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ABSTRACT: The Atterberg Limits are the most common tests specified by practicing 
geotechnical and pavement engineers the world over. They are used to classify soils 
using the framework pioneered by Terzaghi and Casagrande during their work with the 
US Public Roads Bureau in the 1920s and 1930s and are also correlated with many 
fundamental soil parameters, used in design and construction projects. In the 21st century 
the Atterberg Limits remain a key component of the testing armory of practicing 
geotechnical engineers as they can be obtained easily for the large numbers of samples 
that are needed on major construction projects and allow for rapid assessments of key 
soil parameters. Their fundamental definitions are worthy of review; the thread-rolling 
test for plastic limit has remained largely unchanged since Atterberg first described it in 
1911 but the definition and measurement of liquid limit varies across the globe. The 
fundamental mechanics of the Casagrande Cup liquid limit have been the subject of 
recent study showing clearly that liquid limit determined in this way relates to a fixed 
value of specific soil strength (i.e. strength per unit density) as opposed to a fixed 
strength value when liquid limit is measured by the fall-cone method. These findings 
explain the deviation between liquid limits measured by the two methods for high 
plasticity soils without the need to invoke different strength regimes. The brittle failure 
mechanism in the thread-rolling test has also been recently re-examined. It is proposed 
that the brittle failure observed in the plastic limit test is caused by either air entry or 
cavitation in the clay and plastic limit and does not correspond to a fixed strength. The 
Atterberg Limits are used to compute liquidity index which is widely related to clay 
strength variation, this is critical for many areas of construction (especially when rapid 
assessments of strength are required).  The Russian code for the design of piled 
foundations, for example, uses liquidity index values to assess shaft friction. Recent 
research outcomes at the University of Cambridge have challenged certain assumptions 
pertaining to widely-used correlations between liquidity index and undrained strength. 
 
INTRODUCTION 
 
   The Atterberg Limits remain the fundamental classification parameters in geotechnical 
engineering practice.  Atterberg (1911a, b) described limits that describe changes in the 
behaviour fine grained soils with water content. As the most obvious behaviour of clays 
was their plasticity, he classified soil’s behaviour according to its plastic characteristics, 
developing 7 qualitative “limits” listed in Table 1. 
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Table 1.  Qualitative limits describing soil behaviour from Atterberg (1911a) 
 

Atterberg (1911a)  
Swedish 

Casagrande (1932) 
English 

öfre trögflytbarhetsgränsen The upper limit of viscous flow 
vattentäthetsgränsen  

nedre trögflytbarhetsgränsen The lower limit of viscous flow  
klibbgränsen The sticky limit 
utrullgränsen Rolling limit 

gränsen för 
sammanpackbarhet 

The cohesion limit  

krympningsgränsen The shrinkage limit 
 
Atterberg Limits for Geotechnical Correlations 
   The measured values for the liquid and plastic limits of soils are commonly used index 
parameters in geotechnical engineering.  They are used to compute the plasticity index 
which is commonly used to empirically predict many soil properties.  For instance, 
Casagrande’s A-Line classifies soils into clays and silts based on a correlation between 
soil type and a combination of liquid limit and plasticity index (Casagrande, 1947).  The 
plasticity index has been used to predict undrained strength ratios (Skempton, 1954 & 
1957); the ratio of strength to Standard Penetration Test (SPT) blowcount (Stroud, 1974) 
and critical state soil parameters (Schofield & Wroth, 1968 & Nakase et al 1988). Black 
(1962) used the plasticity characteristics of clays to develop predictions for the 
California Bearing Ratio (CBR) – another famous soil index parameter to describe road 
subgrade quality which has been traditionally related to soil modulus for use in road 
pavement design (e.g. Heukelom & Klomp, 1962). 
   This paper describes some recent research developments from work done at the 
University of Cambridge and challenges certain assumptions pertaining to the common 
interpretation and understanding of the Atterberg Limits. 
 
CASAGRANDE CUP OR FALL CONE? 
 
Casagrande’s Liquid Limit 
   Atterberg (1911a, b) proposed a method for measuring the liquid limit of soils based 
on the stability of a groove in a clay bed when the soil container was struck on the hand. 
This method was standardized by Casagrande (1932) into the percussion technique. The 
method relies on the inducement of a slope failure as the cup is ‘tapped’ – the water 
content when the ‘canal’ fails after 25 blows is the liquid limit. Haigh (2012) performed 
a Newmarkian sliding block analysis (Newmark, 1965) of the test to show that this ratio 
is approximately 1m2/s2. As soil density decreases with increasing water content, a soil 
with a high liquid limit (wL) will exhibit a lower strength at liquid limit than those soils 
with lower liquid limits. This confirmed the assertion of Wroth (1979) that percussion 
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liquid limits should correspond to a fixed ratio of strength to density. 
 
The Fall Cone Test 
   The fall cone test, developed in Sweden, (e.g. Hansbo, 1957) is a direct measurement 
of soil shear strength. Shimobe (2010) reviews the various fall-cone standards from 
different countries where it has been used to determine liquid limit. It is a mechanical 
test which removes the judgment that is required to determine failure when using the 
Casagrande cup but has been calibrated to give essentially the same results for soils with 
low plasticity indices. The soil strength at liquid limit (cL) is reported in the literature to 
fall in the range 0.7 to 2.65 kPa and was taken to be at the centre of this range, (1.7 kPa), 
by Wroth & Wood (1978). Koumoto & Houlsby (2001) give a detailed theoretical 
analysis of the mechanics of the fall cone test, showing the tests’s sensitivity to cone 
angle, cone bluntness, surface roughness of the cone and cone heave. 
 
STRENGTH VARIATION 
 
Fall Cone Strength 
   The fall cone test can equally be used to measure the shear strength of soils at a range 
of water contents between liquid and plastic limits. Hansbo (1957) presented equation 
(1) which is used to derive undrained shear strength values from the fall cone test: 

 
2d

mg
Kcu           (1) 

Where, cu = undrained shear strength; m = mass of the fall cone; g = acceleration due to 
gravity; d = final fall cone penetration and K is the cone factor. At low moisture 
contents, the high strength of soils can cause problems due to low penetration with the 
standard cone. This problem has been addressed using pseudo-static cones that are 
mechanically driven into the soil (e.g. Stone & Phan, 1995).  
 
Strength at Plastic Limit 
   As the thread-rolling test is widely perceived as a crude test which lacks stress control, 
many researchers have looked to find plastic limit (wP) by other means (e.g. Feng, 2000; 
Dolinar & Trauner, 2005; Lee & Freeman, 2009). Almost all of these researchers have 
assumed that the plastic limit is associated with a fixed strength (100 times that at wL) 
and then used a strength test (e.g. fall-cone) to find the water content associated with that 
strength. Haigh et al (2013) showed based on strengths at plastic limit reported in the 
literature that the assumption of a fixed strength at plastic limit is without any technical 
basis. They proposed instead that the brittle failure observed in the plastic limit (thread 
rolling test) is caused by either air entry or cavitation and is hence a function of 
maximum soil suction rather than soil strength. 
 
Database of strength data at plastic limit 
   Haigh et al (2013) use a large database to investigate the variation of shear strengths 
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for soils at the plastic limit. Table 2 shows the sources of the data used. The median 
strength (at plastic limit) for the database was found to be 152kPa and the mean strength 
was found to be 132 kPa. The computed standard deviation was found to be 89kPa. The 
strength at the thread-rolling limit is therefore clearly variable. The cumulative 
distribution of strength at plastic limit is shown on Figure 1. There will obviously be a 
water content at which the soil strength is 100 times that at the liquid limit which can be 
termed the plastic strength limit, PL100. This may be an equally useful parameter as the 
thread-rolling plastic limit, but there is no reason why these states should coincide. 
 

 
FIG. 1.  Cumulative distribution of shear strengths of soil at plastic limit  

[Plot from Haigh et al (2013)] 
 
Table 2.  Database of shear strength data at the plastic limit (after Haigh et al 2013) 
 

Authors Soils Tested 
Method of 

Testing 
cu at wP 
(kPa) 

Skempton & Northey (1952) 3 British Clays  85-125 
Dennehy (1978) 19 British Clays Undrained 

Triaxial tests 
30-220 

Arrowsmith (1978) 5 Boulder clays UC tests 17-224 
Whyte (1982)  Extrusion 79-110 

Wasti & Bezirci (1986) 14 Turkish soils + 10 
bentonite mixtures 

Vane shear 36-430 

Sharma & Bora (2003) 5 Indian Clays Unconfined 
Compression 
& Fall-cone 

tests 

138-240 

Kayabali & Tufenkci (2010) 15 inorganic Turkish 
soils 

Shear Vane 
tests 

68-530 

 
Strength Values at Plastic Limit predicted by Critical State Soil Mechanics (CSSM) 
   During the rolling test, the soil is continually remoulded, and hence its stress state lies 
on the critical state line. It can be shown that: 
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Invoking Tresca’s criterion for yield it can be shown that: 
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Where, p' = mean effective stress; q = deviatoric stress; u = pore pressure; M = slope of 
the critical state line; v = total vertical stress and cu = undrained shear strength. Haigh et 
al (2013) using the range of cavitation tensions suggested by Baker & Frydman (2009) 
and equation (4) determined the expected range of undrained strengths at plastic limit to 
be 65kPa to 400kPa (assuming M varies from 0.9 to 1.2), agreeing well with the 2nd and 
98th percentiles of the plastic limit strength database shown in Figure 1. 
 
Origins of the 100-fold strength increase assumption 
   Schofield & Wroth (1968) stated that: 

“experimental results with four different clays give similar variation of strength 
with liquidity index … From these data it appears that the liquid limit and plastic 
limit do correspond approximately to fixed strengths which are in the proposed 
ratio of 1:100” 

The data of the four clays in question originated from Skempton & Northey (1952) 
(Figure 2). Wroth & Wood (1978) then postulated that: 

“From the evidence of Skempton & Northey (1952) … It will be assumed that the 
shear strength at the plastic limit is 100 times that at the liquid limit. A best 
estimate of 170 kN/m2 will be adopted.” 

This assumption led to the well-known formulation for undrained strength predicted 
using liquidity index (IL) from Wood (1990): 

)1(26.4 107.1170 LL II
u ec    kPa      (5) 

 

 
FIG. 2.  Variation of strength with IL data from Skempton & Northey (1952)  

[Plot from Haigh et al (2013)] 
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Database of fall-cone strength versus water content 
A database of 641 fall cone tests on 101 soils from 12 countries has been used by 
Vardanega & Haigh (2013) to demonstrate that the strength variation between liquid and 
plastic limits should not be assumed to be log-linear with a ratio of strengths between 
plastic and liquid limits of close to 100. Retaining the log-linear variation, the best fit to 
the data is achieved for liquidity indices between 0.2 and 1.1 using a factor 35. A 
modified equation of the semi-logarithmic form suggested by Wroth and Wood (1978) is 
hence: 

)1(35 LI
Lu cc     kPa  0.2 < IL < 1.1 where, cL = 1.7kPa   (6) 

In the same paper a power model (e.g. Feng, 2000 and Koumoto & Houlsby, 2001) is 
also shown to be an acceptable way to describe fall cone data. If modeled in this way, a 
higher value of the slope increase is computed owing to the high curvature of the 
function close to the plastic limit. 

 
GEOTECHNICAL DESIGN & CONSTRUCTION IMPLICATIONS 
 
   Vardanega et al (2012) recently reviewed pile design codes of practice, in particular 
the Russian Code for Pile Design (SNiP 2.02.03-85). This code makes use of liquidity 
index to obtain values for shaft and base resistance and is often checked by western 
practitioners with relations similar to equation (5). The recent findings that the slope 
implied by the 100-fold increase should really be closer to 35 has significance for 
practitioners designing piles or any other geotechnical construction using water content 
and the Atterberg limits. For those practitioners attempting to determine soil strength the 
thread rolling test offers few insights but as it does describe the brittle transition point it 
remains valuable for those designing landfill liners and road pavements in arid areas. 
 
CONCLUSIONS 
 
   The Atterberg Limits remain fundamental to the classification of soils and are an 
important component of the basic testing armory of geotechnical engineers.  The 
following recent research findings are summarized: 
(a) While liquid limit measured by the fall-cone corresponds to a fixed strength the 
fundamental mechanics of the percussion cup method have shown that liquid limit 
measured in this way relates to a specific soil strength. 
(b) The idea of the plastic limit corresponding to a fixed value of strength is a fallacy as 
is the assumption of a 100-fold strength increase in the plastic range. 
(c) Brittle failure in the plastic limit test has been suggested as being caused either by 
air-entry or cavitation of the pore fluid. CSSM has been used to show that the range of 
strengths predicted by invoking the cavitation hypothesis is reasonable. 
(d) The 100-fold strength increase is a fallacy and the idea of a fixed strength at plastic 
limit is false. If predictions of strength based on Atterberg limits are desired, however, 
then a strength ratio of 35 more realistically predicts observed data. 
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