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A mechanical system is presented exhibiting a non-deterministic singularity, that is, a point

in an otherwise deterministic system where forward time trajectories become non-unique. A

Coulomb friction force applies linear and angular forces to a wheel mounted on a turntable.

In certain configurations the friction force is not uniquely determined. When the dynamics

evolves past the singularity and the mechanism slips, the future state becomes uncertain

up to a set of possible values. For certain parameters the system repeatedly returns to the

singularity, giving recurrent yet unpredictable behaviour that constitutes non-deterministic

chaotic dynamics. The robustness of the phenomenon is such that we expect it to persist with

more sophisticated friction models, manifesting as extreme sensitivity to initial conditions,

and complex global dynamics attributable to a local loss of determinism in the limit of

discontinuous friction.

I. INTRODUCTION

Classical mechanics accounts for motion of both rigid and deformable bodies, describing macro-

scopic processes, often with great accuracy. Even for simple bodies, however, the contact forces

between them can be particularly complex, and one must resort either to intricate fine scale mod-

els or crude empirical approximations. This is the case for both friction and impact. In impact,

reaction forces vary by several magnitudes within the very short time interval that contact occurs.

Models are generally empirical, taking the form of kinematic constraints given between infinitesi-

mally close times where contact is made and lost [4, 28, 29]. Friction, on the other hand, describes

a resistance force between surfaces in sustained contact. The evolution of the friction force over

significant time intervals stands as a singularly enduring problem in classical rigid body mechanics,

as a brief inspection of the extensive literature reveals. Common empirical force laws still largely

resemble those set down by Da Vinci, Amontons and Coulomb (see e.g. [4, 10, 23, 32]), of a

constant force opposing the direction of motion. This simplicity is in contrast with experimental

images that reveal a complex evolution of the contact surface [2, 3, 20, 22, 25].

The difficulties in obtaining a clear theory of friction are further complicated by the coefficient

of friction varying with scale, material, motion, and physical conditions such as temperature and

lubrication. Theorists and experimentalists continue to seek improved contact models by allowing,
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for example, impact compliance [5, 13], frictional memory [12, 27], speed dependence (Stribeck

effect) [20, 32], and microscopic structure such as asperity deformation at the frictional interface

[1, 2].

Regardless of the chosen model, mechanical laws are reasonably associated with deterministic

dynamics. Reliable models are vital in the study of tyre deformation in the automotive and aero-

nautic industries, of drill strings, turbine rotors, and so on. To this end, all of the contact models

discussed above tend to retain one essential feature of friction and impact, and that is disconti-

nuity, either from switching between free-flight and in-contact impact laws, or switching between

“left-motion” and “right-motion” friction laws. It is easy to assume that one may smooth out the

discontinuity. The effects of smoothing on the dynamics, however, remain poorly understood, with

both theory and simulations suggesting more intricate dynamics organised, nevertheless, around

the quantitative features of the discontinuous limit [15].

The crucial point is that existence and uniqueness of the dynamical solutions of differential

equations is not guaranteed when they suffer discontinuities. In many situations, including all

those listed above, the existence of solutions can be guaranteed at the possible expense of loss of

uniqueness. The most obvious example is a slipping block that comes to rest on a surface. It is

easy to predict where the block will stop, but when it comes to rest information about its previous

motion is lost to the environment, and piecing together its previous motion is no longer possible.

This loss of unique reversibility is common in a piecewise-smooth dynamical system. When a

trajectory encounters a discontinuity there are local rules, physically motivated, that provide a

well-defined and solvable system. But those solutions may be non-unique either in forward or

backward time. Backward time ambiguity corresponds to the onset of sticking that brings a block

to rest, consistent with centuries of physical intuition. Forward time ambiguity, on the other hand,

signals a breakdown in the deterministic character of physical law.

A classic example of a forward time ambiguity is the Painlevé paradox (see e.g. [5]) responsible

for the juddering of a piece of chalk when pushed, instead of dragged, along a blackboard. As a rod

impacts a surface its endpoint can stick in place or slip. The effects of impact and friction, together

with the coupling of the rod’s linear and angular motion, may combine such that the surface seems

to attract, rather than resist, the rod. The rod’s release is then not uniquely determined by

the governing equations, resulting in unpredictable skipping of its endpoint along the surface. In

this paper we present a phenomenon that is potentially more common, and more extreme, where

forward and backward time ambiguity combine to generate chaotic dynamics.

This behavior was described in a theoretical context in [7], and in an abstract model proposed
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in [14]. The discontinuity in a piecewise-smooth system can create a so-called two-fold singularity,

where a system switches between two states, which both evolve instantaneously along the switching

locus. Two-fold singularities arise in generic systems of more than two dimensions (with simpler

degenerate forms in planar systems). They have different forms, some of which are benign, either in

the sense that they are invisible to the dynamics, or that forward time ambiguities are short-lived

because trajectories quickly recombine. In another form, trajectories enter the singularity both

forwards and backwards in time, traveling (counterintuitively) from attracting regions to repelling

regions of phase space, and in a finite amount of time. The result is a set of allowed future and past

trajectories, with none more likely than any other. In [7], local conditions near a bifurcation were

shown to re-inject trajectories so that this unpredictable singularity was visited repeatedly, giving

birth to a non-deterministic form of chaos. In [14], a global re-injection mechanism was shown to

create more robust non-deterministic chaos in an abstract system with negative damping. Attempts

have also been made to characterize the possible appearance of the singularity in electrical control

models [6, 9].

Despite these steps, no testable examples of this singular prediction of piecewise-smooth dy-

namical systems theory have previously been devised. In this paper the singularity is shown to

occur in a simple and realistic mechanical model, motivated from devices such as [31], involving

a Coulomb friction law and a simplified version of Pacejka’s magic formula [24] to characterize

nonlinear response of a wheel. Non-deterministic chaos ensues for a range of parameters, and while

a continuum model such as the stretched string tyre model [30] should resolve the singularity, the

sensitivity to initial conditions that gives rise to chaos-like dynamics is expected to persist.

Below we present the mechanical model in section II, and show how a singularity arises in the

friction force in section III. Some generalities of the singularity are presented briefly in section IV,

followed by identification of parameter regimes for which non-deterministic chaos can appear along

with simulations in section V. We remark on special simplifying cases in VI and make concluding

remarks in section VII.

II. MECHANICAL MODEL

In what follows, we describe the mechanism that can be experimentally tested to confirm the

physical existence of non-deterministic chaos. The crucial component of the mechanical system is

the friction torque and the friction force imparting on a wheel that can balance each other with

respect to the contraints built into the system. The precise design of the mounting of the wheel
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on a rotating disc is contrived solely to simplify the analysis by eliminating the rotation angle of

the mount from the equations of motion.

Figure 1 shows the mechanical model of interest. It consists of two discs that can independently

rotate on a shared axis, and a wheel (shown red) mounted transversely inside the upper disc so

that it rolls over the surface of the lower disc. The wheel is mounted inside the top disc by means

of a slider (a one degree of freedom oscillator, shown in green) a distance d from the disc axis. The

wheel sits at an angle γ to the slider direction. The slider is fixed to the disc via a spring coefficient

k2 and damping coefficient c2, and it’s equilibrium position lies a distance
√
d2 + r20 from the disc

axis. The wheel’s mass is negligible, the slider’s mass is m, and the moment of inertia of the top

disc is Θ = β2m. The bottom disc rotates with a constant angular speed ω0, with a viscous friction

coefficient c1 between it and the upper disc. All of the parameters so far described are constants.

The most crucial feature of the model is the friction force between the wheel and the steadily

rotating bottom disc. The friction force acts perpendicular to the plane of the wheel and has

magnitude µ. Inhomogeneities in the force distribution on the contact patch between the bottom

disc and the wheel create a torque on the wheel of magnitude µM . The function M models the

deformation of a tyre around the wheel, for which different models are available [21, 24, 30]. Most

of these tyre models are smooth but include steep gradients that we replace with discontinuities.

In this paper we choose the stretched-string tyre model described in Appendix B.
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FIG. 1: Mechanical model of the system show from the top (left) and from the side (middle), with a conceptual

sketch (right). The bottom disc is rotating with a constant angular speed ω0. The top disc rotates around the

same centre pin, but it is connected to the bottom disc through a viscous friction coefficient c1. A slider is fitted

in the top disc, forming a single degree of freedom oscillator. The slider contains a wheel mounted at an angle

γ to the slider direction. The wheel is in contact with the bottom disc and Coulomb friction acts between them.

This system can be described using two generalized coordinates, namely the rotation angle of the

top disc, ϕ, and the displacement of the slider, r. Differential equations for the slider displacement

r, slider speed v = ṙ, and the top disc’s angular speed ω = ϕ̇ , can be derived from the Euler-
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Lagrange equations (or by directly calculating linear and angular accelerations of the slider and

the top disc respectively). These are found to be independent of the angle variable ϕ, giving the

three dimensional dynamical system

ṙ = m
(
β2 + r2

)
v, (1)

v̇ =
(
β2 + d2 + r2

)
p1(r, v, ω)− d (c1 + 2mrv)ω + F (h, g)p2(r) + dM(h, g) (2)

ω̇ = d p1(r, v, ω)− (c1 + 2mrv)ω + F (h, g)r cos γ +M(h, g), (3)

in terms of functions F,M, p1, p2, h, g defined below, and where the dot denotes the time derivative.

In the equations of motion (1)-(3), time has been rescaled so that the strictly positive quantity

m
(
β2 + r2

)
does not appear in the denominator of the righthand side. The functions p1 and p2

are given by

p1(r, v, ω) = k2(r0 − r)− c2v +mrω2, p2(r) = dr cos γ +
(
β2 + r2

)
sin γ.

The functions g and h are the components of the wheel’s relative velocity with respect to the

bottom disc, in the rolling and the lateral directions, respectively. They are given by

h(r, v, ω) = −(v − d(ω − ω0)) sin(γ)− r(ω − ω0) cos(γ), (4)

g(r, v, ω) = −(v − d(ω − ω0)) cos(γ) + r(ω − ω0) sin(γ). (5)

When h = 0 and v = 0, the wheel rolls around the disc in a circle without slipping, such that

r = d tan γ. When h = 0 but v 6= 0, the wheel instantaneously rolls on a spiral about the centre of

the disc.

The friction force F and moment M represent the tyre model (derived in Appendix B), and are

given by

F (h, g) = sign(h)µ

(
4

3
− cotψ

18κ

)
, (6)

M(h, g) = sign(g)sign(h)
µ

6
cotψ, (7)

where ψ = arccot 6κ +
∣∣1− 2

π arccot 6κ
∣∣ arctan |h/g|. An important feature of the model is that

limh→0±M = ±sign(g)µκ, which imparts a nonzero torque on the wheel as it enters the sticking

phase h = 0.

The system is piecewise-smooth because the friction force F and moment M are discontinuous

at h = 0. This defines a set of points

Σ = {(r, v, ω) ∈ R3 : h(r, v, ω) = 0}
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called the switching surface. When h 6= 0, F and M are smooth functions of h and g, so equations

(1)-(3) remain smooth and have unique solutions (r(t), v(t), ω(t)). Note that the moment M stays

smooth when g changes sign since this occurs when ψ = π/2 and hence cotψ = 0.

To solve the equations of motion when they reach the switching surface Σ, we first assume that

F and M never exceed the absolute values they have as they approach Σ (i.e. static and kinetic

friction are equal), hence |F | ≤ µ and |M | ≤ µκ. Only two kinds of solutions are possible given that

a trajectory (r(t), v(t), ω(t)) must be a continuous solution of (1)-(2): either a solution will stick

to the surface Σ, or it will cross through Σ transversally which reverses the direction of slipping.

The values of F and M during sticking are not fixed by (6)-(7) because the value of sign(h)

is not well-defined at h = 0. To establish whether sticking occurs, we ask whether there exists

F ∈ [−µ,+µ] such that the vector field (1)-(3) is tangential to Σ. If such an F exists, then

sticking occurs and solution follow (1)-(3) along Σ with the given value of F and with M = κF .

In mechanical terms, evolution along Σ corresponds to stick of the contact surfaces, during which

the mechanical constraint h = 0 holds. Note that the friction force and moment are tied together

during stick by the constant κ. If there exists no value of λ in the interval [−µ,+µ] for which

(1)-(3) is tangential to Σ, then sticking to Σ is impossible dynamically and trajectories cross from

slipping in one direction to the other.

The region of Σ where sticking occurs is reachable from both ‘right slip’ h > 0 and ‘left slip’

h < 0. It is called the sliding surface, because trajectories do not just stick to Σ but evolve or slide

over its surface as F varies between [−µ,+µ] (to avoid confusion note: we employ this mathematical

usage of the word ‘slide’ during the stick phase on h = 0, and use ‘slip’ to describe non-stick contact

in the mechanical sense for h 6= 0). The sticking surface a subset of Σ on which the vector field

(ẋ, v̇, ω̇) points towards h = 0 from both h > 0 and h < 0., hence it is an attractor of the local

dynamics. Conversely, it is mathematically possible for an unstable form of sticking to occur on

an escaping surface, where the vector field (ẋ, v̇, ω̇) points away from h = 0 from both h > 0 and

h < 0. Thus an escaping region is a repellor of local dynamics, on which sticking occurs but can end

spontaneously (or under arbitrarily small perturbations in practice) upon which solutions depart

Σ abruptly. This definition seems to imply that solutions will never reach an escaping surface,

making it physically uninteresting. That this it not the case was shown in [7], and we illustrate it

shortly using the model above. The three basic behaviours — sliding, escaping, and crossing —

are illustrated in Figure 2.

Sticking ceases at points where the attractivity of Σ breaks down, namely where (ṙ, v̇, ω̇) does

not point either towards Σ (for a sliding region) or away from Σ (for an escaping region) from both
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FIG. 2: Typical dynamics as the switching surface: crossing, sliding, and escaping. The limit of (1)-(2) as

(r, v, ω) approaches Σ are labelled as f± = limh→0±(ṙ, v̇, ω̇). The vector field fs that governs sticking will be

defined in section IV.

h > 0 and h < 0. Thus the conditions

lim
h→0±

(ṙ, v̇, ω̇) · ∇h(r, v, ω) = 0

define curves bounding regions of sliding or escaping. If these two curves intersect they typically

bring sliding and escaping regions together at the intersection point, defined by

lim
h→0+

(ṙ, v̇, ω̇) · ∇h(r, v, ω) = lim
h→0−

(ṙ, v̇, ω̇) · ∇h(r, v, ω) = 0 . (8)

Despite its low dimension, this point, known as the two-fold singularity, will turn out to be highly

important to the dynamics. One role it can have is to funnel trajectories from sliding to escap-

ing motion [7], making escaping dynamics an important and observable feature of the system’s

dynamics. This is the situation found in the device above. Once inside the escaping region, it is

impossible to determine from the equations of motion exactly how and where a trajectory will cease

sticking. Thus the singularity introduces an interval of non-deterministic motion in an otherwise

deterministic system, in which we cannot determine how long sticking will last, or what the slipping

motion will look like immediately after, but once slipping motion is restarted then determinism is

restored.

These features of crossing and sticking will be formalised in more detail in section IV.

III. SINGULARITY OF THE FRICTION FORCE

The singularity that appears is simple to describe in mechanical terms if we assume that the

friction force and moment are related linearly during stick. If the mechanical system can be

placed into a configuration where friction force and moment balance each other with respect to the

constraints, then due to their linear relation any friction force would balance the moment that is

proportional to the force. In the model (1)-(3), this balance occurs via the constraint of the pin
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holding together the two independently rotating discs. The formal equation (8) exactly describes

this situation. It requires stick at a point with two different values of λ, which due to linearity

implies that (8) must also hold for any λ, hence M and F are in balance.

The conditions h = 0 and (8) for the two-fold singularity give equations that are solveable, but

highly nonlinear, in the variables (r, v, ω). Rather than solving for these in terms of the system

parameters, let us say that the singularity lies at coordinates (r, v, ω) = (r∗, v∗, ω∗) when two of

the parameters of the device, say κ and k2, take certain values dependent on (r∗, v∗, ω∗). We thus

solve the equations (8) along with h(r∗, v∗, ω∗) = 0, to find

v∗ = (ω∗ − ω0) (d− r∗ cot γ) , (9)

κ = −2r∗2 + β2 (1− cos(2γ))

2r∗ cos γ
, (10)

k2 =
1

(r∗ − r0) p2(r∗, v∗, ω∗)

(
sin(γ)

(
β2 + r?2

) (
mr∗ω∗2 − c2v∗

)
− cos(γ)

(
c1r
∗ω∗ + c2dr

∗v∗ +m
(
r∗2
(
v∗(ω∗ + ω0)− dω∗2

)
+ β2v∗(ω0 − ω∗)

)))
. (11)

By solving these numerically one finds at most four singularities on Σ. Only one of these creates

non-determinism, as described in the next section.

IV. TEIXEIRA SINGULARITY

There are different types of two-fold singularities [7, 11, 18]. The type responsible for introducing

non-determinism to the device above is known as a Teixeira singularity, formed where the flow

curves inwards towards the switching surface Σ from both sides (see later in Figure 3(left)); in the

two other types of two-folds, the flow curves away from the surface on one or both sides. Here we

derive the conditions that guarantee a non-degenerate singularity, and moreover give stick motion

through the singularity, leading to loss of determinism.

The value of the function sign(h) in (6)-(7) is ambiguous at h = 0. To resolve this we replace

the contact force µsign(h) with a variable λ satisfying

λ(r, v, ω) ∈ µ×

 sign(h(r, v, ω)) if h(r, v, ω) 6= 0 ,

[−1,+1] if h(r, v, ω) = 0 ,
(12)

and seek conditions to define the value of λ during sticking on h = 0. Firstly, note that on h = 0

the friction force and moment are tied together as F = λ and M = κλ.

For conciseness let x = (r, v, ω), and denote the right-hand side of (1)-(3) by f(x, λ), giving

ẋ = f(x, λ). (13)
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The vector field (13) depends linearly on the friction force λ, and we can write

ẋ = f(x, 0) + λfλ(x, 0),

where fλ(x, 0) denotes the partial derivative ∂
∂λf(x, λ), evaluated at λ = 0. Paraphrasing the

statements at the end of section II, we can then find the conditions defining sliding or escaping

regions, and find the equations of sticking motion within them.

For sticking motion to occur, the vector field f(x, λ) must be able to lie tangent to Σ for

admissible values of λ, namely λ ∈ [−µ,+µ]. This means the h component of f must vanish, or

equivalently that the Lie derivative of h with respect to f , must vanish,

hx(x) · (f(x, 0) + λfλ(x, 0)) = 0, (14)

with solution

λ = − hx(x) · f(x, 0)

hx(x) · fλ(x, 0)
. (15)

Using this value for λ the equations of motion for sticking become

ẋ = f(x, 0)− hx(x) · f(x, 0)

hx(x) · fλ(x, 0)
fλ(x, 0). (16)

This is known as the sliding vector field in piecewise-smooth dynamical systems theory [8, 11]. In

mechanical terms, evolution along Σ corresponds to stick of the contact surfaces, during which the

mechanical constraint h = 0 holds. (We re-iterate that the word ‘slide’ is used to describe evolution

on h = 0 during the stick phase, and ‘slip’ is used to describe non-stick contact in the mechanical

sense for h 6= 0). Then λ is the static friction force, as calculated from the equations of motion. If

there are no values of λ in the interval [−µ,+µ] such that (14) is satisfied, then sticking to Σ is

impossible dynamically and solutions must cross Σ transversally from left slip, h < 0, to right slip,

h > 0.

A sliding region, where sticking occurs so (15) lies inside [−µ,+µ] and Σ is attractive, now

satisfies

−hx(x) · fλ(x, 0) > hx(x) · f(x, 0)/µ > hx(x) · fλ(x, 0) . (17)

An escaping region, where sticking occurs and Σ is repulsive, satisfies

−hx(x) · fλ(x, 0) < hx(x) · f(x, 0)/µ < hx(x) · fλ(x, 0) . (18)

The boundaries of sliding or escaping regions hence lie where

hx(x) · f(x, 0) = ±µhx(x) · fλ(x, 0) .
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If both of these equations hold, then two boundaries intersect at a point, which we label x∗, where

hx∗(x∗) · f(x∗, 0) = hx∗(x∗) · fλ(x∗, 0) = 0 . (19)

This is the two-fold singularity. Generically the intersection of the two boundaries is transversal,

meaning f(x∗, 0) and fλ(x∗, 0) are linearly independent, as well as both tangent to Σ. At x∗, both

the numerator and the denominator of the fraction in (16) vanish, and so the sliding vector field is

ill-defined. The problem is easily dealt with by considering the scaled vector field

(hx(x) · fλ(x, 0)) ẋ = hx(x) · fλ(x, 0)f(x, 0)− hx(x) · f(x, 0)fλ(x, 0). (20)

The right-hand side is a vector field which is a positive scaling of (16) in the sliding region, a scaling

of (16) with directions reversed in the escaping region, and with a zero at the singularity (see e.g.

[7]). We are interested in the dynamics local to the singularity, so we linearize equation (20) at x∗,

which yields

(∂x (hx · fλ)x) ẋ = f ∂x (hx · fλ)x− fλ∂x (hx · f)x+O(|x|2) (21)

(omitting the arguments of h = h(x), f = f(x, 0) and fλ = fλ(x, 0) for brevity).

The vector field on the right side of (21) spans two dimensions (the tangent plane to Σ),

since f(x∗, 0) and fλ(x∗, 0) are linearly independent. Therefore it is sensible to parameterize the

perturbation as x = αf(x, 0) + βfλ(x, 0) + y, where y can be chosen from the kernel of (21), and

α, β, are parameters. In particular there is a projection P such that y = Px. Let us define

K++ = ∂x (hx · f(x,+µ)) · f(x,+µ), K+− = ∂x (hx · f(x,+µ)) · f(x,−µ),

K−+ = ∂x (hx · f(x,−µ)) · f(x,+µ), K−− = ∂x (hx · f(x,−µ)) · f(x,−µ),
(22)

The boundaries of the sticking regions are found by substituting λ = ±µ into (14). Linearizing

this constraint we find

∂x (hx · (f(x, 0)± µfλ(x, 0)))
(
α±f(x, 0) + β±fλ(x, 0)

)
+O(|x|2) = 0. (23)

To leading order this is satisfied if

α± = ∂x (hx · (f(x, 0)± µfλ(x, 0))) fλ(x, 0) =
1

2µ

(
K±+ −K±−

)
,

β± = −∂x
(
hx ·

(
f(x, 0)± µ±fλ(x, 0)

))
f(x, 0) = −1

2

(
K±− +K±+

)
.

The pair of vectors v± = α±f(x, 0) + β±fµ(x, 0) can now be defined as natural coordinates for the

linearised sticking motion, that is, x = ξv+ + ηv− + y where ξ and η are coordinates measured
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along the v+ and v− directions. In these coordinates the linearization of the time-scaled sliding

vector field (21) becomes

(ξ + η)
(
ξ̇v+ + η̇v− + ẏ

)
= (f(x, 0)(ξ + η) + µfλ(x, 0)(ξ − η)) . (24)

We also evaluate the time derivatives to get

ξ̇v+ + η̇v− = 1
2µ

{
f(x, 0)

(
(K++ −K+−) ξ̇ + (K−+ −K−−) η̇

)
−µfλ(x, 0)

(
(K+− +K++) ξ̇ + (K−− +K−+) η̇

)}
.

(25)

Substituting (25) into (24) and solving for the derivatives ξ̇, η̇, ẏ yields

ξ̇ = − 2µ

a(ξ, η)

(
K−+ξ +K−−η

)
,

η̇ =
2µ

a(ξ, η)

(
K++ξ +K+−η

)
, (26)

ẏ = 0,

where a(ξ, η) = (K−+K+− −K++K−−) (η + ξ).

Equation (26) describes the dynamics on the switching surface. We must also establish how a

trajectory might arrive at the switching surface. Let us assume that the two-fold singularity of

interest is a Teixeira singularity [7, 17], meaning the flows curve towards Σ at the boundaries of

sticking (figure 3). This implies

K++ < 0 < K−−. (27)

The sliding region satisfies (17), whose linearization is ∂x (hx · f(x, µ))x < 0 < ∂x (hx · f(x,−µ))x.

This means sliding occurs for values of ξ and η that satisfy

η

2µ

(
K−+K+− −K++K−−

)
< 0 <

−ξ
2µ

(
K−+K+− −K++K−−

)
. (28)

Similarly escaping occurs for values

−ξ
2µ

(
K−+K+− −K++K−−

)
< 0 <

η

2µ

(
K−+K+− −K++K−−

)
. (29)

Two crucial constants characterize the local dynamics,

J 1 =
K−+√
−K++K−−

, and J2 = − K+−
√
−K++K−−

.

If we choose scaled coordinates (ξ̄, η̄) = (ξ, η)
√
−K++

K−− , and rescale time by t̄ = t
√
−K++K−−, the

local system simplifies to ˙̄ξ

˙̄η

 =
1

(J 1J 2 − 1)
(
η̄ + ξ̄

)
 J 1 1

1 J2

 ξ̄

η̄

 . (30)
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Using condition (28) we find that if J 1J 2 − 1 > 0 then the sliding region is simply ξ > 0, η > 0,

and ξ < 0, η < 0 otherwise. A simple time-rescaling guarantees the former case, transforming (30)

into  ˙̄ξ

˙̄η

 =
1

η̄ + ξ̄

 J 1 1

1 J2

 ξ̄

η̄

 .

Note that given condition (27) the eigenvalues of the matrix in (30) are real, and given by

λ1,2 =
1

2

(
J 1 + J 2 ±

√
(J 1 − J 2)

2 + 4

)
,

with associated eigenvectors

v1,2 =

 λ1,2 − J2

1

 .

The first eigenvector points into the sliding region, while the second eigenvector points into the

crossing region. One of the eigenvalues become zero if 1 = J 1J 2. The eigenvalues cannot be equal,

but they can have the same magnitude with different sign if J 2+J 1 = 0. Depending on the values

of J 1,J 2 we have three cases [7, 17]:

1. If J 1,J 2 < 0 and J 1J 2 > 1 both eigenvalues are negative, so the singularity attracts

trajectories from the sliding region, and repels them into the escaping region. The eigenvector

in the sliding region is weak stable compared to the eigenvector in the crossing region, which

implies that trajectories from the sliding region all approach the weak eigenvector direction,

and hence all flow into the singularity.

2. If J 1,J 2 > 0 and J 1J 2 > 1 both eigenvalues are positive, the singularity is repelling from

the sliding region and attracting from the escaping region.

3. When J 1J 2 > 1 one eigenvalue is positive, the other negative, the singularity is repelling

from the sliding region and attracting from the escaping region.

In terms of our mechanical system case 1 is the most interesting, because all sliding trajectories in

the vicinity of the singularity will reach x∗. This is illustrated in Figure 3.

The local dynamics is illustrated by a few typical trajectories in Figure 3. Trajectories repeatedly

wind around the singularity through sequences of switchings and stickings, such that even the

local dynamics can be somewhat complex, and a fuller description can be found in [7, 17]. For

the mechanical system of interest, simulations show that trajectories spend only a short amount
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f(x,+μ)

f(x,−μ)
_
ξ

_
η

crossing

crossing

sliding

escaping

Σ

  .   . _  _
(ξ,η)

FIG. 3: Non-determinism at a Teixeira singularity. Left: Slipping (single-headed arrows) follows f(x,+µ) or

f(x,−µ) either side of the switching surface. Sticking (double arrows) follows ( ˙̄ξ, ˙̄η) in the sliding and escaping

regions (shaded). In the case shown, the sticking flow passes through the singularity non-deterministically. Right:

Sketch of non-deterministic chaos in the mechanical system. The small shaded “bow-tie” shows the local region

of the singularity (shown left). A set of trajectories loop around via a sequence of slipping (white bands) with

switches, connecting to the singularity via sticking (dark band) in both forward and backward time.

of time near the singularity. In doing so they can travel through the singularity itself, and what

happens at that point is non-deterministic: a continuous set of future trajectories are possible.

The problem of unpredictability could be neglected if it affected only a single point. In this

system that is not the case for two reasons. Firstly, whole sets of solutions evolve into the singu-

larity. Secondly, even after solutions have left the singularity, the global dynamics can cause their

trajectories to return to the singularity again. This creates a set of closed solutions that return

repeatedly to the singularity, even though which trajectory they follow within that set cannot be

determined. The motion therefore inhabits a chaotic set generated by non-determinism at the

singularity. A simplification of this feedback mechanism is sketched in Figure 3(right). In the next

section we simulate this non-deterministic chaos in the mechanical model and give parameters for

which it occurs.

V. SIMULATIONS OF THE MECHANICAL MODEL

A number of conditions must be satisfied for the system (13) to lead to non-determinism and

chaos. The presence of a Teixeira singularity exhibiting non-determinism is guaranteed from (27)

if J1 < 0, J2 < 0 and J 1J 2 > 1 all hold. If we fix the constants d = 1, m = 1, c1 = c2 = 10−3,
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ω*

(b)(a) (c) (d)

(e) (f) (g)

ω*

ω*

ω*

ω*

ω*

ω*

r* r* r*r*

r* r* r*

FIG. 4: The shaded region in panel (a) represents parameter values where the system has a Teixeira singularity

(case 1 in section IV). This is the overlap of several conditions: (b) K−− > 0, (c) K++ < 0, (d) J1 < 0, (e)

J2 < 0, (f) J1J2 − 1 > 0, and in (g) showing both k2 > 0 (shaded) and κ > 0 (hatched).

β = 1
20 , r0 = 10−1, ω0 = −1, µ = 1 and γ = −3

4π, then there exist regions of r∗ and ω∗ values

satisfying these conditions, as illustrated in Figure 4. In general there are large regions in parameter

space where the required conditions are satisfied, and while not all will also yield the recurrent

dynamics required for chaos, it is not difficult to find parameters that do.

Within the shaded area in Figure 4(a) we choose r∗ = 0.1859 and ω∗ = −1.037 and use the

numerical method described in [26] to compute trajectories of the piecewise-smooth system. The

top left panel of Figure 5 shows the switching surface around the singularity on the sliding surface.

The sliding surface is indicated by the grey region where the green and red shaded regions overlap.

The non-overlapping green and red regions are where trajectories cross the switching surface Σ.

The white area indicates the escaping surface. It can be seen that trajectories from the bottom

right sliding surface will pass through the singularity, while the trajectories of the top sliding

surface connect the escaping surface with the middle crossing region.

The full simulation is shown in the top left and bottom panels of Figure 5(b). The figures shows

that sticking trajectories that cross the singularity arrive in the escaping region and get repelled

by it. After leaving the escaping region trajectories go into a outward spiraling motion and cross

the switching surface until that ceases to exists and arrive at the other sliding surface. Eventually

the solution starts to slip again to end up in the sliding surface of the singularity to start the

cycle again. Because of the non-determinism at the singularity the cycles are not identical, hence

the attractor is not a periodic orbit, but a full surface of solutions. The basin of attraction of
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this set of solutions is not the entire phase space. In fact it is even possible that the recurrent

non-deterministic phenomena is only transient, because the non-deterministic effect can also push

the trajectory out towards a different attractor.

FIG. 5: Non-deterministic chaos in the wheel-and-disc assembly for parameter values given in the text. Top

left panel: a sketch of the sticking flow, showing sliding regions (S), escaping region (E), and crossing regions

(C). A Teixeira singularity is seen at (r, ω) = (0.1859,−1.037), with the sticking flow passing through it along

a weak eigenvector. The 3D blocks show a simulation of different trajectories with initial conditions near the

escaping region (regions on v = 0 correspond to those in the top-left panel; colour online). These represent the

different trajectories followed after passing through the singularity. The trajectories wind around the escaping

region causing the dense shell seen in r < 0.1859.

These trajectories are not simulated actually passing through the singularity, as such a simula-

tion is impossible by the very definition of the singularity. When a trajectory enters the singularity

(as every trajectory in figure 5 does), the simulation must be stopped and a decision must be

made on which of the infinity of possible trajectories to follow. Since all of these pass through the

escaping region at least briefly, we simply select a new starting condition near the escaping surface,

and by following these we begin to trace out the cone-like form of the non-deterministic chaotic
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set, and show at least that all such trajectories find their way eventually back into the singularity

via the sliding region.

VI. SPECIAL CASES: SINGULARITY WITHOUT NON-DETERMINISM

A. The case γ = 0

When γ = 0 the wheel is mounted so that its axis is perpendicular to the slider. As a result,

when r = 0 the wheel rolls without slipping around the lower disc in a circle of radius d. If r is

nonzero the wheel will typically slip except when the upper and lower discs rotate in unison, which

is when ω = ω0. Thus the sticking surface is h = r(ω0 − ω), as is found by substituting γ = 0 in

(4).

The equations for a two-fold singularity (8) then have only one valid solution where r∗ = κ,

ω∗ = ω0, and v∗ =
(
d[k2m (κ+ r0)− κω2

0]− c1
mω0

)
/
(
d c2m − 2κω0

)
. Although this is a two-fold

singularity, it is a special case in which f(x∗,+µ) = f(x∗,−µ), since substituting γ = 0 and

r = −κ into (1)-(3) causes the sign(h) terms to drop out. Hence the system is continuous, and

uniquely defined, precisely at the singularity. This is a special case of the singularity presented in

the previous section, where non-determinism vanishes as γ is taken to 0.

B. The case γ = π/2

When γ = π/2 the wheel is mounted with its axis lying along the slider. If the wheel sticks then

its speed in the slider v must be equal to the mismatch in the speed of the discs, d(ω − ω0), and

substituting γ = π/2 into (4) gives h = d(ω−ω0)−v. There are no two-fold singularities because the

sticking boundaries form non-intersecting curves. This is a common situation in simple mechanical

models, where the expressions for f(x,±µ) differ only by a constant 2µ, so the boundaries between

sticking and slipping given by h = f(x,±µ) = 0 are displaced by an amount 2µ. The boundaries

can only meet when µ = 0, in which case there is no friction force and no discontinuity.

VII. CLOSING REMARKS

Unlike an abstract model in [19] contrived to demonstrate the potential for mechanical models

exhibiting non-deterministic chaos, the model presented here is based on fundamental mechanical

principles which themselves have far wider applications. The essential characteristics of the model
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are a coupling of linear and angular motions, and the sudden change of force that occurs in dry

friction. It is therefore reasonable to suggest that the two-fold singularity may be common wher-

ever such features occur in physical applications. Uncertainty in the dynamics from a particular

configuration may now be recognized as a local breakdown of determinism (whether it repeats to

give chaotic dynamics or not), inherent in the physical geometry.

In this local aspect, the non-deterministic chaotic dynamics here is very different to standard

explanations for the phenomenon of wheel shimmy or flutter, a problem familiar to anyone who has

wrestled with an unwieldy shopping trolley. Current explanations for this tend to involve smooth

deterministic oscillations around the ideal alignment of a wheel. These do share some aspects with

the non-deterministic effect in this paper, in that violent oscillations of the wheel are a result of

coupling of linear and rotational motion due to nonlinearities from the wheel (or tyre) elasticity.

Where they differ is that our model involves unpredictability in the transition through a singular

configuration, and it is discontinuities in the dry-friction model, more severe than nonlinearity,

that create such determinism destroying singularities. (We should note here that our system is not

intended to model shimmy, since it involves a wheel at a fixed angle moving around a disc, while

shimmy involves a wheel with varying angle moving along a line; our model is designed only to

investigate the phenomenon of non-deterministic chaos).

In the simulations in section V, it is not actually possible to follow the trajectories through the

singularity, because by definition their evolution becomes non-deterministic there. Many possibili-

ties can be argued for how to follow the simulation through the singularity, perhaps by smoothing

out the sign functions in (6)-(7), or by choosing one of the possible trajectories probabilistically

assuming some stochastic distribution. The smoothing approach produces a stiff model that is

very sensitive to the functional form of the smoothing, to choices of parameters and to initial

conditions, and sensitive to machine precision used in the simulation. Such simulations were made

on a simplified version of this model in [16]. The stochastic approach has not been studied to

date, as there is no obvious way to choose an appropriate distribution based on likely noise input

into the system, however such an investigation would be of great interest. Preliminary investiga-

tions such as [16] suggest that, as expected, however noisy or unpredictable the output of such

smoothed or stochastic systems, they do indeed constitute a sample of the trajectories observed in

the discontinuous model, i.e. in figure 5.
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(a) (b)

-

FIG. 6: Free-body diagrams of the mechanical system.

Appendix A. Equations of motion

Consider the system as illustrated by the schematic in Fig. 1. In order to derive the equations

of motions we consider the free-body diagrams of each part in Fig. 6. The generalized coordinates

are the rotation angle ϕ of the top disc and the relative displacement r of the slider within the

disc. Using these coordinates we calculate the acceleration of the slider in two directions and apply

Newton’s law to find the equations of motion. The acceleration of the slider perpendicular to the

slit appears in

m
(
−rϕ̈+ dϕ̇2 − 2ṙϕ̇

)
= R1 + F (h, g) cos γ , (31)

where R1 is the reaction force between the slider and the slit and F (h, g) is the friction force

between the wheel and the turntable. Parallel to the slit the motion is governed by

m
(
r̈ − dϕ̈− rϕ̇2

)
= R2 − F (h, g) cos γ , (32)

where R2 = −k2(r − r0) − c2ṙ is the reaction force in the spring and damper. The angular

acceleration of the disc is

Θϕ̈ = −c1ϕ̇+ dR2 + rR1 +M(h, g) , (33)

where M(h, g) is te re-aligning moment of the wheel due to friction. The functions h and g are

defined by equations (4) and (5) with ω = ϕ̇ and v = ṙ.

Eliminating the reaction forces and rearranging equations (31,32,33) we arrive at (1,2,3). The

friction force F (h, g) and moment M(h, g) are derived in the following appendix.



19

q(x,t)
v

x

0

-a

a

FIG. 7: Contact forces on a rolling wheel. The ground surface is moving with relative velocity v under the wheel,

whose lateral deformation is described by q(x, t) within the contact patch spreading from x = −a to x = a.

Appendix B. Friction force on the rolling and slipping wheel

The friction forces acting on the wheel are found as follows. We use the stretched string tyre

model described in [30] to derive lateral friction forces and the aligning torque. The schematic of

the model can be seen in Figure 7.

The deformation of the tyre is characterized by the lateral movement of its central line with

respect to its resting position by q(x). We assume that the lateral contact pressure distribution

acting on the tyre is proportional to the displacement that is p(x) = kq(x), hence the lateral force

is

F = k

∫ a

−a
q(x)dx,

where k is the lateral stiffness of the tyre. There is also a torque that is trying to rotate the wheel

back into a position parallel to the velocity v and that can be calculated for the origin as

M = −k
∫ a

−a
xq(x)dx.

To determine the shape of q(x) we recall that in case of rolling the contact point has the same

velocity as the ground surface. Also, we assume that the direction of the wheel and ground velocity

v has a ϕ angle between them. We are interested in the static deformation, therefore the following

constraint holds

0 = v sinϕ+ v
∂

∂x
q(x) cosϕ. (34)

The boundary condition is specified at the leading edge σ ∂
∂xq(x) = −q(a), where σ is a relaxation

constant that specifies how the tyre deformation relaxes when it is not in contact with the ground.
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Solving (34) we find that q(x) = q0 − x tanϕ. From the boundary condition we calculate that

q0 = (a+ σ) tanϕ, therefore the steady state deformation when the wheel is rolling becomes

q(x) = (a+ σ − x) tanϕ.

To account for a possible slip the distributed friction force p(x) must be limited. We assume static

and dynamic friction, where the maximal static lateral pressure is δ and the dynamic pressure is

ρδ, 0 < ρ ≤ 1. This implies that the deformation of the tyre is limited by the maximal friction

pressure δ. Solving k |q(xs)| = δ for xs, we find that xs = a+ σ− cotϕ
k . Depending on the value of

xs three cases are possible:

1. xs ≤ −a, that is, there is no slip. In this case F = −2ak(a+ δ) tanϕ, M = 2
3a

3k tanϕ

2. −a < xs < a implies partial slip, therefore F = δ(2a+ σ) + δ2

2k (1− 2ρ) cotϕ− 1
2kσ

2 tanϕ,

M =
k3σ2(3a+ σ) tanϕ+ δ2 cot(ϕ)(2δ cotϕ− 3k(a+ σ))

6k2
−1

2
δρ

((
a− δ cotϕ

k
+ σ

)2

− a2
)

3. a ≤ xs means complete slip, so that F = 2aδ, Mz = 0.

As a simplification we choose σ = 0, ρ = 2/3, δ = (3κ)−1 and a = 3κ, where κ is a length scale.

This choice of parameters implies that the tyre is infinitely flexible for bending, its stiffness is the

same as the maximum static friction pressure and a and δ are chosen such that F = 1 and M = κ

when xs = −a. Using these values we get

F =


18kκ2 tanϕ

4
3 −

cotϕ
54kκ2

, M =


18kκ3 tanϕ if 0 ≤ ϕ < cot−1

(
18kκ2

)
cotϕ
18kκ if cot−1

(
18kκ2

)
≤ ϕ ≤ π

2

.

Choosing some parameters the friction force and torque is plotted in Fig. 8(a). Note that

this characteristic is rather similar to Pacejka’s empirical magic formula. It can be seen that the

initial part of the F and M curves have a steep gradient. In order to impart the non-smooth

phenomena we replace this initial section by a discontinuity as shown in Fig. 8(b). The scaling is

ϕ→ cot−1
(
18kκ2

)
+ ϕ

(
1− 2 cot−1(18kκ2)

π

)
.
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