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 34 
The polarization of light provides information that is used by many animals for a 35 

number of different visually guided behaviours. Several marine species, such as 36 

stomatopod crustaceans and cephalopod molluscs, communicate using visual 37 

signals that contain polarized information, content that is often part of a more 38 

complex multi-dimensional visual signal. In this work, we investigate the 39 

evolution of polarized signals in species of Haptosquilla, a widespread genus of 40 

stomatopod, as well as related protosquillids. We present evidence for a pre-41 
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existing bias towards horizontally polarized signal content and demonstrate that 42 

the properties of the polarization vision system in these animals increase the 43 

signal-to-noise ratio of the signal. Combining these results with the increase in 44 

efficacy that polarization provides over intensity and hue in a shallow marine 45 

environment, we propose a joint framework for the evolution of the polarized 46 

form of these complex signals based on both efficacy-driven (proximate) and 47 

content-driven (ultimate) selection pressures. 48 

 49 
 50 
INTRODUCTION 51 
 52 
Polarization sensitivity is a common visual specialization that has evolved in 53 

both terrestrial and aquatic animals, and is particularly prevalent in 54 

invertebrates (Wehner and Labhart, 2006). On land, many insects use the 55 

celestial polarization pattern for navigation (Wehner, 1976; Rossel and Wehner, 56 

1986; Labhart and Meyer, 1999; Dacke et al., 2003), while in the ocean, some 57 

crustaceans and cephalopod molluscs use polarization information to detect 58 

prey and possibly as a means of conspecific communication (Shashar et al., 1996; 59 

Cronin et al., 2003a; Chiou et al., 2007; Mäthger et al., 2009; Cronin et al., 2009; 60 

Chiou et al., 2011). In the context of communication, polarization often forms 61 

composite signals with other visual dimensions, such as hue and brightness 62 

(Cronin et al., 2003a; Cronin et al., 2009).  63 

The term polarization is used to define several properties of light. The 64 

angle of polarization describes the predominant direction in which the electric 65 

field of the light oscillates, while the degree of polarization defines the extent to 66 

which waves oscillate at the same angle. Underwater, differential sensitivity to 67 

either angle or degree of polarization has several fundamental advantages over 68 



Th
e 

Jo
ur

na
l o

f E
xp

er
im

en
ta

l B
io

lo
gy

 –
 A

C
C

EP
TE

D
 A

U
TH

O
R

 M
A

N
U

SC
R

IP
T

3 

other forms of visual information (Cronin et al., 2003a; Cronin et al., 2003b; 69 

Cronin et al., 2009; Shashar et al., 2011). For instance, in shallow, clear marine 70 

waters, the intensity and spectral composition of the down-welling light can vary 71 

dramatically, both as a function of the time of day, and because of environmental 72 

factors such as turbidity (Cronin et al., 2014). In such changing conditions, the 73 

polarization of light remains more constant than other visual dimensions over 74 

short ranges (Waterman, 1954; Cronin, 2001), which renders it a reliable 75 

provider of information (Shashar et al., 2011; Johnsen et al., 2011). Previous 76 

research in this field has focused on either the underlying retinal mechanisms of 77 

polarization sensitivity (for review see Horváth and Varjú, 2004; Roberts et al., 78 

2011), or the optical mechanisms by which polarization and multi-component 79 

polarization/colour signals are produced (Chiou et al., 2005; Mäthger and 80 

Hanlon, 2006; Chiou et al., 2007; Mäthger et al., 2009; Cronin et al., 2009). In 81 

contrast, the evolutionary context of polarization signal content relative to the 82 

visual system of receivers is still very much unknown.  83 

Stomatopod crustaceans are some of the best-studied species in terms of 84 

polarization vision. Electrophysiological studies have detailed the spatial 85 

variation of polarization sensitivity in the different photoreceptor classes in the 86 

eye (Kleinlogel and Marshall, 2006; Chiou et al., 2008). Optical measurements 87 

(Marshall et al., 1991; Chiou et al., 2008), optical modeling (Roberts et al., 2009) 88 

and molecular methods (Porter et al., 2009; Roberts et al., 2011) have provided 89 

additional information on the underlying mechanisms of polarization sensitivity. 90 

Optical techniques have also shown that many species of stomatopod produce 91 

visual signals that are either linearly or circularly polarized (Chiou et al., 2005; 92 

Chiou et al., 2008; Cronin et al., 2009). The stomatopod genus Haptosquilla 93 
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(family Protosquillidae) is known to use signals from the first maxillipeds for 94 

both sexual and agonistic communication (Dingle and Caldwell, 1969; Caldwell 95 

and Dingle, 1975; Chiou et al., 2011). A common feature of Haptosquilla first 96 

maxillipeds is the production of a conspicuous blue structural reflection (Chiou 97 

et al., 2005; Cronin et al., 2009). Fig. 1 illustrates the blue signal in four species: 98 

Haptosquilla trispinosa, H. glyptocercus, H. stoliura and H. banggai. In some 99 

species of the genus (e.g. H. trispinosa, H. stoliura and H. banggai), this reflection 100 

is also horizontally polarized (Chiou et al., 2005; Cronin et al., 2009).  101 

Here we explore the potential evolutionary pathways of polarization 102 

communication in protosquillid stomatopods. First, we use experiments to 103 

investigate whether the behavioural responses to different forms of polarization 104 

signal content are species specific. We do this by exploiting the animal’s innate 105 

behavioural responses to polarized looming stimuli presented on modified LCD 106 

monitors. We compare four representative protosquillid species: H. trispinosa, H. 107 

glyptocercus, Chorisquilla tweediei and C. hystrix. Second, and in the context of the 108 

signal’s polarization content, we measure the threshold at which H. trispinosa are 109 

no longer able to discriminate between two different angles of polarization. 110 

Finally, we construct a phylogeny of protosquillid species to consider the 111 

evolution of the polarization properties of maxilliped signals.  112 

RESULTS 113 
 114 
Responses to polarized stimuli 115 

H. trispinosa, H. glyptocercus and C. tweediei all showed a significantly greater 116 

probability of response to the horizontally polarized stimulus compared with a 117 

vertically polarized stimulus.  (H. trispinosa: Wilcoxon Test: Z=2.93, d.f = 9, p = 118 
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0.002; Fig. 2A; H. glyptocercus: Z = 2.42, d.f = 9, p = 0.02; Fig. 2B; C. tweediei: Z = 119 

2.77, d.f = 9, p = 0.004; Fig. 2C). C. hystrix also appeared to be more responsive to 120 

horizontally polarized light (Fig. 2D), but the small sample size (n=5) precluded 121 

statistical testing. There was no significant difference between H. trispinosa, H. 122 

glyptocercus and C. tweediei in their relative responses to the two stimuli 123 

(Kruskal-Wallis test: χ2 = 2.90, d.f. = 2, p = 0.24).  124 

 125 

Level of discrimination between two angles of linearly polarized light 126 

H. trispinosa showed little or no response to stimuli when the difference between 127 

the polarization angles of the stimulus and background was between 31.4 128 

degrees and 20 degrees (Fig 3, Supplemental Table S1). At angles of 20 degrees 129 

or less, the animals rarely responded to the polarization stimulus; at values of 130 

31.4 degrees and above, they displayed a consistent statistically significant 131 

response to the stimulus.  132 

 133 

Presence of polarized signals 134 

The 1st maxilliped reflections from H. trispinosa, H. glyptocercus, C. tweediei and 135 

C. hystrix are presented in the microscope images displayed in Figs 4A–D. Both H. 136 

trispinosa (Fig. 4A) and H. glyptocercus (Fig. 4B) showblue reflections from the 137 

maxillipeds compared with very weak, spectrally broad reflections from the 138 

Chorisquilla species (Figs 4C, D). Of the blue Haptosquilla reflections, H. trispinosa 139 

are horizontally polarized (Fig. 4A) whereas the reflections from H. glyptocercus 140 

are unpolarized (Fig. 4B).  141 

Visual analyses of other species of Haptosquilla showed that H. stoliura, H. 142 

banggai, H. pulchella, H. nefanda and H. hamifera all have blue-reflecting 1st 143 
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maxillipeds, but only the reflections from H. stoliura, H. banggai, H. pulchella and 144 

H. nefanda are horizontally polarized. Within the rest of the Protosquillidae, five 145 

further species have been analyzed (C. excavata, C. hystrix, C. tweediei, 146 

Echinosquilla guerinii, and Protosquilla folini) with none possessing blue or blue 147 

and horizontally polarized 1st maxillipeds. Outside of the Protosquillidae, six 148 

other stomatopod species from nine genera and four families have been 149 

inspected for 1st maxilliped signal types. Of these species, only G. smithii possess 150 

blue signals and no other species possess either blue or horizontally polarizing 151 

signals (Fig. 5). 152 

 153 

Phylogenetic analyses 154 

Phylogenetic analyses of protosquillid relationships recapitulate previous 155 

studies (Barber & Boyce 2006; Porter et al., 2010) recovering the protosquillids 156 

(bootstrap percentages (BP) = 98), and in particular the genus Haptosquilla (BP 157 

= 89), as monophyletic (Fig. 5). Within the Haptosquilla, our phylogeny 158 

recovered two sub-groups of species that correspond to the two known types of 159 

1st maxilliped signaling, either blue and unpolarized or blue and polarizing.  160 

 161 

DISCUSSION 162 

Our results provide the direct evidence that several species of stomatopod have 163 

an inherent (i.e. non-trained) behavioural response to a looming, linearly 164 

polarized stimulus. Moreover, all the protosquillid species tested displayed a 165 

greater probability of response to horizontally polarized stimuli compared with 166 

those that are vertically polarized. The measurements of the structural colour 167 

and polarization properties of the maxillipeds, in combination with the 168 
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comparative phylogenetic analyses, revealed that of these protosquillids, only 169 

the genus Haptosquilla displays the blue signals. Furthermore, it is only the sub-170 

group of Haptosquilla including H. trispinosa that possesses the additional 171 

polarized signal dimension. In these species, the polarization of the signals is 172 

always orientated horizontally. Therefore, it is possible that the common 173 

behavioural predisposition towards horizontally polarized stimuli seen across 174 

the protosquillids could have biased the polarization content of 1st maxilliped 175 

signals to be horizontal in the H. trispinosa clade (Guilford and Dawkins, 1991; 176 

Endler and Basolo, 1998). A common question raised by the concept of sensory 177 

bias is why does the bias preexist? Whilst we can only speculate, the bias for a 178 

horizontal angle of polarization may come from the fact that this angle is most 179 

prevalent in reflections from objects and preferential sensitivity may have 180 

previously evolved to improve contrast discrimination (Temple, 2012). 181 

 182 

H. trispinosa also displayed a threshold of between 21.4 and 30 degrees in their 183 

response to distinguishing between two angles of polarization. Such a coarse 184 

level of discrimination would improve the signal-to-noise ratio of a linearly 185 

polarized signal by effectively low-pass filtering any variation in the background. 186 

This threshold is an order of magnitude higher than measured in other species 187 

(fiddler crab, Uca vomeris, 3.2 degrees - How et al., 2012; cuttlefish, Sepia 188 

plangon, 1 degree - Temple et al., 2012) and is suggestive of tuning for high 189 

contrast signals compared with the current evidence that other crustacean and 190 

cephalopod polarization visual systems are used to resolve high levels of 191 

polarization detail.  192 
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The complex nature of stomatopod eye design (two hemispheres 193 

separated by a specialized midband) may place limitations on the amount of 194 

information that can be processed from the visual scene but in turn enhance the 195 

processing efficiency. Currently, it is thought that the two hemispheres are 196 

primarily involved in producing a two-dimensional representation of the visual 197 

scene, over which the midband is then scanned, rather like a line-scan sensor, to 198 

expand on the colour and polarization information (Land et al., 1990). The 199 

motion component of the LCD looming stimulus used in our experiment is 200 

therefore most likely to be stimulating responses in the stomatopod visual 201 

hemispheres, which elicit a visual saccade to the target, and presumably this 202 

would be followed by a subsequent visual scan of the target with the midband to 203 

fill in the remaining information. It is conceivable therefore, that much of the 204 

early visual information is simplified to speed up sensory processing (for an 205 

equivalent discussion for colour vision see Thoen et al., 2014). If so, the 206 

polarization discrimination responses we have measured specifically represent a 207 

property of the visual system in the dorsal and ventral hemispheres. However, 208 

the precise behavioural context should also not be ignored. It is quite possible 209 

that the measured discrimination threshold is specific to the task demanded of 210 

the animals. Further work is also still needed to investigate how the degree of 211 

polarization affects behavioural responses to such polarization signals.  212 

Overall, our findings provide a framework for understanding the potential 213 

evolutionary pathway of the polarization properties of these maxilliped signals 214 

in stomatopods. Successful communication relies on information being sent 215 

through the environment in such a way that it will be received in its intended 216 

form, and be interpreted as to elicit a behavioural response in the intended 217 
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receiver (Parten and Marler, 2005). In this context, the selective pressures on 218 

signal evolution are both efficacy-driven and content-driven (Guilford and 219 

Dawkins, 1991; Hebets and Papaj, 2005). As described in the Introduction, 220 

polarization provides a reliable form of visual information, particularly in 221 

spectrally variable light environments, such as the conditions that these species 222 

of stomatopod inhabit. The increase in signal efficacy by the inclusion of this 223 

extra visual dimension is therefore fairly clear. The behavioural bias towards 224 

horizontal polarized light provides a further explanation for why the polarized 225 

content of the signals has evolved to be horizontally polarized. Together, the 226 

addition of polarization to the signal and nature of the bias suggest both the 227 

proximate and ultimate drivers respectively for the evolution of this complex 228 

signal.  229 

Two questions for the future are: can manipulating the relative 230 

polarization contrast of the signal and the background  influence the bias? 231 

Secondly, do the spectral and polarization dimensions act independently for 232 

purposes of information redundancy or do they combine in a functional way; for 233 

example, increasing the accuracy of receiver response as is described by an 234 

amplifier hypothesis of multi-component signals (Hasson, 1991; Candolin, 2003; 235 

Hebets and Papaj, 2005)? We suggest that future studies of combined 236 

polarization and colour signals in other animals should also carefully consider 237 

how these dual dimensions are viewed together by receiver visual systems 238 

under the correct environmental light conditions. Whilst it is not always easy to 239 

decompose complex signals and test the functions of individual components 240 

(Hebets and Papaj, 2005), the combined colour and polarization signals in 241 
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stomatopods represent an excellent behavioural system to investigate the 242 

function and evolution of signal complexity.  243 

 244 

 245 

MATERIALS AND METHODS 246 

Animals 247 

To investigate the inherent ability of stomatopods to generate distinct behavioral 248 

responses to polarized stimuli, we collected 39 individuals of H. trispinosa, 10 249 

individuals of both H. glyptocercus and C. tweediei and five individuals of C. 250 

hystrix from off-shore reefs near Lizard Island, Great Barrier Reef, Australia in 251 

August 2011 (Queensland–GBRMPA permit G12/35042.1). Animals were 252 

maintained before testing in a natural seawater flow-through marine aquarium 253 

facility at the Lizard Island Research Station (24–25°C, natural daylight 254 

illumination, and fed pieces of frozen shrimp). All procedures were approved by 255 

the Animal Ethics Committees of the University of Queensland (AEC, permit # 256 

QBI/223/10/ARC/US AIRFORCE (NF)). 257 

 258 

Relationship between behavioural responses and polarization stimulus 259 

content 260 

Individual stomatopods were placed in a 30 x 15 x 15 cm tank containing local 261 

beach sand. Each individual was placed inside an 8 mm diameter clear tube and 262 

restrained using a small amount of fishing line (Land et al., 1990; Cronin et al., 263 

1991). The animal was positioned such that the eyes were forward of the front 264 

end of the tube (Fig. 6A). Directly above the animal was a video camera (Canon 265 

Legria FS20) that recorded its response to the presentation of the stimuli. On the 266 
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outside of the tank, and in front of the animal, was an LCD screen (Viglen LC552; 267 

1280 x 1024 spatial resolution at 60 Hz); the eyes were at a distance of 268 

approximately 12 cm from the screen. By removing the front polarizer from the 269 

LCD screen and addressing the LCD with a grayscale value of either 0 (black) or 270 

255 (white), the local output polarization could be controlled as vertical (V 271 

stimulus) or horizontal (H stimulus) respectively (Pignatelli et al., 2011). The 272 

stimuli expanded to cover 22.5° of the visual field angle in 1 s (taking into 273 

account refraction at the air / glass / water boundaries). The simple electro-274 

optic control of the polarization of the light permitted not only dynamic control 275 

of the polarization, but most importantly an inherent zero luminance and 276 

chromatic contrast between the background and the looming stimulus. To check 277 

the polarization properties of the LCD, accurate broadband Stokes parameter 278 

measurements (Fig. 6B) were made using Glan-Thompson polarizers and a ¼ 279 

wave Fresnel–rhomb (Edmund Optics, York, UK), which permitted the 280 

computation of the polarization ellipse of each of the stimuli for any wavelength 281 

(Fig. 6C).  282 

All animals received a balanced pseudo-randomized presentation of 10 H 283 

stimuli and 10 V stimuli, against a perpendicularly linearly polarized 284 

background. No more than three instances of the same stimulus were presented 285 

in a row. We randomly varied the time between successive stimuli, from 20 to 286 

120 s, to minimize any effect of habituation. To determine whether the animal 287 

responded to the two stimulus types, we monitored the optokinetic response of 288 

the focal animal. We defined a positive response to the stimulus as a saccadic eye 289 

movement, in which one or both eyestalks were rapidly brought together (see 290 

Fig. 7 for an example). No such saccadic eye movements were observed in a 5 s 291 
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period before the onset of the stimulus or from 3 s after its presentation. Animals 292 

were scored by their number of responses out of the 10 presentations giving a 293 

probability of response to each stimulus type. 294 

 295 

Discrimination threshold between two angles of linearly polarized light 296 

A similar method was used to measure the polarization angular contrast 297 

sensitivity of H. trispinosa. Individual unrestrained animals were housed in a 20 x 298 

20 x 30 cm aquarium partition in burrows positioned approximately 12 cm from 299 

the front wall. A different polarization LCD monitor (HP L1906; see How et al., 300 

2012 for calibration details) to that described above, but with very similar 301 

properties, was positioned against the front wall. A looming circle stimulus 302 

expanded to cover 27° of the visual field angle in 1 s (taking into account 303 

refraction at the air / glass / water boundaries). The greyscale values addressed 304 

to the monitor were set to 0 (black) for the background and ranged between 0 305 

and 255 for the stimulus, resulting in a stimulus that varied in the angle of 306 

polarization against a horizontally polarized background, with no corresponding 307 

changes in hue or light intensity. Stomatopod eye movements in response to the 308 

stimulus were recorded using a digital video camera (Sony HDR-SR11, Tokyo, 309 

Japan) mounted on the top edge of the front aquarium wall. Stimuli were 310 

generated automatically using MATLAB (r2011, Mathworks, Natick, MA, USA) 311 

and the whole experiment was conducted without experimenter intervention. 312 

Video recordings were synchronized to the stimulus by means of an audio signal 313 

conveyed by audio cable directly from the computer to the microphone port of 314 

the camera. Measures of saccadic eye movements were made in a 5 s period both 315 

before and after the stimulus presentation. Two independent groups (n=15 and 316 
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14 animals) were tested using two sets of stimuli (angles of 0, 0.5, 1, 5, 7, 9, 11 317 

degrees and of 20, 31, 56, 70, 74 degrees respectively). The stimulus order was 318 

fully randomized and the interval between stimuli was randomized between 20 s 319 

and 60 s. 320 

   321 

Polarization analysis of the maxilliped signals 322 

Images of the maxillipeds of H. trispinosa, H. glyptocercus, C. tweediei and C. 323 

hystrix were taken though a Leitz compound microscope (Leica Micrsystems, 324 

Wetzler, Germany) using a 10x objective and Canon G9 digital camera (Canon, 325 

Melville, USA) mounted using a photo tube extension on the trinocular head. 326 

Spectral reflection data of the same four species were measured using an Ocean 327 

Optics halogen HL-2000 light source (Ocean Optics, Dunedin, USA) mount at the 328 

back focal plane of the eyepiece and illuminating the maxillipeds normally. The 329 

reflected light was collected at the back focal plane of the second eyepiece using 330 

a 1 mm diameter optic fibre connected to a QE65000 spectrometer (Ocean 331 

Optics, Dunedin, USA). Linear horizontal and vertical polarization filters were 332 

placed in the path of the reflected light inside the microscope to collect each 333 

respective polarized reflectance spectrum. Over several preceding years, the 334 

colour and polarizing nature of the 1st maxillipeds from 17 other representative 335 

species of stomatopods across the superfamily Gonodactyloidea have been 336 

assessed visually by viewing the maxillipeds thorough a rotatable linear 337 

polarizer.  338 

 339 

 340 

Phylogenetic analyses 341 



Th
e 

Jo
ur

na
l o

f E
xp

er
im

en
ta

l B
io

lo
gy

 –
 A

C
C

EP
TE

D
 A

U
TH

O
R

 M
A

N
U

SC
R

IP
T

14 

To investigate the potential evolutionary pathway of color and polarization 342 

signals within the genus Haptosquilla, DNA sequences from both nuclear and 343 

mitochondrial genes for all available species were either obtained from GenBank 344 

or provided by P. Barber (Barber and Boyce, 2006), or were sequenced following 345 

the methods of Porter et al., (2010) (Supplemental Table S2). Additional 346 

representative stomatopod species from within the same family 347 

(Protosquillidae) and superfamily (Gonodactyloidea) were included to provide 348 

increased resolution and stability at deeper nodes within the phylogeny and to 349 

use as outgroups. We used a concatenated matrix consisting of nucleotide 350 

sequences from the cytochrome oxidase I (COI) and 16S mitochondrial genes, 351 

and the 18S and 28S nuclear rDNA genes, although the number of sequences 352 

available varied across species (see Supplemental Table S2 for full description of 353 

data sources and gene representation). 354 

Nucleotide sequences of the 16S, 18S, and 28S genes were aligned using 355 

the E-INS-I strategy in MAFFT v6.0.0 (http://mafft.cbrc.jp/alignment/server/) 356 

(Katoh et al., 2002; Katoh et al., 2005). The COI sequences were inspected for 357 

evidence of pseudogenes (e.g. stop codons, indels not continuous with codons) 358 

and then manually aligned using the translated amino acid sequences. The four 359 

gene regions were then concatenated and the combined dataset was used to 360 

reconstruct a phylogeny using Randomized Axelerated Maximum Likelihood 361 

(RAxML) v.7.2.7 with rapid bootstrapping as implemented on the 362 

Cyberinfrastructure for Phylogenetic Research (CIPRES) Portal v.2.0 (Stamatakis 363 

2006; Stamatakis et al., 2008; Miller et al., 2009). Three partitions were 364 

designated for the RAxML analysis: (1) COI codon positions 1 and 2; (2) COI 365 

codon position 3; and (3) all of the ribosomal genes (16S, 18S, and 28S). All 366 
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partitions were analyzed with the GTR+gamma model, as this was the best-367 

fitting model available in RAxML, according to the results of jModelTest v0.1.1 368 

(Guindon and Gascuel 2003; Posada 2008). 369 

 370 

Statistical analysis 371 

All statistical analyses were conducted in R 3.0.2 (R Foundation for Statistical 372 

Computing). Response probabilities to either horizontally or vertically polarized 373 

looming stimuli were analysed using Wilcoxon Signed-Rank tests and differences 374 

between species were calculated using a Kruskal-Wallis rank sum test. The 375 

individual saccadic responses of H. trispinosa to different angular e-vector 376 

contrasts were analysed using a McNemar’s test.  377 

 378 
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Figure Captions 558 

Figure 1. Illustrative examples, shown by arrows, of the conspicuous 559 

maxilliped signals. (A) H. trispinosa, (B) H. glyptocercus, (C) H. stoliura and (D) 560 

H. banggai. 561 

 562 

Figure 2. Paired plots of the probability of response of each individual to the 563 

vertically and horizontally polarized stimulii. Numbers of points (open 564 
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circles) at each probability represent the number of individuals that responded 565 

with that probability. (A) H. trispinosa, (B) H. glyptocercus, (C) C. tweediei, and 566 

(D) C. hystrix.  567 

 568 

Figure 3. Responses of H. trispinosa (black dots) to differences between the angles of 569 

polarization of the stimulus and the background (x-axis). The response data are fitted 570 

with a hyperbolic tangent (dashed line). The background level of false positive 571 

responses are represented for each stimulus type (white dots) and as an overall mean 572 

(dotted line). McNemar’s test was used to determine which response values differed 573 

from the level of false positives (* = p < 0.05). 574 

 575 

Figure 4. Microscope images of the maxillipeds. H. trispinosa (A), H. 576 

glyptocercus (B), C. tweediei (C) and C. hystrix (D). Accompanying each plot are 577 

the reflection spectra from the area denoted by the circle in each image. In the 578 

spectral plots, open circles represent the horizontally polarized reflectivity and 579 

open triangles represent the vertically polarized reflectivity.  V and H in (A) 580 

denote the vertical and horizontal directions respectively relative to the axes of 581 

the maxillipeds.   582 

 583 

Figure 5. A maximum likelihood phylogeny of protosquillid species 584 

relationships, rooted using representative species from the 585 

Gonodactyloidea. Branch support values represent bootstrap percentages. 586 

Nodes representing the genus Haptosquilla and the family Protosquillidae are 587 

indicated by ‘H’ and ‘P’, respectively. Where known, the presence or absence of 588 

blue signals and polarizing signals on the 1st maxilllipeds has been mapped onto 589 



Th
e 

Jo
ur

na
l o

f E
xp

er
im

en
ta

l B
io

lo
gy

 –
 A

C
C

EP
TE

D
 A

U
TH

O
R

 M
A

N
U

SC
R

IP
T

24 

the phylogeny. Species names in bold indicate those animals measured in this 590 

experiment, all of which have a bias to horizontally polarized stimuli, illustrating 591 

the occurrence across the two main genera of the Protosquillidae. 592 

 593 

Figure 6. Schematic diagram of the experimental apparatus. (A) The tank 594 

setup in front of the LCD screen. (B) An example measure of the normalized 595 

Stokes parameters (P0–3) of the horizontally polarized stimulus as a function of 596 

wavelength. (C) An example of the vertical and horizontal polarization ellipses at 597 

560 nm.  598 

 599 

Figure 7. Measurements of the behavioural saccadic response of the 600 

stomatopods. (A) Time sequences of images from a video recording illustrating 601 

the typical saccadic eye movement response in H. trispinosa to a looming 602 

polarized contrast stimulus (horizontally polarized on a vertically polarized 603 

background). Each image is a single frame, approximately 0.2 s apart; the first 604 

two images show the eyes before the stimulus, the 3rd image shows the eye 605 

position 0.1 s after the stimulus onset, and the final image shows the eye position 606 

approx. 0.3 s after the stimulus onset. (B) The measured change in the angular 607 

separation of the eye stalks as a function of the onset of the looming polarized 608 

contrast stimulus. The numbers and filled points correspond to the numbered 609 

frames displayed in (A). The red line indicates the stimulus diameter as a 610 

function of time. 611 
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