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Abstract: Alpha 1, the universal mating hormone of the virulent 

plant pathogen, Phytophthora, has been synthesized in 12 steps and 

28% overall yield. Key C-C bond forming steps involved the use of 

two lithiation/borylation reactions to couple together 

enantioenriched building blocks, one of which also set up the 

stereochemistry at C11. Detailed analysis showed that the 

diastereomeric purity of the target molecule was >91%, the highest 

obtained to date.  

 

The fungus-like parasite, Phytophthora infestans, was 

responsible for the Irish potato famine in the mid 19th century, and 

continues to be responsible for billions of dollars worth of crop 

damage annually.[1] Control of this virulent plant pathogen is 

essential, and of increasing importance as food resources for a 

growing population become increasingly challenging to supply. 

Phytophthora reproduces by creating sexual spores called oospores, 

a process triggered by the universal hormone 1 (1, Figure 1). 

Although it had been proposed as early as 1929 that sexual 

reproduction in Phytophthora was induced by a hormone-like 

compound,[2] it was not until 2005 that the gross structure was 

reported after isolation of 1.2 mg of 1 from 1830 L of culture 

broth.[3] Yajima reported the first asymmetric synthesis of a 

stereoisomer library of α1 and concluded that the absolute 

configuration was (3R,7R,11R,15R) based upon oospore inducing 

assays.[4] A number of total syntheses of 1 have since been 

reported[5] but in particular the detailed and thorough analysis of all 

stereoisomers of 1 by Curran[6] is especially noteworthy.  

All syntheses involve coupling of enantioenriched building 

blocks. This inevitably leads to diastereomers, which are essentially 

impossible to separate due to the remoteness of the stereogenic 

centres and so are carried through. Based on the enantiomeric purity 

of the building blocks, the maximum isomeric purity of 1 obtained 

in previous total syntheses ranges from 80-90%, with 10-20% 

mixture of the remaining isomers. If these are divided into several 

diastereoisomers they may not be readily apparent during analysis, 

especially as some diastereoisomers are virtually identical, making 

isomeric purity difficult to assess. In this paper we report a short, 

highly stereoselective and convergent synthesis of α1 using our 

lithiation/borylation methodology. 

Our retrosynthetic analysis of 1 involves lithiation/borylation 

disconnections between C3-C4 and C11-C12, leading to three key 

fragments: secondary boronic ester (BE) 2, bis-carbamate 3, and 

allylic BE 4 (Scheme 1). In particular, we envisaged that the bis-3 

could be selectively lithiated at the allylic carbamate first and 

coupled with allylic BE 4, followed by a second lithiation and 

coupled with secondary BE 2.[7] If the fragments could be obtained 

in high er (≥99:1) then the diasteromeric purity of the product would 

be determined in the lithiation/borylation reaction of the allylic 

carbamate, a reaction which we had found to give ≥98:2 er. 

Fragment 2 could be derived from the known -BE 5 and vinyl 

BE 6. We anticipated that bis-carbamate 3 could be derived from 

enone 7 using Noyori’s Ru-catalyzed asymmetric hydrogenation,[8] 

which itself could be derived from citronellal. The third fragment, 

allylic BE 4, could be derived from allylic alcohol 8 via Pd 

catalysed borylation, which in turn could be synthesised from the 

known aldehyde 9. 

Building block 2 was prepared as shown in Scheme 2. Cu-

catalyzed conjugate borylation of ethyl but-2-ynoate followed by 

asymmetric conjugate reduction gave -BE 5 in high yield (98%) 

and excellent er (99:1).
[9]  Chemoselective reduction of the ester 

moiety in the presence of the boronic ester was achieved simply 

with a NaBH4. Finally, TBDPS protection gave the desired 

secondary BE 2 in high yield (71% two steps), and 99:1 er. 

The synthesis of the central fragment 3 began with Horner-

Wadsworth-Emmons reaction between citronellal (99:1 er) and 

dimethyl (2-oxopropyl)phosphonate under Masamune-Roush 

conditions[10] giving enone 7 in 88% yield (Scheme 3). Selective 

ozonolysis of the electron rich trisubstituted olefin in 7 in the 

presence of the enone was achieved using pyridine as an additive.[11] 

In the presence of pyridine, the chemoselectivity of the reaction was 

easier to control and since ozonides are not intermediates in the 

ozonolysis it is safer too. Chemoselective reduction of the aldehyde 

with LiAlH(OtBu)3 gave the desired alcohol 10 in 74% yield from 

enone 7 in a one-pot operation.[12] Catalytic asymmetric 

hydrogenation of the enone moiety in 10 with Noyori’s (S,S)-11 

catalyst[8] gave the desired diol 12 in 90% yield and 99:1 dr and 

>99:1 er.  Finally, bis-carbamoylation with N,N-diisopropyl 

carbamoyl chloride gave the desired bis-carbamate 3 in 94% yield. 

The last of the key fragments was synthesised from known 

aldehyde 9 (>99:1 er), available in 3 steps from the Roche ester 

(Scheme 4).[13] Aldehyde 9 was treated with vinyl magnesium 

bromide to form the corresponding alcohol in 1:1 dr, >99:1 er and 

68% yield. Following formation of carbonate 13, palladium 

catalyzed borylation with B2(pin)2 gave the desired allylic BE 4 in 

high yield (83%) and er (>99:1). 

With the key fragments in hand, we set about their union using 

our lithiation/borylation methodology. Thus treatment of bis-

carbamate 3 with sBuLi/TMEDA effected chemoselective lithiation 
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at the more acidic allylic carbamate and addition of the allylic BE 4 

followed by warming and oxidation gave tertiary alcohol 14 in 81% 

yield and 97:3 dr (Scheme 5).[7,14]  

Hydrogenation of the alkenes in 14 initially proved problematic 

as use of Pd/C led to a complex mixture of products, including 

possible epimerisation at C12, silyl deprotection and elimination of 

the tertiary alcohol. Using PtO2 instead resulted in a much cleaner 

reaction giving the corresponding tertiary alcohol in high yield 

(98%) and without epimerization at C12.[15]  

Protection of the tertiary alcohol with TESCl gave carbamate 15, 

our precursor for the second and final lithiation/borylation reaction. 

However, under the standard condition (Et2O, TMEDA, sBuLi, 

−78 °C, 5 h) we obtained a complex mixture of products. We 

suspected that lithiation might be the problem and so tested this part 

of the process by deprotonation and trapping with Me3SnCl under a 

variety of conditions (Table 1). Under standard conditions 

[Et2O/TMEDA (Entry 1)], we obtained a complex mixture of 

products as before. The use of TBME as solvent gave significantly 

improved results affording 40% of stannane 16 (Entry 2). 

Alternative diamines were then explored as they can have a major 

impact on the outcome of lithiation reactions. Whilst TMCDA gave 

similar results, use of the more hindered (−)-sparteine gave the 

stannane 16 in high yield (71%) together with recovered starting 

material 15 (22%) (Entry 3 and 4).[16,17] 

Table 1. Optimization of conditions for lithiation of 15.
[a] 

 

Entry Solvent Diamine Yield of 16 / %
[b]

 Yield of 15 / %
[b]

 

1
[c]

 Et2O TMEDA 0 18 

2
[c]

 TBME TMEDA 43 0 

3
[c]

 TBME TMCDA 40 0 

4 TBME (−)-sparteine 71 22 

[a]
Conditions: (8R/S)-carbamate 15 (1 eq), diamine (2.1 eq), sBuLi (2 eq), 

−78 °C for 5 h, then ClSnMe3 (2.5 eq). 
[b]

Isolated yield. 
[c]

Reactions contained 

numerous unidentified side products. TMCDA = (rac,trans)-N,N,N’,N’-

tertramethylcyclohexane-1,2-diamine. 

Using these conditions in the lithiation/borylation reaction with 

secondary BE 2 followed by oxidation gave the desired secondary 

alcohol in 72% yield together with recovered carbamate 15 in 24% 

(94% BRSM, Scheme 6). Oxidation of the secondary alcohol with 

Dess-Martin periodinane gave the known ketone,[5a] and subsequent 

deprotection with TBAF in AcOH/THF as described by Yajima[4] 

gave 1 in high yield (83%). Its characterization data was identical 

with the reported data in every respect. 

Based on the enantiomeric purity of the building blocks the 

maximum isomeric purity of 1 was calculated to be 96:4, 

considerably greater than any previous synthesis. In order to 

measure the isomeric purity, the bis-Moshers ester of 1 was 

prepared and analysed according to Curran’s stereoisomer method.[6] 

The product was determined to be 95:5 at C3 (3R:3S) indicating that 

a small degree of epimerization at the labile C3 center had occurred 

during deprotection and 99:1 at C15 (15R:15S). The anti:syn 

(C3/C7) ratio was approximately 94:6 indicating that the C7 was 

99:1 (7R:7S). Stereoisomers at C11 was approximately 98:2 

(11R:11S), consistent with the measured dr of intermediate 14. Thus, 

based on analysis of the bis-Mosher’s ester the overall 

diastereomeric purity of 1 must be >91%, the highest measured to 

date. 

In conclusion we have reported the shortest (12 steps, longest 

linear sequence), highest yielding [21.3% overall yield, (27.8% 

BRSM)][18] and most stereoselective synthesis (>91% 

diastereomeric purity) of the 1 hormone by coupling together 

highly enantioenriched building blocks. Key steps involved two late 

stage lithiation/borylation reactions to couple the building blocks 

together, giving high diastereocontrol (97:3) at the difficult tertiary 

alcohol stereocentre. Our route enables the synthesis of significant 

quantities of 1 (~100 mg was prepared) which should aid the study 

of Phytophthora reproduction. 
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Figure 1. Structure of the Phytophthora universal mating hormone 1. 

Scheme 1. Retrosynthetic analysis of 1. P = protecting group, pin = pinacol, Cb = N,N-diisopropyl carbamoyl.  

Scheme 2. Synthesis of fragment 2. PMHS = polymethylhydrosiloxane, TBDPS = tert-butyldiphenylsilyl. 

Scheme 3. Synthesis of bis-carbamate 3 from citronellal. 

Scheme 4. Synthesis of boronic ester 4 from the Roche ester. 

Scheme 5. Union of allylic boronic ester 4 and biscarbamate 3. TES = triethyl silyl. 

Scheme 6. Coupling of boronic ester 2 with carbamate 12 and completion of the synthesis. 
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