dependence relationship there may 

have been. Furthermore, we are designing a system for which we want one 

assumption to be generally applicable across the whole model -and thus it can not 

reflect the specific dependences within a conjunction such as that above. By 

maximising entropy, we have a system that is applicable across most of the model, 

and where there is a known dependence, this can be, expressed explicitly in the 

structure of the model. 

2.3.2 The IF Conditional 

The other situation for which we must define how to evaluate supports in a 

proof path is in rules. A rule is used to derive support for a conclusion (the head 

of the rule) using the support for the body of the rule and the conditional supports. 

For example we can evaluate support for good_at_tennis(X) from the rule 

good_at_tennis(X): - 

III., , good_forehand(X) : [0.7,1]. 

and the fact 

good_forehand(henry): - : [0.8,0.9]. 

The most important point to notice about supports on rules is exactly what 

they refer to. They are called conditional supports because they represent the 
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support for the head of the rule conditional on the truth of the body. They are not 

the supports on an implication. in the above example, the rule states that the 

support for someone, X, being good at tennis, given that they definitely have a 

good_forehand, is [0.7,11. It does not mean that the statement "good_forehand 

implies good_at_tennis" has support [0.7,1]; such an interpretation only allows us to 

qualify the truth of the derivation of good _at _tennis 
and not the truth of the 

conclusion, good_ at_ tennis, itself. Because the supports on rules are conditional 

supports we are able to evaluate support for a conclusion directly from the rule. If 

the support for a person having a good_forehand is less than certain, then the 

support for that person being good_at_tennis must be correspondingly reduced; this 

is the intuitive notion that the calculus must represent. 

Using the supports on a rule as conditionals, the support for the head of a 

rule can be evaluated using the theorem of total probabilities, 

P(A) - P(AIB). P(B) + P(Al-., B). P(-, B) 

or, in support logic form, 

SI(A) - SI(AIB). SI(B) + SI(Al-, B). Sl(-, B) 

where SI(AIB) is the necessary support on the rule A: -B and SI(Al-, B) is the 

necessary support on the rule A: - not B, and each is a totally separate piece of 

information. Multiplication is used for the same maximum entropy arguments as 

expressed in the previous section. The rule 

good_at_tennis(X): - 

good_forehand(X) : [0.7,1]. 

tells us nothing about X being good_at_tennis if X does not have a good_forehand 

because, in this rule, we are only concerned with the truth of goodJorehand and 

not with the truth of not good_forehand. For instance, if we have the assertion 
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good_forehand(philip): - 10,01. 

(i. e. that philip definitely does not have a good_forehand) we will deduce from the 

rule complete ignorance for philip being good_at_tennis (unsureness of 1) - philip 

may in fact be considered to be very good_at_tennis, because he has a brilliant 

backhand so that the weakness of his forehand does not matter. If, however, we 

decide that having a weak forehand does suggest that one is not good_at_tennis 

then we need to assert this explicitly with a rule such as: 

good_at_tennis(X): - 

not good_forehand(X) : [0,0.4]. 

i. e. if "not X has a good_forehand" is true, or "X has a good_forehand" is false, 

then we can deduce that "X is not good_at_tennis" is supported to a degree 

between 0.6 (1 - 0.4) and I (I - 0). By having this particular pair of rules in our 

knowledge'base we are stating that a weak forehand does not detract from one's 

game (0.6) as much as a strong forehand can add (0.8). Such a pair of rules is a 

called a "probabilistic pair" and is identified by one rule having a body that is the 

exact negation of the body of the other rule. 

In short the first rule only carries conditional supports of the form SI(AIB), 

and not of the form Sl(AJB) and similarly the second rule only carries supports of 

the form SI(Al-, B) and not Sl(AjB). If this second rule has not been defined, the 

system behaves as though the rule has been declared with completely uncertain 

support, [0, I], in accordance with the open world assumption. In this case the 

necessary support for the head of the rule becomes 

Sl(A) - Sl(AjB). Sl(B) 

since SI(Al-, B) - 0. To evaluate the possible support for the head of a rule, we use 

the relationship defined by equation (2.1), as follows: 
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Su(A) -I- Sl(-, A) 

= I- (Sl(-, AIB). SI(B) + Sl(-, Al--, B). Sl(-, B)) 

- I- ( (I- Su(AIB)). SI(B) + (I- Su(Al-, B)). (I- Su(B)) 

In the case of the second rule, of the form A: - not B, being absent, we again 

assume a support pair of [0,1], so that 

Su(AI, B) I and thus 

Su(A) -I (I-Su(AIB)). SI(B). 

Referring to the knowledge base 

good_at_tennis(X): - 

good__., forehand(X) : [0.7,0.9]. 

good_forehand(john): - : [0.6,0.7]. 

we can derive support for john being good_at_tennls of [0.42,0.94]. If we now add 

the rule 

good_at_tennis(X): 

not good_forehand(X) : [0.2,0.4). 

to make a probabilistic pair, we can now deduce how good john is at tennis, with 

more accuracy, as [0.48,0.76]. With only the second rule of the pair, - we would 

deduce support of [0.06,0.821. Notice that the support pair derived from both rules 

together is contained by each of the support pairs derived from the rules taken 

alone. In each case, the extra information provided by the pair to the particular 

rule serves to tighten the interval. 

A special case is when the rules have supports, definitely true and definitely 

false as in 

18 



B: [I, I]. 

A: - not B: [O, O]. 

SI(A) - SI(AIB). SI(B) + SI(Al-, B). Sl(-, B) 

= I. SI(B) + O. Sl(-, B) 

= SI(B) 

Su(A) -I-(0- Su(AIB)). SI(B) + (I - Su(Al-, B)). (l - Su(B)) 

=I-( (I - 1). SI(B) + (I - 0). (l - Su(B)) 

=I- (I - Su(B)) 

= Su(B) 

The support for the head of the rule is identical to the support for the body and 

therefore this particular probabilistic pair is a type of equivalence. it is nof a true 

equivalence because the support evaluation can only be carried out in one direction, 

but the supports are equivalent. 

In general the supports for the head of a rule (e. g. A: - B : [S1(AjB), Su(AjB)]. ) 

are evaluated as 

SI(A) = SI(AIB). SI(B)+ SI(Al-, B). (I-Su(B)) 

Su(A)'- I-( (I -Su(AIB)). SI(B) + (I -Su(Al-, B)). (l - Su(B)) ) 

where SI(Aj-, B) and Su(Al-, B) may be zero and one respectively in the absence of the 

extra rule. 

In order to make use of the extra' information that two rules form a 

probabilistic pair, rather than representing separate proof paths, it is necessary for 

the system to search the knowledge base to find the pairs. This search has to be 

carried out every time a rule' is used and therefore reduces the efficiency of the 

system. This can be avoided by using a shorthand whereby the rule 
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A: - B: [SI(AIB), Su(AIB)], [SI(Al-, B), Su(AIB)I. 

is used to represent the probabilistic pair of rules 

A: - B: [SI(AIB), Su(AIB)]. 

A: - not B: [SI(Al-, B), Su(Ai-, B)]. 

Using this syntax a rule with only one support pair, 

A: - B : [SI(AIB), Su(AIB)]. 

is in fact equivalent to the rule 

A: - B: [SI(AIB), Su(AIB)], [0,11. 

representing a probabilistic pair. In this way all Support Logic rules can be 

considered to be probabilistic pairs, but in most of which the support on one of the 

rules is [0,1 ]. 

2.4 Combining Supports for Identical Solutions 

The calculus described in the above two sections provides a mechanism for' 

evaluating supports through a proof path to provide a support for7a solution. ý'- The 

second calculus of the Support Logic system is concerned with combining supports 

for identical solutions, to provide one overall supporVpair representing the support 

derived from the entire knowledge'base. ý Whereas- the Onsureness introduced at 

different levels of a proof path, on the whole, increases through the proof path, the' 

second calculus provides a mechanism whereby different sources'of uncertainty can' 

be combined to produce a more accurate overall picture, ' than that provided by any 

of the individual 'components. " , One such' mechanism' is' Dempster's, rule of 

combination as used in the Dempster-Sfiafer theory of beliefs (Shafer, 1976). '' 
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2.4.1 Belief Functions 

The theory approaches the problem of uncertainty from the p oint of view of 

set theory by assigning a belief to each of the valid propositions. The following 

terms are defined: 

0 is the set of'all possible outcomes (exactly one of which corresponds to the 

truth) the frame of discernment, 

2() is the set of all subsets of G, the power set, 

Bel: 2@ -- [0, I] is a belief function over e if and only if 

Bel(o) - 0, where 0 is the empty set, 

Bel(B) -I 

(2.11) 

(2.12) 

Vn and VAj, ... gAn subsets of 0 

Bel(AjU ... uAd 2: EBel(Aj) - EBel(AjnA 
i )+_... +(_ I)n+'Bel(A, n ... nAd (2.13) 

i<j 

The belief in a proposition A, represented as a set of possible outcomes and 

being a subset of 0, is the total belief for the proposition derived from all the 

propositions that imply A, i. e. all subsets of A. For example, suppose we select an 

envelope from a box knowing it contains the number, one, two or three, our frame 

of discernment 0 is the set (1,2,3). Using clues on the envelope, or previous 

statistical information, we may have a more informed opinion of what is in the 

envelope than just an assumption of equal probability; this information can be 

represented by a belief function Bel, over the power set 2 E). A belief of 0.1 that 

the number, will be, one, i. e. Bel((I)) - 0.1, must also contribute to the belief that 

the correct number will be contained in any of, the subsets of 0 -of which the 

number one is a member, i. e. (1,2), (1,3) and (1,2,3, ), the last of which must, by 

(2.12), have a belief of I because it is the frame of discernment, 0. It is this 
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condition, that the belief in a proposition must contribute to the belief in any 

consequences of that proposition, that necessitates the third constraint (2.13) on the 

definition of a belief function. Because of the interdependence of beliefs in the 

elements of the power set 29, it is not particularly easy to define a belief function 

directly from the available information. Another quantity, is the basic probability 

assignment (bpa). This function is uniquely associated with a belief function and 

therefore by defining a bpa, one can evaluate the corresponding belief function. A 

basic probability assignmqnt, m, is defined as m: 2E)---[O, I] such that 

MM =0 

EM(A) 
ACO 

(2.15) 

m(A) is the basic probability number (bPn) of the'set A and is understood to be the 

measure of belief that is committed exactly to A and NOT the total belief in A. 

The two conditions tell us respectively that our belief committed to the empty set 

should be zero, and our total belief has measure one. Furthermore, the total belief 

in A is the sum of all the beliefs committed exactly to subsets of A, 

Bel(A)- E m(y) 
. 

YCA 

and this uniquely defines the relationship betWeen belief functions and basic 

probability assignments. 

Going back to the example of the number in an, envelope, we, can now 

define the bpa. We stated that Bel((I)) - 0.1 and, being a single element set, the 

bpn must be the same, thus m((I)) - 0.1. Similarly for the sets (2) and (3), the 

belief and the bpn will be the same, let us say m((2))=0.2 and m((3))=O. The whole 

bpa is defined below, in table 2.1 along with the corresponding belief function. 
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A M(A) 

0.1 

(2) 0.2 

(3) 0 

(1,2) 0 

(1,3) 0.2 

(2,3) 0.3 

(1,2,3) 0.2 

Bel(A) 

0.1 

0.2 

0 

0.3 

0.3 

0.5 

Table 2.1: Example belief function and basic probability 

assignment. 

When we commit no belief to exactly (3), we are not stating that the number 

will not be a three, we are merely stating that we have no evidence that points only 

to the number being a three. From the table we see that we are in fact committing 

a belief of 0.2 exactly to the number being either a one or a three (m((l, 3))=0.2). 

The subsets for which the bpn is non-zero are called the focal elements of the belief 

function. In this case they are (1), (2). (1,3). (2.3) and (1,2,3). The belief of 0.2 

committed exactly to (1,2,3) reflects that the residue belief, after committing belief 

exactly to other subsets of 8, must be committed exactly to the frame of 

discernment itself, so that our total belief has measure one. Notice also that the 

sum of the beliefs Bel(A), for all A belonging to 219, is greater than one. Another 

important point about belief functions is that they, like Support Logic, are defined 

in an open world so that Bel(A) + Bel(-, A) :51. For example Bel((3)) =0 but 

Bel(-, (3)) . Bel((1,2)) - 0.3, not 1. 
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2.4.2 Dempster's Rule of Combination 

Suppose we have two basic probability., assignments, m, and. m with focal 
21 

elements A to, A and B to B respectively, then the bpn's-of each focal, element 1k11ý- 

can be depicted as segments of a line segment of unit length as -in 
figure 2.2. 

0 
ml(A) ... m, (A, ) 

... ml(A k) 

0TT 

m2 (131) m2 (B Pm2 (BI) 

Figure 2.2 Two basic probability assignments depicted by segments 

of the unit line. 

The orthogonal combination of m, and m2 can then. be represented (figure 2.3) as 

the unit square with total probability mass 1, in a, manner similar to. that of figure 

2.1. 

ý. 
ýýI M2 (Bl)- 

M2(B 

1(A1). rn2(B) 

M2 (BI)- 
01,1 

1ý 
IIII 

0TT 
m, (Al) ... mj(Aj) ... ml(A k) 

Figure 2.3 Orthogonal sum of two basic probability assignments. 

The bpa, m, commits vertical strips of probability mass to its focal elements, and 

m. commits horizontal strips to its elements. The intersection of two strips, say 
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those of probability mass ml(Ai), committed to A*, and (Bj), ýý committed to Bj- 
I M2 I 

forms a cell of probability mass m, '(A', ). m2(B i ), as picked out in the figure. This- 

probability mass'is committed to both Ai and Bi and therefore we say that the joint 

effect of the two bpa's is to commit probability mass of ml(A 1)'M2 (Bj) to AinBi., 

The probability mass and the subset to which it is committed can, thus be evaluated 

for every cell in the 'grid. A particular subset of E), say A, ' may in fact have - 

attributed to it the probability mass of more than one of those cells,, and so the total 

probability mass exactly committed to it must be the sum of these: 

m(A) E m, (A, ) 
-M2 

(B (2.17) 
A, nB, =A 

Notice that multiplication is again used for evaluating the bpn on individual cells. 

Although not explained by Shafer, this use of the product is justified by the same 

entropy maximisation arguments as those in section 2.3.1. The assumption of 

independence between propositions is the least prejudiced relationship that can be 

assumed when there is no information to suggest what the actual dependence 

relationship might be. 

A complication of this orthogonal sum arises when the intersection of some 

A, and Bj is empty, and therefore the associated probability mass ml(A, ). m2(B i) is 

committed to false, thus violating the constraint on bpa's (2.14), that m(O)=O. 

Probability mass so committed must therefore be redistributed; it can not'simply be 

discarded because'the' total probability mass would then be less than one, violating 

constraint (2.15). There are a number of ways of'performing this redistribution of 

what we shall call the conflict: -(i) We could commit it all'exactly to the frame of 

discernment, E), itself. This would have the effect of attributing all the -conflict to' 

uncertain and is the most pessimistic approach. - it could also however commit 

support to an element of 0 that was not actually one of the focal elements of m, 

and rn 2 
(A, to Ak and B, to BI). (ii) We could commit all the conflict to the union 

of all the focal elements Of m, and m2, i. e. Alu ... UAkUBjU ... UBI, This 
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resolves committing belief to elements of E) that are not focal elements of m, and 

m2. (iii) We can redistribute the conflict among the, cells that do not generate 

conflict. This could be done either by attributing the same amount to each cell or 

such an amount as to maintain the relative proportions. This last method is known 

as Dempster's rule and is the method used by Shafer in combining belief functions. 

Its advantages are - that it maintains the relative importance of the various 

propositions and also does not add undue amounts of uncertainty into the system. 

The total conflict, x will be the sum of all probability masses committed to 

the empty set, Le 

x-E ml(A, ) 
*M2 (Bj) (2.18) 

AinB i =o 

and this is redistributed around the system by multiplying by the renormalising 

factor K, given by 

IAI - x) (2.19) 

Dempster's rule states that, if m, and m2 are bpa's over the same frame E), then m, 

defined by, 

m(A) - K. E ml(Ai) 'M2 (B VA*ý, (2.20) 
AinB i =A 

with K defined by (2.19) and (2.18), is a bpa, also over the frame e, provided the 

conflict is less than one: x<1. This last condition ensures that there is not total 

conflict and therefore that the factor K is defined. When there is total conflict in 

the system, the two bpa's are in complete contradiction of each other and the 

orthogonal sum can not be defined; allowing such a sum to exist would be 

equivalent to admitting the logic statement A&-, A. 
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Dempster's, rule is used in Support Logic by considering the frame of 

discernment to be a Support Logic proposition and its negation, and the bpa is given 

by the support pair. Thus the support logic fact 

, A: - : [SI(A), Su(A)]. 

yields a frame of discernment E) - (A, -, A) and bpa 

M((A)) = Sl(A) 

M((-, A)) =I -Su(A) 

m((A, -, A)) = Su(A)-SI(A) 

If A is established from two separate proof paths with support pairs [Sll, Sui) and 

[S12, SU2], we can derive the two bpas (in equivalent logic syntax) 

ml(A) = Sh - 

ml(-, A) = I-Sul 

ml(Av-, A) = Sul-Sh 

m2 (A) S12 

m2 (-, A) I- SU2 

m 2(Av-, A) = SU2-S12 

A -, A A or -, A 
Sli I -Sul Sul-sh 

S12 A 

I -SU2 -nA 

SU2-SI2 A or -, A 

A&-., A 

:: 7A &A -nA 

A A or -, A 

Figure 2A Support pair combination using Dempster's rule. 

Dempster's rule can now be used to combine these to obtain an overall support for 

A, that accounts for both proof paths. 
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SI(A) = m(A) 

Su(A) =I- Sl(-, A) =I- M(-, A) 

The renormalising constant is K- 1/(I-ic) where X- Sll(I-SU2)+SI2(1-SUI), the sum 

of the two shaded cells in figure 2.4. 

SI(A) = K. E ,m 1(X)*M2(y) 
Xr)Y=A 

= K. (Sll. S12 + Sll. (SU2-SI2) + S12. (SUI-Sli)) 

= K. (Sli. Su2 + S12. (SUl-Sll)) 

Su(A) =I- 

I-K. ((I-Sul). (I-SU2) + (I-SUI). (SU2-SI2) + (I-SUO(SM-Sll)) 

K. (I/K - (I-SUl). (I-SU2)-(I-SUI). SU2-(I-SU2). SU1+(I-SUI). SI2+(I-SU2). Sll) 

K. ((l IC), - (I-SUl). (I-SU2)-(I-SUl). SU2-(I-SU2). SUI + PC) using (2.19) 

K. (l (I + SULSU2 - SM - SU2) - SU2 + SULSU2 - SM + SUl. SU2) 

K. Sul. SU2 
.IýII 

As in belief theory, if there is total conflict between the two conclusions 

being combined (i. e. the support pairs are [1.1] and [0.0]) then the renormalising 

constant, K, and thus the overall support, will be undefined. We can try to rectify 

this situation by considering the limiting case and assuming supports of [0,61 and 

[I-c, ll and letting 6 and c tend to zero. Ignoring second order terms, 

Sll. (I-SU2) - S12. (I-SUI)) 

+e+ 

+ E) 

si - K. (Sli. SU2 + S12. (SUI-Sll)) 

= L(o + (I + 

- 6/(S + f) 
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Su - K. Sul. SU2 

= 6.1/(6 + C) 

= Sl 

As always, when there is no unsureness in the support pairs to be combined, the 

overall support pair has no unsureness, and Sl = Su = 6/(6 + e). Since the order of 

combination is immaterial, we should allow 6 and e to tend to zero at the same rate, 

i. e. set them to be equal, thus 

St - Su = 6/26 - 1/2 

and in the limit the overall support pair is [0.5,0.5). We can perhaps justify the 

derivation of this support pair, and its interpretation that the conclusion is accepted 

or rejected with a fifty-fifty chance, but it is in fact derived from a knowledge 

base that contains an inherent inconsistency. In practical applications, such 

inconsistencies in the knowledge demonstrate that the model under investigation has 

not been properly defined, and are thus highly undesirable. We do not therefore 

want to gloss over them by deriving valid supports from invalid data, by evaluating 

the overall support as [0.5,0.5], the model would be able to produce supports for the 

top level conclusion. and, the inconsistency would go undetected. It is better 

therefore that, in an implementation of this calculus, the inconsistency shouldý be 

indicated, and the support evaluation terminated. 

An important point to notice, is the situation when one of the support pairs 

is completely uncertain, say [Sli, Sull - [0,1]: 

K- 1/(l - Sll. (I-SU2) - S12. (I-SUI)) 

- 1/(l - 0. (I-SU2) - S12. (I-I)) 

i. e. r. - 0, no conflict 
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si m K. (Sli. Su2 + S12. (Sul-Sli» 

- I. (0. SU2 + s12. (1 -0» 

= S12 

Su - K. SUI. SU2 

= I. I. SU2 

= SU2 

The overall support pair evaluates as the second support pair and thus the support 

pair of [0, I] contributes nothing to the overall support. 

2.4.3 Independent Viewpoints 

The evaluation of belief or support using Dempster's rule is performed by 

taking the product of the component beliefs or supports, and this is based 'on'an 

assumption of no knowledge about the actual relationship between pieces of 

evidence. It is used on the grounds of maximum entropy, but also corresponds to 

an assumption of independence. This relationship is coincidental, however the 

design of any model under this theory must account for the fact that the rule is 

used under the assumption of aý lack of alternative information. If further 

information is available that suggests some other relationship between evidence, then 

the design of the model must accommodate this. 'Shafer (1981) states that when 

using Dempster's rule "one is making a judgement that the two bodies of evidence 

are sufficiently unrelated that pooling them is like pooling stochastically 

independent randomly coded messages". The important point is that it is the 

evidence itself, and not the proposition, for which one has to consider whether an 

assumption of independence is valid. When creating, a knowledge' base involving 

uncertainty under an open world assumption, it is the uncertainty values, whether 

belief functions or support pairs, that carry most of the information. Any 

proposition can be derived within the knowledge base, and the truth of it will be 
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reflected in the uncertainty value attributed to it. In most cases this will correspond 

to completely uncertain -a vacuous belief function or a support pair of (0,11 - 

because the knowledge base contains no rules for or against the conclusion. Thus 

we can see that to judge independence we must look at the proof path that led to 

the evaluation of the particular uncertainty values. 

. In Support Logic we consider proof paths, for which this assumption is 

valid, to represent independent viewpoints. For example, there may be a number of 

ways of establishing the value of a particular design for a vehicle, it could'be based 

on fuel efficiency, ease of production, looks, safety and many other factors. All of 

these are independent and should be correspondingly combined to provide overall 

support-for the value of the design. Furthermore, independence of evidence does 

not mean that proof paths can not share intermediate goals, the looks of the vehicle 

may be improved by the use of a particular material, and this same material may 

have important effects reducing the cost, but at the same time the material could be 

highly inflammable and therefore dramatically impair the safety of the vehicle. One 

component of the design impinging on three different design considerations does not 

prevent those considerations from being independent because each one is concerned 

with a different aspect of that component. In designing a support logic knowledge 

base, such independence must be carefully considered in order to maintain the 

validity of the information being modelled. There are many occasions, however, 

when the knowledge should be modelled using an assumption other than 

independence, for instance mutual exclusion or strict implication. The first of these 

is not an-assumption under which one is often likely to work, and thus has not been 

implemented. The second, however provides a useful extra facility and is 

implemented using an alternative evaluation procedure in a construction called a 

bundle. 
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2.4.4 Bundles 

Bundles do not provide a different calculus for combining supports for 

identical solutions, but use an alternative evaluation method within the same 

calculus. This evaluation corresponds to an assumption of complete dependence. 

The original use of bundles, which gave rise to the name, was in circumstances 

where a subgoal of a rule was undefined in the knowledge base. This subgoal 

would thus be attributed support of [0, I] which would cause the support for the 

head of the rule to be evaluated as [0, l) as well. It is quite possible though that we 

could derive some support for the head considering only the remaining subgoals, 

and in this way the. lack. of a single piece of information would not have such a 

dominating effect. 

Consider a rule that attempts to establish that a car battery is flat; 

flat-battery: - 

car_will_not_start, 

lights-do-not_work, 

battery-ýonnected : [0.95,1]. 

The rule states that if the battery is connected but the car will not start and the 

lights do not work, then the battery is almost certainly' flat. We can also deduce 

support for the battery being flat if we have not checked if it was connected or if 

we have not tried the lights, or both. Thus we can define the rules: 

flat-battery: - 

car_will_not_start, 

lights-do-not-. ýWork : [0.7,1]. 

flat-battery: - 

car_will_not_start : [0.3,1 ]. 
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We have three valid rules for determining support for a battery being flat, 

each corresponding to a different proof path, but they are not independent; the first 

is a special case of the second, which is a special case of the third. Proving the goal 

using the first rule means that it will necessarily be possible to prove it from the 

second and third rules, and, similarly, the third rule necessarily proves the goal if 

the second does. To ensure that the correct evaluation procedure is used, these rules 

are taken together as a bundle: 

flat_battery: - 

car_will_not_start, 

lights-do-not-work, 

battery__qonnected : [0.95,11. 

car_will_not_s tart, 

lights-do-not-work : [0.7,1] 

car_will_not_start : [0.3,11. 

A gain the syntax used is that of Slop, the Support Logic Programming system 

described in chapter 3. The body of each rule in the bundle is separated by a left 

arrow, <-, and the head of the bundle is taken as the head for every rule body. 

We can again consider the evaluation with reference to a unit square, of 

probability mass, figure 2.5, similar to figure 2.4 in section 2.4-2. 
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Aý -, A A or -, A 
Sli I-Sul Sul-sh 

S12 

I -SU2 

SU2-SI2 A or '-, A 

A&-, A 

-, A. &A -, A 

A or -, A 

Figure 2.5: Support pair combination in bundles. 

Using Dempster's rule under the assumption of independence we used the product 

to evaluate the support in each cell in the grid, however, since the, support so 

evaluated is characterising the conjunction of two propositions we can -use any t- 

norm as defined in section 2.3. '1. In' the case of, bundles; we, are working on -an 

assumption of strict implication between the pieces of evidence generating, the 

ition A, and thus the support attributed to the cell corresponding to the proposl 

conjunction of A, from one proof path, with A from'another (cell . 1) needs to be 

maximised. The appropriate t-norm is therefore the minimum function. - as shown 

in section 2.3.1, and the support is SIIAS12. The same strict implication condition 

exists for the cell 5, ""A, and the support for this cell is (I-SUI)A(I-SU2). When- 

assuming independence, the same t'norm (product) could'be - used for all cells, 

because it follows that if A and A are independently derived, then so are A and -, A. 

However with a bundle, when we say A and A are derived with strict implication 

between evidence, then the evidence for A&-, A must be minimised and this is 

reflected in the t-norm T(a, b) - Ov(a+b-1), also shown in section 2.3.1. The 

supports attributed to the remaining cells can then be evaluated using the knowledge 

that each strip must contain the support attributed to the proposition associated with 

that strip as defined by the general constraint equations (2-3) to (2.8). 
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Before considering how to evaluate the total support for the proposition A, 

let us first look at how we should deal with any conflict that may arise. The 

support in cells 2 and 4 is already minimised and both may have zero support, 

however this is guaranteed for only one of the cells. If there was positive conflict, 

wýat would this mean? Our rules, between which we have stated there is a very 

strong dependence of information, have generated conflicting conclusions. If one of 

these rules is based on information (i. e. a set of subgoals) that forms a subset of that 

used, by another rule, then it should not be possible to generate conflict. The rules 

based on less information are included in the knowledge base in order to supplement 

the more informed rules in the absence of complete information, and not to 

contradict them. When evaluating overall support from bundles, the occurrence of 

conflict is therefore not permitted. As with Dempster's rule, where the occurrence 

of total conflict indicated an inconsistency in the knowledge base, so, in bundles, 

the occurrence of any conflict at all indicates that the rules have not been defined 

with the implicit relationships in mind. The support attributed to the cells which 

stand for an impossible conclusion must be zero. This now makes it easier to 

evaluate the overall support for a bundle, since the support can be taken to be all 

the support in the horizontal and vertical strips attributed to the proposition A, i. e. 

cells 1,2,3,4 and 7. Since these strips contain all the cells that provide any 

support for A, they must represent the support for the disjunction of the two pieces 

of evidence and thus the support can be evaluated using the t-conorm, S: 

S(a, b) -I- T(I-a, l-b) 

=I- (1-a)A(I-b) 

avb 

giving the general formulae 
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SI(A) SIIVS12, and 

Su(A) -I- Sl(-, A) 

-I- (I-SUI)V(I-SU2) 

= SUlASU2 

and there can be no conflict. 

It is interesting to observe that this support combination corresponds to 

intersecting the contributory support pairs. If there was positive conflict, say 

conflict -0v S12+(l -Sul)- I>o, 

then S12 > SM, or, by symmetry, Sli > SU2. We see that the lower support of one 

support pair will -be greater than the upper support of the other and therefore the 

intersection will not exist. The idea of combining supports by intersection ties in 

nicely with the interpretation of support pairs as probability intervals. A proof path 

for a proposition defines a way in' which the probability of that proposition can be 

narrowed down from the interval [0, I]. Different proof paths will provide different 

intervals, but each is known to contain the, true probability of the proposition in 

question, therefore this probability must be contained in the intersection of all the 

intervals. If any two support pairs do not overlap then the probability will be 

undefined suggesting that the knowledge base has not been properly constructed. 

This allows us to generalise the use of the bundle construction to include all rule 

forms and not just those for which there are common subgoals. 

2.5 Semantic Unification 

The standard form of 11 unification in Prolog 'and' other similar systems is 

syntactic. For two terms to unify, they must have the same structure - i. e. be the 

same predicate with the same number of attributes - and all the terms within that 

structure must also unify. One special case of unification is that a variable can 
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unify with anything. The idea of semantic unification is that terms that pertain to 

the same concept, but that do not match exactly, should be allowed to unify to some 

degree according to how close they are in meaning. For instance if we know a car 

goes "very fast"- then we also know that it goes "fast". On the other hand, if we 

know only that it goes "fast", we can not conclude definitely that it goes "very fast", 

but we can perhaps support the unification to some degree. We present here a way 

of carrying out such semantic unification within the Support Logic system, however 

its dependence on the use of Fuzzy Set Theory means that it can only be applied to 

quantifiable concepts such as "speed", "height", "brightness" etc. - Concepts like 

"beauty". "ferocity", "trustworthiness" etc. are not so easily, if at all, quantifiable and 

thus can not be used in the following theory. 

Let us assume the following knowledge base: 

sports-car(X): - 

goes(X, fast) : [Sll, Sui]. 

goes(astra, quite_fast) : [SI2, SU2]. 

Querying the knowledge base, as it stands, with 

?- sports-car(X). 

would return 

sports-car(X) : [0,1] 

because the clause goes(X, fast) is not in the knowledge base and so is completely 

uncertain. However fast and quite_fast are semantically unifiable, and we could 

represent this piece of information with a clause of the form 

fast: - quite-fast : [SIS, SU3]. 
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where S13 and Su3 represent the closeness in meaning of fast and quite_fast. Fuzzy 

set theory provides the means for evaluating S13 and Su3 - the degrees of support 

for the semantic unification. Remembering that the supports for a rule, say p: - q, 

are written SI(p1q) and Su(p1q), we can say that 

S13 = SI(fastlquite_fast) 

- I-Su(not fastlquite_fast) and 

SU3 = Su(fastlquite, fast). 

Fuzzy set theory states that the possibility ý of one fuzzy concept, say A. 

given another, say B, is defined as follows: 

Poss(AIB) w V(XA(71) A XB(17)) Poss(BIA) (2.21) 
17 

- max value of combined min set, and 

Poss(NOT AJB) V(XNOT 
A(17) A XB(ý)) Nec(AIB), (2.22) 

?I 

where XA(q) and Xa(rj) are, the fuzzy sets defining concepts A and B respectively, 

XNOT AW m1- XA(q), and V is the maximum function over all values of the 

index (in this case q). Thus to find the supports representing "fast given 

quite_fast", we need to evaluate 

Poss(fastlquite_fast) V(XFAST(17) A XQUITE_FAST(17)) and 
77 

Nec(fastlquite_fast) I Poss(not fastiquite_fast) 

V(x , 
NOT-F-AST(17) A XQUITE FAST(17))* 

77 

The relevant fuzzy sets and the evaluation of S13 and Sm are shown in figure 2.6. 
1 
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not fast quite_fast fas t 

........... I -S13 
......... SU3 

0 
0123456789 

speed (arbitrary units) 

Figure 2.6: Evaluation of supports representing "fast given 

quite_fast" using fuzzy set theory. 

We can go a stage further than this by using the probabilistic rule pair 

fast: - 

not quite_fast : [S14, SU4]. 

10 

where 

S14 SI(fastInot quite_fast) 

I-Su(not fastInot quite fast) and 

SU4 Su(fastInot quite_fast). 

the evaluation of which is shown in figure 2.7., 

not fast fast 
SU4 

1 -S14 

not quite-fast 

0 
0 23456789 

speed (arbitrary units) 

Figure 2.7: Evaluation of supports representing "fast given not 

quite_fast" using fuzzy set theory. 

10 
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Using these two support pairs ([SI3, Su3] and [S14, SU4]) we can proceed with, the 

support evaluation for sports_car as though we had asserted in the knowledge base 

the pair of rules 

goes(X, fast): -, 

goes(X, quite_fast) : [S13, SU3]. 

goes(X, fast): - 

not goes(X, quite_fast) : [S14, SU4]. 

or, using the shorthand, the single rule 

goes(X. fast): - 

goes(X, quite_fast) : [S13, SU3], [SI4, SU4]. 

A drawback of such a system is that it introduces quite large amounts of 

unsureness because we are unifying two fuzzily defined concepts. This is most 

noticeable in the case in which we carry out semantic unification between two terms 

that are the same e. g. fast and fast. Using normal syntactic unification these would 

unify exactly and completely, and it may be thought that they should do so in 

semantic unification as well. In fact the supports we would obtain are [0.5,1] for 

fast: - fast and [0,0.5] for fast: - not fast and not [1,1] and [0,0]. The non-fuzzily 

defined fast is equivalent to "fast is absolutely true", for which the fuzzy set is 

shown in figure 2.8a, whereas the fuzzy "fast" is equivalent to "fast is fuzzy true", 

with fuzzy set shown in figure 2.8b. Unification of "fast is absolutely true" with 

itself would be supported to degree [1.1] but, in semantic unification, we can only 

represent fast by "fast is fuzzy true" thus introducing the unsureness. 
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00 

(a) fast is absolutely true (b) fast is fuzzy true 

Figure 2.8: Comparison 'of fuzzy sets for fuzzy and non-fuzzy 

definitions of fast. 
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Chapter 3. Support Logic Programming in Prolog - Slop 

3.1 Introduction 

One of the most important aspects of Support Logic Programming is that it 

should represent a reasoning process based on logical deduction. Support Logic 

itself is derived as a theory for combining supports across logical connectives to 

provide overall support for a theorem. A system implementing the theory should 

therefore be based on a logical proof mechanism , and 'an obvious language to choose 

for this is Prolog. The advantages of using Prolog are that it has a syntax that is 

easily adaptable to incorporate support pairs, and it has a built in proof mechanism. 

The main disadvantage is that, it uses a depth search mechanism, whereas a'Support 

Logic system must find all proof paths to a query. which is best carried out by a 

breadth search. The'reason for Prolog behaving in this way is tha It the requirement 

is only to prove a query, and a single proof path is all that is needed to achieve this. 

There is no point in finding' several proof paths and thus-Prolog directs its search to 

find just one, as efficiently as possible. This predictable depth search mechanism 

gives the programmer the control necessary for writing systems programs, and is 

exploited in this implementation of Support Logic. At the same time however, it 

has to be adapted to produce all proof paths as in a breadth search, and this does 

raise problems. 

The description of this implementation is divided into three sections: the 

first describes the basic form of an interpreter for-extending the logical behaviour 

of Prolog to a system for Support Logic, in which the usual logical operators of 

conjunction, 'disjunction and negation, 'and' the if conditional, are interpreted with 

support evaluation. The second section describes those parts of the interpreter that 

are required for dealing with constructions that are peculiar to Support Logic - 
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bundles, semantic unification etc. The final section briefly describes the user- 

interface for the system. 

3.2 Basic Form of Interpreter 

3.2.1 Representation 

Support Logic is a generalisation of logic programming to include the use of 

uncertainty, and thus the syntax used in this implementation has been designed as a 

superset of that of Prolog. By doing this Slop can be used to query standard Prolog 

knowledge bases as well as Support Logic knowledge bases. A Prolog knowledge 

base is equivalent to a Support Logic knowledge base in which every rule and fact 

has support of [1, I]. When the knowledge base is queried, a theorem that would be 

proved in Prolog would be returned with a support of [1, I] in Slop, and one which 

failed in Prolog would be returned with support [0, I] - completely uncertain - by 

Slop. The open-world assumption of Slop means it only proves a theorem false if it 

returns support of (0,01, but in Prolog a theorem is assumed false if it is unprovable 

within the existing knowledge base -ý uncertain in Slop. The syntax of Slop is shown 

below in BNF notation and those parts that extend the Prolog syntax to that of Slop 

are emboldened. 

<statement> :: - <atom> .I 
<atom> :- <supported- atomilst>, 

<atom> <-> <atomllst> .I 

<atom> :- <- <bundle> . 

<supported- atomilst> : <support-pair> I 

<atomllst> : <Support-pair> 

<atoinlist> : <support-pair> o <support-pair> 

<atomlist>, 
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<support-pair> 

<atomlist> 

<bundle> 

<atom> 

<explist> 

<exp> 

<query> 

:: = ['<number> , <nu: nber>' I 

:: = <atom> I 

<atom> , <atomlist> I 

( <atomlist> sup_or <atomlist> 

<supported- atornlist> <- <supported- atomlist> 

<supported-atomllst> <- <bundle> 

<pred> 

<pred> <explislt> 

<exp> 

<exp> <explist> 

<const> 

<var> 

<fn> 

:: = <supported-atomilst> . 

The clauses of a Slop knowledge base that are to be supported as definitely 

true, can be written as Prolog clauses with no supports, so that <atom>. is 

equivalent to <atom> :- : 11,11. and <atom> :- <atom-list>. is equivalent to 

<atom> :- <atom-list> : 11,11. 

The remaining clauses of a Slop knowledge base, that need the supports to be 

explicitly declared, consist, in Prolog terms, of a clause with a single goal as body. 

The functor of this goal is : (colon) and is either unary, for facts, or binary, for 

rules. In both cases the colon is declared as an operator of precedence 1150 (for C- 

Prolog) so that it is the principal functor of all the clauses in which it occurs. The 

only operators with higher precedence are the prefix operators :- and ? -, for giving 

Prolog directives, and the infix operators : -, for defining clauses, and for 

defining grammar rules (see Clocksin and Mellish, 1981). By using operators in 

such a way, the system maintains a readable syntax, while also providing a 
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straightforward mechanism for -accessing the supports and, where necessary, the 

body of the Slop rules. -' 

3.2.2 Interpreting a Slop Knowledge Base 

When a Prolog knowledge base is queried, it is searched for a clause that will 

unify, with the query. This involves finding a relation with the same predicate and 

arity (number of attributes), and then, within that relation, a clause for which the 

attribute values unify. If 'this clause has no body then the query is satisfied and no 

, then the subgoals of more processing is necessary. If the clause does have a body, 

that body must in turn, be: interpreted to 'complete the proof of the query. Using 

the clause predicate of Prolog (see Clocksin and Mellish, 1981 for details of -use), a 

simple Prolog interpreter can be written as follows: -III- 

interp((X, Y)): - 

interp(X), 

interp(Y). 

interp(true): - 

interp(X): - 

clause(X, Y), 

interp(Y). 

, -This interpreter is, run by calling the Prolog goal lnterp(<query>) in which 

-<query> can be a single goal or a conjunction of goals. If it is a conjunction, the 

first clause will be used, causing variable X to be instantiated to the first conjunct, 

and variable Y to be instantiated to the remaining conjuncts. For example 
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<query> = a(P), b(P, Q), c(Q, R)' 

x= a(P) 

Y- b(P, Q), c(Q, R) 

A recursive call to Interp is now made, with the first conjunct as attribute value 

(a(P) in the example) matching the third clause of the relation (assuming this was 

not the tautologous conjunct true). This searches the knowledge base for a clause 

with a matching head. The body of the clause it finds will then be passed to 

another recursive call of'Interp. If the'clause was a fact, the attribute value to this 

call of Interp will be true, and the"goal will be satisfied using the second clause of 

interp. If the clause found is a rule, then the body of this, in being passed to 

interp, will initiate the interpretation process again. The cuts, in clauses one and 

two of the relation Interp, insure that conjunctions and the atom true are not 

processed by clause three. Were this to happen, Prolog would search the knowledge 

base for a clause with predicate /2 (comma) or true/0, both of which would 

generate database errors. By placing the cuts before the body of the rule, 

backtracking is still possible so that all solutions to a query can be found. This 

relation, Interp, provides a very simple interpreter that can deal with any 

conjunction of goals in a query, and will allow backtracking to search for all 

solutions. It will not, however, cope with disjunctions, negations, or goals involving 

Prolog system predicates. All of these have extra significance, and thus pose extra 

problems to the Slop interpreter, and will be dealt with later. To adapt this 

interpreter for querying Slop knowledge bases, we need to introduce a new attribute 

for the support associated with a satisfied query. , Let us define'the predicate for 

interpreting Slop knowledge bases to be 

slop-interp(<query>, <support>). 
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To evaluate the support, we must pick out the support pair associated with a clause 

and perform the necessary calculations between it and the support for the body of 

the clause. We can start with an interpreter defined as follows: 

slop-interp((X, Y: S_cond), S): - 

slop_interp(X, Sx), 

slop-interp(Y, Sy), 

andcombine(Sx, Sy, S-body), 

condcombine(S-cond, S_body, S). 

slop_interp((X, Y), S): - 

slop_interp((X, Y: [ 1,1 ]), S). 

slop-interp((: S), S): - 

slop_interp(true, [ 1,1 

slop-interp(X, S): - 

clause(X, Y), 

slop_interp(Y, S). 

in which the two goals_ andcombine and condcombine evaluate the support for a 

conjunction and the support for the head of a rule, respectively. 

There are several things wrong with this initial form of the interpreter, the 

most important of which is that it does not combine supports that are derived from 

different proof paths, 
- 
for a single goal. Different proof paths for a goal can be 

found using different clauses for that goal, so, to evaluate the support, we must find 

all the clauses satisfying that goal, evaluate the supports from them and then 

combine the supports to provide an overall support for the goal as a form of 
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breadth search. This we can do by using the Prolog system predicate bagof in the 

final clause of slop_Interp: 

slop_interp(X. S): - 

bagof(S l, support(X, S 1), S-list), 

samecombine(S_Iist, S). 

support(X, S): - 

clause(X, Y), 

slop-interp(Y, S). 

This generates a list of all the supports for goal X, evaluated from all the possible 

proof paths, and this list is then recursively processed by the relation sarnecombine 

which carries out the orthogonal combination of Dempster's rule. The other main 

shortcoming of slop_jnterp is that it does not allow the user to query the Slop 

knowledge base without a conditional support. If the user does not supply a 

conditional support then the system assumes one of [1, I], but it is likely that the 

user may want to know the support for a particular conjunction without a 

conditional support. To do this we have a clause for evaluating the support for a 

conjunction that can be called either from the top level by a query, or by the clause 

evaluating support from a Slop rule. The query itself is tested for having a 

conditional support and processed accordingly, but this has to be done by a 

different relation. The interpreter becomes: 

query__ýupport((X: S-cond), S): - 

I 

body_ýupport((X: S_cond), S). 

query__ýupport(X, S): - 

slop-interp(X, S). 
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slop-interp((X, Y), S): - 

slop_interp(X, Sx), 

slop-interp(Y, Sy), 

andcombine(Sx, Sy, S). 

slop_interp(X, S): - 

bagof(St, support(X, Sl), S_Iist), 

samecombine(S_Iist, S). 

support(X, S): - 

clause(X, Y), 

body_. ýupport(Y, S). 

body__ýupport((X: S-cond), S): - 

slop_interp(X, Sx), 

condcombine(S_cond, Sx, S). 

body_ppport((: S), S): - 

bodý_SUPPort(true, [ 1, 

body__wpport(X, S): - 

slop_inierp(X, Sx), 

condcombine([ 1.1 ], Sx, S). 

This, then, is the basic form of the interpreter for querying Slop knowledge 

bases, but it has to be adapted further to cope with more complicated queries. 

These are discussed below and the full listing of the interpreter is given in 

Appendix 1. Full details on the use of Slop are given in Monk and Baldwin (1987). 
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3.2.3 Sup'port Logic Disjunction 

A Prolog disjunction is proved true if either of the disjuncts are proved 

true, consequently if the first, is proved true, the second need not be queried. In 

Support Logic, allowing the truth of the disjunction to be qualified by a support 

pair means that both disjuncts can contribute support to the disjunction, and thus 

both must be evaluated, always. This distinction requires Slop to have its own 

disjunction operator, sup_or (or is not used because in some versions of Prolog it is 

nat asý'the 'Prolog a reserved word). This operator' is declared in the same forr 

disjunction operator, so that it , 'is used in exactly the same way - 

op(1l00, xfy, sup_or). In the simplest case, a Slop disjunction can be interpreted 

using 

I 

slop-interp((X_ sup__pr, Y), S): - "I I 

slop_jnterp(X, Sx), 

slop-interp(Y, Sy), 

orcombine(Sx, Sy, S). 

where orcombine performs the calculations for, Support, Logic disjunction.,, The 

complications arise when the disjuncts have variables in them, because variable 

instantiations occurring in satisfying the first disjunct will be carried over to the 

second. For instance, the knowledge base 

predl(a): - : [0.3,0.4] 

predl(b): - : [0.5,0.7] 

pred2(a): - : [0.6,0.8] 

pred2(c): - : [0.8,0.9] 

could be queried by 
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predl(X) sup__pr pred2(X). 

This should produce the three solutions: 

predl(a) sup__pr pred2(a) : [0.72,0.88] 

predl(b) sup_or pred2(b) : [0.5,11 

predl(c) sup_or pred2(c) : [0.8,1] 

however, with the interpreter as defined above, the first disjunct (predl(X)) will 

only be satisfied for X=a and X=b after which the first call to slop_interp will fail 

and the solution X=c will not be found. If, on the other hand, the disjunction is in 

the opposite order the instantiations of X would be a and c. This order dependence 

may arise whenever there are common' variables in the disjuncts, however when 

there are no common variables the above definition will work. To correct this, the 

relation requires an extra clause that checks for the existence of common variables 

and then evaluates the query correctly. Checking for the existence of common 

variables is straightforward enough, but the support evaluation requires rather 

unorthodox Prolog code in order to keep tabs on variable instantiations that have 

already occurred. 

The checking is carried out by a dedicated relation dIsj_sup, so the part of 

the interpreter for dealing with disjunctions becomes somethinglike: 
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slop_jnterp((X sup__pr Y), S): - 

common_vars(X, Y, Tx, Ty), 

disj_ýup((X sup__pr Y), Tx, Ty, S). 

slop-interp((X sup__gr Y), S): - 

slop-interp(X, Sx), 

slop-interp(Y, Sy), 

orcombine(Sx. Sy, S). 

The goal common_yars fails if there are no variables common to both X and Y, 

otherwise it succeeds, generating variable lists for each disjunct - Tx and Ty. 

Given that there are common variables in the disjuncts, the system queries 

the disjuncts independently to obtain a list of the solutions and the associated 

supports, for each disjunct. These lists are then processed to generate all the 

possible permutations of Solutions under the restrictions defined by the common 

variables. This processing is helped by using the ordering properties of the system 

predicate setof in querying the two disjuncts. When finding the common variables, 

the lists of the variables encountered in each disjunct, called templates, have the 

variables that are common to both disjuncts, at the beginning of the list. Thus if 

there are N common variables in the disjuncts then the first N elements - no more 

and no less - of one template will match identically the first N elements of the 

other template, and in the same order. For example the query 

p(A, B, C, D, E, ) sup__pr q(X, D, Y, A). 

will produce the -two templates IA, D, B, C, El and IA, D, X, Y], A and D being the 

common variables. These templates, plus a variable for the support pair, then 

become the terms for which all instances are to be generated, in finding solutions to 
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each respective disjunct, using setof. For the above example this would produce the 

two calls 

setof([A, D, B, C, E]-Sl, slop_jnterp(p(A, B, C, D, E), Sl), Setl) and 

setof([A, D, X, Y]-S2, slop-interp(q(S, D, Y, A), S2), Set2) 

generating the two sets, Setl and Set2, in which there would be no variables 

common to both Se I ts. These are then processed to produce all the possible 

disjunctive combinations by backtracking. This first stage can all be carried out at 

the top level, so the interpreter becomes 

slop-interp((X sup__gr Y), S): - 

common_vars(X, Y, Tx, Ty), 

setof(Tx-Sx, slop_jnterp(X, Sx), SetX), 

setof(Ty-Sy, slop-interp(Y, Sy), SetY), 

disj__ýup(Tx, Ty, SetX, SetY, S). 

slop_jnterp((X sup_qr Y), S): - 

slop_jnterp(X, Sx), 

slop-interp(Y, Sy), 

orcombine(Sx, Sy, S). 

The second stage is carried out by unifying the templates with the elements 

of their respective solution sets, thus identifying which disjuncts can occur together 

according to'-the instantiations of the common variables. The fact, 'however, that the 

sets have been produced using setof means that the solutions are ordered according 

to the common variables and this causes possible disjunctions to occur together. For 

example suppose we have generated the two sets, 
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[solution I -Sl, solution2-S2], and 

[solutionA-Sa, solutionB-Sb, solutionC-So] 

where S1, S2, Sa, Sb and Sc are the supports associated with the solutions. If 

solutionl and solutionA can be taken together as disjuncts, then it is possible that 

solutionl and solutionB, and solution2 and solutionA could form a disjunction. If 

however solutlonl and solutionil can not form a disjunction, then, due to the 

ordering of solutions, we now also know that solutionl and solutionC can not form 

a disjunction, so that this check need not be carried out. The only occasion when 

this does not hold true arises when the solution to a disjunct incorporates free 

variables, however, as explained in section 3.3.1, this is a highly undesirable 

occurrence in a Support Logic system and should be avoided anyway. 

Consequently this implementation assumes that such situations will not be 

encountered. The system, operates by checking the head of Setl against each 

element of Set2 until a possible disjunction pair is found. The same checking is 

then continued until there is a clash between common variables, at which point all 

Possible disjunctions involving the head of Setl will have been found, and the 

Process is repeated on-the next elements of Setl until there are no more. If any 

element of Setl fails to form a disjunction with elements of Set2 then the 

disjunction is proved with the most general instance of the second disjunct 

supported [0, I]. Similarly, when Setl is exhausted, any elements of Set2 that have 

not yet formed a disjunction, are used to prove the disjunction with the most 

general instance of the first disjunct supported to degree [0, I]. To insure these 

solutions are found, the system has to keep track of which elements have and which 

have not formed disjunctions. 

The unorthodox aspect of the code is due to having the system backtrack to 

Produce further solutions to the disjunction. Should the first elements of each set 

produce a valid disjunction, then a solution is generated. This is handled by a 
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single, clause which is satisfied by carrying out the relevant unification and support 

evaluation. Backtracking for more, solutions will result in this clause failing, losing 

any variable instantiations and the next clause in the relation being tried. The 

problem is that this backtracking looks no different from that caused by the first 

clause never succeeding at all, but each situation has to be dealt with differently. 

The distinction between the two situations is whether or not variable instantiations 

clash and this can only be tested by unification, which , results in unwanted 

instantiations. Since the test has to be carried out and the only way instantiations 

can be lost is by failing the goal, a double negative has to be used -a clumsy 

construction, but, in fact, highly effective for, carrying out this comparison. The 

beginning of the relation therefore looks something like 

disj___ýup(Tx, Ty, [Tx-SxlRx], [Ty-SylRy], S): - 

orcombine(Sx, Sy, S). 

disj-sup(Tx, Ty, [Hx-SxlRx], [Hy-SylRy], S): - 

not not (Tx=Hx, Ty-Hy), 

"� 

disj__ýup(Tx, Ty, [Hx-SxlRxl, Ry, S). 

Further clauses deal with the situations where a disjunction is not found, causing 

more checking of the templates against elements in the sets and the final version of 

the relation also has extra attributes introduced to keep track of disjuncts used and 

not used. 

3.2.4 Negation 

The other logical construct common to both Prolog and Slop is negation, but 

again a clear distinction has to be made between the use of each. Prolog uses a 

convenient, if non-logical, way of representing negation, negation as failure. This 

corresponds to the closed world assumption as expressed by Reiter (1978). In 
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Support Logic we use an open world assumption and, by the use of support pairs, 

can express negative information explicitly in the database; the definite Horn clause 

syntax of Prolog is relaxed. Furthermore, the inability to prove a theorem causes 

the system to conclude that it is completely uncertain of that theorem - support 

[0, I]. In Support Logic, proving the negation of a theorem still requires proving the 

theorem, however the supports for the negation are the complement of those for the 

theorem itself. For example, if p is supported [SI, Su], then not p will be supported 

[I-Su, I-Sl], but any variable instantiations resulting from proving the theorem will 

be maintained. In Prolog, a query consisting of a negated theorem, with free 

variables can cause, problems and this is one of the main objections of negation as 

failure (Shepherdson, 1984). The Prolog query not p(X) can never instantiate X: if 

p(X) fails, thus proving not p(X), X. can clearly not be instantiated; if P(X) 

succeeds, instantiating X, not p(X) will fail and the instantiations will be lost. A 

Support Logic query of the form not p(X) will always succeed, thus maintaining any 

instantiation of X, but the truth of the theorem will be reflected by the support 

pair. 

The implementation of negation in Slop must distinguish between the Prolog 

and Support Logic negation. In the earliest implementation this was done, by having 

not used for Prolog negation, and, sup_not, for Support Logic negation. Later, 

however, the use of Prolog system predicates was ý changed so that they had to be 

used as, argument to call (see 3.2.5). This allowed not to be used for Support Logic 

negation avoiding the rather, cumbersome, s. u p_not, however for, consistency with the 

earlier version, the 
'use 

of sup_not, was still allowed. The clauses for interpreting 

negated theorems are 
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slop_interp(not X, [SI, Sul): - 

slop-interp(X. [SI I. Su I 

St is I- Su I. 

Su is I- Sl I. 

slop_interp(sup_not X. ISI, Sul): - 

slop_interp(X. [SI I. Su 11). 

Sl is I- Su 1. 

Su is I- Sl 1. 

3.2.5 Prolog System Predicates 

The interpreter, as defined so far, reduces queries to single goals and then 

tries to satisfy these goals by looking for a clause defining each one. Prolog system 

predicates, however, can not be satisfied in this way, but instead have to be called 

using the predicate call. Detecting them and initiating the call is fairly 

straightforward to implement, but a support pair has to be associated with the 

success or failure of the goal. Success means that the goal has been proved 

definitely true and therefore is attributed support 11,11, as in Support Logic rules 

and facts with support (1,11. Failing to prove a Support Logic goal means that it 

has not been proved true, as opposed to it having been proved false, and to' reflect 

the open-world assumption it would be attributed support of [0,11 - completely 

uncertain. Prolog system predicates, on the other hand, are designed to answer 

queries of the knowledge base itself, rather than the information it contains. This 

distinction means that if a Prolog system predicate fails, it has been proved false for 

the particular knowledge base and should have support [0,01., 

Most Prolog system predicates are deterministic and are therefore either tests 

or exist only to perform a side-effect function (e. g. writing to the terminal, opening 

a file for output, storing clauses in the knowledge base etc. ). Those system 
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predicates provided for their side-effects should almost always succeed unless they 

have been misused, in which case the associated support evaluation will be invalid. 

Slop rules defined using a Prolog side-effect predicate should be written so that 

support evaluation following the Prolog system predicate will assume that the system 

predicate succeeded. Proving the system predicate false will mean that the 

particular side-effect will not have been carried out and therefore that certain 

presupposed conditions may not hold. Under these circumstances, it would be more 

desirable if the goal actually failed, and initiated backtracking as in Prolog, than if 

it returned support [0,01. Side-effect system predicates are provided for control and 

therefore should be used as such rather than to provide support. 

The same can not be said of a Prolog test for which a support of [0,01 has a 

much better interpretation, however proving a test false will be of greater 

importance than just providing support [0,01. Support evaluated subsequent to a 

Prolog test and within the body of a clause will have no significance unless that test 

succeeds. If any conjunct has support [0,01 then the conjunction will have support 

[0,0]; if the body of a rule has necessary support of zero (regardless of possible 

support) then the head of the rule will be completely uncertain; and a disjunct with 

support [0,01- will contribute nothing to the overall Support of the disjunction. 

Would it - therefore be better if Prolog tests failed. rather than succeeded with 

support [0,0]? 

Proving a Prolog test false (support [0,01) in a conjunction proves the 

conjunction false, and if this conjunction were the body of a rule, then the rule 

head would be attributed completely uncertain support. Had the test failed and 

caused backtracking instead. the result would have been the same. In the case of 

disjunction there might be a case for proving a test false being valuable in 

continued support evaluation, however the use of Prolog tests within a Support 

Logic disjunction can easily be avoided. Consider the rule 
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a(X): - 
(X> 10, b(X) sup_pr c(X»: [SI, Sul. 

If the test XAO succeeds, then the support for the rule will be the same as 

that if the test had never been called. If the test goal is false, the first disjunct will 

have support [0,01 and the disjunction will have the same support as the second 

disjunct. The rule can be replaced by 

X> 10, 
(b(X) sup_pr c(X)) : [SI. Su]. 

a(X): - 

X- 40 

C(X) : [SI. Su) 

[Note that this is a special case in which body disjunction can be replaced by clausal 

disjunction - see section 5.3.11. This transformation can be applied to any body 

disjunctions, with tests in either first or second disjunct and will have the same 

outcome whether the test fails or returns support [0,0]. With rules for which there 

is a large conjunction preceding the disjunction, using this transformation may 

result in superfluous processing due to the duplication of the conjunction. This can 

be avoided by using the following form of transformation, where b(X, Y) represents 

the large conjunction: 

a(X): - 
b(X, Y). 

(Y>10, c(Y) sup. _gr 
d(Y)). Sc. 

becomes 
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a(X): - 
b(X. Y) 

e(Y): Sc. 

e(X): - 

X>10, 

(c(X) sup__pr d(X)) :[1,1 ], [0,01. 

e(X): - 
X-40, 

d(X) :[1.1 ], [0,01. 

This makes use of a special case of probabilistic pairs in which the support for the 

head is the same as that for the body - see section 2.3.2. 

A probabilistic pair is the other occasion in which a test may valuably 

provide support of [0,0). A rule of this form might be 

a(XY): - 
b(X), 

c(Y) : Sj. Sk. 

where Sj is the conditional support for a(X, Y) given b(X), c(Y), and Sk is the 

conditional support for &(X, Y) given not (b(X), c(Y)). If b(X) is the Prolog test 

then, if it succeeds, the support for a(X, Y) will be that of c(Y) probabilistically 

conditioned on SJ, Sk; if not, the support for &(X, Y) will be Sk, so proving the test 

false-can still provide support for the head of the rule. The way of rewriting this 

rule so that the supports evaluate to be the same, when the test fails, rather than 

being supported [0,01, is by negating the test in a second clause: 
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a(X, Y): - 

b(X), 

c(Y) : Sj, Sk. 

a(X, Y): - 

- not b(X) : Sk. 

This new form of the relation provides the same supports, however it does not 

behave in quite the same way. If the variable Y is to be instantiated by calling 

c(Y), then, if the test fails, Y will remain uninstantiated. The second clause does 

not call c(Y), because it can not contribute support due to the falsehood of the test 

b(X). The head of the rule, i(X, Y), will have support Sk, and Y uninstantiated, 

but this is in fact a better representation of the information. For the particular 

value of X that meant the test b(X) was false, the support for a(X, Y) will be Sk for 

all values of Y, not just those for which Y might be instantiated by the goal c(Y). 

I 
The remaining type of Prolog system Predicates is the resatisfiable 

predicates. On the whole these are predicates that query the state of the knowledge 

base such as clause/2, recorded/3 and current_atom/l. Their use is limited to 

testing the existence of information in the knowledge base - in which case they 

should be treated in the same way as deterministic tests as described above - or to 

extracting information from the knowledge base by instantiating variables. In this 

latter situation it is unlikely that the user will want support evaluation to continue 

when the goal is proved false, as the variable instantiations that should have 

occurred must have been intended to be relevant. Resatisfiable system predicates 

can therefore reasonably be failed to initiate backtracking rather than returning 

support of [0,01. The resatisfiable system predicates lead to one further consideration 

when they are called within a Slop - relation. Because support pairs for a given 

solution are all combined to provide overall support for the solution. no solution can 

be generated more than once. In order to remain consistent within the system, this 
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must also be true of Prolog system predicates, and for all but the resatisfiable 

system predicate's this constraint is met naturally. The resatisfiable system 

predicates can however produce the same variable instantiations more than once and 

so the system must cope with this. This is achieved by using the Prolog system 

predicate setof to find all solutions to a Prolog system predicate in one go. without 

any duplicates. In so doing however, the solutions occur in standard order rather 

than the order in which they were found. To insure that this distinction is 

appreciated, the only Prolog system predicate that is allowed within the system 

(apart from the cut) is call. All other Prolog system predicates have to be called as 

argument to call. This also allows the user to call user-defined Prolog rules, from 

within a Slop program, without support pair evaluation taking place, thus improving 

efficiency. Such rules are of course subject to the 'same constraints on 

resatisfiability as Prolog system predicates. 

It is shown above that the two different ways of dealing with calls to Prolog 

system predicates that cannot be proved in the knowledge base, can both be 

implemented without loss of information. In some cases, 'returning support of (0,0] 

can lead to less cumbersome rules, but in other cases it can lead to a less good 

interpretation of the information. The crucial factor in deciding how to treat such 

goals comes down in the end to what they are most likely to be used for, and this is 

primarily for exercising control over support evaluation in association with the cut. 

The system is therefore defined so that unprovable calls to Prolog system predicates 

fail causing backtracking. rather than returning support [0,0]. 

3.2.6 The Cut - "! " 

This is the one Prolog system predicate that requires special analysis and 

treatment. It is provided in order to control backtracking in Prolog programs and is 

therefore specifically designed for a depth-search mechanism. In Support Logic, 
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essentially a breadth-search system, problems arise as to how it should be used and 

with what interpretation, and whether, indeed, it should be used at all. 

Let us consider what the cut means in Prolog: 

pred(X): - bl,!. 

pred(X): - b2. 

If bl is true then the cut is evaluated and clause 2 can, effectively, be discarded. 

(i) The cut is dependent on the truth of the goals before it, and 

(ii) It discounts all further solutions to the goal (in this case). 

The first of these points is readily applicable to Slop, the second is less obvious. 

The cut could be thought to apply to one of two things - either the solution to the 

goal (variable instantiations created) or to the truth of the goal; i. e. the cut can 

either be thought to be saying "this is the right solution - look no further" or "this is 

a proof of the particular solution, do not try to prove it again". The Prolog 

interpretation takes the first meaning, not just because it provides useful control 

facilities, but also because, in Prolog, if a goal is proved then it is completely 

proved and proving it again by a different path does not (usually) add any 

information. Furthermore the second use of the cut described above is a special 

case of the first in which the cut applies to just one solution instead of all of them. 

in Slop it is a different story. every extra proof path for a goal can provide 

extra information so the two possible applications of the cut are significantly 

different. Consider the example 
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P(X): - 
Q(X): Si. 

p(a): - 

: si. 

P(X): - 

s(X) : Sk. 

q(a). 

q(b). 

s(a). 

s(b). 

r. 

for which we will use the Prolog interpretation of the cut. The query p(a) will be 

solved with support Sl from clause I and Sj from clause 2; the query p(b) will be 

solved with support Sl from clause I and Sk from clause 3; however, the query 

p(X) will be solved for X-a with Support SI from clause I and Sj fro m clause 2, 

and for X-b with support SI only, from clause 1. The support evaluated for a 

solution depends on the form of the query. which is certainly not a desirable 

property. The example demonstrating this may not be particularly useful or 

sensible, but it is perfectly good code and so should be considered. In the example, 

the goal r was true so the cut should definitely be evaluated. What if r was false 

(supported [0,01) or unknown (supported [0,11)? Should the cut be evaluated and 

prevent backtracking? If it should in both these cases then there would be no 

situation when it was not evaluated. Suppose we decide not to evaluate the cut if 

the support for the preceding goals is 10,01 - what about including [0,0.011 or 

[0,0.05]? Where do we draw the line? The second possible interpretation of the use 

of the cut becomes "if this clause evaluates a support for a goal, then the other 

clauses should not be considered'. This amounts to a form of mutual exclusion -a 
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solution or Support from the first clause precludes those from a subsequent clause - 

however it does this in an artificial manner rather than combining the supports 

under the assumption of mutual exclusion. Further to this, in Prolog the cut 

effectively excludes further solutions to a goal rather than extra support, since once 

a solution is found the support is equivalent to [1.1] anyway. In Slop, extra proof 

paths become -important, but'we have to decide what we want to cut out. The 

clause containing the cut in the example above, could only provide support for p(a), 

so perhaps the cut should only cut out further support for p(a), rather than for all 

X in p(X), thus allowing support Sk for p(b), regardless of the form of the query. 

These problems have to be addressed if we are to be able to use the cut in a manner 

consistent with the rest of the system, however they are all due to the fact that we 

are trying to implement a non-logical predicate into a system that is more dependent 

on a logical structure than Prolog itself. The reason for this is that Slop effectively 

uses a breadth search and the scope of the cut becomes less easy to define. - In 

general, it is better that the cut is not used at all, however there are occasions when 

it is valuable and can be used in a way that does not produce the problems outlined 

above. The cut is therefore allowed in Slop but its use is exactly as in Prolog, and 

thus it should be used only under that interpretation: it is always evaluated when 

encountered and cuts out all subsequent clauses and previous goals at the same level. 

The only way for a cut not to be evaluated is if a preceding goal fails (rather than 

returning support of definitely false) and the only goals for which this can occur are 

Prolog system predicates. 

The most important use of the cut under such conditions is in recursive 

definitions. Such a relation might be 
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fast 

call(X> 100), 

fast-speed(X): - 

call(Y is X+ 5), 

fast-Speed(Y) : [0.9,1 

In this definition we'recursively increment the speed until it is a value for which 

we know'the support. ' This support is then adjusted, according to the number of 

recursive calls, by the conditional support of [0.9,11. The cut is necessary to prevent 

the second clause being called when the first clause succeeds, ' because this could 

result in infinite looping. 

There is a situation in which the use of the cut has to be prohibited 

Support Logic disjunction. In Prolog disjunction, only one of the disjuncts needs to 

be proved to prove the disjunction. If the first disjunct has been proved, then 

subsequent backtracking could reprove the disjunction by proving the second 

disjunct. This can be prevented by putting a cut in the first disjunct. In Support 

Logic disjunction, both disjuncts must always be tested to evaluate an overall 

support for the disjunction. Putting a cut in the first disjunct is therefore- 

meaningless, as the second disjunct has to be evaluated. If the purpose of a cut so 

placed is to allow only one solution to the disjunction, then the cut can be placed 

immediately after the disjunction. The system checks for cuts placed in a Support 

Logic disjunction and eliminates them issuing a warning message to the user: -, - 

CUTS are not allowed in Slop disjunctions 

The CUT(S) in the goal 

a, b,! sup_. pr c 

have been ignored. 
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3.2.7 Summary of Use of Prolog System Predicates 

Prolog system predicates are rarely likely to be involved as an integral part 

of support evaluation within a Support Logic knowledge base, however they are 

essential in the development of certain applications. Situations in which any 

program control or arithmetic is required, will necessarily involve system predicates. 

A system might require database manipulation during program execution, and, 

perhaps most obviously, it might require its own input/output capabilities, all of 

which have to be done with the Prolog system predicates. They clearly have to be 

incorporated into a Support Logic system but need to be used with care in order not 

to affect the overall logical structure of a knowledge base. The way in which Slop 

has been designed to cope with Prolog system predicates is based primarily around 

allowing the use of the cut - in order to avoid evaluating a cut, a preceding goal 

must fail and this must be a Prolog system predicate. Such a definition of the use 

of Prolog system predicates can be maintained without impairing the support 

evaluation, though it would be more logically correct for failed Prolog system 

predicates- to return support of [0.01. The FRIL system (Baldwin, Martin and 

Pilsworth, 1988) uses this approach and handles the cut by looking at the support 

preceding the cut. If the support is [0,0], the cut is- not evaluated, otherwise it is. 

This has the advantage of allowing Support Logic rules to control the evaluation of 

a cut, as well as Prolog system predicates, but the implementation problems when 

programming in Prolog meant it was better not to do it this way for Slop. 

All Prolog system predicates apart from the cut have to be called as 

argument to call, primarily in order to impress on the user, that they will be treated 

in a closed world fashion. If this is violated, the system issues a warning message 

and continues with the call having been made properly (showing that it is not 

essential to the behaviour of the system). The practical difference between using 

call and not doing so, is that it allows not to be used as a Slop predicate and it 
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makes for clearer readability of a Slop knowledge base if there is only one goal that 

is interpreted in a closed-world fashion. This goal itself though can be used to 

extend the closed-world assumption to any Prolog rules. 

3.3 Extra Characteristics and Constructions 

3.3.1 Free Variables In Goals 

Section 3.2.4 on negation mentioned the problems of'freýe variables in Prolog 

negation and explained how Support Logic does not give ris-e to such problems. 

There is, however, another problem associated with free variables, which was 

touched on concerning Support Logic disjunction in section 3.2.3. The depth search 

of Prolog generates solutions one at a time and thus it is possible for a theorem to 

be proved more than once with the same variable instantiations or solutions. It is 

also possible for a theorem to be proved for particular instantiations and for free 

variables, even though the latter proof may imply the former. This is acceptable in 

Prolog, Since a true theorem is still true however many times it is proved. In 

Support Logic, a theorem can be proved to be partially true, an Id so , reproving it will 

affect the truth of that theorem. For this reason, all possible proofs of a solution 

must be taken together to provide an overall support for that particular solution. 

The problem with free variables in the solution to a Support Logic theorem is that 

this solution can give support to several other solutions. For example the query 

P(X) may have four proof 'paths producing the following: 

p(a) : Sl 

p(b) : S2 

p(a) : S3 

p(X) S4 

From these we can derive solutions 
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p(a) : Sa 

p(b) : Sb 

P(X) : Sc 

where Sa is the renormalised combination of Sl, S3 and S4, Sb is the renormalised 

combination of S2 and S4, and Sc is S4. 

The normal interpretation of this data would include that p(X) is supported 

to degree Sc for all X, however this is not true: for X=a, p(X) is supported to 

degree Sa and for X=b, p(X) is supported to degree Sb. The correct interpretation 

should be p(X) is supported to degree Sc for all X except X=a and X=b. We, the 

human users, can just about cope with this at the top level, but the system would 

have great difficulty., It would be necessary to recognise that the variable X, 

subsequent to proving p(X) could be instantiated to anything except a or b, because 

solutions involving X=a and X=b are generated independently. Such behaviour 

could be useful, but to implement it in Prolog, in which all unification is carried 

out automatically would produce an extremely complicated system in which most of 

the effort would be involved in adapting Prolog to behave in a fashion totally alien 

to it. Instead of this, Slop has been arranged to issue a warning message when free 

variables are encountered in proved goals, but to continue support evaluation for the 

query. There are occasions when solutions involving free variables will behave 

correctly, so it seems reasonable that the user should be able to make use of this, 

but should be warned of the possibility of unpredictable behaviour. 

This warning mechanism'is implemented by a, rewritten form of the system 

predicate bagof - slop_bagof. Every proof of a goal must be checked, rather'than 

just every different solution, because it is possible that a proved ýgoal with a free 

variable will be unified with another proved goal and cause the variable to be 

instantiated. Although this custornised bagof does not resolve this problem, it does 

alert the user on every occasion that it may occur. 
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3.3.2 Probabilistic Pairs 

A probabilistic pair is two rules, for which the body of one is the 

complement of the body of the other as defined in section 2.3.2. The two rules 

then define the dependence of the head on the body, for the whole of the 

possibility space. For example the rule 

p(X): - a(X), b(X): [Sli, Sull. 

defines the way in which p(X) is implied by the conjunction a(X), b(X) but says 

nothing about p(X) when the conjunction is false. This information is provided by 

the second rule, making up a probabilistic pair. 

p(X): - not(a(X), b(X)) : [S12, SU2]. 

When a rule is not part of a probabilistic pair, then the system assumes a 

support of [0, l] for the rule that would make up the pair, otherwise the support on 

that rule would be as defined by the user. It is necessary therefore for the system 

to check whether a rule is part of a pair before calculating the support for the head 

of the rule. In the original version of Slop, there was no shorthand for probabilistic 

pairs and so they had - to be defined ý by two rules in the knowledge - base 7 This 

necessitated the interpreter being able to recognise when two, rules were part of a 

pair and when they were independent rules from which supports would be 

combined using the renormalisation combination. The only way to implement this 

was to search, every time a valid rule was found, for a rule that complemented, it as, 

part of a probabilistic pair, and perform the support * evaluation - according - to 

whether or not this was found. This results in a great deal of extra searching of the 

knowledge base, not only when looking for pairs but also when checking that a rule, 

has not already been used as part of a probabilistic pair. 
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The shorthand for probabilistic pairs involves allowing two support pairs on 

a rule; the first being the conditional supports for the rule as written, and the 

second being the conditional supports for the rule with negated body. For example 

p(X): - a(X), b(X) : [Sll, SUI], [SI2, SU2]. 

is equivalent to the pair of rules given above. As well as improving efficiency, this 

also greatly improves the readability of a knowledge base, as a probabilistic pair is 

now a single entity, and not two rules that may easily be separated thus obscuring 

the dependence between them. The final version of Slop allows this syntax but also, 

in fact, allows the original format of two complementary rules. This of course 

means that any efficiency improvements that may have resulted from the shorthand 

are not realised, but this particular implementation of Support Logic was designed 

as a development and demonstration tool. Considering this, it seemed more sensible 

to maintain compatibility with knowledge bases that may already have been written 

using an earlier version of the system. 

3.3.3 Cutoffs 

A necessary consequence of the open world assumption in Support Logic is 

that a goal can never fail. It will always succeed but the truth of it will be 

qualified by a support and may represent anything from definitely false, to 

completely uncertain, to definitely true. The fact that all goals succeed means that 

every branch of a proof-tree will be searched, to the tip of every leaf, however the 

search space could be cut down to avoid searching branches that cannot contribute 

information. As discussed in section 3.2.5, proving a goal definitely false - [0,0] - 

or completely uncertain - [0, I) - can have a dominant effect on the rest of the 

query. In all rules but probabilistic pairs, a necessary support of zero for the body 

results in the head of the rule being supported [0, l] - i. e. nothing is known at all. 

Furthermore, proving a conjunct definitely false, [0,01 or completely uncertain, [0, I] 
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or anything in between, results in the conjunction having, necessary support of zero 

regardless of the other conjuncts. If this is the body of a rule, we prove nothing 

about the head. 

The system can be improved by some method of cutting off searches when a 

goal is encountered that provides no information. This is done by checking the 

support evaluated for-a goal against a, use r- definable cutoff value. If the cutoff 

condition is satisfied then the system fails the goal just, evaluated, thus, preventing 

further processing down the associated branch of,, the-; proof, tree. The cutoff 

definition takes the form of a predicate, cutoff, with one attribute, a support pair, 

and has the default definition 

cutoff([O, I]) - 

This default has the effect of cutting off a proof path if a goal is evaluated with 

support of [0, I] exactly. The cutoff is redefined by reconsulting a new definition 

for the predicate cutoff/l. This could be, for example, 

cutoff([X, Y]): - 

call(U is Y-X, U >- 0.8). 

cutoff([X, Y]): - 

call(X=<0.4). 

" Proceed only if the unsureness 

" is less than O. S. 

% Proceed only if the necessary 

% support is greater than 0.4. 

One important application of cutoffs is in running Prolog programs with the 

Slop interpreter. A Prolog program in which there are deterministic tests, generally 

depends on these tests for the control of execution. It is therefore desirable that 

these tests should succeed only if the. test holds true, and thus, that they should fail 

otherwise. The Support Logic, equivalent of Prolog failure is a proof with support 

[0, I], therefore in order to fail unprovable Prolog tests, we need a cutoff, that 

includes [0,11 (Notice that cutoffs of the form cutoff(IO. 3,0.91) do not include [0,11 

because this does not define a range, but exact values). By having no cutoff at all 
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the system will perform an exhaustiýe search of the entire proof tree in as much as 

the goals in it allow (the cut or closed-world predicate call can also affect the 

control of the searc h). 

3.3.4 Equivalence 

A, useful characteristic of Prolog is that large terms (6onjunctions or 

disjunctions) can be made up into smaller and more'readable ones by splitting the 

term up into subgoals, and defining new rules for these subgoals. For instance the 

rule 

p(X, Y, Z): - 

a(X), b(X, Y), c(Y, Z), d(Z), e(X, Z), f(Z). 

can be replaced by the rules 

p(X, Y, Z): - 

i(X, Y), j(Y, Z), k(X, Z). 

i(X, Y): - 

a(X), b(X, Y). 

j(Y, Z): - 

c(Y, Z), d(Z). 

k(X, Z): - 

e(X, Z), - f(Z). 

Although this increases the size of the knowledge base, in terms of the number of 

rules, it can dramatically improve the understanding of the knowledge base, and 

ease the testing of its component parts. When a large rule, as in the example, 

behaves in an unexpected way, each of the subgoals a to f have to be investigated. 

The smaller version of the same rule can be checked by considering just the 
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subgoals I to k. Using similar methods to form rules in Slop, however, leads to 

difficulties. 

The truth of the head of a Prolog rule is dependent on the truth of the body 

- if the body can be proved true, the head is true; if the body fails then the head is 

false, for that definition. Consequently, if a Prolog relation consists of only one 

rule, then that rule corresponds to a form of equivalence between the head and the 

body, and the head can be used as a shorthand for the body. The same is not true 

of Slop owing to the fact that all rules are qualified by conditional supports. A rule 

can only be considered to represent equivalence if the head has the same truth, or 

support, as the body, however this is not possible of a single rule. When a rule has 

conditional -possible support of one, then the head ý of that rule will always have 

possible support of one, regardless of the support for the body. Thus the rule - 

p(X): - a(X), b(X): [I, I]. 

does not correspond to an equivalence between p(X) and the conjunction a(X), b(X); 

if the conjunction has support ISI, Sul then the head of the rule, p(X), will be 

supported IS1,11. Because of its value in Prolog, there is good reason to introduce 

an equivalence relation to Slop, however it is done on a slightly ad hoc basis and in 

fact can be simulated by another, construction as explained at the end of this section. 

To represent equivalence, a construction similar to Slop rules was required 

but one that could easily be distinguished. The obvious thing to do is to use 

another operator in place of : -, but that can be used in a very similar way. The 

operator chosen is <->. Thus a Slop rule might be 

p(X): - a(X), b(X): Sl. 

whereas an equivalence would be 

p(X) <-> a(X), b(X). 
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obviously without a support pair. The operator declaration for <-> is 

op(1200, xfx, -<->). Although it looks reasonable to the user, to Prolog it has a 

different significance. Prolog rules and facts differ by whether or not the infix 

operator :- has been used - if it is not present, then the assertion is interpreted as a 

fact. Thus the Slop equivalence definition above is, to Prolog, a fact with predicate 

<->/2, which in standard syntax would be written 

<->(p(X), (a(x), b(x))). 

As a result, all Slop equivalence definitions look, to Prolog, as though they are part 

of the same relation. This has two important consequences: 

When the system checks if a goal is defined by an equivalence relation, 

rather than looking for a clause the head of which unifies with the goal, it 

has to look for a clause with predicate <-> for which the first argument 

unifies with the goal. 

If an equivalence definition is reconsulted then all previously defined 

equivalences will be lost. New equivalence definitions should therefore 

always be consulted rather than reconsulted. 

The second of these is, unfortunately, something that the user has to remember for 

him- or herself, as there is no straightforward method, generally applicable to all 

Prologs, for adapting the way in which files are consulted or reconsulted, so that 

warnings cannot be issued. Implementing equivalence in the interpreter is not too 

difficult, and the appropriate clause takes a form very similar to that for 

interpreting ordinary Slop rules. 

siop-interp(X, S): - 

body__support(Y. S). 
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An important difference, though, is that it is not necessary to use slop_bagof. This 

is because (i) it is not possible to have more than one equivalence definition for a 

particular goal, thus X<->Y can only be proved once, and (ii) the right-hand side of 

the equivalence should not be provable more than once for a given left-hand side. 

In order that these restrictions are not violated, it is necessary to carry out some 

verification of the database. 

The first restriction simply requires making sure that there is no more than 

one equivalence definition for a given goal. The second can be tested by checking 

that there are no variables on the, right hand side of the equivalence that do not 

occur on the left. When there are, it is possible to generate new support for the 

same left-hand side for every new instantiation of those unbound variables that are 

local to the right-hand side of the equivalence. For example 

P(X, Y) <-> q(X, Y, Z). I 

q(1,2, a): - : Sa. 

q(1,2, b): - : Sb. 

will produce supports Sa and Sb for the goal p(1,2) and thus the equivalence does 

not hold. Such a violation does not occur when there are no extra unbound 

variables on the right-hand side because Slop can only produce one overall support 

for any particular solution to a goal. Extra unbound variables on the left-hand side 

will have no effect, as they will simply remain uninstantiated. The system checks 

that these restrictions are met, and if they are not, issues a message and fails the 

goals. 

As mentioned above, there is a construction that can be used to simulate this 

equivalence, for which the support evaluation is fully justified. This involves using 

a probabilistic pair with the supports [1,11 and 10-0] (section 2.3.2). The equivalence 

definition 
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p(X) <-> a(X), b(X). 

can be replaced by 

p(X): - a(X), b(X): [1,11, [0,01. 

The reason this simulates equivalence is because the rule states that p(X) is true if 

the conjunction a(X), b(X) is true, but furthermore that p(X) is false if a(X), b(X) is 

false. For this construction to be used as an equivalence, the same restrictions apply 

i. e. number of rules and local unbound variables - however, as a standard Support 

Logic rule, it can be used in any way the user likes, that does not violate any of the 

basic restrictions of Slop. 

Providing a construction specifically for representing equivalence can lead to 

greater clarity of the knowledge base, but it does have certain drawbacks. The most 

obvious of these is that it reduces the efficiency of the system by increasing the 

amount of error checking necessary. More importantly though, it can be slightly 

misleading as it does not represent equivalence properly. A rule defined using <-> 

allows us to attribute the same support to the head as was attributed to the body, 

thus suggesting some form of equivalence. In the strictest sense, though, it should 

be possible to evaluate support for the left-hand side of an equivalence and then 

attribute it to the right-hand side representing the other half of the equivalence. 

This is not permissible using a Horn Clause representation and so the rule does not 

represent true equivalence. In the light of these points the FRIL implementation of 

Support Logic (Baldwin, Martin and Pilsworth, 1988) does not support an 

equivalence operator, but the probabilistic pair construction can be used instead. 

3.3.5 Semantic Unification 

In a system that allows the representation of uncertainty, it is possible to 

introduce a form of partial unification. This means that, rather than terms having 
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to match exactly in order for unification to succeed (syntactic unification), the 

terms can match to varying degrees according to how similar they are. This 

similarity could be measured in a number of ways - length of term, closeness in 

spelling, structure of term but for the Support 'Logic system the most obvious 

similarity to be looking for is closeness in meaning. Thus two terms that have 

similar meaning can be partially matched or semantically unified. The way in 

which this is done in Stop involves the use of fuzzy Set theory and, as explained in 

section 2.5, it is therefore limited to concepts that can be quantified. 

3.3.5.1 Representation 

The first thing the system has to be able to do is recognise the fuzzy terms 

(those that can undergo semantic unification) and those terms with which they can 

be unified. This can be done by looking up whether there is a fuzzy set definition 

for the term and if so what it is. The definition itself needs to be' structured in 

such a way as to optimise the evaluation of the supports representing the semantic 

unification. This optimisation is achieved by restricting the fuzzy sets that can be 

defined so that they can all be expressed by a limited number of parameters. These 

restrictions are as follows: 

the fuzzy sets must be piece-wise linear, 

(ii) all change points must occur at p6s'sibility values of zero'or one, 

(iii) there can be no more than four change points. 

Of the six parameters, the first and last (a and f in figure 3.1) are the starting and 

finishing possibility values respectively, and the middle four (b, c, d, and e in figure 

3.1) are the domain values at which change points occur. 
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Possibility 

a0f 
bCde 

Figure 3.1: Most, general allowable fuzzy set for semantic 

unification. 

In order to represent fuzzy sets with less than four change-points, the values 

of some of the parameters b, c. d and e can be the same, thus allowing the possible 

general forms shown in figures 3.2a and b. 

A 

0 
(a) 

b=c=d*e b*c=d*e 
or b*c=d=e 

a=O, f-I a=f. O 

b*c*d*e 

a=f-0 , ., 
I 

--II- 

0 
(b) 

, 
b=c=doe b*c=d#e b#c*doe 

or b*c=d=e 
a=l, f=O a=f. I a=f-I 

Figure 3.2: Allowable fuzzy sets for semantic unification- 

Notice that this does not allow for vertical sections in the set. 
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The definition of a fuzzy term consists of three things; (i) the fuzzy term, 

(ii) the concept or semantic class to which that term refers, and (iii) the fuzzy set 

definition. These are expressed in a clause of the form 

fuzzy(<semantic-class>, <fuzzyjerm>, <fuzzy_set>). 

for each fuzzy term in the system. Terms which do not have a fuzzy set definition 

are taken to be non-fuzzy and are unified syntactically. The semantic class is put as 

first attribute to the predicate fuzzy, to improve readability, and also because the 

Prolog search is sometimes driven by the first argument of a goal and thus, semantic 

class being more often instantiated, the search is improved. 

Using these parametric descriptions of fuzzy sets, the system has to evaluate 

the maximum value of the minimum of the two sets (as described in section 2.5) to 

establish the conditional possibilities. For example in figure 3.3 the two sets marked 

by broken lines have the minimum, marked by the full line, with maximum value P 

for domain value D. 

I ------------------- %%% 
/e 

.1 
-- ----------------- 

P....................... 

Figure 3.3: The minimum of two fuzzy sets. 

In, order to evaluate the maximum, the system only needs to , find the 

intersection of two lines and in most -cases, this will occur at a possibility value of 

zero or one. For instance, figure 3.4 shows three such examples. 
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(a) (b) 

/- (C) 
--Z- I'l, 

=:. - 
el , b2 el c2 

Figure 3A Example fuzzy set combination. 

These examples, in which the possibility is one, can be characterised simply 

by comparing the relevant domain parameters - for example el :5 b2 in (ii) and el :5 

c2 in (iii). The predicate for evaluating this possibility value is maxminset/3 with 

the two fuzzy sets and possibility value as attributes. The three examples above are 

characterized respectively by 

maxminset([O, _, _, _, _, 
I ]�[O, 

_,, _, _, 
1], 1): - !. 

maxminset([O, _, _, _, 
E 1,1], [ 1, B2, 

_, _, _, 
O], I): - 

EI -< B2,!. 

maxminset([O, _, _, _, 
E I, I ], [O, 

_, 
C2, 

_, _, 
O], I): - 

EI -< C2,!. 

All the possible ways of intersecting two fuzzy. sets can be represented, and the 

possibility values evaluated, by twenty clauses. Of these, only six actually involve 

any calculation to evaluate maxima that lie between zero and one. , 

Deriving the conditional supports representing the unification between two 

fuzzy terms involves using the negation of a fuzzy set. This calculation is also 

greatly eased by the use of a parametric representation of fuzzy sets. Since the four 

domain parameters (b to e in figure 3-1) only represent the values at which a change 

point occurs, they are unaffected by the negation operation. The only changes that 

occur, are to the first and last parameters (a and f) which are simply switched 

between zero and one. Thus for example, the negation Of the fuzzy set 

[0, BI, Cl, DI, EI, O] is [1, BI, CI, DI, El, ll, and the negation of [0, B2, C2, D2, E2, l] is 

[I B2, C2. D2, E2, O]. 
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3.3.5.2' Use of Probabilistic Pairs' In Semantic Unification 

Consider the following knowledge base: 

conditions(uncomfortable): - 

temperature(fairly_hot) : [0.7,1]. 

temperature(fairly__qool): - : [0.1,0.21. 

fuzzy(temp, fairly_hot, [0,55,70,70,70, I 

fuzzy(temp, fairly_cool, [ 1,65,65,65,75,0]). 

Querying the knowledge base with the goal conditions(X) will generate the sub- 

query temperature(falrly_ýhot) and this will be satisfied by the rule 

temperatureffairl y-ho t): - 

temperature(fairly_qool) : [0,0.8]. 

generated by semantic unification. The conditional support pair 10,0.81 is evaluated 

using possibility theory described in section 2.5. The goal temperature(falrly_cool) 

is proved with support 10.1,0.21 thus proving ternperature(fairly_ýhot) with support 

10,0.981, and conditions(uncomfortable) with support 10,11, completely uncertain. 

This can be improved if we consider the relationship, not just between fairly-hot 

and fairly 'cool but also between fairly_hot and not fairly_cool, and generate the 

rule 

temperature(fairly-_hot): - 

not temperature(fairly__2cool) : [0.8,1]. 

This forms a probabilistic pair with the previously derived rule, so that we can now 

deduce support of 10-64,0-981 for temperature(fairly_hot) and consequently support 

of [0.449,11 for conditlons(uncomfortable). In order to obtain the full information 

from the relationships between two fuzzy terms it is necessary to generate a 
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probabilistic pair of rules. So doing reduces the amount of unsureness that can 

creep in. 

3.3.5.3 The Level of Application 

It is often the case that a query will be asked with a free variable and that 

this variable will be passed through several layers of rules before becoming 

instantiated. If, at this point, it is instantiated with a fuzzy term, then the top level 

goal could be resatisfied by semantic unification with that term. The question is at 

what level should this occur? At the highest level, where the variable was 

introduced, or at the lowest level, that at which the variable was instantiated? 

Unfortunately, the level at which the semantic unification is carried out does affect 

the supports. 

Consider the following knowledge base: 

light(T, L): - 

time_of_day(T), 

status(T, W, L). 

time_of_day(I 1.5). 

status(T, W, dark): - 

night(T), 

weather(T, W). 

status(T, W, L): - 

not night(T), 

weather(T, W), 

brightness(W, L). 
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night(T): - 

call((T>20, T<7)), 

1 : [1,1]. 

night(T): - : [0,0]. 

weather(T, stormy): - 

call((T>'=IO, T<13)). 

weather(T, cloudy): - 

call((T>= I 3, T< 15)). 

brightness(stormy, quite_dark). 

brightness(cloudy, grey). 

brightness(sunny, bright). 

brightness(patchy_Sloud, quite_b right). 

fuzzy(brightness, quite_dark, [ 1,3,3,3,5,0]). 

fuzzy(brightness, grey, [0,2,4,4,7,0]). 

fuzzy(brightness, quite_bright, [0,4,7,7,7, I 

fuzzy(brightness. bright, [0,6,8,8,8, I 

Asking the query light(T, L), the variable, L, originally introduced in light/2 

is passed through two levels, via status/3 to brightness/2, before being instantiated 

by a fuzzy term. For the given time of day (11.5), this term would be instantiated 

to quiteJark. Let us suppose that we have asked the query light(T, grey) and 

therefore we have to carry out semantic unification between the terms grey and 

quite_dark. The basic form of the assumed unification rules is 

grey: - quite_dark : [0,0.75]. 

grey: - not quite-dark : [0,0.8] 

and from these we can deduce one of the Probabilistic pairs 
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brightness(stormy. grey): - 

_ 
brightness(stormy, quite_dark) : [0,0.75], [0,0.8]. 

and 

light(I 1.5, grey): - 

light(I 1.5, quite_dark) : [0,0.75], [0,0.8]. 

Taking the first pair, which corresponds to applying the semantic unification 

at the lowest level, we obtain support for brightness(stormy, grey) of 10,0.751 which 

results in supp'or'Cof [0, '11 for' status(Il. 5, stormy, grey) and also therefore for 

light(11.5, grey). On the other hand using the second pair of rules, the support of 

[1,11 from brightness(stormy, qulte_dark) is maintained up to the top level where 

semantic unification then yields support of 10,0.751 for light(11.5, grey). Semantic 

unification will always introduce extra uncertainty, owing to the nature of matching 

fuzzy terms, but by doing this at a low level in the proof path, the unsureness is 

increased, possibly resulting in no information at all ([0,1]) at the top level. This 

increase in unsureness can be avoided by carrying out semanticl unification at the 

highest level. 

The query light(T, L) can be proved for a particular T, for all values of L 

that are fuzzy terms defined for brightness, fori example' 'all of the solutions: 

light(II. 5, quite_dark) : [0.5,1] 

light(II. 5, grey) : [0,0.75] 

fight(I 1.5, quite_bright) : [0,0.2] 

light(I 1.5, bright) : [0,0] 

light(I 1.5, not quite_dark) : [0,0.5] 

light(I 1.5, not grey) [0.25,1 

light(I 1.5, not quite_bright) [0.8,1 

light(I 1.5, not bright) 1,1 
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If the semantic unification is carried out at the lowest level then all these possible 

values of L could be proved at every intermediate level of the proof path. In this 

way we , could prove light(l 1.5, grey) via, status( I 1.5, storm y, brigh t) and 

brightness(stormy, not quite_bright) ýý which would have been derived from the 

original assertion brightness(stormy, quiteJark). Using semantic unification at 

every level like this, - not only would we -be introducing a large amount of 

unsureness, but we would also be allowing eight separate branches of the proof, tree 

at each level, resulting in 64 distinct proof paths for proving light(11.5, grey) from 

the single assertion brightness(stormy, quiteJark). Clearly this is not a reasonable 

method for proving the goal. The semantic unification is therefore carried out at 

the highest level at which the fuzzy term occurred. Notice that the same fuzzy 

term may be introduced more than once in a particular proof path, each time 

distinct from the other occurrences. On these occasions, each instance should be 

treated totally separately as though they were different terms. 

Since the semantic unification has to be carried out at the highest possible 

level, it is necessary for the system to identify where all terms in a proof path are 

originally introduced. In the above knowledge base, if either T or L in the 

definition of Ilght/2 are instantiated to fuzzy terms, the semantic unification should 

occur after proving light(T, L). If the W, introduced by status/3, is instantiated to 

a fuzzy term then semantic unification on that term should occur immediately after 

proving status(T, W, L). The way in which the system copes with this is by keeping 

a list of all the terms that have been introduced before the current position, and 

passing this list to all subsequent invocations of the interpreter, slopjnterp, which 

thus needs an extra attribute. The arguments of all goals that are about to be called 

by the interpreter, are compared against this list for the introduction of newterms, 

constant or variable. In the case of constants, the term can be shown to be fuzzy or 

not, immediately. If it is fuzzy, then it is replaced by a variable so that the goal 

can be proved using the syntactic unification of Prolog. Having proved the goal, 
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the original constant and the instantiation of -, the - variable can be semantically 

unified. ' Non-fuzzy constants are left alone. When a goal introduces a new 

variable, this variable is treated as though it were a, fuzzy constant and replaced by 

another variable, because at this stage it is not known whether or not it -will, be a 

fuzzy term., Once the goal'is proved and the replacement variable instantiated with 

a constant, then'this constant can be tested, for fuzziness. If non-fuzzy then it is 

unified with-the original, variable. If it is fuzzy, then the original variable can be 

instantiated with all the possible semantic unifications of that constant. 

This processing for semantic unification has to be put into the interpreter in 

the clause which evaluates support for a non-multiple goal. Without semantic 

unification this clause stands as (section 3.2.2) 

slop_interp(X, S): - 

- -slop__ýbagof(Sl, support(X, SI), Sý_list), 

samecombine(S_Iist, S). 

To accommodate semantic unification, an extra argument is'put in representing all 

the parent terms (those introduced by earlier goals in the query), variable P-ts, and 

two new subgoals, all of which are emboldened in the following definition: 

slop_interp(P_ts. X, S): - 

new_terms(P_ts, X, XI, X_terms, New_P_ts), 

slop_bagof(Sl, support(New_P_ts, X I, S 1), S_Iist), 

samecombine(S_Iist, S2), 

semunif y(X, XI, X_terms, S2, S). 

The subgoal new-terms/5, finds all the new terms introduced by goal X, 

and puts them in the list, New 'P-ts. Variable X1 is the new -form of -goal X with 

all newly introduced fuzzy constants and variables replaced by new- variables. ' For 

instance if X was light(I 1.5, grey), then, referring to the above knowledge base,, XI 
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would be light(11.5, 
_123),, _123 

being the variable replacing the fuzzy term grey. 

The variable X_terms is a list of all the pairs of new terms with their replacement 

variables, thus, for the above example, the list X_terms would contain igrey, 
_1231. 

The goal-X1, instead of X, is now proved as usual and the overall support evaluated 

using samecombine. ý At this point any semantic unification that can take, place 

between X and X1 is performed by semunify/5. The list X_terms would, for this 

example, now contain [grey, quite- dark] and the semantic unification would be 

represented, by the assumed rule 

light(I 1.5, grey): - % goal X 

light(l 1.5, quite_dark) : Sa, Sb. ýA goal XI, 

in which the supports Sa and Sb represent the probabilistic pair of supports 

generated from the fuzzy sets. The variable S2 will be the support for goal XI 

(light(11.5, quite-dark)) and S will be the support for X (light(Il. 5, grey)) evaluated 

using the assumed semantic unification rule. 

The'list, X_terms, can contain more than one pair of terms, though not all 

of these will necessarily lead to semantic unification - an unbound variable in the 

original goal may have been instantiated to a non-fuzzy term by the proof - 

however computational difficulties arise when there are two or more pairs for which 

semantic unification can occur. A fuzzy set is defined by a mapping of the values 

of the domain on to the possibility, in the range [0, I]. For a single term, this is 

equivalent to mapping one-dimension on to the range, producing a curve, for a 

tuple of two fuzzy terms it is two-dimensions, producing a surface, and for an n- 

tuple it is n-dimensions producing an (n+ I )-dimensional space. In order to carry 

out semantic unification on a goal containing n fuzzy terms, the system would be 

required to combine two n-dimensional spaces and find the maximum value of the 

mapping of this onto the (n+l)th-dimension. Such analysis is computationally 

extremely expensive and consequently it has not been implemented. The system is 
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designed to handle only one fuzzy term in, any goal. This does not restrict the size 

of the list X_term to only one pair since there could, be pairs that will not involve 

semantic unificationg 'however when the, list, is processed by semunify/5, semantic 

unification is only carried out for the first allowable pair encountered. All 

remaining pairs are treated as though- they were non-fuzzy and are syntactically 

unified. This can result in the query failing if one of these subsequent pairs 

consists of two fuzzy terms that are not syntac tically unifiable. It is left to the user 

to construct the knowledge base so that the system can handle semantic unification 

according to these restrictions. 

The processing necessary to carry out semantic unification can increase the 

time taken to answer a query by about 50%, because every term in the query goal, 

and every subgoal subsequently generated, has to be compared against the fuzzy set 

definitions. Since in many applications semantic unification will not be used, a 

switch has been provided to enable and disable semantic processing. This switch 

asserts a flag ý in the knowledge base - that disables semantic unification, and by 

retracting the flag, semantic unification is enabled. 

3.3.6 Bundles 

The* introduction of a calculus for dealing with uncertainty in a logic 

programming environment means that we have to consider the dependences between 

pieces of information in the knowledge base. In Prolog, since a theorem can only 

be proved true or false for sure, it does not matter if this proof involves dependent 

proof paths. The Support Logic calculus has to be derived using some assumption 

and we apply a maximum entropy argument to justify using Dempster's 

renormalisation rule (section 2.4-2) to evaluate the overall support for'a goal. This 

corresponds to an assumption of independence, used only because of a lack of 

information to the contrary, however there are situations when rules providing 
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support for the same conclusion are known to be dependent. The most typical 

circumstances for this are when there is a rule with a conjunction of subgoals and 

another rule whose body consists of a subset of. these subgoals. The dependence 

between these two is that the body of the first strictly implies that of the second 

and we use the form of the calculus laid out in section 2.4.4. 

The system defaults to assuming independence between rules, so it was 

necessary to define a syntax which would distinguish bundles of rules from ordinary 

rules. This was achieved by defining a bundle as one Prolog rule made up of 

several bodies, each separated by a left arrow. For example 

p: - 

a, b, c : Sl 

a, b : S2 

b : S3. 

represents a bundle of the three Support Logic rules 

p: - a, b, c : St. 

p: - a, b : S2. 

p: - b : S3. 

The advantages of this syntax are that 

(i) it is easily distinguishable from normal Slop rules, 

being a single Prolog rule, all the subgoals are together, so that none need be 

queried more than once, preventing duplication of effort, and 

any variable instantiations will be affected in the bodies of all the bundled 

rules. 
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As with ordinary Support Logic rules, the body of a rule defining a bundle 

has a different syntax from the way Slop portrays it. The left arrow (<-) is defined 

as an operator of precedence 1175 so that it is less than that of :- but more than 

anything that may occur to the right of : -. It also has to be declared as both prefix 

and infix: 

op(l 175, fy, (<-)). 

op(l 175, xfy, (<-)). 

The, hierarchical structure of the above bundle would be 

(a) 

(b) 

a, b, c: Sl (C) 

a, b: S2 b: S3 

where each branch of the tree represents the relationship between predicate and 

attribute value, so that the left arrow at level (a) is prefix and those at (b) and (c) 

are infix. A bundle is therefore characterised by a Prolog rule with a body 

consisting of the single predicate <-/I. In order to interpret bundles, a new clause 

is introduced to the relation body__ýsupport/3 (section 3.2.2), which evaluates the 

overall support from a bundle of rules. This clause in turn calls the relation 

bundle_wp/S which is dedicated to finding the support for a bundle of rules. 

body__wpport(Pjs, (<- Bundle), S): - 

bundle_sup(Pý_ts, (<- Bundle), no-bundle, 
_, 

S). 
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The term no_bundle -is present to tell the system that this is the top level call to 

bundle_sup and that no other parts of the bundle have been evaluated. 

in order to avoid duplication of effort, the system stores all solutions to all 

the subgoals in the bundle, in the Prolog knowledge base, as they are found. Thus 

when a subgoal is encountered again in a subsequent rule in the bundle, the 

appropriate solution with support can simply be looked up in the knowledge base. 

Interpreting bundled rules is therefore carried out in two stages. Each bundled rule 

(<- a, b, c : S1 or <- a, b : S2 or <- b : S3 in the above example) is passed to 

bundle_support/3, to find all the solutions to the subgoals, and this in turn calls 

bundle -body/2 to evaluate the support for, the-bundied rule. 

bundle_sup(P_ts, (<- BI <- B), BO, SO, S): - 

bundle_support(Pý_ts, B I, S 1), 

intersect((<- BO), (<- BI <- B), SO, SI, SA), 

bundle_sup(Pý_ts, (<- B), BI, SA, S). 

bundle_sup(Pý_ts, (<- Bl). BO, SO, S): - 

bundle_support(P_ts, B1, Sl), 

intersect((<- BO), <- BI), SO, SI, S). 

All variables beginning with uppercase B are the bundled rules for which support is 

evaluated by bundle-support, and Intersect/5 is the predicate that performs the 

calculation of overall support from dependent rules. This predicate also issues a 

message when the illegal situation of conflict arises. The relation bundle-support is 

defined as 
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bundle ýsupport(Pý_ts, Head_args, (: Y), S): - 

bundle_support(P_ts, Head_args, (call(true): Y), S). I 
bundle_support(Pý_ts, Head_args, (X: Y), S): - 

record_solns(X, P_ts, [], 
_), 

slop_bagof(S, bundle_body(Head_args, X, S), Sups), 

cond bundle(Y. Sups, Supsl), 

samecombine(Sups 1, S). 

where record_soins recursively finds and records all the solutions to the subgoals of 

the bundled rule X, and the call to slop_bagof is in a similar form to that made 

from slopjnterp for standard Slop rules. The only difference in the call to 

slop_ýbagof is in where the solutions are found to generate the list of supports, 

S_11st. In this case, the argument to slop_bagof is bundle_body, which looks for 

solutions in the knowledge base as recorded by record_solns, whereas when called 

from slop_Interp it is support, which evaluates the solutions directly from the 

clauses in the knowledge base. The two relations support and bundle_body 

otherwise behave and are defined very similarly. Finding and recording solutions 

and supports to subgoals is done in such a way as to improve the ease with which 

bundle-body can evaluate support for the rule body. Every subgoal in a rule body 

is passed to slopjnterp to evaluate all the solutions and related supports, and these 

are stored using the call 

recordz($bundle, Goal-S, R) 

By using recork the solutions are stored in the order that they are found, however 

this often has no effect on the order in which solutions are presented at the top 

level, owing to the way in which slop_bagof uses ý the Prolog system predicate 

keysort., The variables, Goal and S are instantiated to the solution of the subgoal 

and its associated support respectively, and R is the database reference number. 
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The first argument $bundle is the, database key. When all the solutions to a subgoal 

have been recorded they are checked against the solutions of all subgoals that have 

had solutions recorded up to this point. If a solution to the most recently, recorded 

goal has generated a new variable instantiation then all the previously recorded 

subgoals have a new solution recorded with this variable instantiation and an 

associated support of [0, I]. Thus for the following knowledge base 

p(X): - 

a(X), b(X): Sl 

a(X) : S2. 

a(l): - : S3. 

b(t): - : S4., 

b(2): -,: S5., 

we would get the record 

$bundle a(l)-S3 Ref I 

followed by 

$bundle b(l)-S4 Ref2 

$bundle b(2)-S5 Ref3 

which would then cause the new record 

$bundle a(2)-[O, I] ReN 

to be created. By doing this, when the system comes to evaluating support for the 

ruie body, it can apply a straight depth search without losing any solutions. 

The system works 
. 
through the bundle taking each rule body individually and 

evaluating the support as described above. Every time a new subgoal is encountered 

during this process all its solutions are stored in the database. A new subgoal is 
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clearly identified by the absence of solutions in the database. This leads on to one 

final detail, 
-though, 

that all records must be erased when all the required solutions 

from a bundle have been found. The database could be amended between calls to 

the bundle, allowing new solutions to be generated by it, however these would not 

be found if the system still held the records of solutions from a previous bundle 

evaluation. 

3.4 User Interface 

3.4.1 Introduction 

The preceding two, sections have described the implementation of an 

interpreter for querying Support Logic knowledge bases, however as it stands, it is 

slightly cumbersome to use. To. query the knowledge base with the goal pred(S, Y) 

would require the Prolog query 

?- query-support(pred(X, Y), S). 

This can be avoided by designing an interface that allows the user to' query 

the system in a manner similar to that of Prolog. The interface'could then include 

some tracing facility for following the way in which the Support Logic 'query is 

evaluated, and also predicates for inspecting the knowledge base and carrying out 

some form' of error checking. From the top level of Prolog the Support Logic 

interpreter could be called up and it would prompt'the user for a Support Logic 

query. Once the query-was answered the user would be prompted again until some 

terminating cOmmandwas given. 
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3.4.2 Top Level 

There are two ways that this top level can be designed (i) as a recursive 

loop, or (ii) using a repeat-fail loop. The first of these is a more logical 

construction and is therefore a more elegant way of writing the interface, however 

it can be very expensive on memory. Such a design could be something like: 

slop: - 

setup, 

query_ýdatabase. 

query__Oatabase: - 

prompt_user, 

read_query(X), 

query_wpport(X, S), 

print-solution(X, S), 

query__4atabase. 

The top level goal slop carries out any initialisation of the system (setup) and then 

calls the recursive goal query-database to read and solve queries. To solve this 

goal, a query must be read in, evaluated, have its solution printed, and then initiate 

a new query cycle and the proof tree will get larger and larger. Such memory usage 

is wasteful, since, once a particular query has been solved, any processing associated 

with it is no longer required. Some sort of tail-recursion optimisation may improve 

this situation by pruning the tree of all branches tha't can' be esta I blished as having 

no backtrack points, however, it would have to be an extremely efficient mechanism 

to achieve the same results as a repeat-fail loop: 
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slop: - 

setup, 

repeat, 

query__database, 

fail. 

query__4atabase: - 

prompt-user, 

read_query(X). 

query_ýupport(X, S), 

print-solution(X, S). 

The Prolog system predicate repeat is a goal that always succeeds and furthermore is 

(theoretically) infinitely resatisfiable. By ensuring the goal query-database itself is 

not resatisfiable, the call to fail will cause backtracking to repeat and the user will 

be prompted for a new query. The advantage of this is that all branches of the 

proof tree, through which the system backtracks, are lost and can be erased from 

memory. This is the method used in Slop, but the above form is not sufficient. 

As in Prolog, queries might be resatisfiable for different variable 

instantiations, so a mechanism is needed whereby the user can see more solutions, or 

not, at will. It, is also desirable to be able to terminate the Support Logic session by 

finally succeeding the goal slop. This is not possible while the call to fall is 

present, so this needs to be replaced by some goal which fails when a particular 

condition is met. In section 3.2.5, the use of Prolog system predicates within 

Support Logic clauses was explained, however it would be convenient if they could 

also be called from the top-level but without the need to use call in the query. To 

accommodate these requirements, the goal query_support/2 has been put at a lower 

level and is called by slopcall/l. This relation takes as argument the query read in 

and identifies it as a Support Logic query, a command to end the session or a Prolog 
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system predicate. Support Logic queries are passed to query_., support, whereas 

Prolog system predicates are called directly. Either way, slopcall imitates the 

printing of the solution to the terminal, -and waits for the user to type semi-colon or 

carriage-return to cause more solutions to be found (or not). If the query read in is 

the term quit or the end_of_file character,, slopcall is proved simply by asserting 

the clause stop. in the knowledge base. The goal slop succeeds, and ends, if this 

clause can be retracted, but if not, the system backtracks to repeat. 

slop: - 

setup, 

repeat, 

reset, 

prompt-user, 

read_query(X), 

slopcall(X). 

retract(stop). 

slopcall(quit)*- -, _% end session 

assert(stop). 

slopcall(end_of_file): - % end session 

assert(stop). 

slopcall(X): - % Prolog system predicates 

sys-call(X), 

solution_type(X, W), 

call(X). 

writeans(X, W), 
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slopcall(X): - % Prolog system predicates 

sys-call(X), 

write('no more solutions'). 

slopcall(X): - % Support Logic query 

solution_type(X, W), 

query_support(X, S), 

print-solution(X, S, W), 

slopcall(X): - % Support Logic query 

write('no more supported solutions'). 

- 'The goal 'sys_call(X) establishes -whether the query is to'be satisfied as a 

Prolog system predicate by looking at'the first goal in the query. If this is a Prolog 

system predicate, then sys_call succeeds and the 'query is passed to the Prolog 

interpreter via call. To make this check it is necessary, to have all Prolog system 

predicates identified as such in the relation sys/1. 

e. g. sys(write/1). 

sys(clause/2). 

sys(halt/0). 

The goal solut1on_tyPe(X9W) in clauses 3 and 5 of slopcall looks at the query goal, 

X, for any variables and instantiates W to vars, or'novars accordingly. If there are 

variables present then goal X may be resatisfiable and the user should have the 

option of looking for more solutions. If there are no variables then there can only 

be one solution and the user should not be prompted to look for more. The variable 

W is passed to the two goals writeans/2 and printsolution/3 which output solutions 

to Prolog system queries and Support Logic queries respectively. If call(X) or 

query_. ýsupport(X, S) fail to provide a solution when requested then backtracking will 
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cause a new clause of slopcall to be used to print that there are no more solutions, 

supported or otherwise. On the ý other hand when they are satisfied and no more 

solutions are required, the cuts in the respective clauses of slopcall prevent further 

backtracking in this relation, and the system backtracks to repeat. 

3.4.3 Tracing 

The system described so far is capable of evaluating supports for a query 

from a Support Logic knowledge base, however there is no way for the user to 

inspect how particular supports were derived, for instance what was the most 

significant contributor? What information was missing? etc. The ideal way of 

implementing such a facility would be for the user to be able to say why? or how? 

or what if? having evaluated a query, however this would necessitate holding all the 

proof paths involved in the solution to the query. The simpler method, which 

mimics that of Prolog, was employed, whereby the query can be traced as it is 

evaluated. The user initiates this trace, by preceding a query with the goal trace. 

The points at which the user will want to have control over the trace are 

when a goal matches a Support Logic rule. Here the user is given the option of 

tracing through the subgoals or skipping them to the stage where the support for the 

head has been evaluated from the particular rule. The user can not skip the entire 

support evaluation for a goal, but only that associated with a particular proof path, 

thus the user will be prompted for every rule encountered for any goal. This is 

considered necessary so that one can inspect the support evaluation from particular 

rules without having to work through the subgoals of every defining rule. On the 

other hand all the support evaluations for conjunctions, disjunctions and negations 

that have not been skipped are displayed. An example knowledge base is shown 

below and this is followed by a trace of a query in a Slop session. The numbers 
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down the left hand side are added to facilitate comment in the text but do not 

usually appear as part of the trace. 

P(X): - c(l): - : [0.4,0.5]. 

a(X), c(2): - : [0.6,0.81. 

b(X) : [0.6,0.8]. c(3): - : [0.2,0.4]. 

P(X): - d(l): - : [I, I]. 

c(X) : [0.5,0.7]. d(2): - : [0.9,11. 

a(l): - : [0.8,1]. e(l): - : [0.8,0.9]. 

a(2): - : [0.7,1 

b(X): - 

d(X) : [0.9,0.95]. 

b(X): - 

e(X) : [0.7,0.81. 

Support Logic Programming - Version 1.2 
M. R. M. Monk and J. F. Baldwin 
I. T. R. C., Dept. of Engineering Mathematics, 
University of Bristol, England. 
February 1987 

query? trace, p(X). 

I p(_123): - 
2 aLl 23), 
3 b(_123) : [0.6,0.8]. 
4 TRACE subgoals -y (yes), n (no), q (quit tracing)? y 
5 
6 a(l) : [0.8,1] 
7 a(2) : [0.7,11 
8 OVERALL SUPPORT -> a(l) : [0.8,1] 
9 
10 NO: - 
II d(l) : [0.9,0.95]. 
12 TRACE subgoals -y (yes), n (no), q (quit tracing)? y 
13 
14 d(l) : [I, ll 
15 OVERALL SUPPORT -> d(l): [I, I] 
16 
17 b(l) : [0.9,0.951 
is b(l): - 
19 e(l) : [0.7.0.8]. 
20 TRACE subgoals -y (yes), n (no), q (quit tracing)? n 
21 
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22 b(l) : [0.559999,0.84] 
23 OVERALL SUPPORT -> b(l): [0.946859,0.963768] 
24 
25 a(l), 
26 b(l) : [0.757487,0.9637681 
27 p(l) : [0.454492,0.848502] 
28 -OVERALL SUPPORT a(2): [0.7, I) 
29 
30 b(2): - 
31 d(2) : [0.9,0.95]. 

n (no), q (quit tracing)? n 32 TRACE subgoals -y (yes), 
33 
34 b(2) : [0.809999,0.954999] 
35 b(2): - 
36ý 1ý e(2) : [0.7,0.81. 
37 TRACE subgoals -y (yes), n (no), q (quit tracing)? y 
38 
39 OVERALL SUPPORT -> e(2): [O. ll 
40 ** FAILED AT CUTOFF 
41 OVERALL SUPPORT -> b(2): [0.809999,0.954999] 
42ý 
43 a(2), 
44 b(2) : [0.566999,0.954999] 
45 p(2): [0.340199,0.8866] 
46 p(_123): - 
47 c(_123): [0.5.0.71. 
48 TRACE subgoals -y (yes), n (no), q (quit tracing)? y 
49 
50 c(l) : [0.4,0.5] 
51 c(2) : [0.6,0.81 
52 c(3) : [0.2,0.4] 
53 OVERALL SUPPORT c(l): [0.4,0.51 
54 
55 p(l) : [0.2,0.88] 
56 OVERALL SUPPORT c(2) : [0.6,0.8] 
57 
58 p(2) : [0.3,0.82] 
59 OVERALL SUPPORT c(3): [0.2,0.41 
60 
61 p(3) : [0.1,0.941 
62 OVERALL SUPPORT p(l) : [0.523137,0.81590 11 

p(l) : [0.523137,0.8159011 ; 

OVERALL SUPPORT -> P(2): [0.489512,0.8035551 

p(2) : [0.489512,0.803555] ; 

OVERALL SUPPORT -> p(3): [0.1,0.941 

p(3): [0.1,0.941 ; 

no more non-cutoff solutions 

query? 
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Implementing the trace I involved the introduction' of three new relations: 

clauseprint/l, traceprint/4 and tracegoal/l. ' All three of these always succeed, 

doing nothing when trac in g is switched off, btit *printing 'their respective messages 

when a trace has been invoked as indicated above. The difference between these 

two states is recognised by the presence or absence, respectively, of the clause 

notrace. This is retracted by slopcall when a traced query is encountered, but 

always reasserted by reset to maintain a default state of no tracing. The two goals 

clauseprint and tracegoal always appear together in those clauses of the interpreter 

concerned with evaluating the support from a rule. The first prints out the rule 

about to be evaluated and the second asks-the user what action is to be taken. The 

goal traceprint occurs at the end of every clause which evaluates for a Support 

Logic construction in the relations slopjnterp, body__ýupport, bundle_sup and 

bundle_body. 

This method of tracing queries does have a drawback because of the effects 

of breadth searching, using a depth search mechanism. Referring' to the above 

trace, lines 6 and 7 show that a breadth search is applied to find the two solutions 

to a(X), however these are then taken individually in a depth search fashion while 

solving b(X); lines 8 to 23 and 28 to 41. This does not make for great readability of 

the trace but is not easily avoidable in a simple system such as this. Without fancy 

graphics techniques the trace has to be laid out in a linear and sequential fashion 

but this does not fit in closely enough with the way the system works. 

3.4.4 Error Checking 

Built in to the Prolog system is a syntax error checking mechanism that is 

used every time a term is read in - consulting, reconsulting, querying or any time 

the read predicate is used. This mechanism checks for badly placed brackets and 

the misuse of operators etc, but for Slop it would be useful to check the use of the 
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colon operator to make sure that a clause or query actually means something, in 

Support Logic terms. The restriction on the colon in the body of a rule is 

essentially that it should only be followed by one or two support pairs, and no other 

construction. Note, however, that this is not violated by bundles because the left- 

arrow is given a higher precedence value than the colon. 

Slop error checking is carried out by, the relation bad_colon/4 which 

succeeds if. there is a Slop syntax error, but otherwise fails. Having the relation 

work this way round, rather than failing when an error is encountered, allows the 

location of the error to be detected and printed out with the error message. The 

first attribute of the relation is the term to be tested, and the remaining three are 

partitions of the term indicating where the error occurs. For example if X was the 

query 

a(V), b(V) : [0.7,0.8], c(V). 

in the goal bad_colon(X, J, K, L), then J, K and L would be instantiated as follows: 

J- a(V), b(V): [0.7,0.8] 

K. = 

L- c(V) 

K is bound to the operator connecting the correct part (J) with the incorrect part 

(L). Queries are tested in slopcall by putting the goal not bad_colon(X, J, K, L) as 

the first subgoal. If the test for a wrongly used colon fails, support evaluation 

continues, but if it succeeds, the system backtracks to a clause of slopcall that prints 

out the error message. The incorrect query above would have caused the message 
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... SLOP syntax error ... 

a(X), b(X) : [0.7.0.81 

... here ... 

, C(X) 

Applying the error checking to relations being consulted or reconsulted is not 

possible in all versions of Prolog, without specifically rewriting the consult and 

reconsult predicates. In C-Prolog, in which Slop was originally implemented, there 

is a user-definable ý predicate, expandjerm/2, which is called, during the consult 

and reconsult process. It is not however definable in all Prologs and so the following 

method is not generally applicable. The purpose of this predicate is to allow the 

user to define a method for expanding terms from one form (first attribute) to 

another (second attribute) which can be asserted in the knowledge base. For the 

error checking, the terms are not in fact altered to produce the second attribute, but 

instead are processed by bad_colon. If the term being investigated shows a Slop 

syntax error then the call to expandjerm will fail and the term will not be 

asserted. The system then backtracks to find the next clause in the file. 

Another check that is carried out using expand_term is designed to ensure 

that the user does not try to define a relation which clashes with any of those 

defining the Slop system. In the same way that all Prolog system predicates are 

identified in the relation sys/1, all Slop system predicates (e. g. slopcall, 

query__support, etc. ) are identified in the relation slop/I: 

e. g. slop(slopcall(_I)). 

slop(query_ýupport(_1,2)). 

etc. 
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All relations consulted 'or reconsulted by the user are then checked against this 

"dictionary" and any that match are not -asserted in the knowledge base and a 

message is printed to the terminal. 

3.4.5 Listing'the Support Logic Knowledge Base 

one final requirement is for the user to be able to list out all or part of the 

knowledge base, but without seeing all the clauses defining the Slop system itself. 

This precludes using listing/O since this will list all the clauses in the Prolog 

knowledge base, and also Ilsting/1 is not as useful as it might be because of the way 

Prolog understands Support Logic rules. Although listing is designed to print each 

subgoal of a clause on a separate line, the body of a Support Logic rule will be on 

one line because, as explained in section 3.2.1, it consists, in Prolog terms, of a 

single goal with functor :. The Support Logic rule 

b, 

c : [I. I]. 

would be printed 

a: - 

b', 'c : [1,11. 

The new predicates, slist/O and slist/l, are defined to list out the Slop 

knowledge base (not list because it is a reserved word in some Prologs). Both can 

be used in the same way as listing, but, as well, slist/l has been defined as a prefix 

operator of precedence 900 so that the predicates to be listed need not be in 

brackets (i. e. slist(goal) and slist goal are equivalent). The way that slist/O avoids 

printing out the clauses defining the Slop system is by checking each relation it is 

about to print against the dictionary defined by slop/l. Both slist/O and slist/I call 
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portray/2 to print out the clauses. This predicate copes with peculiarities of the 

colon, as well as the operators defining bundles and equivalences. The first of the 

two attributes is an indentation level (starting at zero) to achieve an easily readable 

layout for bundles and disjunctions etc. The relation portray is also called from 

some of the tracing'relations and clauses that print error messages. 
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Chapter 4. Translating Support Logic Programs 

4.1 Introduction 

The Support Logic interpreter described in chapter 3 was explained in terms 

of extending a simple Prolog interpreter to accommodate the evaluation of supports 

at each stage of a proof path and to perform a breadth search over the knowledge 

base. Querying a knowledge base through such an extra level of interpretation 

significantly impairs the efficiency. of 'the query evaluation, because a large 

proportion of the time is spent doing exactly what Prolog itself is designed to do - 

carry out a theorem resolution procedure. If the support evaluation and breadth 

search mechanism could be incorporated into the Support Logic knowledge base 

itself, then very much more efficient programs could be generated. The Support 

Logic translator is designed to perform this function: converting Support Logic 

knowledge bases that need to be queried through Slop, to Prolog programs that, 

when queried from Prolog, return supports with the solutions to proved goals. 

4.2 Support Pairs on Prolog Goals 

For a Support Logic goal to be queried from Prolog directly and to return a 

support pair, the goal must have associated with it a variable to which this support 

pair can be bound. This is in contrast to Slop, for which supports on goals are 

implicit, and are handled and printed by the interpreter itself. The only way to do 

this is by incorporating an extra argument into all the goals being translated, thus 

the Slop goal pred(X, Y) becomes pred(S, X, Y) where S will be bound to the support 

pair. The support evaluation for a rule has to be incorporated into the body of that 

rule as an extra subgoal, or subgoals, and must contain the conditional support pair 

of the rule. For example the rule 
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pred(X, Z): - 

subgoall(X, Y), 

subgoal2(X, Y, Z) : S-Cond. 

will become 

pred(S, X, Z): - 

subgoall(SI, X, Y), 

subgoal2(S2, X, Y, Z), 

support-eval([S 1, S2], S_Cond, S). 

where support-eval is assumed to evaluate, the support for the conjunction of the 

two subgoals, from S1 and S2, and condition this on S-Cond to produce the 

support, S for the head of the rule. The problem arises when a goal can be proved 

in more than one way, from a single rule (as above),, or from more than, one rule, 

and we have. to implement the calculus for evaluating supports across a breadth 

search to obtain the overall support. Since it is necessary to effect a breadth search 

of the knowledge base, the most obvious solution would be to use bagof, or a 

variation of it, as in Slop itself. A correct translation of the above example, that 

would ensure that the support evaluated was an overall support, would be 

pred(S, X, Z): - 

bagof(SI, sub_pred(S I, X. Z), L), 

samecombine(L, S). 

sub_pred(S, X. Z): - 

subgoall(SI, X, Y), 

subgoal2(S2, X, Y, Z), 

support_eval([SI, S2], S_Cond, S). 

This translation involves the introduction of an intermediate level that causes 

a breadth search on the original translation (now sub_pred) before the overall 
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support is evaluated using samecombine. Although this is a correct translation and 

all Slop rules could be translated in this way, it is still not very efficient, because 

for every relation in the knowledge base an extra level of proof has been 

introduced. This situation can be improved if we know something about the actual 

solutions that'can be generated. 

4.3 Optimising the Translation 

. The purpose of carrying out a breadth search over the knowledge base is to 

generate all the solutions to the relevant goals and to insure that the support 

associated with each solution accounts for every possible proof path. However, 

provided this is achieved, it does not matter what search mechanism is used, and 

under certain circumstances it can be achieved equally well with a depth search - if 

there is only one proof path to a solution breadth and depth searches will achieve 

the same result. The key, then, to optimising a translation is knowing- how 

individual solutions can be generated and by how many different proof paths., -1 

I 

4.3.1 Single Clause Relations 

Let us consider the example knowledge base: 

pred(X, Y): - 

subgoall(X), 

subgoal2(X, Y. Z) : S-Cond. 

subgoall(a): - : SA. 

subgoal2(a, b, l): - : SB. 

There is only one solution to the query pred(X, Y), and furthermore only one proof 

path generating it, which binds a to X and b to Y. The translation 
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pred(S, X, Y): - 

subgoall(SI, X), 

subgoal2(S2, X, Y, Z), 

support-eval([S 1, S2], S-COnd, S). 

subgoall(SA, a). 

subgoal2(SB, a, b, 1). 

will thus correctly evaluate the support for this solution. We can also add a new 

clause for subgoal2: 

subgoal2(a, c, 2): - : SC. 

and the translation, with the extra clause 

subgoal2(SC, a, c, 2). 

will still remain valid without. having to include any specific breadth searching 

mechanism. The depth search of Prolog will happily find the solution X=a, Y=b 

with associated support bound to S, and then back-track to find the new solution 

X=a, Y=c with new support bound to S. The translation becomes invalid if the new 

clause to subgoal2 is 

subgoal2(a, b, 2): - : SD. 

which translates to 

subgoal2(SD, a, b, 2). 

In this case Prolog will generate the solution X=a, Ymb with Z having been bound to 

the number 1, and on backtracking will generate the same solution with Z having 

been bound to the number 2. For each proof path to the solution, S will have been 

bound to a support pair and these should be combined to produce''a single support 

pair to the single solution X-a, Yub. In such a case, it is unavoidable but to 
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introduce the intermediate level and use bagof, in what we will call a bagof-form 

translation; 

pred(S, X, Y): - 

bagof(Sl, sub_pred(SI, X, Y), L), 

samecombine(L, S). 

sub_. pred(S, X, Y): - 

subgoall(SI, X), 

subgoal2(S2, X, Y, Z), 

support-eval([SI, K], ý_Cond, S). 

subgoall(SA, a). 

subgoal2(SB, a, b, 1). 

subgoal2(SD, a, b, 2). 

There is a restriction, then, on translating a relation consisting of a single clause: if 

this clause can generate the same. solution more than once then a bagof must be used 

in the translation, otherwise a depth search type translation will be valid. 

it is also worth observing here, that the validity of the translation was 

altered by the assertion of particular extra clauses to relations defining the subgoals. 

This means that a translated support logic knowledge base should not be extended 

by the assertion of new translated clauses, because subsequent queries are very likely 

to produce wrong supports to solutions. This should not be considered an undue 

restriction, because translation of Support Logic knowledge bases is on a par with 

compilation of Prolog modules. A Prolog program can be amended, but the system 

will still correctly resolve theorems from top level queries. However, once Prolog 

code has been built into a module, it is untouchable, and to be amended, it must be 

recompiled. Translating Support Logic knowledge bases is very similar, the main 

difference being that the translator generates Prolog code, whereas module compilers 

do not. This means that, although being very ill-advised, it is possible to tamper 
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with the translated code or to assert new clauses with which it will interact. The 

purpose of translating Support Logic knowledge bases is to provide a way of 

producing more efficient code from a complete Support Logic program. Slop can be 

used for developing and tracing the knowledge base in the first instance, and when 

complete, it can be translated to produce a faster finished application. 

4.3.2 Multi-Clause Relations 

When a relation consists of more than one clause, it is necessary to compare 

the solutions generated by the different clauses in order to optimise the translation. 

There are three possible ways in which two sets of solutions for different clauses 

can compare: they can be completely different, exactly the same. or they can 

overlap, i. e. share common solutions. In the first two cases, it is possible to perform 

the translation without the need to use the bagof-form. 

Let us consider the following relation: 

pred(X, Y): - 

subgoall(X), 

subgoal2(X, Y) : Sc I. 

pred(X, Y): - 

subgoal3(X, Y) : Sc2. 

and assume that clause I provides the solutions X=a, Y=b and X=a, Y=c and that 

clause 2 provides the solutions X-b, Y-c and Xmb, Y=d, which we will represent by 

the two lists 

I [[a, b], [a, c)] and 

2 [[b, cj, [b, dl] 
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Each element of the lists I and 2 correspond to a, solution from the 

particular clause and each solution is represented by a list of terms to which the 

arguments of the goal will be bound, in generating a solution. In this case there are 

no elements common to both list I and list-2 reflecting that the two clauses generate 

completely different solutions from each other. When generating support for 

solutions from a relation with such clauses, there is no need to consider the two 

clauses together and they can be translated individually according to the restrictions 

explained in the previous section (4.3.1). In fact with these particular clauses, it is 

possible to see on inspection that neither clause can generate any solution more than 

once. The reason for this is that there are no variables local to either rule, i. e. 

variables that are used in the body but do not occur in the head of the clause. 

Compare these clauses with the definition of, pred in section 4.3.1 in which the 

variable Z is local to the rule. It was when this variable had two, different 

instantiations (I and 2),, -for the same bindings on X and Y, that a bagof-form 

translation was required. Since neither of the two clauses we are considering here 

have local variables the following translation for the relation is guaranteed to be 

valid: 

pred(S, X, Y): - 

subgoall(SI. X), 

subgoal2(S2, X, Y), 

support-eval([S 1, S2], Scl, S). 

pred(S, X, Y): - 

subgoal3(S3, X, Y), 

support-eval([S31, R2, S). 

If there are local variables in either rule and the rule, generates a solution more, than 

once, then the above translation of the relevant clause would simply be replaced by 
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the bagof-form. If this were true of both rules then the two bagof-forms could be 

combined into one by using the same top level rule for both clauses: 

I 
pred(S, X, Y): - 

bagof(S l, sub_pred(S I, X, Y), L), 

samecombine(L, S). 

The second situation is when the two clauses generate exactly the same 

solutions so that our solution set lists might be 

I [[a, b], [a, c]] and 

2 [[a, b], [a, c]] 

In this case, again providing neither clause generates the same solution more than 

once, the' two clauses can be translated, without using bagof, by building them 

together as one translated clause. This of course has the added advantage of 

reducing the time taken searching the knowledge base and unifying clause heads. 

The translation would now become 

pred(S, X. Y): - 

subgoall(SI, X), 

subgoal2(S2, X, Y), 

support-eval([SI, S2], Sc 1, Sa), 

subgoal3(S3, X, Y), 

support-eval([S3], Sc2, Sb), 

samecombine([Sa, Sb], S). 

which we will call a one - clause- form. If either, or both, of the clauses could 

generate the same solution more than once then the translation would have to be 

split and a bagof-form used. 
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The third and final relationship between the sets of solutions of two clauses 

is that they have solutions common to both, but also some unique to one or other 

clause. For example the two clauses might have solution set lists 

I 

2 [[a, b], [a, c], [a, d]] 

In this case the two clauses can not be translated individually because it is necessary 

to combine the supports from the two proof paths for each of the solutions [a, b] and 

Similarly the two clauses can not be combined into one because the body of 

clause I would fail for the variable bindings X=a, Y=d and thus this solution would 

not be generated. We could use a combination of the two that would use a one- 

clause-form for the two solutions [a, b] and [a, c] plus an individual clause for the 

solution [a, d]. This individual clause would, though, have to insure that the 

variables in the head of the clause could be bound to nothing but [a, d], so that the 

solutions [a, b], [a, c] would not be generated twice. 

pred(S, X, Y): - 

subgoall(SI, X), 

subgoal2(S2, X, Y), 

support-eval([S 1, S2], Sc I. Sa), 

subgoal3(S3, X, Y), 

support_eval([S3], SC2. Sb), 

samecombine([Sa, Sb], S). 

pred(S, a, d): - 

subgoal3(S3, a, d), 

support-eval([S3], Sc2, S). 

The drawback of this particular translation is the duplication of code from the 

second clause of the original Support Logic relation, otherwise it is a relatively neat 
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translation. As a translation technique to be used in general, however, it has two 

significant failings. 

The first failing concerns the second clause of the translation in which the 

variables X and Y are replaced by the terms a and d respectively thus guaranteeing 

the clause could not generate support for solutions [a, b] and [a, c]. If, however, the 

solution set lists had been 

I [[a, bl, [a, c]], and 

2 [[a, b], [a, c], [a, dl, [a, e]] 

then this clause would have had to provide the solution [a, e], by introducing some 

sort of solution check: 

pred(S, X, Y): - 

member([X, Y], [[a, dl, [a, e]]), 

subgoal3(S3, X, Y), 

support-eval([S3], Sc2, S). 

Again this would work fine, but one can see that with predicates of larger arity, 

arguments of greater complexity and larger sets of solutions, the checking might 

start to override the extra efficiency we are trying to achieve. 

The second failing is when such overlapping solution sets occur not just 

between two clauses. but between three or more. We would then have perhaps 

several one-clause- forms as well as several individual clauses and the code 

duplication would escalate, with the number of clauses involved. The simplest 

general structure, and in some circumstances probably the most efficient, is the 

bagof-form; the relation is translated as individual clauses with a different predicate 

name and an intermediate level clause that calls bagof on that new predicate name: 
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pred(S, X, Y): - 

bagof(S l, sub_pred(S I, X, Y), L), 

samecombine(L, S). 

sub-pred(S, X, Y): - 

subgoall(SI, X), 

subgoal2(S2, X, Y), 

support-eval([S 1, S2], Sc 1, S). 

subý_pred(S, X, Y): - 

subgoal3(S3, X, Y), 

support-eval([S3], Sc2, S). 

An advantage of always using the bagof-form when solution sets overlap, is 

that it is sufficient for the translator to establish that there is an overlap; it need 

not find the particular solutions that are common to both clauses. The translator 

also does not need to consider the possibility of any clauses, so involved, providing 

duplicate solutions since this will be dealt with by the bagof-form anyway'. 

4.3.3 Clause Ordering 

The previous two sections have discussed how we can use knowledge of the 

solution sets of individual clauses within a relation to produce neater and more 

efficient translations. The examples given, however, consisted of no more than two 

clauses, thereby guaranteeing the juxtaposition of clauses that could be translated as 

a group. We could have a relation, pred(X, Y), with six clauses and the following 

solution set lists 
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I [[a, b], [c, d]] 1 

2 [[e, f]] 2 

3 [[a, b], [g, h]] 3-1 

4 Hilill 4 

5 [[a, b], [c, d]] 1 

6 [[a, bl] 5-3-1 

The numbers to the right of the solution sets are clause solutlon numbers (CSN's) 

and are used to identify the relationships between solution sets. A CSN consists of 

a solution set identifier for the particular solution set, followed by the solution set 

identifiers of those solution sets with which it overlaps. Clauses I and 2 have 

totally differing solution sets and therefore no overlaps, and have different, single 

figure CSN's. Clause 3 has a new solution set (solution set identifier 3) but one that 

overlaps with solution set I (for clause 1) and therefore has the suffix "-I", making 

a CSN of 3-1. Clause 4 has a new and, so far, unique solution set giving it a CSN 

of 4. Clause 5 has a solution set that is already identified as solution set 1, and thus 

the same CSN, while that of clause 6 is new (solution set identifier 5) but overlaps 

with solution sets 3 and I giving it a CSN of 5-3-1. We can see that the largest 

number involved in a CSN can not be greater than the number of clauses and also 

that the number of "-n" suffices signifying overlaps is limited by the number of 

previously identified unique solution sets. - 

In -a relation with solution sets as above, the order of the clauses does not 

immediately lend itself to any efficient translation and the only correct translation 

would require a bagof-form. We would prefer the clauses to be in an order such 

that clauses I and 5, having CSN 1, were together to be translated using a one- 

clause-form, and clauses 1,3,5 and 6 were together to be combined to accommodate 

the overlap of solution sets. Clauses 2 and 4 could then be translated individually. 

There is, in fact, nothing to stop us reordering the clauses so that this is the case: 
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original CSN's 
clause nos. 

I [[a, b], [c, d]] 1 

5 [[a, b], [c, d]] I 

3 [[a, b], [g, h]] 3-1 

6 [[a, b]] 5-3-1 

2 [[e, f]] 2 

4 4 

Because we are going to carry out a breadth search over the knowledge base. 

the order of clauses becomes immaterial to the proof. The depth search of Prolog is 

used in order that the known order in which goals will be queried can be utilised to 

produce procedural programs. The Prolog system predicates that perform side- 

effects would be of no use if we could not guarantee this order. In a Support Logic 

knowledge base, we are not trying to represent procedural information, but the 

relationships between data and conclusions and thus the order in which the supports 

for different conclusions, or the support for proof paths of like conclusions, is 

evaluated, does not matter. The reordering shown above provides us with a 

translation consisting of a bagof-form calling three clauses (the one-clause-form of 

clauses I and 5, plus clause 3 and clause 6) and two individual clauses (2 and 4). 

As always there is an exception to this rule - when the cut is used. This is a 

Prolog system predicate with the very special side-effect of removing back track 

points. Although very specifically a depth search control mechanism it does have its 

uses in the breadth search of Support Logic as discussed in section 3.2.6. The use 

of the cut means that the clause order is again important, but only with respect to 

the clause containing the cut; clauses before this cut-clause must remain before it, 

and those after it must remain after it. Within this restriction clauses can still be 

reordered, however to implement this, the translator has to know in which clauses 
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cuts occur. This information can be obtained as the knowledge base is read in from 

file, at which time another important function is carried out. 

4.4 Creating a Knowledge Base Module 

The most obvious way of generating the solutions to all clauses in the 

knowledge base is by evaluating all the possible queries. This requires the 
I 

knowledge base to be consulted into Prolog at the same time as the translator itself 

and we thereby risk predicate names clashing and relations being redefined. In a 

Prolog that has a modules facility, whereby sections of code can effectively be 

partitioned in the knowledge base, this could be achieved by building the translator 

into a module and loading the file to be translated into a -separate part of the 

knowledge base., In the version of Prolog (C-Prolog 1.4) in which Slop and this 

translator have been developed., such a facility is not available and an alternative 

scheme has been built into the translator itself, and is called by the goal readin with 

the file-name as argument. 

The purpose of creating a module is to prevent code from clashing with any 

other code that is required in the knowledge base, and a clash only occurs if two 

relations have the same predicate name and arity. A pseudo-module can be created 

if the predicate names of all relations are changed to something that can be 

guaranteed to be unique. The translator achieves this by using the name of the file, 

containing the Support Logic program, as a prefix to all the predicates in the 

program. Thus the predicate reliability in the file design would become 

design reliability in the module. A double underscore is used between the file- 

name prefix and the original predicate name, to guarantee distinction from any 

predicates in the translator, ' none of which contain a double underscore. ' Using this 

mechanism, we can guarantee that no clashes will occur between files of a different 

name. It is assumed that if a file has the same name, then it is the'same file and 
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any redefinitions. that might occur are intended. This renaming of predicates has to 

be performed, throughout the file, to all instances of the original predicate and thus 

every clause in the file has to be investigated goal by goal. An extra, function 

carried out by the module creating facility is the introduction of an extra argument 

to every non-system predicate call and definition. This argument is put at the 

beginning of the argument list and is an anonymous variable in all instances but the 

clause head. It serves no purpose, in the uniqueness of relations in the module, but 

is used to assign a clause number to each clause in the relation. For the first clause 

it is 1, the second, 2 etc. This numbering is used at a later stage in the evaluation 

of solution sets to clauses. 

.. 
Calls to three system predicates have to be treated in individual ways 

because they are predicates that refer to predicate names alone, i. e. without their 

arguments; these are functor and abolish. The predicate names so referenced 

would usually be interpreted as data terms and not predicates, and thus they would 

not be altered, however as arguments to these three system predicates they must be 

altered. To achieve this the three system predicate calls are replaced by calls to 

PA=.. ', 1,11unctorl and '^abolish' respectively, which are defined to perform the 

appropriate alterations to predicate names at run time. All other system predicates 

must be left alone and their names left unaltered. The main reason for this is that 

the predicate name, must remain the same in order for the appropriate call, to be 

carried out at run time. As well, as this, since system predicates can not be 

redefined anyway, there is no chance of a name clash occurring and therefore no 

need for the predicate name to be altered. 

The above mechanism allows code, both Prolog and Support Logic, to be 

loaded into the knowledge base without causing name clashes and accidental -relation 

redefinitions. To create a full-blown module, it would also be necessary to allow 

import and export predicates for the module -predicates that can be defined outside 

15 



and called within the module, 'and predicates that can be defined within and, called 

from outside the module, respectively., This is not necessary for translation, though, 

because we do not intend to create otherýmodules at the same time, and we do not 

need access to the original predicates because all the new predicate names can be 

recorded by the translator. As all clauses in the file have to be considered goal by 

goal, we can, at the same time as building the module, locate all calls to the cut and 

identify the clauses in which they occur. This information is also recorded, along 

with a list of all the clause definitions for each relation. 

The first part of' the' translation ý process creates -a modular form of the 

Support Logic program being translated and, - for every relation in the program, 

stores in the knowledge base a clause holding the following information: ,--- 

the most general clause head, MgH, i. e. that with all arguments variable, 

the modular form of the most general clause head, ModH, 

a list of all the clause definitions, Cs, and 

the cut list, Cuts (a list of terms n or c, one for each clause, where c means 

there is a cut and n means there is no cut): 

relation([MgH, ModH, Cs], Cuts). 

These clauses can then be accessed one at a time to provide the'relevant information 

for generating solution sets and translating the Support Logic relations. 

4.5 Generating Solution Sets 

% 

Having read in the file, the next task is to generate the solution sets for all 

the relations and their clauses. A mechanism is provided in the translator, for 

declaring the solution sets to the clauses of a relation in the original file, thereby 

avoiding the lengthy process of querying every relation and this is described in 
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section 4.8 below. In this section we will describe how solution sets are generated 

from the modular form of'the Support Logic program. Because 'of the possible 

presence of cuts-in clauses of the knowledge base, this is performed in two stages. 

The first stage is carried out by create' soln-sets and establishes the solution 

sets for all, the relations (not individual clauses) and records them in 'clauses 

soln-set(ModH, Ss) where ModH is the module form of the most general head, and 

Ss, is the list of solutions. The -solutions are found using, a revised form of the 

system predicate setof, called for every relation in the Support Logic file. This 

revised predicate is called reln_soln_setof and the main revision is the way in 

which it determines a set. In setof this is determined by whether or not solutions 

unify, thus a set as produced by setof will have no two elements that are unifiable. 

The set produced by reln_soln_setof determines the uniqueness of elements by the 

comparator <=>. This comparator is a slightly relaxed form of the system predicate 

which tests for two terms being "identical". Identical, in Prolog, means that 

corresponding elements of the two terms under comparison refer to the same item. 

Thus strings 'term 11 and 'term 1' are identical, and variables X and X are identical, 

but variables X and Y are not, because, although they are both variables and can be 

bound to the same value, as differently named variables, they refer to different data 

items. It is this constraint that is relaxed in the comparator <=>, so that any two 

unbound 'Variables will be satisfied by <=>. It is not relaxed as far as ordinary 

unification (modelled by the comparator =) under which any unbound variable will 

compare with any other term, variable or otherwise. Using the comparator <=> in 

reln_soln_setof, variables in solutions are equivalent to the universal quantifier, 

"for all". Thus the solution la, b, X] is the solution, argument I has value a, argument 

2 has value b, for all values of argument 3, as is la, b, Yl. On the other hand la, b, cl 

is the solution, argument I has value a. argument 2 has value b and argument 3 has 

the particular value c, not any value. Solutions [a, b, X1 and la, b, cl are different 

because, although the first is true when the second is true, the first can also be true 
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when the second is'not. This distinction'is important in Support Logic, because 

support -for the solution ja, b, XJ lends support to the solution [a, b, cl, but the 

converse is not true. 

I 
Another difference in reln_soln_setof is that it contains a clause that looks 

to see if the solutions have already been recorded by a specific declaration in the 

file, so that solution, evaluation can be avoided where possible. , The other 

differences in the definition of reIn_soln_setof are for streamlining the definition 

by taking out that computation, performed by the more general setof, that is 

unnecessary in reln_soln_setof. 

An important aspect of the generation of solution sets for relations is that 

the relations can be queried as Prolog goals and do not have to be queried as 

Support Logic goals. The reason for this is that we are not interested in the 

supports but only in the possible solutions and, furthermore, because we want all 

the solutions and the order is not important, it does not matter if we carry out a 

depth or breadth search. By querying as Prolog goals, the process is a great deal 

quicker as no extra interpretation, as carried out by Stop, is necessary. We do 

however have to provide definitions for the special Support Logic operators that 

Slop interprets, :, both prefix and infix, sup__qr and sup_not, as follows: 

: (X). 

: (X, J: - call(X). 

sup--not(X): - call(X). 

SUP-or(X, Y): - call(X), call(Y). 

sup__pr(X, _): - call(X). 

sup__pr(_, Y): - call(Y). 

Having established the solution sets for all relations in the Support Logic 

knowledge base, it is now possible to generate the solution sets for the individual 
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clauses within a relation. This and all necessary processing up to and including 

translation is carried out in one go for each relation being translated, by the 

predicate trans-relations., The generation of solution sets for clauses is described 

here, -and the remaining functions of trans-relations are described in the sections 

below. 

The solution sets of each clause in a relation are generated using 

clause-soln_setof, another customised version of setof. This predicate has also 

undergone some streamlining, but its most important differences are the way in 

which it treats solutions as they are found, and the way in which it evaluates the 

query for which solutions are being found. As with reln_soln_setof, the set 

generated by clause_soln_setof is based on the comparator <=>, however another 

function is also performed when solutions are compared. The first argument of the 

solutions being generated will be the number of the clause from which a solution 

was evaluated, thus identifying the clause under consideration. If this solution is 

shown to be the same (according to <=>) as a previously evaluated solution, then it 

must have been evaluated from the same clause (since the argument representing the 

clause number is included in the comparison) and we have a situation where a single 

clause generates the same solution more than once. As explained above in section 

4.3.1 such a situation has to involve a bagof-form of translation and so we record 

the occurrence ý by storing in the knowledge base , the clause 

dol-bagof_clause(C - No) where C-No is the number of the clause in which the 

duplication of solutions occurs. Such a record also needs toýbe made if we find-a 

solution that does not satisfy <=>, but will unify with a previous solution, as well as 

provide support for another solution generated by the same clause. For example the 

solutions discussed above, la, b, XI and la, b, cl would fall into this category. 

The other main difference in the definition of clause_soln_setof from that 

of, setof, is, that the solutions are not evaluated using call, - which performs an 
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ordinary Prolog query, but solve. The purpose of solve is to get round the problem 

of the cut-removing backtrack points and therefore preventing the evaluation of 

solutions to clauses following a clause containing a cut. , This is achieved by solve 

acting as a type of interpreter, but a very efficient version because it uses the 

solution sets evaluated by rein-soln_setof. In this way it does not have to. look 

deeper than the subgoals of the clause under investigation but instead obtains the 

solutions, for them directly from the clause soln_set(ModH, Ss) in the knowledge 

base, where ModH is the subgoal, and Ss the list of its possible solutions. By 

accessing each clause of a relation-using clause, -any cuts encountered will have no 

effect on the evaluation of solutions and the solution sets for all clauses can -be 

generated. 

4.6 Ordering and Translating Clauses 

When the solution sets for all the clauses in a relation have been generated, 

they are straight away used to establish the optimum order of clauses and optimum 

translation, and therefore do not need to be recorded in the knowledge base. The 

solution set for each clause is compared with the solution set of every other clause, 

and according to how solution sets compare (same, different or overlapping) clauses 

are allocated a clause solution number (CSN) as described in section 4.3.3. This 

process is performed by translation_types, called by trans_relations, and returns a 

list of CSN's corresponding to the list of clauses. The CSN's are also Used to flag 

whether the clause has a cut in it, (suffix "-c") and whether the clause generates the 

same solution more than once (suffix "-s"), both pieces of information being needed 

to generate the optimum order. 

Clause re-ordering is performed by order_clauses and involves two stages. 

First, clauses are grouped together according to their need to be translated using a 

bagof-form, thus all CSN's with common solution set identifiers are grouped 
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together and clauses that are flagged by "-s" on their CSN's are grouped together. 

Those CSN's which do not involve any overlaps or "-s" flags are grouped at the end 

and are identified as being non-overlapping by the presence of the term 

non_overlap before the group. The second stage is then to optimise the order 

within each group so that clauses with identical solution sets can be translated using 

the one -clause -form. The grouping procedure also takes account of cuts in clauses 

(flagged by "-c" on the CSN) so that the effect of the cut on backtracking remains 

the same in the translated knowledge base as in the original. If the clause 

containing the cut is involved in an overlap of any sort, so that it will be translated 

using a bagof-form, or if a clause prior *to the cut has a solution set overlapping 

with that of a clause subsequent to it, then all the clauses currently under 

consideration are grouped together for translation using the bagof-form. By doing 

this the cut is kept at the same level with respect to all clauses over which it is 

meant to have an effect, and the correct behaviour is maintained in the translation. 

As discussed in section 3.2.6, the interpretation and use of the'cut within a breadth 

search mechanism raises a lot of problems and it should be approached %ý'ithýgreat 

care. It is not surprising, ý therefore, that it creates -difficulties when translating 

Support Logic programs and on the whole it will be translated ý using a bagof-form. 

However, it should only be in exceptional circumstances that the cut is used at all, 

and the associated problems should be infrequent. 

The following example demonstrates how a list of CSN's (not involving a 

cut) would be reordered to provide an optimum translation. 

[ 1,2,3-s, 4,5-1,6-2,7-s, 4,8,1 ] 

is a list of ten CSN's with which there is a corresponding list of clauses to be 

translated. All actions performed on this list of CSN's will be shadowed on the list 

of clauses so that the correspondence is maintained, and the clauses will be in the 

correct order for translation. The list is first grouped into sublists of CSN's: 
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[6-2,2] non_overlap, [3-s, 4,7-s, 4,8]] 

where those lists before the term non_overlap are groups of clauses with common 

overlaps, identified by the CSN's 5-1 and 6-2, and the list after the term 

non_overlap is the group of clauses whose solution sets have no overlap with the 

solution sets of any other clauses. Notice that the "-s" flags on the CSN's are 

disregarded at this stage, and in this example both CSN's involved identify unique 

solution sets and are therefore grouped in the final list. Each sublist is now sorted 

into the best order within each group to give 

[[1,1,5-1], [6-2,2], non_overlap, (4,4,8, [7-s, 3-s]]] 

The "-s" flag is now used to group all such CSN's together in a list, identifying that 

the bagof-form should be used. 

The ordered lists of CSN's and corresponding clauses, produced by 

order_clauses is now passed to trans-relation which performs the actual translation 

of clauses in their groups. Coming before the term non_overlap, the first two 

groups will be translated using the bagof-form. This involves defining the top level 

goal that calls bagof and samecombine and defining the relevant clauses with their 

new predicates. The new predicate is generated by prefixing the original predicate 

by bag_N where N is a number that is incremented each time a new predicate name 

is generated. Thus if the predicate of the relation, with list of CSN's in the above 

example, is pred, then the predicate name used in translating the group identified 

by [1,1,5-11 would be bag_lpred, and the group identified by'[6-2,21, bag *2pred. 

The clauses themselves can then be -translated using either the one-clause -form, 

where there are duplicate CSN's, or as individual clauses where there are not. The 

group given by 11,1,5-11 would thus produce a translation something like 
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pred(S, X): - 

bagof(S l, bag_l pred(SI, X), L), 

samecombine(L, S). 

bag_lpred(S, X): - 

subgoall(SI, X), 

subgoal2(S2, X), 

andcombine(S 1, S2, Sa), 

condcombine(S, Condl, Sa, SA),, 

subgoal3(S3, X), 

condcombine(S-Cond2, S3, SB), 

samecombine([SA, SB], S). 

bag_lpred(S, X): - 

subgoal4(S4, X), 

subgoal5(S5, X), 

orcombine(S4, S5, Sa), 

condcombine(S-Cond3, Sa, S). 

Notice that subgoals are always evaluated in conjunction whether or not the support 

is to be combined as a conjunction (using andcombine in clause I of bag_lpred) or 

as a disjunction (using orcombine in clause 2 of bag_lpred). The translation of the 

second group will look similar, but will use the subsidiary predicate bag__, 2pred and 

will not use a one -clause- form. 

The remaining group of clauses (identified by [4,4,8, j7-s, 3-sjJ) do not 

involve any overlapping, however the sublist 17-s, 3-sl is a list of all the clauses 

which are able to generate the same solution more than once. These should be 

translated using another bagof-form, while-the rest, 14,4,81, can be translated as a 

one-clause-form and an individual clause. The overall impression of the final 

translation, with relevant CSN's to the right of each clause, will be 
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pred(S, X): - ' 

bagof(Sl, bag_l pred(SI, X), L), 

samecombine(L, S). 

pred(S, X): - 

bagof(S2, bag_2pred(S2, X), L), 

samecombine(L, S). 

pred(S, X): - 

.... condcombine(S-Cond I, S I, SA), 

..., condcombine(S-Cond2, S2, SB), 

samecombine([SA, SB], S). 

pred(S, X): - 

..., condcombine(S-COnd3, S3, S), 

pred(S, X): - 

bagof(S3, bag_3pred(S3, X), L), 

samecombine(L, S). 

bag_l pred(S, X): - 

..., condcombine(S_Cond4, SI, SA), 

.... condcombine(S_Cond5, S2, SB), ý 

samecombine([SA, SBI, S). 

bag_l pred(S, X): - 

..., condcombine(Sý_Cond6, S, S). 

bag__2pred(S, X): - 

..., condcombine(S-Cond7, S 1, S). 

bag_2pred(S, X): - 

.... condcombine(S-Cond8, S2, S). 

bagjpred(S, X): -*_ 

..., condcombine(Sý_Cond%S 1, S). 

[1,1,5-11 

[6-2,21 

[4,41 

181 

[7-s, 3-sl 

[5-11 

[6-2] 

[21 

[7-s] 
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bag_3pred(S, X): - [3-s] 

..., condcombine(S-Cond I 0, S2, S). 

When a relation has been translated, the data for the next relation to be 

translated is retrieved from the knowledge base (stored in clauses of relation by 

readin, see section 4.4) and the process is repeated until the whole Support Logic 

program has been translated. The translated clauses are printed using write and can 

therefore be directed to the screen or to a file. The latter is achieved by redirecting 

the output to a file using the Prolog system predicates tell and told. Af urther 

option is to have the translation directly asserted into the knowledge base. This is 

done by writing the translation to a file which is automatically reconsulted at the 

end of the translation. 

4.7 Semantic Unification 

The purpose of translating Support Logic programs is so that they can be, run 

directly as Prolog programs, while still evaluating the supports, making use of the 

built-in unification and resolution mechanisms of the language. In implementing 

semantic unification in translations we do not want to rely on checkingifor fuzzy 

arguments at run time, so we must locate where they occur by looking at the 

solution sets. Those goals that do involve semantic unification must then be 

arranged so that the standard unification process is interrupted, and the only way to 

achieve this is by defining an intermediate level between the call and the goal itself. 

This intermediate level, which is similar, in construction, to the bagof-form, will 

intercept a call, evaluate the goal independently and then perform semantic 

unification where necessary. 

When a goal is called, the fuzzy argument of the goal can either be, a 

variable or some fuzzy term. In both cases the intermediate level must evaluate the 

goal with a variable in place of that argument, so that the goal does not fail as a 
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result of an inability to syntactically unify the fuzzy argument. The term for which 

the goal generated a solution can then be semantically unified, in the first case, with 

all possible semantic unifications, and, in the second case, with the term involved in 

the original call. The intermediate level for the Support Logic goal pred(X, Y), with 

second argument fuzzy will look something like: 

pred(S, X, Y)-. - 

fuz-pred(SI, X, Z), 

semunify(S, S1, Y, Z). 

where fuz_pred is the predicate of the* subsidiary relation, and semunify performs 

the semantic -unification between terms Y and Z. This intermediate clause will 

intercept all calls'to pred and semantically unify on the evaluation of fuz_pred. It 

will not, however, allow the fuzzy term to be passed directly through the call for 

evaluation at a higher level as explained in section 3.3.5.3. The definition needs to 

be modified, but we also need to introduce some mechanism for identifying whether 

the'fuzzy term is at its highest level of reference. If it is not, then semantic 

unification should not take place, and the variable binding from the evaluation of 

the goal fuz_pred'should be passed straight up; i. e. Y and Z should be unified. 

Let us consider again the two possible cases, Y being variable or Y being 

bound. If, Y is non-variable, then the fuzzy term must have been introduced at the 

level of the call and thus it must be the highest level; as soon as a fuzzy term 

reaches a second level of evaluation it becomes a variable by the action of the 

intermediate level clause. This highlights the problem with a variable fuzzy term in 

a call; is it a variable on account of the action of an intermediate level call, or is it 

a new variable local to the clause making the call? The only place where it is 

possible to determine this is at the call itself, and this we can do during translation, 

and do not have to carry out at run time. One way to do this would be to 

investigate every subgoal in a clause to see if it is called with a local variable, rather 
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than a variable frorn the head of the clause. This would involve complicated 

comparisons of variables using the identicality comparator, ==. A much neater way, 

which does not- involve any, searching makes use of the syntactic unification of 

Prolog. Suppose pred(X, Y) is defined as 

pred(X, Y): - 

subgoall(X), 

subgoal2(X, Y) : [0.7,0.9] 

where the second argument is fuzzy. If we bind any term to Y, then all instances 

of Y throughout the clause will be replaced by this term, immediately identifying 

those subgoals that are called with a fuzzy argument not at its highest level. If we 

make this term a variable -with a flagi then it will identify itself at run time as a 

call involving a fuzzy term not at its highest level, but will still have a variable to 

which the evaluated term can be bound. We do not however want pred itself to 

return the flag, as the flag only has any meaning when a goal is called. What we do 

then is replace (not unify) Y in the head by another, new variable, say Z, and then 

bind all other instances of the variable Y to Z-Afuzzy. "Afuzzy" is the flag. bound 

to Z by the minus operator, and is deliberately obscure to minimise the chance of it 

being duplicated coincidentally by the user. A new clause now has to be introduced 

to the intermediate level, handling the occasions when the fuzzy term carries this 

flag. Using the following facts, 

subgoall(a): - : [0.9,11. 

subgoal2(a, high): - : [0.8,0.91. 

with the knowledge base above, in which high is a fuzzy term, thus making 

argument 2 of both pred and subgoal2, fuzzy, the translation would be: 
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pred(S, X, Y): - 

var(Y), 

fuz-pred(SI, X, Z), 

semunify(S, S1, Y, Z). 

pred(S, X Y_'AfUZZyl): _ 

fuz-pred(S, X, Y). 

pred(S, X, Y): - 

fuz, red(SI, X, Z), 

semunify(S, S1, Y, Z). 

fuz-pred(S, X, Y): - 

subgoall(SI, X), 

subgoal2(S2, X, Y-'Afuzzy'), 

andcombine(SI, S2, SA), 

condcombine([0.7,0.9], SA, S). 

subgoal 1([0.9,1 ], a). 

subgoal2(S, X, Y): - 

var(Y), 

fuz-Subgoal2(S I, X, Z), 

semunify(S, S1, Y, Z). 

subg6al2(S, X, Y-'Afuzzy'): - 

fuz-Subgoal2(S, X, Y). 

subgoal2(S, X, Y): - 

fuz-subgoal2(S I, X, Z), 

semunify(S, SI, Y. Z). 

fuz-subgoal2([0.8,0.9], a, high). 

Translations of relations involving fuzzy arguments are cumbersome since 

every such relation, regardless of how large or complicated it might be, requires its 

own three, intermediate level clauses. Clause 2, in each case, handles fuzzy terms 
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not at their'highest level, clause' I therefore has to be put -in to intercept variable 

fuzzy' terms before they are satisfied by clause 2. and clause 3 deals with all other 

values for the fuzzy term., The simplification of dropping clause 2, and merging 

clauses I and 3 could only be allowed if the relation is NEVER called except with 

its fuzzy term at its highest level and' this would necessitate investigating every 

relation in the program to establish that this is the case. Such a search would be 

enormously time-consuming and would only really improve the efficiency of the 

translation with respect to the amount of code it generates, and not the speed of 

that code. Such a simplification is therefore not performed. 

4.8 "Solutions" and other Declarations 

For a knowledge base consisting of more than about five levels of rules, the 

evaluation of solution sets starts to be the most time-consuming aspect of the 

translation process. The time taken by other aspects, such as solution set 

comparison. clause ordering and clause translation, are generally independent of the 

overall size of the Support Logic program. Solution set comparison does increase 

dramatically with the size of the relation, however large relations (i. e. large numbers 

of clauses) are not particularly common, except as ground data (Support Logic 

facts), in which case the solution sets being compared have only one element and 

the process is trivial. The translation itself can therefore be significantly speeded 

up by explicitly stating the solution sets in the file containing the Support Logic 

program. This is unlikely to involve the user in an inordinate amount of extra work 

since, in developing the knowledge base, the user will have defined the solution sets 

anyway. 

To determine the optimum translation, solution sets for each clause in a 

relation are needed. and also for the relation as a whole. The latter can of course 

I be evaluated from the solution sets for the clauses, so it is those that we have to 
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declare. The declaration is performed by a directive in the file, calling the goal 

solutions. This can take two or three arguments, in which the third argument 

defines a shorthand using a type declaration. The other two arguments identify the 

predicate of the relation to which the declaration relates, and specify the solution 

sets for the clauses of the relation. For example, solution sets for the relation 

pred(X, Y), given in section 4.3.3, would be declared by 

:- solutions(pred/2, [ [[a, b], [c, d]], 

[[a, b], [g, h]], 

[[a, b], [c, d)], 

[[a, bl] ]). 

The list contains elements each corresponding to a clause in the relation and 

each of 'which is a list of solutions that can be generated by the- particular clause. 

The three argument form would -be used in association with one or more type 

declarations and allows particular solutions to be replaced by a variable. The main 

use for this structure is in relations that can generate complicated solutions and in 

large Support Logic programs in which the same solution can be generated by 

several different relations, thus preventing the need for the same solution being 

repeated in the different solutions declaration. Given the simplicity of the solutions 

in the above relation,, the use of the three argument form is of little saving unless 

used with other solutions declarations. It would, however, be used as 
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type(l, [a, b]). 

type(2, [c, d]). 

type(3, [e, f]). 

type(4, [g, h]) 

type(5, [i, j]). 

solutions(pred/2, [[A, B], [C], [A, Dl, [E], [A, B], [A]], 

[(I, A), (2, B), (3, C), (4, D), (5, E)]). 

The third argument consists of a list of pairs relating a solution type to a variable. 

In the example the solution type 1 (being [a, b]) is bound to the variable A, type 2 

(being [c, d]) to B etc. By binding the variables in this way, the list of solution sets 

eventually becomes the same list as the list in the original two argument form of the 

declaration. 

Another shorthand that can be used depends upon the fact that in the 

comparison of solutions, it does not matter what the solutions actually are, provided 

they compare in the same way. Thus, for example, the lists of solution sets, 

[[[a, b], [c, d]], [[e. fl], [[a, bl, [g, h]], [[a, b], [c, d]], [[a, b]]] and 

[[1,2], [3], [1,4], [5], [1,21, [1]], 

would generate exactly the same structure of translation. The second list is the first 

list with la, b] replaced by 1,1c, dj replaced by 2, le, f] replaced by 3,1g, h] replaced 

by 4 and 11, J] replaced by 5. This use of a solutions declaration is essential for 

those relations in which arguments have to be bound when the goal is called, most 

typically when the argument is a list or a number. In such cases it is not possible to 

establish what the solutions to a clause are, simply by using reln_soln_setof and the 

solutions have to be explicitly declared. Furthermore, if the argument can be a list 

or a number, there are an infinite number of possible values that it could take, all 

of which would be treated in the same way. To make the declaration, we therefore 
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need to use some symbol to represent the whole class of possible values. A relation 

that needs such a declaration is fast-speed, defined in section 3.2.6 and repeated 

below: 

fast-speed(X): - 

call(X > 100), 

fast-speed(X): - 

call(Y is X+ 5), 

fast-speed(Y) : [0.9,1]. 

The variable X has to be bound when the goal is'called in order for the subgoals 

call(X > 100) and call(Y Is'X + 5) to be evaluated. We would therefore use a 

solutions declaration such as 

:- solutions(fast_speed/l, [[n], [nl]). 

when n is used to stand for number. 

A Support Logic program can- have solutions declarations for just some of its 

relations or indeed for all of them. In this latter case, it is no longer necessary to 

store the program, in the knowledge base since the reason for doing this was to 

allow relations to be queried to evaluate solution sets. In order to prevent the 

translator storing the program, one can use the declaration 

:- nostore. 

and save the time that would have been taken converting predicate names to their 

modular form. Instead, it is only necessary to check clauses read in for the presence 

of 'cuts, which can be performed by a very simple search of the clause bodies. 

A similar time-saving device -is'' invoked by the declaration 

4- 32 



:- top , level(P/A). ,, 1 

which asserts in the knowledge base that the relation with predicate, P, and arity, 

A, is not called by another relation in the program, i. e. it is a top level goal that is 

only invoked by a query. -' This assertion is detected by create_soln_sets and the 

evaluation of the solution set for the relation, P/A, is skipped. The only purpose of 

evaluating solution sets for an entire relation is to make the process of evaluating 

solution sets for individual clauses easier, but if no clauses call a relation, then the 

solution set for that relation is not needed. Notice, however, that the solution sets 

for the individual clauses of the relation are still required in order to perform the 

correct translation. Such a declaration can be of great value, because top level 

relations are, by definition, going to be those that require most work to evaluate 

solution sets. 

Another declaration that can produce time savings in the translation process, 

and also generate more efficient translations, is that declaring that a relation is a 

Prolog type relation -a relation that is not used for the evaluation of support but is 

accessed using the Prolog system predicate call, or from some other Prolog type 

relation, to perform some procedural action. The declaration is not always essential 

because, if such a relation can have its solutions evaluated or it has them declared, 

then the Support Logic translation would still work in the same way but would 

include support calculations in the body of the rules. These are obviously not 

necessary if the goal is called via call and can be left out. The declaration takes the 

form: 

:- prolog(P/A). 

where P/A specifies the predicate P with arity A. 

ý The two remaining declarations are required for semantic unification. As 

with the interpreter, it is worth providing the capability to turn off the semantic 
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unification feature, as it requires a large. amount of extra processing. This can be 

done in two ways: the first is by using a straightforward switch invoked by the 

declaration 

:- semantic-un ificat ion. 

This causes every argument of every relation in the Support Logic program to be 

checked to see if it is a fuzzy term, based on whether or not there is a Support 

Logic fuzzy term definition, as used by Slop and explained in section 3.3.5. The 

second method avoids the need to check all the arguments by explicitly declaring 

the fuzzy terms associated with specific relations:, 

fuzzy goal(P/A, N). 

The relation is represented by P/A, where P is the predicate name and A the arity, 

and the position of the fuzzy term is represented by N being the argument number. 

For example, the declaration 

:- fuzzy-goal(pred/4,2). 

states that the second argument of the arity 4 relation, pred, is a fuzzy term. If all 

the relations involving fuzzy terms are so declared, then the system need not search 

arguments of the other relations. However, if the semantic_unification declaration 

has also been used, then all those relations for which there is no fuzzy_goal 

declaration will be checked for fuzzy terms. 

4.9 Querying Translated Programs 

The purpose of translating Support Logic programs is to allow supports to be 

evaluated by using Prolog queries directly, rather than running queries through the 

Support Logic interpreter, Slop. The translator generates the appropriate Prolog 

code from a Support Logic program, but it is not sufficient for evaluating queries 
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alone. - There are certain procedures that are required, by all translated programs and 

these are collected together as a front end for running translated programs, rather 

than building them into every translation. These procedures, bar one., are all 

associated with the actual calculation of supports from the component support pair. 

andcombine, orcombine, condcombine, probcombine and samecombine are taken 

from'Slop itself, and are used in exactly the'same contexts of -evaluating support 

across the logical connectives. The relations semunify, maxminset, max and min are 

also taken directly from Slop and are used for the support evaluation associated with 

the semantic unification of two f UZZY terms. Intersect-list and 

trans_conflict_warning are specifically defined for translated programs for 

evaluating support in bundles, and issuing a warning when conflict arises in 

bundles. The remaining procedure is dol-bagof, which is a customised form of 

bagof, for performing the breadth search mechanism in the bagof-form translations. 

The custornisation primarily involves streamlining of the definition to remove any 

unnecessary code, but also includes the warning mechanism to alert the user when 

solutions contain variables. The need for this is explained in section 3.3.1. 

The other aspect of a front end that could be provided, but in fact has not 

been, is a top level query interpreter. As it stands, translated Support Logic 

programs are queried from Prolog top level and require an extra argument in the 

query, which will be bound to the support pair. It would be nicer, however, if the 

Support Logic query of a translated knowledge base was the same as that of a Slop 

interpreted knowledge base, in which supports are returned automatically. Since the 

translation depends upon the presence Of the extra argument, the only way this 

could be achieved would be by passing queries through a query interpreter. 

This query interpreter would read in queries, which would be the same as 

those read by Slop, and would convert them to the correct form for querying the 

translated knowledge base. The converted query could then be called directly as a 
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Prolog goal and the solution printed out,, with support pair., as is done by Slop. In 

the case of 'a single goal, the query conversion 'would only involve putting in the 

extra argument. With compound goals -. conjunctions, disjunctions and negations - 

the converted query would also have to include some support evaluation goals (e. g. 

andcombine for conjunction, orcombine for disjunction) so that the support for the 

overall query goal could be evaluated, rather than just its component goals. 

4.10 Conclusion 

The translator described in this chapter provides a way of converting 

Support Logic programs, that need to be run through the rather slow interpreter, 

into Prolog code while still carrying out the correct search mechanism and support 

evaluation. The increase in speed of support evaluation is entirely dependent upon 

the structure of the original knowledge base and how much of the translation 

involves the bagof-form, but it is generally at least an order of magnitude and can 

be as much as thirty times. 

The translation does not provide any mechanisms for debugging Support 

Logic knowledge bases, akin to the tracer provided by Slop, because the translator is 

not intended for use before an application is complete, and such tracing by this 

stage is considered unnecessary. There is however strong argument for allowing 

some justification mechanism to be built into translations. When reasoning with 

uncertainty, rather than just true and false, one may often wish to establish why 

support is low or high, or why it is different from support for another proposition, 

and it is quite reasonable to wish to do this with a completed application. The 

tracer of Slop was able to double up to provide such a capability as well as a 

debugging tool, but the inclusion of such a mechanism in translated programs is 

more difficult to achieve while still maintaining the improved efficiency of support 

evaluation. A possible solution might be to include spypoints, similar to those of 
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the Prolog trace, such that when a relation is spied, it prints out the supports 

evaluated for each solution. A full listing of the translator is given in appendix Il. 
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Chapter 5. Determining Support Pairs 

The theory of Support Logic proposes a way in which uncertainty in 

knowledge can be represented and combined in a reasoning system. As with all 

general uncertainty mechanisms, however, it can not provide a definitive way in 

which the uncertainty values can be determined. This is largely going to be decided 

by the particular domain of application and the readiness with which numerical 

uncertainty values occur. For instance a problem involving a process such as 

sampling from some data source may implicitly provide probability intervals, 

whereas a problem such as medical diagnosis may be entirely dependent on heuristic 

rules on which uncertainties are fairly subjective. This chapter briefly describes 

some of the ways support pairs might be derived and, with reference to this, 

explains some of the semantic differences between the Support Logic disjunction 

constructions. 

5.1 The Voting Model for Support Pairs 

We can consider that every time we want to decide on a support pair for a 

statement, fact or rule, we can give the evidence to a group of people whose job it 

is to vote for or ag ainst the proposition, but they do have the right to abstain to 

allow an open world. We can allocate to the necessary support that proportion of the 

vote for the proposition, and to the possible support one minus that proportion of 

the vote against, the proposition. The difference between the two will then be the 

proportion of abstentions. For facts the voters are presented with an unconditional 

proposition; for rules like, for example, p: - q, they are asked to vote on p given 

certain conjunctions, disjunctions. or both, of propositions represented by q. For 

example, to obtain a support pair for the rule 

5-1 



good_at_tennis(X): - 

accurate_server(X) : [SI, Su]. 

the voters consider any evidence available to decide if being an accurate server 

makes someone good at tennis. The evidence may be their own experience or it may 

be film clips of people playing tennis and, depending on the background of the 

voters, different voting patterns may be obtained. If they had no evidence of the 

effect of an accurate serve on a game of tennis, then they would be unable to vote 

either way and we would obtain, a support pair of [0, I] on the rule - 100% 

abstentions. The voting interpretation can be represented as follows: 

P: - : [S, (P), Su(p)]. 
SIM . proportion of group vote for p, 

I- Su(p) - proportion of group vote for NOT p, 

SUM - SIM - proportion of abstentions 

P: - q : [Sl(plq), Su(plq)]. 

SI(plq) - proportion of group vote for p given q 

I- Su(plq) - proportion of group vote for NOT p given q 

Su(plq) - Sl(plq) - proportion of abstentions 

5.2 Possibility and Necessity Measures Using Fuzzy Set Theory 

We may want to represent in our knowledge base an observation like "most 

adults can drive". The proposition in this is "adults can drive" and this has a 

support "most". To represent this in Support Logic, we assert the clause 

can_drive(X): - adult(X) : [SI, Su]. 

for which S1 and Su have to be chosen to represent what we mean by "most"., 

Intuitively, we want S1 to be large and we probably want Su to be one as the 
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assertion says nothing about adults not being able to drive. If we have a fuzzy set 

defining the linguistic support-"most", then we can use fuzzy set theory to derive the 

possibilities for the proposition. IIIII ýý I 

Using equations (2.21) and (2.22) of section 2.5 we can find the supports 

representing "most", to be 

Poss(most) Poss(mostltrue) m V(XMOST(17) A XTRUE(17)) and 
17 

Nec(most) I- Poss(NOT most) -I- Poss(mostj false) 

- 
VXMOST(ý) A XFALSE(ý))* 

17 

I false most Su -I 

: -! .......... I-SI - 0.25 

0 
01 

Figure 5.1: Evaluation of supports representing "most" using fuzzy 

set theory. 

Our fuzzy set definition for "most" is shown in figure 5.1 along with the definitions 

for "true" and "false". From this we can read off the values for Poss(most) and 

Poss(NOT most) to give us the support pair for the original proposition. Thus the 

statement "most adults can drive", can be represented in support logic programming, 

by 

can_drive(X): - adult(X) : [0.75,1]. 

5.3 Disjunctions 

A Prolog knowledge base consists of a series of Horn Clauses which may or 

may not have subgoals as conditions of the implication. The interpretation is that 

the heads of all the clauses are true if their subgoals or conditions are true. If there 
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are no conditions, then the clause represents a statement of fact and the head of the 

clause is true regardless of the rest of the knowledge baseý When a clause is 

conditioned by certain subgoals i. e. it is a rule - the head is true only when the 

conditions, or body of the rule, can be proved to be true within the knowledge base. 

When two clauses have the same head, then we have a disjunction in which the head 

can be proved true either by proving the body of the first clause or by proving the 

body of the second clause. 

Let us suppose we have the knowledge base 

fast-car(X): - 
has large_engine(X). 

fast-car(X): - - 

has-Spoilers(X). 

This is interpreted as "X is a fast car if it has a large engine or it has spoilers". The 

disjunction can be absorbed as part of, the body of a single clause 

fast-car(X): - 

has_large_engine(X) 

has-Spoilers(X). 

where the semi-colon (; ) is the Prolog symbol for disjunction. Proving either one of 

the two disjuncts proves the body of the clause and therefore the head. In Prolog 

these two forms of disjunction are equivalent within a strictly logical context - that 

is, one which does not use non-logical predicates such as "cut" (! ) and "fail". In 

Support Logic, these two forms of disjunction are, in general, no longer equivalent 

and the semantics of the two diverge. Furthermore the bundle construction of 

Support Logic provides another form of disjunction owing to the fact that it uses an 

alternative evaluation method within the calculus. The Support Logic system 

therefore has three ways of representing disjunction - (i) within the body of a rule 
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using the disjunction operator (body disjunction), (ii) using independent rules with 

the same clause head (clausal disjunction), and (iii) using dependent rules within 

bundles. 

5.3.1 Body vs. Clausal Disjunction 

Let us consider again the example above concerning fast cars. Within 

Support Logic, we can qualify the truth of the two rules to reflect that, though they 

may be true in most cases, they are not, true in every case. Suppose we put a 

support pair of [0.7,1] on eachrule: 

fast-car(X): - 

has-large_engine(X) : [0.7,11. 

fast-car(X): - 

has-Spoilers(X) : [0.7.11. 

If a particular vehicle under inspection has a large engine but no spoilers, then we 

deduce that it is a fast car with support [0.7,1]. Similarly, should it have spoilers but 

not a large engine we would make the same deduction with the same support. If on 

the other- hand it had spoilers and a large engine, we derive two support pairs of 

[0.7,1] which, assuming independence, combine to produce an overall support of 

[0.91,1] for the vehicle being a fast car. The assumption of independence means that 

the two subgoals has_Iarge_eng1ne and has_spollers do not affect one another - 

i. e. one does not imply or discount the other. 

Suppose, now, that instead of putting the supports on each rule individually, 

we had formed one rule with a disjunction in the body, similar to the Prolog 

example: 
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fast-car(X): - 

(has large_engine(X) 

sup__pr 

has-spoilers(X)) : [0.7,1]. 

In this case, still assuming independence, the body of the clause is definitely true if 

both subgoals are true or if only one of the subgoals is true. The support for 

anything being a fast car could never be greater than [0.7,1]. 

The 'difference, in interpretation, between these two forms, of disjunction, 

although they both assume independence, is the scope of the conditional support 

pairs. In the latter case the disjunction itself is conditioned by the support pair, 

whereas the first example is a disjunction of two conditionally supported rules. It is 

also important to appreciate the effect of the independence assumption in each case. 

With two rules, we derive two support pairs for a conclusion and assume that they 

are independently derived in order to calculate an overall support pair; the 

assumption applies to the support pairs associated with the conclusion. With a single 

rule consisting of a disjunction of subgoals, the assumption applies to the 

relationship between the disjuncts. * The way in which the disjuncts imply the 

conclusion, however,. can not be considered independent. These differences are best 

illustrated by a further example. 

5.3.2 Body DisJunction 

A ptarmigan is a type of grouse found in the Scottish Highlands, and in 

summer the colouring of its back varies from grey to buff. We can estimate that, 

should this colouring be detected, we can conclude with support [0.4,1] that the bird 

is a ptarmigan. The low support is due to the fact that quite a few birds in the 

region have similarly coloured backs, and so the detection of such colouring should 

not provide a large degree of support for the bird being a ptarmigan (shape and 
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behaviour would be better distinguishing characteristics). In order to incorporate this 

information in a bird identification system, we construct the rules 

bird(ptarmigan): - 

back(grey) : [0.4,11. 'II, 

bird(ptarmigan): - 

back(buff) : [0.4,11. ' 

Using these rules, a bird seen to be definitely both grey and buff on its back would 

be identified as a ptarmigan with support [0.64,1]. The support is increased due to 

finding both grey and buff in conjunction. This is an incorrect deduction because 

we did not wish to attribute more support than 0.4 to the conclusion that a bird was 

a ptarmigan, given that it had this colouring. The scope of the support pair should 

include the disjunction. The rule we want uses body disjunction: 

bird(ptarmigan): - 

(back(grey) 

sup__pr 

back(buff)) : [0.4,11. 

The greyness and buffness of the bird's back are still independent concepts 

but the rule, now correctly, reflects that the presence of either does not directly 

increase the support for the conclusion, but only indirectly, in as much as it 

increases the support for the bird having grey or buff colouring. The rule is 

dependent on the single piece of information, the colouring of the bird's back. The 

disjunction occurs because this colouring can take on a range of shades defined 

between grey and buff. 
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5.3.3 Clausal Disjunction 

In the above example, using clausal disjunction created a situation in which 

the truth of either subgoal contributed directly to an increase in support for the 

conclusion. This is a situation in which not only are the subgoals themselves 

independent, but the ways in which they affect the support for the conclusion are 

also independent. Two identification marks of a house sparrow are a black chin and 

a grey crown. If either of these marks are seen on a bird, then we should provide 

support for that bird being a house sparrow, however each mark can also provide 

support for an alternative identification. If both marks are seen, then each piece of 

evidence should reinforce the other to provide greater support for the bird being a 

house sparrow. This is exactly how clausal disjunction behaves, so we can use the 

rules: 

bird(house_sparrow): - 

chin(black) : [0.4,11. cf. tits 

bird(house_sparrow): - 

crown(black) : [0.5,11. cf. whitethroat, wheatear 

We are assuming that the colours of chin and crown are independent (which 

they are) and that the degrees to which they lend support to a bird being a house 

sparrow are also independent. This latter assumption is less obvious and depends on 

the information under consideration, but with no information to the contrary, it is 

least prejudiced to assume independence. 

5.3.4 Bundles 

Two identification marks of the jay are a distinctive blue wing patch and a 

distinctive white wing patch. We could represent this information as two rules, like 

the rules for identifying a house sparrow, however there is a third rule which tells 
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us that the jay is the only European bird to have both blue and white, distinctive 

wing patches, though several species have either one or the other. To represent this 

information we must construct a bundle of three rules: 

bird(jay): - 

wing-patch(blue), 

wing_patch(white) : [I, ll 

wing-patch(blue) : [0.6,1 ] 

wing_patch(white) : [0.4,1]. 

The rule based on the most information (the conjunction), which we will call 

the primary rule, uses the same evidence as the two other rules and therefore is not 

independent. It is able to derive a more confident conclusion because it uses the 

extra information of the two marks occurring in conjunction. This latter point is the 

key issue in the use of bundles and leads to important restrictions on the supports of 

the component rules of a bundle. 

5.4 Conditional Supports In Bundles 

For a bundle to have a reasonable interpretation in a knowledge base, it is 

necessary that the conditional supports reflect the known dependence between rule 

bodies. Consider the bundle 

head: - 

<- goal 1, 

goa12 : [Sli, Sui] 

goall : [S12, SU2]. 

The supports on the primary rule will be 
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Sli = SI(Headlgoall, goal2) 

Sul -I SI(NOT headl goal l, goal2) 

in choosing the supports on the secondary rule, it is necessary to consider the effect 

of goa12 on the support for the head of the rule. Given that goa12 is important in 

the bundle, but of unknown significance in the secondary rule, we can not attribute 

more support to the rule than the worst case defined by the truth of goa12. Thus we 

define the supports on the secondary rule by 

S12 = SI(headlgoall*, goal2) A SI(headlgoall, NOT goal2) 

SU2 = SI(NOT headlgoall, goal2) A SI(NOT headigoall, NOT goal2) 

= Su(headigoall, goal2) v Su(headlgoall, NOT goal2) 

This means that S12 :5 Sli and SU2 ?: SUI, in other words the support pair on a lower 

order rule must contain that on a higher order rule. Rules of the same order need 

only have intersecting conditional support pairs. These two relationships, between 

conditional support pairs in bundles., are enough to prevent the occurrence of 

conflict, but do not guarantee meaningful bundles. 

These definitions for the supports on_ lower order rules avoid the assumptions 

that produce the paradox of confirming evidence. Salmon (1983) illustrates this 

paradox using a simplified version of Carnap's (1962) original example: 

There is a chesslournament of locals'and out-of-towners and the men and women, 

and juniors and seniors are distributed as in table 5.1. 

Local Out-of-towner 

Junior mww mm 

Senior mm www 

Table 5.1. Distribution of men (M) and women (W) in the chess 

tournament. 
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We are'also given the evidence, e, that all the competitors are equally likely to win. 

From these 'pieces of information, we can say that the confirmation of a man 

winning (event h) given evidence, e, is given by 

c(hle) - 1/2 

If we now find out that a local player wins (evidence 1), we can deduce 

c(hle, i) . 3/5 > ýL/2 . *. positive confirmation, 

or if we find out that a junior wins (evidence J), we can deduce 

c(hle, j) . 3/r, > 1/2 . *. positive confirmation. 

However, when given both pieces of evidence, I and J, we deduce 

c(hle, ij) = 1/3 < 1/2 '. *. negative confirmation. 

The paradox is,, how can two pieces of positively confirming evidence become 

negatively confirming when taken together? 

The paradox 
-occurs I 

because the confirming evidences, I and J. when taken 

alone, do not account for the possibility of the other piece of evidence being 

known. If we only know that the tournament was won by a local, then we can say 

that the chances of that player being a man are 3/5. If, on the other hand, we are 

told that we may know later whether the player was a junior or senior, we would 

say that the chances of the player being a man are in the range 2/3 to 1, depending 

on that evidence. This is exactly equivalent to following the above rules, for 

defining supports in bundles, to produce 

winner(man): - 

local, 

junior : [1/3,1/3] 

local : [1/3.1] 

<- junior 
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Defining supports according to these restrictions can also tell us something 

about whether the bundle has been constructed sensibly. Should we find that, in the 

rule at the beginning of this section, SI(headlgoall, goal2)*: 5 SI(headlgoall, NOT goal2)j 

then S12 would have the same value as Sli, and the primary rule would never 

provide necessary support for the head. The necessary support would never be more 

than that provided by the secondary rule. In this case, we might want to switch the 

bundle round so that it was 

head: - 

goal 1, 

NOT goal2 : [Slia, Sula] 

<- goall : [S12, SU2]. 

Notice that the supports on the primary rule have now changed, but those on the 

secondary rule have not. On the other hand, the original format may have been 

what was wanted, because the crucial information provided by the primary rule 

could be negative, and therefore contained in the value of the possible support. To 

choose supports in this way. we really need to be provided with some statistical 

information. Once we have the statistics, though, we have to be very careful how 

we formulate it in Support Logic so that dependency relationships are accurately 

represented. We also want to ensure that the rules we create represent as much of 

the data as possible. 

5.5 As Sure as Eggs Is Eggs 

Let us suppose we have a lorry load of eggs of varying sizes, and varying 

shades from white to brown. The eggs have been there a while and some have gone 

bad, but we believe that the rate at which they have gone bad can be related to the 

size and colour. We therefore sample and test the eggs so that we can construct some 
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rules to determine if an egg is bad or not. The sampling produces the following 

data: 

w w w -nw -nw -1w Uw Uw Uw total 
1 -11 Ui I -, I ui 1 11 UI 

bad 7 6 7 2 4 2 2 2 5 37 
-, bad 2 1 1 12 3 1 8 8 3 39 
Ubad 1 7 8 9 3 4 12 6 4 54 

total 10 14 16 23 10 7 22 16 12 130 

Table 5.2: Sample of 130 eggs tested for being bad; w- white, I- 

large, -, means negation and Ux means uncertain with 

respect to property x. 

From this we could represent just the proportion of bad eggs, regardless of size or 

colour, by the rule 

bad: - : [37/130, - 91/130]. or 

bad: - : [0.29,0.7]. 

however, this tells us practically nothing, as the proportions of "bad" and "not bad" 

eggs are almost the same and there is about 40% unsureness. Instead we can make 

rules relating bad eggs to their colour or their size using the two probabilistic pairs: 

bad: - white : [0.5,0.9], [0.2,0.6). 

bad: - large : [0.2,0.61, [0.3,0.7]. 

A white egg will be concluded to be bad with support [0.5,0.9) and a large egg, bad 

with support [0.2,0.61. An egg that is both white and large will have support 

[0.49,0.69] for it being bad. Looking at the statistical data, though, we can see that 

between seventy and eighty per cent of eggs, that are both white and large, are bad 

-a higher proportion than our support pair suggests. This tells us that the two 

properties, size and colour, are not independent with respect to the eggs being bad 

or not - even though large eggs are more often not bad, a white, large egg is likely 
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to be bad. The statistical data indicates a dependence between the properties and so 

we use a bundle. 

Since the primary rule of a bundle can only model one form of conjunction 

(e. g. "white and large", "white and not large" etc. ), we must consider which 

conjunction we most want to represent, or which provides most support for the head 

of the rule. In some situations, a subgoal of the primary rule may only ever have 

positive support (possible support restricted to 1), in which case the primary rule 

should not be composed using the negation of that subgoal. In the eggs example, the 

support for white and large can vary from [0,01 through [0, I] to [1, I), so we can not 

use this criterion'. In deciding how to form our bundle, we must decide, which form 

of conjunction in the primary rule will provide us with most information. We can 

deduce the following support pairs, for the conjunctions, from table 5.2: 

white and large 

white and not large 

not white and large 

not white and not large 

[0.7,0.81 

[0.43,0.931 

[0.09,0.48] 

(0.4,0.7] 

The, conjunction does not have to provide positive support for the head of the rule; 

we merely want it to Provide reasonable support one way or the other with not too 

much unsureness. For example, a support pair of [0.45,0.55] is not very useful, 

although it has low unsureness, because it does not help us draw a conclusion one 

way or the other., In this example, though, it is fairly clear that "white -and large" 

would produce the best primary rule. 
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bad: - 

<- white, 

large : [0.7,0.8] 

<- white : [0.5,0.9] 

<- large : [0.2,0.8]. 

The conditional support, pair on the secondary rule bad: - large has had to be 

changed from'[0.2.0.6] to [0.2,0.8] to meet the restrictions, and so we have lost the 

information that large eggs are usually not bad. Thisý is unavoidable, because the 

rule has to allow for the-possibility that the egg is white. Large eggs are bad with 

support contained by [0.2,0.8] regardless of colour, however,, if weýknow the egg is 

not'white, a large egg is bad with'support [0.2,0.61, but this we can only represent 

with a primary rule. This bundle gives reasonable supports for eggs that are white 

or large or both, but if an egg is neither, we will deduce no support at all for the 

egg being "bad" or "not bad". At this point, we may be tempted to put in the 

probabilistic pair for the primary rule: 

bad: - not (white, -large) : [0.23,0.64]. 

using the data in columns 2,4,5,6 and 8 of table 5.2. Doing this, though, changes 

the dependency between the primary rule and lower order rules. The rule body "not 

(white, large)" is equivalent to "not white or not large" which does not have the 

relationship of strict implication with either "white" or "large". Consequently, the use 

of the dependence assumption can not be justified, and such rules should not be 

constructed. On the other hand we might be able to use the probabilistic pairs on 

those rules for which the body consists of'only one goal. This would give us a 

bundle: 
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bad: - 

white, 

large : [0.7,0.8] 

white : [0.5,0.9], [0.2,0.8] 

large : [0.2.0.8], [0.3.0.8]. 

In this bundle, the secondary rules now provide support for "bad" considering the 

whole of the possibility space, which is still an implication of the primary rule. The 

advantage is that the possibility space is split in such a way as to allow us to draw 

support from two complementary properties. The conditional supports on the 

probabilistic pairs are bound by the same restrictions, so that we will probably not 

be able to represent all the available information, but the support pair evaluation 

will still be improved. In the above example, the possible supports on both 

probabilistic pairs have had to be raised to 0.8 to satisfy the restriction. 

There are a number of ways of representing the information and, of these, 

we have seen none can represent it completely. The dependence between properties 

and the fact that properties can be partially supported, means we are unable to say 

definitely to which class an egg belongs; it might belong to all classes to some extent 

and this is why we use Support Logic. The price we pay for being able to deal with 

the cases when properties are not true or false for sure, is that1we can no longer, 

necessarily reproduce the exact support pairs when properties are true or false for 

sure. By choosing the construction of our rules sensibly, however, we are able to 

provide reasonable approximations to the supports. 

In the eggs example, there are four possible ways of modelling the data: 
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A. bad: - 

white, 

large : [0.7,0.8] 

white : [0.5,0.9] 

large : [0.2,0.8]. 

B. bad: - 

white, 

large : [0.7,0.81 

white : [0.5,0.9], [0.2,0.81 

large : [0.2,0.8], [0.3,0.8]. 

C. bad: - 

white, 

large : [0.7,0.8], [0.23,0.64). 

bad: - 

white : [0.5,0.9], [0.2,0.6] 

bad: - 

large : [0.2,0.6], [0.3,0.7]. 

For each of these, we will consider how well they represent the data for the 

situations when the properties white and large are known to be either definitely 

true, or definitely false or completely uncertain. Table 5.3 shows the support pairs 

generated by each representation, for each of these situations. Column 3 of the table 

shows the logical representation of the conjunctions of white and large, where w 

and I stand for white and large respectively, and -, stands for negation as in table 

5.2. 

17 



supports ý I-I 
white large Conj'n. deduced Model A Model B Model C Model D 

from table 5 .2 

WAI [0.7,0.81 10.7,0.81 10.7,0.81 10.7,0.81 [0.49,0.69] 

[I'l] (0,0] WA-, I [0.43,0.93] [0.5,0.91 [0.5,0.8] [0.23,0.64] [0.57,0.77] 

[0,0] [1,1] WA1 [0.09,0.48] [0.2,0.8] [0.2,0.8] (0.23,0.64] [0.24,0.431 

[0,0] [0,0] --MA--d [0.4,0.7] [0,1] 10.3,0.81 [0.23,0.64] [0.32,0.511 

[0,1 W [0.5,0.9] 10.5,0.91 10.5,0.91 [0,1] 10.5,0.91 

[0,0] [0,1 --IW [0.2,0.6] [0,1] [0.2,0.81 [0,1 ] 10.2,0.61 

[0,1 ] [I'l] 1 [0.2,0.61 10.2,0.81 [0.2,0.81 [0,11 10.2,0.61 

[0111 [0,0] ,1 ý [0.3,0.7] [0,11 10.3,0.81 [0,11 10.3,0.71 

[0,1] [0,11 U [0.28,0.70] [0,1] [0,1] [0,1 ] [0,11 

Table 5.3: Support pairs for eggs being bad for four different 

Support Logic representations. 

In the table, those support pairs that match exactly or contain the support 

pairs derived directly from the statistics (column 4) have been emboldened. The 

remaining support pairs in the table are either completely uncertain ([0,1]) or 

provide support that disagrees with the statistical information. This occurs in the 

form of a more restricted support pair, either contained by the statistically derived 

pair or intersecting it, and arises because the bundle can only represent one form of 

the conjunction in its primary rule - in this case "white and large". The support 

pairs for "white and not large", "not white and large" and "not white and not large" 

can only be approximated using the secondary rules and thus are likely to be wrong. 

The support pairs that best approximate the statistical information for these 

conjunctions are in italics so we can now make a judgement of which rules best 

represent the data. 
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Model C is clearly a bad approximation, and this is because it is unable to 

consider the properties alone. Model D, although providing exactly the right support 

pair for the four occasions characterised by one of the properties being completely 

uncertain, it only provides a good approximation to one of the possible 

conjunctions. Models A and B are similar, but B has a clear advantage because of its 

capacity to provide support for the head when either property is known not to hold. 

Model A, in such circumstances, provides no support at all. The data is best 

represented by model B: 

bad: - 

<-' white, 

large : [0.7,0.8] 

white : [0.5,0.9], [0.2,0.8] 

large : [0.2,0.8], [0.3,0.81. 

This bundle, however. does not provide support when nothing is known about an 

egg, whereas the statistical data does. This can be enhanced by adding the extra rule 

to the bundle the lowest, and in this case, tertiary order of rule - that was our 

first attempt to represent the data: 

bad: - : [0.29,0.7]. 

Adjusting the values, in the support pair so as to satisfy the restrictions explained 

above, the bundle now becomes I 

bad: - 

<- white, 

large : [0.7,0.81 

white : [0.5,0.9], [0.2,0.81 

large : [0.2,0.81, [0.3,0.81 

: [0.2,0.9]. 
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With this new bundle, the only support pair ý that will be changed for model B in 

table 5.3 will be that corresponding to the case when nothing at all is known about 

the size or colour of the'egg. Instead of being [0, I], this will now be [0.2,0.9] - not 

a huge improvement, but an improvement none the less. 

5.6 Jabberwocky 

The three types of disjunction shown in the preceding sections all provide a 

different way of interpreting disjoint information. To summarise, we will represent 

some knowledge, using each form of disjunction and indicate the different 

interpretations that should be drawn. 

According to Lewis Carroll (1877), "the slithy toves did gyre and gimble in 

the wabe", so we can construct a Support Logic-knowledge base to deduce whether 

something is a slithy tove, according to how it gyres and gimbles. Using body 

disjunction - 

slithy_jove(X): - 

(gyre(X) 

sup_or 

gimble(X)) : Sa. 

we provide support Sa (representing a support pair) for X being a slithy tove if it is 

carrying out some action that is characterised by gyring or gimbling. In other words 

this action can take the form of either gyring or gimbling, or any combination of 

the two. Using clausal disjunction, 

slithy_tove(X): - 

gyre(X) : Sbl. 

slithy__tove(X): - 

gimble(X) : Sb2- 
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the two actions of gyring and gimbling can not be taken to be as closely related, but 

something doing either will have support for its being a slithy tove, and if it is 

doing both the event will be even more likely. In conceptual graph terms, it is the 

concepts of gyring and gimbling themselves that imply being a slithy tove, not a 

common supertype as in the case of body Aisjunction. Constructing a bundle to 

represent the information - 

slithy_tove(X): - 

<- gyre(X), 

gimble(X): Sc I 

gyre(X) : Sc2 

gimble(X) : Scl 

we would be assuming that there was greater significance in something, both gyring 

and gimbling than in either of the previous forms of disjunction. If SO provides 

strong positive support, we could be representing that to gyre and gimble 

simultaneously is so uncommon that it could only be done by a slithy tove, whereas 

several other creatures can do one or the other. 

Which of thewrules is most appropriate for representing the knowledge, is 

dependent on the interpretation of the poem itself. It could be that none of them 

are correct because we have ignored the fact that at the time the particular - sli thy 

toves were doing their gyring and gimbling, "'twas brillig". It is possible to indicate 

the way the various forms of disjunction should be interpreted, but the original 

information itself needs to be considered very carefully to insure that the available 

data has been represented as fully as Possible. 
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Chapter 6. Two Applications 

6.1 Threat Evaluation Weapons Assignment - TEWA 

The program explained here was developed as a pilot study and therefore is 

based on a simplified version of the problem, as put forward by British Aerospace, 

Dynamics Division. The system operates on a static knowledge base and does not 

attempt to reason from a knowledge base that is continually changing. This is partly 

because of the, support logic implementation itself, Slop, which does not allow the 

knowledge base to be updated and accessed simultaneously, but also because this is, 

in this simple case, more closely in line with how the human operator might 

approach the problem; the deployment decision is based on the threats at a 

particular time and if this situation changes then a new decision is made. 

, TEWA can be split into the two components of target Identification and 

weapon deployment. The first of these will make the appropriate deductions from 

the data provided externally, and the second will then act on these deductions. The 

uncertainty involved in this first part, however, is not on the whole carried over to 

the second. It gives rise to a ranking of possible targets and the specific 

identification is taken as that with the strongest support. Once the identifications 

are made, they are taken to be definitely true and asserted in the knowledge base. 

The reason for this is that the uncertainty in the weapon assignment is designed to 

reflect the likelihood of survival of the ship and this is not directly affected by the 

confidence of the identification. It could be included, if the weapons assignment 

was evaluated for all possible combinations of target identification, but this would 

be computationally extremely expensive. 
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6.1.1 The Model 

In this restricted TEWA system, the possible targets attacking the ship are as 

follows: I 

Target I 

sea-skimming missile (sea_skim) 

velocity - 300 m/s 

altitude - 15 m 

unopposed ship kill probability in the range 0.45 to 0.55 

Tarzet 2 

supersonic missile (super) 

velocity 500 m/s 

altitude 12 krn and then diving at range 21 km 

unopposed ship kill probability in the range 0.65 to 0.75 

TarRet-I 

aircraft 

velocity - 300 m/s 

altitude - 500 m 

releases weapons at 2 km and turns away 

unopposed ship kill probability in the range 0.15 to 0.25 

The data for the targets is'provided in'the form of supported facts associated with 

the c harac teris tics, i. e. 

range(X, R): - : Sl. 

velocity(X, V): - : S2. 

altitude(X, A): - : S3. 

A 
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where X is the target identifier and R, V and A are fuzzy numerical values that can 

be used in'semantic unification. The definition to allow fuzzy numbers is 

fuzzy(number, N, [O, NI, N, N, N2,0]): - 

number(N), 

> 1, 

NI is N- N*0.1, 

N2 is N+ N*0.1. 

and is valid for all numbers greater than one. This restriction prevents supports that 

are passed as arguments from being semantically unified. The fuzzy set for 

numbers, as defined above, is a curve allowing a 10% error either side of the actual 

number (see figure 6.1). 

IIA 

0 
N-10% N N+10% 

Figure 6.1: Fuzzy set for any number N. 

The values for the range, velocity and altitude can be semantically unified with the 

following: 

fuzzy(number, '>2km', [0,500,2000,2000,2000,1 )). 

used for identifying aircraft by their range 

fuzzy(number, '-300', [0,250,290,310,350,0]). 

fuzzy(number, '-500', [0,450,490,510,550,0]). 

used for identifying all targets by their velocity 

fuzzy(number, '- 15', [0,10,14,16,20,0]). 

fuzzy(number, '- 12000', [0,11500,11900,12100,12500,01). 

used for identifying missiles by their altitude. 
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Because of the need to perform calculations using the range and velocity (not 

the altitude), the data for these is also stored as unsupported facts with the same 

attributes: 

range_data(X, R). 

velocity .. 
4ata(X, V). 

and these are queried using the call predicate, thus suppressing semantic unification. 

This duplication of data is not essential when using the interpreter, although it helps 

to clarify the use of the data, but it is necessary when translating the knowledge 

base, as explained below. All the data about targets is accessed by the following 

rules to provide support for each possible identification: 

target(X, sea_skim): - 

velocity(X, '-300') : [0.5,1], [0,0.2]. 

target(X, sea_skim): - 

altitude(X, '- 15') : [0.9,1 ], [0,0.1 

target(X, supersonic): - 

velocity(X, '-500') : [0.9,1], [0,0.1]. 

target(X, supersonic): - 

call(( range_data(X, R), 

R >-'21000 

range(X, R), 

altitude(X, '-12000') : [0.7,1], [0,0.1]. 

target(X, supersonic): - 

call(( range_data(X, R), 

R< 21000, 

AM is R/1.73205 

range(X, R), 

altitude(X, Altl) : [0.6,1], [0,0.2]., 
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target(X, airc raft): - 

velocity(X, '-300') : [0.5,11, [0,0.21. 

target(X, aircraft): - 

sup_not range(X, >2km') : [0,0.1]. 

targe t(X, aircraft). - - 

altitude(X, '-500') : [0.7,1], [0,0.31. 

These rules themselves are called by ldentify(X, Target) which, for a, particular 

target identifier, X, evaluates support for X being of each target type and selects the 

one with the strongest support. The final support on the goal is the support for X 

being of type Target. In order to prevent the support from the more weakly 

supported identifications affecting the final support, the calls to predicate target are 

put in a Support Logic disjunction with the goal support(11,11) and the supports for 

each possible identification are accessed using the "' operator. 

identify(X, Target): - 

target(X, sea_skim)^Sl sup_or 

target(X, supersonic)AS2 sup_. pr 

target(X, aircra ft)A S3 sup_or 

support([I. I]) 

call( best([SI, S2, S3], [sea_skim. supersonic, aircraft], Target. S) ), 

support(S) : [1,11, [0,0]. 

The purpose of the goal support(S) is to force the evaluation of the support S in the 

particular context. This is achieved by defining the goal as 

support(S): - -: 
S. 

and acts as a support logic equivalent to the Prolog system predicate true. In the 

Identify clause, this structure is used twice: (i) to evaluate support for one of the 

disjuncts, and therefore the whole disjunction, to be 11,11 and (ii) following the 
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Prolog call to best which selects the most positive identification, to succeed with 

support corresponding to that identification, S. Since the disjunction and the Prolog 

call are both supported [1, I], the body of the rule has the support of the most likely 

identification and, with the conditional supports being 11,11,10,0], the head of the 

rule also has this support. 

The goal Identify itself is called by update(X, Target) which is evaluated 

with the same variable bindings and support as Identify, but asserts the new 

identifications in the knowledge base as clauses target-type(X, Target) replacing any 

old identification data. 

The ranking of , 
identifications is based on the definition of 

stronger_support(Sl, S2), which is a Prolog type rule called by best that succeeds if 

S1 is a stronger support than S2. The definition in this example is 

stronger_support([SII, SU11, [SI2, SU2]): - 

Sll >- S12. 

and only considers the lower supports. This could be redefined to reflect some 

other judgement of strength of support: for example, comparing the quantities 

Sl*(I-(Su-Sl)) reduces the strength of support as unsureness increases, and 

comparing the, quantities Sl-(I-Su) reduces the strength of support as the support 

against increases. This latter, quantity is similar to the idea of certainty factors in 

MYCIN. 

Having identified the targets and stored the information in the knowledge 

base, the next stage is to evaluate the threat posed by each and work out the most 

effective allocation of weapons. 11 The ' initial threat is' evaluated by 

unopposed_threat(X, Target) and is based on the kill probability of the target and 

the time to impact. ' The kill probability is that defined'at the beginning of this 

section and is represented in Slop by 
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kill-prob(sea_skim): - : [0.65,0.75]. 

kill_prob(supersonic): - : [0.45,0.55]. 

kill-prob(aircraft): - : [0.15,0.25]. 

whereas the threat due to the time until impact is a linear function decreasing with 

time, defined by 

impact-time(X): - 

calW range_data(X, R), 

modify__jange(X, R, Rl), 

velocity__Oata(X, V), 

Time is RI/V, 

(Time < 100, Sl is 1); 

(Time > 1000, Sl is 0); 

(SI is (1000-Time)/900) 

Notice the trick of evaluating a conditional support in the body of the rule. The 

unopposed threat is the support, for the - conjunction of these two elements as 

follows: 

unopposed ý threat(X, Target): - 

kill_prob(Target),, -5 

impact_time(X) : [1,11, [0,0.2]. 

the second support pair of 10,0.21 acts to increase slightly the possible threat, 

indicating that this rule is not necessarily totally accurate. 

Knowing the threat posed by each target, the overall threat to the ship can 

be evaluated as the complement of the Support for escaping all the targets. The 

support for escaping one target is the complement of the unopposed threat, and the 

support for escaping all the targets will be the support for the conjunction of 
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escaping each target. With each new target the support for escaping goes down and 

thus the overall threat goes up. In order to evaluate support for a conjunction of 

unknown length we use a recursive definition with a list of targets, 

escape([]): - : [1,11. 

escape([[X, Target]lTargets]): - 

sup-not unopposed_threat(X, Target), 

escape(Targets) : [I, I], [0,01. 

where the list is obtained by calling bagof on the goal target type. 

threatened: - 

call( bagof([X, Target], target-type(X, Target), Targets) 

escape(Targets) : [0,0], [1,1]. 

threatened: - 

undefended : [0.9,1]. 

threatened: - 

call( not clause(target_type(_, 
_), _) 

) 

The second clause of threatened, provides the different viewpoint that the ship is 

under a large degree of threat when it is left undefended. The third clause states 

that when there are no targets there is no threat, information which the first clause 

would not be able to provide because, if there were no targets, the call to bagof 

would fail and the support from the clause would be [0, I). The effect of the third 

clause succeeding, because it has support definitely false ([0,0]), is to override the 

support from all other clauses. In this way, if the ship is undefended, there may be 

a threat of [0.9,1), but if there are no targets this is overridden and there is 

considered to be no threat. 

The relation threatened provides an evaluation of the overall unopposed 

threat to the ship, but does not propose any defence. This is performed by 
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defence(D) which is satisfied for all possible ranked plans of defence, D, with the 

first solution being the best plan. Similar to the relation threatened, a list of targets 

and a list of available weapons are established using bagof and these are then 

recursively processed. 

defence([NIPlan]): - 

call( abolish(plan, 2) ), 

call( bagof([X, Target, Wl, target-type(X, Target), Plan) 

call( bagof([W_Type, W_id, S], weapo n(W-Type, W_id, S), Weapons)), 

ordered_survival_plan(N, Plan, Weapons) : [1,1], [0,0]. 

The list of targets is used to form the plan by associating with each target a variable 

that can be bound to the weapon that will be deployed against it. A plan is 

therefore of the form I 

[[target-id l, target_type I weapon I ], [target-id2, targe t-type2, wea po n2 ], ... I 

and a ranked plan is the same but with a ranking term, Plawcn><n><n>, as first 

element. The list of weapons has a support associated with each weapon reflecting 

the condition of the weapon. A low support means that the weapon is in poor 

condition and likely to be less effective than normal, and this will correspondingly 

reduce the support for the weapon destroying the target. Because the list of 

weapons is established using bagof, the weapon data is stored with support as an 

attribute of the relation, rather than in the conventional way, e. g. 

weapon(area, area 1 9[ 
1,1 ]). 

weapon(point, pointl, [0.9, I]). 

weapon(area, area2, [0.7,0.9]). 

weapon(gun, gunl, [19, I ]). , 
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The first argument is the weapon type and the second the particular weapon 

identifier. 

The goal ordered_survival_plan(Plan, Weapons) evaluates support for all the 

possible defence plans, ranks them and stores them in the knowledge base, but it is 

the goal survlyaI_plan(Plan, Weapons) that performs the recursive processing of the 

lists of targets and weapons. 

survival_plan([], 
_): - 

: [I, I]. 

survival_.. ýplan([[X, Target, W_idIlPlan], Weapons 1): - 

deploy(X, Target, W_Type, W_id, Weapons 1, Weapons2), 

sup_not(( unopposed_threat(X, Target), 

sup_not kill_prob(W_Type, Target) )), 

survival-plan(Plan, Weapons2) : [1,1], [0,0]. 

The first clause states that an empty plan, corresponding to no targets, has support 

for survival of [1,11. The second clause selects a weapon for deployment against the 

first target. evaluates the support for surviving that target 'under this deployment, 

and then recursively evaluates support for the remaining targets. -This definition of 

survival_plan does not admit the possibility of running out of weapons or of having 

to use the same weapon twice in succession, however in a full implementation this 

would be essential., ý Weapons are selected for deployment simply by going through 

the list of weapons one at a time, and the support associated with each deployment 

is the support reflecting the condition of the weapon. The other way of querying 

the knowledge base to establish how to defend the ship is by calling the goal 

defence with arity zero. This relation prints out all the plans in descending order of 

effectiveness, and associates with each weapon deployment the time until that 

weapon can be launched. The calculation for this is performed by the Prolog goal 

tlme_to_deployrnent which calls range_data and velocity_4ata as well as the 
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relation acquisition which has the acquisition range and reaction time for each type 

of weapon against'each type of target, for example, 

acquisition(area, sea_skim, 25000,5). 

acquisition(area, supersonic, 50000,5). 

acquisition(point, sea_skim. 25000,2). 

acquisition(gun, sea_skim, 10000,0). 

etc. 

The plans themselves are found by defence by calling defence(Plan) unless they 

have already been asserted in the knowledge base, in which case they are accessed 

directly. I- 

This TEWA system makes extensive use of Prolog type relations for list 

processing as well as some numerical calculations, clearly showing the advantage of 

combining the uncertainty calculus with conventional logic programming. A feature 

that would be useful, however, is the ability to initiate a support logic query from 

within a Prolog call. This would have allowed, for instance, the weapon data to be 

stored in a conventional support logic manner, and still to be accessed by a Prolog 

call to build a list with supports correctly associated with the weapons. The input 

data to run. this TEWA system consists of the relations range, velocity, altltude, 

range_data and velocityjata, which allow the system to identify the targets, and 

the relations weapon, acquisition and kill-prob (with arity two), which specify the 

weapons and their capabilities. A sample run of the system is shown below, with 

the following input data: 

range(a, 60000). 

velocity(a, 495). 

altitude(a, 12500). 
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range(b, 50000). 

velocity(b, 250). 

altitude(b, 18). 

velocity_. 4ata(a, 495). 

velocity__ýata(b, 250). 

range_data(a, 60000). 

range_data(b, 50000). 

weapon(area, area Ij 1,1 ]). 

weapon(area, area2, [O. S, 

weapon(point, pointl, [1, I]). 

weapon(point, point2, [0.9, I 

weapon(gun, gun 1, [ 1.11). 

weapon(gun, gun2, [O, O. l ]). 

kill_prob(area, sea_skim): - : [0.25,0.35]. 

kill-prob(area, supersonic): - : [0.55,0.65]. 

kill_prob(area. aircraft): - : [0.85,0.95]. 

kiH_prob(point, sea_skim): - : [0.45,0.55]. 

kill_prob(point, supersonic): - : [0.65,0.75]. 

kill_prob(point, aircraft): - : [0.85,0.95]. 

kill_prob(gun, X): - : [0.15,0.25]. 

kiH_prob(gun, aircraft): - : [0,0]. 
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acquisition(area, sea_skim, 25000,5). 

acquisition(area, supersonic, 50000,5). 

acquisition(area, aircraft, 50000,5). 

acquisition(point, sea_skim, 25000,2). 

acquisition(point, supersonic, 50000,2). 

acquisition(point, aircraft, 50000,2). 

acquisition(gun, sea_skim, 10000,0). 

acquisition(gun, supersonic, 10000,0). 

acquisition(gun, aircraft, 10000,0). 

C-Prolog version 1.4 
[ Restoring file /mnt6/renOOs/MonkMR/d -slop 1.2/slop. ss 

Support Logic Programming - Version 1.2 
M. Rowland M. Monk 
Information Technology Research Centre (I. T. R. C. ), 
Dept. of Engineering Mathematics, 
University of Bristol, England. 
February 1987 

query? 1-tewal. 
tewa reconsulted 9656 bytes 7.25 sec. 

yes 

query? 1-weaponsi. 
weapons reconsulted 1392 bytes 1.68333 sec. 

yes 

query? 1-targetsli. 
targetsl reconsulted 360 bytes 0.666672 sec. 

yes 

query? update(X, Target). 

update(a, supersonic) : [0.392539,0.867463] 
update(b, sea_skim) : [0.185974,0.413274] 

no more non-cutoff solutions 

query? threatened. 

threatened : [0.763299,0.927999] 

query? defence(Plan). 
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defence([PlanOOI, [a, supersonic, areal], [b, sea skim, pointl]]) : [0.399,0.626] ; 
defence([Plan002, [a, supersonic, pointl], [b, sei- skim, point2]]) : [0.391,0.659] 
defence([Plan003, [a, supersonic, point2], [b, sea 

- skim, pointl]]) : [0.391,0.659] 
defence([Plan004, [a, supersonic, area I ], [b, sea 

- skim, point2]]) : [0.359,0.626] ; defence([Plan005, [a, supersonic, area2], [b, sea 
- skim, pointl]]) : [0.319,0.626] ; defence([Plan006, [a. supersonic, pointl], [b, sea 
- 

skim, areal]]) : [0.310,0.556] ; defence([Plan007, [a, supersonic, area2], [b, sea skim, point2]]) : [0.287,0.626] ; defence([Plan008, [a, supersonic, point2], [b, se3- skim, areal]]) : [0.279,0.556] ; defe nce([Plan009, [a, superson ic, gun I ], [b, sea Tkim, pointl]]) : [0.255,0.496] ; 
defe nce([PlanO I 0, [a, su personic, point I ], [b, sia 

- skim, gunl]]) : [0.248,0.504] ; 
defence([PlanOll, [a, supersonic, pointi], [b, sea skim, area2]]) : [0.248,0.5561 
defence([Plan012, [a, supersonic, gunl], [b, sea Tkim, point2]]): [0.230,0.496] 
defence([Plan013, [a, supersonic, areal], [b, sea_skim, gunl]]) : [0.228,0.4801 
defence([Plan014, [a, supersonic, area2], [b, sea 

- skim, areal]]) : [0.228,0.528] 
defence([Plan015, [a, supersonic, areal], [b, sea_skim, area2]]) : [0.228,0.528] 
defence([Plan016, [a, supersonic, point2l, [b, sea 

- 
skim, guni]]) : [0.223,0.504] 

defence([Plan017, [a, supersonic, point2], [b, sea skim, area2]]) : [0.223,0.5561 
defence([PlanOIB, [a, supersonic, gunl], [b, sea Tkirn, arealfl) : [0.182,0.419] ; 
defence([Plan019, [a, supersonic, area2], [b, sea_skim, gunl]]) : [0.182,0.4801 ; 
defence([Plan02O, [a, supersonic, gunll, [b, sea_skim, area2]]) : [0.146,0.4191 ; 

no more non-cutoff solutions 

query? defence. 
[a, supersonic, areal, 25.2021 
[b, sea_skim, pointl, 102] 
[0.39872,0.6261961 

[a, supersonic, point 1,22.202) 
[b, sea-skim, point2,102] 
[0.391104,0.658712] 

[a, supersonic, point2,22.202] 
[b, sea skim, pointl, 102] 
[0.3917104,0.658712] 

[a, supersonic, area 1,25.2021 
[b, sea skim, point2,102] 
[0.359-848,0.626196] 

[a, supersonic, area2,25.2021 
[b, sea skim, pointl, 1021 
[0.3 10-76,0.626196] 

[a, supersonic, point 1,22.202] 
[b, sea skim, areal, 105] 
[0.3164ý0.55585] 

[a, supersonic, area2,25.2021 
[b, sea skim. point2,1021 
[0.28fO-78,0.626196] 

[a, supersonic, point2,22.202] 
[b, sea skim, areal, 105] 
[0.27§-36,0.555851 
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fa, supersonic, gun 1,101.011 
[b, sea skim, pointl, 102] 
[0.255736,0.496136] 

(a, su personic, point 1,22.202] 
[b, sea_. ýkirn, gun 1,1601 
[0.24832,0.5044191 

[a, supersonic, pointl, 22.2021 
[b, sea_skim, area2,1051 
[0.24832,0.555851 

[a, supersonic, gunl, 10 1.0 1 
[b, sea___, skim, point2,102] 
[0.229824,0.4961361 

[a, supersonic, area 1,25.202] 
[b, sea__., skim, gunl, 160] 
[0.22784.0.47952] 

[a, supersonic, area2,25.2021 
[b, sea skim, areal, 1051 
[0.221-84,0.5284121 

[a, supersonic, area 1,25.202] 
[b, sea skim, area2,1051 
[0.22ý8-4,0.528412] 

[a, supersonic, point2.22.2021 
[b, sea skim, gunl, 1601 
[0.22ý4-88,0.5044191 

[a, supersonic, point2,22.202] 
[b, sea skim, area2,1051 
[0.22S4-88.0.55585] 

[a, supersonic, gunl, 101.01] 
[b, sea skim, areal, 1051 
(0.18f4-Ol, O. 4186621 

fa, supersonic, area2,25.2021 
[b, sea skim, gunl, 160] 
[0.1827272,0.479521 

fa, supersonic, gun 1,10 1.0 1 
[b, sea_skim, area2,105] 
[0.14592,0.4186621 

yes 

query? halt. 

[ Prolog execution halted ] 
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The query defence(Plan) in the above session took about 325 seconds of 

CPU time and, when running in a time sharing environment, takes even longer in 

real time. This is, clearly unacceptable, especially when considering that the system 

recommends firing weapons within about 100 seconds, and sometimes 25 seconds, of 

the query being asked (not answered). Most of the targets would have reached the 

ship by the time the recommendation was made! The translator described in chapter 

4 can be used to translate this code to a Prolog program that can be run directly 

without the need for the interpreter, Slop. Having done this, the resultant code 

took only 11 seconds of CPU time to achieve the same results. The following 

section describes the necessary declarations that are essential for translation and also 

those that can be made to improve the efficiency of the translation. 

6.1.2 Translating the TEWA System 

To translate the TEWA system, a number of declarations have to be made. 

Some of these 
_are. 

obvious, such as those identifying the use of fuzzy terms and 

those that declare a relation to be a Prolog type goal that does not evaluate supports, 

but in some cases it is also essential to have a solutions declaration as well. If a 

relation does not have_a solutions declaration, then the translator has to query that 

goal to find the solutions to each clause. This query is generated with all the 

arguments to the goal being variables, but in recursive list processing relations, this 

will result in an infinite loop and the translator running out of memory. Such 

relations are escape/1, survival_plan/2 and deploy/6 and all must have a solutions 

declaration. As explained in section 4.8, these declarations do not necessarily have 

to declare the actual solutions, as long asý' they imply the correct comparisons 

between solution sets, i. e. same, different or overlapping. When doing this, 

however, one must also be careful that the substitute terms are not used to deduce 

solutions sets for a higher level relation, because they'wouldý almost' certainly be of 

the wrong type and would corrupt the solution evaluation or cause it to fail - 
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altogether. For clarity, all relations in the translation of TEWA have corresponding 

solutions declarations and therefore this risk is avoided. The solutions declarations 

for escape/1, survival-plan/2 and deploy/6 are 

solutions(escape/l, [[[Iistl]], [[Iist2]]]). 

solutions(survival_plan/2, [[[Iisti, list2]], [[Iist3, list4]]]). 

solutions(deploy/6, [[[-, target, weapon_type, weapon_id, listl, list2]], 

[[ -, target, weapon_type, weapon_id, lis B, lis W ]]]). 

in each case, where a list occurs as argument to the goal, the term llst<n> is used in 

which n is, a different number to show that each clause generates a different 

solution. 

Another situation in which a solutions declaration is essential is in a relation 

in which a clause always fails, but needs to be evaluated to initiate some side- 

effect, such as output or knowledge base alterations. Such a relation in TEWA is 

ordered_survival_plan/2, the first clause of which generates all the plans and stores 

them in the knowledge base before failing and allowing the second clause to rank 

the plans and return them as solutions one at a time. Without a solutions 

declaration, the first clause would be seen to have no solutions and would be 

ignored, so to prevent this we use the declaration, 

:- solu tions(o rdered_survival_plan/3, [[[ rank, list I Iist2j], [[ran k, I ist3, I is N]] ]). 

which marks the two clauses as generating different solutions. 

The third situation in which a solutions declaration is essential is when an 

arity zero relation 1 has more -than one clause, and any one of these clauses can fail 

outright without evaluating a support. - Very often an arity zero relation can be 

translated using a one-clause form since, with no variables, there can only be one 

solution, however this does require each clause providing only one proof. If, on the 
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other hand, one of the clauses contains a Prolog goal using call, then it is possible 

for the goal, and therefore the clause, to fail, and if this were put in a one-clause 

form then the whole relation would fail in its translated form and no support would 

be generated. The two relations defence/0 and threatened/O are in this category 

and therefore have solutions declarations as follows: 

solutions(defence/O, [[al, [a, b]]). 

solutions(threatened/O, [[a], [a, b], [b]]). 

All the remaining relations are given appropriate solutions declarations and the 

following are also declared as Prolog goals because they are ý either accessed using 

call or from another Prolog goal: 

best/4, 

stronger_support/2 

modify_range/3, 

collect-Plans/2, 

rank/4, 

partition/g, 

append_lists/6, 

pick/6, 

time_to_deployment/4, 

print_plans/0 and 

priw_plan/l, 

Semantic unification can be incorporated into a translation either by the 

declaration semantic-unification, which causes all terms to be tested to see if they 

are fuzzy terms, or by explicitly stating which arguments of which relations are 

fuzzy terms using the fuzzy_goal declaration, or both. The first of these depends 

on solutions declarations using the correct terms when they are fuzzy, and not using 
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non-fuzzy substitute terms. "It could be used in the translation of TEWA, but it is 

far more efficient to use the second form alone since only the three input goals, 

range, 'Velocity and altitude, have fuzzy terms (in this case numerical values). These 

are declared as follows: 

:- fuzzy_goal(range/2,2). 

fuzzy-goal(velocity/2,2). 

:- fuzzy-goal(altitude/2,2). 

There are two declarations we can use to improve the overall efficiency of 

the translation process - top_level and 'nostore. ' The first of these is used to 

identify relations which are only called as top level queries and not as subgoals to 

another relation. In such cases it is not necessary to evaluate the solution sets for 

the relation and this time can be saved. The relevant goals in TEWA are update/2, 

threatened/O and defence/0, however, given that these relations have solutions 

declarations, ' this only produces a small saving. More significantly, the nostore 

declaration can be used. Because all relations have a solutions declaration, none 

need to be queried to establish solutions and therefore the program does not need to 

be converted into a module and stored. 

Another advantage of all relations having solutions declarations is- that the 

input data does not have to be translated'with the TEWA system. Were there no 

solutions declarations, then the input data would need to be available to allow 

solutions to be evaluated, and for every new set of input data the entire system 

would need to be translated. As it is, the target data and weapon data files can be 

translated separately from the TEWA system and from each other, provided any 

fuzzy_goal and prolog declarations occurring in the data files are also in the system 

file. These are necessary to ensure that the goals are translated correctly at the 

point at which they are called. 
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The translation of the TEWA system reduces the run time from 325 to II 

seconds of CPU time representing a vast improvement in efficiency, but this is 

probably'still unacceptable. There are however a number of improvements that 

could still be made. The two most obvious involve the hardware and host software, 

both of which for this implementation were fairly outdated, being a DEC VAX 

mini and version 1.4 of C-Prolog. Apart from this, increases in speed can also be 

achieved by implementing the system in a customised Support Logic programming 

system such as Frit (Baldwin, Martin and Pilsworth, 1988), and by running it on a 

dedicated processor. Of course a full implementation of a TEWA system would be 

considerably larger than that discussed here, but there is definitely potential for 

solving the TEWA problem using Support Logic. A full listing of the TEWA system 

with the appropriate declarations is given in appendix 111, and of the translated 

version in appendix IV. 

6.2 Fault Diagnosis In Oil-Drilling Rigs 

This section describes the implementation of a simple diagnosis model in 

Support Logic, and compares it with its original implementation in AL/X (Reiter, 

1981) and its subsequent implementation', in INFERNO (Quinlan, 1983), as 

mentioned in section 1.4. Figure 6.2 shows the terms involved and the causal 

relationships as an AL/X inference network. Each proposition is represented by a 

labelled box with an associated number, being the prior probability of the 

proposition. These boxes are the nodes of a network of two kinds of directed links 

which define the relationships between propositions. Those links that have a pair of 

values associated with them correspond to antecedent-consequent implications, and 

the numbers are likelihood ratios like those in PROSPECTOR (section 1.4). If the 

antecedent holds, the odds of the consequent are multiplied by the first value, if the 

antecedent is false the odds are multiplied by the second value, and if the 

antecedent has some probability, p, the odds are multiplied by an interpolated value 
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SCIVCAUSE . 002 ýPCV302EQERR. 003RVLIFTEARLY . 001 RVSOLSHORT . 001 RVSWSHORT . 001 

The closing of a There is an The V-01 relief The relief valve The relief valve 
scrubber inlet equipment failure valve opened early solenoid has switch has 
valve caused high in the pressure (the set pressure shorted shorted 
separator pressure controller area has drifted) 

5000. . 001 

LP&SCIVSHUT . 002 

SCrVSHUT_. 002 

A scrubber inlet 
valve has shut 

100. 

100)0.. 001 2000-001 

PCV302FTBAD 
. 001 LIFT&NLIFTP . 005 

A function test of 
k! LD] 

the pressure 
controller indicate! 
a problem 

1.5 

LIFTPRESS . 005 

NLIFTPRESS . 995 

Relief valve lift 
pressure (175 psi) 
has been reoChed 
in the separator 

. 05 1000D. . 001 

VOlSDHP . 01 

The separator has 
shut down due to 
high pressure 

V01CCRCHART. 005 

The separator pressure 
chart indicates that 
relief valve lift 
pressure (175 psi) has 

, 
been reached 

-1 

II 
1000. . 001 400, . 001 

NLIFT&IND 
. 
01 

NRELM-IFT . 995 

RELM-IFT . 005 

The relief valve 
has lifted 

. 5, sootool 

RVNOISECOOL . 
001 

Noise or cooling 
(due to gas flow) 
is noticeable near 
the relief valve 

RVI-IFTIND . 01 

The relief valve 
lift indicator is on 

Figure 6.2: ALIX Inference network - Fault Diagnosis on Oil Rigs 
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determined by - p, the prior probability of the antecedent and the two odds 

multipliers. The other type of link has no uncertainty values associated with it and 

is used to'clefine Boolean combinations of propositions. 

The network can straightforwardly be transposed to a logic rule format using 

the syntax of Prolog: 

scivcause: - 
liftpress, scivshut. 

pcv302eqerr: - 

liftpress. 

pcv302eqerr: - 

pcv302ftbad. 

rvliftearly: - 

relvlift, not liftpress. 

rvsolshort: - 

rvliftind, not relvlift. 

rvswshort: - 

rvliftind, not relvlift. 

liftpress: - 

volsdhp. 

liftpress: - 

volccrchart. 
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relvlift: - 
liftpress. 

relvlift: - 

rvnoisecool. 

relvlift: - 

rvliftind. 

The required input data, which will be defined as facts, are 

rvliftind. 

vo I ccrchart. 

volsdhp. 

pcv302ftbad. 

scivshut. 

rvnoisecool. 

Suppose we have an antecedent-consequent implication from A to 13 with 

likelihood ratios LS (if A is true - sufficiency measure) and LN (if A is false - 

necessity measure), and a prior probability on B of prior(B). The Prior odds of B 

are defined by 

odds(B) = prior(B)/(l - prior(B)), 

and the odds of B when A is true are given by 

odds(BIA) - LS*odds(B). 

From these odds we can deduce the posterior probability as 

posterior(BIA) - odds(BIA)/(l + odds(BIA)), 

and similarly when A is false. In this way we can evaluate the conditional 

probabilities on the rules as follows: 
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P(scivcausellp&scivshut) - 0.909 

P(scivcausel-, Ip&scivshut) =0 

P(pcv302eqerrlliftpress) = 0.231 

P(pcv302eqerrl-, Iiftpress) - 0.002 

P(pcv302eqerrlpcv3O2ftbad) - 0.968 

P(pcv302eqerrl--. pcv3O2ftbad) =0 

P(rvliftearlyllift&nliftp) - 0.667 

P(rvliftearlyl, lift&nliftp) =0 

T(molshortInlifMind) ,-0.5 

P(rvsolshorti, nlift&ind) =0 

P(rvswshortinlift&ind) = 0.286 

P(rvswshortl-, nlift&ind) =0 

P(liftpresslvolsdhp) - 0.668 

P(liftpressl-, vo I sdhp) m0 

p(liftpresslvo I ccrchart) - 0.98 

P(liftpressl-, vo I ccrchart) m0 

P(relvliftilif tpress) - 0.668 

P(relvliftl--ilif tpress) =0 

P(relvliforvnoisecool) - 0.501 

P(relvliftl, rvnoisecool) = 0.003 

P(relvliftirvliftind) - 0.801 

P(relvliftl-, rvliftind) m0 
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where the three new terms lp&scivshut, Ilft&nlIftp and nllft&ind represent 

conjunctions as follows: 

lp&scivshut liftpress and scivshut 

lift&nliftp - relvlift and not liftpress 

nlift&ind - rvliftind and not relvlift. 

There are a number of ways that we can implement this data because of the 

possibility of representing ignorance within Support Logic, but we can not tell, by 

looking at the data alone, with what accuracy it was originally established. The 

original implementation had no way of expressing or using such information and it 

is therefore lost. To develop a serious model in Support Logic we should go back 

and examine the source of the original information. For the sake of comparison, 

therefore, we will look at several different versions of the Support Logic model. 

The first two versions, called oilrig-pt and oilrig_int, are the most 

appropriate for direct comparison with the AL/X version: oilrig-pt defines all 

supports as point values so that lower and upper probabilities are equal and there is 

no unsureness, and oilrig_int introduces an error margin of 5% to every probability, 

giving rise to support pairs with unsureness of up to 0.1. Both versions achieve 

results very similar to those of the AL/X version (see table 6.2), thus showing the 

greater flexibility of Support Logic to produce sensible results from incomplete 

information. The remaining versions, oilrigI to oilrig4, compare more closely with 

Quinlan's version using INFERNO, in which the conditional probabilities are taken 

as upper and lower bounds. 

Consider the rule 

pcv302eqerr*- 

pcv302ftbad : SI, S2. 
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in which S1 and S2 are the two support pairs making up a probabilistic pair. The 

conditional probabilities associated with this rule are 

P(pcv302eqerrlpcv3O2ftbad) - 0.968 

P(pcv302eqerrl, pcv3O2ftbad) -0 

Using point value supports, as in oilrig-pt, we have Si - [0.968,0.9681 and 

S2 - [0,0], and allowing a 5% error, as in oilrig-int, we have S1 - [0.918,11 and 

S2 - [0,0.051. If, however, we take the probabilities to be upper or lower bounds, 

then there are four possible combinations as shown in table 6.1. 

Si S2 WHIE) P(HI-, E) Proarnm 

[0.968,1] [0,0] lower upper oilrigI 

[0.968,1] [0,1] lower lower oilrig2 

[0,0.968] [0,01 upper upper oilrig3 

[0,0.968] [0,1] upper lower oilrig4 

Table 6.1: Possible interpretations for the conditional probabilities 

of the AL/X model. 

The unsureness associated with each interpretation varies dramatically and, 

when applied across the whole knowledge base, the supports associated with the 

possible diagnoses are greatly affected (see table 6.2). The above rule, in version 

oilrig4, can be seen to contain practically no information whatsoever and would be 

unlikely to provide a satisfactory conclusion, whereas the same rule in version 

oilrigi has practically no unsureness and therefore should provide very accurate 

information. The implementation of this model in INFERNO assumes P(HIE) to be 

a lower bound and P(HJ-, E) to be an upper bound corresponding to the Stop version, 

oilrigl. Needless, to say it provides a tightly defined conclusion that tallies closely 

with that of the AL/X version, however this is only achieved by changing a piece 

of ground data; the probability of pcv302ftbad is adjusted from zero to 0.204. This 
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suggests that ihe accuracy with which this' item was assessed must have involved an 

error of greater than 20%. Without making such an assumption INFERNO could 

not have established a result, 'however 
the Support Logic model is able to resolve the 

conflict that gave rise to this adjustment and still obtain sensible results. 

version scivcause rvswshort rvsolshort pcv302- 
egerr 

rvliftearly pcv302- 
eaerr' 

AL/X 0.909 false false false 0.057 

oilrig_pt [0.85,0.85] [0.04,0.04] [0.06,0.06] [0.04,0.041 [0,0] (0.06,0.06] 

oilrig_int [0.78,0.891 [0.03,0.11] [0.07,0.14] [0.04,0.10] [0.01,0.021 1 [0.08,0.09] 

INFERNO 0.80-0.88 0.03-0.20 0.06-0.2 0-0.12 - 10.204 

oilrigl [0.87,0.961 [0,0.07] [0,0.07] [0.02,0.04] [0,0) 1 [0.23,0.241 

oilrig2 [0.87,1] [0, l] [0, l] [0,1 ] [0.22,11 1 [0.38,1] 

oilrig3 [0,0.59] [0,0.62] [0,0.74] [0,0.47] (0,0] [0,0.12] 

oilrig4 [0,11 [0,0.861 [0,0.90] [0,11 [0, l] [0,0.99] 

Table 6.2: Comparison of results for oil rig fault diagnosis. 

As another comparison, the last column of table 6.2 shows the support for 

pcv302eqerr (the only conclusion affected by pcv302ftbad) when the support for 

pcv302ftbad is [0.204,0.204], as in INFERNO, instead of [0,01 as used by AL/X. 

Interestingly, the most marked change in support for pcv302eqerr occurs in oilrigi, 

the version closest to the INFERNO version. The change in support is from (0.0] to 

[0.235,0.241], which is closer to the value deduced by INFERNO but further form 

that deduced by AL/X (0.057). 

This type of model in which we have an inference network with associated 

uncertainties, lends itself nicely to implementation using Support Logic. Any doubt 

about any of the values can be represented and the model will still generate answers 

to a query. These may not provide us with a satisfactory conclusion, as in oilrig3 

and oilrig4, but they still provide information about the inaccuracy of the model or 
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the input data. In these two cases it is the model having very imprecisely defined 

rules that gives rise to the unsureness in the results. 

To assess accurately the value of Support Logic in systems of this kind, the 

model should be designed, from the outset, in a Support Logic context. No true 

reflection can be gained by using a model that does not make use of all the 

characteristics of Support Logic, however we can see from a comparison of this sort 

that there is enormous potential. 
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Chapter 7. Further Work and Conclusions 

The main area of the theory that could benefit from extra work is the 

generality ofý its applicability. The use of the product rule and Dempster's rule in 

support evaluation carry the assumption of independence even though it is only 

because it is the least prejudiced assumption to take. Allowing a variety of t-norms 

to be used under different circumstances was avoided in the development of Slop 

because of the complexities of implementation and the effect it would have had on 

the speed. it would, however, be worth investigating the possibility either of 

reducing the overheads due to allowing different t-norms, or of performing some 

form of generalised assignment of supports that assumes no more than is necessary. 

The advantage of this latter approach is that it would provide an alternative to the 

renormalisation of Dempster's rule, the theoretical basis of which is'in doubt. With 

this, however, comes the danger that such an assignment would be too general and 

would introduce unacceptable amounts of unsureness. All these considerations - 

efficiency of implementation. theoretical basis, tightness of support intervals - have 

to be balanced against each other. 

One way in which Support Logic could be generalised would be to remove 

the Horn Claus e restriction and model in predicate logic. Support Logic would then 

be a type of probability logic and the consequent of a statement within it could be a 

conjunction of propositions and need not be a single proposition. This would allow 

dependences between propositions to be represented directly by defining not just the 

supports -for the individual propositions, but those for the propositions in 

conjunction as well. There would then be no need to define different t-norms, but 

one could instead use a generalised assignment that takes account of the extra 

information. This in turn would tighten the intervals so generated, and reduce the 

unsureness resulting from the use of a generalised assignment. The drawback of 

such a system is the efficiency with which it can be implemented; the resolution 
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method of Prolog (Lush) is dependent on the use of Horn Clauses, as discussed in 

section 1.3. 

The semantic unification 'procedure could also be generallsed by the use of 

conceptual graphs. This involves defining a graph, for the term containing all the 

attributes thought to contribute to the term. This is then matched with another 

similarly defined term and the closeness of this match can be quantified to provide 

a support pair for the unification (Maher, 1987). A mechanism similar to this can 

however be implemented directly in Support Logic, as discussed in Baldwin (1988). 

The TEWA problem showed up an area which Slop was not adequately able 

to address, that of time-sensitive applications in which the actual sequence of events 

is important. This showed itself in the need to be able to allow targets to rack up 

before being engaged by the same weapon. Such problems involve fairly complex 

analysis, but can occur quite frequently and therefore the uncertainty mechanism 

should be extended where necessary, to admit such, problems. 

Work on support derivation, though not directly related to the theory itself, 

could greatly enhance the development of applications. Chapter 5 mentioned two 

simple techniques for determining supports subjectively, but more rigorous methods 

could be developed that have more general applicability. These could be directed 

from statistical ana lysis and also from psychology using such techniques as Kelly's 

Personal Construct Theory (Kelly, 1955, Barry and Baldwin, 1986). 

The implementation of Support Logic could itself be improved both in its 

interpreted and translated forms. Trivially, this involves slight alterations to some 

of the Slop constructions such, as negation and probabilistic pairs each of which 

currently have two representations. Using only the shorthand form of probabilistic 

pairs will prevent the need to examine the other clauses of a relation. At present, 

in order to establish that a particular rule does not have a probabilistic pair defined 
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for it, the body of the rule has to be compared with the bodies of every other 

clause in the relation, resulting in a great deal of extra searching and unification 

tests. This shorthand also makes the equivalence structure (using <->) redundant as 

it can be simulated by the probabilistic pair with supports 11,11, [0,01. This structure 

was implemented before the shorthand for probabilistic pairs was devised and has 

only been left in for the sake of continuity and upwards compatibility. Another 

simple alteration would allow Support Logic queries to be called from within Prolog 

calls allowing, full switching between the two types of query. Currently, once a 

Prolog query is invoked, support evaluation can not occur until that query is 

satisfied. More important improvements however could be made to the overall 

interaction and justification facilities. 

In its-simplest form, interaction with a knowledge base should allow missing 

data to be provided at run time, either in the form of rules or supports on facts. 

This facility should not be something that the rule-author has to build into the 

particular application, but an automatic action by the interpreter on detecting 

complete unsureness associated with some goal. Such interaction should tie in with 

an explanation so that, the user can ask why extra information is required and what 

would be the effect if it was, not provided. A more complex interaction process 

could address the behaviour of the system, when an, inconsistency occurs. This 

might involve an explanation of the likely source of the inconsistency or suggestions 

of how support intervals could, be adjusted to eliminate the inconsistency. These 

interactive facilities should also be provided in translated knowledge bases, but here 

the problem is greater as the necessary code has to be hooked into the application 

itself. Certain facilities may in, fact, be considered unnecessary because they are 

only concerned with the development of applications, which would be carried out 

using the interpreter, Slop, however there is no doubt that an explanation facility is 

essential, for justifying the reasoning processes of the application to the end-user. 

To provide this without slowing down the query execution and without increasing 
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the size of the application to unwieldy proportions may prove difficult, but it needs 

addressing. 

7.1 Conclusions 

The theory of Support Logic and the implementation presented in this thesis 

attempt to meet three main criteria. The first of these is a solid theoretical 

foundation to the rules of uncertainty propagation. The second is that models 

implemented under the mechanism should closely represent the structure of the 

original knowledge to facilitate their development and optimise their clarity. The 

third criterion is that the mechanism should be efficient to, implement, so that there 

are not unacceptable computational overheads. 

Support Logic, being derived in the general terms of t-norms, comfortably 

meets the first requirement of solid theoretical justification, however in order to 

select a particular t-norm, some assumption had to be made about the relationship 

between propositions. In so doing there is the likelihood that the assumption will be 

inappropriate in some circumstances thus affecting the validity of the knowledge 

base under development. This can be avoided by allowing different t-norms to be 

used to reflect the different assumptions. Such a scheme was not adopted in Slop 

because of the effect it would have on the efficiency of the implementation, 

demonstrating that there can be a trade-off between the three criteria laid out 

above. Instead no assumption was made about what was the dependence between 

propositions, but rather that the dependence was completely unknown. In order to 

minimise the bias towards any proposition the t-norm was derived that would 

maximise the entropy. This function turned out to be the product, which in fact 

corresponds to an assumption of independence. By using this t-norm for support 

combination throughout a proof path we have to be careful that this assumption is 

not violated. Notice, however, that we do not have to establish that two 
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propositions are, independent, ' but merely that we can not prove that they are not. 

While we know nothing about the dependence between two propositions, 

independence is the, least prejudiced assumption to adopt. We still have a 

theoretically justifiable system, but we have lost some of the generality. 

The one departure from such firm justification is the conflict resolution of 

Dempster's rule using renormalisation when considering independent viewpoints. 

When there is no conflict, the rule amounts to a disjunction combination, however 

the conflict is dealt with in a rather ad hoc way, its main justification being that it 

achieves intuitive results. This is not however always the case as shown by an 

example of Zadeh using belief functions in which two well supported propositions 

are rejected, due to conflict, and a third, that was poorly supported by both pieces 

of evidence is given total support (support of one) as a result of renormalisation. 

This particular'situation cannot arise in Support Logic because it depends on the set 

theoretic representation of propositions, but the underlying effect still applies - that 

the renormalisation of conflict can result in exaggeration of support allocation. - 

In order to meet the second criterion, Support Logic and the implementation, 

Slop, use an extension of Horn Clause Logic. This maintains the logical structure of 

a knowledge base by allowing the direct representation of antecedent-consequent 

relationships in the form of rules. This provides a clear Aeclarative reading of the 

statements in the'knowledge base, and the associated support pairs provide an easily 

understood qualification of the information. Furthermore Horn Clause syntax 

provides the means of writing - recursive definitions, the usefulness of which was 

demonstrated in the TEWA application. 

Another asset of Support Logic is that it does not depend on the provision of 

prior probabilities, or supports, as required by Bayes' rule. Apart from the support 

on the antecedents, the only information needed to evaluate support for a 

conclusion, is the conditional support on the rule. Compare this with a Bayes' rule 
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system which requires likelihood measures and prior odds, associated with the rule 

and conclusion. The-strength of such a rule supporting the conclusion has to be 

gauged using both these latter values rather than just the conditional supports of a 

Support Logic rule. - Bayes' rule comes into its own when the conditional supports 

are only known in terms of symptoms given a diagnosis, when we are constructing a 

rule concluding the diagnosis given the symptoms. If this is the case, then we can 

use Bayes' rule to evaluate Jhe, appropriate conditional supports, using a prior 

support, but we do-not have to express the knowledge directly using Bayes' rule, 

and thus the readability is improved. It is also possible to implement a Bayes' rule 

system directly in Support Logic, demonstrating that the latter is a more general 

uncertainty model. - 

The final aspect of Support Logic that allows closer representation of 

knowledge is its ability to handle ignorance by assuming an open world. As it is so 

often the case that the uncertainty associated with data is not definitely known, it is 

necessary to be able to represent such lack of knowledge in order to obtain a model 

closer to the real problem. When such ignorance is not present, the intervals can be 

reduced to zero and Support Logic becomes a Horn Clause probability logic. 

The requirement of efficiency of implementation can be of varying - 

importance depending on the applications to which the system is being addressed, 

however most applications involving uncertainty reasoning are going to involve 

interactive usage, in which case it is very important that the mechanism can be 

efficiently implemented. This was one of the drawbacks of Shafer's (1976) theory 

of beliefs as discussed by Barnett (1981). The implementation, Slop, described in 

Chapter 3 demonstrates the potential of Support Logic although it is probably 

unacceptably slow for many applications. The use of the translator, of Chapter 4, 

however provides a mechanism for generating very much more efficient code, as 

demonstrated by the TEWA application which showed a thirty times improvement in 
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speed. Although further work is required to provide a comprehensive reasoning 

justification mechanism for translated knowledge bases, the basis of an efficient 

system is in place. The speed can also be improved simply by transposing the 

system to a better Prolog, of which there are- several to choose from and more being 

developed. With the advent of parallel Prologs, even more dramatic improvements 

may be obtainable by exploiting the parallelism that must be inherent in such a 

breadth search system. The advantage of a Prolog implementation of Support Logic, 

such as Slop, over other implementations, ý such as FRIL, may be realised with the 

development of the Warren Abstract Machine (Warren, 1983). This is intended to 

optimise the architecture of the Prolog and the hardware on which it runs, thus 

providing a good platform on which such an implementation could sit. 

The theory and implementation described in this thesis form a sound basis 

for an uncertainty reasoning mechanism. The use of Prolog provides ready 

interaction with standard logic programming, and the associated procedural 

programming capabilities, from within an uncertain knowledge base. The speed 

limitations due to the use of an interpreter can be overcome by translating a Support 

Logic knowledge base into Prolog code that can be run directly. The system is not 

excessively large and translated knowledge bases maintain a compactness that is 

perhaps surprising considering the extra work that has to be performed. 
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Appendix Iýý Slop -Implementation of a Support Logic Programming Interpreter 
In C-Prolog version 1.4 

/* Settfng up operator precedences for 'coton', Isup_not', Isup_orf, 14-1 and 

op(1150, xfx, (: )). 

op(1150, fx, (: )). 
op(900, fy, supji0t). 
op(1100, xfy, (sup_or)). 
op(1200, xfx, (<->)). 
op(1175, xfy, (<-)). 
op(1175, fy, (, c-)). 

/* The 'colon', Isup_not' and Isup_orI operators are here given definitions so that support 
Logic programs can be called as protog programs and still succeed. 

: (X, 
_): - 

CaLLM. 
: (X). 
sup_not(X): - 

sup.. pr(X, Y): - 
ca(L(X), 
catt(Y). 

sup_or(X, _): - 
c&tL(X). 

sup_or(_, Y): - 
caMY). 

-M: - 

ca(LCX). 
c-(X, Y): - 

ca[L(Y). 

/* default trace mode - no_trace 

no-trace. 

/* goat tests for cutoff and prints trace message if satisfied. 

cuttlng_qff(Sup_jpalr): - 
cutoff(Sup_pair), 

(noý_trace, I; sup_skip), I; 

put(9), 
write(' ** FAILED AT CUTOFF') 

/* clefautt cut-off at support pairs of E0*11 necessary for the use of 
protog_ýsystemL_predlcates 

cutoff(IO, 11). 
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/* FRONT END 

/* The goat that runs the support Logic programming interpreter. 
ALWAYS SUCCEEDS (eventuatty) 

stop: - 
sup. yersion, 
pre_process(on), 
sementicsCoff), 
(cutoff(_); assert(cutoff(co, l]))), 

prompt(_, '> 0), 

repeat, I 

eraseatt(Sbundle), 
detracfng, 

abolish(LastcLause, l), 

nL, wrfte(lquery? 1), 

read(X), 
stopcaLL(X), 
retract(stop), 
nt, write(IsLop execution termfnateds), nt. 

/* prints message saying which version of SLOP is being used. 
ALWAYS SUCCEEDS 

sup_version: - 
nt, write('Support Logic Programming 

write(lVersfon 1.21), nt, 
write(IM. RowLand M. Monkf), nt, 
write(fInformation Technology Research Centre (I. T. R. C. ), '), nt, 
write(IDept. of Engineering Mathematics, l), nL, 
write(#Universfty of Bristol, EngLand. %M, 

write(#February'19871), ni, ni. 

/* 'IsLopcatt" checks for special queries, e. g. quit$ end. of_ffte, pro tog. systemý_Predf Cates, 
and then queries the knowledge base in the appropriate way. If there Is a stop syntax 
error then the system Is unable to make the query and returns an error message. 
ALWAYS SUCCEEDS 

/* These two'cause the stop session to be terminated 

stopcatt(en4_of - 
fite): - 

assert(stop). 
sLopcatt(quit): - 

assert(stop). 

/* These two deal. with system predicate queries 

stopcatL(X): - 
Sys-catt(X), 
soLution_type(X, W), 
catt(X), 
wrfteans(X, W), 
1. 
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stopcatt(X): - 
sysý_Catl(x), 
1, 
nt, write(Ino more soLutions'), nL. 

/* This ctause copes with the user caLLfng a trace on its own 

stopcatt(trace): - 
nL, write(Itrace can not be invoked 

write(lwithout a goat to tracel), nt, 
1. 

/* These four deal with stop queries 

stopcatt(X): - 
tracfng(X, Y), 
not bad_coton(Y, 

_, _, _), 
condý_query(Y, 2, Cond), 
solution - 

type(Z, W), 
gup([], SLipport, Z, 

_), 
not cuttfng_off(Support), 
condcombfne(Cond, Support, Supportl), 
printsoLution(Z, Supportl, W), 
1. 

stopcatt(X): - 
tracfng(X, (: S)), 
printsotution((], S, 

_), nL, 
1. 

sLopcatt(x): - 
bac! 

_coLon(X, 
OK, Op, NotOK), 

nL, write(I... SLOP syntax error ... 1), nt, 
wrfteCOK), nt, 
wrfteC,... here ... 1), nt, 
write(Op), wrIte(NotOK), nL, 
1. 

stopcatt(X): - 
nL, wrfte(Ino more non-cutoff SoLutionst), nt. 

/* catted by stopcatt for printing out soLutfons to system predicate queries 

writeans(X, novars): - 
nL, wrlte(lyes'), nL. 

writeans(X, vars): - 

nL, write(X), 
gets(G), 
not Gw E591. /* 59 
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/* prints the solution, with support pair, to a support logic programming (Stop) query if It 
does not satisfy the cutoff restrictions. 

prfntsolution(_, support, 
_): - 

cutoff(Support), 
1, 
fait. 

prfntsotutfon(X, Support, W): - 
C(nq_trace; sup_ýskfp), I; nI), 
nt, write(X), wrfte((' ': Support)), tab(l), 

Wx novars, nt, l; 
gets(G), not Ga E591 /* 59 

/* reads in a list of ASCII character codes until it is given a carriage return (code 
N. B. <CR> alone returns 11. 
ALWAYS SUCCEEDS 

gets( EX I Y1 

getocx), 
not X- 10, /* 10 x <CR> 

getscy). 
getsc(l): - 

/* called by stopcatt to see if a trace Is required for the stop query. If so the f tag 
unq_trace" in the knowledge base is removed. 
ALWAYS SUCCEEDS 

tracing((X: Y), (Z: Y)): - 
X \z= trace, 

tracing(X, Z). 
tracfng((trace, Y), Y): - 

(retract(nq_trace); true), 
1. 

tracing((trace: X), (: X)): - 

tracfng(X, X). 

/* calted by siopcalt to see If the query has been gfven a corditionaL support 

corio_query((Q: C), Q, C): - 
1. 

coriq. query((: _), _, _): - 
I, faiL. 

cor)o_query(Q, Q. nocond). 
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/* catted before the system asks for a query., to return the system to a non-tracfng mode. 
ALWAYS SUCCEEDS 

detracing: - 
(no-trace; assert(no_trace)), 
(retract(sup_skip); true), 
1. 

/* calted by sup and support to print out supports as they are evatuated when in trace mode. 
ALWAYS SUCCEEDS 

traceprfnt(_, _, _, 
(I, 

_)): - 
1. 

traceprfnt(GoaL, Sup, Skip, 
_): - (no-trace; sup_skip), 

not Skip -- a, 

traceprint(GoaL, Sup, o, _): - 
1, 
nt, wrfte(IOVERALL SUPPORT 
portray(O, (GoaL: Sup)), nt. 

traceprfnt(X, Y, 
_, _): - 

nL, wrfte('-> 8), 
portray(l, (X: Y)). 

/* catted by sup ard support to print out stop rutes prior to cattIng tracegoal. 
ALWAYS SUCCEEDS 

clauseprint(X): - 
(no 

- 
trace; sup_skfp), 

1. 

ctauseprfnt((<- BundLe)): - 

nt, portray(O, (<- SundLe)), nL. 
ctauseprfnt(X)., - 

nL, portray(O, X). 

/* queries the user as to whether a particular ruts is to be traced or skipped. 
ALWAYS SUCCEEDS 

tracegoat(n): - 
(nq_trace, -sup. ýskIp), 
1. 

tracegoaL(R): - 
wrfte(ITRACE subgoaLs 
writeVy (yes), n (no), q (quit tracing)? 1), 
gets(G), 
option(G, R). 
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/* carries out the particuLar option requested by the user In answer to the caLl to 
"tracegoat" 

option([1101, s): - 
assert(sup_skfp). 

option((1101, _): - 
retract(sup_skip), 
I, faft. 

optfon((1131, q): - 
assert(no-trace), 
1. 

option(El, y): - 
1. 

optfonCE121l, y): - 

option(_, R): - 
write(linvalid option'), nt, 
tracegoat(R). 

/* caLLed by semunify_or_not for asking the user if semantic unification on a partfcuLar goaL 
is to be traced or not. 
ALWAYS SUCCEEDS 

trace_sem_un(_, 
_, _, _, _): - 

(no-trace; sup_skip), 
1. 

trace_sem_un(_, _, _, _, 
Goat): - 

nL, write(#Semantic Unification on 1), wrfte(GoaL), 
write(' TRACE - y/n? '), 
getsCG), /* 110 an 
Ga (1103, 
1. 

trace-sem-un(X, Y, S, Sn, 
_): - 

portray(O, ((X: -Y): S)), 

portray(O, ((X: -not Y): Sn)). 

/* this r*Latfon is for turning on and off the semantic unification facitfty. 
ALWAYS SUCCEEDS 

semantics(off): - 
rjoý. sem_un# 
1. 

semantfcs(X): - 
var(X), 
Xa on, 
1. 

semanticsCoff): - 
asserta(no. _sefft_un)- 

semantics(on): - 

retract(no_sem_un). 
semantfcs(on). 
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/* succeeds onty if the first term In the argument is a protog_system_predfcate or speclat 
stop goat. CaLLs "sys", a reLation stored in fite Isyspred', which is true for aLL 
protog. ýsystemLpredicates except 'tracel/O and 1,1/2, which are used by stop itseLf. The 
speclat. stop predicates for which it aLso succeeds are: vf/l ex/l x/l cat/l more/l Is/0 
Ls/l - defined and exptafned in the fiLi $system, sLfst/O sLfst/l gets/1 - defined in this 
fite and sys/l itself. 

sys-caLt(CX, Y)): - 
1, 

syspred(X). 
sys-caLL(X): - 

syspred(X). 

syspred(X): - 
functor(X, Pred, Arity), 

sys(Pred/Arity). 

/* checks for badLy positioned cotons 

bad_coLon((<- BundLes), (<- X), Y, Z): - 
bad coLon(BundLes, X, Y, Z); 

bad_coLon((Bundlel - SundLe2), X, Y, (Z 4- Bundle2)): - 
bad_coLon(BundLel, X, Y, Z), 
1. 

bad_coLon((Bundlel <- BundLe2), (BundLel <- X), Y, Z): - 
bao_coLon((<- BundLe2), X, Y, Z), 

bad_coLoni(Body: Cond, NCond), 
-, -, -): -' 

Cond [St, Sul, 
NCond EStn, Sun], 
1, 
faiL. 

bad_coLon((Body: Extras), (Body: Sup_pfr), Op, Rest): - 
Extras a.. EOp, Sup_pair, Rest], 
OP \, a 

bad_coton((Sody: Sup_pair), (Body: ' 1), Sup_pair, f I). - 
not Sup_palr - (St, Sul, 
1. 

bact. caton((: Extras), (: Sup_pair), Op, Rest): - 
Extras (Op. Sup_j)air, Rest], 

OP \82 
1. 

bad_coton((: Supjmir), (: ), Sup_pair, I 

not Sup_pair - ESt, Su3, 

bacLcotc)n((G,: S), (G, l 1), (: S), ' I): - 

b&cLcolonC(G;: S), (G; l 1), (: S), ' I): - 

bacLcoton((G sup_or : S), (G sup_or I 

bad_coton((G -2, W, 011" ')#(: S)ol 
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bad_coton((G, G2), (G, G3), (S), ' I): - 
bad_coLon(G2, G3, S, l 8), 
1. 

bad_coLonCCG; G2), (G; G3), CS), ' I): - 
bacLcoLon(G2, G3, S, f 1), 
1. .- 

bad_coLonC(G sup_or G2), CG sup_ýor G3), CS), ' I):. 
bad_coLon(G2, G3, S, f 1), 

bad_coLonCCG->G2), CG->G3), (S), ' I): - 
bad_coLon(G2, G3, S, l f), 
1. 

/* SUPPORT - EVALUATION 

/* sup is catted by siopcaLL and evaLuates supports for att stop queries. arguments are: I- 
a List of terms that have been introduced at a higher tevet of the stop query. This is 
necessary to ensure that semantic unification is carried at the right tevet in a query. 2 
- the support pair after it has been evaLuated. 3- the goat for which a support pair Is 
required 4-a fLag used to force the 'cut$ (1) to be evatuated in the proper way on 
backtracking. 

/* for finding supports for a disjunction of goats 

sup(Parent_terms, Support, (GoaLl sup_or Goat2), true): - 
any_cuts((Goall sup_or GoaL2), (GoaLla sup_or Goat2a)), 

I 
d; sjww_sup(Parent_terms, Support, (Goatia sup_or Goal2a), true), 
traceprint((Goatia sup_qr Goat2a), Support, d, true). 

/* this is put in to prevent crashing if the user tries to trace from the middle of a query 

sup(Parent_terms, Support, (trace, GoaL), True_or_cutfaft): - 
nL, write(Itrace can not be invoked 0), 

write(lexcept as first goal to a query'), 

nL, wrfte(IcaLl to "trace, ' Ignored), nt, 
1, 

sup(Parent-terms, Support, Goat, True_or_cutfaiL). 

/* this is put in to prevent an attempt to turn on semantic unification half way through a 
query 

sup(Parent_terms, Support, (semantfcs(_), GoaL), True_or_cutfaiL): - 
nt wrfte(Isemantics can not be switched % 

wrfte(lexcept at the begfnning of a query'), 

nt, write(tsemantfcs switch ignoredr), M, 

1, 

sup(Parent_terms, Support, Goat, True_or_cutfafL). 
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/* for finding supports for a conjunction of goats 

sup(Parent_terms, Support, (Goatl, Goa(2), True_or_cutfait2): - 

sup(Parent_terms#Supportl, Goatl, True_or_cutfaill), 
not cutting_off(Supporti), 
supl(Parent_terms, Support2, GoaL2, True-or-cutfafLI, True-or-cutfaiL2), 
not cutting_off(Support2), - 
andcombine(Supportl, Support2, Support), 
traceprfnt((Goatl, GoaL2), Support, d, True_or_cutfait2). 

/* for finding supports for a negated goat 

sup(Parent_terms, ESn, Spl, not(GoaL), True_or_cutfaft): - 

sup(Parent_terms, [Snl, Spl], Goat, True_or_cutfaiL), 

not cutting_off(ESnl, Spli), 
Sn is I- Spl,, 
Sp Is I- Snl, 
traceprint(not(GoaL), [Sn, Spl, d, True_or_cutfaIL). 

sup(Parent_terms, [Sn, Spl, sup_not(GoaL), True_or_cutfafL): - 
1, 

sup(Parent_terms, [Snl, Spl], GoaL, True_or_cutfait), 

not cutting_off([Snl, Spl]), 

-Sn Is I- Spl, 
Sp is 1- Snl, 

traceprint(not(GoaL), [Sn, Spl, d, True_or_cutfait). 

/* returns E1,11 as support pair for 'cut' (1) when it is first queried 

sup(_, (I, Ilol, true): - 
traceprint(I. El, ll, o, true). 

/* returns [0,01 as support pair for tcutl (1) when the system backtracks to the 'cut$ 

sup(_, (0,03ol, (I, f&iL)): - 

/* For ctearfng. up more semantic switching rubbish 

$up(_, El , 1l, semantics(_), true): - 
nt, wrfte(Isemantics can not be switched 8), 
wrfte(lexcept at the beginning of a query'), 
nt, write(Isemantlcs switch fgnoreds), nt, 
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/* returns, E1,11 for a satisfied system goaL the way in which Stop deaLs with system 
predicates has been changed to make caLL an aLLowabLe ctosed worLd predicate that faits 
when it can not be proved. ALong with this aLL other system predicates have been banned so 
that the system does not have to consider the semantics of system predicates. If a system 
predicate is caLLed then the system issues a message and with the caLt as though It had 
been made using calt as It shouLd have been. This may seem pedantic but atLows for a more 
generat, and portabte system in which system predicates can not effect the supports. N. B. 
cut can stitL be used as before. 

sup(_, [1,1I, caLt(GoaL), true): - 
setof(dummy, GoaL, 

_), 
traceprfnt(Goat, (1,11, o, true). 

/* prints out a trace message when a system goat faRs 
ALWAYS FAILS 

sup(_, _, c&LL(Goat), _): - 
((nq_trace; sup_ýskip); 
M, write('Catt. to Protog Goat 
wrfte(caLtCGoaM, 
write(' FAILED')), 

fait. 

issues message when a system predicate is caLted ittegalty and catts the goat property 
using "catt". 

sup(_, Sup, Goat, true): - 
sys_catt(Goat), 

write(OILLegaL use of Protog system Preclfcate'), nL, 
write(Goat), nt, 
wrfte(Ocontfnufng with goat reptaced by'), nL, 
wrfte(caLI(GoaL)), nl, 
sup(_, Sup, catL(GoaL), true). 

/* For ctearing up more "trace, ' rubbish 

sup(_, El, ll, trace, true): - 
nt, write(Itrace can not be invoked 

wrfte(lexcept as first goat to a query, ), 

nt, write(Icatt to "trace" ignoredi), ni, 

/* for ffnding the supports for a goat and attowing the user access to that Support 

sup(Parent_terms, Sup, support(Goat, Sup), True-or_cutfall): - 

sup(Parent - 
terms, Sup, Goat, True_or_cutfaiL), 

traceprint(support(GoaL, Sup), Sup, d, True_or_cutfait). 

sup(Parent_terms, Sup, (GoaL4Sup), True 
- or_cutfaiL): - 

1, 

sup(Parent'terms, Sup, GoaL, True_or_cutfaiL), 

traceprfnt((GoaL^Sup), Sup, d, True_or-cutfafL). 
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/* for ffnding the supports for a non-muttipte goat 

sup(Parent_terms, Sup, GoaL, true): - 
functor(GoaL, Pred, Arity), 
functor(GoaLl, Pred, Arity), 
excess-tern(Goat, Goatl, Parent_terms, [], E_Ts, Parent_terms, Ts_now), 
stop. bagof(Supsesupport(Ts. nOwlGoatl, Sups), Supstist), 
samecombfne(Supstist, Sup1), 

semunify_orý_not(Goat. GoaLi, E_Ts, Supl, Sup), 
traceprint(GoaL. Sup, o, true). 

common_vars([XlYll, Y2, EXIZII, EXIZ2], NCVs, [XICVs]): - 
fdent_removeCX, Y2, Y3), 

common_vars(Yl, Y3, ZI, Z2, NCVs, CVs). 
common_vars((XIYII, Y2, ZI, Z2, NCVS, CVS): - 

common_vars(Yl, Y2, ZI, Z2, [XINCVsl, CVs). 
conmn_vars((], Y2, NCVs, Y2, NCVs, []). 

fdent-remove(X, EXIIYI, Y). *- 
X ax X1, 
1. 

fdent-remove(X, EXIIYI, [XlIZI): * 
fdent_remove(X, Y, Z). 

disjLr-i; 
_sup(Fý_ts, 

Support, (GoaLla sup_or Goat2a), true): - 
dot_excess_vars(Goatla, 

_, 
[], Vls), 

doL_nonempty(VIS), 
doL_excess-vars(GoaL2a, 

_, 
[], V2s), 

doL_nonempty(V2s), 

cwvork_varsCVls, V2s, Vlas, V2as, 11, CVs), 
dot_rxxmnpty(Cvs), 

: etof(Vlas-S, sup(Pý_ts, S, Goatla, 
_), 

Setl), 
etof(V2as-S, sup(Pý_ts, S, GoaL2a, 

_), 
Set2), 

d; sj_sup(Vlas, V2as, Setl, Set2, (], Set2, Set2, Support). 
dfsjLr)c. 

_sup(Parent_terme, 
Support, (Goatia sup_or GoaL2a), true): - 

1, 

: up(Parent_terms, Supportl, GoaLla, 
_), 

up(Parent_terms, Support2, Goat2a, 
_), 

orcombine(Supportl, Support2, Support). 

dfsj_sup(Vls, V2s, [Vls-SlIYII, EV2s-S2lY2], NI, NM2, Z2, S): - 
orcoinbine(SI, S2, S). 

dfsj_sup(vls, V2s, (XI-SIIYII, EX2-S2lY2], Ml, NM2, Z2, S): - 
not not (Vls x XI, V2s a X2), 
I, 
remove(X2-S2, NM2, Nm2a). 
dfsj_sup(Vls, V2s, [XI-SIIYII, Y2, (XiIMII, NM2a, Z2, S). 

dfsj_sup(Vls, V2s, [Xl*SlIYII, Y2, [XllMll, Nm2. Z2, S). -- 
1, 
disj_sup(vls, v2s, YI, Z2, (]. NM2, Z2, S). 

dfsj_sup(Vls, V2s, [XI-SilYll, EX2-S2lY2], E], NM2, Z2, S): - 
disj_ýsup(Vls. V2s, EX1'SIIYII. Y2, E]. NM2, Z2, S). 

df sj_sup(Vls, V2s, (VIS-Sl JYII, (1, (1, NM2, Z2, S): - 
orcombine(SI, EO, I], S). 
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dfsj_sup(Vls, V2s, [XI-SIIYII, (], (], NM2, Z2, S): - 
1, 
disj_sup(Vls, V2s, YI, Z2, (], NM2, Z2, S). 

dfsj_sup(Vls, V2s, El, 
_, 

Ml, (V2s-S2lNm2], z2, s): - 
orcombine(10,11, S2, S). 

dfsj.. ýsupCVls, v2s, El, 
_, 

Ml, E_lNm2]. Z2, S): - 
dfsj_sup(Vls, V2s, [], E], MI, NM2, Z2, S). 

remove(X, E1, E3). 
rernove(X, EXIYI, Y): - 

1. 

remove(X, EWIY], EWIZ3): - 
remove(X, Y, Z). 

/* catted by $sup' for conjunctions because It is necessary to have two 'True-or-cutfait, 
f tags 

supl(Parent-terms, SLkoport, Goat, true, True_or_cutfaft): - 
sup(Parent_terms, Support, Goat, True_or_cutfait). 

/* determines whether support Is to be evaLuated from an ordinary reLatfon or an equivatence 
reLation and passes evaLuation appropriateLy 

support(Parent_terms, Goat, Sup): - 
not not cLause(GoaL, _), 
not (Goal. <-> 
1, 
cLause_sLipport(Parent_terms, GoaL, Sup). 

support(Parent_terms, GoaL, Sup): - 
not not (Goal, <-> _), - 
not cLause(GoaL, _), 
1, 
equfv-gupportCParent-terms, GoaL, Sup). 

support(_, GoaL, 
_): - 

not not CGoal. <-> 
not not cLause(GoaL, _), 
1, 
write('*** ILLEGAL EQUIVALENCE DEFINITION 
writeV MIXTURE OF EQUIVALENCE ANDO), nL, 
writeV ORDINARY CLAUSES IN PREDICATEI), nL, 
write(lý - %write(Goal. ), nl., 
writeV GOAL FAILINGI), nL, 
1, 
fall.. 

/* firds the support for an ordinary reLation 

c Lause_support(Parent_tems, Goa L, Sup): - 
cLause(GoaL. Body), 
evat_support(Parent_terms, GoaL, Body, Sup, True_or_cutfaft), 
(Trueý. or_cutfafl. a(l, _), 

I, falL ; true). 
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/* finds the support for an equivalence relation 

equiv-support(Parent_terms, Goat, Sup): - 
bagof(duTvny, E^(Goal - E), L), 
tength(L, Num_equfvs), 
Num_equivs \-- 1, 

NI is Ntxy! 
_equivs - 1, 

write('*** ILLEGAL EQUIVALENCE DEFINITION ***'), nL, 
write(' 1), write(Nl), 

write(* EXTRA EQUIVALENCE DEFINITION(S) FOR PREDICATEI), ni, 
writeV 9), write(Goat), nt, 
writeV GOAL FAILINGI), nt, 

fall. 

equfv_support(Parent_terms, GoaL, Sup): - 
(Goat <-> SubgoaLs), 
dot_excess vars(GoaL, _, 

[], Vars'Lhs); ' 
doL_excess_vars(SubgoaLs, Vars_Lhs, [], Extra-vars-rhs), 
doL_nonempty(Extra_vars_rhs), 
1, 

writeV*** ILLEGAL EQUIVALENCE DEFINITION ***'), nt, 
write(' EXTRA VARIABLES IN RKS OF EQUIVALENCEI), nL, 
portray(l, (GoaL 4-> Subgoats)), 

writeV GOAL FAILINGI), nL, 
fait. 

equiv-Support(Parent_terms, Goat, Sup): - 
(Goat <-> SubgoaLs), 

evat_support(Parent_terms, GoaL, (Subgoats: equiv), Sup, True_or_cutfaft), 

(True_or_cutfait z (1, 
_), 

I, fa! L; true). 

/* evatuates the support pairs for atL the possfbte types of cLause as passed to the rotation 
by $support' 

/* cottects supports associated with facts' 

evat_support(Parent_terms, Goat. (: Sup), Sup, true): - 
1, 
traceprint(Goat, Sup, d, true). - 

/* collects supports associated with definitely true facts - I. e. (1,11 

evaL. ýsupport(Parent_terms, GoaL, true, [1,11, true): - 

traceprfnt(GoaL, E1,1), d, true). 
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/* finds the support pair associated with a pair of generatised probabitity ctauses 

evat_support(Parent_terms, Goat, (Subgoats: Cord, NCord), Sup, true): - 
1, 
cLauseprint((Goat: -(SubgoaLs: Cond, NCond))), 
tracegoaL(Skip), 
sup(Parent_terms, Supsub, SubgoaLs, 

_), 
not cutting_off(Supsub), 
probcombine(Supsub, Cond, NCord, Sup), 
traceprint(Goat, Sup, Skip, true). 

/* finds the support pair associated with a pair of generaLlsed probabItity cLauses 

evaL_support(Parent_terms, Goat, (Subgoats: Cond), sup, true): - 

ciause(Goat, (not Subgoats: NCord)) 

ciause(Goat, (sup_not Subgoats: NCond)) 

ciauseprint((Goat: -(Subgoats: Corid))), 

cLauseprint((GoaL: -(not Subgoats: NCond))),. 
tracegoat(Skip), , 
sup(Parent_terms, Supsub, SubgoaLs, 

_), 
not cutting_off(Supsub), 
probcombine(Supsub, Cond, NCond, Sup), 
traceprint(Goat, Sup, Skip, true). 

/* evaLuates supports for goats defined by an equivaLence reLation 

evat_support(Parent_terms, Goat, (SubgoaLs: equiv), Sup, True-or-CutfaiL): - 
It 
cLauseprint((Goat - SubgoaLs)), 
tracegoal(Skip), - 
sup(Parený_terms, Sup, Subgoats, True_or-CutfaiL), 
not cutting_qffCSup), 
traceprint(GoaL, Sup, Skip, True_or_cutfall). 

/* EVALUATES SUPPORTS FOR A BUNDLE - CHANGED FROM SLOP 

evaL_support(Parent-terms, GoaL, (, c- Bundte), Sup, true): - 

cLauseprint((GoaL <- gundte)), 

tracegoaL(Skip), 
GoaL 2.. C_lHead_args], 

(bundLe_sup(Parent_terms, Heac! 
_args, 

(A- BundLe), nq_bundle, 
_, 

Sup); 

eraseaLt(SbundLe), faIL), 

traceprfnt(GoaL, Sup, Skip, true).,. 
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/* evaLuates supports for rutes with conditionat supports 

evat-support(Parent_terms, GoaL, (SubgoaLs: Cond), Sup, True_or_cutfait): - 
negate(Subgoats, NotSubgoaLs), 

not ctause(Goat, (NotSubgoats: 
_)), 

1, 

ctauseprint((Goat: -CSubgoaLs: Cond))), 
tracegoal(Skip), 

sup(Parent_terms, Supsub, Subgoats, True_or_cutfalt), 

not cutting_pff(Supsub), 
condcombine(Cond, Supsub, Sup), 
traceprint(Goat, Sup, Skfp, True_or_cutfafL). 

/* evaluates supports for rules wfthout conditional supports 

evat_support(Parent_terms, Goai, SubgoaLs, Sup, True_or_cutfait): - 
not Subgoats a true, 

not functor(Subgoais, (: ), 
-), 

1, 
cLauseprint((Goat: -(SubgoaLs: El, ll))), 
tracegoat(Skip), 
sup(Parent_terms, Supsub, SubgoaLs, True_or_cutfall), 
not cutting_ýoff(Supsub), 
condcombfne((1,11, Supsub, Sup), 
traceprfntCGoat, Sup, Skip, True_or_cutfait). 

/* carries out semantic unification on a goat. I. e. tests if any of the arguments can be 
semantfcatty unified and if so carries out the unification. 
ALWAYS SUCCEEDS 

semunify_or_not(_, _, _, 
S, S): - 

noý_sem-un, 
1. 

semunffy_orý_not(_, "l(3, S, S)- 

semunify-or - not(Goat, Goatl, [[X, YllRest_E_TSI, Supl, Sup). - 
fuzzy(C'Y. Ptsl, 

-)# 

fuzzy(C, X, Pts2, 
_), 

fuzzynot(Ptsl, Ptsin), 
fuzzynot(Pts2, Pts2n), 

maxmfnset(Ptsl, Pts2, Su), 

maxmfnset(Ptsl, Pts2n, Stl), 
St is 1- SO, - 
m&xmInset(Ptsln, Pts2, Sun), 

maxmfnset(Ptsln, Pts2n, Stn% 
Stn is I- Stnl, 
strafght-unify(Rest_E_Ts), 
trace_serR_un(X, Y, [St, Sul, (Stn, Sun], Goatl), 

probcombine(Supl, ESt, Sul, EStn, Suni Sup). 

semunify_or_not(Goat, Goatl, [[X, XIlRest_E_Tsl, Supl, Sup).. - 
semunify_ýýnot(Goat, Goatl, Rest-E_Ts, Supl, sup). 
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straight-unify(13). 
straight_unify(EEX, XIIRI): - 

straight-unify(R). 

/* called by the last clause of sup to find if the body of a clause introduces any new terms. 
This is needed for semantic unification in order to ensure that the unification is carried 
out at the right moment I. e. at the highest Level at which a new term was introduced. 
excess_terms and rem 

- 
excess 

- 
terms are slight variations on excess_vars and rem_excess_vars 

which are used in the system definition for bagof and setof. 
ALWAYS SUCCEEDS 

excess-terms(G, G, 
_, _, _, _, 

dLmnmy): - 
nq_sem_un, 
1. 

excess-terms(T, T, 
_, 

L, L, M, M): - 
T 
1. 

excess-terms(T, T, Terms, E_Ts, E_TsoTs_sofar, Ts-sofar): - 
(var(T); atomic(T)), 
identmem(T, Terms), 
1. 

excess-terms(T, T1, Terins, LC, E(T, TIJILOI, Ts_sofar, [TIITs_sofar]): - 
(var(T); at(xnic(T), fuzzy(_, T, 

_, _)), 
1. 

excess_terms(not T, T1, Terms, L0, E(not T, Tl]ILOIOTs-sofar, ETlITs-Sofarl): - 
1. - 

excesý_terms(T, T, Terms, E_Ts, E_Ts, Ts_sofar, ETITs-Sofarl): - 
atomic(T), 
1. 

excess_terms(T, T1, Terms, L0, Li, Ts-sofar, Ts-now): - 
functor(T, 

_, 
N), 

reiý_excess_terms(N, T, 71, Terms, L0, LI, Ts-Sofar, Ts-nOw), 
1. 

excess_terms(T, T, Terms, E_Ts, E_ýTs, Ts-sofar, ETITs_sofarl): - 
functor(T.., 

-). 

rem excessý_terms(O, _, _, _, 
L, L, Ts_sofar, Ts-sofar). -- 

1. - 
rem-excess-terms(N, T, T1, Terms, L0, L, Ts_sofar, Ts-nOw): - 

rg(N, T, Ta), 

rg(N, T1, Tla), 
1, 

excessý_terms(Ta, Yla, Terms, L0, Ll, Ts_sofar, Ts_int), 
wl fs N-1, 

reaLexcesý_terms(NI, T, T1, Terms, L1, L, Ts-int, Ts-now). 

rem-excessý_terms(W, T, T1, Torms, L0, L, Ts-sofar, Te-nOw): - 
functor(T, Pred, Arity), 
functorCT1, Pred, Arity), 

reffL. excess-terms(N, T, Tl, Tems, L0, L, Ts_sofar, Ts-nOw). 
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/* these reLations are catted by slopcaLl. to find aLl. the variables in a system_predicate 
catt so that the soLution can be printed out in the right form 

soLutfon_type(X, vars): - 
any_vars(X), 
1. 

sotutfon_"(X, novars). 

any_yars(T): - 
var(T), ' 

any_varsCT): - 
functor(T, 

_, 
N), 

any_other_vars(N, T). 

any_pther_vars(o, -): - 

fait. 
any_other_vars(N, T): - 

rg(N, T, Tl), 

ny_yars(TI). 
any_pther_vars(N, T): - 

NI Is W-1, 

any_other_vars(Nl, T). 

/* tooks through a'Stop disjunctfon removfng cuts and prfnts a message when necessary 

any_ýcuts((A sup_or 8), (Cýsup_or D)): - 
no. 

_cuts(A, 
C, T_or_Fl), 

noý_cuts(B, D, T_or_F2), 

T_or_Fl, T_or_F2,1 

ni, write(ICUTS are not allowed 0), 
wrfte(Ifn Stop disjunctfonst), ni ' 
write('The CUT(S) in the goat'), nL, 
put(9), writeC(A suMr 8)), nL, 
wrfte(Ihave been ignored. 1), nt 

noý_cutsC(I, GI), G2, fai0. - 
1, 

noý_cuts(Gl, G2, 
_). 

rip_cuts((Gl, G2), (G3, G4), T_or_F): - 
nq_cuts(G1, G3, T_or_FI), 

rR_cuts(G2, G4, T_or_F2), 

(T_or_FI, T-or_F2, T_or_F true; 
T_or_F m fait), 

nq_cuts((GI, _), 
G2, faI0: * 

noý. cuts(GI, G2, 
_)- 
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nq_cuts((GI; G2), (G3; G4), T_or_F): - 
1, 
ncý_cuts(GI, G3, T_or_Fl), 

no-cuts(G2, G4, T_or_F2), 
CT_or_Fl, T_or_F2j_or_F = true; 
T_or_F x faR). 

no-Cuts(G, G, true): - 
not Ga1. 

/* succeeds if the first argument Is an identical. member of the List as second argument i. e. 
no variabte instantiations can occur. CaLted by excess_terms 

fdentmem(X, [Ylj 
X xx Y, 
1. 

fdentmem(X, E_ILI): -, 
identmem(X, L). 

bundte_sup(P_ts, Head_args, (<- BundLel - Sundte), BundteO, SO, S):. 
cond_sup(Sundlel, aundtela),, 

cLauseprint((<- BundLela)), 
tracegoaL(Skfp), 
10, 
bundLe_support(Fý_ts, Head_args, BundLela, Sla), 
traceprintC(<- SundLela), Sla, skip, true), 
end_skfpCSkfp), 
intersectCC- SundLeO), (<- BundLela <- SundLe). SO, Sla, SI), 
bundLe_sup(P_ts, Head_args, C<- BundLe), BundLela, S1, S). 

bundLe_sup(Fý_ts, Head_args, (, c- Bundtel), BundLeO, SO, S): - 
cond_sup(BundLeloBundLela), 
ctauseprint((g- BundLela)), 
tracegoat(SkiP). 

bundLe_support(Fý_ts, Head_args, BundLela, Sla)o 
traceprfnt((<- Bundtela), Sla, Skfp, true), 
end_skfp(Skfp), 
fntersect((4- SundteO), (<- oundLela), SO, Sla, S). 

end_skfp(s): - 
retract(sup-skip), 

end_skfp(_). 

burdLe_support(P_ts, Mead_args, (: Y), S): - 
bundLe_support(Fý_ts, Head_args, (caLt(true): Y), S). 

bundLe-support(Pý_ts, Hesd_args, (X: Y), s): - 
record_soLns(X, P-ts, (], 

_), 
1, 

stop_ý)agof(S, buridLeý_body(Head_args, X, S), Sups), 
corO-bundLeCY, Sups, Supsl), 
samecwbfneCSupsl, S). 
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bundte_body(Read_args, (GoaLl sup_or Goat2), Support): - 
any_ýcuts((GoaLl sup_or GoaL2), (Goatla sup_pr Goat2a)), 
doL_excess_vars(Goatla, 

_, 
[], Vls), 

dot-nonempty(Vis), 
doL-excess-vars(Goat2a, 

_, 
[]. V2s), 

dot_nonenpty(V2s), 
common_vars(Vls, V2s, Vlas, V2as, [], CVs), 
doL_nonempty(CVs), 
setof(Vlas-S, bundteý_body(Mead_args, GoaLla, S), Setl), 
setof(V2as-S, bundteý_body(Head_args, Goat2a, S), Set2), 
I 
d; sj_sup(Vlas, V2as, Setl, Set2, [], Set2, Set2, Support), 
traceprint((Goatia sup_or GoaL2a), Support, d, true). 

bundLe_body(Head_args. (GoaLl sup.. pr GoaL2), Support): - 
1, 
any_, cuts((Goatl sup_or Goat2), (Goatla sup_or Goat2a)), 
bundLe_body(Read_args, GoaLia, Supportl), 
bundLeý_body(Head_args, Goat2a, Support2), 
orcombine(Supportl, Support2, Support), 

-traceprint((Goalla sup_or Goat2a). Support, d, true). 
bundte_body(mead_args, (X, Y), S): - 

bundLe_body(Head_args, X, SI), 
bundbý_body(He&d_args, Y. S2), 
andcombine(Sl, S2, S), 
traceprint((X, Y), S, d, true)., - 

bundte_body(Head_args, (sup_pot X), ESt, Sul): - 
1, 

bundLe_body(Mead_args, X, ESLn, Sun]),,, 
SL is 1 Sun, 
su is I Sln, 
traceprfnt(sup_pot X, ESL, Sul, d, true). 

bundL, k_body(mead_args, X, S): - 
recorded(SbundLe, X-S, 

_), 
traceprint(X, S, d, true). 

bundLeý_body(Nead_args, X, E0,11): - 
not recorded(%bundLe, X-_, 

_), 
traceprint(X, 10,11, d, true). 

cor4_bundLe(_, Cl. 11). 

c«)cLbundte(cond, Nx JR], CSI Z] )- 

condcoffbine(C«d, SX, S), 

cond_bundte(Cond, R, Z)i 

fntersect((<- no_bundte), _, 
(], SL, SL): - 

1. - 
fntersect(BundLel, Bundte2, [SL1, Sull, (SL2, Su2l, [SL, Sul): - 

1,4 

not conftfct_warning(Bundiel. Bundte2, [Stl, sul], [St2, Su2l), 

max(SLI, SI2, SL), 

minCSul, Su2, su). 
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conftfct_warnfng(BLindLel, Bundte2, [SLI, Sul], ESL2, Su2]). - 
Ml > Su2; St2 > Sul), - 

nL, write($*** WARNING - CONFLICT IN 8UNDLEI), ni, 
write(' - BETWEEN 0), nL, 
portray(I, BundLel), nL, 
write(and), nt, portrayCI, Bundte2), nt, 
nL, write('*** BUNDLE EVALUATION FOR THIS SOLUTION FAILINGI), nL, nt. 

cond-sup((X: Y), (X: Y)): - 
1. 

cond-Sup(C: Y), C: Y)): - 
1. 

cord-suP(X, (X: 11,13)). 

record_soLns((X sup_or Y)#Pý_ts, Prev-Subs, Newsubs): - 
1, 

record_sotns(X, P_ts, Prev_subs, Newsubsl), 

record. sotns(YOP. ts, Newsubsl, Newsubs). 

record_soins((X, Y), Fý_ts, Prev-Subs, Newsubs): - 
1, 

record_soLns(X, P_ts, Prev_subs, Newsubsl), 

record_sotns(Y, P_ts, Newsubsl, Newsubs). 

record_soLns((not X), P_ts, Prev-Subs, Newsubs): - 
1, 

record_soLns(X, P_ts, Prev-Subs, Newsubs). 

recorc! 
_soLns((sup. 

jiot X), P_ts, Prev_subs, Newsubs): - 
1, 

record_sotns(X. P_ts, Prev-Subs, Newsubs). 

record_sotns(X, P_ts, 
_, _): - 

not recorded(SbundLe, X-S, 
_), 

(sup(Pý_ts, S, X, 
_); 

recorda(SbundLe, Snew, 
_), 

fait), 

recordz(SbundLe, X-S, 
_), 

faiL. 

record_soLns(X, 
_, 

E], EXI). * 

recorded($bundLe, Snew, R), 

1, 

erase(R). 

recorCsoLns(X, -, 
EHITI, Newsubs): - 

recorded($bLrdLe, Snew, R), 

erase(R), 

check_recorded_soLns(X, H, T, Newsubs). 

record_soLns(X, 
_, 

Prev-subs, EXIPrev-subs]). 

check_recordecLsoLns(X, H, T, 
_): - 

recorded(SbundLe, X-_, 
_), 

not recorded($bundLe, H-_, 
_), 

recordz($bundLe, H-[0,11, 
_), 

check_recorded-so(nsl(T). 
check_recordecLsoLns(X, H, T, JX, HITI). 
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check_recorded_soLnsl([HITI): - 
not recorded(SbundLe, H-_, 

_), 
recordz(SbundLe, H-[0,11, 

_), 1, 

check_recorded_soLnsl(T). 

eraseatL(Key): 
recorded(Key, 

_, 
R), 

erase(R), 
fail. 

eraseatt(-). 

/* bagof for Stop for warning against predicates being sotved with unfnstantiated variables 

sLop-bagof(X, P, Bag): - 
dot-excess-vars(P, X, (], L), 
dot_nonempty(L), 
1, 
Key 

stop-bagof(X, P, Key, Bag). 

sLop_bagof(X, P, Bag): - 
doL_tag('Sbagl, 'Sbag'), 

catL(P), 
doL_tag('Sbag', X), 
faiL. 

sLop_oagof(X, P, Bag): - 
doL_reap([], Bag), 
dot-nonempty(Bag), 
1.1 

stop_oagof(X, P, E(0,111). 

stop-Oagof(X, P, Key, Bag): - 
dot_tag('Sbagl, 'Sbag'), 

caLL(P), 
var_warnfng(Key, P), 
dot_tag('Sbag', Key-X), 
fait. 

sLop_Oagof(X, P, Key, Bag):, 
doL_reap((], BagsO), 
keysort(SagsO, Bags), 
dot-nonempty(Bags), 

dot_pick(Sags, Key, Bag). 

slop_ý, agof(X, P, Key, ((O, llD. 

var_warning(Key, bundLeý_body(_, Goat, 
_)): - 

Key a.. (SILI, 

any_vars(L), 

nL, write('***** WARNING - UNINSTAWTIATED VARIABLES IN SOLUTION TO 0), 
nt, portray(I, GoaL), nL, nL. 
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var_warning(Key, support(_, Goat, j): 
Key a.. MILI, 

any_yars(L), - 
1, 

nL, write('***** WARNING UNINSTANTIATED VARIABLES IN SOLUTION TO 
nl, write(GoaL), nt, nI. 

var_warnfng(_, 
_). 

doL-nonempty([_I_]). 

dot_reap(LO, L): - 
dot-untag('Sbag', X), 
1, 
dot_reapl(X, L0, L). 

dot_reapl(X, L0, L): - 
X \xz '$bag', 
1, 
dot_reap([XILOI, L). 

dot_reapl(_, L, L). 

dot_pick(8aqs, Key, Bag): - 
dot_parade(Bags, Keyl, Bagl, Bagsl), 
dot-decide(Keyl, Bagl, Bagsl, Key, Bag). 

dot_. paradeC Eltem ILI 1 K, IX I BI L): - 
dol_itemCltem, K, X), 
1, 
doL_paradeCLI, K, B, L). 

dot_paradeCL, K, [], L). 
I 

dot_item(K-X, K, X). 

dot_ýdecide(Key, Bag, Bags, Key, Rag): - 
(Bagsa(l, I; true). 

dot-decfde(_, 
_, 

Bags, Key, 8aq): - 
dot_pfck(Bags, Key, Bag). 

doL-excess-vars(T, X, L0, L): - 
var(T), 
I, 
C dot_n, ý_occurrenceCT, X), 1, dot_introduceCT, L0, L) 
;La LO ). 

dol-excess-vars(support(_, Goat, 
_), 

X, L0, L): - 
1, 
dot_excess-vars(GoaL, X, L0, L). 

dot-excesý_vars(bundleý. body(Head_args, BodY, S), X, LO, L): - 
1, 
doL-excess_vars(Head_args, X, L0, L). 

doL_excesý_varsCT, X, L0, L): - 
functor(T, 

_, 
N), 

dot_reaLexcess-vers(N, T, X, L0, L). 
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dot-rem-excess-vars(O, 
_, _, 

L, L): - 
1. 

dot-rem_excess_vars(N, T, X, L0, L): - 
arg(W, T, TI), 

, dot_excess_vars(TI, X, L0, Ll), 
NI iS N-1, 
dot_rem_excess_vars(NI, T, X, L1, L). 

dot-introduce(X, L, L): ---- 
dot_fncluded(X, L), 
1. 

dot-fntroduce(X, L, EXILI). 

dot-incLuded(X, L): - 
doL_doesnt_incLude(L, X), 
1, 
fafL. 

dot-incLuded(X, L). 

doL_doesnt_Inctude(CI, X). 
doL_doesnt_IncLude(CYILI, X): - 

Y \zz X, 

cloL-dOesnt_Inctude(L, X). 

doL-no_occurrence(X, Term): - -, 
doL_contains(Term, x), 
1, 
fafL. 

dot-no-occurrence(X, Term). 

dot-contains(T, X): - 
var(T), 

T an X. 
dot_contains(T, X): - 

functor(T, 
_, 

N), 
doL_upto(N, I), 

a rg(I, T, Tl), 
doL_contains(TI, X). 

doL_upto(N, N)»- 
N >, 0. 

dot_upto(M, 1): - 
m>0, 
Nl 18 N-1, 
doL-Upto(M1,1). 

doi_tag(Key, Vatue): - , 
recorda(Key, VaLue, 

_). 

doL_untag(Key, Vatue): - 
recorded(Key, Vatue, Ref), 

erase(Ref). 
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/* returns the support logic negation of the first argument as second argument. 
ALWAYS SUCCEEDS 

negate(not Goat, GoaL): - 1. 
negate(sup_not Goat, GoaL): - 1. 
negate(Goat, not Goat). 
negate(Goat, sup_not Goat). 

/* finds the fuzzy set associated with the term X of ciass C 

fuzzy(C, X, Y, 
_): - 

fuzzy(C, X, Y). 
fuzzy(C, not X, Y, 

_): - 
fuzzy(C, X, Yl), 
fuzzynot(YI, Y). 

/* finds the negation of a fuzzy set 

fuzzynotC(X, A, B, C, D, YI, EXI, A, B, C, D, Yll): - 
X1 Is I-X, 
Yl is I-Y. 

/* evatuates the max vatue of the min combination of two fuzzy sets 

maxmfnset([O, X, X, X, X, 01. 
-, 

O): -I. 
maxminset(_, EO, X, X, X, X, 01,0): -I. 

1): -I. 
ma)uninset([l, _, _, _, _, 

11, 

maxminset((I, Bl, 
_, _, 

El, ll, [O, 
_, 

C2, D2, 
_, 

01,1): - 
02 >z El; C2 a< Bl), 
1. 

maxminsetC[1,81, CI, DI, Ei, ll, [O, B2, C2. D2, E2,03, Z): - 
X Is (Cl - 82)/(Cl - 81 + C2 - 82), 
Y Is (E2 - Dl)/(E2 - D2 + El - DI), 
max(X, Y, Z), 

maxmfnset( U_, 
_, L, E1,03#EO, B2, 

_, _, _, _], 
O): - 

62 >a El, 

III -*a E2, 
1. 

maxmfnset(EI, Bl, 
_, -. _, 

D], [O, 
_, 

C2, 
_, _, 

01,1): - 
BI 3- C2, 
1. 

maxmfnset((1,81, _, _, 
EI, O], EO, B2, 

_, _, 
E2,11, X): - 

X is (El - B2)/(El - 81 + E2 - 82), 
1. 

maxminset([I, Bl, 
_, _, 

EI, O], EO, 82, C2, 
_, _, 

O], X): - 
X is (El - 82)/(El - 61 + C2 - 82), 
I. 

maxmfnset(EO, _, _, _, 
El, ll, [O, 

_, _, 
D2, 

_, 
01,1): - 

D2 )- El, 
1. 
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mxminset(Eo, al, 
-, -, 

'_, I], EO, 
-, _, _, 

E2,01,0): - 
81 - E2, 
I. - 

maxminset(EO, 81, 
_, _, 

El, ll, (O, 
_, _, 

D2, E2,01, X): - 
X Is (E2 - 81)/(E2 - D2 + El - 81), 
1. 

maxmfnset(EO, _, _, 
Dl, El, 01, [O, 62, C2, 

_, _, 
O], X): - 

C2 > DI. 

X is (El - B2)/(El - DI + C2 - 82), 
I. 

maxmfnset([O, _,, 
Cl, 

_, _, _3, 
[O, 

_, _, 
D2, 

_, 
01,1): - 

D2 >- Cl, 
1.1 

maxmfnset([0,81, Cl, 
_, 

El, O], EO, 
_, _, 

D2, E2,01, X): - 
E2 > 81, 
X is (E2 - Bl)/(E2 - D2 + Cl - 81), 
1. 

maxminset(SI, S2, X): - 
maxminset(S2, Sl, X). 

max(X, Y, X): - 
X 
1. 

max(X, Y, Y). 

mfn(X, Y, X): - 
X u< Y, 
1. 

mfn(X, Y, Y). 

/* for pretty printing sLop ctauses 

portray(I, X): - 
varM, 
1, 
fndent(l), 

writeM. 
portrayCl, (X: -true)): - 

1, 
frident(l), 

wrlteq(X), 
wrfte(I. 1), nL. 

portray(l, (X: - : Y)): - 

frident(l), 

writeq(X), 
write(O-)), 
portray(O. OM. 

wrfte('. '), nL. 
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portray(l, (X: - (<- Bundle))): - 
1, 
indent(j), 

writeq(X), 
write((: -)), n(, 
11 Is I+1, 

portray0l, (-c- Bundle)), 
write(O. 0), nt. 

portray(l, (X: -Y)): - 
11 
indent(f), 

writeq(x), 
write((: -)), n1, 
It is I+1, 

portray(11, Y), 

wrfteV. %nl. 

portray(l, ((X: -Y): Z)): - 
1, 
f rident(l), 
wrfteq(X), 
write((: -)), 
wrlteq(Y), 
write((: Z)), nt. 

portray(l, (X <-), Y)): - 
1, 
indent(l), 

writeq(X), 
write(* -%nt, 
11 is I+1, 

portray(11, Y), 

write(I. 1), nt. 
portray(i, (X <- Y)): - 

1, 
portray(I, X), nt, 
11 is I-1, 
frident(II), 

write((-c-)), nt, 
portray(I, Y). 

portray(1, C<- X))%- 
1, 
Indent(l), 

wrfte((, c-)), nl, 
11 is I+1, 

portray(11, X). 

portr&y(I, (X: Y)): - 
1, 

portray(I, X), 

writeV : 1), 

write(Y). 
portray(t, (: Y)): - 

1, 
indent(l), 

write(o : 9), 

write(Y). 
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portray(l, (X sup_or Y)): - 
1, 
Indent(l), 

write('('), nL, 
11 is I+1, 
portray(ll, X), nL, 
fndent(l), write(Isup_orl), nt, 
portray(ll, Y), nt, 
fndent(l), wrfte(')'). 

portray(l, (X ; Y)): - 
1, 
fndent(l), 

wrfte('('), nt, 
11 is I+1, 

portray(ll, X), nt, 
indent(l), wrfte('; '), nL, 
portrayCI1, Y), nt, 
fndent(l), write(*)'). 

portray(l, (X, Y)): - 

portray(I, X), 

wrfte(l, l), nL, 
portray(I, Y). 

portray([, X): - 
fndent(l), 

wrfteq(X). 

indent(O): - 
I. 

indent(l): - 
put(9), 
11 fs I-1, 
fndent(II). 

/* for ifsting out stop retations using portray. It atso checks that the rotation to be 
printed is not one of the ctauses defining the system. 

current_predicate(X, Y), 
not stop(Y), 
not X 

nt, 
ctause(Y, Z), 

portray(O, (Y: -Z)), 
faft. 

Wist): - 
ciause((x <-)- Y), true), 

nt, 
portray(O, (X -c-3- y)), 
WL. 
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stist( 0 ). 
st I st( EX L] 

stfstl(x). 
stfst( E-IYI ): - , 

stist(Y). 

sList(X): - 
M, 
sL f stl(X), 

$I ist(-) 

stfstl((<->)): - 
clause((X -c-), Y), true), 
nt, 
portray(O, (X c-> y)), 
fail. 

$tfst1(c<->)). 
stistl(x): - 

current_predicate(X, Y), 
not stopCY), 
nt, 
ctausocy, z), 
portrayCO, CY: -Z)), 
fail. 

stfstlcx): - 
cLause(Cxl -, Y), true), 
functor(XI, X, 

_), 
nt, 
portray(0, (XI <-> Y)), 
fail. 

stfstl(P/A): - 
functor(X, P, A), 
M, 

clause(X, Y), 

portray(O, (X: -Y)), 
fait. 

stfsti(P/A): - 
functor(X, P, A), 

ctause((X <- Y), true), ' 

nt, - 

portray(O, (X 4-> Y)), 
falL. 

:- cp(900, fx, (stist)). 
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/* this predicate is for clearing the database of ail Stop relations 

ctear_data: - 
current_predicate(X, Y), 

not Xa cutoff, 
not sLop(Y), 
functor(Y, P, A), 

abotish(P, A), 
faiL. 

cLear_data. 

/* this predicate is for clearing the database of Stop relations specified by their predicate 
(and arity). -It is necessary to cope with equivaLence relations. 

cLear_data(X): - 
current_predicate(X, Y), 

not sLop(Y), 
functor(Y, P, A), 

aboLish(P, A), 
fail. 

cLear_data(P/A): - 
functor(Y, P, A), 

not stop(Y), 
aboLish(P, A), 

retract((Y 
felt. 

ctear_data(-). 

/* MULTIPLICATION MODEL 

/* evaluates the support pair for the conjunction of two support pairs 

andcombfne((Snl, Spll, [Sn2, Sp2l, (Sn, Spl): - 
Sn Is Snl*Sn2, 
Sp is Sp1*Sp2. 

/* evaluates the support pair for the disjunction of two support pairs 

orcombfne([Sni. Spll, [Sn2, Sp2l, [Sn, Spl): - 
Sn is Sni + Sn2 - Snl*Sn2, 
Sp is SpI + Sp2 - Spl*Sp2. 

/* finds the conflict associated with two support pairs assumed to be supporting the same 
conctusion 

conftict((Snl, Spll, [Sn2, Sp2l, C): - 
C is Snl*0 - Sp2) + Sn2*(l - spl). 
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/* combines support pairs which aLt support the same conctusion caLls conftfct 

samecombine(Ell, l): - 
1. 

samecombine(EESnl, Spl]ISListl, (Sn, SP3). - 
samecombine(SLfst, ESn2, Sp2i), 
conftfct([Snl, Spl3, [Sn2, Sp2l, C), 
Sn is (Snl + Sn2 - Snl*Sn2 -C) c), 
Sp is Spl*Sp2 /0- C). 

/* combines the support pairs for a rute and the body of that rute 

condcombine(ESnc, Spcl, (Snl, Spll, [Sn, Spl): - 
Sn is Snc*Snl, 
SP Is 1-0- Spc)*Snl. 

condcombine(nocond, Supports, Supports). 

condcombfne(([Snl, Spl], ESn2, Sp2l), (Sns, Sps], [Sn, Spl): - 
probcombine([Sns. Spsl, [Snl, Spi], [Sn2, sp2i, (Sn, Spl). 

/* combines the support pairs for a pair of probabitistic rutes and their bodies 

probcombine([Sns, Spsl, [Snl, Spll, (Sn2, Sp2], ESn, Spi): - 
Sn is Snl*Sns + (I - Sps)*Sn2, 
Sp is 1-M- Sps)*(l - Sp2) +0- Spl)*Sns). 

1* ****************************************************************************************** 

: -LoadfiLes. 

/* "Loadf f tes" toads the necessary utf Lity and data f ites having checked whether or not they 
are already present. Called at the end of this file. 
ALWAYS SUCCEEDS 

LoadffLes: - 
retract((toadfites: -_)), 
(ctause(pre_process(_), 

_); 
reconsult(pre_process)), 

(cLause(more(_), 
_); 

reconsutt(system)), 
(ctause(sys(_/_), _); 

reconsutt(syspred)), 
(cLause(stop(_), 

_); 
reconsuit(stoppreds)), 

(ctause(nostore, 
_); 

reconsuLt(trans_decLs)). 
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/* ***** UTILITY FILE PRE_PROCESS ***** */ 

/* The syntax error checking ctauses for (re)consulting 

asserta(( 
expandý. term(( Head: -Body), _): - 
bad_coton(Body, OK, Op, NotOK), 
nt, write(I... SLOP syntax error ... 1), nL, 
write((Head: -OK)), nt, 
writeCl... here ... 1), nt, 
write(Op), write(NotOK), nt, 
I, fait 

/* turns on and off the name-ctash check procedures 
ALWAYS SUCCEEDS 

pre_process(on): - 
cLause(expario_term(_, _), 

(findhead(_, 
_), _)), 1. 

pre_process(X): - 
var(X), 
xa off, 
1. 

pre_process(on): - 
asserts(( 

expanq_term(X, X): - 
ffndhead(X, Xl), 
SLOP(M), 

not LastcLause(XI) 
abottsh(tastctause: 1), 
wrfte(Xl), putC9), 
write(IIS A SLOP SYSTEM PREDICATE'), 
nt, 
assert(tasteLause(Xl)), 
I, fafl. 

pre_process(off): - 
retracM 

expanq_term(X, X): -- 
findhead(X, XI), 
stop(xl), 

not lasteLause(Xl), 
aboLish(Lastetause, l), 
write(XI), put(9), 
wrfte(OIS A SLOP SYSTEM PREDICATE'), 
M, 
assert(tastctause(Xl)), 
1, fait 

I. 
pre_process(off). 
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/* finds the most generaL form of the head of a ctause 
ALWAYS SUCCEEDS 

findhead((X: -Y), Xl): - 
functor(X, P, A), 
functor(Xl, P, A), 
1. 

findhead(X, Xl): - 
functor(X, P, A), 
functor(Xl, P, A). 

/* ***** UTILITY FILE SYSTEM ***** */ 

VIM: - 

vi (-). 

ex(X): - 

exc_). 

catcx): - 

name(X, L), 
write('Editing Me - $), write(X), nL, 
system([118,105,321LI), 
write(freconsuLt Me 1), write(X), wrfte(I y/n? *), 
gets(Y), (Y x (I ,Ya E1211), 
reconsuLt(X), 
1. 

name(X, L), 
write('Editing Fite - 1), write(X), nL, 
system(ElOl, 120,321LI), 
write(freconsuLt fite 1), write(X), write(I y/n? '), 
gets(Y), (Y z (I ;Y 
reconsuLt(X), 
1.1 

name(X, L), 
write('Ffie - 1), write(X), nL, 
system([99,97,116,32ILi). 

more(X): - 

(ts): - 

ts(X): - 

x(X): - 

x(-). 

nameCX, L), 
write(fFfte - 0), wrfte(X), nL, 
system([109,111,114,101,321LI). 

systernC [108,1153 ). 

name(X, DL), 
system(EI08,115,32IDL3). 

nwie(X, L), 
system(L), 
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op(900, fx, vi). 
op(900, fx, ex). 
op(900, fx, x). 
op(900, fx, cat). 
op(900, fxmore). 

op(900, fx, ts). 

/* ***** DATA FILE SYSPRED ***** */ 

sys(abotish/2). sys(nofiteerrors/0). 
sys(abort/0). sys(nonvar/1). 
sys(arg/3). sys((nospy)/I). 
sys(assert/1). sys(number/1). 
sys(assert/2). sys(op/3). 
sys(asserta/1). sys(primitive/1). 
sys(asserta/2). sys(print/1). 
sys(assertz/1). sys(prompt/2). 
sys(assertz/2). sys(put/1). 
sys(atom/1). ,, sys(read/1). 
sys(atomic/1). sys(reconsutt/1). 
sys(bagof/3). sys(recorda/3). 
sys(break/0). sys(recorded/3). 
sys(catt/1). sys(recordz/3). 
sys(ctause/2)- sys(rename/2). 
sys(ctause/3). sys(repeat/0). 
sys(ctose/1). sys(retract/1). 
sys(coinpare/3). sys(save/1). 
sys(consutt/1). sys(see/1). 
sys(current_atom/1). sys(seeing/1). 
sys(current_functor/2). sys(seen/0). 
sys(current_predicate/2). sys(setof/3). 
sys(dbýjeference/l). sys(sh/0). 
sys(debug/0). sys(skip/1). 
sys(debugging/0). sys(sort/2). 
sys(display/1). SYSC(SPY)/l). 
sys(erase/1). sys(statistics/0). 
sys(erosed/1). sys(system/1). 
sysCexpario_exprs/2). sys(tab/1). 
sys(expario_term/2). sys(teLt/1). 
syscexfsts/i). sys(tetting/i). 
sys(fait/0). sys(toLd/0). 
sys(fiteerrors/0). sys(true/0). 
sys(functor/3). sys(var/1). 
sys(get/1). sys(write/1). 
sys(geto/1). sys(writeq/1). 
sys(hatt/0). sys(ILCI/0). 
sys(instance/2). sys(INOLCI/0). 
sys(integer/1). SYSCII/0). 
sys(Is/2). SYS((, \+, )/l). 
sys(keysort/2). sys(141/2). 
sys(teash/1). sys(la<1/2). 
sys(Listing/0). Sys('), 1/2). 
sys(tisting/l). - sys(I-1/2). 
sys(name/2). sys(lal/2). 
sysCnt/0). sys(lo.. 1/2). 
sys(nodebug/0). sys(Inal/2). 
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sys(lz\xl/2). /* The speciaL $Lop predicates 
sys(12<1/2). sys(pre_process/1). 
sys(12-1/2). sys(semantics/1). 
sys('S>1/2). sysc(stlSO/0). 
sys(12-1/2). SYSC(SUM/1). 
sys(III/2). sys(cLear - 

data/0). 
sys((': -')/2). sys(ctearý_data/l). 
sysV-->1/2). sys((vi)/l). 
Sys((,: -, )/I). sys((ex)/l). 
Sys((,? -, )/i). sys((cat)/l). 
sys(1; 1/2). sys((more)/l). 
sys('->1/2). sys((Ls)/I). 
sys(la; ul/2). sys((Is)/O). 
sys('\--1/2). sys((x)/I). 
sys(C'. ')/2). sys(sys/1). 

/* ***** DATA FILE SLOPPREDS ***** */ 

sLop(andcombine(_I, _2, _3)). stop0dentmem(_l, _2)). 
sLop(any_cuts(_I, _2)). sLop(frdentC_I)). 
sLop(any.. ýother_vars(_l, _2)). sLop(intersect(_J, _2, _3,4, _5)). 
stop(any_vars(_l)). sLOP(LastcLause(_I)). 
stop(bad_coLon(_l, _2, -3, -4)). stop(ts -1). 
sLop(bundLe_body(_l, _2, -3)). stop(Ls). 
stop(bundLe_sup(_l, _2, _3, _4, _S, _6)). stop(max(-I, -2, -3)). 
sLop(bundLe_support(_l, _2, -3, -4)). sLop(maxminset(_l, _2, _3)). 
stop(cat -1). sLop(min(_I, _2, _3)). 
stop(check_recorded_sotns(_l, _2, -3, _4)). stop(more _1). 
sLop(check_recorded_soLnsl(_I)). stop(negate(_I, _2)). 
stop(ctause_support(_I, _2, -3)). stop(noý_cuts(_J, _2, _3)). 
stop(clauseprint(_I)). SLOP(ný_sem-un). 
stop(ctear_data(_l)). sLop(no-trace). 
stop(cLear_data). stOP(optfon(_I, -2)). 
sLop(common-vars(_I. _2, 

j, 
_ý, _S, _ý)). sLop(orcombine(_I, _2,3)). - 

stop(cond_bundLe(_I, _2, 
j)). sLop(portray(_I, 

_2)). 
sLop(cono_query(_I, -2, -3)). sLop(pre_process(_l)). 
sLop(cond_sup(_I, _2)). sLop(printsotution(_I, 

_2, _3)). sLop(condcomblne(_J, _2, _3)). sLop(probccmbine(_l, 
_2, _3,4)). 

sLop(conftict(_I, 2, 
_3)). stop(record 

- soLns(_I, 
_2, _3, _4)). stop(confLict-Warning(_l, _2, _3, -4)). sLop(rem_excessý_terms(_i, 

_2, -3, -4, _5, _, 
6, 

_7, _B)). sLop(cutting_off(_I)). stop(remove(_l, 
_2, _3)). 

sLop(detracing). slop(samecomblne(_l, 
_2)). 

stop(disj_sup(_I, _2, _3, -4, -S, -6, _7, -8)). stop(semantics(_l)). 
sLop(disjunc-sup(_I, -2, -3, -4)). stop(semunify_orý_not(_1,2, 

_3, _ý, _5)). sLop(er-4_sklp(_I)). stop(sList(_I)). 
slopCequivý_support(_l, _2, _3))- stop(stist). 
stop(craseaLLC_I)). sLop(stistl(_l)). 
sLop(evat_support(_I, _2, _3, -4, _5)). sLop(sLop(_I)). 
stop(ex -1). stop(sLop). 
stop(excess_terms(-I, _2, 

ý3, 
_4. _5, _6, _7)). stop(stopcatt(_l)). 

slop(expancý_term(_I, _2)). sLop(sotution type(_l, 
_2)). sLop(findhead(-i, -2)). SLOP(SUP(-I, - stop(fuzzy(-I, -2f.. 

3#-0)- stop(supl(_I, _2, 
ý3, 

_4, _5)). stop(fuzzynot(_I, _2)). sLop(sup_not(_I)). 
stop(gets(_I)). slop(suppr(_l, _2)). sLop(ident_remove(_I, _2,.. 

3)). sLop(sup_skip). 
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stop(sup_yersion). I'' 

s top(support(_I, 
_2, -3)). 

sLop(sys(_l)). 

stop(sys-catt(_I)). 
stop(syspred(_I)). 
stopCtrace_sem_un(_I, _2, _3, -4, _5)). 
stop(tracegoat(_l)). 
sLop(traceprfnt(_l, _2, _3, -4)). 

/* variable warning bagof predicates 

stop(stop_bagof(_I, _2, -3)). 
stop(stop_bagof (_I, 

_2, -3, -4)). 
stop(straight_unify(_l)). 
stop(var_warning(_I, _2)). 
stop(dot-contains(_I, -2)). 
stop(dot-decide(_l, _2, _3, _4, 

'-5)). 

stop(dot-doesnt-inctude(_I, _2)). 
stop(dot-excess_vars(_I, _2, -3, -4)). 
stop(dot_fnctuded(_I, -2)). 
stop(dot_introduce(_I, _2, _3))., - 
sLop(dot_item(_I, -2, -3)). 

stop(tracing(_I, 
-2)). top(vi 

-1). 
top(wrfteans(_l, 

_2)). 
stop(x -1). 
: top((_I: 

_2)). top(: 
_l). 

stop(ýC-(-l)). 
stop(4-(X, Y)). 

stop(dol-no-oCcurrence(_I, 
_2)). 

siop(dot-nonempty(_l)). 
stop(doL_parade(_I, 

_2, -3, -4)). 
sLop(doL_pfck(_l, 

_2, _3)). 
sLop(dot_reap(_I, 

_2)). 
stop(dot_reapl(_l, 

_2, _3)). 
stop(doL_rem-excess-vars(_I, 

_2, -3, -4, _5)). 
sLop(dot_tag(_l, _2)). 
stop(doL-untag(_I, 

_2)). 
sLop(dot-uPto(_I, 

-2)). 

/* ***** UTILITY FILE TRANS-DECLS ***** */ 

/* Overtay of transtation dectarations to attow them to be ignored by Stop 

nostore. 

semantic-unificatfon. 

fuzzy_goaL(_, 
_). 

type(_, _). 

top_Levet(_). 

solutions( 
solutions(_, _, _). 

proLog(_). 
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Appendix Il ,- Translator - Program for translating Support Logic programs Into 
executable Prolog code 

Setting up operator precedences for 'coton', 'sup_notl, 'sup_orl, f<-' and '<->#, and 
for the comparator 

op(1150, xfx, (: )). 

op(1150, fx, (: )). 

op(900, fy, sup_not). 
op(1100, xfy, (sup_or)). 

op(1199, xfx, (<->)). 

:1 op(700, xfx, <=>). 

:- op(1175, xfy, (<-)). 

:1 opCll75, fy, C<-)). 

TOP LEVEL 

transtate(F) reads in a Stop program from the file F and translates It into optimised 
ProLog code with the support Logic evaluation built into the rules. This translation can 
be written to a file, printed to the screen or reconsuLted directly into the knowledge 
base. 

transL&te(File): - 
reset, 
readin(FiLe), 
where_to(SLopfite), 
create_soLn_sets, 
operators, 
trans_retations, 
reset, 
ffnfsh_teLIfng(StopffLe). 

transtate(-): - 
seen, 
fait. 

READING IN 

readInCF) reads in the file named F and stores the program in the knowledge base as a 
module - i. e. with all predicates given a new name made up of the file name and the 
original name. ALL directives In the file are called as usual. 

readfn(FfLe): - 
name(Fite, Fn), 

append( Fn, 11_11, F), 

assert(modname(F)), 
see(Ffte), 
read(X), 
assert(nextctause(X)), 
retract(nextcLause(Y)), 
storeý. clause(Y), 
retract(ffte_read), 
1, seen. 

Il -I 



store - ctause(T) takes as argument a term and processes it as follows: 
the end - of - 

file character causes a flag to be set in the knowledge base, 
directives are called causing responses as if they were being called in ordinary consult 
or reconsutt, except for 'lop", 
the directive ll: -op(X, Y, Z)ll is Intercepted and called via l1newop(X, Y, Z)l1 which makes a 
record of the operator declaration so that it can be put into to the file containing the 
translation, 
aLL other terms are taken to be clauses in a relation. If the clause belongs to a 
relation that has already been read In (i. e. a relation has been split up) a message Is 
output and the the goal fails. If not the clause is passed to "readreLation" which reads 
the remaining clauses in the relation. At this point the flag "current-retation" is 
stored in the knowledge base to be picked up by scrap_reLatfons, where necessary. The 
List of clauses thus returned Is stored with other information as a clause in the 
relation "relation". 

store_cLause(end_of-fiLe): - 
assert(fite-read), 
1. 

store_cLause((: - op(X, Y, Z) 
1, 
catt(newop(X, Y, Z)), 

read(C), 
assert(nextctause(C)). 

store_cLause((: - X)): - 

cat M), 
I, - 
read(C), 
assert(nextctause(C)). 

storq_clause(C: - _)): - dfsptay(? ), dfsptaynL, dispLaynt, 

read(C), 
assert(nextetause(C)).. 

store_ctause((? - op(X, Y, Z) 
1, 
caLL(newop(X, Y, Z)), 
disptayCyes), dispLaynt, dispLaynt, 
read(C), 
assert(nextclause(c)). 

storeý_cLause((? - X)): - 
caLL(X), 
dispLay(yes), dispLaynL, displaynt, 

read(C), 
assert(nextclause(C)). 

stora_cLause(0- -)): - 
disptay(no), dispLaynt, dispLaynt, 

read(C), 
assert(nextcLause(C)). 
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store_cLause(C): - 
heads(C, 

_, 
MgH, 

not retation((M9H, _, _j, _), 

assert(current_retation(MgH)), 
readretation(RC, Cut_tfst, MgH, C, J), - 
functor(MgH, P, A), 
newname(P, ModP), 
Al Is A+1, 
functor(ModH, ModP, Al), 
nt, 
assert(retation(tMgH, McdH, RC3. Cut_tfst)), 
retract(current-retation(MgH)). 

store_ctause(C): - 
heads(C, 

_, 
H, 

_, _), functor(H, P, A), 
dfspLay(lThe retation 1), 
dispLay(P/A), 
dispLay(I has been spHt up'), 
displaynt, 
dispLaynL, 
dfspLay('***** TRANSLATION ABORTED 
dispLaynt, fait. 

newop(X, Y, Z) performs the operator declaration op(X, Y, Z) required for program being 
translated and asserts this new operator declaration as a clause in the relation 
trans_current-op 

newop(X, Y, Z): - 
op(X, Y, Z), 
(retract(current-Op(_, Y, Z)); 
retract(trans-current-op(_, Y, Z))), 

assertCtrans-current-oP(X, Y, Z)), 
1. 

newop(X, Y, Z): - 
assert(trans-current-oP(X, Y, Z)), 
1. 

Checks that argument 3 Is the "most general head" of the clause in argument 1, which has 
head matching argument 2, body matching argument 4 and a print form matching argument 5. 

heads((X c-> B), X, MgH, B, (X -> 8)): - 
1, 
functor(X, P, A), 
functor(MgH, P, A). 

heads((X: -B), X, MgH, B, (X: -B)): - 
I 
functor(X, P, A), 
functor(MSH, P, A). 

heads(X, X, MgH, true, CX: -true)): - 
functor(X, P, A), 
functorCMgH, P, A). 
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reads in from a fite aLL cLauses that. have the same predicate and arity as the ctause Cl 
with umost generat head" MgH. The first argument is buitt up as a List of cLauses so 
read in, and the second argument is a List of n's (No cut) and cls (Cut) corresponding 
to each cLause in argument i. The Last argument is a count of which ctause in the 
reLation is currentLy being processed. Each cLause, as it is read in, is converted Into 
a moduLe form, for uniqueness, and stored In the knowtedge base. 

readreLat Ion( [Ca I CLausesl [Cut I Cuts] MgH, Cl, Nun): - 
heads(Cl, H, MgH, Body, C_prInt), 
1, 
portrayl(C_print), 
read(C2), 
prob_pair(Body, Cl, C2, Ca, C3, Num, Cut), 
Numl is Nun + 1, 
readretation(CLauses, Cuts, MgH, C3, Numl). 

readreLation(El, t], MgH, end_of_fiLe, Num): - 
1, 
Numl is Num 
test_reL_Length(MgH, NLxnl), 
assert(fiLe_read). 

readreLation((], [3, MgH, Next_cLause, Num): - -- 
Numl is Num , 1, 
test_reL_tength(MgH, Numl), 
assert(nextctause(Next_cLause)), 
1. 

processes the clause In argument 2 with body in argument 1. If the clause Is not to be 

stored the body of the clause Is checked for any cuts and argument 4 bound to ov, (cut) 

or 'In" (No cut) accordingly. Otherwise this is carried out white the clause is being 

stored. 

processing(B, _, _, 
Cut): - 

not-storing, 

cuts(B'Cut), 
c-or_n(Cut). 

processing(_, C, N, Cut): * 
modutarise(C, N, Cut). 
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Checks1f the next clause read (argument 3) is a probabilistic pair of the previous 
clause read in (argument 2, with body in argument 1). if it Is, argument 4 is bound to 
the short-hand representation, which is then stored in the knowledge base. Argument 5 is 
bound to a new clause read from the file. Argument 6 is bound to the flag c or n 
depending on whether the body of the probabilistic pair contains a cut. if the clauses 
do not form a probabilistic pair, then the clause in argument 2 is processed and the 
clause in argument 3 Is returned as the next clause (bound to argument 5). 

prob_paIr(_, (H: -BI), (H-- 82), (H: -B. -Sl, S2), NextcLause, Num, Cut): - 
no. _sup_pair(82, sumot 8, S2), 
no-Sup_pairCB1, B, S1), 
1, 
dIspLayV Second clause in Probabilistic pair ***'), dispLaynt, 
dispLayV WARNING - This second clause should ***f), displaynt, 
display(' not have an entry in the solutions ***1), dispLaynL, 
display(' declaration ***1), disptaynL, 
portrayl((H: - 82)), 
processing((B: SI, S2), (H: - 8: SI, S2), Num, Cut), 
read(Nextctause), 
1. 

prob_. pair(_, (H: - B2), (H: -81), (H: -B: Sl, S2), NexteLause, Nun, Cut): - 
no.. sup_. paIr(82, sup_. pot B, S2), 
nq-Sup_. pafr(81, B, S1), 
1, 
displayV Second clause in Probabilistic pair ***, ), disptaynL, 
display(' WARNING - This second clause should ***'), displaynt, 
display(' not have an entry in the solutions ***'), disptaynL, 
dispLay(I declaration ***'), dispLaynL, 
portrayl((H: - 81)), 
processfng((B: SI, S2), (H: - B: Sl, S2), Num, Cut), 
read(Nextctause), 
1. 

probý_pair(BodY, Cl. C2, Cl, C2, NLin, Cut): - 
processfng(Body, C1, Num, Cut). 

Tests that the length of a relation read In by "readretatfon" Is the same as the length 
defined by a "solutions" declaration for the relation. 

test_ret_tength(MgH, Numl): - 
roI, -tengthCMgH, 

Num2), 

test_ret_tengthl(MgH, Numl, Num2). 
test_ret_tength(_, _). 
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Tests that arguments 2 and 3 are equal. If they are not a message is printed and the 
goat faits. 

test_reL_tengthl(_, N, N): - 

test_ret-Lengthl(MgN, NI, N2): - 
functor(MgH, P, A), 
dispLaynL, dispLay('*** Discrepancy between number of clauses (1), 
disptay(NI), dispLay(l) in relation 1), 
disptay(P/A), dfsptaynt, 
dispLay(I and "solutions" declaration (0), 
dfspLay(N2), disptay(l). '), disptaynt, disptaynt, 
dispLay(f***** TRANSLATION ABORTED ***** 1), dfspLaynL, 
fail. 

checks for cuts in the body of a ctause given in argument 1. Returns "C" in argument 2 
if a cut is found, otherwise argument 2 remains unbound. 

cuts(l, c): - 

cuts((I, _), C): - 

cuts((GI, G2), Cut): - 

cuts(Gl, Cut), 
cuts(G2, Cut). 

cuts((Gl; G2), Cut): - 
1, 
cuts(GI, Cut), 
cuts(G2, Cut). 

cuts(-, -). - 

Used for binding the "cut present" argument to either "c" or 'In". If a cut was present 
then the argument wouLd aLready be bound to "clo, otherwise it becomes bound to "W'. 

c or n(n): - 

c-or-n(c). 
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MODULARISATION 

modutarise(X, N, C) succeeds If the cLause X, being the Nth cLause read in for the 
reLation, can be converted into a form that can be stored, and binds C to c or n, 
according to whether or not, respectiveLy, the cLause has a cut in it. Notice that atoms 
(terms with arity zero) do not have their names converted but are Left the same. This Is 
because, on the whote, most atoms are constants within the program and do not therefore 
need to be changed, as weLL as being undesirabLe If they are constants within some 
output. 

Equivatence retationshfp 

modutarise((X - Y), N, C): - 
convert(X, X1, N, 

_), 
convert(Y, Yl, 

_, 
C), 

assert((XI Yl)), 
(C an c; C n), 
1. 

RuLe or Supported fact 

modutarise((X :- Y), N, C): - 
convert(X, X1, N, 

_), 
convert(Y, Yl, 

_, 
C), -- 

ýassert((XI :- Yl)), 
(C xx c; Cx n), 
1. 

Fuzzy definition 

moduLarise(fuzzy(A, B, C), 
_, n): - 

assert(fuzzy(A, B, C)), 

Unsupported fact 

moduL a rf se(X, N, n): - 
convert(X, Xl, N, 

_), - 
assert(Xl),, 

convert(X, Y, A, C) converts the goat X into the goat Y by changing the predicate name to 
include that of the file name for uniqueness, and by putting In the extra first 

rgument, A, i. e. increasing the arity by 1. When convert Is called, if X is the head of 
clause, then A will be the number of the clause in the relation, otherwise A wilt be 

an anonymous variable. C Is bound to c if the goat X is, or contains, a cut. 

Argument I Variabte 

convert(X, X, 
_, _): - 

var(X), 
1. 
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Argument Iz Support Pair 

convert( [St, Sul, (St, Sul, 
_, _): - 

number(SO, 
number(Su), 

Argument I Cut 

convert(1,1, _, c): - 
1 . 

Argument I Atom or number 

convert(X, X, 
_, _): - 

atomic(X), 
1 . 

The following three clauses for convert deal with those system predicates that access 
the name of a predicate that will have been changed by the goal convert. 

Argument I- 11-.. (X, Y)11 

convertC'u.. '(X, Y), I^z.. '(XI, Yl, M), 
_, _): - 

modname(M), 
convertCX, Xl, 

_, _), 
convertCY, Yl, 

_, _). 
Argument I- "functor(X, Y, 2)11 

convert(functor(X, Y, 
_Z), 

I^functor'(XI, Yl, Zl, M), 
_, _): - 

modname(M), 
convert(X, Xl, 

_, _), 
convert(Y, Y1, 

_, _). 
Argument 1 'a 11aboHsh(X, Y)11 

convert(abolfsh(X, Y), I^abolish'(X, Y, M), 
_, _): - 

modname(M). 
convert goals with supports accessed by user 

convert (Goa L4S, (X, dummy.. ýsupport(S)), _, 
C): - 

convert(Goat,, X, 
_, 

C). 
convert(support(GoaL, $), CX, dunvvy_supportCS)), 

_, 
C): - 

convert(Goat, X, 
_, 

C). 
issue a warning message if "not" is used 

converMnot 
display('*** WARWING - the translator can not ***'), disptaynt, 
display('*** currently handle the use of "nov ***%d1spLaynt, 
dfspLay('*** as a support logic negation because ***'), dispLaynL, 
dfspL&y('*** of the confusion that arises with ***1), dfspLaynL, 
display('*** the ProLog negation. This occurrence ***1), d1spLaynL, 
dfsptayCl*** of "not" should be changed to , sup-pot,, ***%dispLaynt, 
dfsptayCl*** unless It is within the scope of the ***'), dfsplaynt, 
dispLayC'*** call predicate. ***1), dfspLaynt, 
fail. 
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do not convert operators 

convert(X, Xl, 
_, 

C): - 
X z.. [NamelRest], 
current-oP(_, Optype, Name), 
functor(X, 

_, 
No), 

(No a l. mem(Optype, Efxfy, xf, yfl); 
No a 2, mem(optype, rxfx, xfy, yfx])), 

each(Rest, L, C), 
Xl a.. (NamelLI. 

do not convert system predicates 

convert(X, Xl, 
_, _): - 

X u.. (NamelRest3, 
functor(X, 

_, 
No), 

sys(Name/No), 
syseach(Name/No, Rest, LI), 
X1 a.. ENamejL11. 

convert the rest 

convert(X, X1, N, 
_): - 

X a.. [NamelRest], 
newname(Name, Newname), 
each(Rest, L, 

_), X1 a.. [Newname, MILI. 

each(X, Y, C) converts each element of the List X to produce the list Y, flagging the 
presence of any cuts by binding C, to c 

each(EI. El. 
-). 

each(EHITI, EHIIRI, C): - 
convert(H, Hl, 

_, 
C), 

each(T, R, C). 

syseach(S, X, Y) converts the List of arguments X, of system predicate S to the list Y, 
unless S is 'lop/311 

syseach(op/3, [A, B, C], EA, B. Cl). 

syseach(_, L, Ll): -' 
eachCL, Ll, 

_). 

newname(X, Y) is true Iff X1 is the moclute name for the predicate X, created by adding 
the filename (heLd in the ciause "modname(L)") to the front of the predicate name 

newname(X, Xi): - 
modname(LI), 
name(X, L2), 

apperid(LI, L2, L), 

name(Xl, L). 
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OUTPUT REDIRECTION 

Prompts the user as to where the translated program should be output - screen, a file or 
reconsulted directly into the knowledge base. Called by the top Level goat 11transtate" 

where_to(Stopffie): - 
repeat, 
dfsptay(lenter fitename for translation -%dispLaynt, 
disptay('("screen" to send output to terminaLI), dispLaynt, 
display(' "user" to assert translation in knowledge base) 1), 

read(Stopffie), 
output(Stopfite), 

I Sets up the output stream to which the translated program should be directed. The way In 

which the translation is directly reconsutted is by writing the translation to a file 

called "transtated_f I tell and then reconsuLtfng this at the end of the translation 

output(user): - 
1, 
teLt(transtated_ffLe). 

output(screen): - 
nt, 
1. , 

output(X): - 
existsCx), dispLaynt, 
display('*** File already exists ***'), dfspLaynL, dispLaynt, 

fait. 

output(X): - 
teli(X). 

Closes the file to which the translation was being written, unless it was being written 
to screen. If the argument is "user" then the file to which the translation was being 

written is transtated_fite and this file is reconsutted and then deleted. 

ffnfsh_telling(user): - 
told, 
reconsuttCtrangLated - 

file), 

systemC"rm transLatecLULe"), 
1. 

f1n1sh_teMngCscreen): - 
1. 

f1nish-teLL1ngC-): - 
told. 
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RELATION SOLUTION SETS 

CalLed by the top LeveL goaL transLate, this goaL creates soLutfon sets for att 
reLations in the program being transLated 

create_soLn_sets: - 
reLation(EH, ModH, 

_], _), 
not, functor(H, fuzzy, 3). 

ModH u.. EMod_P, 
_IArgs], 

functor(H, P, A), 
display(P/A), dfspLaynL, 

not not-caLLed(P/A), 
reLn_sotn_setof(Args, ModH, Ss), 
dfsptay(I '), dfsplayCSs), dlspLaynL, 

assert(soLn_set(ModH, Ss)), 
fuzzfes(P/A, Ss), 
falL. 

create_sotn_sets: - 
dfsptaynL. 

A customised version of setof for finding the solution sets to goals. The first clause 
deals with the zero-arity predicates. The second clause checks to see if the solutions 
have been stored in the clause I'soLn 

- 
set" via a user declaration using "SolutionO. 

Clauses 2 and 3 are similar to those of a conventional setof. The usev produced by this 

goal is based on whether or not terms are the same according to 11<z>64. 

retn_soLn_setof(E], P, EEII): - 
(retract(soLrj_set(P, 

_)): 
true), 

retn_soLrý_setofC_, P, Set):, 

retract(soLn_set(P, Set)), 

1. - 
retn_soLn_setof(X*P, _): 

- - 
recorda(ldoL_rein - 

bagl, ldot_retn_bagl, 
_), 

P -.. [Pred, C_Nol_],. 

caLt(P), 
reLn_soLn_tag(X), 
faiL. 

rel%soL%s*tofC-#-, Set):, 

reL%soL%reap( (I Set). 

I-ýTI 
Rercords Value, provided it does not match, according to a term that has already 
been recorded. 

ret%sotn_tag(Vatue): - 
recordedVdol_reln_bagf, Y, 

_), 
retn_sotn_tagI(VaLue, Y), 
1. 
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Succeeds if the term Y is the terminating Rag I'dol_retn 
- 
bag" (in which case the term X 

is recorded in the knowtedge base), or if terms X and Y match according to 11<2>11. 

reLn_sotn_taglCX, Y): - 
Y IdoL-reLn_bag', 
1, 
recorda(ldoL-reLn_bag,, X, 

_). 
retn_soLn_tagl(X, Y): - 

X cx> Y, 

Cottects together aLL terms stored under the key "dot_retn_bag" and adds them to those 
in the List L to produce the list Ll. 

retn_soLn_reap(L, Ll): - 
doL-untag(ldoL_retn-bag', X), 
1, 
reLn_soLn_reapl(X, L, Ll). 

retn_sotn_reapl(X, L, Ll) adds the term X into the t1st L and caLts reLn_soLn_reap untess 
X is the term "dot_retn_bag", in which case it binds the terms L and I. I. 

reLn_soLn_reapl(ldoL_reLn_bag,, L, L): - 
1. 

retn_soLn_reapl(X, L, Ll): - 
loý 

retn_soLn_reap([XILI, Ll). 

Called by create_sotn_sets, fuzzies(P/A, Ss) establishes whether any of the solutions, to 
the relation specified by predicate P and arity A, in the List Ss have any elements that 
are fuzzy terms. These can have been explicitly declared by the user using the 
declaration fuzzy_goat/2, or, If the declaration "semantfc-unificatfon" has been made, 
can be searched for by considering the fuzzy term definitions fuzzy/3. When a fuzzy term 
is detected, the clause fuzziness(P/A-M) is asserted in the knowledge base, where N is 
the argument that is fuzzy. Unless there Is a fuzzy_goat declaration, every solution 
set is processed. Given the right arguments, ALWAYS SUCCEEDS 

fuzzies(-, E]). ** 
1. 

fuzzies(P/A, _): - 
user_fuzziness(P/A-M), 
(N =4 A, assert(fuzzfness(P/A-N)): 
dispLay('*** WARNING - out of range for fuzzy_goaL decLaratfons), 

dispLaynL, 
dispLay(largument %dispLay(N), dIspLayV for predicate 1), 

dfsptay(P/A), 
display(' - declaration ignored'), displaynt, faIL), 

1. 
fuzzies(-, 

-): - 
not semantfe-unificatfon_on, 
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fuzzfes(P/A, [SllSsi): 
fuzzy.., args(P, 1, Sl, 

_, 
FN), 

(fuzzfness(P/A-FNI), doubte_fuz(P, FN1, FN); 

assertCfuzzfness(P/A-FN))), 
1, 

fuzzies(P/A, Ss). 

fuzzfes(P/A, E_lSs3): - 
fuzzfes(P/A, Ss). 

fuzzy_args(P, N, EBIIBsl, FN, FNI) looks for fuzzy argumentys in the list 18118s], being the 
arguments to the predicate P from N onwards. FN is bound to the number of an argument 
that has already been found to be a fuzzy term. This is initially Cf. e. at the highest 
call of fuzzy_args) a variable. Succeeds if any of the terms in the List E8119s] are 
fuzzy, otherwise fails. 

fuzzy_args(P, N, (BllBsl, FN, FNI): - 
fuzzy-arg(P-N, 81), 

doubLejuz(P, FN, N), 
N1 is N+1, 
fuzzy_args(P, NI, Bs, FN, FN1). 

fuzzy_args(P, N, E_18s], FN, FNI): - 
N1 is N+1, 
fuzzy-args(P, NI, BS, FN, FNI). 

fuzzy-args(_, 
_, 

[], FN, 
_): - 

var(FN), 
I, fafl. 

fuzzy_argsC-, 
_, 

E], FN, FN). 

fuzzy-arg(P-A, X) succeeds if term X, being argument A of predicate P, Is a fuzzy term, 
otherwise fafts. 

fuzzy_arg(_, X):, 

var(X), 
I, fafL. 

fuzzy_arg(_, X): - 
atomic(X), 
1, 
fuzzy(_, X, 

_, _). 
fuzzy_arg(P-A, EHITI): - 

not fuzzyarg(P-A, H), 

1, 

fuzzy_arg(P-A, T). 

fuzzy_ýarg(P-A, (-jTD: - 
fuzzy_, arg(P-A, T), 

1, 

doubLe 
- 

fuz(P-arg-A, a, b). 

fuzzy_arg(P-A, X): - 
x a.. UArgs], 

fuzzy-arg(P-A, Args). 
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finds the fuzzy set associated with the term X of cLass C 

fuzzy(C, X, Y, 
_): - 

fuzzy(C, X, Y). 
fuzzy(C, not X, Y, 

_): " 
fuzzy(C, X, Yl), 
fuzzynot(YI, Y). 

finds the negation of a fuzzy set 

fuzzynot(EX, A, B, C, D, Y3, EXI. A, B, C, D, Yll): - 
X1 is 1-X, 
Yl is I-Y. 

For printing error messages if a goat has two fuzzy terms, doubLe-fuz(GoaL, Na, Nb) tests 
if Na and Nb can be unified, and prints a message if not. The second cLause deats with 
the situation when two fuzzy terms have been used in a singLe term and therefore within 
one argument. ALways succeeds. 

doubLe_fuz(_, N, N): - 

, 
1. 

doubLe_fuz(P-arg-N, 
_, _): - 

10 
dfspLaynL, dispiay('*** WARNING - two fuzzy terms in argument 1), 
dispLay(N), dfspL&y(I of 0), dfspLay(P), 
clfspLaynL, dfspLay(lOnLy the first witt be taken as fuzzy. 1), nL. 

doubLe_fuz(GoaL, Na, Nb): - 
disptaynt, displayC'*** WARNING - two fuzzy terms In one goat; '), 
disptaynt, dispLayC'arguments 1), 
dfspLay(Na), dfspLayC# and 8), dispLay(Mb), 
dfspLay(l of 1), dfspLay(Goat), 
clfspLaynL, dfspLay(lOnty the first OLL be taken as fuzzy. '), 
dJsptaynL, dfspLaynt. 

DEFINITIONS TO ALLOW SOLUTION EVALUATION 

*1 

#^u.. o(X, Y, Z) is the, modular form of the system predicate "a.. " and allows the predicate 
of the goaf being built to be converted to Its modular form with the fRename 
Incorporated Into its name 

nonvar(X), 
1, 

- 
X M.. Y, 

X (y], 
1. 
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'^=.. '(X, EHITI, L2): - 
name(H, Ll), 

apperd(L2, _, 
Ll), NaN 

apperd(L2, Ll, L), name(N. L) 

1, 

X a.. ENITIt 
I. 

$A functor'(X, Y, Z) Is the moclutar form of the system predicate "functor" and attows the 
predicate of the goat being anaLysed to be accessed In its mocluLar form with the 
fitename incorporated into its name 

I^functor'(X, Y, Z, 
_): - 

nonvar(X), 
1, 
functor(X, Y, Z), 
1. 

'A functor'(X, Y, O, 
_): - 

Iv 
functor(X, Y, O), 
1. 

O^functor'(X, Y, Z, L2): - 
name(Y, Ll), 

append(L2, _, 
Ll), Na 

_H 

append(L2, LI, L), name(N, L) 

1, 
functor(X, N, Z), 
1. 

lAaboLish'(X, Y, Z) Is the modutar form of the system predicate "aboLish" and ensures that 
the predicate being abotished has been converted to Its moduLar form with the fflename 
incorporated into its name 

I^aboLish'CX, O, 
_): - 

1, 

aboLlshCX, O), 

1. 

*Aabol. Ishl(X, Y, L2): - 
name(X, LI), 

append(L2, _, 
Ll), Na 

_H 

append(L2, Ll, L), name(N, L) 

abotish(N, Y), 
1. 
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Used when evaluating solutions to clauses in which an intermediate subgoat support Is 
required. H: - GI, G2^Sl, G3 : S2 is converted to ModH: -Gl, G2, dummy_support(Sl), G3 : S2 when 
It Is read In and stored in the knowledge base. 

dummy_suppo rt(E1,11 

The 'colon', Isup_not' and Isup_ort operators are here given definitions so that support 
logic programs can be called as protog programs and still succeed. 

CaLM). 
: (X). 

sup_not(X): - 
caLt(X). 

sup_or(X, Y): - 
caL«X), 
catt(Y). 

sup_or(X, _): - 

ca(L(X). 

sup_ýor(_, Y): - 

catt(Y). 

OPERATORS IN TRANSLATION 

writes-to the output device any operator declarations that are made In the file that is 
being translated. These are recovered from the retation "trans-current_op" stored as the 
file is read in. 

operators: - 
M, 

trans-current-op(X, Y, Z), 

writeC(: - op(X, Y. Z))), 

write(I. 1), nt. 
fait. 

operators: - 
M. 
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TRANSLATION 

Essentiatty the core of the translation itself. This predicate evaluates the solutions 
(IIcLause_soLns") for each clause of. each retation read in from the file, establishes 
what predicate type each retation is ("trans Lat i on_types"), reorders the clauses in the 

relation to optimise the order for breadth searching ("order-CLauses"), and then 
translates it accordingly ("trans-reLation"). 
The second clause deals with any relations that have been declared to be proLog goats, 
that is they are not for evaluating supports but are to carry out some procedural 
function using the depth search of ProLog. These goats wilt have been called using the 

system predicate catL. 
The third clause deals with any fuzzy term definitions by simply writing them to the 

output device. 

trans-reLations: - 
relationCIH, ModH, Cs1, Cut_tIst), 

not functor(H, fuzzy, 3), 

not proLog_goai(H), 
cLause-solns(H, ModH, Ss), 

transLation_types(Cs, Cut_tfst, Ss, Ts), 

order_cLauses(Ts, TSI, Cs, Ordered-Cs), 
bagmsrý_reset, 
trans-reLation(H, Ordered_Cs, Tsl, non_fuzzy), nL, 
fail. 

trans-retations: - 
protog_goat(H), 
retation(jH, _, 

Cs3, 
_), 

M, 

write_clauses(Cs), 
fail. 

trans-retations: - 
reLation(Efuzzy(_, _, _), _, 

Fs3, 
_), 

11 1 
nt, 
wrfte_ctauses(Fs). 

trans_reLations. 

Resets the argument of bagnum to be 1. This argument Is used to generate new and unique 

names for clauses that are to be translated using dot-bagof. See bag_name. 

bagrxsR_reset: - 
aboLish(bagnum, l), 

assert(bagnum(l)), 
1. 
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CLAUSE SOLUTION SETS 

ctause-SoLns(H, ModH, S) finds the list S of lists of all the different solutions to each 
clause of the predicate H, currently stored as the predicate ModH. The sub-lists take 
the form EM, SI, SZ,..., Sn] where N is the number of the clause and SI to Sn are the 
solutions. Each of these Lists is pretty printed to the standard output and stored in 
the knowledge base, as it is found. The second clause then collects these up into the 
List S. 

ctause_soLns(H, ModH, 
_): - 

functor(H, P, A), 
ModH a.. L, NlArgs3, 

ctouse_sotn_setof(N, ENIArgs], ModH, Bag), ' 

assert(clause_sotn(CH, NIBagl)), 
dispLay(P/A), dispLay(I 1), 
dispLay(cLause-N), dispLaynL, 
dispLay(Bag), 

check_empty(Bag), 
dispLaynt, 
fail. 

cLause_soins(H, _, 
(H, Xl): - 

dispLaynL, 

get_soLns(H, X), 

A customised version of setof for finding the soLution sets to fndfvfduat ctauses. The 
definition Is sfmiLar to that of a conventional, setof but soLutfons to cLauses are found 

using "sotvell rather than caLL. The "set" produced by this goat is based on whether or 

not terms are the same according to 14-11. 'Ictause_soLn-setof" is resatisffabte based on 

argument I of the goat under investigation which Is used to identify the cLause numbers. 
The first two cLauses deaL "cificaLty with zero-arity predicates. 

etause_soLn_setof(C_No, [C_Nol, GoaL. Set): - 

soLs(Goat, Set). 

cLauseý_sotn_setof(t; _No, 
[C; 

_Nol, 
Mod_H, 

_): - 
not sots(Mod-H, _), 
ruv! _reset(l), 
abotfsh(doL_bagof_cLause, l), 

recorda(ldot_ctause_bagl, ldot_ctause_bagf, 
_), 

retation(EH, Mod_H, Csl, 
_), 

mem(_, Cs), 
newnum(C_No), 
clause-soLn_tag((C_Nol, C_No), 
falL. 

ciause_sotrý_setofCC_No, (Cý_No, FfrstiRest], H, 
_): - 

abotishCdoL_bagof_ctause, i), 

recorda(ldoL_ctause_bagl, ldoL_ctause_bagi, 
_), 

solveCH), 
etause-soLn_tagCECý. No, FfrstIRest], Cý_No), 
falL. 

ctause_sotn_setofCC_No, _, _, 
Set): - 

cLause_sotn_reapCl1. Sots), 
mjM_resetC2), 
1, 
ctause_sotn_pickCl, C_No, Set, Sots). 
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Like "reLn 
- 

sotn_tag", rercords Value, provided it does not match, according to If<=>", a 
term that has already been recorded. If Value will match according to 11<2>11, or wilt 
unify, with another solution already recorded then the clause number, C_No, is stored In 

a clause "dot-bagof-clausell marking the fact that this clause wilt have to be translated 
using a bagof form. 

ciause_sotn_tag(VaLue, C-No): - 
recorded(ldoL_cLause_bag', Y, 

_), 
cLause_soLn_tag1(VaLue, Y, C-No), 

ctause_sotn tag(X, Y, C-No) records X under the key doL_cLause_bag if Y is identical to 
doL_cLause_bag and the goal succeeds. If X matches Y (<->), or X will unify with Y, then 
the clause number C-No is stored as argument to dot 

- 
bagof 

- 
clause. The goal succeeds If X 

and Y match, but fails if X and Y wilt not match but wilt unify, otherwise the goal 
faits. 

cLause_sotn_tagl(X, Y, 
_): - 

Y as Idot_cLause_bag', 
1, 

recorda(ldoL_cLause_bag', X, 
_). 

clause_sotn_tagl(X, Y, C_No): - 
X <=> Y, 
1, 
(dot-bagof-ctause(Cý_No); assert(dot_bagof-ctause(Cý_No))). 

ctause_sotn_tagl(X, Y, C_No): - 
witt_unify(X, Y), 
(dot-bagof_ctouse(Cý_No); assert(dot_bagof_ctouse(C_No))), 
I, fait. 

Collects together all terms stored under the key 11dot_ctause-bag" and adds them to those 
in the list L to produce the list L1. 

ctause_sotný_reap(L, LI): - 
doL_untag(ldot_ctause_bag', X), 

clause_sotn_reapl(X, L. Ll). 

ciause-SoLn_reapl(X, L, Ll) adds the term X into the list L and calls ctause_sotn_reap 
unless X fs-the term "doL_retn_bag", in which case it binds the terms L and U. 

etause_sotn_reaplCldot_cLause_bag', L, L): - 
1. 

cLause_sotný_reapI(X, L, LI): - 

cLause_sotn_reap(EXILI, Ll). 
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Picks out sets of solutions for each clause on backtracking. N is bound to the clause 
solutions currently being sought. C No is bound to that number when some solutions are 
found. Set is bound to that set of 

; 
oLutions. Argument 4 is the List of solution sets 

picked up by ', clause - 
coin 

- setof". 
Clause I deals with those clauses for which the the same solution was generated more 
than once and the flag -s is tacked on to the clause number. 
Clause 2 deals with those for which this was not the case. 
Clause 3 deals with clauses for which there were no solutions. 
Clause 4 increments the clause count and looks for the solution set of the next clause. 

cLause_soLnLpick(N, C_No, Set, EENJAIlSoLsl): - 
retract(doL_bagof_ctause(N)), 
1. 

cLausiý_soLnL_pfckl(N, Setl, SoLs, Rest), 

ctause_sotn_pick2(N-S, C_No, (AlSetl], Set, Rest). 

cLause-soLn_pick(N, C-No, Set, (ENIAllSoLsl): - 
1, 

cLause_soLnLpfckl(N, Setl, SoLs, Rest), 
1, 

ctause_soLnL. pick2CN, C_No, EAlSetl], Set, Rest). 

cLause_soLn_pick(N, N, 13 , 1-1-1 ). 

cLause-SoLn_pick(_, C_No, Set, [HlSotsl): - 
newnum(N), 
1, 

cLause_soLn_pfck(N, C-No, Set, EHISoLs]). 

clause - sotn_pickl(W, Set, Sots, Rest) binds Set to a list containing the tails of all the 
elements in Sots for which the heads are N. Rest Is bound to a list containing the 
remaining elements of Sots. 

ctause_sotnL. pickl(N, CAIRII. EENIAIIR2], Rest): - 

ctauseý_sotn_picki(N, R1, R2, Rest). 
cLause-Sotn_pickl(N, (], Rest, Rest). 

Atways succeeds once by binding arg 1 to arg 2 and arg 3 to arg 4. Backtracking 
increments the ctause counter to attow search for sotutions to remaining sotutfons. 

ctause-sotn_pfck2(N, N, Set, Set, 
_). 

ctausok_sotnL. pfck2(-, C_No, 
_, 

Set, Rest): - 
newnum(N), 
1, 

clause_sotn_pfck(N, C_No, Set, Rest). 
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P Finds all the possible solutions to a goat, one at a time on bactracking, Irrespective 
of any cuts that may be in any of the clauses. 
Clause I makes use of "sots" stored by a "solutions" declaration if possible. 
Clause 2 causes the goat to fall if it Is not possible to find the solutions from the 
relevant "sots" clause. 
clause 3 finds the solutions by using the solutions to the goals in the body. 

soLve(GoaL): -- 
sots(GoaL, SoLS), 
Goat -.. (_, 

_ISoL]. 
mem(Sot, SoLs). 

soLve(Goat); - 
soLs(Goat. _), 1, faIL. 

sotveCGoaL): - 
ctause(Goat, Body), 
soLveý_body(gody). 

sotve_body acts as a form of interpreter by finding the solutions from a clause body. 
The solutions and associated variable bindings are found for each goal in the body, by 
Looking at the solutions stored in "sotn_set" created by a "solutions" declaration or by 
"create_sotn_sets". Cuts are ignored so that all. possible solutions are found, however 
other system predicates are evaluated using "call". 

soLve_body((: _)): - 
1. 

solve_body((X: -)): - 
sotveý_body(X). 

soLve_body(M-)): - 
I'fait. 

sotve_body(C<- X)): - 

sotve_bodyCX). 
soLve-body(CX <- y)): - 

sotveý. bodyCX), 
solve_bodyCY). 

soLve_body((X, Y)): - 
sotyeý. bodyCX), 
sotve. _bodyCY). 

soLveý_bo, dy(CX, Y)): - 
l, faiL. 

soLve-body(suP-not x): - 
solve_body(X). 

soLve_body(sup_pot X): - 
I, fafl. 

sotve_body((X sup_or Y)): - 
sotva-body(X), 
soLveý_body(Y). 

soLve_body((X sup_or Y)): - 
I'falL. 

soLveý. body(dumrry_support( 0,11 
1. 

sotve_body(l): - 
I. 
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sotve_body(X): - 
syspred(X), 
calt(X). 

sotv4ý_body(X): - 
X a.. [-, 

-IS] fird_sotn(X, S;. 

Evatuates sotutions to goats one by one from "sotn_set" 

ffnd_sotn(X, S): - 
sotn_set(X, Ss), 

mem(S, Ss). 

Prints a message if its ar gument is the empty list, otherwise does nothing. ALways 
succeeds. 

check_empty(El): - 

.I 
dfsptaY(I M. S. EMPTY SOLUTION SET - THIS CLAUSE WILL BE OMITTED FROM'), 
disptay(f THE TRANSLATION'). 

check_empty(_). 

BuiLds up a list of all the clause solution lists, currently stored as clauses of the 
relation uctause_sotn", asserted by "cLause_soLns, 4 

get-soLns(H, EXIZI): - 
retractCcLause_sotn([HjXD), 
1, 

get-sotns(H, Z). 

get-soLns(_, E]). 

TRANSLATION TYPES 

transtatfon 
- 

types(Cs, Cuts, (H, Ll, [H, Ts]) estabLishes the cLause SoLution numbers, 
identifying the transtation types, for the list of cLauses, Cs and puts them in the List 
Ts. Cuts is the cut List for the List of cLauses, L is the List of soLutfon sets for the 
cLauses. and N is the most generaL head of the ctauses. 

transtatforl_types(CS, Cuts, EH, L1, EH, Tsl): - 
maiL. reset(l), 
abotish(cut, O), 
abotfsh(overtap, l), 

sots_type(Cuts, Cs, L, (1, V, Ts), 
1. 
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/* -sot s-type(Cuts, Cs, L, Prev_Ss, Mums, Ts) compares the solution sets (elements of L) of each 
clause in Cs (with corresponding cut flag in Cuts) with previously considered solution 

sets (elements of Prev 
- 

Ss) which are identified by the elements of Mums. The list Ts is 

produced and this Identifies any overlaps between solution sets of clauses: e. g. 1-2 

wans, solution sets for clauses 1 and 2 overlap. The suffix -s means that one of the 
relevant clauses produces duplicate solutions. The suffix -c means that the clause has a 
cut in ft. 

so I s-type( D, El , El 
sot s-type( EC I Cuts], I_ I Csl I 1_-s I S11 I Ssl Prev_Ss, Nums, ET-s I TO 

comp(C, S1, Prev_Ss, NUMS, Newnums, O, T, New_prev-Ss), 
sots_type(Cuts, Cs, Ss, New_prev-SS, Newnums, Ts). 

sols-type(ECICuts3, (_ICs3ott_lSlllSsl, Prev_Ss, Nuns, (TlTsl): - 
comp(C, S1, Prev-Ss, Nums, Newnums, O, T, New_prev-Ss), 
so Ls-type(Cuts, Cs, Ss, New_prev-Ss, Newmins, Ts). 

comp(CF, S, Prev-Ss, Nums, Newnums, N, Type, SO compares the solution set (S), of a clause, 

with each element of the list of solution sets (Prey 
- 

Ss), being the solution sets found 
for previously investigated clauses of the same relation. Nums is a List of identifiers 

each corresponding to a solution set in the Prev-Ss. N is an identifier of the solution 
set or sets with which S has already been found to coincide (same or overlap). Aile S 
has not been found to match any solution sets, this value will be 0 (zero). Newnums, 
Type and Ss are all unbound at the outset and are bound as follows when the goal Is 

satisfied: 1. d, 
Ss is the new List of solution sets formed by combining S with Prev-Ss, 

-Newnums is the corresponding List of solution set identifiers, and 
Type is the type Identifier for the solution set S with notation 

if it ends In u-c" then the clause has a cut in it, 

if it is of the form On-mll then the solution set overlaps with solution sets n and m, 
if it Is just a number then it is either the first occurrence of a new solution set 

which has no overlaps with previous ones or it Is exactly the "same" as a previous one. 
losamess is defined as having exactly the same number of elements matching according to 

coM(_, (], Ss, Ns, Ns, 
_,?, 

Ss): - 
1. 

comp(c, _. 
E], [1, E3, O, N-c, E3): - 

newnum(N), 
(cut; assert(cut)), - 

newnum(N), 
assert(overtap(M-Ni)), 
(cut; assert(cut)), 

corrp(_, S, El 0, ENI O, N, ESI 
newrKim(N), 
I. - 

cceip(_, S, El , El , ENI Nl, N-Nl, ESI 

newrun(N), 
assert(overtap(N-Nl)), 
1. 
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comp(CUT_FLAG, Sl, [SalSsl, [NaINsl, [NalNew_Nsl, N, NC, ESaiNew_prev-Sotsl): - 
List_conq)are(SI, Sa, same, Conip, Na, N, Nb, t]), 
(Cwp ma diff; Conip an overLap), 

comp(CLJT_FLAG, S1, Ss, Ns, New 
- 

Ns, Nb, Nc, New_prev-SoLs). 

comp(n, _Sl, 
Ss, [NaINSI, (NaINS1,0, Na, $s): - 

1. 

comp(n, -SI, 
Ss, [NalMs], (NaINsl. Nl, Na-NI, Ss): - 

assert(overLap(Na-Nl)), 
1. 

-I comp(c, -Sl, 
(_SalSsl, [NaiNsl, Ns, 

-N, 
Na-c, Ss): - 

(cut; assert(cut)), 

list-compare(SI, S2, Conipl, Comp2, NI, N2, N3, Sames) compares the two lists of solutions, S1 

nd S2. to determine whether they are the "same", I'diff" or "overlap". Compi is the 

urrent status of comparison, Comp2 is the final state of comparison. NI is the solution 
: et Identiffer, for S2 and N2 Is the clause solution number so far established for the 

oLution set S1, I. e. the solution set numbers with which S1 has already been shown to 
have an overlap. N3 is the new clause solution number obtained from N2 and the result of 
copparing S1 and S2. Sames Is a List of elements from previously investigated elements 
of the rest of S1 and S2, that have been shown to occur in S2, or it Is the term 
"overlap$, when the two Lists S1 and S2 are shown to overlap. 

tfst-coinpare(-, 
-, -oovertap, 

ml, O, Nl, overLap): - 
1. 

Lfst-compare(_, 
_. _, overLap, Nl, N2, NI-N2, overtap): - 

1. 

tist-compare([], El, same. same, Nl, G, Nl. 
_): - 

1. - 
List-compare(E], [I, sanw, swie, N1, N2, NI-N2, 

_): - 
1. 

List-corr4)are(EHITI. Li, same, Conp, N1, N2, N3, Sames): - 
test_eLts(H, L1, L2, Sames, Comp_ýor_Sames), 
1, 
tist. compart(TIL2*same, Comp, N1, N2, N3, Ccmp. ofý. Sanws). 

List-coffq)are((HILI, Ll. same, Comp, N1, N2, N3, (]): - 

tist-coq)areCL, Ll, diff, Comp, N1, N2, N3, E]). 

List_compare(_, 
_, same, ov*rLap, NI, O, Nl, 

_): - 
1. 

L fat-coinpare(_, 
_, sw-e, over Lap, N1, N2, N I -N2, _): - 

1. 

tfst_coppare(EHI_I, Ll, diff, overtap, NI, O, Nl, 
_): - 

test. etts(H, Ll, L2,., Comp. orý. Sames), 

tfst_compare([Hl_], Ll, diff, overtap, N1, N2, NI-N2, 
_): - 

. test_etts(H, L1, L2, 
_, 

Comp_orý_Sames), 
1. 

tfst-coq)are(E]#_L, diff, diff, 
_Wl, 

N2, N2, 
_): - 

1 1. 
tfst-coqmre(EHILI, Ll, diff. Conp, N1, N2, N3, 

_): - 
1, 
t Is t-coq)are(L, Ll, diff, Cwp, N1, N2, N3, El 
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test-ettsCX, L, LI, Sames, Sames1) tests if X matches (according to -C-) any element in L. 
If so Ll is bound to the list of all other elements in L and Samesi is bound to a list 

with head X and tail Sames. If X will unify but not match (<a), ) an element of L then 
Samesl is bound to the term "overlap" otherwise test fails. 

test_etts(X, EYILI, L, Sames, EXISamesi): - 
X ýC=)P, Y, 

test-eLts(X, EYILI, 
_, _, 

overLap): - 
wM_unffy(X, Y), 
1. 

test-eLts(X, EY11.1, [YjL13, Sames, Comp_or_S&mes): - 
test_eLts(X, L, L1, Sames, Comp_orý_Sames). 

ORDER CLAUSES 

Puts the clauses in Cs Into an optimum order for translation in Ordered-Cs and the 
corresponding CSNs in Ordered_CSNs 

order_ctauses((_, CSNsl, Ordered_CSNs, Cs, Ordered-Cs): - 
overtaps(Ols), 
overtap_groups(019,0-Gs), 
group_overtap_retation(O. _Gs, 

CSN9, CSN_Gs, Cs, overtapping_Cs), 
order_groups(CSN_Gs, Overtappfng_Cs, Ordered_CSNs, Ordered-Cs). 

collects together all the overlap identifiers (01s) for the relation currently being 
processed. An overlap identifier is a term of the form N-M in which M Is a number 
identifying a clause and N is an overlap Identifier or another number. 

overtaps(E0110183): - 
retract(overtap(Ol)), 
1, 
overtaps(Ols). 

overlaps([]). 

overtap_groups(Ols, O-Gs) creates the optimum list of clause groupings (Cý_Gs) from the 
list of overtop Identifiers (01s). The clause groupings will consist of a list of lists 
of solution set identifiers (not overlap Identifiers, clause numbers or clause solution 
numbers). 

overtap_groupsCE1,13). 
overtap_groupsC(OlIOISI, (O. 

_GICLGsl): - 
break_up(01, Ns), 
overtap_group(Ns, Ols, Ns, Cý. G, (], R-Ols, []), 
overtap_groups(R-Ols, O-Gs). 

breaks up an overlap identifier into a list of clause numbers 

break_up(N-M, EN181): - 
1, 
break_up(M, B). 

break_up(W, END- 
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overlap-group(Ns, Ols, O-G_sofar, O 
- 

G, R 
- 
Ols 

- sofar, R_OIS, Ns_new) 
Ns is a List of solution set identifiers in the overlap group. 
Ols is a List of overlap identifiers that are to be tested against the List of clause 
numbers No. 
0G- sofar is the overtop group sofar built up before the call. 
O_G Is the overlap group after the call with any numbers from relevant overtop 
identifiers incorporated, i. e. O_G_Sofar plus any new numbers generated by the colt. 
R Ols_sofar is a list of any overlap identifiers that have so far been tested but do not 
belong in the overlap group. 
R_OIs is R_Ols_sofar plus any new overlap identifiers coming from this call that do not 
belong in O-G 
Ns_new is a t; st of new numbers that have been found to belong in the overlap group. 
The goat works by testing overlap identifiers in the list 019 against the List of 
numbers No. If there are any numbers common to the 01 and Ns, then all new numbers in 
the 01 are added to Ns to produce Ns2, to 0G- sofar to produce O-G_sofar2, and to Ns_new 
to produce Ns-new2; these are then passed cursively to another call to overtap_group. 
If there are no common numbers then the 01 is added to R_Ols_sofar to produce 
R Ols 

- sofar2 and this Is passed recursively to another call to overtap_group. When the 
list Ols is empty overLap-group is again coiled recursively with the list of overlap 
identifiers, R_01s-Sofar, as the new Ols list and the List of new numbers, Ns_new, as 
the list of numbers No, to check whether there is now an overlap between any of the 
overtop identifiers previously passed over. When the List Ols is empty and also the List 
Ns-new is empty then the whole overlap group has been established; 0. 

_G_sofar 
Is bound to 

O_G giving the overtop group and R_Ols_sofar is bound to R_OIs giving a List of those 
overtop identifiers that did not overtop with any of the clauses identified by 0. 

_G. 
This 

list can then be passed to overiap-groups to find any more overtop groups. 

overtap-group(Ns, [], O, 
_G, 

O. 
_G, 

R_Ols, R_Ols, (]): - 
1. 

overtap_group(Ns, [], O_G_sofar, O_G, R_Ols_sofar, R_Ols, Ns_new): - 
1, 
overtap_group(Ns-new, R_Ols_sofar, O_G_sofer, O-G, [], R-Ols, []). 

overtap_grotip(Ns, [N-Mlols]. O. 
_q_sofar, 

O_G, R_Ols_sofar, R_019, Ns_new): - 
overtap_jmem(N-M, Ns), 
1, 
add_overtap(N-M, Ns, Ns2, Ns_new, Ns_new2,0_G_sofar, O_G_sofar2), 
overtap-group(Ns2, Ols, O-G_sofar2. O_G, R_Ots_sofar, R_Ols, Ns_new2). 

overtap_groupCNs, EN-MIOI&I, O_G_sofar, O_G, R_Ols_sofar, R_Ols, Ns_new): - 
overLap_groupCNs, Ols, o-G_sofar, O_G, [N-MIR_Ols_sofar], R_Ols, Ns_new). 

Tests If any of the clause Identifiers in the overlap identifier N-M are in the list of 
clause numbers, Ns. If so succeeds, otherwise falls. 

overtap-mein(W-M, Ns): - 
overtap_mem(M, Ns), 
1. 

overLap_pmn(M-M, Ws): - 
1, 

overtap-mem(N, Ns). 

overtap_mem(M, Ns): - 
mein(N, Ns). 
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add_overtap(N-M, OL1. OL2, ONsl, oNs2,0-Gl, O-G2) adds the components of the overLap 
identifier N-M to the Lists M to produce the lists ?? 2. 
List ?? 2 Is formed from list M by adding on the component numbers of N-M without 
generating duplicates: they are all Lists of numbers. 
OL? are the overlap Lists with which the Ols are being compared. 
ONs? are the lists of new clause numbers generated from comparing Ols with the overLap 
Lists 00. 
O-G? are the overlap groups themselves 

add_overLap(N-M, OLI, OL2, ONsl, ONs2,0-GI, O-G2): - 
overLap_mefn(M, OL1), 
1, 
add_overLap(N, OLI, OL2, ONsl, ONs2,0-Gi. 0-G2). 

add-overLap(N-M, OLI, OL2, ONsl, ONs2, O_Gl, O_G2): - 
1, 
add_overLap(N, [MIOL11, OL2, [MIONsl], ONs2, EMIO_Gll, O_G2). 

add_overLap(N, OL1, OL1, ONsl, ONsl, O_Gl, O-Gl): - 
mem(N, OLI), 
1. 

add-overtap(N, OLI, ENJOL13, ONS1, ENIONsl], O.. Gl, ENJOLG11). 

group_overtap_reLatfon(O. _Gs, 
CSNs, ln-CSNs, Cs, O 

- 
Cs) collects together clauses in Cs, with 

clause solution numbers, CSNs, according to each overlap group in O-Gs and puts them in 

. 
O_Cs. The clause solution numbers corresponding to this List are in In_CSNs. If the list 

of remaining clause solution numbers includes a clause with a cut AND another clause 
that generates the same solution set, then all the remaining clauses are grouped 
together to ensure that clauses involving the cut and identical solution sets are 
properly translated and the scope of the cut is properly maintained. 

group_overtap_reLation(_, [], E], E], E]): - 
1. % 

group_overLop-reLation(ECL. GIOý. Gsl, CSNs, tln_CSNsllln_CSNsl, Cs, ECý-CsIloý. Cs]): - 
group_overtap_pLauses(O.. G, CSNs, ln_CSNSI, tl, out_CSNs, Cs, O_Csl, E], Non-0-CS), 

group_overLap_reLation(q_Gs, out_CSNs, ln_CSNs, Non-O-Cs, O-Cs). 

group_overtap_reLation((], CSNs, ECSNsl, C$, [Csl): - 
mem(X-C, CSNS), 

mem(X, TO-CSNS), 

group_overtap_reLition(E], CSNs, Enon_overLap, CSNsl, Cs, ECs]). 
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/* group_overLap_ctauses(Oý_G, CSNs, ln-CSNs, New-Out_CSNs, Out_CSNs, Cs, O-Cs, New-Non_O_Cs, Non-O-Cs) 
Collects together all. clauses in Cs (with clause solution numbers in CSNs) which are 
involved In the overlap group Oý_G and puts them in O-Cs; the remaining clauses go in 

Non-O-Cs. 
In_CSNs and Out-CSNs are the lists of clause solution numbers corresponding to the 
clauses in O-Cs and Non_O_Cs respectively. 
New_Out_CSNs and New_Non_O_Cs correspond and are the Lists of new "out" items as they 

occur. When a clause has a cut in it (i. e. its CSN ends in -c or -c-s) then the system 
checks. to see if that clause or any subsequent clauses have any overlaps with previous 
clauses. If it, or they, do, then all subsequent clauses are taken to be overlapping, in 

order to maintain the correct scope of the cut. The "in" items are returned as: 
the current out items (New-Out_CSNs and New_Non_O_Cs) followed by the clause with the 

cut followed by all the remaining clauses, and the "out" items are returned as the empty 
list. This maintains the correct order of clauses with respect to the clause with the 

cut. if it, or they, do not, then the 'Ifni' Items are returned as the empty List and the 
"out" items are returned as: 
the current out items (New-Out-CSNs and New-Non_O_Cs) followed by the clause with the 

cut followed by all the remaining clauses. Thfs maintains the correct order of clauses 
with respect to the clause with the cut. 

group_overLap_ctauses(_, (I , (I Out_CSNs, Out_CSNs, (I , (I Non_O_Cs, Non-O-Cs):, 
I .* 

group_pvertap_ctauses( El CSNs, (I 
_, 

CSNs, Cs, 0 
_, 

Cs): - 

group_overLap_cLauses(Cý_G, ECSN-c ICSNsl , ln_CSN&, New_Out_CSNs, 0, ECIC&I O_Cs, New_Non-O-Cs, (I 

overtap, -mem(CSN, 
O-G), 

append(New-Out_CSNs, [CSN-CICSWsl, ln_CSNs), 

append(New-Non-O-Cs, [ClCs3,0_Cs). 

group_overLap_cLauses(O. _G. 
(CSW-cICSNsl , ln_CSNs, New_Out_CSNs, 0, (CICs] 0.. Cs, New_Non-O-Cs, (I 

'group_overLap_cLauses(O_G, CSNs, ln_C$Nsl, (], 
_, 

Cs, 
_, 

13, 
_), 

non_empty(ln_CSNSI), 
1, 

append(New-Out-CSNs, (CSN-cICSNsl, ln 
- 

CSNs), 

append(New-Non-O-Cs, [ClCsl, O. 
_Cs). 

group_overLap-clauses(O_G, ECSN-cICSNsl, [], New-OUt_CSNs, Out-CSNs, Cs, E1, New-Non_O_Cs, Non-O-Cs): - 
1,1 -I 

append(New-Out-C$Ns, ECSW-cICSNsl, Out_CSNs), 

append(New-Non_O_Cs, Cs, Won_O_Cs). 

group_pver tap-c Lauses(O. 
-G, 

ECSN-c-sICSNs3, ln_CSNs, New-Out_CSNs, (3, (CjCs], Cý_Cs, New-Non-O-Cs, 11 

overtap_Mm(CSN, O-G), 
1, - 
append(New-Out-CSNs, ECSN-c-sICSNsl, ln_CSNs), 

append(New-Non_O_Cs, [ClCsl, Oý. Cs). 

group_overtap_CL&uses(Cý_G, (CSN-c-sICSNs3, ln 
- 

CSNs, New 
- 

Out 
- 

CSNs, (], (CIC$3, P_Cs, New-No%O_Cs, [)): - 
group_overtap_ctauses(O_G, CSNs, ln_CSNsl, (], 

_, 
Cs, 

_, 
(], 

_), 
no%empty(ln_CSNs1), 
1, - 
append(New_Out_CSNs, ECSN-c-sICSNsl, ln_CSNS), 

append(New-Non-O-Cs, ECICs], oý. cs). 

group_overLap_ctauses(O. _G, 
ECSN-c-sICSNsl, t1, New-Out-CSNs, Out_CSNSI 

Cs, E1, New-Norý_Oý. CS, Non-O-Cs): - 

append(New_Out_CSNs, (CSN-c-91CSNSI, Out_CSNs), 
append(New-Non_O_Cs, CS, Non-O-Cs). 
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group_overtap_ýctauses(C. _G, 
ICSNICSNsl. [CSNlln_CSNSI, New-Out_CSNs, Out_CSNs, 

(CICSI, (CIO. 
_CSI, 

New_Non_O_Cs, Non-O-Cs): - 
overtap-mem(CSW, O-G), 

group_overLap_ctauses(O_G, CSNs, ln_CSNs, New_out_CSNs, Out_CSNs, 
Cs, O-Cs, New_Non_O_Cs, Non-O-Cs). 

group_overtap_ctauses(O. _G, 
ECSNICSNsl, ln_CSNs, New-Out-CSNs, Out_CSNs, 

ECICsl, O_Cs, New_Non_O_Cs, Non-O-Cs): - 
group_overLap_ciauses(O_G, CSNs, ln_CSNs, [CSNINew-Out_CSNsl, Out_CSNs, 

Cs, O_Cs, ECINew_Non_O_Csl, Non_O_Cs). 

order_groups(CSN_Gs, Cs, Ord_CSNs, Ord_Cs) orders the ctauses in Cs within their existing 
groups to create the tist of ordered ctauses, Ord_Cs. CSNs_Gs and Ord_CSNs are the tfsts 

of corresponding cLause soLution numbers. 

order_groups( 11 , El, E3, El 

order_groups(Enon_overtapICSN_Gsl, Cs, Enon_overtaplord_CSN_Gsl, Ord-Cs): - 
It. 
order_groups(CSN-Gs, Cs, Ord-CSN 

- 
Gs, Ord-Cs). 

order_groups(ECSNsICSN_Gsl, ECsllCs3, EOrd_CSNslOrd_CSN_Gsl, EOrd_CsIlOrd-Csl): - 
group_CSNsC_, CSNs, Csl, E], [], Ord_CSNs, Ord_Csl, (], E], E], []), 

order_groups(CSW-Gs, Cs, Ord_CSN_Gs, Ord-Cs). 

/* group_CSNs(CSN, CSNs, Cs, Non_CSNs, Non 
- 

Cs, ord 
- 

CSNs, Ord 
- 

Cs, Bag_CSNs, Bag_Cs, CSNs_from 
- 

cut, Cs_from 
- 

cut) 
This goat sorts the list of clauses, Cs, into an optimum order for translation according 
to the corresponding list of clause solution numbers, CSNs. For every List of CSNs there 
is a List of the corresponding clauses identified by "Call for "CSNs". The first argument 
CSM does not have a correspondence because it is only used as a current reference. The 
sorting depends upon the fact that the order of clauses is inuteriat unless one of the 
clauses has a cut in it (identified by, "-c" in the CSN), in which case this clause must 
maintain its same relative position with respect to Individual clauses. in the following 
description the sorting will only be explained in terms of the lists of CSNs, however 
every action performed on a CSN is exactly shadowed on the corresponding clause In the 
lists of Ca. Assuming no cuts in any of the clauses: 
Group together all CSNs that exactly match CSN which, at the start, will, be the head of 
the list CSNs, and put them in the list Ord_CSNs. Any non-matchfng clauses encountered 
on the way through the list CSNs are put In the list Non_CSNs. When all clauses matching 
CSN have been found, A. e. the list CSNS is empty, then the same process Is performed on 
the list Non_CSNs, those clauses that did not match CSN, and the ordered clauses are 
appended to the list Ord_CSNs. Any CSNs that have the suffix 11-s" are put in the list 
Bag_CSNs and are eventually put at the end of the list Ord_CSNs when all other clauses 
have been property sorted. These clauses are those that can generate the same solution 
more than once and therefore have to be translated using bagof to operate in a breadth 

search manner. 
If a cut Is encountered in the CSNs (identified by 11-0 in the CSN) then all CSNs up to 
the cut are processed as above, the CSN involving the cut is appended to the list 
Ord_CSNs, and then all CSNs after the cut (which are held in CSNs_after_cut) are 
processed as above and appended to the list Ord-CSNs. 

group_CSNs(-, II* (It Do [I): - 

group_CSNsC_, [], [], E], (], [Bag_CSNsl, [Bag_Cs], Bag_CSNs, sag_Cs, El, (]): - 
1. 
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group_CSNs(', [], (], [], [], -ECSN'CutlOrd_CSWsl, [C_cutlOrd_Csl, [], [], 
ECSN_cutICSNs_from-cutl, [C_cutICs_from-Cuti): - 

group_CSNs(_, CSNs_from_cut, Cs_fr(xn_cut, (], [], Ord 
- 

CSNS, Ord-Cs, (], (], [], (]). 

group_CSNs(-, [], E], E], (], EBag_CSNs, CSN_cutlOrd_CSNSI, (Bag_Cs, C-cutlOrd 
- 

CS), 
Bag_CSNs, Bag_Cs, (CSN_CutICSNs_from_cutl, (Cý_cutICs_from_cut]): - 

group_CSNs(_, CSNs_fr(xn_cut, Cs_from_cut, (], [], Ord_CSNs, Ord 
- 
Cs, 13 , El ,D, 11 

group_CSNs(_, (], (], Non_CSNs, Non_Cs, Ord_CSNs, Ord_Cs, Bag_CSNS, Bag_Cs, 
CSNs_from-Cut, Cs_fr(xn-Cut): - 

group_CSNs(_, Non_CSNs, Non_Cs, (], [], Ord_CSNs, Ord_Cs, Bag_CSNs, Bag.. ýCs, 
CSN9_from-cut, Cs_from-cut). 

group_CSNs(_, ECSN-ciCSNsl, [ClCsl, Non_CSN9, Non_Cs, Ord_CSNs, Ord-Cs, [], [], E], E]): - 
1, 
group_CSNs(_, Non_CSNs, Non_Cs, [], [], Ord_CSNs, Ord-Cs, [], El, 

ECSN-cICSNsl, ECICSI). 

group_CSNs(_, (CSN, cICSNsl, [ClCs3, Non_CSNs, Non_Cs, [Bag_CSNalOrd_CSNsl, [13ag. ýCslOrd-Cs], 
Bag. ýCSNs, Bag_Cs, (l, E3): - 

group_; SNs(_, Non_CSNs, Non_Cs, E], (], Ord_CSNs, Ord_Cs, (], [], ICSN-cICSNsl, [ClCs]). 

groupý_CSNs(_, (CSN-C-SICSNsl, [ClCsl, Non_CSNs, Non_Cs, Ord_CSNs, Ord-Cs, (], [], E3, E3): - 
1, 
group_CSNs(_, Non_CSNs, Non_Cs, (], (], Ord_CSNs, Ord_Cs, (], E], ECSN-c-sICSNs), ECICSI). 

groupý_CSNSC_, ECSN-C, SICSNsl, [ClCsl, Non_CSNs, Non_Cs, [Bag_CSNsiOrd 
- 
CSNsl, [Bag_CsIOrd-Cs], 

Bag_CSNs, Bag_Cs, E1,13): - 

group_CSNs(_, Non_CSNs, Non_Cs, (], (], Ord_CSNs, Ord_Cs, El, (3, [CSN-c-sICSNsl, ECICs)). 

group_CSNS(CSN-S, ECSN-sICSNS3, [ClCsl, Non_CSNs, Non_Cs, Ord_CSNs, Ord_Cs, Bag_CSNs, sag-; S, 
CSNs_from-Cut, Cs_from-cut): - 

group_CSNs(_, CSNs, Cs, Non_CSNs, Non_Cs, Ord_CSNs, ord_Cs, [CSN-slBag_CSNsl, EC113ag_CS], 
CSNs-from-cut, Cs_from-cut). 

group_CSNs(CSN, ECSNI-sICSNsl, (ClCsl, Non_CSNs, Non_Cs, Ord_CSNs, Ord_CS, Bag_CSNs, Bag_Cs, 
CSNs-from-cut, Cs_from-cut): - 

group_CSNS(CSN, CSNs, Cs, Non_CSWs, Non_Cs, Ord_CSNs, Ord_Cs, [CSNI-slBag_CSNsl, [Cloag_Cs], 
CSNs_frcxn_cut, Cs_from_cut). 

group_CSNs(CSN, E? ICSNsl, (ClCsl, Non_CSNs, Non_Cs, Ord_CSNs, ord_Cs, Bag_CSNs, sag. ýCs, 
CSNs_from_cut, Cs_from-Cut): - 

group_ýCSNs(CSN, CSNs, Cs, Non_CSNs, Non_Cs, Ord_CSNs, Ord_Cs. Bag_CSNs, Bag_Cs. 
CSNs_froM_Cut, Cs_frcxn-cut). 

group_CSNs(CSN, ECSNICSNsl, ECICsl, Non_CSNs, Non_Cs, ECSNIOrd_CSNsl, (ClOrd-Cs], 
Bag_CSNs, Bag_Cs, CSNs_from_cut, Cs_from-Cut); - 

group_CSNs(CSW, CSNs, C8, Non_CSNs, Non_Cs, Ord_CSN9, Ord_Cs, gag_CSN9, Bag_Cs, 
CSNs_from_cut, Cs_from_cut). 

group. _CSNs(CSN, 
ECSN11CSNs], ECICsl, Non_CSNs, Non_Cs, Ord_CSNs, Ord_Cs, Bag_CSNs, Ba9-CS, 

CSNs_from_cut, Cs_from-cut): - 
group_CSNS(CSN, CSNs, C&, ECSNIINon_CSNsl, ECINon_Cs], Ord_CSNs, Ord_Cs, Bag_CSNS, Bag_Cs, 

CSNs-from_cut, Cs_from_cut). 
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TRANSLATE RELATION 

trans_reLation(H, Gs, CSNs, F) Gs Is a List of groups of clauses (with head H) representing 
an entire relation, and has corresponding list (of same structure) of CSNs. F is a flag 
identifying whether there Is a fuzzy argument In the goal and if so which argument It 
is. The relation is translated according to the structure of the list: 

- Lists of clauses are translated using a do(-bagof call to ensure that they are breadth 

searched 
- clauses not in a subList and preceded by "non_overLap" need not be translated using a 
doL-bagof call and are passed as a group to be translated by trans_groups. 
The first clause of trans-reLation is always used at the beginning of a relation 
translation in order that the relation can be checked for any fuzzy terms for which 
semantic unification can be performed. This is Identified by argument 4 being the term 
non_fuzzy. If a translation does have a fuzzy argument then the argument number is 

passed as arg 4 in a recursive call to trans 
- 

relation. 
The translation is written using portray which directs output to whatever is the current 
output stream defined by tetL(X) and retrievable by tetLfng(X). This output stream will, 
previously have been set up by where_to. Note that the translation Is not returned as an 
argument of the goal. 

trans_reLation(H, Gs, CSNs, non-fuzzy): - 
functor(H, P, A), 
fuzziness(P/A-N), 
H a.. IPJArgs3, 

trans_fuzzy(EPIArgs], N, FH), 

trans_reLation(FH, Gs, CSNs, N). 

trans-reLation(H, Gs, EnorLovertapiCSNsl, F): - 
1, 

-Ha.. [PlArgs] 
trans-groups(P: Gs, CSNS, F). 

trans_retation(H, EGlIGsl, [CSNslICSNsl, F): - 
bagof_form(H, G1, CSNsl, F), 
trans_reIatIon(H, Gs, CSNs, F). 

trans_retatfon(_, (3, (], 
_). 
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trans - 
fuzzy(EPIArgs], N, FH) generates the top level part of the translation of a retation 

which has a fuzzy argument. The retation has predicate P and Args Is a List of variables 
for arguments. N is the argument number of the fuzzy term and FN is the fuzzy head 
generated for the tower level part of the translation. Three clauses are generated: 
- the first deals with a call to the goat when the fuzzy argument is a variable, and 
performs the semantic unification, 
- the second with a call. In which the fuzzy argument has the suffix -^fuzzy" and does 
not perform the semantic unification, 
- the third deals with a call to the goat when the fuzzy argument is non-variable, and 
performs the semantic unification. 
The sufffx, , _AfUZZy, l, used fn the second clause Is for the special case when a fuzzy 
term evaluated in a subgoat is also an argument of the head of the clause, I. e. It (s 

not a term tocat to the particular clause being translated. In this case the semantic 
unification is not performed because it can be performed at a higher level and should 
always be performed at the highest level possible. 

trans_fuzzy(EPIArgs3l, N, FH): - 
name(P, LP), I 
append(11fuz_", LP, LFP), 
name(FP, LFP), 
fuz-arg(l, N, Argsl, FI, Args2, F2, Args3), 
FH IFPjArqs11, 
H1 EP, S1jArgs11, 
FNI (FP, S1jArgs11, 
FH2 EFP, S2lArgs2l, 
H3 EP. SilArgs3l, 
p. ortray(CH1: -var(Fl), I, FH2, semunify(Sl, S2, Fl, F2))), 
portray(CH3: -I, FHI)), 
portray((Hl: -FH2, semunify(SI, S2, Fl. F2))). 

Translates the list of groups of clauses according to their groupings 

transý_groups(P, [GllGsl, ECSNslICSNsl, F): - 
trans_group(P, G1, CSNsl, F), 
trans_groups(P, Gs, CSNs, F). 

trans_groups(_, E], [], 
_). 

trans_group(PI, CS, CSNS, F) transtates a group of cLauses CS (with corresponding CSNs) 

with the pridicate P1 which may or may not be the same as the original. The first three 

clauses deat, with those CSNs with the suffix 11-911 Indicating that the translation 

requires the use of doL_bagof. At the start such cLauses will be In a subtist of Cs: if 

the predicate of the first clause Is different from the predicate to be used (PI) then 

the cLauses are already being translated under a doL_bagof call and need not be 

translated using the bagof_form, Instead they are passed to clauses 2 and 3 of 

trans_group; otherwise (i. e. predicate of Cx PI) they must be translated using 
bagof_form and the translation is performed by the first clause of trans-group. Clause 4 

of trans_group takes all clauses which can generate the same solution O. e. have the 

same CSN) and translates them as one clause. Clause 5 of trans_group translates a single 

clause directly. Clause 6 of trans_group is the terminating condition. 

trans_group(PI, EECICS]IRCSI, EEN-sICSNs]IRCSNs], F): - 
heads(C, H, 

_, _, _), 
functor(H, Pl, 

_), 
I" . 
bagof_formCH, ECICSI, [N, 91CSNsl. F), 
trans_gr(wp(PI, RCs, RCSNs, F). 
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trans_group(Pl, (CsIRCsl, [EN-sICSNsIIRCSNsl, F): - 
1, 
trans_group(PI, Cs, EN-SICSNsl, F), 

trans-group(PI, RCs, RCSNs, F). 

trans_groLip(Pl, (CiCsl, EN-sICSNsl, F): - 
1, 

trans-ctause(Pl, C, T_C, N-s, F), 

portray(T-C), 

trans_qroup(PI, Cs, CSNs, F). 

trans_group(Pl, (CICSI, ENICSNsl, F): - 

ati-Ns(N, Cs, CSNs, N_Cs, N_CSNs, Other_Cs, other-CSNs, [], E]), 

nor%. empty(N-Cs), 
1, 

one-ctause-form(H, ECIN_Csl, Body, Sups, Sups, S, F), 

H [PlArgs], 

MI EP1, SlArgs], 

portray((Hl :- Body)), 

trans-group(PI, Other_Cs, Other_CSNs, F). 

trans_group(P, (ClCsl. [NICSNsl, F): - 
trans-ctause(P, C, T_C, N, F), 

portray(T_C), 
trans_group(P, Cs, CSNs, F). 

trans_group(_, E]tllo_). 

TransLates a group of ctauses using a dot-bagof caLt to ensure that a breadth search is 

performed when the goat, is queried. N Is the head of the reLatfon being transtated. A 

ctause is defined that has this head, caUs doL_bagof on a new and unique predicate name 
(determined by bag_name) and then caLLs samecombine to combine the support pairs. The 

new predicate name is used to form the head of the cLauses transtated by trans-group. 
Argument 4M Identifies a fuzzy argument In the goaL. 

bagof_form(H, Cs, CSNs, F): - 
1. 
H (PlArgs3, 
Hl EP, SIlArgs], 
bag_name(P, P1, S, Args, Bag_goat), 

portray((Hi":, doL_bagof(S, Bag-goaL, L), samecombine(L, Sl))), 
trans-group(Pl, Cs, CSNs, F). 

Determines a new and unique predicate name to be used for a goat being caLLed by 
dot-bagof in a bagof form for transLating a reLation. PI Is the new predicate name of 
the form bag-, cn-P), where <n> is a number generated by incrementfng the vatue of the 
argument of bagnum, and P is the originat predicate name. Args Is a list of the original, 
arguments and S is the support argument tacked on to the front of this tist, Bag_goat Is 

the new goat head defined by Bag_goat EPI, SlArgs]. 

bag_name(P, PI, S, Args, Bag_goat): - 
retract(bagnun(W)), ' 

NJ Is N+1, 

asserta(bagnum(Ml)), 
name(N, LN), 

append(Ilbag2l, LN, LB), 

name(P, LP), 

append(LB, LP, LPl), 

name(PI. LPI), 
Bag_goat a.. EPI, SlArgs]. 
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trans-cLause(P, C, T_C, CSN, F) translates the clause C, with clause solution number CSN, to 
have predicate P and the translated clause Is T_C. F is a fuzzy argument identifier. 

/* 1 Uses a bagof 
- 

form on a clause which generates the same solution more than once 
(Identified by the 11-s" suffix on the CSN) unless the predicate P does not match the 
predicate of the clause C, in which case the clause is already subordinate to a 
dot_bagof. */ 

trans-ctause(P, C, T_C, N-s, F): - 
heads(C, H, 

_, _, _), 
H x.. [PlArgs], 
1, 
H1 u.. EP, SIlArgs], 
bag_pame(P, P1, S, Args, Bag_goaL), 
trans-cLause(PI. C, T_C, N, F), 

portray((HI :- doL_bagof(S, Bag_goaL, L), samecombine(L, Si))). 
/* 2 Translates a non-fuzzy equivalence clause, identified by the equivalence operator <-> 

trans_cLause(_, (X <-), Y), (Xl: -YI, SL is SLs, Su is Sus), 
_, non-fuzzy): - 

1, - 
X u.. [PlArgs]. 
X1 a.. IP, ESL-, SullArgs], 
trans_subgoaLs(Y, Yl, both, [1,11, ESts, Sus]). 

/* 3 Translates a non-fuzzy bundle, identified by the bundle operator <- 

trans-etause(_, (X: - <- 8), (Xl: - 81), 
_, non-fuzzy): - 

1, 
X (PlArgs], 

X1 (P, SjArgs), 
buftcLbody(9,81, S). 

/* 4 Translates a non-fuzzy rule for which the upper conditional support Is I 

trans_ctause(Pl, (X: -Y: ESLC, 11), (Xl: -YI), _, non-fuzzy): - 
1, 
X -.. [PlArgs] , 
X1 a.. EPI, (St, 11JArgs], 

trans-subgoaLs(Y, Yl, st, Stc, SL). 

/* 5 Translates a non-fuzzy rule for which the tower conditional support Is 0 

trans_ctause(Pl, (X: *Y: (O, Sucl), (Xl: -Yl, Su is I- Sul), 
_, 

non-fuzzy): - 

X [PlArgs], 

X1 EPI, (O, SullArgs], 

trans-Subgoals(Y, Yl, st, (I-Suc), Sul). 

/* 6 Translates a non-fuzzy rule for which there is positive conditional support both for and 
against 

trans-ctause(Pl, (X: -Y: ESLC, Sucl), (Xl: -Yl, su Is I- (I - Suc)*SL/Stc), 
_, non-fuzzy): - 

1, 
X (PlArgs], 
X1 (P1, (St, Su3jArgs3, 

trans-Subgoats(Y, Y1, st, S(c, Sj). 
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/* 7 Translates a probabilistic pair of non-fuzzy rules, identified by the two support pairs 
on the singLe rule 

trans-ctause(Pl, (H: -8: S, Sn), (Nl: -Bl, probcombine(Sp, S, Sn, Sl)), 
_, non-fuzzy): - 

1, 
H EPIArgs], 
HI EPI, SllArgs], 
trans-subgoaLs(8,81, both, (I, l], Sp). 

/* 8 Translates a supported fact - fuzzy or non-fuzzy 

trans_ctause(Plp(X: - : S), (Xl; -true), _, _): - 
1, 
X [PlArgs], 
XI EPI, SlArgs]. 

/* 9 Translates an unsupported rule - fuzzy or non-fuzzy 

trans-cLause(Pl#(X: -Y), 7ý_C, N, F): - 
not functor(Y, (: ), 

_), 

trans-cLause(Pl, (X: -Y: El, ll), T_C, N, F). 
/* 10 Translates any sort of fuzzy rule (bundLe or ordinary) by sorting out the fuzziness and 

then passing it to a recursive call of trans-cLause as a non-fuzzy 

trans_cLause(Pl, (H :- B), T_C, N, FN): - 
1, 
N z.. EPIArgs], 
fuz-arg(l, FN, Argsl, Fl, 

_, _, 
Args), 

81 a.. -EPjArgsI1, - 
trans-clauseCP1, (Hi :- B), T 

- 
C, N, non - 

fuzzy). 
/* 11 Translates a fuzzy equivalence by sorting out the fuzziness and then passing it to a 

recursive call of trans_cLause as a non-fuzzy 

trans_ctause(Pl. (H -, 6), T_C, N, FN): - - 
1, 
H a.. [PlArgs], 
fuz_argCI, FN, Argsl, Fl, 

_, _, 
Args), 

H1 a.. (PjArgs1j,, 

- trans_ctauseCPI, CHI <- B), T_C, N, non-fuzzy). 
/* 12 Translates an unsupported fact - fuzzy or non-fuzzy 

trans_cLause(PI#X, (Xl: - true), 
_, _): - 

X (PlArgs], 
xj (PI, (1,11JArgs]. 

trans-subgoaLsCSG, T_SG, NorP, Sups_fn, Sups. ýout) translates the subgoal, SG, of a clause to 
produce the translated subgoaL, T_SG. 
NorP Is a flag Cequal, to "both", "st" or 41suls) indicating which of the individual 
upports is of importance - sometimes either of the supports may not be used in the 
aLcuLatfon of supports for the head of a rule, because of the conditional supports. 

Sups_fn Is a support pafr Cor single support depending on NorP) representing the support 
calculation for the body of the clause prior to the particular subgoaL under 
consideration; 
sups.. put is the support pair (or single support depending on NorP) representing the 
support calculation for the body of the clause including the particular subgoat. 
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/* 1 Translates a support logic disjunction when both supports are being considered 

trans_subgoats((X sup_or Y), (Xl. Yl), both, ESLmutt, Sumutt], ESLmuLtl, Sumuttll): - 

simpLifyjwit(((Stx+SLy-SLx*Sty)*SLmult), SLmutti), 
simpLify. yutt(((Sux+Suy-Sux*Suy)*Sumult), SumuLtl), 
trans-subgoaLs(X, Xi, both, (I, l], ESLx, Sux]), 
trans-subgoals(Y, Yl, both, E1,11, Esty, suyl). 

/*2 Translates a support Logic conjunction when both supports are being considered 

trans_subgoaLs((X, Y), (XI, Yl), both, [SLffult, Sumutt], ESLmuttl, SumuLtil): - 

trans-subgoaLs(x, xl, both, (I, l], ESix, Sux]), 
trans_subgoats(Y, Yl, both, li, l], ESty, Suyl), 
simplify_puLt((Stx*Sty*StmuLt), StmuLtl), 
simptifyjwtt((Sux*Suy*SumuLt), SumuLti). 

/* 3 Translates a support Logic negation when both supports are being considered 

trans_subgoaL&(sup_not X, Xl, both, ESImuLt, Sumuttl, (SLmuLtl, SumuLtll): - 
1, 
sfmptffy. yuLt(((l-Su)*SLmutt), StmuLtl), 
simpLify2uLt(CCI-St)*SumuLt), SumuLtl), 
trans_subgoats(X, Xl, both, (I, ll, (St, Sul). 

/* 4 Translates a support logic disjunction when only one of the supports is being considered 

trans_subgoats((X sup_or Y), (XI, Yl, S is SupmuLtl), NorP, SupmuLt, S): - 
1, 
sinipLify_MuLt(((Sx+Sy-Sx*Sy)*SupmuLt), Supmuttl), 
trans-subgoaLs(X, X1, NorP, I, Sx), 
trans_subgoals(Y, Y1, NorP, I, Sy). 

/* 5 Translates a support Logic conjunction when only one of the supports is being considered 

trans_subgoals((X, Y), (XI, Yl), NorP, SupmuLt, S): - 
- 1, 

trans-subgoatsCX, XI, NorP, I, Sx), 
sfmpLifyjwtt((Sx*Supmutt), SupmuLtl), 
trans-subgoaLs(Y, Y1, NorP, SupmuLtl, S). 

/* 6 Translates a support Logic negation when only one of the supports is being considered. 
Notice that this causes the single support that is being considered to be replaced by 
the other support 

trans_subgoaLs(sup.. pot X, (XI, S is SupmuLti), NorP, SupmuLt, S): - 
1, 
switch_supports(NorP, PorN), 
simpLify_puLt(((I-Sn)*supmuLt), SupmuLtl), 
trans_subgoals(X. XI, PorN, I, Sn). 
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/* 7 This and the next four clauses deal with the structure whereby the support pair on an 
individual subgoat can be accessed within the rule using the ^ operator. Notice that the 
translation itself is not very difficult because in a translated rule, the supports are 
necessarily available for use by subgoats in the rest of the rule. This clause 
translates the subgoat under the circumstances that both supports are being considered 

trans_subgoaLs((X^ISL, Sul), Xl, both, [SLmutt, SumuLtl, [SLMULtl, SumuLtll): - 
1, 
trans-subgoaLs(X, Xi, both, [I, l], ESL, Sul), 
simpLify_puLt(SL*SLmuLt, stmutti), 
simpLify_ýuLtCSu*SumuLt, Sumutti). 

/* 8 Translates the subgoaL when only the Lower support is being considered and support 
previously evaluated for this is I 

trans_subgoaLsCCX^ESL, Sul), Xl, st, Supmutt. St): - 
Supmutt -- 1, 

trans_subgoatsCX, Xl, both, [1,11, [St, Sul). 
/* 9 Translates the subgoaL when only the Lower support is being considered and support 

previously evaluated for this is NOT 1 

trans_subgoatsCCX^ESLI, Sull), CX1, SL Is SLI*SupmuLt), sL, SupmuLt, St): - 

trans_subgoatsCx, xl, both, (1.11, [SLI, Sull) 
/* 10 Translates the subgoaL when only the upper support is being considered and support 

previously evaluated for this is I 

trans_subgoats(CX^ESL, Sul), Xl, su, Supmutt, Su): - 
SupmuLt an 1, 
1, ýI 
trans-subgoaLsCX, Xl, both, El, ll, (St, Sul). 

/* 11 Translates the subgoaL when only the upper support is being considered and support 
- previously evaluated for this is NOT I 

trans_subgoaLSCCX^ESLI, Sull), CXI, Su Is Sul*Supmutt), su, SupmuLt, Su): - 
It ý 
trans_subgoaLsCx, xl, both, Ei, l], ESLI, Sull). 

/* 12 Translates the calls within the system predicate call so that support logic goats can 
also be que ried for the data they contain without having to combine the support. Any 
goats that are meant to be called as protog goats should have been declared as such and 
will therefore be intercepted by the clause two after this one. This clause deals with 
a ftuations when both supports are being evaluated. 

trans_subgoats(CSLL(X), c&LICXI), both, S, S): - 
1, 
trans_subgoats(X, Xi, both, (1,13, 

_). 
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/* 13 Translates the calls within the system predicate call so that support logic goals can 
also be queried for the data they contain, without having to combine the support. Any 
goals that are meant to be called as proLog goals should have been declared as such and 
will therefore be intercepted by the clause after this one. This clause deals with 
situations when only one support is being evaluated. 

trans-Subgoats(caLt(X), Ccatt(XI), S is Sl), 
_, 

Sl, S): - 

trans-subgoats(X, xl, both, EI, 13, 
_). 

/* 14 Leaves atone those predicates that have been declared to be proLog goats (i. e. run using 
an ordinary depth search via call) and leaves the support atone if both are being 
evaluated 

trans_subgoaLs(X, X, both, S, S): - 
protog_goat(X). 

/* 15 Leaves atone those predicates that have been declared to be protog goats (i. e. run using 
an ordinary depth search via call) and evaluates a single support 

trans_subgoaLs(X, (X, S is Sl), 
_, 

Sl. S): - 
protog_goat(X), 

/* 16 Leaves system predicates as they are when evaluating both supports. 

trans_subgoats(X, X, both, S, S): - 
syspred(X), 
1. 

/* 17 Leaves system predicates as they are and evaluates the single support 

trans_subgoaLsCX, (X, S Is Sl), 
_. 

SI. S): - 
syspred(X), 
1. 

/* 18 Leaves user-defined operators as they are when evaluating both supports. 

trans_subgoaLs(X, X, both, S, S): - 
functor(X, Op, A), 
trans-current-oP(_, Optype, Op), 
(A = i, mem(Optype, [fx, fy, xf, yf1); 
Aa2, mem(Optype, txfxxfy, yfxl)), 

1. 
/* 19 Leaves usir-defined operators as they are and evaluates the single support*/ 
trans_subgoats(X, (X, S is SI), 

_, 
Sl, S): - 

functor(X, Op, A), 
trans-current-oP(_, Optype, Op), 
(A a l, mem(Optype, lfx, fy, xf, yf]); 
Az2, mem(Optype, lxfx, xfy, yfxl)), 

1.1 
/* 20 Translates a single goat when both supports are being considered 

trans-subgoat&(X, Xl, both, (StmuLt, Sumuttl, [sLmutti, sumuttil): - 
simpLffy. jnutt(St*SLinuit, StmuLtl), 
sfmpLffy_mutt(Su*SumuLt, SumuLtl), 
X EPIArgs], 
X1 EP, ESt, SullArgs]. 
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/* 21 Translates a single goat when only the Lower support is being considered and support 
previously evaluated for this is I 

trans_subgoals(X, Xi, sL, Supmutt, St): - 
Supmutt -- 1, 
1, 
X a.. EPIArgs], 
X1 a.. EP, ESt, 

_IlArgs]. 
/* 22 Translates a single goat when only the lower support is being considered and support 

previously evaluated for this is NOT I 

trans_subgoaLs(X, (Xl. St is SLI*Supmutt), st, Sup(nuLt, SL): - 
1, - 
X EPjArgs3, 
X1 [P, ESt1, 

_jjArgs1. 
/* 23 Translates a single goat when only the upper support is being considered and support 

previously evaluated for this is I 

trans_subgoats(X, Xi, su, Supmutt, Su): - 
SUPMULt an 1, 

11 
X EPIArgs3, 
xj EP, [_, SullArgs]. 

1* 24 Translates a single goat when only the upper support is being considered and support 

previously evaluated for this Is NOT 1*/ 

trans-subgoats(X, (XI. Su is Sul*SupmuLt), su, Supmutt, Su): - 
1, 
x a.. EPIArgs], 

xi a.. EP, [_, SulIlArgs]. 

bultc! 
_body(Bodies, 

GoaLs, S) constructs the body, GoaLs, of a transtated bundLe from the 
bundLe bodies, Bodies, with the support to be evaLuated being bound to S. 

buiLd_body(Bodies, (GoaLs. Catcs. intersect_List(Sups, S)), S): - 
buiLd_bodies(Bodies, GoaLs, CaLcs, Sups). 

build 
- 

bodies(godieso'Goats, catcs, sups) constructs the goals, Goats, and the calculation 

goals, Catcs, necessary for evaluating the bundle given by the bundle bodies, Bodies, 

and builds a List of supports, Sups, for the bundle bodies. 

buiLd_bodies((B<-BR), Goals, (CaLc, Catcs), ESupISupsl): - 

rjq_sup-paIr(B, Ba, S8), 

trans-subgoaLs(Ba, Bal, both, ti, l], SBI), 
buftd_bodies(SR, BRI, CaLes, Sups), 

unfop_goaLs(BR1, BaI, GoaLs), 
body_eatc(SB, SB1, Catc, Sup). 

buiLd_bc)dfes(B. Bal, CaLc, ESupl): - 
nq_sup_. pair(B, Ba, SB), 

trans_subgoaLs(Ba, Bal, both, [1,11, SBJ), 
body_calc(S8. S8I, CaLc, Sup). 
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unio%goats(Gsl, Gs2, U) birds U to the union of the two goat Lists GO and Gs2. N. B. - A 
goat list is a series of goals'-separated by commas and therefore the functor of args I 
and 2 is the comma (, ), and not the full stop which is the functor of a list as held 
in square brackets. 

uniorý_goaLs((X, Y), Goats, Union): - 
goat-member(X, Goats), 

ý; 
iop_goaLs(Y, Goats, Union). 

union_goaLs((X, Y), Goals, (X, Union)): - 
1, 
unfoq. _9oats(Y, 

Goats, Union). 
union_goats(X, Goats, Goats): - 

goat-member(X, Goals), 

unfo%goats(X, GoaLs, (X, GoaLs)). 

Tests if arg 1 is a member of the goat list, arg 2. N. B. A goat list Is a series of 
goats separated by commas and therefore the fUnctor of arg 2 is the comma (, ), and not 
the full stop (. ) which is the functor of a list as held in square brackets. 

goal-member(X#'(X, Y)). 

goat-member(X, (Y, Z)): - 
1, 

goal-member(X, Z). 

goat-member(X, X). 

_goat, 
Sup) forms the support calculation goat, Catc_goat, from 'body , catc(Cond Sup, S8, Catq 

the conditional supports, Cord-Sup (whether probabilistic or not), and the support for 

the body, SB; Sup is bound to the support so evaluated. 

body_catc((S, Sn), Sa, probcombine(SB, S, Sn, Sup), Sup): - 

bo dyý_catc(Sc, Sa, condcombine(Sc, S8, Sup), Sup). 

att-Ns(N, Cs, CSN$, N_Cs, N_CSNs, NonNCs, NonNCSNs, Bag. ýCs, Bag.. ýCSNs) 
collects together from Cs all those clauses of which the CSN In CSNs matches N, and puts 
them in W_Cs and the CSN in N_CSNs. Those that match but whose CSNs have the suffix -s 
(indicating they need dot_bagofing) are put In Bag_Cs and the CSN in 8ag_CSN9. All 

remaining clauses and CSNs are put in NonNCs and NonNCSNs respectively. 

att_Ns(N, [C[Csl, [NICSNsl, [CIN_Csl, [NIN_CSNsl, NonNCs, NonNCSNs, Bag_Cs, Bag_CSNs): - 
1, - 
att-Ns(N, Cs, CSNs, N-Cs, N_CSWs, NonNCs, NonNCSNs, gag_Cs, Sag_CSNs). 

att_Ns(N, ECICSI, EM-cICSNSI, (CIN_Csl, EN-CIN_CSNsl, NonNCs, NonNCSNS, Bag_ýCs, Bag_CSNs): - 

att_Ns(N, Cs, CSNs, N_Cs, N_CSNs, NonNCs, NonNCSNs, Bag_C$, Bag-PSNs). 

att_Ns(N, [ClCs], [N-SICSNsl, N_Cs, N_CSNs, NonNCs, NonNCSNs, Bag_Cs, Bag_CSNs): - 
I, - 
att_Ns(N, Cs, CSNs, N_Cs, N_CSNs, NonNCs, NonNCSNs, [ClBag_Csl, EN-slBag_CSNs]). 

alt-Ns(N, Cs, CSNs, Bag_Cs, Bag_CSNS, Cs, CSNs, Bag. 
_Cs, 

Bag_; SNS). 
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one_ctause_form(H, Cs, T_SGs, Ss, Sups, Sup, F) translates the bodies of the clauses Cs, with 
head H, to produce the single body, T_SGs, which witt, be given the head H to form the 
one_ctause_form translation of a group of clauses. 
Ss is the list of the support pairs that will be evaluated from each clause in Cs. 
Sups is a List of the support pairs of all the clauses for which the one 

- clause form is 
being constructed; thus when the goat is first called (from trans_group) Ss and Sups are 
bound to the same thing. This is a trick to be able to access the complete List at the 
very end of the recursion, i. e. at the terminating clause of one_ctause_form. This List 
is-used to put in the samecombine subgoaL to produce the support pair for the head, Sup. 
F is the fuzzy argument identifier. ALL but the Last clause of one_cLause_form deal with 
non T 

fuzzy goats. The last clause sorts out the fuzziness and then calls one_cL&use_form 
again with Fa non-fuzzy. 

/* I Translates an equivalence retation, by treating It as an ordinary Stop retation, as 
equivalence and Stop relations are not supposed to be mixed 

one-ctause-form(H, ECH (-2' 13)lCsl, (BI, Bs), (SlSslSups, Sup, non-fuzzy): - 
display('*** equivalence relations should not be defined for Stop 1), 
disptay(retations), disptaynL, 

portray((H<-), B)), 
dispLay(lis being treated as a Stop retation'), dfsptaynt, 
1, 
trans-SubgoaLs(B, Bl, both, (1,13, S), 

one_cLause - 
form(H, Cs, Bs, Ss, Sups, Sup, non_fuzzy). 

/* 2 Translates a probabilistic pair 
*1 

one_cLause_form(H, I(H: -B: S, Sn)lCsl, (Bl, probcombine(Sp, S, Sn, SI), Bs), 
[SlISsl, Sups, Sup, non-fuzzy): - 

1, 

., trans_subgoats(B, Bl, both, [1,11, Sp), 
one_cLause-form(H, Cs, Bs, Ss, Sups, Sup, non-fuzzy). 

/* 3 Transtates a support togic fact 

one_ctause_form(H, E(H: - : S)ICSI, Bs, [SlSsl, Sups, Sup, non-fuzzy): - 
- 1, 

or)eý_ctause_form(H, Cs, Bs, Ss, Sups, Sup, norý_fuzzy). 
/* 4 Translates a supported or unsupported rule 

one_ctause_form(H, E(H: -B)lCslo(Bl, condcombine(Sc, SI, S2), Bs), ES2lSsl, Sups, Sup, non-fuzzy): - 
1, 

noý. sup_pa1r(B, Ba, S0, 

trans_subgoaLs(8&, Bl, both, (1,11, Sl), 

one_ctause - 
forin(H, C&, Bs, S&, Sups, Sup, non-fuzzy). 

/* 5 Incorporates an unsupported fact, I. e. puts [1,11 In Ss 

oneý. cLauseý. form(H, EHICsl, Bs, [El, lllSsl, Sups, Sup, non-fuzzy): - 

one_cLause - 
form(H, Cs, Bs, S9, Sups, Sup. norý_fuzzy). 

/* 6 Terminating clause (Cs a (1) that puts in the call to samecombine that wilt combine 
together all the supports derived from each Individual rule that has been translated and 
incorporated into the one clause form 

one_ctause-form(_, El. samecombfne(Sups, S), (3, Sups, S, non-fuzzy): - 
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/* 7 Sorts out the fuzzy arguments before reinvoking one_ctause_form with the adjusted 
ctauses 

one-ctause-form(H, Cs, Bs, Ss, Sups, Sup, FN): - 
fuz_args(FM, Cs. Csl), 
1, 
one-ctause-form(H, Csl, Bs, Ss, Sups, Sup, non-fuzzy). 

fuz 
- args(N, Cs, Csl) is called by one_cLause_form to sort out the fuzzy arguments in the 

heads of all the clauses, Cs, that are to be translated to form a single clause. The 
clauses so produced are Cs1 and N Is the argument number of the fuzzy term. 

fuz_args(N, E(H <-> B)ICsl, ((HI <-> B)ICsll): - 
1, 
H [PlArgs], 
fuz.., arg(l, N, Argsl, 

_, _, _, 
Args), 

H1 a.. [PlArgsil, 
fuz_args(N, Cs, Csl). 

fuz_args(N, ((H - : S)ICSI, '((H': -': S)ICS11): - 
1, 
fuz_args(N, Cs, Csl). 

fuz_args(N, E(H,: - B)ICsl, [(Hl :- B)ICsll): - 

H (PlArgs] 
fuz_arg(I, N, Argsl, 

_, _, _, 
Args), 

HI a.. [PlArgsll, 
fuz-args(N, Cs, Csl). 

fuz_args(N, ECICSI, [CICSII):, 

fuz-args(N, Cs, CSI). 
fuz_args(N, [], El). 

fuz 
- 

arg(M, N, Argsl, Fl, Args2, F2, Args3) Args3 Is the List of arguments to a goal containing 
fuzzy term, N is the argument number for the fuzzy term, M is a counter for 

stabtfshing the element of the List Ar'gs3 that Is the fuzzy term: the head of Args3 Is 

the fuzzy term when M and N are the same. Argsl is then bound to the List Args3 with the 
fuzzy term replaced by the variable F1, Args2 Is bound to the List Args3 with the fuzzy 

term replaced by the variable F2. The variable standing for the fuzzy term in the List 

Args3 is bdund to the term Fl-^fuzzy, for use as explained in the comment describing 

trans_fuzzy. - 

fuz-arg(N, N, [FbIArgs], Fb, EF2lArgs], F2, [Fb-'^fuzzyllArgsi): - 
1. 

fuz-arg(Nl, N ' 'EHIArgsl], Fi, [HlArgs2l, F2, (HlArgs3l): - 
N2 is NI + 1, 

fuz_arg(N2, N, Argsi, F1, Args2, F2, Args3). 

Argument I is an arithmetic expression which, If it is of the form "Pill, is simplified 
to X. This new expression Is then passed recursivety untit no further sfmpLffication can 
be performed. Argument 2 is bound to the simpLification. ALways succeeds. 

sjmpLjfy_puLt(X*One, Y): * 
one 
1, 

sfmpLify_muLt(X, Y)- 

SJMPL If yjwLt(X, X) - 
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Birds argument 2 to the opposite support type from argument I- "SPI (lower support) for 
"sull (upper support) and vice versa. 

switch_supports(st. su). 

switch_supports(su, sL). 

Writes to the output device each clause in the List. Used for writing clauses that are 
to be treated as ordinary prolog goats and also fuzzy set definitions. 

wrfte_ctauses(ICH: -B)lCsl): - 

portray((H: -B)), 
write_ctauses(Cs). 

wrfte_ctauses(EHICsl): - 
portray((H: -true)), 
write_ctauses(Cs). 

wrfte_cLauses(ED. ý 

GENERAL UTILITIES 

Resets the knowtedge base ready for a new transLation, by deteting the moduLe form of 
the fiLe that was Last transLated as weLL as aLt the transtatfon data, such as the 

sotution sets and dectaration fLags etc. 

reset: - 
scrap_retations, 
aboLish(not_storing, O), 

aboLish(user_fuzziness, l), 

aboLish(fuzziness, l), 

aboLish(not-caLled, l), 

aboLish(modname, l), 

abotish(nextclause, l), 

abotish(type_oectaraticm, 2), 

aboLish(reL_Length, 2), 

abotish(known-soLs, l), 

abotfshCsols, 2), 

aboLfsh(soLn_set, 2), 

aboLfsh(cLause_soLn, 2), 

aboLish(fite_read, l), 

aboLlsh(dot-bagof, cLause, l), 

abotish(proLog_goat, l). 

Deletes all module forms of relations that were stored when the last file was 
translated. 

scrap_retations: --", 
retract(current_retation(MgH)), 
functor(MgH, P, N), 
newname(P, Mod-P), 
MI is N+1, 
aboLish(Mod_P, Nl), 
faiL. 
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scrap_retations: - 
retract(retatfonC[P, Mod_Hl_], 

_)), functor(Mod_H, Mod 
- 

P, A), 
(A a l, abotish(P, O); abotish(Mod_P, A)), 
faR. 

scrap_retations. 

append(X, Y, Z) is true iff the tist Z is the resutt of appending the tfst Y to the tfst X 

append([], L, L). 

append([HITI. L, EHIRI): - 
appendCT, L, R). 

Acts as a filter for clauses that are to be portrayed. This clause does not actually do 
anything, but allows for a new version to be defined easily, so that there can be a 
fiLter., This was put in to get round the problem of translated files not being read in 
property by making portray assert the clause directly into the knowledge base. Note that 
clauses being read in are portrayed with portrayl and therefore do not go through this 
filter, which is only used when portraying translated clauses. 

portray(C): - 
portrayl(C). 

Prints Support Logic cLauses to the current output stream whether standard output or a 
Me. 

portrayl((X: -true)): - 

writeq(X), 
write(I. 1), nL. 

portrayl((X: - : Y)): - 
1, 

writeq(X), 
write((: -)), 
portrayl((: Y)), 

write(I. 1), nt. 
portrayl((X: -Y)): - 

1, 

writeq(X), 
write((: -)), nt, 
put(9), portrayl(Y), 
write(I. 1), nL. 

portraylC(: Y)): - 
I, 

writeV : 1), 

wrfte(Y). 

portrayl(((X: -Y): Z)): - 
1, 

writeq(X), 
write((: -)), 
writeq(Y), 
write((: Z)), nt. 
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portrayl((X <-), Y)): - 
ý1, 

writeq(x), 
writeV -l), nl, 
put(9), portrayl(Y), 
write(I. 1), nL. 

portrayl((X: Y)): - 
1, 

portrayi(X), 
writeV : 1). 

write(Y). 
portrayl((X sup_or Y)): - 

1, 

write('('), nL, 
put(9), portrayl(X), nL, 
put(9), wrfteVsupý_or, ), nL, 
put(9), portrayl(Y), nL, 
put(9), write(, ), ). 

portraylC(X ; Y)): - 
1, 

wrlteClV), nL, 
put(9), portrayl(X), nL, 
put(9), write(l; l), nL, 
put(9), portrayl(Y), nL, 
put(9), wrfte(#)'). 

portrayl((X, Y)): - 

portrayl(X), 
write(l, l), ni, 
put(9), portrayl(Y). 

portrayl(X): - 
writeq(X). 

print& a new Line to the standard output device, the screen. Also allows compatibility 
with the arity version. 

disptaynt: - 
displayV 

I). I 

SpLits the RMS of the ": -" operator (B: S) into the rute body, 8, and the support pair, 
S. If there is no expticit support pair then the impLfcit support pair E1,13 is bound to 
S.. 

no_sup_j)afr((B: S), B, S): - 
--1. 

no_sup_pair(6,8, (1,11 

mem(X, Y) is true Iff X is a member of the tist Y 

mem(X, EXI-! )- , 
mem(X, E_Iyl): ' 

mem(X, Y). 
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Checks'whether or not the two arguments OR unify without causing any varfabLe 
bindings. 

witt-unify(X, Y): - 
not not XaY. 

Resets the rumber stored by "nextnun" to N. "nextnum" is incremented by "newnum" which 
is caLLed by "comp" and mclause_sotn_pick". 

num-reset(N): - 
abolish(nextnLin, l), 

assert(nextnum(N)), 
1. 

Increments the counter "nextnum's in the knowLedge base. Used by "COmP" and 
"cLause_sotn_pick" 

newrKxn(N): - 
retract(nextnum(N)), 
Nl Is N+1, 

asserta(nextnum(Nl)). 

Succeeds onty if its argument is a non-empty tist 

no%empty([_I-]). 

recovers VaLue from the database under the key, Key, and erases the database reference. 

dot_untag(Key, VaLue): - 
recorded(Key, VaLue, Ref), 

erase(Ref). 

current-op(X, Y, Z) stores all the system default operator declarations for use by convert 
when modutarising a program. Equivalent to the system predicate of the same name in 
Arity Protog 

current_op(1200, xfxo(: -)). current 
-oP(700, xfx, -: -). 

current_op(1200, xfxo(*-), )). current 
-op(700, xfx, s\=). 

current_op(1200, fx, (: -)). current 
_op(700, xfx, <). 

current-oP(1200, fx. (? -)). current 
-op(700, xfx, >). 

current-Op(1100, xfY, (; )). current 
_op(700, xfx, a-c). 

current-oP(1050, xfY, (-), )). current 
-opC700, xfx, ), =). 

current_op(1000, xfY, (', ')). current _op(500, yfx, +). 
current-op(900. fy, not). current 

-oP(500, yfx, -). 
current-oP(900ofY, \+)- current 

-op(500, yfx. /\). 
current_op(900, fYospy). current 

-Op(500, 
yfx, \/). 

current-op(900, fy, nospy). current 
- 

op(500, fx, +). 
current_op(700, xfxo=)- current 

_op(500, 
fx, -). 

current_op(700, xfx, is). current _op(400, yfx, *). 
current_opC700, xfxom--)- current 

-op(400, yfx, /). 
current_opC700, xfx. *n). current 

-OpC400, 
yfx. //). 

current_op(700, xfx, \xz). current 
-op(400, 

yfx, <<). 
current-oP(700, xfxo&<)- current -oP(400, yfx, ], )-). 
current_op(700, xfx, @>). current_ op(300, xfx, mod). 
current_op(700, xfx, @z<). current op(200, xfy, ý). 
currentý-oP(700, xfx, @>8)- _ 

current- oP(1150, xfx, (: )). 
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current-oP(1150, fx, (: )). 

current_op(900, fy, sup_yiot). 

current-op(1100, xfy, (sup_or)). 

current-op(1199, xfx, (->)). 

current_op(1175, xfy, (ýc-)). 

current-oP(1175, fy, (4-)). 

current-op(700, xfx, -, ). 

current-oP(X, Y, Z): - 
trans-current-op(X, Y, Z). 

/* , -<z>(X, Y) tests whether the arguments, X and Y, match such that the arguments must be 
uniflabLe but a variabLe in X must aLways be matched by a varfabLe in Y and vice versa. 
This is effectfveLy a reLaxed form of zz, the difference being that in ax the goat onty 
succeeds if variabLes used in the same tocation in X and Y are identfcaL (i. e. actuatty 
refer to the same data item) whereas in the goat wiLt succeed if the varlebtes are 
actuatty different varlabLes. 

4z>(X, Y): - 
X as Y, 

4=>(X, Y): - 
not X Y, 
I, falt. 

<2>(X, Y): - 
var(X), 
I, - 
var(Y). 

, cz>CEXIXLI, EYIYLI): - 
1, 

4z>(X'Y)' 
<z>(XL, YL). 

<=>(X, _): -- 
atomic(X), 
I, fait. 
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X x.. EPIArgsX], 
Y z.. [PlArgsYl. 

<-), (ArgsX, ArgsY). 

Binds or compares its argument with the head of a system predicate or one of the extra 
predicates provided for Stop or the translator. The predicate sys, stored in the file 
I/ffnt6/renOOs/MonkMR/d-sLopl. 2/syspred', Is defined In the form P/A, rather than 
directly as the head of a system predicate, for compatfbiLity with Arity Protog. 

syspred(X): - 
functor(X, Pred, Arity),, 

sys(Pred/Arity). 

sys(P/A) Is true for aLL ProLog system predicates, P, with arity A. Relation can be seen 
with the $Lop Listing 

TRANSLATION DECLARATIONS 

Called as a directive from the file being translated, nostore causes the flag 
"not_storing" to be asserted into the knowledge base. This f Lag Is detected by "Process" 
so that time is not wasted converting clauses that are not going to be stored in the 
knowledge base. Clauses do not have to be stored If all the solutions are declared In 
the file using "solutions" 

nostore: - 
assert(not_storing). 

Called as a directive from the file being translated, semantic-unification causes the 
flag "semantic-unification_on" to be asserted In the knowledge base. This flag Is 
detected by "fuzzies" so that time Is not wasted Looking for semantically unifiable 
terms when semantic unification is not being used 

semantic_unification: - 
assert(semantic-unification_on). 

Called as a directive from the file being translated, fuzzy_goal(P/A, N) causes the 
declaration that the predicate P with arity A has Nth argument that is a fuzzy term, to 
be asserted in the knowledge base. This declaration Is detected by "fuzzies" so that 
time is not wasted looking for semantically unifiable terms when it is known which 
argument of the goal will be semantically unifiable 

fuzzy_goat(P/A, N): - 
assert(user_fuzzfness(P/A-N)). 
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Called as a directive from the file being translated, top_teveL(X) asserts In the 
knowledge base a rule with head "not-caUed(X)" which, when called from 
"create_soln_sets", prints a message to the standard ouput stating that this goal Is not 
called. This saves the translator from having to query the particular predicate to 
evaluate the solutions, since they will not be needed. 

top_teveL(P/A): - 
assert((not-caLLed(P/A): - 

dispL&y('*** TOP LEVEL GOAL NOT CALLED 
disptaynt)). 

Called as a directive from the file being translated, proLog(P/A) causes the declaration 

that the predicate P with arity A is to be queried as a proLog-type goat. This means 
that the relation witL not be translated, but wilt be left exactly as It is, and that 

all calls to the goat will also not be translated. Such goats will be accessed by the 

system predicate call. Note that goats within the caLt predicate can still be 

translated, so that it is possible to access the data of support logic goats without 
having to acces the supports. 

protog(P/A): - 
functor(H, P, A), 

assert(protog-goat(H)). 

Called as a directive from the file being translated, type(X, Y) causes the declaration 
that the atom X will be used to represent term Y in a solutions declaration, to be 
asserted In the knowledge base. This declaration is detected by "find_types" allowing 
the substitution to be carried through the solutions declaration 

type(X, Y): - 
assert(type_oecLaration(X, Y)). 

Called as a directive from the file being translated, sotutions(P/A, L) asserts in the 
knowledge base the solution sets deff . ned by L for predicate P/A. This saves the 
translator from having to query the particular predicate to evaluate the solutions for 
itself. The arity 3 form - soLutions(P/A, L, T) - has the extra argument T relating the 
types stored In "type_oectaratfon" to the variables used in the List L. 

soLutions(P/A, List): 

sotutions(P/A, Lfat, t]). 

sotutions(P/A, Lfst, Types): - 
newname(P, ModP), 
Al fs A+1, 

, functor(ModH, ModP, Al), 
functor(MgH, P, A), 
tength(List. N), 

assert(reL_tength(MgH, N)), 
(ffro_types(P/A, Types); retract(ret_tength(MgH, N)), fait), 
buftcj_list(A, A_List), 

store_sots(I, ModH, P/A, A_tfst, List), 
1, 
flat_set(Lfst, Set, []), 

assert(sotn_set(ModH, Set)). 

sotutfons(_, _. -). 
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/* ý- find 
- 
types(R, L) takes the list of pairs, L, and unifies the second element In each pair 

with the type represented by the first element of each pair. R is the relation name for 

which the types are being sought, and is passed only for error message output 

ff rio_typesC_, 0 
I. 

find_types(R, E(X, Y)ITsl): - 
typejecL&ration(X, Y),, 
1, 
find_types(R, Ts). 

find_types(P/A, E(X, 
_)I_]): - 

disptaynL, dfspLay('*** In the solutions declaration for relation 1), 
dispLay(P/A), dfspLaynL, 
dispLay('*** type 111), dispLay(X), 
dispLay(I" is not defined. 0), dispLaynL, 
dispLay('*** Continuing with solutions declaration ignored. '), 
displaynL, dispLaynL, 
1, 
fait. 

buitd_tist(N, L) binds L to the tist, of varfabtes, of tength N 

buiLd-List(O, []): - 
1. 

buiLd_Lfst(N, (-jTD: - 
Nl is N-1, 
buiLd_tlst(NI, T). 

store-sots(N, ModH, P/A, L) stores the head of the List L as the solution set for each 
clause with module head ModH, starting with clause N. It calls Itself recursively, 
Incrementing N by one and dropping the head of the list L each time. The P/A Identifies 
the predicate in the userfs terms and is used for error messages only. 

store_soL&(W, ModH, P/A, A-tist, (Sll_]): - 
arg(1, Moc1H, N), 
store-Sotsl(ModH, P/A, A-tist, sl), 
I'fait. 

store_sols(N, ModH, P/A, A-tist, (-ISsi): - 
N1 is N+1, 
store-sols(NI, ModH, P/A, A-List, Ss). 

store_sots(-, -, -, -, 
II)- 

Asserts the List of solution sets EL110 Into the knowledge base If every element of the 
list is the saw Length as the List A- List. ModH is used to identify the clause for 

which solution sets are being asserted. P/A is used only In error messages. The goal 
fails if the solution sets are successfully asserted, otherwise succeeds. 

storeý. sotsl(ModH, P/A, A_Lfst, [HITI-s): - 

store_sotsl(ModH, P/A, A_Iist, [H, HITI). 
storeý_soLsl(ModH, _, 

A_List, (LlILI): - 
check_arity(A_tist, EL1jL1), 
assert(soLs(ModH, EL1jL3)), 
I'fait. 
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store_solsi(ModH, P/A, 
_, 

Sl): - 

.I 
dfsptaynt, disp(ay('*** The solutions declaration for retation 1), 
dispLay(P/A), dispLaynL, 
dispLay(lhas the wrong arity'), disptaynL, 
dispLay('*** Continuing with solutions declaration Ignored. $), 
displaynL, disptaynt, 
bagof(_, retract(sots(ModH, 

_)), _). 

Succeeds if the non_empty list, argument 1, is the same length as all the elements 
(Lists) in the list, argument 2. If argument I is the empty List the goat under 
consideration must have arity zero in which case clause 1 is used to allow the user to 
define how the clauses in the relation should be combined. Without this clause, it is 

not possible for the user to affect the grouping of clauses in the translation and aLt 
zero arity relations would be translated using the one clause form. 

check_arity([], _): - 

check_arfty(L1, EL2jLI): - 
wftt-unify(Ll, L2), 

check_arity(Ll, L). 

check_arity(_, (3). 

/* fLat_set(X, Y, T) is true Iff X, a list of Lists can be flattened to produce the list Y 

with all, duplicates removed (i. e. a set). T is a list of terms that have sofar been 

picked out of X to go into Y 

ftat_set([S-slSsl, Set, Sofar): - 
1, 
fLat_set([SlSsl, Set, Sofar). 

ftat-set(ESISsl, Set, Sofar): - 
ftat_seti(Ss, S, Set, Sofar). 

fLat-set(I3, I1, 
-)- 

Mutually recursive with 'Iftat-seti, 

ftat_seti(Ss, (HITI, EHISet], Sofar): - 
not_in(H, Sofar), 

- 
1, 
fLat-set1(Ss, T, Set, [HjSofarD. 

fIat_set1(Ss, 1-jTI, Set, Sofar): - 
flat_seti(Ss, T, Set, Sofar). 

fLat_seti(Ss, (], Set, Sofar): - 
ftat_set(Ss, Set, Sofar). 

not_in(T, L) is true iff the term T does not match according to the test any 
0 lement of the List L 

notjn(S, I3)- 

not_in(S, (SlISSI): - 
not S -, S1, 
1, 

not_in(S, Ss). 
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Put in so that the, transtator can ignore the command to turn on semantic unification in 

Stop. This directive is often put In Stop programs in order that semantic unification is 

enabled every time that the file is (re)consutted. 

semanticsU. 

FRONT END FOR RUNNING TRANSLATED PROGRAMS 

Evaluates the support pair for the conjunction of two support pairs 

ardcombineC[Snl, Spll, [Sn2, SP21. ESn, Spl). - 
Sn is Sn1*Sn2, 
Sp is Spl*Sp2. 

Evaluates the support pair for the disjunction of two support pairs 

orcombine([Snl, Spll, (Sn2, Sp2l, (Sn, Spi): - 
Sn is Sn1 + Sn2 - Snl*Sn2, 
Sp is SpI + Sp2 - Spl*Sp2. 

Combines the support pairs for a rule and the body of that rule 

condcombfne((Snc, Spc], ESnl, Spll, (Sn, Spl): - 
Sn is Snc*Snl, 
Sp is I-0- Spc)*Snl. 

condcombine(nocond, Supports, Supports). 

Combines the support pairs for a pair of probabilistic rules and their bodies 

probcombfne([Sns, Spsl, [Snl, Spll, [Sn2, Sp2l, ESn, Spl): - 
Sn is SnI*Sns +0- Sps) Sn2, 
Sp is 1-M- Sps) * CI Sp2) + C1 - Spl) * Sns). 

Finds the conflict associated with two 'support pairs assumed to be supporting the same 
conclusion 

confLIct([Snl, Spll, [Sn2, Sp2l, C): - C is SnI * (I - Sp2) + Sn2 *0- Spl). 

p Combines support pairs which all support the same conclusion; calls conflict 

samecombfne(Ell, t): - 
1. 

samecombine(EESnl, Spl]ISLIst], ESn, Sp]): - 
, samecombine(SLIst, [Sn2, Sp23), 
confLict(ESnl, Spl], ESn2, Sp2l, c), 
Sn is (Snl + Sn2 - SnI*Sn2 -C) / (1 - C), 
Sp is Spl*Sp2-/ (1 - C). 

11 - 52 



/* - This relation is the bundle equivalent of samecombine. it evaluates the overall support 
(arg 2) from the List of individual supports (argl), by intersecting all the support 
pairs. 

intersect_tist(ES], S). 
intersect_iist(E[Stl, SullISs3, [SL, Sul): - 

intersect-List(Ss, [SL2. Su23), 
not trans_confLict-warning([SLI, Sul], ESL2, Su2l), 
max(SL1, SL2, SL), 
min(Sul, Su2, Su). 

Calted by fntersect_List to issue a warning if there is confLict In the support 
evaLuation for a transtated bundte. 

trans_conftict_warnfng(ESII, Sul], ES12, Su2l): - 
(SLI 3, Su2; S12 > Sul), 

dispLaynL, dfspIay('*** WARNING - CONFLICT IN SUNDLEI), disptaynt, 
dispLay('*** RUNDLE EVALUATION FOR THIS SOLUTION FAILINGO), 

, dispLaynL, dfsplaynt. 

Performs the semantic unification between the two terms X and Y In a transtated goaL. Sl 
is the support for the soLution that generated the term Y and S Is the support for the 

sotution after semantic unification has been performed to evaLuate support for the term 
X. 

semunify(S, Sl, X, Y): - 
fuzzy(C, Y, Ptsl, 

_), 
1, 
fuzzy(C, X, Pts2, 

_), 
fuzzynot(Ptsi, Ptsin), 
fuzzynot(Pts2, Pts2n), 
maxminset(Ptsl, Pts2, Su), 
maxminset(Ptsl, Pts2n, SLI), 
V is I- SO , 
maxminset(Ptsln, Pts2, Sun), 
maxminset(Ptsln, Pts2n, SLnl), 
SLn is I- SIM, 
probcombineCS1, [SL, Sul, ESin, Sun], S). 

semunify(S, S, X, X). 

EvaLuates the max vatue of the min combination of two fuzzy sets 

maxminset(ED, X, X, X, X, Olp_, O): -I. 
maxminset(-, EO, X, X, X, X. 01,0): -I. 

maxminset(EI, 81, 
_, _, 

El, l], EO, 
_, 

C2, D2, 
_, 

01,1): - 
02 )- El; C2 ac Bl), 
1. 

maxminset(EI, 81, Cl, DI, El, il, [0,62, C2,02, E2,01, Z): - 
X is (Cl - B2)/(Cl - 81 + C2 - B2), 
Y is (E2 - DIME2 - D2 + El - Dl), 
max(X, Y, Z), 
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B2 - El, 

81 >a E2, 
1. 

maxminset(EI, 81, 
_, _, _, 

O], (O, 
_, 

C2, 
_, _, 

01,1): - 
81 - C2, 
1. 

maxminset((1,61, _, _, 
El, O], EO, 82, 

_, _, 
E2,11, X): - 

X is (El - B2)/(El - 61 + E2 - 82), 

maxmfnset(11,81, _, _, 
EI, 03,10, B2, C2, 

_, _, 
O], X): - 

X is (El - B2)/(El - 81 + C2 - B2), 
I. 

maxminset([O, _, _, _, 
El, l], EO, 

_, _, 
D2, 

_, 
01,1): - 

02 - El, 
1.1 .- 

maxminset([O, Bl, 
_, _, _. 

I]. EO, 
_, _, _, 

E2,01,0): - 
BI >x E2, 

maxminsetC[0,81, _, _, 
El, l]; EO, 

_, _, 
D2, E2,01, X): - 

X is CEi - 81)/(E2 - D2 + El - 81), 
1. 

maxmfnsetC[O, _, _, 
DI, El, 01, [O, 82, C2, 

_, _, 
O], X): - 

C2 > DI, 

x is (El-- B2)/(El - Dl + C2 - 82), 
1. 

maxminsetC[O, _, 
Cl, 

_, _, _10[0, _, _, 
D2, 

_, 
01,1): - 

D2 >* Cl, 
1. 

maxmfnsetC(0,81, Cl, 
_, 

EI, O], EO, 
_, _, 

D2, E2,01, X): - 
E2 3- al, 
X is (E2 - Bl)/(E2 - D2 + Cl - Bl), 

maxminsetCS1, S2, X): - 
maxmfnsetCS2, Sl, X). 

maxCX, Y, X): - 
X Y, 

maxCX, Y, Y). 

mfnCX, Y, X):,,, 
X-Y, 

mfnCX, Y, Y). 
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A streamlined version of the system predicate "bagof" for use in translated goals for 

warning against predicates being solved with uninstantiated variables. This is very 
similar to that used in SLop itseLf. The remaining relations for which there are no 
coomnts are catted by "doL_bagof" but are of insignificant difference from the original 
definition of "bagof". 
*1 

dot-bagof(X, P, Bag): - 
doL-excess-vars(P, X, E1, L), 
doL_nonempty(L), 
1, 
Key 
doL_bagof(X, P: Key, Bag). 

doL-bagof(X, P, Bag): - 
dot_tag(1Sbaq', 1$baq1), 
caLl(P), 
doL_tag('$bag', X), 
fail. 

dot_bagof(X, P, Bag): - 
dot_reap([], Bag), 
dot_nonempty(Bag). 

dot-bagof(X, P, Key, Bag): - 
dot_tag('Sbagl,, Sbag'), 

catt(p), 
var-warning(Key, P), 
dot_tag(#Sbag', Key-X), 
fait. 

dot-bagof(X, P, Key, Bag): - 
dot_reap([], BagsO), 
keysort(gagsO, Bags), 
dot_pfck(Bags, Key, Bag). 

issues a warning message to the output stream if there are any variabLes in the key that 
is the first argument of the goal.. 

var_warning(Key, Goat): - 
Key z.. E$ILI# 
any_yars(L), 

retrieve_name(GoaL, Goati), 
nL, write('***** WARNING - UNINSTANTIATED VARIABLES IN SOLUTION TO 
nI,, write(GoaLl), nI,, nL. 

var_warning(-, -). 

Succeeds If the structure passed as argunent contains any varfabtes. 

any_yars(T): - 
var(T), 
1. 

any_yars(T): -" 
functor(T, 

_, 
N), 

any_other_vars(N, T). 
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/* 
. 

Succeeds If any arguments of the term as second argument contain any varfabtes. 

any_other-vars(O, _): -. 

faf L. 

any_other_vars(N, T): - 
arg(N, T, TI), 

any_yars(Tl). ' 

any_other_vars(N, T): - 
Nl Is N-1, 

any_other_vars(NI, T). 

Recovers the originat name from which the "bag_Nll name was derived, In the goat Goat and 
binds It with the arguments to Goatl. 

retrieve_name(Goat, Goatl): - 
Goat z.. EPIArgs], 

name(P, E98,97,103,951LI), 

remove_teading.. pumbers(L, Ll), 

name(PI, Ll), 
Goatl EPIlArgs], 

retrfeve_name(Goat, Goat). 

Removes any leading elements of the first list that are numbers and binds what Is Left 
to the second List. - 

remove_teading_numbersC[HITI, L): - 
H> 47, N< 58, 

1, 

remove_teading_numbersCT, L). 

remove_leading_numbersCL, L). 

dot_nonempty((_Ij ). 11 - 

dot_reap(LO, L): - 
dot-untag('Sbag', X), 
1, 
dot_reapi(X, L0, L). 

dot_reapl(X, L0, L): - 
X \a= ISbag', 
1, 
dot_reap(EXILOI, L). 

dot_reapl(_, L, L). 

doL_pick(Bags, Key, Bag): - 
dot-nonempty(Bags), 
doL_parade(Sags, Keyl, Bagl, Bagsi), 
doL-decide(Keyl, Bagl, Bagsl, Key, Bag). 

doL_. parade(EltemIL11, K, EXIB], L): - 
dot_ftem(item, K, X), 
1, 
doL_parade(LI. K, B, L). 

doL_parade(L, K, (], L). 
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dot-ftem(K-X. K, X). 

dol-decide(Key, Bag, BagS, Key, Bag): - 
(Bags2l], I; true). 

dot-decide(_, 
_, 

Bags, Key, Bag): - 
dot_pick(Bags, Key, Bag). 

dot-excess-vars(T, X, L0, L): - 
var(T), 

dot-no-occurrence(T, X), 1, dol_Introduce(T, L0, L) 
La LO ). 

dot_excess_vars(support(_, Goat, 
_), 

X, L0, L): - 
1, 
dot-excess_vars(Goat, X, L0, L). 

dot_excess_vars(T, X, L0, L): - 
functor(T, 

-. 
N), 

dot_rem-excess-Vars(N, T, X, LO, L). 

dot-rem_excess_vars(O, 
_, _, 

L. L): - 
1. 

doi_req_excess-vars(M, T, X, L0, L): - 
arg(N, T, TI), 
dot-excess-vars(TI, X, L0, Ll), 
N1 is N-1, 
dot_rem_excess_vars(Nl, T, X, L1, L). 

doL-introduce(X, L, L): - 
doL_incLuded(X, L), 
1. 

dot_introduce(X, L, EXILI). 

doL_inciuded(X, L): - 
doL_doesnt-incLude(L, X), 
1, 
fail. 

dot_fncluded(X, L). 

doL-doesnt_fnctude([], X). 
dot-doesný_inctude((YjLI, X): - 

Y \xz X, 

dot-doesnt-fncLude(L, X). 

doL_pp_occurrence(X, Term): - 
dot-contains(Term, X), 
1, 
faiL. 

dot_rwp_occurrence(X, Term). 
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dot-contains(T, X): - 
var(T), 
1, 
T zu X. 

dot 
- 

contains(T, X): - 
functor(T, 

_, 
W), 

dot_Upto(N, I), 

arg(I, T, TI), 
doL-contains(TI, X). 

dot-Upto(N, N): - M>0. 
doL-Upto(M. 1): - 

m>0, 
NI is N-1, 
doL-Upto(M1,1). 

dot_tag(Key, Vatue): - 
recorda(Key, Vatue, 

_). 
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Appendix 111, TEWA - Slop program for Threat Evaluation Weapons Assignment 
with translation declarations 

semantics(on). 
nostore. 

TARGET IDENTIFICATION RULES 

updates the knowtedge base with the current target identifications stored in the cLauses 
target_type 

sotutfons(update/2,111-, target]33). 
update(X, Target): * 

caLL( aboLish(target_type, 2) 
identffy(X, Target), 
caLLC assertCtarget_type(X, Target)) ) : [1,11, (0,01. 

identifies the target by evaluating support for each different target type and selecting 
that with the strongest support as defined by stronger_support. 

sotutions(identify/2, [([-, targetlll). 
identify(X, Target): - 

target(X, sea_skim)^Sl sup_or 
target(X, supersonic)^S2 sup_. or 
target(X, aircraft)^S3 sup_or 
support(E1,13) ), 

caU( best(ES1, S2, S3], Esea_skim, supersonic, afrcraft], Target, S) 
support(S) : E1,11, E0,03. 

EvaLuates support for each possibLe target identification: 

sea_skim a sea skimming misslLe 
supersonic a supersonic missite 
aircraft a aircraft 

sotutions(target/2, 
EEV, sea_skiml1, EE-, sea_skfm3l, 

ll-. superl], E-, super233,11-, superlil, [E-, super211. 
LE-, afrcraftll, [E-, aircraftl], EE-, aircraftlll)- 

target(X, sea_skim): - 
velocity(X, 1-3001) : [0.5,11, EO, 0.21. 

target(X, sea_skim): - 

, aLtitude(X, 1-151) : EO. 9,11,10,0.13. 

target(X, supersonic): - 
vetocity(X, 1-5001) : [0.9,11, [0,0.11. 

target(X, supersonic): - ý 
caLL(( rangeý. data(X, R), 

R >= 21000 

range(X, R), 

&Ltitude(X, 1-120001),: (0.7,11, (0,0.11. 
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target(X, supersonic): - 
CaLM rangeý_data(X, R), 

R< 21000, 
AM is R/1.73205 )), 

range(X, R), 

attftude(X, ALtl) : [0.6,11, [0,0.23. 

target(X, aircraft): - 
vetocity(X, 1-3001) : 10.5,11, EO, 0.21. 

target(X, aircraft): -, 
sup_not rangeCX, 1>2kml).: EO, 0.11. 

target(X, aircraft): - 
aLtitude(X, 1-5001) : EO. 7,13. EO, 0.33. 

PROLOG RELATION 

best(listl, tist2, term, support) finds the term in LIst2 that has the best corresponding 
support In Listl, as defined by stronger_support. 

proLog(best/4)'. 
soLutions(best/4, 

EIEListl, List2, target, support_pair33, 
(EList3, tist4, target. support_pairl], 
(Elist5, Lfst6, target, support_pair3l]). 

best(ESI, S2lSsl, [Termi, Term2lTerms], Term, S): - 
stronger_support(Sl, S2), 
1, 
best(ESIlSsl, ETermllTerMS3, Term, S). 

best(ESI, S2lSs3, [Terml, Term2lTerms], Term, S): - 
best C ES2 I Ssl , ETerm2 I Terms3 jerm, S). 

best(ES3, ETerm3, Term, S). 

PROLOG RELATION 

Succeeds if the first support palr is considered to represent stronger support than the 
second support pair. In this case this is defined as bing when the tower support Is 
greater. 

prolog(stronger_support/2). 
solutions(stronger_support/2, [[Esupport_pair, support_pairlll). 

stronger_support([SII, Suli, ES12, Su23): - 
SO >- SM 

Fuzzy Set Definitions 
Note the general definition for all numbers greater then one. 

fuzzy(number, 1>2km,, EO, 500,2000,2000,2000,11). 
-fuzzy(number, 1-3001, [0,250,290,310,350,01). 
fuzzy(number. 1-5001,10,450,490,510,550,03). 
fuzzy(number, 1-151, [O, 10,14,16,20,01). 
fuzzy(number, 1-12000,, EO, 11500,11900,12100,12500,03). 
fuzzy(number, N, [O, Nl, N, N, N2,01): - 

number(N), 
N>1, 
NI is N- N*0.1, 
N2 is N+ N*0.1. 
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supportCS) is a goal, that evaLuates with support pair S. It is a Support Logic 

equivaLent to the Prolog system predicate true. 

sotutionsCsupport/1, EEEsupport_pair]]]), 

support(S): - : S. 

THREAT EVALUATION 

unopposed - 
threat(target_fd, target_type) evatuates the threat posed by the target, 

target_fd, which has been identified as type target_type. 

soLutions(unopposed_threat/2, E[E-, targetlll). 
unopposed_threat(X, Target); - 

kiLL_prob(Target), 
impact_time(x) : El, l], EO, 0.21. 

evaluates a support associated with the time until the particular target will impact 

with the ship. 

sotutfons(impact-time/1,111-111)- 
lmpact_time(X): - -I, - 

call(( range_data(X, R), 

modffy-range(X, R, Rl), 

velocity_Oata(X, V), 
Time is R1/V, 

(Time t 100, St is 1); 
(Time ),, 1000, SL is 0); 
CSI is (1000-Time)/900) : ESL, 11. 

Data givfng the LikeLy MI probabitity of each type of target. 

soLutfons(kfLL_prob/l, ([Esea_skingl, [Esupersonfc]], (Eafrcraft3l]). 
kiLL_prob(sea_skim): - : [0.65,0.751. 
kitt_prob(supersonic): - : [0.45,0.553. 
kftL_prob(afrcraft): - : EO. 15,0.251. 

Evatuates the current extent to which the ship is threatened 

top-tevet(threatened/0). 
sotutfons(threatened/O, (ta3, la, bl, tbll). 

threatened: * 
CaM bagof(EX, Targetl, target_type(X, Target), Targets) 
escapeCTargets) : [0,01, (1,11. 

threatened: * 
undefended : [0.9,11. 

threatened: - 
CaM not ctause(target_type(_, 

_), : E0,03. 
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/* , Evaluates the support for escaping a hit from all of the targets. Works by using 
recursion to evaluate support for a conjunction of undetermined Length. 

solutfons(escape/l, (E[Listlll, (Etist2lll). 

escape([]): - : 0,11- 

escape(LIX, TargetIlTargetsl): - 
sup_not unopposed T 

threat(X, Target), 
escape(Targets) : 0,13,0,01. 

PROLOG RELATION 

adjusts the range of the target from the ship to account for aircraft not coming within 
2km of the ship. 

protog(modify_range/3). 
sotutfcms(modify_range/3,11[-. number, numberll, (E-, number, numberlll). 

modify-range(X, R, Ri): - 
target_type(X, afrcraft), 
1, 
Rl is R- 2000. 

modify-range(X, R, R). 

WEAPONS ASSIGNMENT PROCESS 

Determines each possibLe ptan for defending the ship, ranks them and stores them in the 
knowtedge base for future reference. In fact the ptans are not returned in order because 

of the way SLop sorts sotutions, however they are stored in the knowtedge base in order. 

sotutions(defence/1,1[Etfstill). 
defence(INIPLanl): - 

calt( aboLish(plan, 2) 

caLt( begof(EX, Target, Wl, target_type(X, Target), PLan) 

caLL( bagofC[W'_Type, 4_id, Sl, weapon(ý_Type, ý.. id, S), Weapons) 

ordered_survivaL_pLan(W, Ptan, Weapons).: (I, ll, (O, 01. 

Determines, and ranks according to the support, att the possibte ptans for defending the 

ship, and prints them to the current output. 

top-tevet(defence/0). 
sotutfons(defence/O, [Eal, (a, bl]). 

defence: * 
cattC not ctause(ptan(_, 

_), _) 
defenceCPLan). 

defence:, 
cattC print_ptans 

Determines each possibLe ptan for defending the ship with the given tist of weapons, 
ranks them and stores them in order in the knowtedge base.. In fact the varlabLe 
bindings caused by succeeding the the goal, does not return the pLans In order because of 
the way SLop sorts soLutions. 

solutions(ordered_survivat_pLan/3, [Elrank, listl, tist231, (Erank, tist3, List4111). 

orderec! _survivaL_pLan(R, 
PL&n, Weapons): - 

survivaL_pLan(PLan, Weapons)'S, 
caU( assert(pian(PLan, S)) 
caM fail, ). 
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ordered_survivat_ptan(R, Ptan, Weapons): - 
caLL( cottect_pLans(Ss, Ptans)), 
cattC rank(Ss, Ranked_Ss, PLans, Ranked_Ptans)), 
catt( (pick(Ranked 

- 
Ss, Ranked 

- 
PLans, S, PLan, l, R), 

assert(ptan(PLan. S)) 
support(S) : [1,11, [O, Ol. 

Determines each possibLe ptan for defending the ship with the given List of weapons. 
*1 , 

sotutions(survivaL_pLan/2, [Ertfsti, Lfst2l], [(Lfst3, Lfst4lll). 

survivat_ptan(El, _): - 
1 : 0,11. 

survfvalý, plan(EEX, Target, W-idliPtan], Weaponsl): - 
depLoy(X, Target, W-Type, lý. 

_fd, 
Weaponsl, Weapons2), 

sup_not(( unopposed_threatCX, Target), 
sup_not kil. L_prob(ý_Typejarget) 

survivaL_ptan(Ptan, Weapons2) : (1,11, [0,01. 

deptoy(target_fd, target_type, weapo%type, weaporý_fd, tistl, tist2) setects from tlstl, 

weapon_fd, of type weapon_type, for deptoyment against target_id, of type target_type, 

and returns in Hst2 att the remaining weapons. The support for the particuLar weapon 

choice is evatuated. 

sotutfons(depLoy/6, 
Et(-, target, weapon_type, wespon_fd, tfsti, Lfst2l], 

((-, target, weapon_type, weapon_id, ifst3, tfst4lll). 

deptoy(X, Target, W 
- 

Type,; ý. fd, (Eý_Type, W_fd, SilWeapons2l, Weepons2): - : S. 

depLoy(X, Target, ý_Type, ý_id, [WSliWeaponsll, [WSIlWespons2l): - 
deptoy(X, Target, W-Type, tý_id, Weaponsl, Weapons2). 

PROLOG RELATION 
CoLtects up ail. the pLans stored In the knowtedge base to form a List of associated 

supports and a List of ptans. 

proLog(coLtect_ptems/2). 
soLutions(cottect_pLans/2, EEEListl, tfst2l], EEList3, Lfst4lll). 

coLtect_ptans(ESjLSI, EPjLP1): - 
retract(pLan(P, S)), 

1 1, 
coLLect_ptans(LS, LP). 

colLect_pLans(E], E]). - 

/* PROLOG RELATION 
rank(IIst1, tist2, tIst3, List4) ranks 1.1sti of supports, according to the definition 
stronger_support, to produce tist3 and ranks the corresponding terms In LIst2, in 

exactly the same way, to produce List4. 

protog(rank/4). 
sotutions(rank/4, [E[tlstl, tist2, tist3, List4l], (ItistS, List6, tfst7, tfstBill). 

rank(U. (1, V. (D. 

rank(ESISSI, Ranked_Ss, [PtanIPLans], Ranked_Ptans): - 
partition(SS, S, P_Ssl, P_Ss2, Plans, Pian, P-Ptansl, P-Ptans2), 
rank(Pý_Ssl, R_Ssl, P_Ptansl, R_Ptansl), 
rank(Fý_Ss2, R_Ss2, P_Ptans2. R_Ptans2), 
appervo_tigtS(R_Ssl, [SIR_Ss2l, Ranked_Ss, R_Ptansi, [PLanlR_Ptans2l. Ranked_Ptans). 
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PROLOG RELATIOW 

partition(Lista, support_pafr, Listb, Liste, tistd, plan, Liste, listf) partitions Lista into 
Listb and tistc where att support pairs in Listb are stronger than support_pair, and att 
in tistc are weaker. The comparison is performed by stronger-support. ELements of Lfstd 
are acted on in the same way to produce Lfste and Ifstf. pLan Is the pLan with support 
support_pafr. 

proLog(partition/8). 
soLutions(partftfon/8, 

EEELista, support_pafr, tfstb, Liste, tistd, pLan, tiste, tfstfil, 
E[Lfstg, support_pafr, Listh, Lfstf, Listj, ptan, Lfstk, ListL]I, 
(EListm, support_pafr, listn, ifsto, Listp, pLan, tfstq, Listrlll). 

part It ion( [I, 
-, 

El, El , El 
-, 

E3,11 ). 

partftfon(ESISsl, Sl, ESIPý_Ssl], Pý_Ss2, [PLanIPLans], PLanl, EPLanlP_Ptansll, P_PLans2): - 
stronger_supportCS, SI), 
1, 

partition(Ss, S1, P-Ssl. P-Ss2, PLans, PLanl, P-Ptansl, P-PLans2). 

partftfon(ESISSI, S1, P_Ssl, ESIP_Ss2l, EPtanIPlans3, PLanl, P-PLansl, (PLanlP_PLans21): - 
partftfon(Ss, S1, P-Ssl. P-Ss2, Ptans, PLanl, P-PLansl, P-Pians2). 

PROLOG RELATION 

append(Lfsta, Listb, tfste, tfstd, Liste, Listf) appends Lista to tfstb to give Listc, and 
appends Listd to t1ste to give Listf. tista and tfstd must be the same Length, as must 
Lfstb and tfste. 

prologCapperto_Lists/6). 
soLutfonsCapperiq_Llsts/6, 

EE(Lfsta, listb, Listc, Listd, liste, Listfl]. 

E(Listg, tfsth, Lfstf, tistj, Lfstk, ListL]II). 

apperio_tistsCEI, Ss, Ss, (], PLans, Ptans). 

apperio_tists(ESISsl3, Ss2, (SISSI, EPLanIPLansl], PLans2, (PtaniPLansl): - 
append_Lfsts(Ssl, Ss2, Ss, Ptansl, PLans2, Ptans). 

PROLOG RELATION 

pfck(tfsti, tist2, support_pair, plan, N, Rank) picks from listl the next support_pair and, 
from list2, the next pLan. The Lists must be the same tength. Rank is the ranking of the 
ptan picked out and N Is the starting number for ranking the current List of pLans. 

protog(pfck/6). 
soLutfons(pick/6, 

[[[Lfstl, tist2, support_. pair, pLan, num, rank]], 
E[Lfst3, tist4, support_pair, ptan, num, ranklll). 

pick(ESISSI, (PtanIPLans], S, Ptan, N, R): - 
rank_name(M, R). 

pick([_ISSI, E_lPtans], S, PLan, NI, R): - 
N2 is W1 + 1, 

pfck(Ss, Ptans, S, Ptan, N2, R). 
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PROLOG RELATION 
Generates a ranking name, R, from the number, N, of the form PlanNNN where the Ns are 
numbers. 

prolog(rank_name/2). 
sotutfonsCrank_name/2, [[Enuml, namel33, Etnum2, name233, EEnum3, name3311). 

rank_nameCN, R): - 
N< 10, 
1, 

name(N, NL), 

nameCR, [80,108,97,110,48,48INLI). 

rank_name(N, R): - 
N< 100, 
1, 

- name(N, NL), 

nameCR, [80,108,97,110,48INLI). 

rank_name(N, R): - 
name(N, NL), 

name(R, (80,108,97,110INU). 

PROLOG RELATION 

prints to the current output stream the plans that are stored in the knowledge base 
along with the deployment times for each weapon associated with a target. 

protog(print_ptans/0). 
sotutions(print_ptans/0,11133,11333). 

print_ptans: - 
ptan(Ptan, S), 
print_ptan(Ptan), 
write(S), nt, nt, 
fait. 

print_pLans. 

PROLOG RELATION 

prints a plan to the current output stream with the deployment times for each weapon 
associated with a target. 

protog(prfnt_plan/1). 
sotutions(print_ptan/l, [([Lfstll], Ettist2lll). 

print_pLanC[]). 
print_pLanCEEX, Target, Weapon]IR_PLanl): - 

CattC time 
- 

to 
- 

depLoyment(X, Target, Weapon, Time) 
write(EX, Target, Weapon, Time3), nt, 
prfnt_pLan(R_PLan). 
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/* - PROLOG RELATION 

time_to_depLoyment(X, Target, Weapon, Tfme) evatuates the when, in seconds, Weapon can be 
deptoyed against Target with identifier X. 

protog(tfme - 
to 

- 
deptoyment/4). 

sotutfons(time_to - 
deptoyment/4, [[(-, target, weapon, numberll, [[-, target, weapon, numberlll). 

time_to_deployment(X, Target, Weapon, Time): - 
deptoyment_time(X, Target, Weapon, Time), 
1. - 

time_to_deptoyment(X, Target, Weapon, Tfme): - 
rangeý_data(X, R), 
veLocfty_ýdata(X, V), 
weapon(Weapon_type, Weapon, 

_), 
acquisitfon(Weapo%type, Target, Acqu_range, Acqu_tfme), 
Time Is (R-Acqu-rango)/V + Acqu. time, 
assert(deptoyment_tfme(X, Target, Weapon, Time)). 

Dectaratfons for the Target data Necessary to attow the target data to be transtated and 
Loaded as a separate Me 

fuzzy_goaL(vetocfty/2,2). 
fuzzy_goaLCaLtftude/2,2). 
fuzzy_goaL(range/2,2). 

protog(vetocfty_ýdata/2). 
protog(attitude_data/2). 
proLog(rangeý_data/2). 
proLog(weapon/3). 
proLog(acquisition/4). 
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Appendix IV TEWATR - Translated version of the Slop program TEWA In 
Appendix III 

update(_224, -75, -76): - 
catLCaboLishCtarget_type, 2)), 
ldentifyCE_262,2631. 

_75,76), 
caLL(assertCtarget_typeC_75, _76))), 
probcombine([I*-262,1*_2631, [1,13, (0,01, 

_224). 

identify(_228, 
-75, -76): - 

target(E_284, 
-2861, _? 

5, sea_skim), 
target( U54, 

-3561,.. 
n, supersonic), 

target(E_ý24, 
-4261, _75, aircraft), 

support(E.,. 425, 
-4271, 

El, ll), 
caLL(best(CEý_284, -2861, 

E_354, 
-3563, 

E.. ý424, -42613, 
Csea_skim, supersonic, aircraftl, _76, -80 

support( Eý_525, 
_5261 _ýBO), 

probcombine(E(_284+(_. 354+(_424+-425-_424*-425)-_354*(_. ý24+-425--424*-425))- 

_ý284*(j54+(.. 
ý24+-425--424*-425)-_354*(_424+-425--424*-425)))*Cl*_525), (_286+(_356+(-426+-427- 

_426*427)-_356*(_426+427-426*427))-_286*(_356+(_426+427-426*427)-j56*(.. ý426+427- 

_426*_427)))*(l*_526)], 
El, l], EO, 01, 

_228). , 

target(_1307,70, ý71). --. 
dot_bagof(_1308, bag_ltarget(_1308, 

_70, _71), _1310), 
samecombine(_1310, 

_1307). 

bag_ltarget(_1443, 
-T7, supersonic): - 

vetocfty((_1473, _14741, _77,1-5001), 
probcoffibine((_1473, 

_14743, 
[0.9,11,10,0.11, 

_1443)- bag_ltarget(_1525, 
-80, supersonic): - 

catt((rangok_data(_80, 
_81)1,1_ý1<210001,1_82 

is 
_81/1.73205)), 

rangeC(j663, _16641, -80, -81), 
attitude((_1665, 

_16661, _, 
82), 

probcombine([l*(_1663*-1665), I*(_1664*_1666)], EO. 6,11, [0,0.23, 
_1525). 

bag_ltarget(_1772, 
-78, supersonfc): - 

catt(Crangý_data(jB, 
_79)8,1_. 

79>a2lOOO)), 
ranqeC(_1876, 

_18773, _78, _79), 
attitudeilý. 1878, 

_18791, 
j8,0-120000), 

probcombine(tl*(_1876*-1878), I*C_1877*-I879)3,10.7,11, (O, O. 11, 
_1772). 

target(_1997, _83, aircraft): - 
attitude(lý_2047, -20481, _83, 

$-5008), 
probcombine((_2047, _20481, 

[0.7,11, (0,0.33, 
_2030), 

range([_2103, _21021, _83, 
$>2km'), 

condcoinbine(ED, 0.11, El--2102,1--21031,.., 2082), 
vetocity((_2167, -21681, _a3,1-3001), 
probcoinbine(ý_2167, -21681,10.5,11,10,0.21, _2152), 
samecombine([_2030, -2082, _21521, _1997). 

target(_2253, I 
75, sea skim): - 

vetocity([_ý293, _22941, _75,1-3001), 
probcombineC(_, 2293, 

-22941, 
(0.5,11,10,0.21, 

_ý2276), 
attitude(E..; 2344, 

_23451, _75,1-151), 
-probcombineC(_2344, _23451, 

[0.9,11,10,0.11, 
_2329), 

samecombine(1_2276, -23291, _2253). 
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support(_73, _73). 

unopposed_threat(_224. -75, -76): - 
kitt_prob(E_260, 

-2611, 
j6), 

Impact. tfme(E.; 62,. 2631,. 75). 
probccxnbine( Eý_260*-262, 

-261*2631 , [1,11 , E0,0.21 
_224). 

impact_timeClý_224,11,73): - 
cat t((ranqa_data(_73, j4) 1, 'mod! fy-range(. ýn, 

_74, _75) 
1, Ivetocf ty_data(_73, 

_76) 
1,1_77 

is 75/_761,1(_77<1001,1_78 Is 1; ý">10001,1_78 Is 0; 
_78 

is (1000-_77)/900))), 

_224 
is 

-78. 

kiLL_prob(EO. 65,0.751, sea_skim). 
kitt_prob(EO. 15,0.251, afrcraft). 
kitt_prob((0.45,0.551. supersonic). 

threatened(_571): - 
dot-bagof(_572, bag_lthreatened(_572), j74), 
samecombine(_574, -571). 

bag_lthreatened(_706): - 
catt(bagof([_71, -723. 

target_type(_71, 
_72), _73)), 

escape(t_736, -7373, _.? 
3), 

probcombine((I* - 
736,1*-73T3, EO, O1, El, ll, 

_706). bag-lthreatened(EO, 
-8161): - 

catt(not clause(target_type(j4,.. 75), j6)), 

_417 
fs 1-0. 

_416 
fs 1-817. 

bag lthreatened(C.. 478,11): - 
tx-defended(1_494, _8981), 
_878 

fs 
_894*0.9. 

escape(11,11,101). - 
escape(j56, E E_73, j4l 1_751 

tsvpposecL. threat((ý. 410, 
_4091, _ýn, _74), 

escape( 094. 
-3953.. 

75), 
probcombine(((I--409)*ý_394, (I-_410)*.. 3951,11,13, (O, O3, 

_356). 

defence(_U7, (_73jj4l): - 
catt(abotfsh(ptan, 2)), 
catt(bagof((_75, j6, 

-77i, 
target_type(_75, j6), 

_74)), catt(bagof((_78, _79, _403, wespon(j8, 
_79, _80),.., 

81)), 
ordered_survfvat_ptan((_ý27, 

-3281, _73, -74, -81), 
probcombfne(ll*(I*(l*-327)), I*(l*(l*-328))], (I, 11,10,01, 

_227). 
clefence(-ý68): - 

dot-bagof(_369, bag_ldefence(_. ý69), 
_371), 

samecombfne(_. ý71,368). 

bag_ldefence(E_504,11): - 
cattCnot ctause(ptan(_71, 

-72), _73)), 
_523 

fs 1, 
defence( E_546, 

-5501 
j4). 

_504 
fs 546*523. 

bag_ldefence([. fiO4,11): - 
catL(prfnt_ptans), 

_604 
fs 1. 
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ordered_survfvat_ptan((_ý51,11, _77, 
j8, 

_79): - 
survivat_ptan((_ý78, _3871. 

j8, 
_79), 

catt(assert(pten(_78.1_378, -3871))), is 1. 
catl(fait), 

_. 
ý51 is 428*378. 

ordered_survivat_ptan(_ý92, -81, -82, -83): - 
catt(coUect_ptansC_§4, _A5)), 
caII(rank(_84, _B6,.. 

A5, 
-87)), 

catMpIckC_86, _47, _88, - 
82,1, 

_81)#, 
tassert(ptan(_82, 

-88)))), 
supportC U96,5971, 

_m, 
probcombine(El*(l*(l*_596)), l*(l*Cl*_597))], El, ll, (O, 01, 

_492). 

survivat_ptan(E. _433,11,, 
'131, 

_75): - 
1, 

_333 
Is 1. 

survivat_ptanC_. 483, [Ej6, ýn, 
_7811_791, _40): - deptoy([_ý21, 

-4223 _76, 
ý",. fil, 

-78, -80, -82), 
unopposed_threat((_513, - 

5141, j6, 
_77), kiII. 

_prob(1_558, -5571, _81, -77), 
survivat_ptan([_480, -4811, _79, _82), 
probcombine(E_ý21*((I-_514*(l-_558))*_480), _422*((I-_513*(I- 

_557))*ý_481)1 , 
E1,11 , E0,03 

_. 
ý83). 

deptcyC.. A7, 
-83, -84, -85, -B6, 

E Efi5, 
-86, -873 

1_883 
_88). 

deptoy(Eý_410,11, 
_09, _90, _91, _92, 

ý_931_941, (_ý31251): - 
deptoyCE_ý10, 

-4451, _A9, _90, _91, _92, _94, _95). 

best(E. 
_§5, -661.. 

071, (_88, 
_§91_ý01, _91, _92): - 

stronger_support(_85, -86), 1, 
best( E_fi5l. 

_473. 
EjMl-. 903,91,92). 

best(E_93, 
-941_ý5], 

E_96, 
_971_ý81, _r, _100): - best( E_: 941_ý51, E_? 71_? 83, 

_r, _100). best(E_1011, E-1021, 
-102, _lO1). 

strongeiý_support(E_79,. _40]. 
E_41. 

-82]): - 

_79), *_81. 

modi fy_range(_R, 
_P, _44): - 

target_type(_A2, aircraft), 
1, 

_A4 
is 83-2000. 

modIfy_ranqe(_§5, -86, -86). 

cottect_ptans(1_791_401, U11_421): - 
retract(pian(.. 01, 

-79)), 1, 
cottect_pLans(_40, _A2). 

cottect_ptans('Ell, 'Ell). 
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rankV U 0.1111.111 ', v' 11 ') - 
rankC E_85 1_861,47. C_M J_A91, 

_ýO): - 
part I ti on(_O,.. A5, 

-91, _92, _89, _88, _93, -94)I 
rankC21, _95, _93, _96), 
rank (22,. y7. 

_94, _98), 
append_tfsts(_. ý5, E_85 j_y7l, 

_p7, -96,1_881281,20). 

part f tf onV El #,. y7,6 El Is I El so* El ', 
_98,1 

Ell, ID I). 
part f tf on( E291_1001. 

_101, 
E_991_1021, 

_103, 
E_1041_1051, 

_106, 
Eý-1041_1071, 

_108): - 
stronger-support(_99, _101). 
1. 
partftfon(_100, _101, _102, _103, _105, _106, _107, _iO8). 

partftion(E_1091_1101, _Ills_112#E_1091_113], 
E_1141_1151, 

_116, _117, 
[_1141_1181): - 

partftfon(_110, _111, _112, _113, _115, _116, _117, _118). 

apperi4_tf StSC' El El 0,22, 
-92). 

appen4_tfsts( Eý931_941, 
_95, 

Eý931_y6l, E_y7j_y8l, 
_99, 

Eý-971_1003 
append_tfsts(_y4, -95, -96, -98, -99, _100). 

pick(E_911_92]. Eý_931_941. 
_91. _93, _95, _96): - 

rank_name(25, -96). 
pfck(E271_981, E_ý91_1001. 

_101, _102, _103, _104): - 

_105 
is 

_103+1, 
pick(_98, _100, _101, _102. _105, _104). 

rank-name(ýM, -80): - 

name(_79,. fil), 
name(_AO. E8O. lO8,97,110,48,481. 

_411). 
rank_name(_42. -83): - 

_42<100, 1, 
name(_A2, _84), 
name(_. 43, (80,108,97.110,481_841). 

rank_name(_45, _86): - 
nameC_85, _87), 
nameC_M, EBO, 108,97,1 I olfi7l). 

prfnt_ptans: - 
pt&nCjl, -72), 
print_ptan(_71), 
writ*C_72), 
nt, 
nt, 
fait. 

prfnt_ptans- 

prfnt_ptan('Ell). 
prfnt_ptan([E_76, j7, 

_7811_791): - 
catt(tfme_tcý_deployment(_76. _77. _78, _AO))I 
writeC 
nt, 
print_pLan(_79). 

IV -4 



time_to_deployment(_AS. _86, _87. _88): - 
deployment_tfmeC_ý85. 

-86, -87. -88), 1. 
time_to_deptoyment(_A9, _90, _91, _92): - 

ranq4ýýat&C_A9,93), 
veloclty_ýdataC - 

; 9, 
- 
94), 

weapon(_95, J1, 
_ý6), 

acquisfticn(_ý5, _ýO, _ý97, _98), 
_? 

2 is (23-_97)/ý94+_98, 
assert(deptoyment_time(_89, _90, _91, -92)). 

fuzzy(mzber. 11>2kml. (0,500,2000,2000,2000,11). 
fuzzy( minber, 1-3001, EO, 250,290,310,350,01 ). 
fuzzy(number, 1-5001. [0,450,490,510,550,03). 
fuzzy(mumber. 1-15,1, E0,10.14,16,20,01 ). 
fuzzy(mimber, 1-120001.10. li5OO, ll9OO, l2iOO, l2500,01). 
fuzzy(number, 

-79,10. -80, -79, -79, -81,03): - 
number(_: 79). 

-? 
9>1, 

80 fs 
-79--79*0.1, 

_41 
fs 

-79+ý_79*0.1. 

rI 
ul 
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