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Abstract

Our aim was to assess the timing and mechanisms of the sympathoexcitation that occurs immediately after coronary
ligation. We recorded thoracic sympathetic (tSNA) and phrenic activities, heart rate (HR) and perfusion pressure in Wistar
rats subjected to either ligation of the left anterior descending coronary artery (LAD) or Sham operated in the working
heart-brainstem preparation. Thirty minutes after LAD ligation, tSNA had increased (basal: 2.560.2 mV, 30 min: 3.560.3 mV),
being even higher at 60 min (5.260.5 mV, P,0.01); while no change was observed in Sham animals. HR increased
significantly 45 min after LAD (P,0.01). Sixty minutes after LAD ligation, there was: (i) an augmented peripheral
chemoreflex – greater sympathoexcitatory response (50, 45 and 27% of increase to 25, 50 and 75 mL injections of NaCN
0.03%, respectively, when compared to Sham, P,0.01); (ii) an elevated pressor response (3261 versus 2361 mmHg in
Sham, P,0.01) and a reduced baroreflex sympathetic gain (1.360.1 versus Sham 2.060.1%.mmHg21, P,0.01) to
phenylephrine injection; (iii) an elevated cardiac sympathetic tone (DHR after atenolol: 210868 versus 28267 bpm in
Sham, P,0.05). In contrast, no changes were observed in cardiac vagal tone and bradycardic response to both baroreflex
and chemoreflex between LAD and Sham groups. The immediate sympathoexcitatory response in LAD rats was dependent
on an excitatory spinal sympathetic cardiocardiac reflex, whereas at 3 h an angiotensin II type 1 receptor mechanism was
essential since Losartan curbed the response by 34% relative to LAD rats administered saline (P,0.05). A spinal reflex
appears key to the immediate sympathoexcitatory response after coronary ligation. Therefore, the sympathoexcitatory
response seems to be maintained by an angiotensinergic mechanism and concomitant augmentation of sympathoexci-
tatory reflexes.
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Introduction

Coronary artery ligation is accepted to mimic myocardial

infarction (MI) causing sympathetic nervous system over activity

[1], [2]. Although the enhanced sympathetic activity provides

initially inotropic support to the heart, maintaining cardiac output

and arterial pressure following MI, it is also associated with the

pathogenesis of ventricular arrhythmias [3]–[5] and sudden

cardiac death [6]. Further, the sustained sympathoexcitation

may contribute to the cardiac pathology leading to progressive

cardiac remodelling and development of heart failure [7]–[9].

Thus, a thorough understanding of timing of the sympathoactiva-

tion and any change in the mechanisms for it may be important

for improving future treatment strategies, e.g. the appropriate

timing of medication to antagonise sympathetic effects on the

vasculature versus the heart may be essential for maintaining

arterial pressure but preventing cardiac arrhythmias/sudden

cardiac death.

Most of our knowledge on changes in cardiovascular autonomic

balance has been obtained days after MI or later in the course of

chronic heart failure, using indirect methodological approaches

such as measuring plasma catecholamine levels [10], heart rate

variability (HRV) and cardiovagal baroreflex sensitivity [11]. Little

information about the time course and contributing mechanisms

of sympathetic changes immediately following a MI exists (i.e.

acute phase). Sequential and direct measurements of sympathetic

drive are essential to elucidate these issues. In this regard, a

number of chronic studies have shown a multifactorial process for

sympathetic modulation after MI, which may include: cardiac

vagal and cardiac sympathetic afferents [12], [13], changes in

peripheral neural reflexes (peripheral chemoreceptor reflex) [14],
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sympathetic neural remodelling [15] and activation of brain

angiotensinergic mechanisms [16]. However, the importance and

sequence of activation of these mechanisms immediately following

MI have not been characterized. Our hypothesis was that there

would be a sustained and immediate (within 30 min) increase in

sympathetic activity and reduction in cardiac vagal tone post

coronary ligation and that multiple time-dependent mechanisms

underpin the sympathoexcitation. Thus, the purpose of this study

was to determine when the autonomic imbalance occurred after

ligation of the left anterior descending coronary artery (LAD) to

mimic MI, and the underlying mechanisms.

Methods

Animals
Experiments were performed on male Wistar rats (60–100 g)

using an anaesthetic-free preparation with a preserved functional

brainstem – the working heart-brainstem preparation (WHBP)

[17], [18]. All surgical and experimental procedures were carried

out in compliance with the United Kingdom Animals (Scientific

Procedures) Act 1986 and were approved by the University of

Bristol Animal Ethics Committee (Permit number: PPL 30/3121).

WHBP and nerve recordings
Animals were pre-treated with heparin sodium (1000 units, i.p.)

and deeply anaesthetized with isoflurane (5%, vaporized in 95%

O225% CO2), until loss of the paw withdrawal reflex. Following

sub-diaphragmatic transection, rats were exsanguinated and anaes-

thesia terminated. Preparations were submerged in ice-chilled

Ringer solution (composition in mM: 1.25 MgSO4.7H2O, 1.25

KH2PO4, 3.0 KCl, 25.0 NaHCO3, 125.0 NaCl, 2.5 CaCl2.2H2O

and 10 D-glucose), decerebrated pre-collicularly and a 6.0 suture

passed around LAD. The preparation was placed into a recording

chamber and a double-lumen catheter inserted into the descending

aorta for retrograde perfusion.The second lumen of the catheterwas

used tomonitor perfusion pressure (PP). The perfusate was carbogen

gassed (to pH7.4), warmed {31uC;whichwas optimal for viability as

originally described by Paton [18]} Ringer solution containing

Ficoll 70 (1.25%), which was recirculated using a peristaltic roller

pump. Neuromuscular blockade was established using vecuronium

bromide (2 mg/mL; Organon). Mean PP was .60 mmHg

achieved by adjusting flow rate (20–22 mL/min) and addition of

arginine vasopressin (20–60 mL of 5 mM; Sigma). Heart rate (HR)

was derived from the ECG. The left phrenic and thoracic

sympathetic nerves (T8–T10) were recorded simultaneously with

bipolar suction electrodes. Minutes after the onset of perfusion an

augmenting (i.e. eupnoeic) pattern of phrenic nerve activity was

achieved. All signals were amplified, band-pass filtered (0.5–5 kHz)

and acquired using a CED1401A/DConverter and analyzed using

Spike2 software (Cambridge Electronic Design).

Coronary ligation in situ and measurement of area at risk
After baseline recordings of phrenic (PNA) and thoracic

sympathetic nerve activities (tSNA), HR, ECG and PP, either

LAD ligation was carefully performed without affecting nerve

recordings; or the suture remained untied in Sham operated

preparations. At the end of each experiment, the heart was rapidly

excised and via the ascending aorta perfused with 1% Evans blue

dye (Sigma) to indicate the myocardial area at risk as reported

previously [19], [20]. Once perfusion was completed, the atria

were removed. After overnight fixation in 10% formalin, the

ventricles were cut in five transverse slices and digitally photo-

graphed and analyzed using ImageJ software. The area at risk was

determined as the percentage of Evans blue non-stained area

relative to the entire left ventricle area. In all Sham operated rats,

no cardiac area at risk was observed.

Experimental protocols
Our aim was to examine changes in respiratory and cardiovas-

cular autonomic tone and its reflex control immediately after

coronary ligation (total: n = 76; see Figure 1). Six experimental

protocols were performed 60 minutes post LAD ligation and in

Sham animals: (I) Peripheral chemoreceptors were stimulated

using three doses of sodium cyanide (0.03% solution; 25, 50 and

75 mL bolus) injected into the aorta; being each injection

separated by 10 min. The chemoreflex was quantified by

measuring the increase in central respiratory rate, the maximum

bradycardia and the percentage increase in tSNA during a 5s

period at the peak of the chemoreflex sympathetic response

compared to an equivalent control period. (II) The baroreceptor

reflex was stimulated using phenylephrine (30 mg bolus, i.a.,

Sigma). The sympathetic (non-cardiac) baroreflex gain was

quantified as percentage inhibition of sympathetic activity/

Dpressure (%.mmHg21). The percentage of sympathoinhibition

was obtained from the ratio of mean tSNA during the peak of the

PP increase against the mean activity from a preceding equivalent

time period, at an equivalent stage of the respiratory cycle. The

bradycardic baroreflex gain was quantified as DHR/Dpressure
(bpm.mmHg21). (III) Cardiac sympathetic tone was assessed by

adding atenolol to the perfusate (20 mg/mL, Sigma) to block

cardiac b1-adrenoceptors and inferred from the HR change. (IV)

Bilateral cervical vagotomy was performed to measure the cardiac

vagal tone as expressed by the HR change. (V) Angiotensin II type

1 receptor (AT1R) antagonist, Losartan potassium (Sigma), was

used to evaluate the role of an AT1R in the initiation and

maintenance of sympathetic activity post LAD ligation. Either

Losartan (40 mM, n=10) or saline (control, n = 9) was added to

the perfusate 1 h and re-applied 2 h post LAD ligation and tSNA

recorded up to 3 h after LAD ligation. Half the dose of Losartan

used in this study is able to block angiotensin II effects in the

mediation of the baroreceptor reflex in the nucleus of the solitary

tract [21]. (VI) The spinal cord was fully transected at the first

cervical level and the tSNA response measured before (15–20 min)

and after (60 min) LAD ligation (n = 5) and in Sham animals

(n = 5) to assess contribution of spinal reflexes in generation of

sympathetic activity. In a seventh group (Protocol VII), the left

ventricular pressure (LVP) was continuously recorded using a PE-

10 cannula inserted into the left ventricle via its apex before and

post LAD ligation. In the first four protocols (LAD n=21 and

Sham n=19), basal cardiorespiratory parameters and tSNA were

evaluated. The tSNA signal was rectified and integrated (50 ms

time constant) and noise levels subtracted before analysis. The

mean tSNA (mV) was taken from one minute of recording before

(Basal) and at 15, 30, 45 and 60 min post LAD ligation or Sham

operated animals. Respiratory-sympathetic activity modulation

was evaluated at baseline, 30 and 60 min post LAD ligation and in

Sham groups. Phrenic-triggered mean integrated tSNA was

carried out and analyzed during: late expiration (Late E),

inspiration (I), post-inspiration (PI) and mid-expiration (Mid E).

The time duration of Late E, I, PI and Mid E was based on the

duration of the inspiratory phrenic burst [22].

Statistical analysis
All data are expressed as means 6 S.E.M. Data were analyzed

using one-way ANOVA for repeated measures, followed by

Tukey’s post hoc test and Student’s paired and unpaired t-Test

with the level of significance set at P,0.05.

Onset/Mechanisms of Sympathoexcitation Post LAD
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Results

Area at risk, ECG and hemodynamic changes following
coronary ligation in situ
The LAD ligation induced transient ECG changes (Figures 2A

and 2B) in many preparations (13 of 21 animals) consistent with

MI; 11 animals exhibited arrhythmias post ligation and 2 animals

showed atrioventricular block. These disturbances lasted up to

34.064.6 min when sinus rhythm returned. The myocardial area

at risk was 36.361.1% of the left ventricle (n = 21, Figure 2C). The

LAD ligation led to hemodynamic changes of the left ventricle

(n = 7, see Figure 2D and Table 1).

Baseline changes in cardiorespiratory parameters and
tSNA post coronary ligation
Within 30 min post LAD ligation, mean tSNA increased

(45.466.7%, reaching 117.2617.5% by 60 min, P,0.01) while

HR increased by 45 min (2.860.7%, and 3.360.7% at 60 min,

P,0.01) [Figures 3 (Ai) and 3 (Aiii); n = 21, P,0.01] compared to

Sham rats [Figures 3 (Bi) and 3 (Biii); n = 19, P.0.05]. No changes

in PP were found over 60 min post LAD ligation and in Sham rats

[Figures 3 (Aii) and 3 (Bii)]; PNA frequency increased in both rat

groups to a similar level [Figures 3 (Aiv) and 3 (Biv), P,0.01].

Peripheral chemoreceptor reflex
The sympathoexcitatory component of the response to periph-

eral chemoreceptor activation was greater 60 min post LAD

ligation compared to Sham (Figure 4; n= 7 per group, P,0.01,

unpaired t-Test) at all doses of cyanide tested (25, 50 and 75 mL:
49.7, 45.3 and 26.8% of increase, respectively). Despite exacer-

bation of the sympathetic response, there were no differences in

peripheral chemoreflex evoked changes in PP, RR or HR.

Baroreceptor reflex
Both the pressor effect and the sympathetic (non-cardiac)

baroreflex gain evoked by phenylephrine were significantly

Figure 1. Schematic representation of experimental protocolos performed after LAD ligation or sham surgery. The number of tested
animals per group is shown. LAD, left anterior descending coronary artery.
doi:10.1371/journal.pone.0101886.g001

Table 1. Hemodynamic parameters before and minutes after LAD ligation in situ (n = 7).

Before 1 min 30 min 60 min

LVSP (mmHg) 71.165.9 70.663.4 69.063.5 66.963.7

LVEDP (mmHg) 7.561.4 13.262.0** 14.762.6** 14.962.4**

LV +dP/dT (mmHg.s21) 17946173 15596107* 15306111* 14606107**

LV 2dP/dT (mmHg.s21) 214626187 212756133 212986141 212546140

*P,0.05 and **P,0.01 compared to Before. LVSP, left ventricular systolic pressure; LVEDP, left ventricular end-diastolic pressure; LV dP/dT, maximum rate of LVP rise
and fall.
doi:10.1371/journal.pone.0101886.t001

Onset/Mechanisms of Sympathoexcitation Post LAD
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different 60 min after LAD ligation versus Sham rats (Figures 5A

and 5B; n= 6 each group, P,0.01, unpaired t-Test). The pressor

response to phenylephrine was increased (LAD 31.561.3 versus

Sham 23.161.2 mmHg, P,0.01) while the baroreflex gain was

depressed (LAD 1.360.1 versus Sham 2.060.1%.mmHg21; n = 6

per group, P,0.01). The baroreflex bradycardia was unaffected

after LAD ligation (Figure 5C).

Cardiac sympathetic and vagal tones
The cardiac sympathetic tone was elevated post LAD ligation.

Therewas a greater fall inHR inLAD rats compared to Shamgroup

(2107.868.0, n= 7, versus 281.667.4 bpm, n= 5; P,0.05,

unpaired t-Test) after atenolol. Cardiac vagal tone (assessed by

bilateral vagotomy) was unaffected by LAD ligation (11.661.8,

n = 7, versus Sham 13.962.4 bpm, n= 5; P.0.05, unpaired t-Test).

The level of mean tSNA was also not attenuated by bilateral

vagotomy (before LAD ligation: 2.960.2; 60 min after LAD

ligation/before vagotomy: 4.360.3; and 15 min after vagotomy:

7.260.6 mV), ruling out a vagal mechanism for sympathoexcitation

post LAD ligation.

Mechanisms for sympathoexcitation post coronary

ligation Angiotensin II. We assessed whether AT1R were

important for the sympathoexcitation post LAD ligation. The

mean level of tSNA became different from 3 h onwards (33.8% of

difference) between Losartan (n= 10) and Control (n = 9) LAD

groups (Figure 6A; *P,0.05, unpaired t-Test) suggesting that an

AT1R mediated mechanism was functioning from this time point.

The mean level of PP was maintained stable for both groups ruling

out any confounding baroreceptor influence.

Spinal cord transection. Given that the angiotensinergic

mechanism occurred ,3 h post LAD ligation, we sought other

mechanisms that could contribute to the initiation of sympathoex-

citation. We assessed whether a spinal mechanism underpinned

sympathoexcitation post LAD ligation. In spinal transected rats,

tSNA was higher within 30 min post LAD ligation (2.760.2 versus

basal 1.660.2 mV, P,0.01, n= 5; Figure 6C) compared to Sham

operated (1.460.4 versus basal 1.260.3 mV, P.0.05, n= 5;

Figure 6B). As seen in the spinal cord intact rats, the increase in

mean tSNA continued to climb post LAD ligation with time (i.e.

3.960.5 mV by 60 min; P,0.01). In terms of HR, there was a

significant drop after spinal transection. Although there was no

change in HR at 60 min post LAD ligation in the spinal transected

group, it decreased at 60 min in the Sham transected group (P,

0.01, see Figure S1 in Supplemental data), suggesting sympathoac-

tivation in the LAD group. The increase in sympathetic activity

evoked by LAD ligation at 30, 45, and 60 min of spinal transected

rats (LAD: 73.7611.7, 112.0615.5, and 147.6623.9%, respective-

ly; n = 5) was the same as that seen in spinal intact rats (45.466.7,

78.7611.7, and 117.3617.5%, respectively; n = 21, P.0.05,

unpaired t-Test) (Figure 6D).

Figure 2. Representative traces from rats showing LVP and transient ECG changes post LAD ligation. (A) Extra-systoles and tachycardia
occurred post LAD ligation in some rats. (B) Atrioventricular block starting shortly post LAD ligation. These changes in the ECG lasted 34.064.6 min.
(C) Median cross-sections of Evans blue dye-stained hearts. The LAD heart cross-section (left) had a safe blue-marked area versus a myocardial area at
risk that did not absorb the dye (outlined pale area), contrasting with the Sham heart completely stained blue. (D) Recording showing LVP before and
1, 30, and 60 min post LAD ligation.
doi:10.1371/journal.pone.0101886.g002
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Respiratory-sympathetic activity modulation post
coronary ligation
Measuring the mean tSNA from four phases of respiratory cycle

– late expiration (Late E), inspiration (I), post-inspiration (PI) and

mid-expiration (Mid E) 30 and 60 min after LAD ligation (n= 21)

and in Sham (n= 19), we observed that tSNA was higher in all

expiratory (Late E, Mid E and PI) and inspiratory (I) phases in the

LAD group [P,0.01 compared to basal; see Figure S2(A) in

Supplemental data], with no changes in Sham group [P.0.05

compared to basal; Figure S2(B)]. The magnitude of these

increases was similar between the respiratory phases in LAD

group [P.0.05; Figure S2(A)]. These data indicate that the

increased strength of respiratory coupling to sympathetic outflow

after LAD ligation is non-selective.

Discussion

The chronic over active sympathetic nervous system post

coronary artery ligation has been intensively researched. In

contrast, the acute responses of the autonomic nervous system,

their onset and mechanisms following MI remain to be well

clarified. In the last decades, studies have reported sudden (in the

first minute) cardiac afferent and efferent sympathetic responses to

transient ischaemia via short-term coronary occlusion in anaes-

thetized cats [23]–[27] and dogs [28]. However, these studies

failed to show sustained activation of afferent discharge and the

multiple time-dependent reflex responses and underlying mecha-

nisms mediating these responses in the following minutes post-

occlusion. Thus, the present study addresses these deficits of

knowledge and provides the first evidence in the rat showing a

sustained sympathetic hyperactivity very early following perma-

nent LAD ligation. The thoracic sympathetic activity was

increased significantly at 30 min post-occlusion and continued

rising over 60 min in our preparation. Although we did not

measure the cardiac sympathetic outflow directly, both the

increase in basal HR and enhanced bradycardia post atenolol

following LAD ligation supports an elevated cardiac sympathetic

discharge.

Timing of autonomic imbalance post coronary ligation
Most experimental studies in humans and animals models have

used indirect methods/indices to provide information about

changes in the balance of autonomic activity after MI; this reflects

the technical difficulty of obtaining direct measurements of

autonomic nervous activity. Some studies have investigated plasma

catecholamine levels [10], [29]–[32] and norepinephrine spillover

[33] in patients with recent MI, HRV in patients weeks/months

after MI [1], [34], [35] or baroreflex sensitivity in patients with

recent MI (,28 days) [11]. Although these methodologies estimate

autonomic activity indirectly, direct measurements of sympathetic

nervous activity in animal models are critical to clarify both the

precise time course and degree of sympathetic activation post MI

as well as investigate the underlying mechanisms.

Graham et al. [2] have obtained directly muscle sympathetic

nerve activity (MSNA) measurements at 2 to 4 days, which were

repeated at 3 months and 6 months after uncomplicated acute MI

Figure 3. Baseline changes post LAD ligation. Typical traces of raw and integrated tSNA and PNA, ECG and PP before (Basal) and up to 60 min
post LAD ligation (A) and in Sham operated (B). Means of tSNA, PP, HR and PNA frequency before (Basal) and at 15, 30, 45 and 60 min post LAD
ligation (Ai, Aii, Aiii and Aiv, respectively, n = 21) and Sham operated (Bi, Bii, Biii and Biv, respectively, n = 19). **P,0.01 compared to Basal.
doi:10.1371/journal.pone.0101886.g003
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in patients. The mean frequency of MSNA was increased 2 to 4

days (first measurement point of the study) post MI and this

change lasted for at least 6 months, demonstrating a protracted

sympathetic hyperactivity. However, the exact onset of sympa-

thetic over activity was not shown. In contrast, Jardine et al. [36]

demonstrated sequential measurement of sympathetic activity

before and after (hourly for 3 h and then daily to 7 days) MI in a

conscious ovine model. Cardiac sympathetic nerve activity was

increased significantly at 60 min following coronary ligation,

peaked at 120 min and sustained for 7 days post MI. These data

are similar to the time course we observed in the rat. Despite using

different experimental approaches, both the latter and the present

study were performed in mammals free of the depressant effects of

anaesthetics.

Baro- and chemo- reflex sympathetic responses
In accordance with the increase observed in basal sympathetic

activity, the sympathetic components of two major homeostatic

reflexes were also altered within 60 min post LAD ligation. We

observed a greater chemoreflex evoked sympathoexcitation and

depressed sympathetic (non-cardiac) baroreflex gain (i.e. impaired

sympathoinhibition), suggesting up-modulation of pro-sympathetic

reflex pathways, which is consistent with studies where renal

sympathetic nerve activity was measured in pacing-induced

chronic heart failure rabbits [37] and heart failure (6–8 weeks

after MI) rats [38]; these studies suggest that peripheral

chemoreflex sensitivity may be a contributory mechanism to the

tonic elevation in sympathetic activity as found in conditions of

hypertension [39], [40].

Cardiac vagal tone and its reflex activation
In contrast to widespread sympathoactivation following LAD

ligation, we found that both baseline cardiac vagal tone and reflex

bradycardia evoked from both the peripheral chemo- and baro-

receptors were unaffected. Variable information is available

regarding both tonic and reflex cardiac parasympathetic modu-

lation immediately post infarction. Some studies in humans and

cats suggest cardiac vagal over activity in the first minutes/hours

Figure 4. Peripheral chemoreflex responses post LAD ligation. Three doses of sodium cyanide (0.03% solution; 25, 50 and 75 mL, i.a.) were
given 60 min post LAD ligation and in Sham operated (n = 7 each group). (A) Recordings of a LAD rat (Ai) and a Sham rat (Aii) showing
sympathoexcitation at all doses. (B) Change in sympathoexcitatory response (**P,0.01 compared to Sham). Difference in the magnitude of
sympathoexcitation between doses used in the study (#P,0.05 and ##P,0.01). No changes in chemoreflex evoked responses in respiratory rate (C),
pressor (D), and bradycardia (E).
doi:10.1371/journal.pone.0101886.g004

Onset/Mechanisms of Sympathoexcitation Post LAD
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following MI [41], [42]. In these studies, vagal over activity was

more frequent during inferior infarction whereas sympathetic

overactivity occurred in anterior infarction (comparable to

coronary ligation of the present study). This may be explained

by a preferential distribution of vagal afferents in the inferoposter-

ior wall of the left ventricle that could reflexly drive up cardiac

vagal activity. In addition, Lombardi et al. [1] showed sympathetic

excitation and a reduced vagal modulation in HR variability (a

vagal tone ‘‘marker’’) at approximately 3 h after MI in humans.

We did not confirm any change in vagal tone at 1 h post coronary

ligation in the in situ rat. The absence of impaired tonic cardiac

vagal activity may be due to our early time evaluation or a species

difference. In contrast to our finding, a marked impairment of

cardiac baroreflex sensitivity has been well established in patients

with chronic heart failure (CHF) [43], [44] but the exact timing of

these measurements post MI is not reported. In sum, taking our

evidence and that reported previously it appears that immediately

after MI cardiac vagal tone is preserved and may increase

dependent upon exactly where the infarct has occurred {posterior

versus anterior circulation [45]}. This activity may be important in

tempering any adverse effects of excessive cardiac sympathetic

activity.

Mechanisms initiating sympathetic activation post
coronary ligation
The role of the brain renin-angiotensin II system (RAS) in

modulating sympathetic outflow and baroreflex sensitivity [46] in

heart disease [47] is well established. Evidence supports that

central RAS acting via AT1R modulates sympathetic activity in

CHF: (i) Wang & Ma [48] have shown an elevated concentration

of angiotensin II in cerebrospinal fluid in dogs with pacing-

induced CHF. (ii) AT1R expression is up-regulated in the nucleus

of the solitary tract, subfornical organ and paraventricular nucleus

after CHF in rats [49] and the rostral ventro-lateral medulla

(RVLM) of rabbits after pacing-induced CHF [50]. (iii) Losartan

attenuated the AT1R up-regulation in CHF rabbits [50]. (iv)

Central blockade of AT1R reduced sympathetic activity and

increased baroreflex sensitivity in CHF rabbits [51], [52]. (v) In

Wistar rats, both intracerebroventricular infusion and systemic

administration of Losartan reduced sympathetic hyperactivity and

left ventricular end-diastolic pressure in heart failure induced by

coronary artery ligation [16].

Our data revealed that an angiotensinergic mechanism medi-

ated via AT1R underpins the elevation in sympathetic outflow

which is functionally detected from 3 h post LAD ligation.

Evidence reveals AT1R located in circumventricular organs (eg,

subfornical organ), hypothalamic paraventricular nucleus and the

supraoptic nucleus are activated following MI and cause

sympathoexcitation [53]. Our study was performed in a pre-

collicularly decerebrated preparation devoid of the hypothalamic

regions, with no functioning blood-brain barrier. Nevertheless,

AT1R expression is up-regulated in CHF in the nucleus of the

solitary tract [49] and the RVLM [50], [54], [55]; such brainstem

areas were preserved and functional in our preparation. Evidence

has shown that AT1R up-regulation involves reactive oxygen

species in CHF [56]. Furthermore, the existence of brain tissue

angiotensin II is also demonstrated by endogenous angiotensino-

gen synthesis in astrocytes within the medulla oblongata [57].

Thus, we suggest that angiotensinergic activation of brainstem

nuclei may be sufficient to sustain sympathetic hyperactivity 3 h

after coronary ligation. Certainly, this time course would be

consistent with the time for protein synthesis [58] and we assume

this to be the case for the AT1R. An increased angiotensinergic

mechanism within the NTS could well account for both the

elevated peripheral chemoreflex and depressed baroreflex re-

sponse as we have described before [59]–[61], whereas those in the

RVLM could account for the heightened sympathetic discharge.

The initiating mechanism triggering sympathetic over activity

after cardiac ischaemia in rats may include a spinal sympathetic

cardiocardiac reflex. This reflex was firstly reported by Malliani et

al. [25] after coronary ligation in cats. Brown [23] demonstrated

that cardiac sympathetic afferent nerve fibres are activated during

myocardial ischaemia. Preganglionic sympathetic neurons were

shown to become excited post MI, which was sustained after both

vagotomy and spinal transection proving a spinal reflex [25]. In

our experiments with spinal transection, increased sympathetic

activity post LAD ligation was also observed as in intact animals,

and HR was maintained and did not fall as seen in the control

group, suggesting increased cardiac sympathetic tone. Thus, given

the negative data with Losartan at 1 h post LAD ligation, we can

propose a non-angiotensinergic spinal mechanism for initiating the

increase in sympathetic outflow post coronary ligation.

Besides the cardiac sympathetic afferents, arterial baroreceptor

reflex may be altered simultaneously during myocardial ischaemia,

because of their unloading triggering reflex increases in efferent

sympathetic nerve activity [62]. However, the perfusion pressure

Figure 5. Baroreceptor reflex responses post LAD ligation.
Phenylephrine (30 mg, i.a.) was given 60 min post LAD ligation and in
Sham rats (n = 6 each group). (A) and (B) Changes in phenylephrine
evoked pressor response and sympathetic gain (**P,0.01 compared to
Sham). (C) No change in bradycardic gain.
doi:10.1371/journal.pone.0101886.g005
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was maintained constant during LAD ligation, excluding the role

of these receptors in our preparation.

Functional relevance of prompt sympathetic activation
post-MI
The present findings indicate selective up-regulation of sympa-

thetic activity with no change in cardiac vagal tone or reflex

modulation. It is reasonable to assume that this initial modulation

leads to a protective effect to the heart supporting cardiac function

[5]. Although long term sympathetic nervous system activation is

detrimental to cardiac function in heart failure [5], [63], in the first

moments post MI it compensates for cardiac contractility

dysfunction. In addition, increased [64], [65] or preserved vagal

control (as found in the present study) in the early phase of acute

myocardial ischaemia would exert an antiarrhythmic effect,

reducing overall mortality.

In summary, our work shows both increased basal sympathetic

drive and chemoreflex sympathoactivation but no changes in vagal

regulation in the first hour following coronary artery ligation. Both

spinal cord mechanisms and later elevated angiotensinergic

activity contribute to increased sympathetic activity generation,

some of which is directed to the heart. A detailed knowledge of any

mechanisms that are responsible for the autonomic responses

following cardiac ischaemia may assist in the temporal design of

future effective pharmacological interventions.

Supporting Information

Figure S1 HR changes post LAD ligation in spinal
animals. Means of HR before (Basal before SCT) and after

(Basal after SCT) spinal cord transection, and in the following 15,

30, 45 and 60 min post LAD ligation (B; LAD – SCT group,

n = 5) and in Sham operated (A; Sham – SCT group, n = 5). **P,

0.01, *P,0.05 and ##P,0.01.

(TIF)

Figure S2 Respiratory-sympathetic activity coupling.
Phrenic-triggered mean integrated tSNA from four respiratory

phases – late expiration (Late E), inspiration (I), post-inspiration

(PI) and mid-expiration (Mid E) – before (Basal) and at 30 and

60 min post LAD ligation (A; n = 21) and in Sham (B; n= 19). **,

##, &&, {{P,0.01 compared to respective baseline; the magnitude

of increase at 30 and 60 min in relation to baseline is given in

percentage.

(TIF)
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Figure 6. Mechanisms of sympathoexcitation post LAD ligation. (A) The Losartan effect (40 mM added to the perfusate) on the level of tSNA
from 1 h to 3 h post LAD ligation (Losartan LAD group: n = 10; Control LAD group: n = 9). The level of mean tSNA was lower at 3 h post LAD ligation
in Losartan LAD group (*P,0.05 compared to Control LAD group). (B), (C) and (D) Evaluation of sympathetic activity after spinal cord transection
(SCT): Means of tSNA before (Basal) and at 15, 30, 45, and 60 min after LAD ligation (C; n = 5) and in Sham rats (B; n = 5). (D) Percentage of change in
mean tSNA at 30, 45 and 60 min after LAD ligation in spinal transected rats (LAD – SCT; n = 5, **P,0.01 compared to respective basal value) and
spinal cord intact rats (LAD – SCI; n = 21, ##P,0.01 compared to respective baseline). There was no change between the percent increases of both
groups (P.0.05).
doi:10.1371/journal.pone.0101886.g006
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