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SUMMARY

This paper proposes the use of a novel type of passive vibration control system to reduce vibrations in civil
engineering structures subject to base excitation. The new system is based on the inerter, a device that was
initially developed for high-performance suspensions in Formula 1 racing cars. The principal advantage
of the inerter is that a high level of vibration isolation can be achieved with low amounts of added mass.
This feature makes it an attractive potential alternative to traditional tuned mass dampers (TMD). In this
paper, the inerter system is modeled inside a multi-storey building and is located on braces between adjacent
storeys. Numerical results show that an excellent level of vibration reduction is achieved, potentially offering
improvement over TMDs. The inerter-based system is compared to a TMD system by using a range of base
excitation inputs, including an earthquake signal, to demonstrate how the performance could potentially be
improved by using an inerter instead of a TMD. Copyright c⃝ 2010 John Wiley & Sons, Ltd.
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KEY WORDS: inerter, structural control, vibration reduction, base excitation

1. INTRODUCTION

Mitigating unwanted vibration in structures is an important part of the design process, particularly
for structures which may be subject to seismic excitation. In this paper we propose the use of a
novel type of passive vibration suppression control system to reduce vibrations in civil engineering
structures based on the inerter. The inerter was introduced in the early 2000s by Smith [1] using
the force-current analogy between mechanical and electrical networks. The inerter represents the
equivalent of the capacitor and has the property that the force generated is proportional to the relative
acceleration between its nodes. Its constant of proportionality is called inertance and is measured in
kilograms.

Although it was initially used in Formula 1 racing car suspension systems, under the name of
J-damper [2], the inerter’s application in the field of vibration isolation is much wider today. There
are several types of inerters that have already been proposed: the rack and pinion inerter [1], the
ball and screw inerter [2] and the hydraulic inerter [3,4]. Experimental testing includes work on car
suspensions systems [5,6], while the optimisation of the inerter-based suspension systems is studied
in [7]. The optimal performance of the inerter-based vibration isolation systems is discussed in
[8–10]. Vehicle suspensions systems employing inerters are discussed in [11], where a mechatronic
network strut suspension system is proposed. Inerter-based train suspension systems are studied
in [12], while motorcycle steering compensator applications are proposed in [13].

In general, passive vibration control approaches are preferred for civil engineering applications
as they avoid the associated stability and robustness issues of active control [14, 15]. Traditional
passive control devices include base isolation systems [16–19], TMDs [20,21] and viscous dampers
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[22–24]. Background information on these systems can be found in [25–27]. The idea of using
inerters in base isolation systems for buildings has been recently proposed by [28, 29]. Ikago et
al. [30] proposed the use of an inerter-like ball-screw mechanism to be employed in a viscous
mass damper (VMD) and a tuned viscous mass damper (TVMD) system. The VMD consists of
the inerter-like mass element mounted in parallel with a viscous damper, while the TVMD consists
of a VMD mounted in series with an additional spring element. The authors studied the seismic
performance of a single-degree-of-freedom (SDOF) structure where the efficiency of a TVMD is
assessed in comparison to that of a viscous damper and a VMD. The ball-screw device designed
by the authors was capable of generating an apparent mass of 350 kg using a flywheel weighing
only 2 kg. Recently, TVMD systems have been installed in a steel structure built in Japan [31]. The
control system consists of viscous dampers located between the lower floors and TVMDs located at
upper storeys. In [32], the authors present the modal response characteristics of a multiple-degree-
of-freedom system incorporated with TVMDs.

In this paper we present a novel control system based on the inerter for suppressing vibrations
of civil engineering structures. Given the similarity between an inerter and a mass element, we
propose an inerter-based system with a configuration similar to that of a TMD, which we term a
tuned-inerter-damper (TID). Accordingly, the inerter is installed in series with spring and damper
elements, following the traditional layout of a TMD. However, as the inerter is a two-port device
(since it generates a force based on relative acceleration), the TID is connected between storeys as
opposed to a TMD which acts on a single storey. TMDs were discussed by Den Hartog in [33]
(under the name of dynamic vibration absorbers) with tuning strategies proposed by him and
others [34–38]. Based on Den Hartog’s guidelines for optimal tuning of TMDs, in this paper we
have developed an analogous tuning mehod for a TID.

The TMD performance is limited by the amount of mass that can be added to the original
structure. Generally, this does not exceed 10% of the mass of the targeted vibration mode. For inerter
devices, gearing allows the effective mass to be far greater than the actual mass of the device. This is
commonly achieved using a rack and pinion, however inertial hydraulic devices, with a helical tube
providing “gearing”, have also been patented [39]. Via this gearing, larger inertance-to-mass ratios
can potentially be obtained for TID systems than for TMD ones without an excessive weight penalty
and as a result overcoming a major limitation of the TMD. We will show that the performance of
inerter-based control systems indicates that they have the potential to be a viable alternative to
traditional TMDs.

In Section 2 we introduce a model for the proposed TID vibration supression device and for the
building. We also compare the TMD and TID transfer functions. Then in Section 3 we explain how
the inerter can be tuned, by considering a SDOF system, which is analogous to the tuning laws
developed by Den Hartog. In Section 4 the tuning of a multi-degree-of-freedom (MDOF) system
is considered. This includes consideration of a TID system alternatively placed at the bottom and
top level of a three-storey building in order to find the configuration offering the best vibration
suppression. We finally study the seismic performance of the optimally tuned TMD and TID systems
for multi-storey structures. Conclusions are drawn in Section 5.

2. THEORETICAL MODEL

Analogies between mechanical and electrical systems are long established. For example, Firestone
[40] discussed the force-current analogy, based on a series of equivalences between elements such
as the spring-inductor and damper-resistor equivalence. However, the equivalence between mass
elements and capacitors was not complete, because of the fact that one of the mass element’s
terminals must always be the mechanical ground. The inerter overcomes this limitation and has the
property that the force generated is proportional to the relative acceleration between its nodes. Its
constant of proportionality is called inertance and is measured in kilograms [1]. The force generated
by an inerter is

F = b(ẍi − ẍj) (1)

Copyright c⃝ 2010 John Wiley & Sons, Ltd. Earthquake Engng Struct. Dyn. (2010)
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USING AN INERTER-BASED DEVICE FOR STRUCTURAL VIBRATION SUPPRESSION 3

where b is the inertance and ẍi − ẍj represents the relative acceleration between the inerter’s nodes.
Smith [1] establishes a series of practical conditions that must be fulfilled for the inerter to display

satisfactory performance. Most important, the device must have limited mass, regardless of the
amount of inertance required and should function in any spatial orientation and motion.

Several types of inerters have been proposed and patented. The most common mechanism consists
of a rack, pinions, flywheels and gears. Their number and size is established as a function of the
inertance requirements. If we consider a simple device having one rack, a gear of radius rg and a
flywheel with J moment of inertia, the force can be expressed as

F =
J

r2g
(ẍi − ẍj) (2)

Therefore, the corresponding inertance is b =
J

r2g
.

In addition to the relative rather than absolute acceleration dependence, a key feature of the
inerter when compared to a mass is the fact that the inertance can be adjusted through gearing,
without significantly increasing the inerter’s physical mass. Due to this feature, we propose that
a TID represents a viable, lower-mass alternative to TMDs — this is assessed by considering a
multi-storey building subject to ground excitation.

2.1. Multi-storey building model

The building model is represented by an n-storey structure, reduced to a n-DOF lumped mass
system as shown in Figure 1(a). Two control systems are proposed, a classical TMD and a new
type of vibration suppression system formed of an inerter, a spring and a damper — the TID. The
control systems are modelled between adjacent storeys and they are shown in Figures 1(b) and 1(c)
respectively.

In order to write the equations of motion for the n-DOF structure, the storeys are divided in three
categories:

(i) the bottom storey, connected to the ground, i = 1;
(ii) the ith storey, i ∈ [2 : n− 1];

(iii) the top storey, i = n.

The equations of motion for the system in Figure 1 are written in absolute coordinates as

(m1s
2 + k0,1 + k1,2)X1 = k1,2X2 + k0,1R+ F1,0 − F1,2

...
(mis

2 + ki−1,i + ki,i+1)Xi = ki−1,iXi−1 + ki,i+1Xi+1 + Fi,i−1 − Fi,i+1

...
(mns

2 + kn−1,n)Xn = kn−1,nXn−1 + Fn,n−1

(3)

where mi and ki−1,i, i ∈ [1 : n] represent the mass concentrated on the ith storey and the structural
stiffness between storeys i− 1 and i, respectively; Xi represents the Laplace transform of the ith

storey displacement; Fi,i−1 represents the force exerted by the a control device located between
storeys i− 1 and i on the ith mass and Fi,i+1 represents the force exerted by the a control device
located between storeys i and i+ 1 on the ith mass - see Figure 1. Forces generated by the control
devices act at the storey levels, between the floors where they are located. The following sections
are dedicated to the study of these forces for both types of control systems and to the computation
of structural displacements, using a unified method, regardless of whether the TMD or the TID is
employed.

Copyright c⃝ 2010 John Wiley & Sons, Ltd. Earthquake Engng Struct. Dyn. (2010)
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Figure 1. (a) Structural System; (b) TMD system; (c) TID system.

2.2. TMD vibration suppression system

We will first study the behaviour of classical TMD systems, and write the generalised expressions
of the control forces generated. For the TMD system acting on the ith floor, the control forces can
be written in the Laplace domain as

Fi,i+1 = 0 (4a)
Fi+1,i = (kd + cds)(Y −Xi+1) (4b)

where kd and cd are the stiffness and damping of the TMD respectively, Xi+1 is the Laplace
transform of the displacement of mi+1 and Y represents the Laplace transform of the TMD mass
displacement. Note that we include Fi,i+1 as it is useful when comparing with the TID device and
writing the generalised device equations.

The equation of motion for the y-DOF is given by

Y =
cds+ kd

mds2 + cds+ kd
Xi+1 (5)

where md is the TMD mass. Substituting Equation 5 in Equation 4b it follows that

Fi,i+1 = 0 (6a)

Fi+1,i = − mds
2(cds+ kd)

mds2 + cds+ kd
Xi+1 (6b)

Equations 6a and 6b give the expressions of the control forces obtained when placing a TMD
between storeys i and i+ 1, namely Fi,i+1 and Fi+1,i acting on mi and mi+1 respectively.

Copyright c⃝ 2010 John Wiley & Sons, Ltd. Earthquake Engng Struct. Dyn. (2010)
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USING AN INERTER-BASED DEVICE FOR STRUCTURAL VIBRATION SUPPRESSION 5

2.3. TID vibration suppression system

If an inerter-based system is mounted at the ith storey level, the control forces can be written in the
Laplace domain as

Fi,i+1 = bds
2(Xi − Y ) (7a)

Fi+1,i = (kd + cds)(Y −Xi+1) (7b)

where bd represents the inertance and Xi represents the Laplace transform of the displacement of
mass mi . The other quantities were defined earlier. Note that now, due to the need for an anchor,
the inerter forces are exerted on both the upper and lower storey. The equation of motion for the
y-DOF is given by

Y =
bds

2Xi + (cds+ kd)Xi+1

bds2 + cds+ kd
(8)

Substituting Equation 8 into Equation 7a it follows that

Fi,i+1 =
bds

2(cds+ kd)

bds2 + cds+ kd
(Xi −Xi+1) (9a)

Fi+1,i = Fi,i+1 (9b)

Equations 9a and 9b give the expressions of the control forces obtained when placing an inerter-
based control system between storeys i and i+ 1, namely Fi,i+1 and Fi+1,i acting on mi and mi+1

respectively. Both forces are non-zero.

2.4. Generalised system

The control forces can be written in a general form, regardless the device used.

Fi,i+1 = li,i+1Tddi+1(Xi −Xi+1) (10a)
Fi+1,i = li,i+1Td(di+1Xi −Xi+1) (10b)

where Td =
m̂ds

2(cds+ kd)

m̂ds2 + cds+ kd
, m̂d = md or m̂d = bd for the TMD and TID respectively. Note that

for i = 0, X0 = R. In addition, li,i+1 and di+1 are switches that allow us to generalise the device
and indicate the location and type of device used respectively. Specifically,{

li,i+1 = 1 , if there is a control device situated between storeys i and i+ 1

li,i+1 = 0 , otherwise
(11)

and{
di+1 = 1 , if the control system is represented by an inerter between storeys i and i+ 1

di+1 = 0 , if the control system is a TMD between storeys i and i+ 1

(12)
Now, we can combine the device(s) by using Equations 10a and 10b to eliminate the control forces

Fi,i+1 from Equation 3. Therefore, we obtain a system of n coupled equations with n unknowns,
which are the displacements on each DOF (Equation 13).

X1 =
(k1,2 + l1,2Tdd2)X2 + (k0,1 + l0,1Tdd1)R

m1s2 + k0,1 + k1,2 + l0,1Td + l1,2Tdd2
...

Xi =
(ki−1,i + li−1,iTddi)Xi−1 + (ki,i+1 + li,i+1Tddi+1)Xi+1

mis2 + 2ki−1,i + li−1,iTd + li,i+1Tddi+1
...

Xn =
kn−1,n + ln−1,nTddn

mns2 + kn−1,n + ln−1,nTd
Xn−1

(13)

Copyright c⃝ 2010 John Wiley & Sons, Ltd. Earthquake Engng Struct. Dyn. (2010)
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6 I. F. LAZAR, S. A. NEILD, D. J. WAGG

Note that the displacement of the nth storey depends on the displacement of the storey below only,
while the displacement of a middle storey depends on those of the storey bellow and of the storey
above. Therefore, if we substitute the expression of Xn from the (n− 1)th equation into the nth

equation, Xn−1 will become a function of Xn−2 only. Successively, following the same procedure,
any Xi displacement will depend on Xi−1 only, for i = 2...n. For the bottom storey, we obtain X1

as a function of R, the ground displacement. After X1 is computed, all the other displacements are
determined.

In order to account for structural damping as well, Equation 13 may be updated by replacing
ki,i+1 with ki,i+1 + ci,i+1s, where ci,i+1 represents the structural damping between storeys i and
i+ 1.

3. TUNING OF THE TID SYSTEM

First we will consider a SDOF system, subjected to sinusoidal ground displacement r(t) = sin(ωt).
The uncontrolled system is shown in Figure 2(a). The TMD controlled structure is formed
combining the systems in Figure 2(a) and 2(b), while the TID controlled structure is formed
combining the systems in Figure 2(a) and 2(c).

kd
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cd

r=x

(a)

m

k

x
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F1,0
d

F1,0

y
kd

b

cd

d
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y

(b) (c)

F   =0 0,1 F   0,1

0,1

1

0

1

Figure 2. (a) Structural system 1DOF; (b) TMD system; (c) TID system.

The most important aspect in the control system design is the appropriate choice of parameters for
all the devices considered. In the case of the TMD systems, optimal tuning rules were established by
Den Hartog [33] for a single DOF system, for both undamped and damped vibration absorbers. Den
Hartog tuning rules adapted to constant acceleration amplitude base-excited structures (according
to [25]) are given below

md = µmm1; kd =
µm

(1 + µm)2
k0,1; ζ =

√
3µm

8(1 + µm)
; cd = 2ζ

√
kd
md

md; (14)

where md, kd and cd are the TMD mass, stiffness and damping respectively, and ζ is the TMD
damping coefficient. µm is the TMD mass ratio, and it is typically chosen in the range 1%− 10%.

Many applications of the inerter have been studied. However, these refer mainly to vibration
isolation. Therefore, there are no generally accepted tuning rules suitable for vibration suppression.
Smith [1] gives tuning guidelines for inerters used as vibration isolators, specifically in vehicle
suspension systems. Such vibration isolation tuning rules do not lead to satisfactory tuning for
vibration suppression applications.

Given the similarity between the TMDs and the TIDs, we propose new vibration suppression
system tuning rules based on those established for mass-based systems. Den Hartog [33] shows
that for an undamped structure, regardless of the choice of TMD stiffness and damping parameters,
all displacement response curves in the frequency response diagram pass through two fixed points,
P and Q. Moreover, the fixed points location is influenced by stiffness only and is invariant to
damping. The frequencies where these points occur are determined analytically, solving a quadratic
equation in frequency squared, based on the transfer function between the structural and ground
displacements. The stiffness, kd, is then selected such that the amplitude of response of points P and
Q is the same, resulting in the kd expression in Equation 14. Finally, damping, cd, is selected such
that, through one of these points, the gradient of the displacement response curve is zero — this
leads to the damping expression in Equation 14.

Copyright c⃝ 2010 John Wiley & Sons, Ltd. Earthquake Engng Struct. Dyn. (2010)
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USING AN INERTER-BASED DEVICE FOR STRUCTURAL VIBRATION SUPPRESSION 7

Following a similar procedure, we firstly show that in the case of TIDs, a third fixed point exists,
which we denote as V. Considering the SDOF TID controlled structure, formed by combining the
systems in Figure 2(a) and (c), and using Equation 13, the transfer function X −R can be written
in the frequency domain as

X

R
(jω) =

k0,1 + Td(jω)

−m1ω2 + k0,1 + Td(jω)
(15)

where Td(jω) =
−mdω

2(cdjω + kd)

−mdω2 + cdjω + kd
and j =

√
−1. In order to evaluate the response amplitude,

the real and imaginary terms are regrouped and Equation 15 is expressed in the form

X

R
(jω) =

A+Bj

C +Dj
, hence

∣∣∣∣∣
(
X

R

)2
∣∣∣∣∣ = A2 +B2

C2 +D2
(16)

where A = k0,1kd − k0,1ω
2 − bdω

2kd, B = cdω(k0,1 − bdω
2), C = (k0,1 −m1ω

2)(kd − bd)−
kdbdω

2, and D = cdω(k0,1 −m1ω
2 − bdω

2). Replacing bd = µbm1 and kd = αµbk0,1 and
regrouping the terms in function of cd we obtain∣∣∣∣∣
(
X

R

)2
∣∣∣∣∣ = (αµbk

2
0,1 − µbω

2k0,1m1 − µ2
bαω

2k0,1m1)
2 + c2dω

2(k0,1 − µbω
2m1)

2

[(k0,1 −m1ω2)(αµbk0,1 − µbm1ω2)− αµ2
bω

2k0,1m1]2 + c2dω
2(k0,1 − ω2m1 − µbω2m1)2

(17)
where α is a scalar coefficient and µb = bd/m1 represents the inertance-to-structural mass ratio.
Note that µb will be referred to as inertance-to-mass ratio. Reformulating,

X

R
=

√
E + Fc2d
G+Hc2d

(18)

where E = (k0,1kd − k0,1bdω
2 − bdkdω

2)2, F = ω2(k0,1 − bω2)2, G = ((k0,1 −m1ω
2)(kd −

bdω
2)− kdbdω

2)2 and H = ω2(k0,1 −m1ω
2 − bdω

2)2.
As our objective is to find the coordinates of fixed points, independent of device damping, cd, as

in Den Hartog’s derivation [33], the following condition must be enforced

E

G
=

F

H
(19)

Solving Equation 19 leads to the following cubic equation in ω2

µbm
3
1ω

6 − 2(1 + µb + µbα+ µ2
bα)m

2
1k0,1ω

4 + 2(1 + α+ 2µbα)m1k0,1ω
2 − 2α = 0 (20)

Solutions to Equation 20, giving the frequencies at which the fixed points are located, can be
computed — note that for TMDs, the equivalent equivalent equation is a quadratic in ω2 leading to
two damping-invariant points. Solving Equation 20 numerically shows that the first two points are
located at low frequencies, situated in the vicinity of the fundamental frequency of the uncontrolled
structure and the third point is situated at higher frequencies, where the response has low amplitude.
Given the point locations, even though we have three fixed points, the ordinate of the highest
frequency fixed point can never exceed those of the two low frequency fixed points. Based on Den
Hartog’s TMD tuning guidelines, we therefore propose the following TID tuning strategy.

STEP 1 Specify the desired inertance-to-mass ratio, µb;

STEP 2 Iterate stiffness, kd, such that the lower frequency points, P and Q, have equal ordinates.
The initial kd value is based on the TMD tuning rules given in Equation 14;

STEP 3 Find the location of the three fixed points that are independent of damping: P, Q and V.
This is done by solving Equation 20;

Copyright c⃝ 2010 John Wiley & Sons, Ltd. Earthquake Engng Struct. Dyn. (2010)
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8 I. F. LAZAR, S. A. NEILD, D. J. WAGG

STEP 4 Choose damping, cd, such that the displacement response has a zero gradient in one of the
two low-frequency points, P and Q.

We now present a numerical example. The structure is defined by the following parameters

m1 = 1 kNs2/m; k0,1 = 5000 kN/m; (21)

such that ωn = 11.25 Hz. Using the mass ratio µm = 0.1, the TMD system parameters used in this
application are

kd = 413 kN/m; ζ = 0.18; cd = 2.37 kNs/m; (22)

where kd, ζ and cd are selected using Equation 14.
The TID system is tuned according to the method explained, following the steps above. Firstly,

we chose the inertance-to-mass ratio, µb = 0.1, keeping it equal to the TMD mass ratio. Secondly,
the stiffness, kd, is selected such that the lower frequency points, P and Q, have equal ordinates.
The TMD tuning rule for kd given in Equation 14 was used as an initial guess. Therefore, starting
from, kd = 413 kN/m, we iterated STEP 2 until we found the value at which points P and Q
have equal ordinates, kd = 434 kN/m. Then, the coordinates of the fixed points are determined
numerically from Equation 20: ωP = 9.39 Hz, ωQ = 11.67 Hz and ωV = 52.83 Hz. Finally, we
calculate the structure frequency response for several damping values shown in Figure 3, from
which cd = 2.5 kNs/m is selected as the optimal damping value.
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Figure 3. Choice of optimal damping for the TID system for µb = 0.1.

Therefore, the numerical values employed are

µb = 0.1; kd = 434 kN/m; cd = 2.5 kNs/m; (23)

Figure 4 shows the frequency response of the SDOF uncontrolled system, together with that of
the TMD and TID controlled systems. It can be seen that the two systems display very similar
behaviour near resonance. At high frequencies, the TID system response is very slightly larger
than that of the TMD and uncontrolled systems, but the overall response amplitude is small. Each
zoom-in represents a comparison of displacement time histories of the TMD and TID systems for
µm = µb = 0.1.

However, as detailed in Section 2, the inertance-to-structural mass ratio, µb, can be set to high
values via gearing, as opposed to increased added mass which results in an improved response.
Figure 5 , shows the steady state frequency response of the structure for µb = [0.1; 0.25; 0.5] and
µm = 0.1. As seen, the displacements decrease as µb increases. Given the performance of the TID
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controlled system, we can conclude that this represents a viable alternative to TMD devices for
1DOF structures.

The next section is dedicated to the study of a multiple-degrees-of-freedom structure.

4. MDOF SYSTEM

We now consider an n-DOF structure subjected to sinusoidal ground displacement, r(t) = sin(ωt).
The structure is shown in Figure 1 and described by
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10 I. F. LAZAR, S. A. NEILD, D. J. WAGG

M =


m1 0 . . . 0
0 m2 . . . 0
...

...
. . .

...
0 0 mn

 , K =


k0,1 + k1,2 −k1,2 0 . . . 0

−k1,2 k1,2 + k2,3 −k2,3 . . . 0

0 −k2,3 k2,3 + k3,4 . . .
...

...
...

...
. . . −kn−1,n

0 0 . . . −kn−1,n kn−1,n


(24)

In this application, the structural damping is considered equal to zero since its value is typically
small compared to the control device damping. Moreover, this choice keeps the structural system
similar to the one proposed by Den Hartog.

4.1. Modal analysis — A discussion on TID optimal location

It is well known that TMD systems work more efficiently when located near the top of the structure.
This is because the largest displacements generally occur at the top of the structure. We now consider
whether the same is true for the TID systems when targeting the first mode of vibration. For this,
we analyse the modal response of the controlled structures. The equation of motion for the n-DOF
controlled structure, in matrix form, in the Laplace domain is

Ms2Z + KZ = −M


1
1
...
1
1

 s2R+


F1,0 − F1,2

F2,1 − F2,3

...
Fn−1,n−2 − Fn−1,n

Fn,n−1

 (25)

where Z = X −R represents the vector of relative storey displacements. Although, L(r̈) =
s2L(r)− sr(0)− ṙ(0), and for sinusoidal input ṙ(0) = 1, for this derivation we considered L(r̈) =
s2L(r) = s2R.

Using the transformation Z = ΦQ, where Φ represents the eigenvectors matrix, and pre-
multiplying both sides by ΦT , we obtain

MMMs2Q+KKKQ = −ΦT M


1
1
...
1
1

 s2R+ΦT


F1,0 − F1,2

F2,1 − F2,3

...
Fn−1,n−2 − Fn−1,n

Fn,n−1

 (26)

where MMM = ΦT MΦ and KKK = ΦT KΦ represent the modal mass and stiffness matrices respectively.
Using the generalised formulation for the device forces from Equations 10a and 10b and

performing the transformation from absolute to relative coordinates, the forces vector on the right
hand side can be written as 

F1,0 − F1,2

F2,1 − F2,3

...
Fn−1,n−2 − Fn−1,n

Fn,n−1

 = Td


l0,1(d1 − 1)
l1,2(d2 − 1)

...
ln−2,n−1(dn−1 − 1)

ln−1,n(dn − 1)

R+ . . .

. . .+ Td


−l0,1 − l1,2d2 l1,2d2 0 . . . 0

l1,2d2 −l1,2 − l2,3d3 l2,3d3 . . . 0
0 l2,3d3 −l2,3 . . . 0
...

...
...

. . .
...

0 0 . . . ln−1,ndn −ln−1,ndn




Z1

Z2

...
Zn−1

Zn


(27)
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USING AN INERTER-BASED DEVICE FOR STRUCTURAL VIBRATION SUPPRESSION 11

Note that in the case when TID control systems are used, di+1 = 1 and therefore the control forces
are independent of the ground displacement, R, as the first term on the right hand side of Equation
27 becomes null.

Now, Equation 27 is considered for each of the four controlled structures and the results are
substituted into Equation 26. Then, assuming that only the contribution of the first vibration mode
is significant, we obtain the following transfer functions between the modal displacements of the
first vibration mode and ground displacement, for each controlled structure.

(i) TMD system located at bottom storey level;

Q1

R
=

−
n∑

i=1

(miΦi,1)s
2 − Φ1,1Td

mm1s2 + km1 + TdΦ2
1,1

(28)

(ii) TMD system located at top storey level;

Q1

R
=

−
n∑

i=1

(miΦi,1)s
2 − Φn,1Td

mm1s2 + km1 + TdΦ2
n,1

(29)

(iii) TID system located at bottom storey level;

Q1

R
=

−
n∑

i=1

(miΦi,1)s
2

mm1s2 + km1 + TdΦ2
1,1

(30)

(iv) TID system located at top storey level;

Q1

R
=

−
n∑

i=1

(miΦi,1)s
2

mm1s2 + km1 + Td(Φn−1,1 − Φn,1)2
(31)

(v) Damper system located at bottom storey level - This results in a transfer fuction identical
with the one in Equations 31.This is because both systems are located at bottom storey
level. The difference consists in the control device transfer function, which for a TID

is Td =
b̂ds

2(cds+ kd)

b̂ds2 + cds+ kd
, while for a viscous damper it is Td = cds, where cd represents

damping.

where mmi, i = 1 . . . n represent the modal masses and km1 is the modal stiffness of the first
vibration mode, Φi1 represent the components of the first mode shape, Φ1 = [Φ11,Φ21, . . . ,Φn1],
and Q1 represents the Laplace transform of the displacement of the first vibration mode. Taking into
account the fact that |Φ11| < |Φ21| < . . . < |Φn1| and analysing the modal displacement-to-ground
displacement transfer functions given in Equations 28-31, provided there is no significant modal
interaction, it can be seen that:

(i) The fact that the top TMD is more efficient than the bottom one is verified by Equations 28 and
29, since the Φ2

n1 term located at the latter’s denominator is much larger than Φ2
11, present in

the former equation. Therefore, the modal displacement will be smaller if the TMD is located
at the top of the structure;

(ii) Comparing denominators on the right hand side of Equations 29 and 31, we notice that the
latter is smaller as it contains a relative term, namely (Φn−1,1 − Φn,1)

2, while the former is
the largest component of the eigenvector, Φ2

n1. Therefore, the system performance is impaired
if the same control systems characteristics, contained in Td, are kept. In order to have identical
response on the first mode of vibration we need to scale the TID system according to the ratio
Φ2

n1/(Φn−1,1 − Φn,1)
2. This has been verified numerically and is shown in the numerical

example;
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12 I. F. LAZAR, S. A. NEILD, D. J. WAGG

(iii) Looking at Equations 30 and 31 it is seen that numerators are identical, while the latter
denominator is much lower due to the presence of the relative term. This indicates that the
response will be improved if the TID is placed at the bottom storey of the structure. Similarly
to (ii), the ratio Φ2

11/(Φn−1,1 − Φn,1)
2 indicates that the TID placed at the top of the structure

must be over-designed with respect to the TID placed at bottom level in order to obtain
identical performance. This has been verified numerically and is shown in the numerical
example.

(v) Analysing Equations 28-31 and the remarks above we can conclude that the TID displays a
TMD-like behaviour in the vicinity of the first fundamental frequency, due to the similarity
between the transfer functions of the two devices. At higher frequencies, we note that Td → cd
regardless the type of control system employed (TID, TMD or damper). Therefore, Equations
31 and 32 will lead to the same results if the system is excited in the vicinity of superior
resonant frequencies, conferring the TID a damper-like behaviour. This means that the TID
combines the advantages of both TMD and damper systems.

4.2. TMD & TID system tuning

The TMD system is tuned according to Den Hartog’s guidelines, given in Equation 14, regardless
of the device location. These have been adapted to multiple DOF structures, to target the first mode
of vibration.

md = µmm1; kd = ω2
1

µm

(1 + µm)2
md; ζ =

√
3µm

8(1 + µm)
; cd = 2ζ

√
kd
md

md; (32)

where ω1 represents the first fundamental frequency. Please note that the TMD mass is computed as
a fraction of m1, the mass concentrated on one DOF (at one storey level).

The TID system is tuned following the procedure described in 3 and will be detailed in a
numerical example in the following subsection.

4.3. Numerical application

All results derived previously, in section 4, are exemplified in a 3-DOF system shown in Figure 6,
where m1 = m2 = m3 = 1 kNs2/m and k0,1 = k1,2 = k2,3 = 1500 kN/m. The numerical values
were selected for convenience, while retaining realistic natural frequencies and noting that the
parameters scale linearly. As seen in Figure 6, device configurations are considered by modelling
each control system (6(b)-6(e)) inside the uncontrolled structure shown in Figure 6(a). Note that
only one control system is used at a time.

kd
m

cd

k

r

(a)

m

k

x3

m
x2

m

k

x

F0,1

F1,0
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y
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d
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y
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(d) (e)

F0,1 F0,1

1
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m

cd
d

F3,2

y
kd

b

cd

d
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0,1

1

2

3

1,2

2,3

Figure 6. (a) Structural system 3DOF; (b) TMD located at top storey level; (c) TID located at top storey
level; (d) TMD located at bottom storey level; (e) TID located at bottom storey level.

The components of the first mode shape, Φ1 = [Φ11,Φ21,Φ31] are Φ11 = −0.328, Φ21 = −0.591
and Φ31 = −0.737. We will first study the optimal location of the TID by analysing Equations
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USING AN INERTER-BASED DEVICE FOR STRUCTURAL VIBRATION SUPPRESSION 13

28 - 31 as described in (ii)-(iii). In this case (Φ21 − Φ31)
2 = 0.021, roughly 25 times smaller than

Φ2
31 = 0.534. In order to have identical response for top TID and TMD on the first mode of vibration,

we need to enforce µb ≈ 25µm, with the same scaling applied to the TID system’s stiffness and
damping. This is shown in Figure 7(a). Note that the response curves are not identical since the
extra numerator term for the TMD, see Equation 29, has not been taken into consideration. Then,
looking at Equations 30 and 31, we notice that Φ2

11/(Φ21 − Φ31)
2 ≈ 5 which indicates that in order

to obtain identical performance, the TID placed at the top of the structures has to be designed to
a capacity that is 5 times larger than that of a TID placed at bottom level. This is shown in Figure
7(b).
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Figure 7. Displacement comparison: (a) TMD top: md, kd, cd and TID top: 25md, 25kd, 25cd and (b) TID
bottom: bd, kd, cd and TID top: 5bd, 5kd, 5cd.

Following the remarks above, that have been verified in Figure 7, we conclude that, in contrast
to TMDs, placing a TID at bottom storey level is more efficient that placing it at the top. This is a
clear advantage of the TID over the TMD as the weight of the device does not need to be supported
by the whole structure.

We have analysed the displacement response of all four control systems. The results in Figures
7(a) and 7(b), suggest that in order to obtain similar performance to a TMD located at the top of the
structure, a bottom located TID must have roughly 5 times the capacity of the TMD. The inertance-
to-mass ratio, µb, can have higher values than the TMD mass ratio, µm. This is achievable via
gearing. The following numerical parameters are proposed for the control systems elements, based
on the tuning rules discussed in Section 3. textcolorblue The viscous damper located at bottom
storey level was tuned such that it displays similar displacement response with the TID and TMD
systems in the vicinity of the first fundamental frequency.

System µb/µm kd(kN/m) cd (kNs/m)
TMD bottom/top 0.03 24.6 1.05
TID bottom 0.15 138.6 2.5
TID top 0.15 158.5 1.5
Damper bottom - - 22.5

Table I. Control systems tuning parameters.

The TID and TMD interter-to-mass and mass ratios are computed with respect to the effective
mass participating in the first vibration mode. Therefore, the TMD mass ratio is µm = 3%, while
the TID inertance-to-mass ration is µb = 15% of the mass participating in the first mode of vibration.
Similar and much higher mass ratios have been used before in TMDs [41] and are much easier to
achieve with an inerter due to its gearing. There are several options in choosing the modal mass.
Another approach is shown in [43].
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optimal damping is cd = 1.5 kNs/m.

Figure 8 shows the frequency response in terms of maximum absolute steady-state displacement
on the upper DOF for the controlled structure when a TID system is placed at bottom storey level.
The first two fixed points, P and Q, are shown in the zoom-in done in the vicinity of the first
fundamental frequency of the uncontrolled system. We highlight the points by plotting a range
of damping values including the optimal one found using the tuning rules. The other two zoom-ins
allow us to observe the structural response in the vicinity of the second and third natural frequencies.
The curve that has a horizontal tangent through one of the two fixed points is that obtained when
cd = 2.5 kNs/m. If damping is further increased, the response is amplified. Similarly, the case when
the TID is placed at the top of the structure is shown in Figure 9.

4.4. Performance assessment of TID systems

Figure 10 shows the frequency response of all four TMD and TID control systems, employing the
optimal parameters presented in Table I. The best performance is achieved when the TID is placed
at lower level, while the TMD in the same location offers the poorest results. If a TMD is placed
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Figure 10. Normalised maximum absolute displacements for µm = 0.1 and µb = 0.5.

at top storey level, the response obtained is similar to that of the TID placed at the bottom storey
level. The response obtained by placing a TID at upper story level is also satisfactory. Also note that
the TID systems do not create resonant peaks in the vicinity of the second and third fundamental
frequencies, hence the TID is capable of suppressing the response of all three modes, and not only
of the one initially targeted, as in the case of TMDs. The inerter or mass-related displacement,
y (see Figure 6), has also been evaluated over the same frequency range for the best performing
systems, TID located at bottom storey level and TMD located at top storey level. The two systems
have similar displacements in the vicinity of the first fundamental frequency, 2.74Hz. However, in
contrast to the TMD, the TID design results in small y-displacement in the vicinity of the second
and third fundamental frequencies, 7.7Hz and 11.1Hz respectively.

For the best performing systems, referred to as TMD top and TID bottom, we calculated the level
of the maximum absolute forces in the spring (Fcd) and the damper (Fkd) and the overall control
force (F ) for the case when the systems is forced in the vicinity of the first fundamental frequency.
These are given in Table II.

System Fkd/r(kN/m) Fcd/r(kN/m) F/r (kN/m) stroke/r (-)
TMD top 278 141.8 351 8.99
TID bottom 1513.7 473 1581.6 10.7
Damper bottom - 1500.5 1500.5 25.54

Table II. Maximum efforts in TMD, TID and damper system elements and overall control forces.

From Table II it can be seen that the spring force is approximately 5.4 times larger for the TID,
which is consistent with the ratio between the stiffness of the two control systems. The force in the
dampers is 3.3 larger in the case of the TID, while the ratio between their actual damping is 2.4. The
overall maximum absolute control force generated by the TID is 4.5 times larger than that generated
by the TMD. The control force produced by the damper system is similar to that of the TID system.
Please note that if the system is excited at higher frequencies, the damper control force becomes
very large in comparison to those of the TID and TMD systems.

The 3 DOF structure has also been subjected to earthquake base excitation. We have chosen a
ground acceleration recording from the Tohoku earthquake that took place in Japan on the 11th of
March, 2011 which is represented in Figure 11(a).

For this section, the structural damping is no longer kept null, but set to a low damping coefficient
of 2%. All other structural parameters are left unchanged, the control systems being tuned optimally
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(Table I). Figure 11(b) shows the displacement time history on the upper DOF. Three zoom-
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Figure 11. (a)Ground acceleration time-history and (b)Relative displacement time history with 2% structural
damping.

in plots are included in the regions where the displacement response is amplified. The results
obtained in case of sinusoidal ground excitation are confirmed in case of earthquake excitation.
The displacement response obtained with the bottom placed TID is similar to that obtained using a
TMD at the top of the structure.

Figure 12(a) shows the single sided Fourier spectrum of the ground acceleration time history.
Figure 12(b) shows the single sided Fourier spectra of the displacement response of the uncontrolled
structure and the TMD—top location—and TID–bottom location—controlled structures. The
highest amplitudes are attained at low frequencies and therefore only the 0− 8 Hz frequency range
is shown. The first natural frequency of the structure is ω1 = 2.74 Hz, tuned to match the high
amplitude frequency region of the the chosen ground motion. Therefore, the structure is sensitive to
the earthquake chosen. The Fourier spectra show the same performance hierarchy.
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Figure 12. Single sided Fourier spectra: (a) of the ground acceleration and (b) of the displacement response.

Copyright c⃝ 2010 John Wiley & Sons, Ltd. Earthquake Engng Struct. Dyn. (2010)
Prepared using eqeauth.cls DOI: 10.1002/eqe



USING AN INERTER-BASED DEVICE FOR STRUCTURAL VIBRATION SUPPRESSION 17

Since the TID systems behaviour when subjected to earthquake load is satisfactory and very
similar to that of TMD systems, we suggest that this new type of control system represents a viable
alternative to the traditional TMDs.

4.5. Discussion on TID design for high-rise buildings

In the case of high-rise buildings, the control forces necessary for suppressing unwanted vibrations
become larger. We will consider this through an analysis of a 6-DOF and a 10-DOF structure,
defined according to Section 4 and employing the same numerical values for mi and ki, i = 1 . . . n.
We will only refer to the best performing systems, the TMD top and TID bottom. Inspecting
Equations 29 and 30, we notice that the poles of the two transfer functions are the same provided
that the control device transfer fuction, Td for the TID is scaled by ϕ2

n,1/ϕ
2
1,1.

n 1 3 6 10
ϕ2
n,1/ϕ

2
1,1 1 5.04 17.2 44.7

Table III. ϕ2
n,1/ϕ

2
1,1 ratio for n = 1, 3, 6, 10

The ratios ϕ2
n,1/ϕ

2
1,1 are given in Table III. This ratio therefore provides an approximate effective

inertance-to-mass ratio between the devices — see Section 4. This might appear unfavourable for
the TID, but we recall the fact that existing inerter devices built ttain an inertance-to-physical mass
ratio of approximately 200 [42] - well above that required here. Therefore, TIDs located at bottom
storey level remain a feasible alternative to TMDs.

5. CONCLUSIONS

The paper analyses the possibility of using a TID control system as an alternative to TMDs.
The inerter, that has been previously used in vibration isolation applications, is now employed
in vibration suppression. First, a generalised framework for computation of the response of TMD
and/or TID controlled structures has been developed for n DOF systems. Then, a SDOF structure
subjected to sinusoidal base displacement is studied with the intention of deriving a series of tuning
guidelines, building on Den Hartog’s strategy for TMD systems tuning. It is shown that the TMD and
TID systems performance is almost identical when they are tuned at the same mass ratio. However,
the inertertance-to-mass ratio can be increased without significantly changing the device physical
mass, as inerters are geared. Once this is done, the displacement response is improved. Considering
MDOF structures, several TID control system installation possibilities were discussed. The best
structural response was obtained with the inerter installed at bottom storey level, connected to the
ground. This is beneficial since the control system does not need to be supported by the whole
structure anymore. For a better assessment of its performance, the TID was also compared with an
equivalent viscous damper located at bottom storey level. The three DOF structure is also subjected
to seismic excitation and proves to have similar efficiency to that of TMDs. The small mass and
overall size of the device, turns it into an attractive alternative to passive TMDs and damper systems.
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