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Inclined cables are essential structural elements that are used most prominently in cable stayed
bridges. When the bridge deck oscillates due to an external force, such as passing traffic, cable
vibrations can arise not only in the plane of excitation but also in the perpendicular plane.
This undesirable phenomenon can be modelled as an auto-parametric resonance between the
in-plane and out-of-plane modes of vibration of the cable. In this paper we consider a three-
mode model, capturing the second in-plane, and first and second out-of-plane modes, and use it
to study the response of an inclined cable that is vertically excited at its lower (deck) support
at a frequency close to the second natural frequency of the cable. Averaging is applied to the
model and then the solutions and bifurcations of the resulting averaged differential equations
are investigated and mapped out with numerical continuation. In this way, we present a detailed
bifurcation study of the different possible responses of the cable. We first consider the equilibria
of the averaged model, of which there are four types that are distinguished by whether each of
the two out-of-plane modes is present or not in the cable response. Each type of equilibrium is
computed and represented as a surface over the plane of amplitude and frequency of the forcing.
The stability of the equilibria changes and different surfaces meet along curves of bifurcations,
which are continued directly. Overall, we present a comprehensive geometric picture of the
two-parameter bifurcation diagram of the constant-amplitude coupled-mode response of the
cable. We then focused on bifurcating periodic orbits, which correspond to cable dynamics with
varying amplitudes of the participating second in-plane and second out-of-plane modes. The
range of excitation amplitude and frequency is determined where such whirling cable motion can
occur. Further bifurcations — period-doubling cascades and a Shilnikov homoclinic bifurcation
— are found that lead to a chaotic cable response. Whirling and chaotic cable dynamics are
confirmed by time-step simulations of the full three-mode model. The different cable responses
are characterized, and can be distinguished clearly, by the their motion at the quarter-span and
by their frequency spectra.

Keywords: Cable dynamics, parametric excitation, modal equations, bifurcation analysis, equi-
librium surfaces, quasi-periodic and chaotic cable motion.
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1. Introduction

In a cable-stayed bridge, the towers support the deck by many inclined cables of different length. Deck
motion due to traffic or other external forces can excite one or several of the inclined cables [Irvine, 1981].
The cable dynamics itself is nonlinear, owing to gravitational sag and tension variations during oscillations.
These nonlinearities result in the coupling between different basic modes of the cable. Interesting nonlinear
dynamics may arise due to this coupling, and in light of the following important properties of the system:

(1) cables are very lightly damped;

(2) the resonant frequencies of a cable are near or exact integer multiples of each other;

(3) both in-plane (vertical) and out-of-plane (sway) motion is possible;

(4) many different lengths of cable are present and so it is likely that the fundamental frequency of the
bridge deck is very close to the resonant frequency of at least one of the cables.

From a practical point of view, motion of the cables is an unwanted phenomenon. Understanding the
underlying nonlinear dynamics is crucial for designing effective measures to mitigate large amplitude cable
responses and motivates much of the research in the field.

δ

θ

Fig. 1. Schematic representation of a cable with incline θ and vertical input motion δ at the lower attachment point; shown
is the case of a non-planar whirling response with fixed middle point and an ellipse-like trace in the quarter-span plane. Here
x∈ [0, ℓ] is the position along the cable, where ℓ is the support separation distance, while the z-axis and the y-axis define the
in-plane and out-of-plane directions of the cable, respectively.

This paper is concerned with the underlying basic issue — the motion of a single harmonically excited
inclined cable. Specifically, we consider here an inclined cable that is subject to harmonic vertical excitation
of its lower support at a frequency close to its second natural frequency; the corresponding physical setup
is sketched in Fig. 1. Note that we use the term mode throughout to refer to a mode of the linearised cable
dynamics; see for example [Nayfeh & Pai, 2004]. It has been shown that small amplitude motion of the
cable anchorage can result in large amplitude cable vibrations [Nayfeh & Pai, 2004]. The main question
is when and how the different modes of the cable are excited as a function of excitation frequency and
amplitude.

The dynamics of an inclined cable has been investigated in the literature in different ways. Considering
just the in-plane response, [Lilien & Pinto Da Costa, 1994] showed that parametric excitation of modes is
most significant when the ratio between the excitation frequency and the natural frequency of the cable is
at or near 2 : 1. More generally, however, both in-plane and out-of-plane modes must be considered [Srinil
et al., 2004]. For example, [Georgakis et al., 2001] considered multiple in-plane and out-of-plane modes
for the case where auto-parametric resonance and cable nonlinearities are included. Using Mathieu-type
equations to model auto-parametric resonance [Tagata, 1977; Uhrig, 1993] also capture coupling between
the in-plane and out-of-plane modes of vibration [Fujino et al., 1993; Gattulli et al., 2005, 2004]. The loss
of stability of the semi-trivial solution, for which the response is limited to just the directly excited mode,
has also been studied in detail [Berlioz &Lamarque, 2005; Gonzalez-Buelga et al., 2008; Macdonald et al.,
2010; Rega, 2004a,b; Rega et al., 1999]. Experimental analysis of the cable response in out-of-plane modes
due to vertical excitation have been reported in [Rega et al., 1997; Rega & Alaggio, 2009; Rega et al.,
2008].
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Related is research into the vibrations of a string, but here the effects of inclination and gravitational
sag do not play a role. The nonlinear equation of motion of a string go back to [Kirchhoff, 1883], and
the simplest model for the transverse vibration of a string, which involves motion in one plane only,
yields a forced damped Duffing equation; see [Narashima, 1968]. The general equations of coupled modes
from [Narashima, 1968] are reduced in [Miles, 1984] and in [Bajaj & Johnson, 1992; Johnson & Bajaj,
1989] to a set of four averaged ODEs for the amplitudes of the basic horizontal and the vertical modes,
which shares many features with the one developed by O’Reilly and Holmes [O’Reilly & Holmes, 1992]
who use a different scaling. In vibrating strings also more complicated motion has been observed. [Miles,
1984] mentions quasi-periodic responses and the possibility of a chaotic response, and [Bajaj & Johnson,
1992; Johnson & Bajaj, 1989] found them in numerical simulations. [Molteno & Tufillaro, 1990] as well
as [O’Reilly & Holmes, 1992] found quasi-periodic and chaotic string responses experimentally. Recently,
[Molteno & Tufillaro, 2004] conducted an experiment that again showed a quasi-periodic string response.

Our object of study is the three-mode model from [Gonzalez-Buelga et al., 2008] of an inclined cable
that is vertically excited near its second natural frequency. The model takes the form of a periodically forced
system of three second-order differential equations for the coupled nonlinear dynamics of the directly excited
second in-plane mode and the auto-parametrically forced first and second out-of-plane modes. After scaling
and averaging one obtains a system of six autonomous ordinary differential equations. Their solutions
represent the coefficients that modulate the sine and cosine members in the mode shape functions of the
cable response. Hence, steady-state solutions (equilibria) of the averaged system correspond to periodic
dynamics of the cable at the forcing frequency, and periodic solutions of the avaraged system correspond
to quasi-periodic or locked two-frequency dynamics of the cable. The model from [Gonzalez-Buelga et al.,
2008] is based on general equations of motion that [Warnitchai et al., 1995] derived for the nonlinearly
coupled basic modes of an inclined cable subject to support excitation; see [Wagg & Neild, 2010] for an
extended discussion of its derivation.

In [Gonzalez-Buelga et al., 2008] the three-mode model was used to identify the boundary — in the
plane of frequency and amplitude of the forcing — of the directly excited pure second in-plane response; this
was achieved via the examination of the local stability of each out-of-plane mode about its zero response,
and these results were validated with experimental data of a scaled model of an inclined cable. This
experimental work was extended to excitation close to other natural frequencies in [Macdonald et al., 2010];
moreover, these authors provided generalised equations of Warnitchai type for excitation at every natural
frequency and responses in all possible modes. [Marsico et al., 2011] investigated a four-mode model of this
type, which also includes the first in-plane mode to allow for a wider range of forcing frequencies around
the second natural frequency; the response amplitudes of the various modes were studied theoretically and
compared with experimental measurements for the same cable that was used in [Macdonald et al., 2010].

In this paper we perform a detailed bifurcation study of the three-mode model from [Gonzalez-Buelga
et al., 2008] (introduced in Sec. 2 below) of an inclined cable of length L with second natural frequency
ω2 for both in-plane and out-of-plane vibrations. The cable is excited vertically at its lower end by the
periodic excitation δ=∆cos(Ωt), where Ω is near ω2. Specifically, we

(1) present a complete and geometric picture of when and how the two basic out-of-plane modes contribute
to the periodic cable response; and

(2) identify regions in parameter space where quasi-periodic and chaotic cable dynamics can be found.

To this end, we first investigate the four different types of equilibria of the averaged equations, which are
distinguished by which of the two out-of-plane modes contribute to the cable response (i.e., have non-zero
amplitudes). These equilibria and their bifurcations are continued with the numerical continuation software
AUTO [Doedel et al., 2000; Doedel, 2007], where the frequency ratio Ω/ω2 and the dimensionless amplitude
∆/L are the continuation parameters. This allows us to compute and represent the different equilibria as
surfaces in (Ω/ω2,∆/L, ||N ||)-space, where ||N || is a suitable norm of the amplitude contributions of
the different basic modes. Stable equilibria correspond to observable periodic responses of the cable, and
they are distinguished by darker shading of the respective surface. The different surfaces meet or encounter
changes of stability along curves of saddle-node (fold), branching and Hopf bifurcations, which are computed
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directly with AUTO. The surfaces of the different types of equilibria are introduced one by one, culminating
in an overall comprehensive geometric picture of connected surfaces that catalogues the overall periodic
cable dynamics. Importantly, we find considerable regions of stability for each of the possible multi-mode
responses. These results vastly extend what was known about the steady-state solutions structure of the
three-mode model from [Gonzalez-Buelga et al., 2008], and they allow one to identify the contributions
of the three basic in-plane and out-of-plane modes to the observed periodic cable response for given (or
changing) amplitude and frequency of the periodic excitation δ(t). This is illucidated with one-parameter
bifurcation diagrams at cross sections of interest.

We then study periodic orbits of the averaged equations that correspond to a cable response with
varying amplitudes of the contributing second in-plane and second out-of-plane modes, while the first out-of-
plane mode is not excited. We find further bifurcations, including period-doubling cascades and a Shilnikov
homoclinic bifurcation, as well as associated chaotic cable dynamics. Regions where these solutions can be
found are identified in the (Ω/ω2,∆/L)-plane. The existence of these new types of solutions is verified with
simulations of the full three-mode model; they can be distinguished clearly by their quarter-span traces
and frequency spectra.

The paper is organized as follows. Section 2 introduces the model describing the evolution of the three
basic modes of the cable, its averaged version and the specific choices for the parameters of the cable.
Section 3 is devoted to the bifurcation analysis of equilibria of the averaged system, which are solutions
of the full three-mode model with constant amplitudes of the contributing coupled basic three modes.
The surfaces of the four different types of equilibria are introduced in Secs. 3.1 to 3.4 to yield the overall
bifurcation diagram presented in Secs. 3.5 and 3.6. Section 4 is concerned with varying-amplitude responses
of the cable. In Sec. 4.1 we perform a one-parameter study in ∆/L of the periodic orbits that bifurcate
from Hopf bifurcations of the constant-amplitude response with contributions from the second in-plane
and out-of-plane modes. How these solutions manifest themselves in terms of the observed cable dynamics
is discussed in Sec. 4.2. In Sec. 4.3 we consider the influence of Ω/ω2 on the one-parameter bifurcation
diagram and show that Shilnikov homoclinic orbits exist, and in Sec. 4.4 we present the regions in the
(Ω/ω2,∆/L)-plane where the different types of varying-amplitude responses of the cable can be found.
Finally, we draw some conclusion in Sec. 5.

2. Three-Mode Model of Inclined Cable Dynamics

We consider an inclined cable excited near its second natural frequency via vertical motion of its lower
support; see Fig. 1. The cable analysed is a 1.98m long and 0.8mm diameter steel cable, inclined at 20o to
the horizontal, with a mass of 0.67 kg/m. It is a scaled model of a realistic cable-stayed bridge cable and
matches the one experimentally tested in [Gonzalez-Buelga et al., 2008]. To analyse the cable dynamics we
consider the directly excited second in-plane mode z2 with natural frequency ω2 = 2ω1, and the first and
second out-of-plane modes y1 and y2 with natural frequencies ω1 and ω2, respectively. These two out-of-
plane modes are included as they have 2 : 1 and 1 : 1 internal resonances with the second in-plane mode.
Note that the first in-plane mode is not included here as its frequency is 1.07ω1 (see [Gonzalez-Buelga et
al., 2008]) and so only exhibits a significant response at excitation frequencies that are further away from
the second in-plane mode than those we focus on here.

The equations of motion we use are the modal equations derived by [Warnitchai et al., 1995], who
performed a Galerkin decomposition based on the mode shapes of the linear equivalent system; see [Wagg
& Neild, 2010] for an in-depth discussion of this derivation. The derivation of the Warnichai equations for
the three modes y1, y2 and z2 taken into account here (which are independent of the distance x along the
cable) yield the periodically forced, nonautonomous system of second-order ODEs

ÿ1 + 2ξω1ẏ1 + ω2
1y1 +

W12y31
4 +W12y1(y

2
2 + z22) +N1δy1 = 0,

ÿ2 + 2ξω2ẏ2 + ω2
2y2 +W12y2y

2
1 + 4W12y2(y

2
2 + z22) + 4N1δy2 = 0,

z̈2 + 2ξω2ż2 + ω2
2z2 +W12z2y

2
1 + 4W12z2(y

2
2 + z22) + 4N1δz2 = Bδ̈,

(1)

were δ = ∆cos(Ωt) is the lower support vertical excitation. The out-of-plane and in-plane natural frequen-
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Table 1. Cable parameters and their values; note that B and
ξ are nondimensional.

N1 [Hz2/m] W12 [s−2m−2] ω1 [rad/s] B ξ

5.6×104 9.46×105 27.7 0.2991 0.002

cies ω1 and ω2 of the linearised system are given by

ωn =
nπ

ℓ

√
σs
ρ
, (2)

where ℓ is the support separation distance; see Fig. 1. Moreover, ξ is the damping ratio and it is assumed
to be the same for all three basic modes, which is in line with the experimental study; its value and that
of the fixed parameters W12, N1 and B that relate to the cable’s physical properties are given in Table 1;
see [Gonzalez-Buelga et al., 2008] for the details.

From the Warnichai equations (1) one can derive equations for the amplitude dynamics of the three
modes. To this end, the solutions are written in the form

yi = yic cos(ωiτ) + yis sin(ωiτ), i ∈ 1, 2, (3)

z2 = z2c cos(ω2τ) + z2s sin(ω2τ).

Then scaling and averaging is applied to yield the system

y′1c = −ξω1y1c −

(
µω1 +

N1∆
4ω1

− 3W12
32ω1

Y 2
1 − W12

4ω1
(Y 2

2 + Z2
2 )

)
y1s,

y′1s =

(
µω1 − N1∆

4ω1
− 3W12

32ω1
Y 2
1 − W12

4ω1
(Y 2

2 + Z2
2 )

)
y1c − ξω1y1s,

y′2c =

(
W12z2cz2s

2ω1
− 2ξω1

)
y2c −

(
2µω1 − W12

8ω1

(
Y 2
1 + 6(Y 2

2 + Z2
2 )− 4z22c

))
y2s,

y′2s =

(
2µω1 − W12

8ω1

(
Y 2
1 + 6(Y 2

2 + Z2
2 )− 4z22s

))
y2c −

(
2ξω1 +

W12z2cz2s
2ω1

)
y2s,

z′2c =

(
W12y2cy2s

2ω1
− 2ξω1

)
z2c −

(
2µω1 − W12

8ω1

(
Y 2
1 + 6(Y 2

2 + Z2
2 )− 4y22c

))
z2s,

z′2s =

(
2µω1 − W12

8ω1

(
Y 2
1 + 6(Y 2

2 + Z2
2 )− 4y22s

))
z2c −

(
2ξω1 +

W12y2cy2s
2ω1

)
z2s −B∆ω1.

(4)

Here the scaled time τ = (1 + µ)t is used, where µ is the frequency detuning of Ω = ω2(µ+ 1), the prime
denotes differentiation with respect to τ , and

Yi =
√

y2ic + y2is, i ∈ 1, 2,

Z2 =
√

z22c + z22s

represent the amplitudes of the three modes, respectively. More details of the scaling and averaging proce-
dure applied to the Warnichai equations can be found in [Gonzalez-Buelga et al., 2008; Tzanov, 2012].

Equations (4) are a system of six autonomous ODEs and, hence, their solutions and bifurcations can
be followed by means of numerical continuation; we use the software package AUTO [Doedel et al., 2000;
Doedel, 2007] for this purpose. In our bifurcation study we use the normalized amplitude ∆/L and the
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frequency Ω/ω2 of the excitation as the continuation parameters. Numerical simulations of the Warnitchai
equations (1) and its averaged version (4) have been shown to agree well over the range

∆/L ∈ [0, 3.5×10−3], Ω/ω2 ∈ [0.95, 1.05]; (5)

see [Gonzalez-Buelga et al., 2008]. Moreover, we checked that, if the first in-plane mode is actually included,
its effects are only noticeable for Ω/ω2 > 1.04. The range (5) of excitation amplitude and frequency around
ω2 may appear to be quite small. However, these quantities have been scaled and it was demonstrated in
[Gonzalez-Buelga et al., 2008; Marsico et al., 2011] that (5) is the physically relevant range of nonlinear
resonance of the cable, which is fully accessible and resolvable experimentally. As part of our bifurcation
study we consider the slightly extended range of Ω/ω2 up to 1.07. The reason is that this allows us to
detect solutions for larger Ω/ω2 that are then continued back to the range (5), where their validity is not
in doubt; such solutions might otherwise be overlooked.

As the lower cable support is excited vertically at a frequency close to ω2, from linear dynamics we
expect the cable response to be a standing wave in the vertical plane with a sinusoidal shape and fixed
mid-span point. These dynamics correspond in equations (4) to an equilibrium with a contribution from
the basic in-plane mode only (i.e., Y1 = Y2 = 0); we refer to this equilibrium as the pure Z2-response. Due
to the nonlinear behaviour of the cable, beyond certain excitation amplitude and frequency boundaries the
pure Z2-response ceases to be stable. At such boundaries one or both of the out-of-plane modes will start
to contribute to the dynamics of the cable, and this corresponds to the emergence of stable equilibria of
(4) with non-zero contributions from Y1 and Y2. Note, however, that, because it is directly excited, the
basic in-plane mode will always contribute to the dynamics (that is, Z2 is always non-zero in the presence
of excitation). As is usual in the field, we plot solutions in terms of the norm

||N || =
√

Z2
2 + Y 2

1 + Y 2
2

L
, (6)

which represents the combined amplitude of the cable response associated with the (steady-state) solutions
of (4).

3. Bifurcation Analysis of the Constant-Amplitude Response

We now present a geometric picture of how the different possible equilibrium solutions of (4) depend on
the amplitude ∆/L and the frequency Ω/ω2 of the excitation. These equilibria correspond to the constant-
amplitude responses of the full Warnichai equations (1). The task is to find an overall consistent bifurcation
diagram of the equilibria of (4), their stability and bifurcations. To this end, we represent the equilibria of
the system as surfaces in (Ω/ω2,∆/L, ||N ||)-space. The starting point is the trivial equilibrium for ∆/L = 0
(with zero contribution from all modes) for a fixed frequency Ω/ω2 close to unity; continuation in ∆/L
then allows us to follow the branch of the pure Z2-response (with zero contributions from Y1 and Y2).
This branch is initially stable but loses stability in different types of bifurcations, where equilibria with
contributions from the Y1-mode and/or the Y2-mode emerge. We find and consider the following types of
equilibria:

(1) the pure Z2-response with a contribution from only the in-plane mode (where Y1 = Y2 = 0); curves
and the surface of the pure Z2-response are denoted L.

(2) the coupled (Z2, Y1)-response with contributions from the second in-plane mode and the first out-of-
plane mode (where Y2 = 0); curves and the surface of the coupled (Z2, Y1)-response are denoted L1.

(3) the coupled (Z2, Y2)-response with contributions from the second in-plane mode and the second out-
of-plane mode (where Y1 = 0); curves and the surface of the coupled (Z2, Y2)-response are denoted L2.

(4) the coupled (Z2, Y1, Y2)-response with contributions from all three basic modes; curves and the surface
of the coupled (Z2, Y1, Y2)-response are denoted L12.

The surfaces of these four different types of equilibria are constructed one by one in (Ω/ω2,∆/L, ||N ||)-
space from continuation runs in ∆/L for suitably many fixed choices of Ω/ω2. The rendering of the surface
images in this paper is performed with Matlab. Curves of bifurcations are computed by two-parameter
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continuations and then also plotted in (Ω/ω2,∆/L, ||N ||)-space, where they lie on corresponding surfaces
of equilibria. We find branching, fold (saddle-node) and Hopf bifurcations as follows:

B1 denotes a branching bifurcation where L1 bifurcates from L;
B2 denotes a branching bifurcation where L2 bifurcates from L;
B1

12 denotes a branching bifurcation where L12 bifurcates from L1;
B2

12 denotes a branching bifurcation where L12 bifurcates from L2;

FZ2 denotes a fold bifurcation of L;
FY1 , F

′
Y1

and F ′′
Y1

denote fold bifurcations of L1;
FY2 denotes a fold bifurcation of L2;
FY12 and F 1

Y12
denote fold bifurcations of L12;

H2 denotes a Hopf bifurcation of L2;
H12 denotes a Hopf bifurcation of L12.

3.1. The surface L of the pure Z2-response

Figures 2(a) and 3(a) show two different views of the surface L of the pure Z2-response in
(Ω/ω2,∆/L, ||N ||)-space; also shown are two sets of cross sections that display the corresponding bifur-
cation diagram for different fixed values of ∆/L [see Figs. 2(b) and 2(c)] and Ω/ω2 [see Figs. 3(b) and
3(c)]. Notice how the surface L is folded along the fold bifurcation curve FZ2 . The dark blue part of L
corresponds to the pure Z2-response being stable; this stability region is a single region that is bounded
by FZ2 and the respective parts of two branch bifurcation curves B1 and B2. The stable pure Z2-response
corresponds to standing waves of the cable.

Figure 2(a) shows a view of the surface L with two intersection curves for fixed ∆/L on it, for ∆/L =
0.3×10−5 and ∆/L = 7×10−5, respectively. These curves represent the corresponding cross sections through
L, which are one-parameter bifurcation diagrams of the pure Z2-response as a function of the excitation
frequency Ω/ω2; they are plotted in the (Ω/ω2, ||N ||)-plane in panels (b) and (c). Figure 2(b) shows that
for sufficiently small ∆/L the resonant peak of the pure Z2-response is what one would expect for a linear
system: there is a clear peak near 1, the pure Z2-response is a function of Ω/ω2, and it is stable throughout.
However, as the excitation amplitude ∆/L is increased the Z2-response becomes nonlinear. Figure 2(c) is for
∆/L = 7×10−5 and the resonance peak is now considerably bent to the right, resulting in an S-shaped curve
with two fold points. However, there is practically no bi-stability, because the pure Z2-response loses its
stability at a branching bifurcation point B2 when Ω/ω2 is increased. The pure Z2-response actually regains
stability at a the second branching bifurcation point labelled B2, only to lose its stability immediately at
the fold point FZ2 , which is virtually indistinguishable from B2 in Fig. 2(c).

Figure 3(a) shows the surface L from a different view point, this time with two intersection curves for
fixed excitation frequency Ω/ω2. Panel (b) shows the intersection of L for Ω/ω2 = 0.97 in the (∆/L, ||N ||)-
plane, where the pure Z2-response is a monotonically increasing curve; it is stable for sufficiently small
∆/L and then loses stability at the branching bifurcation point B1. Figure 3(c) shows the pure Z2-response
in the (∆/L, ||N ||)-plane for Ω/ω2 = 1.03. Because the curve FZ2 is now intersected, the branch of the
pure Z2-response now has a characteristic S-shape. Stability is lost at the first (right) fold point along the
branch. The branch turns around and effectively remains unstable throughout, except for a tiny interval
of ∆/L values just past the second (left) fold point. When ∆/L is increased from zero excitation in an
experiment, one first observes a pure Z2-response until the fold point is reached and the system transitions
to a different, as yet unknown, solution.

Projecting the surface L of the pure Z2-response in Figs. 2(a) and 3(a) onto the (Ω/ω2,∆/L)-plane gives
the two-parameter bifurcation diagram in Fig. 4. It shows that for any value of Ω/ω2 the pure Z2-response
is stable for sufficiently small ∆/L (dark blue region); see also [Gonzalez-Buelga et al., 2008]. Stability of
the pure Z2-response is lost for increasing ∆/L when the solid parts of the bifurcation curves B1 and B2

and FZ2 are crossed; such a loss of stability means that Y1 and/or Y2 develop a non-zero amplitude. The
inset of Fig. 4, which is an enlargement near Ω/ω2 = 1, shows that there is a cusp bifurcation point C on
the fold curve FZ2 ; moreover, the two curves B1 and B2 of branching bifurcations interact at point N where
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Fig. 2. Panel (a) shows the surface L of the pure Z2-response of (4) in (Ω/ω2,∆/L, ||N ||)-space. Also shown on L are the
branching bifurcation curves B1, B2 and the fold bifurcation curve FZ2

; the pure Z2-response is stable in the dark blue part
and unstable in the light blue part of L. Panels (b) and (c) show the one-parameter bifurcation diagrams in the (Ω/ω2, ||N ||)-
plane for ∆/L = 0.3×10−5 and for ∆/L = 7×10−5, respectively; the corresponding curves are highlighted on the surface L.
Branching bifurcation points are denoted by squares and fold points by dots; the pure Z2-response is stable along the blue
parts of curves and unstable along the red parts of curves.

they exchange their roles as stability boundary for the pure Z2-response. This means that, when ∆/L is
increased the pure Z2-response loses stability in different ways depending on the value of Ω/ω2. For fixed
Ω/ω2 < 1.003, the frequency at which point C is located, the branching bifurcation curve B1 is crossed and
Y1 gradually becomes nonzero. For Ω/ω2 > 1.003, the upper part of the fold point curve FZ2 (with ∆/L
above the cusp point C) is crossed, which leads to a transition to quite different dynamics, where Z2, Y1 and
Y2 all contribute. As the inset of Fig. 4 shows, the stability region of the pure Z2-response extends (from
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Fig. 3. Panel (a) shows a different view of the surface L of the pure Z2-response; compare with Fig. 2(a). Panels (b) and (c)
show the one-parameter bifurcation diagrams in the (∆/L, ||N ||)-plane for Ω/ω2 = 0.97 and for Ω/ω2 = 1.03, respectively;
the corresponding curves are highlighted on the surface L in panel (a).

between the points C and N) as a very thin tongue that is bounded by the curve B2 and the lower part of
the fold curve FZ2 (with ∆/L above the cusp point C). When B2 is crossed Y2 gradually becomes nonzero;
when the lower part of FZ2 is crossed there is a transition to another stable pure Z2-response (of lower
amplitude). Hence, this thin tongue constitutes a region of bi-stability of the pure Z2-response. Note that
this tongue is visible much more clearly in the lifted images in (Ω/ω2,∆/L, ||N ||)-space of Figs. 2(a) and
3(a), which highlights the usefulness of this representation. Indeed, to understand the response of the cable
for values of Ω/ω2 where the pure Z2-response is unstable one needs to consider the surface of bifurcating
equilibria with non-trivial contributions from Y1 and/or Y2, which are discussed in the subsequent sections.
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Fig. 4. Bifurcation diagram in the (Ω/ω2,∆/L)-plane of the pure Z2-response of (4), showing the bifurcation curves B1 and
B2 and FZ2

from Figs. 2(a) and 3(a). Along solid parts of the curves the bifurcation concerns a stable solution and along
dashed parts it concerns an unstable one; the region where the pure Z2-response is stable is shaded dark blue. The inset shows
an enlargement near Ω/ω2 = 1.

3.2. The surface L1 of the coupled (Z2, Y1)-response

The coupled (Z2, Y1)-response bifurcates from the pure Z2-response along the branching bifurca-
tion curve B1. Figure 5(a) shows the associated surface L1 (green) of the coupled (Z2, Y1)-response in
(Ω/ω2,∆/L, ||N ||)-space, which connects to the surface L (blue) along the curve B1. Mathematically, this
and all the other branching bifurcations we encounter are actually pitchfork bifurcations of (4): the two
bifurcating equilibria differ only in the phase relationship between the contributing basic modes, which
physically corresponds to clockwise or counter-clockwise whirling motion of the cable. Since the coupled
modes are represented in terms of their norm ||N ||, these are not distinguished, and this is why one refers
to this bifurcation as a branching bifurcation. The stable part of L1 (dark green) is bounded by the curve
B1 on L and by the branching bifurcation curve B1

12 on L1. As we will see in Sec. 3.4, the surface L12 of the
coupled (Z2, Y1, Y2)-response connects along B1

12. Notice also the fold along FY1 . Highlighted in Fig. 5(a)
are the cross sections of L and L1 for Ω/ω2 = 0.97 and Ω/ω2 = 1.03. Figure 5(b) shows the correspond-
ing bifurcation diagram for Ω/ω2 = 0.97 in the (∆/L, ||N ||)-plane, which shows that a stable branch of
the coupled (Z2, Y1)-response bifurcates from the pure Z2-response at the branching bifurcation point B1;
compare with Fig. 3(b). The corresponding bifurcation diagram for Ω/ω2 = 1.03 in the (∆/L, ||N ||)-plane
is shown in Fig. 5(c). An unstable branch of coupled (Z2, Y1)-response bifurcates from the point B1, where
the pure Z2-response itself is also unstable. The branch of the coupled (Z2, Y1)-response remains unstable
after the fold point FY1 but becomes stable after the branching bifurcation point B1

12. Overall, Fig. 5 shows
that, for any value of Ω/ω2 the coupled (Z2, Y1)-response may be observed as a stable response provided
that the excitation amplitude ∆/L is sufficiently large.

As it turns out, there is an additional part of the surface L1 that can be found when one considers
it over a larger range of Ω/ω2-values. Figure 6(a) shows the two surfaces L1 and L for Ω/ω2 ∈ [1.0, 1.07].
Because of its complicated shape, the new part of the surface L1 is not rendered as a surface but represented
by equally spaced (green) intersection curves for fixed Ω/ω2. These intersection curves are connected for
fixed Ω/ω2 > 1.05 to the main part of the surface L1 along the fold curve F ′

Y1
, which connects to the fold

curve FY1 at Ω/ω2 ≈ 1.05. However, for fixed Ω/ω2 < 1.05 we find figure-of-eight shaped isolas. Panels (b)
and (c) of Fig. 6 show the two slices for Ω/ω2 = 1.03 and for Ω/ω2 = 1.06, respectively, which are also
highlighted in panel (a). Notice the new isola of the coupled (Z2, Y1)-response for Ω/ω2 = 1.03 in Fig. 6(b)



September 24, 2013 12:39 tkn˙cablvibr

Vibration dynamics of an inclined cable 11

×10
−2

×10
−3

||N ||

∆/L Ω/ω2

(a)

L

L1

FZ2

FY1

B1

B1B2

B1

12

0 1 2
0

0.5

1

∆/L

||N ||

×10
−2

×10
−3

(b)

L

L1

B1

0 0.2 0.4
0

0.3

0.6

∆/L

||N ||

×10
−2

×10
−3

(c)

L

L1

FZ2

FZ2

FY1

B1

12

B1
B2

Fig. 5. Panel (a) shows the surface L1 (green) of the coupled (Z2, Y1)-response of (4) in (Ω/ω2,∆/L, ||N ||)-space, and how
it connects to the surface L (blue) from Fig. 3. Also shown on L1 are the bifurcation curves B1

12 and FY1
; the coupled

(Z2, Y1)-response is stable in dark green part and unstable in light green part. Panels (b) and (c) show the one-parameter
bifurcation diagrams in the (∆/L, ||N ||)-plane for Ω/ω2 = 0.97 and for Ω/ω2 = 1.03, respectively; the corresponding curves
are highlighted on the surfaces L1 and L in panel (a).

compared with Fig. 5(c). In the section for Ω/ω2 = 1.06, on the other hand, we find a single connected
curve of the coupled (Z2, Y1)-response. In both cases, there is a small region of stable (Z2, Y1)-response on
the new curve.

Since these features of the surface L1 are hard to see on the scale of Fig. 6, we now focus on how
the isola in the (∆/L, ||N ||)-plane connects to the remainder of L1 as Ω/ω2 is increased through 1.05.
Figure 7 shows the intersection curves of L1 with cross sections for Ω/ω2 = 1.04, for Ω/ω2 = 1.05 and
for Ω/ω2 = 1.06 in the relevant part of the (∆/L, ||N ||)-plane. Notice the figure-eight shape of the isola
for Ω/ω2 = 1.04 in Fig. 7(a); it is not actually connected at the two intersection point with the other
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Fig. 6. Panel (a) shows the surfaces L1 (green) and L (blue) in (Ω/ω2,∆/L, ||N ||)-space over the range Ω/ω2 ∈ [1.0, 1.07].
The new feature is an additional part of the surface L1 that is connected to its main part for Ω/ω2 > 1.05 along the fold
curve F ′

Y1
, but also extends to smaller values of Ω/ω2; due to its complicated shape, this new part of L1 is represented by

intersections curves for fixed Ω/ω2. The respective intersections for Ω/ω2 = 1.03 and for Ω/ω2 = 1.06 are highlighted. The
corresponding bifurcation diagrams in the (∆/L, ||N ||)-plane are shown in panels (b) and (c); there are two points of Hopf
bifurcation (indicated by asterisks) on the additional branches of the coupled (Z2, Y1)-response.

intersection curve of L1. There are four fold points on the isola, which are labelled FY1 and F ′′
Y1
. At the

moment of transition at Ω/ω2 ≈ 1.05 the lower fold point FY1 on the isola coincides with the fold point
FY1 on the other branch; see Fig. 7(b). For Ω/ω2 = 1.06 as in Fig. 7(c), there is now a single connected
intersection curve of L1; the degenerate fold point has split up into two fold points labelled F ′

Y1
. Notice

that close to these fold points there are two branching bifurcation points that are labelled B1
12; as we will

see in Sec. 3.4, they lead to the bifurcating coupled (Z2, Y1, Y2)-response.
Overall, Fig. 7 shows that the connectivity of the local branches near the point of transition changes.
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Fig. 7. One-parameter bifurcation diagrams of the coupled (Z2, Y1)-response in the (∆/L, ||N ||)-plane for Ω/ω2 = 1.04 in
panel (a), for Ω/ω2 = 1.05 in panel (b), and for Ω/ω2 = 1.06 in panel (c). The ranges of ∆/L and ||N || are chosen to show
how the isola of the coupled (Z2, Y1)-response for Ω/ω2 < 1.05 connects to the remainder of the surface L1 when Ω/ω2 is
increased through Ω/ω2 ≈ 1.05; compare with Fig. 6.

This corresponds to a transition of the cross section through a critical point on the surface L1 in



September 24, 2013 12:39 tkn˙cablvibr

14 Tzanov, Krauskopf & Neild

(Ω/ω2,∆/L, ||N ||)-space. At this point the curve FY1 on L1 has a local maximum and the curve F ′
Y1

on L1 has a local minimum with respect to Ω/ω2; moreover, these two curves intersect transversally. The
curve F ′

Y1
and its minimum can be seen in Fig. 6(a). The curve FY1 is shown only up to the maximum

where it meets F ′
Y1
; its other part lies on the isola (green loops) and it is not shown in Fig. 6(a). Note

that the curve of branching bifurcations B1
12 also passes through the critical point on L1 and has a mini-

mum there with respect to Ω/ω2. The isola can be found in the cross section for fixed Ω/ω2 in the range
Ω/ω2 ∈ (1.02, 1.05); see Fig. 6(a). It disappears at Ω/ω2 ≈ 1.02 by shrinking down to a point, which
corresponds to a minimum with respect to Ω/ω2 of the curve FY1 in (Ω/ω2,∆/L, ||N ||)-space.

In all three panels of Fig. 7 we also find a pair of Hopf bifurcations (denoted by asterisks). Moreover,
the coupled (Z2, Y1)-response on the new part of L1 is stable between the (upper) fold point FY1 and the
left-most point of Hopf bifurcation. Hence, we have found a new stable and, hence, observable (Z2, Y1)-
response of the cable in the region of interest Ω/ω2 ∈ [0.95, 1.04], which is not connected to the main part
of the surface L1 in this range of Ω/ω2. This discovery justifies the consideration of the extended range of
Ω/ω2.

3.3. The surface L2 of the coupled (Z2, Y2)-response

Figure 8(a) shows the surface L2 of the coupled (Z2, Y2)-response, which is attached to the surface L along
the branching bifurcation curve B2. Almost all of L2 is unstable (light purple), but there is a small stable
region (dark purple) near Ω/ω2 = 1. On L2 there is a curve FY2 of fold bifurcation, whose left-most point
is a cusp point. Moreover, we find a curve B2

12 of branching bifurcation that emerges from the point N
where B1 and B2 intersect on L; see Fig. 2. As with previous plots, two intersection sets are highlighted,
namely those for Ω/ω2 = 1.007 and Ω/ω2 = 1.03, respectively; they are shown in the (∆/L, ||N ||)-plane in
Fig. 8(b) and (c).

The section for Ω/ω2 = 1.007 in Fig. 8(b) passes through the stable part of L2. The branch L2 of
the coupled (Z2, Y2)-response connects to the branch L of the pure Z2-response at the two branching
bifurcation points labelled B2. The coupled (Z2, Y2)-response is stable right after the left-most branching
bifurcation point B2 on L, and it loses its stability at the branching bifurcation point B2

12; as we will see
in Sec. 3.4, the coupled (Z2, Y1, Y2)-response can be observed stably past this point. Notice from Fig. 8(b)
that, as the excitation amplitude ∆/L is increased from zero, one first observes the pure Z2-response until
the fold point FZ2 is reached, where the system transitions to a stable (Z2, Y2)-response.

The section for Ω/ω2 = 1.03 in Fig. 8(c), on the other hand, misses the stable part on L2. Consequently,
the branch L2 bifurcating from B2 is unstable throughout, until it also reconnects with the branch of the
pure Z2-response at a second branching bifurcation point B2 (which is outside the ∆/L-range shown in
Fig. 8(c)). Notice the S-shaped nature of the branch L2 with two fold curves labelled FY2 .

3.4. The surface L12 of the coupled (Z2, Y1, Y2)-response

The surface L12 of the coupled (Z2, Y1, Y2)-response is quite complicated because it connects the two
surfaces L1 of the coupled (Z2, Y1)-response and L2 of the coupled (Z2, Y2)-response. In Fig. 9(a), it is
shown together with only the surface L2 from Fig. 8(a) to which it is attached along the curve B2

12. The
(dark brown) stable part of L12 in Fig. 9(a) is bounded at the top by the curve B1

12, along which this
surface is connected to the surface L1 of the coupled (Z2, Y1)-response (which is not shown); compare with
Fig. 6(a). The lower boundary of the stable part of L12 is more complicated: at low values of Ω/ω2 it is the
same curve B2

12, and for higher values of Ω/ω2 it is formed by fold curve FY12 on L12. Specifically, between
FY12 and B2

12 there are two other boundaries of L12, namely the fold curve F 1
Y12

and the Hopf bifurcation

curve H12. In fact, F 1
Y12

emerges from a point on B2
12 and H12 emerges from a point on B2

12. This structure
of the boundary of the coupled (Z2, Y1, Y2)-response was also found in [Marsico et al., 2011] for a four-mode
model that includes the first in-plane mode.

Two of the three highlighted intersection sets in Fig. 9(a) are shown separately in the (∆/L, ||N ||)-
plane as panels (b) and (c); for clarity, the stable and unstable regions of L are also shown as black
and grey curves, respectively. In Fig. 9(b) for Ω/ω2 = 1.007, which builds on Fig. 8(b), the branch L12
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Fig. 8. Panel (a) shows the surface L2 (purple) of the coupled (Z2, Y2)-response of (4) in (Ω/ω2,∆/L, ||N ||)-space, and
how it connects to the surface L (blue) from Fig. 3. Also shown on L2 are the bifurcation curves FY2

and B2
12; the coupled

(Z2, Y2)-response is stable in the small dark purple part only. Panels (b) and (c) show the one-parameter bifurcation diagrams
in the (∆/L, ||N ||)-plane for Ω/ω2 = 1.007 and for Ω/ω2 = 1.03, respectively; the corresponding curves are highlighted on the
surfaces L2 and L in panel (a).

bifurcates from the point B2
12 on the branch L2; along this branch the coupled (Z2, Y1, Y2)-response is

stable. Figure 9(c) for Ω/ω2 = 1.03 builds on Fig. 8(c). Now the branch L12 has three fold points; it is
stable only after the last fold point labelled FY12 . Notice that in between the upper fold point and a point
H12 of Hopf bifurcation (denoted by an asterisk) there is an additional tiny part of the branch where the
coupled (Z2, Y1, Y2)-response is stable; this Hopf bifurcation curve is shown in Fig. 9(a). Finally, we remark
that Fig. 9(c) shows that, as ∆/L is increased from zero, the transition to different dynamics when the
pure Z2-response loses stability at FZ2 now results in a (Z2, Y1, Y2)-response of the cable.
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Fig. 9. Panel (a) shows the surface L12 (brown) of the coupled (Z2, Y1, Y2)-response of (4) in (Ω/ω2,∆/L, ||N ||)-space, and
how it connects to the surface L2 (purple) from Fig. 8. The coupled (Z2, Y1, Y2)-response is stable in the dark brown part of
L12 and unstable in the light brown part. The intersection sets for Ω/ω2 = 1.007, for Ω/ω2 = 1.03, and for Ω/ω2 = 1.06 are
highlighted; those for Ω/ω2 = 1.007 and for Ω/ω2 = 1.03 are shown in the (∆/L, ||N ||)-plane in panels (b) and (c), respectively,
and that for Ω/ω2 = 1.06 appears as part of Fig. 11(c).

3.5. Overall bifurcation structure with all four surfaces

Figure 10 shows the surfaces L (blue), L1 (green), L2 (purple) and L12 (brown) together in
(Ω/ω2,∆/L, ||N ||)-space. It constitutes a bifurcation diagram of the pure Z2-response, the coupled (Z2, Y1)-
response, the coupled (Z2, Y2)-response and the coupled (Z2, Y1, Y2)-response, which represent all the equi-
librium solutions of (4) and, hence, the responses of the cable with fixed amplitudes of the contributing
three basic in-plane and out-of-plane modes. These different surfaces meet at curves of branch point bifur-
cations; specifically, L1 meets L along B1 [see Sec. 3.2 and Fig. 6], L2 meets L along B2 [see Sec. 3.3 and
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Fig. 10. The surfaces L (blue), L1 (green), L2 (purple) and L12 (brown) shown in (Ω/ω2,∆/L, ||N ||)-space together with the
various curves of bifurcations on them. The intersection sets for Ω/ω2 = 1.007, Ω/ω2 = 1.03 and Ω/ω2 = 1.06 are highlighted;
darker colours represent stable modes. The intersection sets for Ω/ω2 = 1.007, for Ω/ω2 = 1.03 and for Ω/ω2 = 1.06 are
highlighted; they are shown in the (∆/L, ||N ||)-plane in Fig. 11.

Fig. 8], and L12 meets L1 along B1
12 and L2 along B2

12 [see Sec. 3.4, and Fig. 9]. Stable parts of the surfaces
are represented by darker colours and unstable parts by lighter colours; the respective curves of branching
bifurcations are shown as solid curves where they connect two stable surfaces and as dashed curves where
they connect two unstable surfaces. Also shown in Fig. 10 are the different curves of fold bifurcation.

The bifurcation diagram in Fig. 10 is shown for the range Ω/ω2 ∈ [1.0, 1.07] where the surfaces and
corresponding modes interact strongly. Note that for Ω/ω2 ≤ 1, only the surfaces L and L1 meet along the
curve B1; see Figs. 5 and 6. This is visible already on the left-hand side of Fig. 10, so that this bifurcation
diagram represents the topological nature of the equilibria of (4) and their stability over the range of
Ω/ω2 ∈ [0.97, 1.0] that we consider here. As before, even though it may be at the limit of validity of the
three-mode model (4) considered here, the range Ω/ω2 ∈ [1.04, 1.07] is specifically included due to the
nature of the surface L1.
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Fig. 11. One-parameter bifurcation diagrams of (4) in the (∆/L, ||N ||)-plane for Ω/ω2 = 1.007 in panel (a), for Ω/ω2 = 1.03
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constant-amplitude solutions; branching bifurcation points are denoted by squares, fold points by dots, and Hopf bifurcation
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The three intersection sets for Ω/ω2 = 1.007, Ω/ω2 = 1.03 and Ω/ω2 = 1.06 are highlighted on the
surfaces in Fig. 10. They are shown as one-parameter bifurcation diagrams for all of the modes in the
(∆/L, ||N ||)-plane in Fig. 11(a)–(c).

For fixed Ω/ω2 = 1.007, as is shown in Fig. 11(a), as ∆/L is increased from zero, the cable first
experiences vibrations in the pure Z2-response. At FZ2 a transition occurs to the stable part of the branch
L2 of the coupled (Z2, Y2)-response, meaning that now the second out-of-plane mode also contributes to the
cable response. When ∆/L is increased further, past B2

12, one observes also the gradual onset of the first
out-of-plane mode to the cable response when B2

12 is crossed to the stable part of the branch L12. For even
higher ∆/L the contribution from Y2 disappears gradually at B1

12, and one is left with the coupled (Z2, Y1)-
response along the stable part of L1. When ∆/L is decreased again, one observes a gradual transition from
the coupled (Z2, Y1)-response via the coupled (Z2, Y1, Y2)-response and the coupled (Z2, Y2)-response to
the pure Z2-response. However, there is then a transition at FZ2 to the lower branch of L, that is, to a
pure Z2-response with lower amplitude, which is part of a small hysteresis loop.

For fixed Ω/ω2 = 1.03, as is shown in Fig. 11(b), the bifurcation diagram in the (∆/L, ||N ||)-plane
is considerably more complicated. The transition from the stable pure Z2-response at FZ2 now results
in a coupled (Z2, Y1, Y2)-response of the cable along the stable part of L12. When ∆/L is increased the
Y2-contribution gradually disappears at B1

12, and one is again left with the coupled (Z2, Y1)-response along
the stable part of L1. When ∆/L is decreased, starting from the stable part of L12, the coupled (Z2, Y1, Y2)-
response is observed until the fold point FY12 is reached. Then the system makes a transition to a different
response. It is actually not entirely clear from the bifurcation diagram in Fig. 11(b) to which response the
system will move at this point. After all, there is now a considerable amount of multi-stability between
different modes. Moreover, there are points of Hopf bifurcation (denoted by asterisks) that give rise to
periodic solutions, some of which are stable, for example, past the left-most Hopf bifurcation on the isola
of L1. There is also the possibility that such periodic orbits bifurcate further to more complicated stable
dynamics of the cable. This motivates the study of periodic solutions and their bifurcations in Sec. 4.

Finally, for Ω/ω2 = 1.06, as is shown in Fig. 11(c), the one-parameter bifurcation diagram is very
much as that for Ω/ω2 = 1.03 in Fig. 11(b). As was discussed in Sec. 3.2, the difference is that L1 is a
single branch that now incorporates the former isola. However, in terms of observed stable behaviour of
the cable, the two cases are effectively the same.

3.6. Bifurcation diagram and hysteresis loops

From a practical point of view, it is useful to be able to identify for which combination of excitation
frequency and amplitude the different types of coupled mode response of the cable can be found. Therefore,
we present in Fig. 12 a bifurcation diagram in the (Ω/ω2,∆/L)-plane with the regions where the different
constant-amplitude responses are stable. Figure 12(a) is a projection of the stable parts of the surfaces
L1 (green), L2 (purple) and L12 (brown) onto the relevant part of the (Ω/ω2,∆/L)-plane, and Fig. 12(b)
shows the stability region (blue) of the pure Z2-response over the same parameter range; compare with
Fig. 4. Note that the pure Z2-response is stable throughout the white region in Fig. 12(a); moreover, to the
right of the point N the stability regions in panels (a) and (b) of Fig. 12 overlap, yielding a considerable
region of multistability between different constant-amplitude cable responses. Overall, Fig. 12 represents a
practical bifurcation chart for the observable constant-amplitude dynamics of the cable. In Fig. 12(a) we
show only the bifurcation curves that bound the respective stability regions. They include the curves H2

on L2 and H12 on L12 of Hopf bifurcations, which bound the stability regions of L2 and L12, respectively.
There are two additional codimension-two bifurcation points where different curves meet: the point M
where B2

12 and F 1
Y12

meet, and the point Q where F 1
Y12

and H12 meet. Notice, in particular, the very thin
strip of the (purple) stability region of L2 that is bounded by the curves B2 and H2. Similarly, there is
an extremely thin strip of the stability region of L12 between the curves FY12 and H12, which correspond
to a region of bi-stability of the coupled (Z2, Y1, Y2)-response. We remark that these two thin strips of
stability would be virtually impossible to find in an experiment. However, if another parameter, such as
the damping ratio, is changed then these regions of bi-stability may be considerably larger [Tzanov et al.,
2011].
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Fig. 12. Panel (a) shows the projection of the stable parts of the surfaces L1 (green), L2 (purple) and L12 (brown) onto the
(Ω/ω2,∆/L)-plane, where Ω/ω2 ∈ [1, 1.04] and ∆/L ∈ [0, 0.0075]. Panel (b) shows the stable part of the surface L in the same
region of the (Ω/ω2,∆/L)-plane.

The bifurcation diagram in Fig. 12 represents a practical overview of the observable constant-amplitude
dynamics of the cable, as represented by the equilibria of (4), and it is instructive to consider how they
can be observed and distinguished in practice. A main measurement in experiments is to record the y- and
z-components of the motion at the quarter points by means of video capture; this results in a quarter-span
trace in the (y, z)-plane; see [Gonzalez-Buelga et al., 2008; Marsico et al., 2011]. The pure Z2-response,
which corresponds to a vertical standing wave, gives a quarter-span trace in the form of a vertical line.
The coupled (Z2, Y1)-response, the coupled (Z2, Y2)-response and the coupled (Z2, Y1, Y2)-response, on the
other hand, correspond to whirling of the cable, and they lead to quarter-span traces in the form of closed
curves. The respective traces can be found from numerical simulations of the full Warnichai equations
(1), where the initial conditions are derived from the AUTO data generated in the bifurcation analysis
of the averaged system (4); throughout, we use the Matlab routine ODE45 for simulations of (1). The
output of the simulation is then plotted as (y, z) = (y1/

√
2 + y2, z2); this is the quarter-span trace under

the assumption that the mode-shapes are sinusoidal, which is accurate for taut cables [Wagg & Neild,
2010]. Figure 13 shows two examples, taken from stable branches of Fig. 14. Specifically, Fig. 13(a) is the
quarter-span trace of the coupled (Z2, Y2)-response for ∆/L = 0.038 × 10−3, which is on L2 between the
points B2 and H2. This trace is a single close curve without self-intersections, owing to the fact that the
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Fig. 13. Quarter-span trace of the coupled (Z2, Y2)-response for Ω/ω2 = 1.013 and ∆/L = 0.038 × 10−3 (a), and of the
coupled (Z2, Y1, Y2)-response for Ω/ω2 = 1.013 and ∆/L = 0.086× 10−3 (b).

two basic modes involved are 1 : 1 locked. Figure 13(b) is the quarter-span trace of the coupled (Z2, Y1, Y2)-
response for ∆/L = 0.086× 10−3, which is on L12 to the right of the point H12. The trace is again a single
closed curve, but now with self-intersections due to 2 : 1 locking between the three basic modes involved.
We remark that the quarter-span traces in Figure 13 are traversed counter-clockwise; there also exist the
corresponding clockwise traces, which can be obtained from the shown ones by reflecting them in the y-axis.

In experiments, such as those in [Gonzalez-Buelga et al., 2008; Marsico et al., 2011], the forcing
amplitude ∆/L is changed for a fixed given value of the forcing frequency Ω/ω2. Owing to the considerable
amount of multistability of the system, it is quite difficult to predict from Fig. 12 the exact sequence
of cable responses that will be observed as ∆/L is increased and/or decreased. To understand this in
detail, the one-paramter bifurcation diagram in ∆/L for the given fixed Ω/ω2 needs to be considered. So
far, we have presented one-paramter bifurcation diagrams as cross-section through the different surfaces
of constant-amplitude responses to illustrate their exact relative positions. We now demonstrate that
additional important information on the observed cable dynamics can be obtained from a one-paramter
bifurcation diagram.

Figure 14 shows the one-parameter bifurcation diagram in the (∆/L, ||N ||)-plane of the equilibria of (4)
for Ω/ω2 = 1.013. Note that this value of the forcing frequency is quite close to the ω2, yielding a bifurcation
diagram that is moderately complicated, in between those shown in Fig. 11(a) and (b). Nevertheless, as
the enlargement in Fig. 14(b) illustrates, there is already a considerable amount of multistability between
the different modes. Moreover, each of the stable parts of branches is bounded by a fold curve (except that
L12 is bounded by H12, which lies indistinguishably close to F 1

12). Changing ∆/L past such a fold curve
leads to a loss of the attractor and the system transitions to a different attractor. These transitions are
illustrated in Fig. 14 with arrows J1, J2, J3 and J4 denoting to transitions from L, L12 and L2, and from
a higher amplitude on L2, respectively. These transitions define two hysteresis loops as ∆/L is swept up
and down: the first consists of transitions J1, J2 and J3, and the second is formed by J2 and J4.

Even in the presence of small perturbations on the level of the measurement uncertainty of an ex-
periment, the transition J1 always ends on the only available stable part of the branch L12, so that it
is a transition from the pure Z2-response to the coupled (Z2, Y1, Y2)-response; hence, this transition cor-
responds to the quite sudden onset of large-amplitude whirling motion of the cable. Similarly, transition
J3 always ends on the stable part of L, corresponding to a disappearance of whirling and the transition
to large-amplitude vertical cable response. Transition J4 is different in this respect. It can end up on the
stable part of the branch L12, as is indicated by the arrow in Fig. 14(b). However, depending on the kind
of perturbation just past the fold point FY2 , it may also end up at a different dynamic state that does
not have constant amplitudes of the participating basic modes. Finally, transition J2 does never end up
at constant-amplitude cable motion, because none of the four constant-amplitude responses is stable in
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Fig. 14. Panel (a) shows the one-parameter bifurcation diagram of (4) in the (∆/L, ||N ||)-plane for Ω/ω2 = 1.013. Blue curves
denote stable and red curves denote unstable equilibria; branching bifurcation points are denoted by squares, fold points by
dots, and Hopf bifurcation points by asterisks. Also shown are four transitions J1, J2, J3 and J4 from stable equilibria that
occur when ∆/L is increase or decreased past fold points. Panel (b) is an enlargement that focuses on range where these
transitions occur.

this range of ∆/L; see Fig. 14(b). Rather, J2 always results in cable dynamics with varying amplitudes
of the basic modes. The nature of these transitions was determined by numerical simulations of the full
Warnichai equations (1) subject to parameter drift in ∆/L in the presence of suitable perturbations; see
[Tzanov, 2012] for details.

4. Cable Response with Varying Amplitudes

We now focus on cable dynamics in the intermediate range of ∆/L near transition J2. As it turns out,
the cable dynamics in this range takes place near the branch L2 of the coupled (Z2, Y2)-response; it is
stable, on the left between the points B2 and H2, and on the right between the bifurcation points H2 and
FY2 ; see in Fig. 14(b). However, in the ∆/L-range of interest the coupled (Z2, Y2)-response is unstable.
The existence of the two Hopf bifurcations that form the stability boundary of L2 implies that there are
bifurcating periodic orbits of (4). In fact, they all have contributions from the second in-plane mode and
the second out-of-plane mode only, and not from the first out-of-plane mode (that is, Y1 = 0 throughout).
Moreover, they undergo the following bifurcations:

FH2
1 and FH2

2 denote fold (saddle-node) bifurcations of periodic orbits;

PD1 and PD2 denote period-doubling bifurcations of a basic periodic orbit;

PD2
1 and PD2

2 denote period-doubling bifurcations of a period-doubled periodic orbit;

S denotes a Shilnikov homoclinic bifurcation.
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Fig. 15. One-parameter bifurcation diagram in ∆/L of the periodic solutions bifurcating from the coupled (Z2, Y2)-response
of (4) for Ω/ω2 = 1.013. Panel (a) shows the solutions in terms of ||N ||, and panel (b) is a schematic of the bifurcation diagram
of the different branches of periodic orbits that were computed. Here open circles denote period-douling bifurcations and the
large grey-filled circles indicate more complicated dynamics.

In order to investigate the corresponding cable dynamics with varying amplitudes of the contributing basic
modes, we first continue the periodic orbits of the averaged equations (4). We then identify and confirm
with simulations of the full Warnichai equations (1) that the corresponding cable dynamics indeed exists.

4.1. Periodic orbits bifurcating from L2 for Ω/ω2 = 1.013

Figure 15 shows the corresponding bifurcation diagram of the periodic orbits of the averaged equations
(4) that bifurcate from the branch L2 of the coupled (Z2, Y2)-response for Ω/ω2 = 1.013. Panel (a) shows
the branches of periodic orbits in terms of their norm ||N ||; compare with Fig. 14(b). Since these branches
are so close to each other that it is difficult to distinguish them, Fig. 15(b) presents a schematic where the
vertical axis shows an artificial norm that distinguishes the various solution branches; here the ∆/L axis
remains unaltered to allow for a direct comparison with Fig. 15(a). Between the pair of Hopf bifurcation
points labelled H2 on the branch L2 of the coupled (Z2, Y2)-response there is a single branch of periodic
orbits; we refer to it as the branch of basic periodic (Z2, Y2)-response. On this branch we find two pairs

of fold bifurcations FH2
1 (saddle-node bifurcations of the periodic orbits), which lead to two regions of
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Fig. 16. Quasi-periodic cable dynamics of (1) with a period-one modulation of the amplitudes of z2 and y2, for Ω/ω2 = 1.013
and ∆/L = 0.043× 10−3. The blue and green curves in panels (a)–(d) indicate two different basic periods of the response.

multistability between two different periodic (Z2, Y2)-responses. Moreover, we find two pairs of period-
doubling bifurcations, inbetween which the basic branch of periodic (Z2, Y2)-response is unstable. We
continued the period-doubled periodic orbits associated with these and several further period-doublings.
Notice that the respective branches of periodic orbits are extremely close together in the ||N ||-projection;
see Fig. 15(a) and (b). Overall, we found evidence of cascades of period-doublings that bound four regions
with more complicated and potentially chaotic dynamics; these are indicated in Fig. 15(b) by large, grey-
filled circles. Numerical simulations of (4) confirmed that the sequences of period-doubling bifurcations
indeed lead to a chaotic attractor.

4.2. Observed solutions of the Warnichai equations for Ω/ω2 = 1.013

We now shows that the averaged equations (4) correctly represent the cable dynamics as described by
the full Warnichai equations (1), even on the level of solutions with varying amplitudes of the second
in-plane mode Z2 and the second out-of-plane mode Y2. Firstly, a periodic solution of (4) corresponds to
two-frequency dynamics of (1), where the underlying periodic cable dynamics at the basic frequency ω2 is
modulated in its amplitude. This two-frequency dynamics takes place on an invariant torus, and it may
be quasi-periodic (so that it never repeats) or locked (so that it repeats after a number of basic periods).
Similarly, a chaotic solution of (4) corresponds to chaotic dynamics of (1) with a chaotic modulation of
the amplitude of the basic frequency. Specifically, the dynamics of (1) in z2 and y2 are coupled and their
amplitudes are modulated, and we refer to a single oscillation in z2 and y2 as a basic period of the response.

Throughout, we generate an initial condition from the averaged equations (4) to start the simulation
of the full Warnichai equations (1) and then record the result after transients died down (we typically
discard at least the first 7,000 s). We then represent the observed dynamics in figures with five individual
panels. Panels (a)–(c) show time series of y1, y2 and z2, respectively, and panel (d) shows the corresponding
trace of the quarter-span motion in the (y, z)-plane; compare with Fig. 13. Finally, panel (e) shows the



September 24, 2013 12:39 tkn˙cablvibr

Vibration dynamics of an inclined cable 25

0 100 200 300

−4

0

4

0 100 200 300

−4

0

4

−4 0 4

−4

0

4

8.86 8.93 9

0.2

0.4

0 100 200 300

−4

0

4

(a)

y1
[mm]

t[s]
(b)

y2
[mm]

t[s]
(c)

z2
[mm]

t[s]

(d)z
[mm]

y[mm]

(e)

f[Hz]

Fig. 17. Quasi-periodic cable dynamics of (1) with a period-two modulation of the amplitudes in z2 and y2, for Ω/ω2 = 1.013
and ∆/L = 0.045× 10−3. The blue and green curves in panels (a)–(d) indicate four different basic periods of the response.

normalised frequency spectrum of the dynamics of y2, as obtained by Fourier transform from long time
series (of 7,000 s); it differentiates well periodic, quasi-periodic and chaotic cable motion.

Figure 16 shows the two-frequency cable dynamics of (1) that corresponds to the basic stable periodic
orbit of (4), in between the bifurcations H2 and PD1 for ∆/L = 0.043× 10−3 in Fig. 15. In Fig. 16(a)–(c)
the time series are plotted over a long time window of 300 s. Panel (a) confirms that the variable y1 is
inactive, and panels (b) and (c) show that the main oscillation of both z2 and y2 is modulated with a
secondary slow frequency. Notice that the modulation of y2 is out-of-phase with that of the z2. Panel (d)
shows the corresponding trace of the quarter-span motion in the (y, z)-plane, where the motion sweeps out
a torus (grey area). Moreover, we also show two basic periods, one associated with the maximum (green
curve) and one with the minimum of the y2-modulation (blue curve). These two (almost) closed curves
‘bound’ the torus in Fig. 16(d); the corresponding times are shown by the two vertical lines in the time
series in panels (a)–(c). Note that, at this scale, the fast underlying oscillation is not resolved in Fig. 16(a)–
(d). Finally, the spectrum of the second out-of-plane y2-response clearly shows beating peaks of the slower
0.026 Hz modulating frequency, which appear symmetrically on the left and the right of the main 8.926 Hz
frequency peak (of the basic, fast oscillation). We conclude that the cable dynamics is quasi-periodic for
all practical purposes; indeed it might be locked with an extremely high period, but these two scenarios
are effectively indistinguishable.

Figure 17 shows the two-frequency cable dynamics of (1) that corresponds to the stable period-doubled
orbit of (4), in between the bifurcations PD1 and PD2 for ∆/L = 0.045× 10−3 in Fig. 15. Figure 17 (b)
and (c) clearly shows that the modulation has doubled in period, with two different local maxima and
minima of the y2-modulation in each period, examples of which are again highlighted as green and blue
lines. They appear as (almost) closed curves in the quarter-span trace in the (y, z)-plane, where they again
‘bound’ the corresponding torus (grey area); see panel (d). The frequency spectrum in Fig. 17(e) clearly
displays additional peaks, corresponding to a 0.013 Hz oscillation, which is half the modulation frequency
of the period-one case; compare with Fig. 16(e). Overall, Fig. 17 demonstrates that we are dealing again
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Fig. 18. Chaotic cable dynamics of (1) with a chaotic modulation of the amplitudes in z2 and y2, for Ω/ω2 = 1.013 and
∆/L = 0.049× 10−3. The blue and green curves in panels (a)–(d) indicate two different basic periods of the response.

with quasi-periodic cable dynamics, but now on a doubled torus.
Finally, Fig. 18 illustrates chaotic cable dynamics of (1), which corresponds to chaotic amplitude

dyanmics of (4) for ∆/L = 0.049× 10−3 in Fig. 15. The amplitude modulation in Fig. 18(b) and (c) does
not appear to repeat, and notice from panel (a) that the y1-response remains zero. The quarter-span trace
in panel (d) still sweeps out an entire area (grey), that is still ‘bounded’ by two basic periods at a maximum
(green curve) and a minimum of the y2-modulation, respectively. The fact that this swept-out area is no
longer the projection of a torus is comfirmed by Fig. 18(e): the frequency spectrum of y2 still features
the dominant fast oscillation peak at 8.926 Hz, but it is a now broad spectrum with effectively all other
frequencies involved. This clearly demonstrates that the cable response is indeed chaotic.

4.3. Influence of Ω/ω2 and Shilnikov homoclinic bifurcation

Figure 19 presents one-parameter bifurcation diagrams with the branches of the periodic (Z2, Y2)-solutions
of (4) for Ω/ω2 = 1.0125, again for 1.013, and for 1.0158, respectively. In panel (a) for Ω/ω2 = 1.0125 the
basic branch of periodic solutions connects the two Hopf bifurcation points, labelled H2, on the steady-state
branch L2. We find period-two solutions branches between the pairs of period-doubling points PD1 and
PD2, and period-four solutions between the pair of further period-doublings PD2

1. The unstable solutions
are again so close to the stable branches that they cannot be distinguished in Fig. 19(a). Overall, the system
follows the respective stable parts of the branches of period-one, period-two and pariod-four solutions as
∆/L is varied. In particular, there are no regions of chaotic dynamics for Ω/ω2 = 1.0125. When Ω/ω2

is increased to Ω/ω2 = 1.013 as in Fig. 19(b), we find the branches of periodic orbits (now over a wider
∆/L-range) that were discussed in Sec. 4.1. These branches look very similar to those in Figure 19(a) in
this projection but, as we have seen, for Ω/ω2 = 1.013 there are fold bifurcations of periodic orbits and
regions of chaotic cable dynamics. When Ω/ω2 is increased even further to Ω/ω2 = 1.0158 as in Fig. 19(c),
there is no longer a single branch of periodic orbits that connects the two points of Hopf bifurcation H2.
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of (4) for Ω/ω2 = 1.0125 (a), for Ω/ω2 = 1.013 (b), and for Ω/ω2 = 1.0158 (c).

Instead, we find distinct branches of periodic orbits near each of these two points, which appear to approach
specific values of ∆/L.

Figure 20 shows enlarged views of these two branches of periodic solutions of (4). Panel (a) shows
the branch bifurcating from the Hopf bifurcation point on L2 with the lower value of ∆/L. It shows a
number of fold points, followed by period-doubling bifurcations, with sections of stable periodic orbits.
The branch is eventually stable and appears to approach a specific value of ∆/L; at the same time, the
period of the periodic solution tends to infinity. This is indicative of a Shilnikov homoclinic bifurcation,
where the periodic orbit approaches a saddle focus [Guckenheimer & Holmes, 1996; Kuznetsov, 1998;
Shilnikov, 1970; Shilnikov & Shilnikov, 2007]. For the ∆/L-value corresponding to the the very top of the
branch shown in Fig. 20(a) we computed the four eigenvalues of the equilibrium of (4) that are associated
with the two active modes z2 and y2 as λ1,2 = −0.1107 ± 0.3180i, λ3 = 0.0275 and λ4 = −0.2489. This
shows that the equilibrium is a saddle focus with a saddle index of |Re(λ1, 2)|/λ3 > 1; note that λ4 is
an additional, universally stronger attracting direction. We conclude that we are dealing with the case
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Ω/ω2 = 1.0158, for lower (a) and higher (b) values of ∆/L; compare with Fig. 19(c).

of a simple Shilnikov bifurcation [Shilnikov, 1970; Shilnikov & Shilnikov, 2007], where a branch of stable
periodic orbits approaches the saddle focus to become a homoclinic orbit.

Similarly, Fig. 20(b) near the Hopf bifurcation point on L2 with the higher value of ∆/L is indicative of
another Shilnikov bifurcation, but now the branch of periodic solutions is largely unstable. The eigenvalues
of the equilibrium (associated with z2 and y2) are λ1,2 = −0.1107±0.5661i, λ3 = 0.1396 and λ4 = −0.3610.
Hence, we are again dealing with a saddle focus with an additional strong stable direction, but now with a
saddle index of |Re(λ1)|/λ3 < 1. This means that the conditions for a chaotic Shilnikov orbit are satisfied
[Shilnikov, 1970; Shilnikov & Shilnikov, 2007]. Note that the chaotic dynamics that arises due to this
bifurcation is of saddle type, that is, unstable; in the respective range of ∆/L, we find that the dynamics
of (4) settles down to the branch L of the directly excited pure Z2-response.

As we show now, the Shilnikov bifurcation is indeed relevant for the observed cable dynamics. Figure 21
shows the cable response of the full Warnichai equations (1) for Ω/ω2 = 1.0158 and ∆/L = 4.786× 10−5,
which corresponds to the stable periodic orbit of (4) in Fig. 20(a) when it is very close to undergoing a
(simple case of) Shilnikov bifurcation. The cable response is quasi-periodic (or of extremely high period),
but observe from Fig. 21(b) and (c) that the modulation of the fast underlying oscillation is now very deep
and anharmonic. Indeed, the frequency spectrum in Fig. 21(e) confirms the two-frequency nature of the
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Fig. 21. Quasi-periodic cable dynamics of (1) for Ω/ω2 = 1.0158 and ∆/L = 4.786×10−5, corresponding to a stable periodic
orbit of (4) close to the Shilnikov homoclinic bifurcation. The blue and green curves in panels (a)–(d) indicate four different
basic periods of the response.

dynamics. An important observation from panel (d) is that the quarter-span trace is now symmetric with
respect to the y-axis. In other words, the previously found two symmetrically related solutions of clockwise
and counter-clockwise whirling motion of the cable have now merged. This means that the fast oscillation
changes between being in-phase and being anti-phase over the course of two periods of the modulation,
which corresponds to a change between clockwise and counter-clockwise whirling. This is illustrated in
Fig. 21(d) by the fact that the green and blue traces of one basic period at consecutive maxima and
minima of y2 are each other’s symmetric counterparts.

When ∆/L is increased very slightly, just past the Shilnikov bifurcation to ∆/L = 4.856 × 10−5,
the response of the cable as described by the full Warnichai equations (1) is as shown in Fig. 22. The
modulation of the fast underlying oscillation is now no longer periodic; see panels (b) and (c). Rather
we find extended periods over which the out-of-plane y2-component is stronly suppressed; hence, the cable
appears to be performing in-plane motion. However, the out-of plane motion then builds up to considerable
values at irregular, unpredictable moments in time. The chaotic nature of the dynamics is confirmed by
the frequency spectrum in panel (e), which shows a broad spectrum with several strong contributions
from different frequencies. In spite of this change in dynamics, the quarter-span trace in Fig. 22(d) is
still symmetric with respect to the y-axis. The green and blue traces of one basic period at consecutive
maxima and minima of y2 illustrate again that the fast oscillation still changes from being in-phase to
being anti-phase, and back again. Hence, the cable motion changes irregularly between clockwise and
counter-clockwise chaotic whirling.

We remark that a Shilnikov homoclinic bifurcation with positive saddle index was found by [Bajaj &
Johnson, 1992] in a horizontal vibrating string upon variation of the frequency detuning parameter. They
found the associated stable periodic dynamics and mention that no recurrent response is expected past the
simple case of the Shilnikov bifurcation. Moreover, these authors observed the merging of two reflectionally
symmetric orbits into a single symmetric orbit [Bajaj & Johnson, 1992; Johnson & Bajaj, 1989]. Our results
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Fig. 22. Chaotic cable dynamics of (1) for Ω/ω2 = 1.0158 and ∆/L = 4.856 × 10−5, close to the Shilnikov homoclinic
bifurcation of (4). The blue and green curves in panels (a)–(d) indicate four different basic periods of the response.

are very similar, but they are for an inclined cable, which differs from a horizontal string by the presence
of a plane of inclination and the associated specific difference between in-plane and out-of-plane motion
— not to mention the differences in parameter values between a string and a bridge cable. As we have
seen, Figs. 21 and 22 clearly demonstrate that the Warnichai equations (1) have a complex whirling cable
solution that undergoes a transition that corresponds directly to the Shilnikov homoclinic bifurcation of
the averaged equations (4).

4.4. Bifurcation diagram of periodic solutions in the (Ω/ω2,∆/L)-plane

The bifurcations of periodic orbits of the averaged equations (4) that were identified in Fig. 19 can be
continued in two parameters in the (Ω/ω2,∆/L)-plane. Figure 23 shows the resulting bifurcation diagram.
Specifically, shown are the Hopf bifurcation curve H2 (grey) with further bifurcations of periodic orbits
that occur in the region to the right of H2. For clarity, the different bifurcation curves are show in two
panels. Figure 23(a) shows the first period-doubling curves PD1 and PD2 (red), second period-doubling

curves PD2
1 and PD2

2 (blue), and the fold curves FH2
1 and FH2

2 (black). Figure 23(b) shows the curves

PD11 and PD21 (blue) of period-doubling of periodic orbits that are created at FH2
1 and FH2

2 , respectively;
also shown is the curve S of Shilnikov homoclinic bifurcations, which was continued in two parameters as
a periodic orbit of sufficiently large period.

Figure 23 shows how the one-parameter bifurcation diagram in ∆/L becomes more complicated when
Ω/ω2 is increased. The dashed vertical lines mark the cross sections where Ω/ω2 takes the values 1.0125,
1.013 and 1.0158. Hence, the crossing points of these lines with the different bifurcation curves yield the
respective bifurcations in the one-parameter bifurcation diagrams of Figs. 14, 15, 19 and 20. Regions with
chaotic dynamics of (4) can be found only for sufficiently large Ω/ω2 when there is a full period-doubling
sequence to chaos for lower and/or larger values of ∆/L; this happens only after the curves PD2

1 and PD2
2

are intersected, respectively. For sufficiently large Ω/ω2 the curves FH2
1 or FH2

2 in Fig. 23(a) are crossed at
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least twice when ∆/L is increased or decreased, and this leads to hysteresis loops. Notice that the dashed

vertical line for Ω/ω2 = 1.0125 crosses the boomerang-shaped curve FH2
1 and in a way that implies that

there is an isolated branch of periodic solutions. It is not shown here, but we remark that such an isolated
branch was also found for a vibrating horizontal string in [Bajaj & Johnson, 1992; Johnson & Bajaj,
1989]. The bifurcating periodic solutions undergo period-doubling at the curves PD11 and PD21 shown in
Fig. 23(b). Notice further that one finds a Shilnikov homoclinic bifurcation and associated dynamics in the
one-parameter diagram in ∆/L only for sufficiently large Ω/ω2, when the respective parts of the curve S
are intersected by the corresponding vertical line. Along the part of S for lower values of ∆/L the saddle
index is greater than one, and along the part of S for larger values of ∆/L the saddle index is smaller
than one; compare with Fig. 20.

Even though we chose here to present one-parameter bifurcation diagrams in ∆/L for fixed Ω/ω2,
Fig. 23 shows how the respective regions of complex cable response arise when Ω/ω2 is varied for fixed
∆/L. For example, the part of S with saddle index greater than one can be reached by increasing Ω/ω2

for a suitable value of ∆/L; this choice of free parameter was used in [Bajaj & Johnson, 1992; Molteno &
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to the one-parameter bifurcation diagrams in Fig. 19.

Tufillaro, 1990; O’Reilly & Holmes, 1992] in the investigation of dynamics associated with the Shilnikov
homoclinic orbit in the model of a horizontal string.

We now consider where in the (Ω/ω2,∆/L)-plane one finds transitions of the full Warnitchai equations
(1) to a varying-amplitude response. To this end, we perform simulations of (1) for fixed Ω/ω2 and starting
on the branch L12 of a harmonic, fixed amplitude (Z2, Y2, Y1)-response. As one would do in an experiment,
we then track the observed solution when ∆/L is slowly ramped down. Transitions to a quasi-periodic
(Z2, Y2)-response, to a harmonic (Z2, Y2)-response and to a harmonic Z2-response are detected in the time
series.

Figure 24 shows the recorded transitions of the Warnitchai equations (1) in the (Ω/ω2,∆/L)-plane as
filled circles, circles and squares, overlaid onto the stability diagram of the underlying equilibrium solutions
of the averaged equations (4); compare with Sec. 3.5. Specifically, shown are the projections of the stable
parts of the solution surfaces L (blue shading), L2 (purple shading) and L12 (brown shading) from Fig. 10;
here, the stability region of L12 is shown ‘on the top’, because all simulations start from the stable pure
(Z2, Y2, Y1)-response. Also shown are corresponding bifurcation curves. The curves B2

12 and H2 are shown
only until they go ‘underneath’ the stable part of L12. Both F 1

Y12
and H12 belong to L12, where F 1

Y12
arises

from B2
12 and H12 arises from F 1

Y12
. The part of F 1

Y12
that corresponds to a fold of unstable (Z2, Y1, Y2)-

solutions is dashed. The results of the simulations of (1) are depicted as follows. Filled circles denote points
where a quasi-periodic (two-frequency) (Z2, Y2)-response is detected for the first time, and open circles and
squares denote first detection of a coupled (Z2, Y2)-response and a pure Z2-response, respectively. Notice
that the filled circles are aligned with the curves H2, F

1
Y12

and H12, the open circles are aligned with H2,
and the squares are aligned with H12.

The recorded transitions of the Warnitchai equations (1) in Fig. 24 correspond to the transitions shown
in Fig. 14. As in Fig. 23, the dashed vertical lines correspond to the respective one-parameter bifurcation
diagrams of Figs. 14, 15 19 and 20. Specifically for Ω/ω2 = 1.013, the transition J2 corresponds to the filled
circle, and passing through the Hopf bifurcationH2, just before J3, corresponds to the open circle in Fig. 24.
Overall, Fig. 24 shows how the dynamics of the cable changes from the coupled (Z2, Y2, Y1)-response back to
the pure Z2-response as ∆/L is decreased. For Ω/ω2 ∈ [1, 1.01] only the harmonic oscillations of the coupled
(Z2, Y2)-response appear before the cable goes back to the pure Z2-response. For Ω/ω2 ∈ (1.01, 1.014] there



September 24, 2013 12:39 tkn˙cablvibr

Vibration dynamics of an inclined cable 33

is a region of varying-amplitude quasi-periodic (Z2, Y2)-response, just as we found for Ω/ω2 = 1.013. For
Ω/ω2 ∈ (1.014, 1.0145] the quasi-periodic dynamics of the Warnichai equations suddenly loses stability and
a transition to the pure modal Z2-response occurs. For Ω/ω2 ∈ (1.0145, 1.02] there is a direct transition
from the coupled (Z2, Y2, Y1)-response to the pure Z2-response.

Overall, we identified a region in the (Ω/ω2,∆/L)-plane, where a quasi-periodic (Z2, Y2)-response of
the inclined cable has been confirmed by simulations of the full Warnitchai equations (1) that started from
a stable coupled (Z2, Y2, Y1)-response and decreased ∆/L. The fact, that this region is bounded in very
good approximation by corresponding bifurcation curves of the averaged equations (4) demonstrates not
only its accuracy, but also the usefulness of the bifurcation theory approach taken in this paper.

5. Conclusions

We presented a bifurcation study of an inclined cable with support excitation near a 2 : 1 resonance
with the second natural frequency of the cable. This system was modelled by the Warnitchai ODEs for
the directly excited in-plane mode and for the first and second out-of-plane modes of the cable. We also
considered the corresponding averaged system that describes only the amplitude dynamics of the three
modes. Throughout the frequency range of forcing we considered, we found that the averaged equations
provide an accurate description of the dynamics of the full Warnichai equations, also for cable responses
with varying amplitudes; this can be explained by the fact that the observed modulation period of the
amplitudes is much larger than the basic period of the forcing.

The first focus of our investigation was on the different types of coupled-mode, constant-amplitude
responses of the inclined cable; these are equilibria of the averaged equations that are distinguished by
which of the out-of-plane modes is active: none, the first, the second, or both. Each of the four types of
equilibria was computed by means of numerical continuation as a surface in the three-dimensional space of
their norm versus the amplitude and frequency of the excitation. The different surfaces connect at curves
of bifurcations and constitute a geometric picture of the overall two-parameter bifurcation diagram of
the coupled-mode response of the cable. In particular, this analysis identified several previously unknown
branches of stable coupled-mode responses. The quite intricate structure of this bifurcation diagram and
the associated stability regions of the different coupled modes confirms the nonlinear nature of the problem.
In particular, we found that the frequency response of the cable depends very sensitively on the excitation
amplitude.

Secondly, we studied bifurcating periodic solutions of the averaged equations, which correspond to
varying-amplitude whirling responses of the inclined cable. We found several branches of stable periodic
orbits. Moreover, we identified further bifurcations, including period-doublings and a Shilnikov homoclinic
bifurcation, that lead to chaotic dynamics of the cable. These findings were presented as a bifurcation
and stability diagram in the (Ω/ω2,∆/L)-plane. Simulations confirmed that the corresponding varying-
amplitude cable responses can indeed also be found in the full Warnitchai equations. The cable dynamics
was represented by time series, quarter-span traces and frequency spectra.

The results we presented are for a range of the excitation frequency (close to the 2 : 1 resonance)
where the first in-plane mode is not active and, therefore, the three-mode model considered here provides
a suitable description of the cable response. While this amplitude and frequency range of the forcing looks
quite small in the rescaled parameters used here, it is of relevance for the original problem of bridge cable
vibration, and in line with the frequency ranges that have been considered in experiments as physically
accessible. For example, the Warnichai model as considered here was studied in [Gonzalez-Buelga et al.,
2008] mainly in terms of the stability properties of the pure in-plane response, and good agreement was
found with the corresponding experiment. Similar experiments are reported in [Marsico et al., 2011] for a
longer cable, where again there was good agreement between measurements and the stability boundaries of
in-plane motion. These results were obtained for a four-mode model that includes the first in-plane mode;
however, the stability boundaries agree with those of the three-mode model for frequency detunings as
considered here. It appears feasible for these reasons that the cable responses predicted here, including
whirling, quasi-periodic and chaotic cable responses, may also be confirmed experimentally. Note, however,
that such experiments are not straightforward, because the cable is only very lightly damped. Hence,
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experimental runs require a long time for transients to die down sufficiently before the dynamics can be
recorded reliably (e.g., with video-capture at the half- and quarter-spans).

Finally, we mention that in a cable-stayed bridge the cable dynamics may also have an influence on
the bridge deck. The study presented here shows that the motion of the cable itself, under uni-directional
excitation from the deck, may develop considerable amplitudes. Hence, there is the potential for positive
feedback between vibrations of the cable and the deck. One approach to studying such effects is to extend
the model for the cable by adding one or more damped oscillators that model the basic modes of the bridge
deck. This type of system could be studied in a similar spirit via a bifurcation analysis of the coupled-mode
responses of the overall system, which now also includes the basic deck modes.
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