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Abstract— Object detection in complex and cluttered en-
vironments is central to a number of robotic and cognitive
computing tasks. This work presents a generic, scalable andfast
framework for concurrently searching multiple rigid textu re-
minimal objects using 2D image edgelet constellations. The
method is also extended to exploit depth information for better
clutter removal. Scalability is achieved by using indexingof a
database of edgelet configurations shared among objects, and
speed efficiency is obtained through the use of fixed paths which
make the search tractable. The technique can handle levels of
clutter of up to 70% of the edge pixels when operating within
a few tens of milliseconds, and can give good detection rates.
By aligning our detection within 3D point clouds, segmentation
and object pose estimation within a cluttered scene is possible.

Results of experiments on the challenging case of multiple
texture-minimal objects demonstrate good performance and
scalability in the presence of partial occlusions and viewpoint
changes.

I. INTRODUCTION

Detecting real objects under clutter has been one key
problem underpinning a series of tasks in cognitive comput-
ing and robotics. One of the key complexities arises after
clutter and object viewpoints are taken into account, and
dealing with these has resulted in a series of techniques using
both 2D and 3D information. A more serious competence is
being able to learn extra objects as the system explores more
about the world, calling for methods that allow for scalability
without a severe penalty on processing time.

Consider the case shown in Figure 1 where multiple
texture-minimal but known objects are to be detected, and
their pose estimated within scenes of a complex cluttered
nature. In some cases, as it is here, it is conceivable that the
areas over which the process has to operate can benefit from
some level of prior knowledge, and therefore background
subtraction could be used. However, this still results in non
perfectly segmented regions, multiple object occlusions and
novel views to be dealt with.

This paper proposes a method that uses constellations of
2D edgelets as the representation. The method is generic,
scalable and fast for concurrently searching for multiple
rigid texture-minimal objects. Scalability is achieved by
using indexing of a database of edgelet configurations shared
among objects, and speed efficiency is obtained through
the use of fixed paths which make the search tractable. By
aligning our 2D edgelet configurations with a corresponding
trained point cloud, object pose estimation within a cluttered
scene is also possible.
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Fig. 1. Using depth background subtraction, three search regions are
considered. Our 2D detector along with an aligned point cloud are compared
to the best-matched training cluster using VFH object descriptor. When the
cluster contains occluded or touching objects, our 2D detector is still able
to detect one or more objects.

We have carried out a number of experiments with our
approach for several key aspects that include detection
performance, framerate expectation, scalability as the object
library increases and clutter handling. We then contrast our
approach to a state-of-the-art 3D object detector (VFH) [14]
where we exemplify how our method can deal with larger
levels of occlusion and clutter handling.

II. DETECTING TEXTURE-MINIMAL OBJECTS

There have been many previous approaches to shape
matching for textureless/texture-minimal rigid objects and so
we focus here only on some directly relevant works. In [9]
chamfer distance matching is improved and made faster by



using 3D distance transforms and directional integral images.
Detection time of 710ms with 300 reference views are re-
ported. This work uses a search strategy where time increases
linearly with more views or with more objects. Such methods
are being used in robotics platforms (e.g. [10]).

In [7], image patches represented by histograms of domi-
nant orientations are matched by efficient bitwise operations.
This enables detection within 80ms of one object using a
rich, 1600 reference views. However, the representation isnot
rotation or scale invariant (which can be indeed addressed by
more reference views). Importantly, the complexity increases
with multiple objects, with detection time increasing to
333ms for 3 objects. Wiedemannet al. [17] organise object
views into hierarchies. Exhaustive search over discrete scales
and rotations gives detection times within 300-900ms for
a single object. Separate hierarchies are required for each
object, giving linear increase in complexity for the case of
multiple objects.

There are many techniques which make use of relation-
ships between edge features either within local neighbour-
hoods to create features for classification [2], [11] or amongst
constellations of edgelets located around the contour [3],[4],
[5], [8], [12]. For example, Carmichaelet al. [2] train weak
classifiers using neighbourhood features at various radii for
detecting wiry objects like chairs and ladders. In [4], consis-
tent constellations of edge features over categories of objects
are learnt from training views and used for recognition via
exhaustive search over test images. Although these methods
demonstrate impressive detection performance, they are not
designed for the fast operation we aim to achieve, and are
geared towards single object search, with complexity scaling
linearly when multiple objects need to be detected.

Scalability to multiple objects was addressed in earlier
works by the use of indexing and geometric hashing, similar
in form to the library look up that we use in our method.
Examples include early work by Lamdan and Wolfson [18]
and Grimson [6], and later by others [13], [1]. Of particular
note is the work of Beis and Lowe [1]. They use descriptors
to represent the relative position and orientation of groups
of adjacent line segments which are then searched using
a kd-tree for recognising 3-D objects. Our method can
be seen as building on these techniques, incorporating the
discrimination benefits of constellations of edgelets and the
novel use of fixed path configurations to give tractable library
look up. Details of the method are given in the next section.

III. DETECTION USING EDGELET
CONSTELLATIONS

Our detection of a 3D object is based on the object’s
shape when seen from different vantage points around the
viewing sphere. We refer to the edge map as seen from
one point on the viewing sphere as aview of that object.
The views can be retrieved from 2D images around the
viewing sphere or a CAD model. For simplicity, we do not
distinguish between different views and different objects, as
the aim is to jointly detect and localise the object. The next
section explains the chosen descriptor for a constellationof

edgelets extracted from the edge map, and Section III-B
describes how two constellations are matched. Section III-
C then discusses using fixed-paths for extracting similar
constellations, and Section III-D explains the detection in
cluttered environments.

A. Edgelet Constellations

From the view’s 2D image, a set of edgelets{ei} are
extracted where anedgelet is a short straight segment,
represented by its centre point (pos) and orientation (ori).
The edgelets are sampled from straight lines with a maximum
length. Aconstellation of edgeletsis ann-tuple of edgelets
c = (e1, .., en). These can be adjacent, near-by or far
apart (Figure 2). Constellations characterise both local parts
and global shape by encoding the relative orientations and
positions between segments of nearby and distant edges.
The vectorvi connects the edgeletei with the consecutive
edgeletei+1 in the constellation’s tuple. For an n-tuple, there
are n − 1 vectors and accordinglyn − 2 anglesθi where
cos(θi) = (vi · vi+1)/(|vi||vi+1|). The base angleθ0 is the
angle between the first edgelet and the first vector. The set
of vectors are normalised to a unit vector andθ0 is used to
align with the vertical direction (Figure 2). These normalised
and aligned vectors define thepath connecting the edgelets
in the constellation, and is represented by the anglesΘ =
(θ0, .., θn−2). In addition to the path, the constellation is
described byΦ = (φ1, .., φn−1) and ∆ = (δ1, .., δn−2)
whereφi = êi, ei+1 is the relative orientation of consecutive
edgelets, andδi = |vi+1|/|vi| is the relative length of
consecutive vectors. The descriptorf(c) = (Θ,Φ,∆) is
translation-, rotation- and scale-invariant. It encodes the joint
presence of n-edgelets with certain relative orientationsand
positions. Notice that the same set of edgelets could result
in a different descriptor when the order of edgelets changes
in the constellation’s tuple. Though this might be perceived
as an additional complexity, this complexity is managed by
using fixed paths as will be shown in the Section III-C.

B. Matching Constellations

Given a test image, a constellation of test edgeletsct =
(t1, .., tn) is represented by the same descriptorf . The test

path

view

constellation
of edgelets

constellation
vectors

e1

e2

θ0

θ0

Fig. 2. Constellations of edgelets from one view of an electric screwdriver.
The constellations can be local (part-based) or global. Thepath of the
constellation is the normalised angular vectors connecting the constellation’s
edgelets. The figure shows two constellations of the same path.



constellationct matches a view constellationcv if ∀i; |θvi −
θti | < Tθ|, |φv

i − φt
i| < Tφ and |δvi − δtj| < Tδ. When

a match is found, an affine transformationH is estimated
from the corresponding edgelets, and the remaining edgelets
from the viewω are mapped to their corresponding positions
and orientations in the test image. An affine homography
can be estimated for any constellation for which|c| ≥ 4
(considering positions only and assuming the edgelets are
not co-linear). Iterative closest edgelet (ICE) can then be
used to refine the alignment where the closest edgelet to the
transformedei using the homographyH is τ(ei, H), i.e.

τ (ei,H) =

{

argmintj
d(H(ei), tj) d(H(ei), tj) < β

null otherwise
(1)

where a distance measure between two edgeletsd(ei, ej)
assesses the similarity in orientation (using L-1 norm) and
spatial closeness (using L-2 norm) [15]

d(ei, ej) = |ei.pos− ej .pos|2 + λ|ei.ori − ej.ori| (2)

In Equation 2,λ weights the orientation term. The cost
of the detectionE, using the refined homographyH ′ after
ICE convergence, is the scaled sum of the distance measures
between corresponding edgelets.

E(ω,H
′) =

∑

i

min(d(H′(ei), τ(ei, H
′)), β)

|ω|

|{τ(ei, H
′)}|

|{ei; τ(ei, H′) 6= null}|
(3)

Here the distance measures are summed along with a
penalty measure for missing correspondencesβ, and the
scale is estimated by the number of edgelets in the test image
to the number they correspond to from view edgelets. An
object is then detected at edges{τ(ei, H

′)} if E(ω,H ′) < α.

C. Edgelet Constellations over Fixed Paths

An exponential number of constellations is present in each
training and test image. To manage the matching complexity,
we adopt a fixed-path approach. All constellations over the
same pathΘk within a toleranceǫ in the angles, and starting
from each edgelet, are found in each view (see Figure 3).
This is applied to all views and all objects. For a given
Θk, the unique descriptorfΘk(ci) = (Φ,∆) distinguishes
different constellations with the same path. This forms an
indexed library, where the hash key is the descriptorfΘk of

θ0
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θ3

θ0

θ0

θ1

θ2

θ3

θ1

Fig. 3. For a given path (upper left), two constellations from the same
starting edgelet, and one from a different starting edgeletare shown (left).
All constellations found withǫ = 0.01, 0.015, 0.02 are also shown.

size |(Φ,∆)| = 2n − 3, and the value is the corresponding
view and the n-sized tuple of edgelets that generated the
descriptor. Given the training objects, the search is for paths
that can findenough constellations in the different views.
We randomly select paths and rank them by the number of
constellations found in all training views. In the experiments
next, we use up to 6 paths from 100 randomly chosen path
angles. We set the number of edgelets in each constellation
to 5 based on preliminary tests. Shorter tuples have a
higher chance of hallucinating detections while longer tuples
decrease the recall. By keeping a comprehensive library of
all constellations of pathΘk, it is sufficient to extract one
constellation of the same path from the object in the test
image to produce a candidate detection that is verified using
the rest of the view edgelets. A separate library is built for
each chosen fixed path, and a quantised hash-table is created
so a descriptor would directly lead to candidate matches.

D. Cluttered Environments

For each fixed-pathΘk, all pairs of edgelets with a relative
position that satisfies the base angleθ0 in Θk (within the
toleranceǫ) are highlighted. A pair is chosen at random, and
the search for edgelets that complete the fixed-path is carried
out (Figure 4). This search is speeded up by pre-calculating
relative measurements between all pairs of edgelets. As
the tuple is appended, the descriptorfΘk is incrementally
calculated and compared to the corresponding library. When
the partial descriptor cannot match any descriptor in the
library, the search is prematurely stopped, and another pair
is pursued. To speed up detection only one constellation
is pursued from each starting pair of edgelets. Given that
the library contains a comprehensive list of all possible
view constellations of pathΘk, the risk of skipping a pair
before pursuing all the constellations starting with that pair
is acceptable, and proves sufficient during the experiments.
When a test constellation matches a view constellation with
an error E(ω,H ′) < α (Equation 3), the test edgelets
{τ(ei, H

′)} are explained edgelets based on this detection.
These edgelets are removed from any further searches. If
all pairs are tested, another fixed pathΘ2 is used. Fork
fixed paths, the worst case isO(k · p2). A further modality
of handling clutter exists when some prior scene knowledge
is available where a depth sensor is used as explained in
Section IV-D.
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Fig. 4. For a pair of edgelets (ei, ej) that satisfy the base angleθ0 (a),
an edgeletek that completes the path is sought. When several edgelets are
found (b), one is selected and the path is completed (c).



Box,72,24

Plier,111,24

Wood,73,21

Driver,84,10

Wrench,107,11

Stapler,79,23

E-driver,53,8

Charger,46,10

Hammer,101,12

Block,60,6

Fig. 5. One view from each of the 10 textureless objects in thedataset
with (name, # of views, # of occurrences in test images)

IV. EXPERIMENTS AND RESULTS

We have tested the method on a dataset consisting of 10
real tools and components. Training images were coarsely
sampled around the viewing hemisphere (Figure 5) To extract
edgelets, we use the line-segment detector in [16]. The
edgelet length is set to 10 pixels andǫ is set to 0.02 (see
Figure 3).

Note that due to the initial random order of pairs of test
edgelets, and pursuing one path from each pair, detection
performance can vary between runs. This is illustrated in
Figure 6 which shows the results from 5 runs on a single
image along with the edge map reflecting the complexity of
the search. In the figure, the block was detected in 4 out of
5 runs while the stapler was detected in 3 out of 5.

A. Detection performance

We first compare the detection performance for the dif-
ferent tools (Figure 7), discarding the false-negative effect
from the greedy removal of edgelets. This is evaluated using
100 ground-truthed test images with one to four objects per
image. The PASCAL overlap criterion is used to evaluate the
detections. The figure shows very low recall for the driver
(yellow) and high false positive rate for the wood (red). This
is because the wood’s rectangular shape can often match
other rectangular objects in the background. The e-driver,
plier, wrench and stapler achieve the best detection results
due to their distinguished shape. The box and the block are
ambiguous which increased their FPPI.

B. Expected framerate

We ran the detector at multiple frames per second on a 300
frames video sequence containing 6 out of our 10 objects
with surrounding clutter. In this case each frame is analysed

Fig. 6. Five runs on a single image (limited to 200ms). False negatives
are caused by not selecting a constellation that belongs to the object.

Fig. 7. FPPI versus Detection rate for the tools dataset

from scratch, without considering the detections from pre-
vious frames. Figure 8 plots the recall and precision as the
frame rate increases from 1 to 17fps. This is run using a non-
optimised C code on a standard laptop machine (2.53Hz,
6GB DDR3 SDRAM). Detection can achieve above 50%
recall at about 7fps while searching for the 10 textureless
objects. The same performance can be achieved at 11fps
when searching for a single object.

For a system that runs on a stream of live images, it is
affordable if an object is missed in one frame as long as
it can be detected in a few subsequent frames. Figure 9
reports a histogram of the number of frames between correct
detections when running at 5fps. For each video, the object
to be detected was present in all frames, either in full-view
or partially occluded. This was tested for all the 10 objects,
and an average of 65% of detections were found within
3 processed-frames from a previous correct detection. This
goes up to 86% for the plier and drops to 33% for the driver.

C. Scalability

For the detector to be considered scalable, we expect that
as the number of objects and views increases, the detection
time scales gracefully. A single non-cluttered test image
is selected for each object, and the test focuses on how
the performance is affected as the library size increases.
Figure 10 plots the average (and standard deviation) detection
time from 100 runs compared to the library size as the
number of objects in the library increases from 1 to 10. The
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Fig. 8. As the maximum time limit decreases, the recall and precisions
are plotted for a cluttered multi-object sequence.
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Fig. 9. Histogram of missed number of frames between subsequent
detections for five objects, along with frames showing sample detections
from the video sequences.

increase in detection time results from comparing to a larger
number of descriptors within each indexed bin, as well as
assessing ambiguous matches. From the figure, the driver
has a nearly linear average time, while the increase in time
for detecting the wrench is 2.7x as the library size increases
by 10x.

D. Clutter handling and using a depth sensor

The other factor affecting the method’s performance is
the increase in clutter. Figure 11 is plotted from three
video sequences, each starting with the object alone on the
desktop then more objects are added. The detector is run
at 5fps and the figure shows that the approach can tolerate
clutter increased up to 70% of the edge pixels. For more
complex environments with a higher percentage of clutter,
other techniques can be used to retrieve search regions within
which objects of interest can be found. One method to get
such search regions is to use depth background subtraction.
During training, the point cloud, as retrieved from an RGB-
D sensor, is saved as background prior to the introduction of
objects. At run-time, the segmented point cloud is used to
highlight bounding boxes containing interesting objects.All
edges within the bounding box are considered for possible
edgelet constellations based on the fixed paths. In our tests
the background segmentation is not perfect due to small
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Fig. 11. The average detection time as the percentage of clutter increases
for different objects. Sample images from the ‘wrench’ sequence are shown.

changes in the scene and also addition of non-class clutter
objects. Figure 12 shows examples of detections in complex
environments using depth background subtraction.

The 2D detections can also be used to align the object
within the cloud point. During training, an RGB-D sensor
is used to combine each view with a segmented point
cloud (Figure 13). After the object is detected, the in-plane
homography is used to rotate the corresponding model’s 3D
point cloud around its centre of mass. The model point cloud
is then overlaid on the scene’s point cloud with the depth
estimated from that of matched scene’s points.

We compare this with a 3D object descriptor; the view-
point feature histogram (VFH) [14]. This descriptor is de-
pendant on obtaining a separate cluster of points containing
the object. For each cluster, a 308-D descriptor is calculated
and compared to a previously calculated list of descriptors
for all training models from various views. The histogram in-
tersection distance is used to compute the mismatch between
the descriptors, and the returned point cloud is that of the

Fig. 12. Detection in complex scenes using depth backgroundsubtraction.
Bounding boxes show a search region and all edges within the region are
considered for the detection. Yellow indicates a correct detection while red
indicates a false positive.
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Fig. 13. Using the RGB-D sensor, views are sampled along the hemisphere.
The 2D image (above) and the accompanying point cloud segmented from
the background (bottom) are shown for one view of three objects.

lowest mismatch. The clustering - and thus the descriptor -
is easily corrupted by the presence of occluding or touching
objects. Figure 14 compares our detector to the retrieved
best-matched model using VFH descriptors on 3 clusters.
The VFH descriptors were calculated using the available
implementation within Point Cloud Library (PCL). While
VFH is able to correctly retrieve the object in the case of
the occluded screwdriver, it is confused in the two other
cases. Also in the first correctly retrieved point cloud, the
mismatch score doubles as the point cloud is occluded by
another object. Similar results are shown in Figure 1.

V. CONCLUSION AND FUTURE WORK

We have presented a framework for scalable detection
of objects using constellations of edgelets. The constel-
lations are tractable using fixed paths, and are described
using translation-, scale- and rotation-invariant descriptors.
By using edgelet constellations, the method is more robust
to occlusions and camouflaged edges. The method was
tested on a dataset of textureless real tools and objects. The
technique allows concurrent detection of multiple objects
each with views around the viewing sphere. A 50% chance
of detection under clutter can be achieved within 140ms.
The system can handle up to 70% visual clutter and scales
gracefully as the number of objects increases.

(a) (b) (c) (d)

Fig. 14. Our detections (a) can correctly localise the model’s point cloud
(b) even when the clusters (c) contain occluding or touchingobjects. The
best matched model using VFH descriptors (d) fails to correctly detect the
object in two out of the three cases.

As the scene’s complexity increases, bounding boxes rep-
resenting search regions are used to search for objects of
interest. In this work, depth background subtraction is used
for retrieving such search regions. Other approaches can be
alternatively used, like colour or point cloud priors, and these
are left for future work.

As opposed to some current 3D object descriptors, this
method does not require object clusters to be cleanly seg-
mented. When the object is occluded or is touching neigh-
bouring objects, the path-based detector can still detect and
align the model’s point cloud successfully.
AcknowledgementWe would like to thank Pished Bunnun for his
valuable input on the method and the C++ implementation. This
work was supported by the EU Project COGNITO FP7-ICT-248290.
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