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Modelling Harmonic Generation Measurements in Solids

S.R. Best⇤, A.J. Croxford, S. A. Neild
Department of Mechanical Engineering, Queen’s Building, University Walk, Bristol, BS8 1TR, UK

Abstract

Harmonic generation measurements typically make use of the plane wave result when ex-

tracting values for the nonlinearity parameter, �, from experimental measurements. This ap-

proach, however, ignores the e↵ects of di↵raction, attenuation, and receiver integration which

are common features in a typical experiment. Our aim is to determine the importance of these

e↵ects when making measurements of � over di↵erent sample dimensions, or using di↵erent

input frequencies. We describe a three-dimensional numerical model designed to accurately pre-

dict the results of a typical experiment, based on a quasi-linear assumption. An experiment is

designed to measure the axial variation of the fundamental and second harmonic amplitude com-

ponents in an ultrasonic beam, and the results are compared with those predicted by the model.

The absolute � values are then extracted from the experimental data using both the simulation

and the standard plane wave result. A di↵erence is observed between the values returned by the

two methods, which varies with axial range and input frequency.

Keywords: Harmonic generation, Sound beam, Aluminium

1. Introduction1

E↵ective damage detection methods are of vital importance to the ageing power plants used2

in the nuclear industry. Nonlinear ultrasonics represent a means of monitoring damage in metallic3

components which are routinely subject to demanding operating conditions. Under such condi-4

tions, metals are known to undergo fatigue mechanisms which lead, through the accumulation5

of dislocations, to microcrack initiation, and ultimately terminal cracking. In the early stages,6
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before any cracks or voids have materialised, there are nonetheless changes in the bulk prop-7

erties of the material. One such property is the nonlinear response of the material, which is a8

quantity related to the third-order elastic constants. Through the use of nonlinear ultrasonics, we9

are able to measure changes in a material’s nonlinear response, and therefore track the onset of10

early-stage damage.11

The nonlinear harmonic generation technique makes use of the acoustic nonlinear parameter,12

�, which is related to the third-order elastic constants of the material as follows (Beyer, 1998)13

[1]:14

� = �
0
BBBB@

3
2
+
A + 3B + C
⇢0c2

l

1
CCCCA (1)

where ⇢0 is the equilibrium density of the solid, cl is the longitudinal sound speed, and A, B,15

C are the third order elastic constants of Landau and Lifshitz [2]. Note that this value of � is a16

factor of two smaller than the version often quoted (e.g. [3, 4, 5]) for solids, a fact also recently17

noted by Pantea et al. [6]. Eq. (1) is shown to be consistent with the nonlinear parameter for18

fluids when the equivalent constants are used [1], and it is the definition of � used throughout this19

paper.20

Currently, most practical attempts to measure the nonlinearity of solids, e.g. [7, 8, 9, 10],21

have made use of the plane wave theory of nonlinear elasticity to derive a means of calculating22

� from experimental measurements. The resulting expression is that derived by Zarembo and23

Krasil’nikov (1971) [3]:24

� =
4

k2x
A2

A2
1

(2)

Here a single-frequency continuous excitation at the source is assumed, with wave number k. A125

and A2 represent the displacement amplitudes of the first and second harmonic components of26

the captured signal, and x is the propagation distance. In the case of non-zero attenuation in the27

material, Eq. (2) is modified to:28

� =
8↵

k2(1 � e�2↵x)
A2

A2
1

(3)

where ↵ is the attenuation value at the fundamental frequency. Note that Eq. (3) assumes a29

thermoviscous damping law, whereby the attenuation value at the second harmonic is four times30
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that at the fundamental frequency. Liu et al. [11] recently made use of this result to measure31

nonlinearity in a fatigued aluminium specimen, and also applied a correction for a windowed32

excitation.33

The issue with using Eqs. (2) and (3) to measure � is that they are based on a plane wave34

assumption, and do not fully account for the behaviour of the acoustic field. Considering a35

typical experimental set up, a transmitting device is normally required to generate an ultrasonic36

signal in the specimen. This is often a circular transducer coupled to the surface of the specimen,37

and at the frequencies generally used for ultrasonic measurements (1-50MHz), the acoustic field38

emitted from such a source is likely to exhibit di↵raction. This produces complex pressure39

patterns in the acoustic field, which vary with transducer size, input frequency, and propagation40

distance. An additional consideration is the receiving transducer used for a measurement. in the41

case of a non-planar incident field, the received signal is an average over the finite area of the42

receiver. Depending on the receiver size, therefore, the averaged amplitude can di↵er greatly to43

that which would be measured by a point receiver; that is, the actual physical amplitude. Under44

these circumstances, it is therefore questionable whether either of Eqs. (2) and (3) can be used45

to make accurate measurements of absolute �. This may also apply to the case in which relative46

measurements of � are required, but using di↵erent transducer sizes, input frequencies, or sample47

dimensions.48

These issues have received limited attention in the literature. Earlier, Blackburn & Breazeale49

[12] corrected for the combined e↵ects of field di↵raction and receiver integration when mak-50

ing nonlinearity measurements in small samples. This combined correction, referred to as the51

di↵raction correction, was derived by Rogers & Van Buren [13] by calculating the integrated52

amplitude of the linear field over the receiving transducer surface. However, this could only53

be accurately applied to the fundamental amplitudes, leaving the second harmonic amplitudes54

uncorrected. A further instance of correcting for di↵raction is the work by Hurley & Fortunko55

[4], who used a similar correction to Rogers & Van Buren for the linear field, and included an56

additional approximate correction for the second harmonic. More recently, in the field of fluids,57

both Labat et al. [14] and Chavrier et al. [15] used numerical models of sound beam propagation58

to make nonlinearity measurements. In doing this, the model parameters were matched to those59

of the experiment, and the predicted trends were scaled to match the experimental results.60

In this paper we develop a simulation intended to capture all of the variables associated with a61
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typical harmonic generation measurement. These are the nonlinearity, di↵raction and attenuation62

in the sound beam, as well as the integration of the receiver. We describe a sound beam model63

based on a quasi-linear assumption, which is similar to a solution of the Khokhlov-Zabolotskaya-64

Kuznetsov (KZK) equation [16]. The model is then augmented with a formula to calculate the65

receiver integration. Our overall aim is to determine the importance of the combined e↵ects66

when measuring nonlinearity, when compared to the standard plane wave measurement. We67

devise an experiment to measure the axial variation of the fundamental and second harmonic in68

the vicinity of a real source, and compare the trends with those predicted by the simulation. The69

simulated results are then used to extract absolute � from the experimental data, which enables a70

comparison to be made with the corresponding values derived using the plane wave result.71

2. Numerical model72

The metallic materials of interest in non-destructive evaluation are known to exhibit low lev-73

els of nonlinearity. A typical harmonic generation measurement, for example, may show second74

harmonic signals which are up to three orders of magnitude smaller than the fundamentals. In75

these physical circumstances, it is valid to employ the quasi-linear approximation for modelling,76

which deals with nonlinearity using a perturbation approach. The fundamental response is cap-77

tured by linear analysis, the second harmonics then satisfy the nonlinear wave equation when78

the linear terms are used as a forcing. The physical mechanism of nonlinear generation in the79

quasi-linear approximation is treated as the emission of a second-order wave from each point80

in the domain of linear wave propagation. This is visualised as a field of virtual sources, the81

amplitude of each source being proportional to the square of the local first-order amplitude. To82

calculate the second-order field at a given point in a sound beam therefore requires integration83

over all sources in the three dimensional space. An early mathematical expression of this was84

reported by Ingenito and Williams (1971) [17]:85

u2(x, y, z) = C
Z Z

0

Z Y

�Y

Z X

�X
u2

1(x0, y0, z0)G(x, y, z|x0, y0, z0)dx0dy0dz0 (4)

Here, u2(x, y, z) is the second-order velocity amplitude at a point with Cartesian position co-86

ordinates with respect to the centre of the source, z being the direction of propagation. u1(x0, y0, z0)87

is the local linear amplitude associated with a virtual source, which has volume dx0dy0dz0. The88
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G(x, y, z|x0, y0, z0) terms are the Green’s functions which describe the propagation from the virtual89

source to the target point:90

G = (1/R) exp(2ikR � ↵2R) (5)

where ↵2 is the attenuation coe�cient at the second harmonic frequency, and91

R = [(x � x0)2 + (y � y0)2 + (z � z0)2](1/2) (6)

is the distance from the virtual source to the target. The constant C in Eq. (4) is determined92

by swapping the fluid nonlinear parameter given in [17] for that associated with solids, giving93

C = k2�/(2⇡c). Note that this switch treats longitudinal wave propagation in solids as being94

similar to that in liquids; that is, it ignores any mode conversion in the solid. This is a rea-95

sonable assumption for a directional sound beam in which the energy is localised close to the96

axis of propagation [18], and enables us to convert between longitudinal particle velocities (u),97

and displacements (U) as u = @U/@t. The values X, Y and Z in Eq. (4) are the imposed in-98

tegration limits. Finally, it is worth noting that the original derivation of Eq. (4) [17] used an99

inhomogeneous form of the Helmholz equation, the solution of which was simplified using the100

assumption of ka � 1. This is equivalent to invoking the parabolic approximation, which was101

used to derive the well-known KZK equation [19]. Although the two formulations are similar to102

a greater extent, we use the framework described above as it a↵ords us two advantages. Firstly,103

it is expressed in three dimensions, as opposed to the two cylindrical coordinates of the KZK104

scheme, and therefore a↵ords us greater freedom. Secondly, it makes use of an exact solution to105

the linear Helmholz equation, which is valid for all axial ranges. The first order KZK solution,106

on the other hand, is not valid for small axial distances z . a(ka)1/3 [20].107

2.1. Receiver Correction108

Here we describe the correction associated with the integrated response of the receiving trans-109

ducer. This is the e↵ect previously referred to by Rogers [13] as the di↵raction correction, though110

here we term it the receiver correction. An exact integral expression exists for the receiver cor-111

rection associated with the linear field when both transmitting and receiving transducers are the112

same diameter - see Williams (1950) [21]. Based on this, Rogers & Van Buren [13] developed a113

closed form solution, valid for (ka)1/2 � 1, which was later used by Blackburn & Breazeale [12].114
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This correction applied only to the fundamental amplitudes. An approximate analytic expression115

for the correction to the second harmonic amplitudes was presented by Ingenito & Williams [17],116

and subsequently used by Cobb [22] and Hurley & Fortunko [4].117

Here, in order to retain accuracy as far as possible, the receiver correction for the axial second118

harmonic value is calculated numerically. This is done by computing the transverse amplitude119

profile associated with the radius of the receiving transducer, integrating over a circle, and then120

normalising by the area of the circle. This corresponds to the following expression:121

u2(0, z) =
1
⇡b2

Z b

0
u2(r, z)2⇡rdr (7)

where b is the radius of the receiving transducer, and u2(r, z) is computed using equation (4),122

where r =
p

(x2 + y2).123

2.2. Implementation124

Figure 1: Schematic showing the numerical calculation process. Linear field amplitudes are calculated for each virtual

source point (x0, y0, z0) in a circular plane, then squared and propagated on to the target point (x, y, z). This is repeated for

all planes parallel to the transducer plane (z = 0).

Previously, Ingenito & Williams [17] carried out further theoretical analysis, based on their125
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version of Eq. (4) which was limited to a few special cases. Here the focus is to solve Eq. (4)126

in as general a manner as possible. To this end, a computer code was written in MATLAB to127

perform the triple integration numerically. A schematic illustrating the computational process is128

shown in Fig. 1.129

The linear field at any point in the space, u1(x0, y0, z0), was calculated exactly by using the130

Rayleigh-Sommerfeld di↵raction integral; here we used the algorithm of Zemanek [23] to solve131

this, adapting it slightly to include a linear attenuation coe�cient. This was carried out for132

all points in a circular slice of the region parallel to the transducer plane. These first-order133

amplitudes were then squared and, using the appropriate Green’s functions, propagated on to the134

target point. This was then repeated for all slices of the region, and the contributions from all135

slices were summed. Note that only forward travelling nonlinear contributions were included.136

That is to say, the virtual sources are assumed only to radiate second harmonic waves in the137

forwards direction, or the direction of wave propagation. This enabled the axial limit of the138

integration region to be set equal to the axial distance of the point of interest, Z = z, in Eq. (4).139

Neglecting backscattering in this way is generally thought to be a reasonable assumption, see [17]140

for a discussion on the matter. Within the parabolic approximation, or assumption of large ka,141

the linear sound beam is know to be well collimated up to approximately the Rayleigh distance,142

r0 = (1/2)ka2, beyond which it diverges spherically. The radial limits on the integration region143

were therefore imposed a follows:
p

X2 + Y2 = a for z < z0;
p

X2 + Y2 = z tan ✓b for z > z0,144

where ✓b = tan�1(a/z0) is the approximate beam angle in the far field.145

Fig. 2 shows the results of an example simulation. The axial displacement amplitude profiles146

in a sound beam are calculated with a continuous source excitation of U0 = 10�9m (a typical147

ultrasonic excitation level), ka = 40, and � = 5. The dashed lines show the e↵ect of integration148

over a 3mm radius receiver. Note that the receiver tends to smooth much of the oscillatory149

behaviour in the near field. The trends converge in the far field where the wave fronts become150

more uniform.151

3. Experimental Validation152

As a practical test of the model, an experiment was devised to measure the axial variation153

of fundamental and second harmonic amplitudes in a real sound beam. This involved taking a154

series of through-transmission measurements on a single sample whilst reducing its length in155
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Figure 2: Simulated axial fundamental (top panel) and second harmonic (lower panel) displacement amplitude profiles.

Point value trends are shown as solid lines, receiver-corrected trends are shown as dashed lines.

small decrements. A block diagram for the setup is shown in Fig. 3.156

The test sample was a cylindrical block of aluminium alloy Al-2011-T3 of length 252mm157

and radius 44mm. A 16mm diameter PCM41 1.1MHz piezoceramic disc (EP Electronic Com-158

ponents) was bonded using a high strength adhesive to the centre of one end of the sample.159

Hann-windowed 30-cycle tone burst signals of 3.67MHz, 6.10MHz, and 8.51MHz were gen-160

erated using a handyscope digital oscilloscope (Tiepie Engineering) and transmitted into the161

sample via a power amplifier (Amplifier Research, 75A250, 75 Watts). The transmitted signals162

were recorded at the opposite side of the sample using either a 5- or 10-Mhz wide band receiving163

probe (Panametrics V310 / V312, 6mm diameter), and fed back to the handyscope for signal164

processing. After a series of five repeat measurements between which the probe was removed165

and the surfaces cleaned, a thin (20mm) slice was sawn from the detection end of the sample,166

and the resulting surface machined to ensure a smooth finish perpendicular to the sides. The167

measurement process was then repeated. In total, signals were recorded at 12 distances from the168

source.169

8



Figure 3: Block diagram for the experimental set up.

3.1. Optimisation170

Making nonlinear measurements can be di�cult to do reliably. This is particularly the case171

with solids, as very low levels of nonlinearity and transducer coupling issues can lead to large172

variability in the results. Therefore, before taking measurements, certain optimisation steps were173

taken to ensure as much reliability as possible.174

A major consideration was minimisation of any nonlinearity at the transmitting source. In an175

ideal case, a harmonic generation experiment will conform to the boundary condition u2(r, 0) =176

0. That is to say, the second harmonic displacement at the source is zero. In reality, however,177

small amounts of signal distortion may occur along the path to the sample at various stages.178

Transmission of this spurious nonlinearity could therefore compromise the results. To minimise179

this e↵ect, two steps were taken. Firstly, the amplifier gain was varied whilst monitoring the180

nonlinearity, (A2/A2
1), of its output directly. By minimising this value, the e↵ective output non-181

linearity of the amplifier was reduced. Secondly, the fundamental input frequencies were selected182

such that the second harmonics coincided with troughs in the PZT’s natural frequency response.183

This ‘natural filter’ e↵ect is described in more detail by Yan et al. [5].184
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The next optimisation steps were concerned with the receiving probe, which was coupled to185

the specimen using a small amount of commercial coupling gel. It was important to ensure that186

the probe was aligned axially with the centre of the input PZT. This was achieved by transmitting187

a continuous stream of pulses into the sample, whilst calculating the peak fundamental ampli-188

tudes of the signals captured by the probe. By displaying the results in real time, the probe’s189

lateral position could be adjusted to correspond with the field peak. Once in position, a small190

amount of pressure was applied to the probe to ensure good contact to the specimen surface and191

minimise the e↵ects of any inhomogeneities in the coupling gel. This receiver coupling process192

was carried out as carefully as possible, but was inevitably a cause of some degree of variabil-193

ity in the results. A total of five repeat measurements were therefore taken at every distance to194

establish this variability.195

3.2. Amplitude extraction196

Certain processing steps were required to extract the amplitudes of the fundamental and sec-197

ond harmonic components, A1 and A2, from the digitally recorded raw received signal data.198

Initially, two digital band pass filters were applied to the raw data to separate the linear and non-199

linear signals. The signals were then windowed so as to capture their full length, including the200

ringing which resulted from exciting the input PZT near a resonance peak. A Fast Fourier Trans-201

form (FFT) was then applied to the windowed signals, and the amplitudes were interpolated from202

the frequency spectrum. In order to account for the shape of the ringing signal, the measured am-203

plitude was scaled by dividing by the mean of the normalised signal envelope (calculated using204

the Hilbert transform). This correction process is explained and detailed by Liu et al. [11].205

3.3. Receiver calibration206

The wide band receivers used returned an electrical signal time trace in volts. For the purpose207

of calculating absolute �, however, the signals were required in the form of amplitude displace-208

ments. Although a physical formula exists for calibrating a piezoelectric device in this way (see209

Dace et al., 1991 [24]), it requires specific knowledge of many parameters which were di�cult210

to measure. Therefore, for the purposes of this paper, the calibration was carried out by taking a211

series of ultrasonic measurements using the probes, then measuring the same signals using a laser212

interferometer (Polytec, OFV-505). This enabled a standard conversion from volts to metres at213

the frequencies of interest. There was, in general, a degree of uncertainty in using this calibration214
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method, but here we are not so interested in the precise value of � measured, as in the e↵ect of215

the method used to extract it. The calibration values are therefore only of secondary concern.216

4. Results217

Figure 4: Axial amplitude profiles: experiment (starred points) vs simulation (solid lines) and plane wave prediction

(dashed lines). Error bars on the experimental data represent the standard deviation of five repeat measurements

Fig. 4 shows a comparison of the experimental data with theoretical trends generated using218

the simulation described in Section 2. Also included are trends calculated based on the plane219

wave theory. The left hand panels show the variation of the fundamental amplitudes at the three220

input frequencies used, while the right hand panels show that of the corresponding second har-221

monic amplitudes.222
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4.1. Theoretical trends223

Both sets of theoretical trends were calculated by matching the model parameters with those224

known from the experiment. However, one parameter which was not known, and which could225

not easily be measured, was the attenuation coe�cient, ↵. As a best estimate, we took its value226

to be 0.4Npm�1 at a frequency of 10MHz in accordance with Ref. [25], and adopted a simple227

viscous damping law, such that:228

↵ f = 0.4
 

f
10

!2

(8)

where ↵ f is the is the attenuation coe�cient at frequency f (in MHz). This was subsequently229

used in all theoretical calculations; we discuss the importance of the precise attenuation values230

in due course.231

4.1.1. Plane wave trends232

The plane wave trends, shown as the dashed lines in Fig. 4, were calculated using the damped233

expressions for A1 and A2 corresponding to Eq. 3 [18]:234

|A1(z)| = u0e�↵z; |A2(z)| =
k2u2

0�

8↵
(e�2↵z � e�4↵z) (9)

where z is the axial propagation distance, and u0 is the linear displacement amplitude of the235

transmitter. Note that this was not known, but for the purposes of the trends shown, it was236

calculated so as to provide a mean best fit to the experimental data. The A2 plane wave trends237

use the mean value of �, found by using Eq. 3 with all experimental data points. It is noted238

that due to the low damping values, both sets of A1 and A2 plane wave trends show only a slight239

curvature with respect to the would-be horizontal and linearly increasing lines expected for zero240

damping.241

4.1.2. Simulated trends242

For the simulated trends (solid lines in Fig. 4), the curve-fitting approach was much the243

same, in that the mean best fit to the experimental data was sought. The simulation was run with244

a fundamental input amplitude of 1, then the ratio of the observed and predicted A1 values was245

calculated. This gave a theoretical source amplitude corresponding to each experimental data246

point at distance z:247
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u0(z) =
A1,exp(z)
A1,sim(z)

(10)

The simulated A1 profile shown in Fig. 4 is scaled using the mean of all such u0(z). Running248

the simulation with u0,sim = 1 and �sim = 1 enabled the experimental absolute � values to be249

calculated as:250

�(z) =
A2

1,sim(z)
A2,sim(z)

0
BBBBB@

A2,exp(z)
A2

1,exp(z)

1
CCCCCA (11)

The simulated second harmonic profiles shown in figure (4) are scaled using the mean value of251

all �(z). All � values calculated in this manner are plotted later as a function of axial distance252

(see Fig. 6).253

4.1.3. Attenuation value254

While attenuation in aluminium is known to be low, we now assess the e↵ects of the uncer-255

tainty in the parameter. In Fig. 5, we include receiver-corrected A1 and A2 trends, calculated256

for the frequencies shown in Fig. 4, now with damping levels which vary between 0 - 200% of257

those used previously. The A1 trends are scaled to the un-damped case (↵ = 0), and the A2 trends258

are scaled by the square of the same factor. It can be seen that in this range of relatively low259

damping values around that used, the A1 trends are barely separable. The A2 trends show slightly260

more variation, more so at the higher frequencies, but here the experimental error bars in the data261

shown in Fig. 4 are correspondingly larger. Due to this, altering the damping level is unlikely to262

a↵ect the fit to the experimental data.263

4.2. Experimental data264

At this stage, the main observation from Fig. 4 is that the plane wave trends fall short of265

recreating the observed experimental data, while the simulated trends provide a reasonable level266

of agreement. The deviation between simulation and experiment, in particular with regards to267

the second harmonic trends, is most likely due to the inherent di�culties associated with making268

measurements in solids; the measures intended to overcome these were described in section 3.1.269

An interesting comparison can be made here with the work of Cobb (1983) [22], who made270

similar axial pressure measurements, but using fluid nonlinear media.271
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Figure 5: Receiver-corrected axial amplitude trends with varying levels of damping. In each case, the attenuation law

follows ↵ f = ↵0( f /10MHz)2, where ↵0 = 0 (solid lines); 0.2 (dashed lines), 0.4 (dot-dashed lines) and 0.8 (dotted lines).

A theoretical consideration is that the input signals were not continuous sinusoids, as is as-272

sumed for the theoretical trends, but were in fact bursts of finite length. Extending the simulation273

to account for this excitation time-variability is possible, but would dramatically increase the274

computation time. As a compromise, the bursts were intentionally generated with a relatively275

large number of cycles to better approximate a continuous wave pressure field. Presumably,276

however, this approximation cannot be ignored as a potential contributing factor to the observed277

discrepancies.278

5. Discussion279

Fig. 6 shows both the �’ (i.e., A2/A2
1) values (left hand panels) and absolute � values, ex-280

tracted using the plane wave- and simulation-based approaches, as a function of axial distance281

(right hand panels). The plane wave-derived absolute � values (dashed lines) are calculated using282

Eq. (3); the simulation-derived values (solid lines) as discussed previously, using equation (11).283

14



Figure 6: Axial variation of absolute �, calculated using both the simulation and the plane wave theory.

Firstly, it is interesting to note that the �’ values show a tendency to increase linearly with284

propagation distance. This fact is predicted by the plane wave model, but can also be explained285

by considering the generation and decay mechanisms in three dimensions. It is therefore not286

necessarily indicative of plane wave behaviour. Looking at the extracted absolute � values, it is287

evident that neither method shows more of a tendency to produce a consistent � value than the288

other. However, it is clear from Fig. 4 that the simulation predicts the axial variation of the A1 and289

A2 trends more accurately than the plane wave model. The fact that no identifiable improvement290

is seen in the consistency of the � values shown in Fig. 6 must therefore be due to the variability291

in the experimental data, which e↵ectively masks the di↵erences between the trends. Under292

closer scrutiny, consistent features can be noticed between the subplots. Specifically, the trends293

return di↵erent values in the near field, then coincide briefly, before diverging again.294
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These features can be seen more clearly when we consider the idealised case. That is, one295

in which the experimental results conform exactly to the predicted trends of the simulation. To296

illustrate this, we use the simulated trends shown in Fig. 4 as a theoretical set of data, and297

the plane wave expression is then used to extract the absolute � profiles as a function of axial298

distance. The results are shown in Fig. 7. The solid lines are calculated using the damped plane299

wave result, Eq. (3), while the dot-dashed lines use the undamped result, equation (2). The actual300

input value, � = 1, is included as a horizontal dashed line for reference.301

The consistent features are now more apparent between the three subplots. In the near field,302

the extracted values fluctuate somewhat, reach a minimum, and then rise to coincide with the true303

value before continuing to diverge. The presence of the dip in the near field region is significant,304

as it o↵ers an indication of the limitations of the common assumption of an approximately planar305

near field region. Here the underestimation of � is more significant at higher frequencies, as306

indicated by the slightly more pronounced dip. The distance at which the trends coincide, in307

each case, is around 0.6r0, where r0 = (1/2)ka2 is the Rayleigh distance. Further out, it is308

known that the beam is characterised by spherically diverging waves, and here we expect the309

plane wave measurement to return diverging � values as shown. These features are also apparent310

to a certain extent in Fig. 6, where the real experimental data are used. Notably, both Fig.311

6 and Fig. 7 indicate that the plane wave measurement overestimates � by a factor of almost312

2 at the maximum axial distance when the lower input frequency of 3.67MHz is used. The313

corresponding value when the higher frequency, 8.51MHz is used is much less, around 20%.314

The neglect of attenuation seems to produce a small deviation in the extracted � value in Fig.315

7, which is consistent with the small attenuation values in aluminium. However, this will be of316

greater concern in materials such as steel, where the attenuation values are known to be much317

larger.318

As a final remark, we refer to the actual values of extracted �, as shown in Fig. 6. As319

mentioned previously, the calibration procedure was subject to a significant degree of uncertainty,320

meaning the values indicated are not precise. What is more, each frequency used corresponds to321

a slightly di↵erent value. We note, however, that all the values fall within the approximate range322

1-6, which agrees with values published in the literature for measurements on similar aluminium323

alloys - see for example [26, 27, 28].324
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6. Conclusion325

In this paper we have investigated the importance of certain features of a typical nonlinear326

measurement which are generally overlooked when calculating absolute �. We have described327

a numerical model of bulk harmonic generation which captures the e↵ects of di↵raction, atten-328

uation and nonlinearity in a sound beam. The additional e↵ects of receiver integration were329

incorporated to provide a full representation of a typical practical measurement. Upon compar-330

ison with experimental data, the simulation was found to be a significant improvement on the331

plane wave model as a predictor of axial fundamental and second harmonic amplitude profiles.332

This, however, apparently did not translate into an immediately obvious improvement in ex-333

tracted values of absolute �. It was suggested that this fact was due in large part to the variability334

in the experimental data, something which is a problem typical to nonlinear measurements in335

solids. As an alternative consideration, a calculation was presented of the plane-wave extracted336

absolute � values based on idealised (simulated) data. Here it was seen that, in the near field, the337

plane wave based correction oscillates, at points underestimating � by a factor of up to 40% at the338

highest frequency used here, and around 25 % at the lowest frequency. The importance of this339

result, to some extent, depends on both the level of precision required, and that available. On one340

hand, an improvement of 40% in a measurement of � may represent a critical di↵erence in the341

amount of damage suspected in a component. On the other hand, the experimental data shown342

here, for example, exhibit a degree of variability which is comparable with the suspected inaccu-343

racy in using the plane wave measurement. At large axial distances, the result is more clear-cut.344

In this region the plane wave value diverges from the true value due to its neglect of spread-345

ing in the acoustic field. The e↵ect is particularly pronounced at the lowest frequency tested,346

where � is overestimated by around 80% at the largest axial distance. It is therefore apparent347

that care should be taken when measuring � using the plane wave correction at large distances,348

especially when using low input frequencies. Additionally, it is noted that attenuation should not349

be overlooked when measuring � in highly attenuating materials.350
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Figure 7: Theoretical axial variation of absolute � calculated using the plane wave theory. Undamped calculations are

shown as dashed lines, damped calculations as solid lines. The calculations are based on idealised axial A1 and A2 data

generated using the simulation.
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