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This paper demonstrates the growth of InGaN nanorods and 

lateral growth over nanorod arrays using molecular beam 

epitaxy. It is shown that nitrogen rich growth conditions result in 

a nanorod array and that, by changing to metal rich conditions, 

lateral growth may be enhanced to coalesce the nanorods into a 

continuous overgrown film. Energy dispersive x-ray 

spectroscopy has been used to demonstrate that the nanorods 

display a core-shell structure with In-rich cores and In-poor 

edges. Transmission Electron Microscopy has shown that the 

nanorods are free of dislocations. However when lateral growth 

occurs basal plane stacking faults are generated. It is shown that 

this stacking fault generation leads to a change in structure from 

hexagonal to cubic. When coalescence has occurred large angle 

grain boundaries are present.  
 

Copyright line will be provided by the publisher  

1 Introduction Indium Gallium Nitride (InxGa1-xN) 

has a direct band gap of 0.7eV (x=1) to 3.4eV (x=0). This 
spans the visible spectrum and makes InGaN a viable 

candidate for optoelectronic devices such as LEDs, lasers 
and photovoltaics [1, 2]. Growth of InGaN may be 

achieved using various growth techniques such as 

molecular beam epitaxy (MBE) [3, 4], pulsed laser 
deposition [5] and metal-organic chemical vapour 

deposition [2, 6, 7]. However due to a lack of adequately 
lattice matched substrates InGaN films generally have high 

threading dislocations. 
There are also issues associated with indium 

incorporation during growth, leading to spatial variations 

in In content, especially in In rich films [8]. Work by 
Kehagias et al [9] has used EDX mapping to show that 

InGaN nanorods grown on (111)-Si substrates have 
increasing In composition along the length of nanorods 

which is due to high In desorption rates at temperatures of 

450°C. In segregation has also been reported in quantum 
well and quantum dot structures [4] and in other alloy 

systems such as InGaAs [10]. 
InGaN usually has the hexagonal wurtzite form which 

has a stacking sequence ..ABABAB.. but may also exist in 
the cubic zinc-blende phase which has the ..ABCABC.. 

stacking sequence. The wurtzite form is polar in the c-

direction (0002), which creates spontaneous electric 
piezoelectric fields [11] which may act to separate electron 

hole pairs which is ideal for a photovoltaic device. The 
zinc-blende structure is not polar [12, 13] and so lacks the 

piezoelectric field, much like non-polar orientations of 

wurtzite material which make these favourable to LED and 
Laser devices. 

Previous work with GaN on sapphire [14] has shown 
that by controlling the N:Ga ratio to N-rich conditions, 

growth of GaN nanorods with little to no threading 
dislocations in the nanorods may be achieved. Furthermore 

by subsequently changing the growth conditions to Ga-rich 

a GaN film may be grown over the nanorod array which 
had a low dislocation density, ≈108cm2. 

 
2 Method Growth of the samples presented in this 

paper was performed at Nottingham University by MBE. 

Samples of InGaN have been directly grown on Si in a 
Varian ModGen II system at growth temperatures of 

400°C to 500°C. Nitrogen-rich conditions were used to 
promote vertical growth whilst metal-rich conditions were 

used for lateral growth. 
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All cross section samples were prepared for TEM by 

mechanically polishing to 100µm and ion thinning using a 

Gatan PIPS Ar ion thinner. Samples were thinned at 5keV 

until perforation, then at 3keV to remove surface damage. 

Plan view TEM samples have been prepared using a FEI 

DualBeam FIB/SEM which uses Ga ions accelerated at 

15kV for the initial sectioning and a lower energy 3kV 

beam to reduce the damage caused by the Ga ion beam. To 

make the plan view section the sample was first encased in 

epoxy resin, which provides support for the nanorods 

during and after milling. The specimen was then mounted 

with the InGaN/Si interface normal to the focused gallium 

ion beam direction and a lamella cut out.  

 

 

 

Figure 1 TEM of an N-rich growth resulting in InGaN nanorods 

shown ion a) mechanically polished cross-section with bend 

contours along the c-direction (arrowed) and b) plan-view 

prepared by FIB milling. 

 

 

Figure 2 EDX spectra taken from nanorod in plan view. The 

spectra are from the regions indicated and show a significant 

increase of In at the centre of the nanorod when compared with 

the edge. 

 

TEM was performed on a Philips EM430 operated at 

200kV. Energy dispersive X-ray spectroscopy was 

performed on a JEOL 2010 operated at 160kV equipped 

with an Oxford Instruments EDX spectrometer which was 

used to characterise the composition of the nanorods by 

taking point spectra with a spot with a diameter of 20nm. 

 
3 Results and Interpretation Figure 1 shows TEM 

of InGaN structures grown on (111)-silicon in N-rich 

conditions at a temperature of 400°C. This promotes 
vertical growth and suppresses lateral growth. These 

nanorods are ~500nm long and 100nm wide, are faceted 
with the c-axis perpendicular to the substrate and are free 

of threading dislocations. Arrowed in Figure 1(a) is a 
nanorod orientated close to the [112̅0] zone axis, which 

shows contours along the length of the nanorod indicating 

that the nanorod is bending around the c-axis. These 
contours are not visible in all nanorods as there is 

significant rotation about the c-axis as can be seen in 
Figure 1(b). This demonstrates that nanorods have not 

grown epitaxially.  

Plan view of the nanorods shown in Figure 1(b) 

demonstrates the faceted nature of the nanorods. Spot EDX 

has been taken on this sample (shown in Figure 2) with the 

electron beam at the edges of the structures and at the 

centres and has shown a significant increase of In 

composition towards the centre of the nanorods which 

explains the bending around the c-axis (seen in Figure 

1(a)) due to the larger lattice constant of the indium rich 

core.   

Figure 3 shows a sample grown in metal-rich 

conditions and at a higher temperature of 500°C. In these 
conditions the lateral growth is enhanced and a film has 

grown over the nanorod array. The grain size of the 
overgrown film is larger than 500nm which spans multiple 

nanorods implying that as neighbouring nanorods coalesce 

there is a degree of recrystallisation. There are large angle 
grain boundaries where large misorientated grains 

a) 

b) 

In Ga Ga 
Cu 

In 

Ga Ga 

Cu 
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coalesce. When coalescence is attempted at a lower growth 

temperature (400°C) as shown in Figure 4, stacking faults 
are observed where the growth conditions have been 

changed. There is also a change in structure from 

hexagonal in the nanorods to cubic during lateral growth 
which can be seen in the selected area diffraction (SAD) 

pattern of Figure 4(c) which is a shows the [110] zone axis 
diffraction pattern for the cubic zinc-blende phase. After a 

second stacking fault, inclined 70° to the basal plane, the 

structure reverts to the wurtzite structure as shown by the 
[112̅0] zone axis SAD pattern of Figure 4(d). EDX has 

shown that the composition of the cubic area is 
significantly more In-rich when compared to the hexagonal 

areas. 
 

 

Figure 3 A N-rich growth resulting in nanorods at the base, 

followed by a metal rich growth which resulted in coalescence. 

 

4 Discussion These results demonstrate that by 
controlling the growth conditions defect free nanorods may 

be directly grown on silicon. It is possible to achieve 

coalescence of these structures using metal-rich conditions 
resulting in grains which span multiple nanorods, typically 

wider than 1µm. It may be seen when observing the 
nanorod array in plan-view (Figure 1(b)) that the nanorods 

are rotated with respect to each other around the c-axis. 

This leads to the large angle grain boundaries observed 
where coalescence occurs. 

EDX has been used to show there are large variations 
in composition radially in the nanorods. The change in 

composition leads to mismatch strains with the In-poor 

shell being under tension. This can explain the bending 
observed occasionally along the nanorod axis as partially 

thinned nanorods relax (Figure 1(a)). The radial variation 
in composition may be explained by considering 

desorption and migration of In. At growth temperatures of 

400-500ºC, any Ga deposited should be essentially 

immobile and not desorbed. The core–shell structure may 
be explain by considering In desorption at the growth 

temperature, this acts to shield nanorods from the In source 

during growth resulting in an In-poor surface.  
A change to metal-rich growth conditions has the 

effect of increasing the In composition rapidly. This causes 
an in-plane stress which explains the large number of 

stacking faults in this transition region as stacking faults 

can relieve strain in the basal plane. The change of 
structure from hexagonal in the nanorods to cubic in the 

lateral growth might be caused by the local change in the 
stacking sequence from hexagonal to cubic associated with 

a stacking fault. In cubic material, a stacking fault is 
associated with a local transition from cubic to hexagonal 

stacking, and it may be that this accounts for the reverse 

transition from cubic to hexagonal material after the stress 
caused by the change in composition has been 

accommodated. 
 

 

 Figure 4 a) Cross section TEM of a nanorod with subsequent 

metal-rich growth with a large number of stacking faults at the 

interface of the two growth conditions. SAD from the regions 

arrowed show a change of structure from hexagonal to cubic and 

back to hexagonal in b), c) and d) respectively. b) and d) are 

hexagonal [112̅0] zone axis diffraction patterns and c) is a cubic 

[110] diffraction pattern. The central nanorod is in the [112̅0] 

orientation. 

 

5 Summary It has been demonstrated that InGaN 

nanorods may be grown by MBE with N-rich conditions, 

which is in agreement with previous work on GaN. There 

is a higher indium content in the centre of the nanorods 

which has been shown by EDX. It has also been 

demonstrated that it is possible to coalesce nanorods using 
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metal-rich conditions which tends to form a continuous 

layer. For low growth temperatures in metal-rich 

conditions, stacking faults occured which had the effect of 

changing the structure from hexagonal to cubic, this was 

reversible, resulting in inclined hexagonal growths. 
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