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INTRODUCTION
During the Paleocene–Eocene Thermal Maxi

mum (PETM), >2000 Gt of isotopically light 
carbon was released into the atmosphere in 
<60 k.y., possibly by the destabilization of deep
sea methane hydrates (Dickens, 2011) or soil or
ganic carbon within permafrost (DeConto et al., 
2012). The carbon release caused a substantial 
negative carbon isotope (d13C) excursion (CIE), 
the magnitude of which remains uncertain (e.g., 
Zachos et al., 2007). The PETM was associated 
with globally averaged warming estimated to be 
>5 °C (Dunkley Jones et al., 2013). The absorp
tion of such large quantities of carbon into the 
ocean resulted in a lowering of oceanic pH and a 
shoaling of the calcium carbonate compensation 
depth (Zachos et al., 2005). Records of tropical 
seasurface temperatures (SSTs) from calcareous 
organisms are rare, as deepsea sediments com
monly have poor microfossil preservation (Zach
os et al., 2007). Here we report new geochemical 
and faunal data from an expanded section from 
the continental margin of East Africa that pro
vides information about the PETM in the tropics.

STUDY SECTION
Tanzania Drilling Project Site 14 (TDP14) 

(9°16′59.89″S, 39°30′45.04″E) (Nicholas et al., 

2006) comprises two ~30 m holes drilled 1 m 
apart in late Paleocene–early Eocene hemipelag
ic sediment. The site was at ~19°S paleolatitude 
in an outer shelf to slope bathyal environment, 
estimated at water depths of >300 m (Nicholas 
et al., 2006). The principal lithologies are clay
stone and siltstone, with excellent microfossil 
preservation (e.g., Bown and Pearson, 2009). 
The site’s proximity to the continent (~70 km to 
the paleoshoreline; Kent et al., 1971) and shal
low burial history mean that TDP14 contains 
abundant wellpreserved organic biomarkers 
(van Dongen et al., 2006).

METHODS
Planktonic foraminifer assemblage count 

samples were sieved at 63 mm, dried, and split. 
The first 300 (if present) specimens were counted 
from the 125–600 mm fraction. Calcareous nan
nofossils were viewed as smear slides (Bown and 
Young, 1998), using microscopy in crosspolar
ized and phasecontrast light on rock surfaces 
using scanning electron microscopy (Lees et al., 
2004). Count data were from more than five fields 
of view until ~400 specimens were counted.

Species of the genera Acarinina, Morozovel-
la, and Subbotina from the 300–355 mm frac
tion were screened for preservation quality and 

infilling. Individuals with excellent preservation 
(see the GSA Data Repository1) were analyzed 
as single specimens for carbon and oxygen iso
tope composition (d13Cforam and d18Oforam), aug
menting multiplespecimen Subbotina data pub
lished by Handley et al. (2008). Specimens were 
analyzed using an IsoPrime mass spectrometer, 
and data are reported to the Vienna Peedee bel
emnite scale.

For d13C analyses of C25–C31 nalkanes 
(d13Calk), 40–75 g of sediment was solvent ex
tracted and separated into an alkane fraction 
by alumina flash column chromatography and 
urea adduction. Analyses were performed on 
a ThermoFinnigan DeltaplusXP coupled to a 
Trace 2000 GC via a GCC III interface.

The abundances of organic carbon and cal
cium carbonate were measured from aliquots 
of sediment powders using a LECO CNS2000 
elemental analyzer. Decarbonated sample pow
ders were also analyzed for their organic carbon 
isotope composition (d13Corg) using a Thermo 
Flash HT elemental analyzer coupled to a Ther
moFinnigan MAT 253 mass spectrometer (see 
the Data Repository for reproducibility and un
certainties of our methods).

RESULTS

Sedimentological and Biotic Records
Deposits of the PETM in TDP14 are ~11 m 

thick. The base of the PETM interval is ~24 m 
below surface (mbs), as defined by the first oc
currence of the excursion taxon Acarinina afri-
cana and a negative shift in d13Calk, along with 
some lower d13C and d18O in single specimens 
of planktonic foraminifera (Fig. 1). The lower 
part of the PETM interval is sedimentologically 
complex, with fluctuating abundances of organ
ic carbon and d13Corg that likely reflect changes 
in the relative abundance of distinct sources of 

*Email: tracy.aze@oum.ox.ac.uk.
†Current address: Department of Earth Sciences, University of Oxford, South Parks Road, Oxford OX1 3AN, UK.
1GSA Data Repository item 2014272, raw data and further details of methods, and oxygen isotope paleotemperture conversion tool (.xls file), is available online at 

www.geosociety.org/pubs/ft2014.htm, or on request from editing@geosociety.org or Documents Secretary, GSA, P.O. Box 9140, Boulder, CO 80301, USA.
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ABSTRACT
The Paleocene–Eocene Thermal Maximum (PETM), ca. 56 Ma, was a major global envi-

ronmental perturbation attributed to a rapid rise in the concentration of greenhouse gases 
in the atmosphere. Geochemical records of tropical sea-surface temperatures (SSTs) from 
the PETM are rare and are typically affected by post-depositional diagenesis. To circumvent 
this issue, we have analyzed oxygen isotope ratios (d18O) of single specimens of exceptionally 
well-preserved planktonic foraminifera from the PETM in Tanzania (~19°S paleolatitude), 
which yield extremely low d18O, down to <–5‰. After accounting for changes in seawater 
chemistry and pH, we estimate from the foraminifer d18O that tropical SSTs rose by >3 °C 
during the PETM and may have exceeded 40 °C. Calcareous plankton are absent from a 
large part of the Tanzania PETM record; extreme environmental change may have tempo-
rarily caused foraminiferal exclusion.
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organic matter (Fig. 1). No mass transport fea
tures were observed in the core (Nicholas et 
al., 2006), but reworking, switching sources, or 
sediment mixing may account for this complex
ity. The preexcursion sediments and reworked 
packets contain an abundant openocean plank
tonic foraminifer assemblage comprising more 
than 40 species (see the Data Repository). 
Stratigraphic horizons containing excursion taxa 
commonly have low abundance (commonly <1 
foraminifer/g) and diversity of planktonic fora
minifera. Between ~24 and 18 mbs, planktonic 
foraminifer abundances fluctuate between pre
excursion levels and very low abundances, with 
a near complete absence of calcareous microfos
sils between ~18 and 13 mbs. Where planktonic 
foraminifer abundances are lowest, the CaCO3 

content drops to near zero (Fig. 1). Between 24 
and 19 mbs (“mixed zone” in Fig. 1), levels with 
higher microfossil abundances and d13Cforam are 
interpreted as dominated by transported pre
PETM sediments. The top of the PETM sec
tion is truncated by a hiatus (~13 mbs), and a 
rich and diverse microfossil assemblage returns 
higher in the core (13–10 mbs).

Geochemical Records
Singlespecimen prePETM d13Cforam values 

for mixed layer– and thermoclinedwelling spe
cies are typically ~4.9‰ (± 1.94‰, 2 standard 
deviations [SD]) and 1.5‰ (± 1.11‰, 2 SD), 
respectively (Figs. 1 and 2). Mean prePETM 
d18Oforam values are –3.3‰ for mixed layer– and 
–2.7‰ for thermoclinedwelling species (Figs. 1 

and 2). Two Morozovella specimens from within 
the CIE exhibit d18Oforam lower than –5‰. How
ever, not all specimens that exhibit the lowest 
d13Cforam also record the lowest d18Oforam (see the 
Data Repository). Due to the complex stratigra
phy at TDP14, PETM and prePETM specimens 
occur in the same stratigraphic intervals, which 
makes an estimation of the true magnitude of the 
CIE from foraminiferal calcite problematic.

DISCUSSION

Sea-Surface Temperatures
To quantify paleoSSTs, we explore variables 

that can impact estimates including (1) seawater 
d18O (d18Osw), (2) pH, and (3) the paleotempera
ture equation.
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Figure 1. Stratigraphic log of Tanzania Drilling Project Site 14 (TDP-14) with geochemical and biotic records of the Paleocene–Eocene Thermal 
Maximum (PETM). Log records epoch, planktonic foraminiferal biozone (Berggren and Pearson, 2005), lithological variation (dashed gray is 
clay and silty clay, dotted gray is fine-grained sandstone), horizons sampled for assemblage analysis (dashes), and horizons containing “ex-
cursion taxa” (black circles). A: Assemblage data of mixed layer (red)– and thermocline (blue)–dwelling planktonic foraminifera and calcare-
ous nannofossils (black diamonds) on a log scale from TDP-14B. B: Planktonic foraminifera d13C from single specimens of the mixed-layer 
genera Morozovella (red squares) and Acarinina (orange circles) and thermocline genus Subbotina (light blue diamonds); also included 
are the multiple-specimen Subbotina data (blue triangles) from Handley et al. (2008) from TDP-14B (VPDB—Vienna Peedee belemnite). C: 
Planktonic foraminifera d18O (symbols as in B). D: n-alkane d13C data from TDP-14A (Handley et al., 2008) (open squares) and new data from 
this study between ~20 m and 24 m (gray circles). E: Bulk sediment weight percent CaCO3. F: Bulk sediment weight percent organic carbon. 
G: Bulk sediment d13C of organic carbon. Gray dashed lines at 24 m to ~13 m denote PETM interval, with mixed interval highlighted between 
24 m and ~18 m. For further details of lithology of TDP-14, see Handley et al. (2012).
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Seawater δ18O
Large continental ice sheets are unlikely to 

have been present during the PaleoceneEocene 
transition (e.g., Sluijs et al., 2008), so all SSTs 
are estimated using a global d18Osw correction 
of –1.0‰ (Cramer et al., 2011). Zachos et al. 
(1994) produced a correction factor for modern 
latitudinal variations in d18Osw as a function of 
the transport of water vapor from the low to 
high latitudes, giving SSTs that are up to ~4 °C 
higher than uncorrected values (because the 
latitude of TDP14 is one of net evaporation). 
Local hydrological cycle changes may have 
influenced the input of meteoric waters to the 
surface ocean near the continental margin dur
ing the PETM, affecting the d18Osw. Deuterium 
enrichment of nalkanes from TDP14 implies 
that regional conditions during the PETM were 
hotter and more arid than today, punctuated by 
intense seasonal precipitation events (Handley 
et al., 2012). The effect of adding meteoric wa

ters to the surface ocean directly or via rivers is 
small (–0.06‰ d18O change for a 1‰ decrease 
in salinity) (Damassa et al., 2006), therefore a 
major drop in salinity sufficient to lower the 
local d18Osw seems unlikely; if anything, more 
arid conditions during the PETM in this region 
would make the d18Oforam SSTs slight underesti
mates. For these reasons we have not corrected 
for local d18O variability.

pH
The changing carbonate ion concentration 

and decrease in pH associated with elevated CO2 
levels during the PETM may have resulted in 
higher d13Cforam and d18Oforam because of the “pH 
effect” (e.g., Spero et al., 1997). We have cor
rected for changes in the isotopic fractionation 
of oxygen due to potential pH shifts (Uchikawa 
and Zeebe, 2010) using the endmember values 
of pH decline for the PETM (–0.25 to –0.45) (cf. 
Hönisch et al., 2012) to inform our pH correc

tion, resulting in SSTs that are higher by up to 
~1.5 °C than uncorrected values.

Paleotemperature Equations
The paleotemperature equation of Kim and 

O’Neil (1997) is favored because it is the only 
one that is calibrated above 30 °C. For compari
son, we have also applied the foraminifera equa
tions of Erez and Luz (1983) and Bemis et al. 
(1998) (Table 1).

To explore the effects of the paleotemperature 
assumptions and equations outlined above, we 
calculated SSTs from singlespecimen d18Oforam 
of the mixedlayer planktonic foraminifer genus 
Morozovella using the mean prePETM, mean 
PETM, and lowest recorded PETM d18Oforam 
(Table 1). Resulting PETM SSTs from TDP14 
range from ~28 °C to 43 °C. Model simulations 
suggest that PETM tropical SSTs could have 
reached ~35 °C (Huber and Caballero, 2011), 
but following corrections for both paleolatitude 
and ocean acidification, PETM SSTs at this site 
most likely reached between ~36 °C and 43 °C 
(Table 1; Fig. 2; see the Data Repository). The 
calculations suggest that prior to the CIE, SSTs 
were warmer than modern SSTs at equivalent 
latitudes, and that during the PETM, SSTs were 
significantly higher. The change in tempera
ture using the mean background and mean CIE 
d18Oforam is ~+3 °C (± 0.5 °C). The lowest d18Oforam 
values likely reflect maxima in seasonal warmth 
on a background of already high temperatures; 
this may explain the absence of significant tem
perature change recorded by thermocline species 
that were living at greater depths.

Plankton Assemblage Changes
The absence of calcareous plankton from much 

of the main PETM interval at TDP14 may be 
due to dissolution, exclusion due to environmen
tal stress (e.g., Kelly et al., 1996), or sedimentary 
dilution. Dissolution effects are unlikely as there 
is no increase in planktonic foraminifer frag
mentation (Hemleben et al., 1989) prior to their 
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Figure 2. d18O and d13C cross-plot of single- and multiple-specimen planktonic foraminifer iso-
tope data from Tanzania Drilling Project Site 14 (TDP-14) (VPDB—Vienna Peedee belemnite). 
A: Single-specimen (dark gray triangles) and multiple-specimen (light gray diamonds) data 
of thermocline genus Subbotina. B: Single-specimen data of mixed-layer genus Morozovella. 
Points to left of dashed gray lines in A and B are >3 standard deviations outside mean back-
ground value for d13C, and are regarded as specimens that most likely represent peak carbon 
isotope excursion (CIE) values. Third axis displays temperatures inferred from d18O based on 
Kim and O’Neil (1997), with paleolatitude (Zachos et al., 1994) and pH corrections (Uchikawa 
and Zeebe, 2010) using the end-member values of Paleocene–Eocene Thermal Maximum pH 
change suggested by Hönisch et al. (2012) of (i) –0.25 and (ii) –0.45

TABLE 1. PETM SEA-SURFACE TEMPERATURE (°C) ESTIMATES FROM TDP-14 BASED ON SINGLE-SPECIMEN  
MOROZOVELLA PLANKTONIC FORAMINIFERA δ18O VALUES

δ18O temperature 
correction factors

Bemis et al. (1998) Erez and Luz (1983) Kim and O’Neil (1997)

Pre-PETM PETM Lowest δ18O Pre-PETM PETM Lowest δ18O Pre-PETM PETM Lowest δ18O

δ18O –3.38‰ δ18O –4.04‰ δ18O –5.14‰ δ18O –3.38‰ δ18O –4.04‰ δ18O –5.14‰ δ18O –3.38‰ δ18O –4.04‰ δ18O –5.14‰

No latitude or  
pH correction 25.0 28.2 33.5 26.9 30.0 35.2 26.3 29.6 35.4

Latitude correction,  
no pH correction 29.0 32.2 37.5 30.8 33.9 39.1 30.5 34.0 39.9

Latitude correction,  
pH correction –0.25 N/A 33.9 39.2 N/A 35.6 40.9 N/A 35.9 41.9

Latitude correction,  
pH correction –0.45 N/A 35.2 40.5 N/A 36.9 42.2 N/A 37.4 43.4

Note: PETM—Paleocene–Eocene Thermal Maximum; TDP-14—Tanzania Drilling Project Site 14. The oxygen isotope fractionation equations of Bemis et al. (1998) 
(Orbulina universa high light), Erez and Luz (1983) (Globigerinoides sacculifer), and Kim and O’Neil (1997) (inorganic calcite) are used. Each equation is applied to the 
mean background δ18O value (–3.38‰), the mean PETM δ18O value (–4.04‰), and the lowest recorded PETM δ18O (–5.14‰). Data are left uncorrected in row 1, cor-
rected for paleolatitude in row 2 (Zachos et al., 1994), and corrected for paleolatitude and a pH shift (Uchikawa and Zeebe, 2010) of –0.25 and –0.45 in rows 3 and 4, 
respectively. The PETM pH corrections are not applied to the pre-PETM mean value.
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disappearance, and where present, diminutive 
and fragile nannofossils are exceptionally well
preserved (Bown and Pearson, 2009).

Shelf PETM sections show increased sedi
mentation rates related to hydrological cycle 
changes (e.g., Sluijs et al., 2008), and this like
ly also happened in Tanzania (Handley et al. 
2012) leading to decreased calcareous plankton 
concentrations. The complex stratigraphy and 
short core length hinder development of an age 
model that could determine whether the decline 
in calcareous plankton abundance is the result 
of sediment dilution. However, the reduction 
in planktonic foraminifer specimens per gram 
(s/g) before (average = 86 s/g) and during the 
peak of the CIE (average = 1 s/g) (Fig. 1) would 
require sedimentation rates to increase by a fac
tor of ~80, whereas marine biomarker concen
trations indicate a sedimentation increase by 
an order of magnitude less (~6; Handley et al., 
2012). Hence, we suggest that the declines in 
foraminifer abundances represent exclusion due 
to environmental pressure in combination with 
sedimentary dilution. As “tropical” foraminifer 
assemblages appear in higher latitudes during 
the PETM (Kelly, 2002) and culture experi
ments demonstrate upper temperature toleranc
es of ~33 °C (Hemleben et al., 1989), extreme 
temperatures are likely to have been the princi
pal environmental agent driving the ecological 
changes captured at TDP14. The most extreme 
ecological conditions and the calcareous plank
ton exclusion occur higher in the core than the 
geochemical and biostratigraphic evidence for 
the onset of the CIE. This may reflect a slow re
sponse to the initial forcing, whereby plankton 
populations were able to tolerate environmental 
change for a significant period of time before 
tolerance thresholds were breached.

SUMMARY
TDP14 contains exceptionally wellpreserved 

calcareous plankton, and although the stratigra
phy is complex, a number of biotic and geochem
ical records document the environmental pertur
bation and biotic responses of the PETM at low 
latitudes. d18O from some singlespecimen plank
tonic foraminifera display low values (~–5‰) and 
yield paleotemperatures in excess of 40 °C when 
corrected for paleolatitude and pH effects. A 
major decline in calcareous plankton abundance 
throughout the PETM interval likely represents 
exclusion due to environmental pressure in com
bination with sedimentary dilution. It is possible 
that SSTs near TDP14 may have been even high
er than have been inferred during the intervals of 
the PETM when foraminifera were absent.
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