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Abstract 14 

The growth of siliceous phytoplankton, mainly diatoms, in the Southern Ocean 15 

influences the preformed nutrient inventory in the ocean on a global scale.  Silicic acid 16 

use by diatoms and deep circulation combine to trap dissolved Si in the Southern Ocean 17 

resulting in high levels of silica production and expansive diatom oozes in Southern 18 

Ocean sediments. The analysis of the silicon isotope composition of biogenic silica, or 19 

opal, and dissolved silicic acid provide insight into the operation of the global marine 20 

silicon cycle and the role played by the Southern Ocean in nutrient supply and carbon 21 

drawdown, both in the modern and in the past.  Silicon isotope studies of diatoms have 22 

provided insight into the history of silica production in surface waters, while the 23 

analysis of spicules from deep sea sponges has defined both the spatial and the temporal 24 

variability of silicic acid concentrations in the water column; together these – and other 25 
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- proxies reveal variations in the northward flow of Southern Ocean intermediate and 26 

mode waters and how changes in Southern Ocean productivity altered their preformed 27 

nutrient content.  We present a new hypothesis – the “Silicic Acid Ventilation 28 

Hypothesis” (SAVH) – to explain the geographical variation of opal-based proxy 29 

records, in particular the contrasting patterns of opal burial change found in the low 30 

and high latitudes.    By understanding the silicon isotope systematics of opal and silicic 31 

acid in the modern, we will be able to use opal-based proxies to reconstruct past changes 32 

in the Southern Ocean and so investigate its role in global carbon cycling and climate. 33 

 34 

Keywords: silicon isotope, silicic acid, opal, diatom 35 

 36 

1. Introduction 37 

1.1 Background and motivation 38 

The Southern Ocean plays a central role in governing the inventory of preformed 39 

nutrients and carbon storage in the global ocean (Marinov et al., 2008; Marinov et al., 2006).  40 

Of particular interest is the role of Southern Ocean circulation and biogeochemistry as a 41 

major control on the global distribution of the dissolved silicon - silicic acid or Si(OH)4 – and 42 

as the single largest locus of modern opal deposition on the seafloor (Cortese et al., 2004; 43 

Figure 1). The formation and burial of biogenic opal, amorphous silica, is the most important 44 

sink of Si(OH)4 in the modern oceans, and is formed predominantly by diatoms, a diverse 45 

group of photosynthetic protists from the Class Bacillariophyceae.  Diatoms have an absolute 46 

requirement for Si(OH)4 and have evolved mechanisms for efficient Si uptake and 47 

metabolism (Martin-Jezequel et al., 2003).  Si(OH)4 uptake by diatoms severely depletes 48 

dissolved Si from surface waters (Falkowski et al., 2004).  As such, diatoms rely on upwelled 49 

waters with elevated Si(OH)4, thriving in ecosystems such as coastal and open ocean 50 
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upwelling zones, areas of deep winter mixing (such as the Southern Ocean frontal zones), and 51 

– in the case of some giant diatoms – obtaining their requisite silicon from deep nutriclines in 52 

highly stratified waters (Kemp et al., 2006).  53 

Diatoms contribute up to 40% of global marine primary productivity, and 54 

approximately half of the opal produced in the euphotic zone is exported to deep waters 55 

(Nelson et al., 1995; Tréguer et al., 1995).  Approximately 3% of biogenic opal production is 56 

preserved in ocean floor sediments as a global average (Nelson et al., 1995), with the 57 

remainder remineralized in the water column or at the sediment-water interface (reviewed by 58 

Tréguer and De la Rocha, 2013).  Although the Southern Ocean is the single largest site of 59 

opal deposition (the “opal belt”) in the modern ocean (Cortese et al., 2004), opal preservation 60 

efficiency in the Southern Ocean is not significantly different from the global average (2-6%; 61 

DeMaster, 2002; Nelson et al., 2002; Pondaven et al., 2000) such that the high opal 62 

accumulation rates in Southern Ocean sediments is sustained by high rates of opal production 63 

rather than high preservation efficiency.    64 

Diatom opal has received significant scrutiny over the past decades as a source of 65 

paleoceanographic information. Southern Ocean waters are often too corrosive for the 66 

preservation of traditional carbonate proxies, creating substantial interest in using opal as an 67 

indicator of past changes in southern component water. Opal accumulation rates, when 
230

Th- 68 

normalised to account for sediment redistribution, provide an important constraint on the 69 

productivity and export of diatoms from surface waters into deep waters and sediments 70 

(Chase et al., 2003b).  
231

Pa/
230

Th ratios in opal-rich regions provide an additional constraint 71 

on opal production, versus preservation, due to the affinity of 
231

Pa for opal (Chase et al., 72 

2002).  Given the dependence of diatoms on deep sources of Si(OH)4, 
230

Th-normalised opal 73 

accumulation rates, paired with 
231

Pa/
230

Th ratios, have been used as a proxy for wind-driven 74 

upwelling in the Southern Ocean (Anderson et al., 2009). 75 
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In addition to opal accumulation, there has been an increasing interest in the last twenty years 76 

on the use of aspects of opal chemistry as biogeochemical proxies for environmental 77 

conditions and productivity, including elemental ratios of occluded trace constituents 78 

(Ellwood and Hunter, 1999; Hendry and Rickaby, 2008; Lal et al., 2006) and  stable isotopes 79 

of Si (De La Rocha et al., 1997; De La Rocha et al., 1998), O (Leng and Sloane, 2008; 80 

Shemesh, 1995), and more recently Zn (Andersen et al., 2011; Hendry and Andersen, 2013).  81 

One of the widest used applications is that of Si isotope analysis of diatom opal as a proxy for 82 

silica production.  Briefly, there are three naturally occurring stable isotopes of silicon, 
28

Si 83 

(~92 atom %), 
29

Si (~5 atom %) and 
30

Si (~3 atom %), and the silicon isotope composition of 84 

a material is denoted by 
30

Si, where:85 


30

Si = [(
30

Si/
28

Si)sample/(
30

Si/
28

Si)standard-NBS28 -1] x 1000                        (1) 86 

 De La Rocha and co-workers first reported on the fractionation of isotopes of Si by 87 

diatoms using laboratory cultures (De La Rocha et al., 1997).  That work indicated that 88 

diatoms have a constant fractionation factor () favouring the lighter isotope 
28

Si over 
30

Si by 89 

~1.1 ‰, with similar results achieved a few years later in further culture studies (Milligan et 90 

al., 2004) and field observations of water column diatoms (Fripiat et al., 2012; Fripiat et al., 91 

2011; Varela et al., 2004), but see Sutton et al (2013) for evidence for possible interspecific 92 

variation in ε (see below).  Hence, as Si(OH)4 utilization increases, both dissolved silicic acid 93 

and the opal produced from it become progressively enriched in the heavier isotopes of Si, 94 

such that the silicon isotopic composition of diatom opal extracted from dated sediment cores 95 

can be used as a measure of past surface ocean Si utilization.  These concepts were first 96 

applied to downcore records of diatom 
30

Si from the Southern Ocean (De La Rocha et al., 97 

1998).  This progressive fractionation can be modelled as a Rayleigh-type closed distillation 98 

process, or a steady state open system, assuming a constant value of  and a known starting 99 
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isotopic composition of the nutrient substrate (De La Rocha et al., 1997; Varela et al., 2004). 100 

The aim of this review is to bring together advances in oceanic silicon isotope studies 101 

with a focus on the role of Southern Ocean circulation and productivity in controlling the 102 

global distribution of Si(OH)4 and the contribution of diatoms to global marine productivity.  103 

We will explore controls on Si isotope distribution deduced from models of modern oceanic 104 


30

Si(OH)4 distributions,  the application of Si isotopes to paleoceanographic studies of 105 

Earth’s climate, using the Silicic Acid Leakage Hypothesis (SALH) as a case study, and the 106 

future of opal-based multi-proxy approaches in paleoceanography.   107 

2. Silicon isotopes as a silica production proxy 108 

2.1. Culture experiments on diatoms 109 

 Since the original studies of De la Rocha et al. (1997) and Milligan et al. (2004), there 110 

was a considerable gap before further laboratory culture studies were carried out, which 111 

ended only recently with the publication of new culture experiments by Sutton et al. (2013).  112 

These culture experiments used the same species as the original studies (Thalassiosira 113 

weissflogii and T. pseudonana, De La Rocha et al., 1997; Milligan et al., 2004), and some 114 

Southern Ocean species that had not been previously studied (Porosira glacilis, T. antarctica, 115 

T. nordenskioeldii, Fragilariopsis kerguelensis, Chaeotceros brevis). Most of the results were 116 

consistent with the original findings (Figure 2), supporting the paradigm that diatom  has a 117 

value of -1.1 ‰ within experimental uncertainty.  However, there were some discrepancies 118 

between the different studies for different strains of the same species, T. weissflogii. 119 

Furthermore, two polar species had significantly different fractionation factors: F. 120 

kerguelensis showed a  value of -0.54 ‰ (mean for two strains) and C. brevis showed 121 

avalue of -2.09 ‰ (Sutton et al., 2013).  Two major questions arising from these studies 122 

are: Do the results of culture experiments capture the range of fractionation by diatoms in the 123 
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natural environment? And, is interspecific variation in ε, as represented by the extreme value 124 

for C. brevis, detectable in nature?  125 

 2.2. Proxy verification: Core top calibrations of diatoms 126 

2.2.1. Cleaning methods  127 

 An important aspect of paleoceanographic applications of opal composition is the 128 

effective cleaning of frustules to remove clays and fragments of other biogenic opal producers 129 

(radiolarians, sponge spicules).  Heavy liquid separation has been used routinely for opal 130 

analysis for over twenty years, but there are numerous different approaches for further 131 

physical and chemical cleaning of the opal prior to analysis (Ellwood and Hunter, 1999; 132 

Hendry and Rickaby, 2008; Lal et al., 2006; Shemesh, 1989).  Most studies of diatom Si 133 

isotopes have employed variants on these more traditional methods.  Most recently, a 134 

microfiltration method originally designed to separate different species of coccoliths from 135 

sediments (Minoletti et al., 2009) has recently been adapted for the cleaning and separation of 136 

different size fractions of opal (Egan et al., 2012).  The gentle sonication of the samples limits 137 

the potential for frustule fragmentation and thus mechanical loss of material.  The studies 138 

show that size fractions for core tops in the Southern Ocean between 2-20 m contain only 139 

clean diatom opal and yield reproducible 
30

Si values.  Fractions below and above this range 140 

show 
30

Si offsets: <2 m contain unidentifiable fragments whereas fractions >20 m 141 

contain identifiable fragments of sponge spicules and radiolarians. 142 

There are some potential issues relating to size fractionation of opal samples.  Firstly, 143 

although the microfiltration method is designed to limit the fragmentation and loss of 144 

material, it is still inevitable that material will be lost during the heavy liquid separation stage, 145 

any further filtration stages and during chemical cleaning. Secondly, selective loss of more 146 

fragile frustules, and size selection of different species, may both reduce apparent variability 147 

and introduce a bias into the measurement, for example, towards species that grow at a 148 
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particular time of year or a particular ambient Si(OH)4 condition.  However, the few studies 149 

that have been carried out on hand-picked individual frustules of particular species have 150 

shown little offset with bulk opal 
30

Si values (e.g. Hendry et al., in press). 151 

2.2.2. Core top calibration results 152 

As alluded to above, one key point to address is whether the opal 
30

Si signal from 153 

diatoms in the upper parts of the water column is preserved with fidelity in the sediments.  To 154 

address this Egan et al. (2012) carried out the first core top calibration of diatom 
30

Si using 155 

the microfiltration method. The authors found a good correspondence between the core top 156 

diatom 
30

Si from the 2-20 m size fraction and the minimum annual Si(OH)4 in the 157 

overlying surface waters, which, assuming the same initial Si(OH)4 concentration everywhere 158 

at the end of winter should reflect the extent of Si(OH)4 depletion.   This result suggests that 159 

the sedimentary signal reflects the cumulative seasonal drawdown of Si(OH)4 supporting the 160 

use of 
30

Si as a production proxy (Egan et al., 2012). Moreover, these data imply that species 161 

composition does not impact the 
30

Si, once the opal from radiolarians and sponge spicules 162 

has been removed.  The calculated values from the core tops appear to be greater when 163 

modelled at steady state from a single source of water (Figure 2).  However, the core top 164 

results are compatible with an value of -1.1 ‰ if fractionation occurs from waters with a 165 


30

Si(OH)4 composition that lies on a mixing line representing a varying mixture of 166 

isotopically heavy surface water and lighter deep water in the Southern Ocean (Egan et al., 167 

2012). 168 

2.3. Field estimates of the Si fractionation  factor 169 

Field estimates of the fractionation factor ε have been made using either the gradient 170 

in the isotopic composition of silicic acid across the nutricline, or from the difference between 171 

the isotopic composition of co-located samples of biogenic silica and dissolved silicon. 172 
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Nutrient and isotope profiles can be used to estimate isotope fractionation using either an 173 

open system model (continuous delivery of Si into the euphotic zone) or a closed system 174 

model (assuming one isolated pulse of Si delivered into the euphotic zone followed by closed 175 

system dynamics) depending on the nature of the vertical nutrient supply.  These models are 176 

described by the following equations: 177 

Open: δ
30

Si(OH)4observed = δ
30

Si(OH)4initial – ε* (1 - f)    (2a) 178 

Closed: δ
30

Si(OH)4observed = δ
30

Si(OH)4initial + ε*ln (f)   (2b) 179 

where δ
30

Si(OH)4observed is the measured δ
30

Si(OH)4 in surface waters, δ
30

Si(OH)4initial is that 180 

of the water mass supplying Si to surface waters and f is the fraction of the supply that 181 

remains in surface waters. Simple algebra can be used to show that surface water δ
30

Si(OH)4 182 

should be a linear function of [Si(OH)4]observed / [Si(OH)4]initial (open) or ln[Si(OH)4]observed 183 

(closed) with a slope equal to ε (Varela et al. 2004).  184 

In both the open and closed isotope models the δ
30

Si(OH)4 of waters ventilating to the 185 

surface is required.  Uncertainty in this value has led to considerable variations in estimates of 186 

ε (Reynolds et al., 2006) inspiring efforts to better understand δ
30

Si(OH)4 distributions in 187 

subsurface waters.   188 

In principle, ε can also be estimated from the difference between 
30

Si of opal and 189 


30

Si(OH)4, a parameter denoted by 
30

Si (Cardinal et al., 2005; De La Rocha et al., 2011; 190 

Fripiat et al., 2007).  Equating 
30

Si and ε is only approximate due to the influence of 191 

vertical mixing of isotopically light Si(OH)4 altering the biologically-driven relationship 192 

between 
30

Si of opal and 
30

Si(OH)4. 193 

A summary of the values of ε from field programs is given in Figure 2.  The range of 194 

estimated fractionation factors reflects both real-world variation in ε and methodological 195 
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challenges.  Often the simple assumptions made when applying isotope models are violated in 196 

natural systems.  No system is entirely closed or entirely open causing ambiguity in the 197 

correct choice of which isotope model to apply with mixing, also biasing 
30

Si as described 198 

above. 199 

In polar regions, biological production associated with seasonal sea ice adds 200 

additional complexity to silicon isotope dynamics.  In the open waters of the Southern Ocean 201 

the limited data available suggest that the isotopic composition of opal sinking to depth 202 

reflects patterns in the diatom 
30

Si from the mixed layer (Varela et al., 2004; Fripiat et al,. 203 

2012).  However, within the relatively closed sea-ice environment of the Antarctic Sea-ice 204 

Zone, sea-ice diatoms become distinctly heavy (Fripiat et al., 2007).  In that study the unique 205 

isotopic signature of the sea ice flora was not detected in the bulk opal signal from the open 206 

waters; however, Varela et al (unpublished) found a significant positive correlation between 207 

the isotopic composition of opal and the percent ice cover in the Canadian Basin of the Arctic 208 

Ocean suggesting a significant contribution of sea ice diatoms to the isotopic signature of 209 

opal in open water.  Given the importance of sea ice dynamics in polar oceans resolving the 210 

contribution of the unique sea ice flora to the silicon isotope dynamics remains an outstanding 211 

challenge.  212 

2.4. Other pelagic biogenic opal producers  213 

In addition to diatoms, other organisms produce biogenic opal, including heterotrophic single-214 

celled radiolarians (supergroup Rhizeria) that live throughout the water column, 215 

choanoflagellates (family Acanthoecidae) and silicoflagellates.  Considerably less work has 216 

been carried out on Si isotope fractionation by radiolarians compared to diatoms (for some 217 

discussion, see Egan et al., 2012; Hendry et al., in press; Wu et al., 1997) and, currently, 218 

nothing is known about Si fractionation by silicoflagellates or choanoflagellates.  219 

3. Silicon Isotopes in Sponge spicules as a silicic acid concentration proxy  220 
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Whilst sponges are generally considered less important than diatoms to the oceanic Si 221 

budget, recent studies suggest that they may contribute more than previously thought to the 222 

global uptake of Si(OH)4 (Maldonado et al., 2011).  Sponges are simple filter feeding benthic 223 

animals (Animalia; Porifera), without tissue grade of organisation.  Skeletal support is 224 

provided by spicules, formed from proteins, carbonate or – in the case of Classes 225 

Demospongea and Hexactinellida – opal.  Sponge spicule 
30

Si, which has a greater range and 226 

is isotopically light compared to diatoms (Egan et al., 2012), was first discussed as a potential 227 

paleoproxy a decade ago (De La Rocha, 2003).  Following on from this study, two Southern 228 

Ocean calibration studies were published (Hendry et al., 2010; Wille et al., 2010), which 229 

showed the same relationship between fractionation factor (under equilibrium conditions ~ 230 


30

Si, ranging from -1 to -5 per mil) and Si(OH)4 (Hendry et al., 2011), according to 231 

Equation 3 (Hendry & Robinson, 2012): 232 

  
          

                            
])([53

270
54.6

4

30

OHSi
Si


                                                     (3) 233 

The lack of an apparent relationship between 
30

Si in spicules and species or 234 

temperature, pH, salinity, etc., suggests that spicules, from different ocean basins, may 235 

provide a robust proxy for past bottom water Si(OH)4 concentrations (Figure 3; Hendry & 236 

Robinson, 2012). The non-linear relationship between 
30

Si and Si(OH)4 concentration is 237 

likely a result of a uptake rate effect, whereby fractionation involved with uptake processes 238 

also becomes enhanced as Si uptake rates increase with concentration (Hendry and Robinson, 239 

2012; Wille et al., 2010).   240 

The ability of isotopes of Si to provide estimates of relative Si(OH)4 depletion in 241 

surface waters (diatom δ
30

Si) together with estimates of the concentration of Si in ventilating 242 

waters (sponge δ
30

Si) makes δ
30

Si unique among the paleo nutrient proxies.   Knowing both 243 

the concentration of Si(OH)4 in upwelled waters and the fraction of that Si supply that is 244 
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utilized in surface waters offers the possibility of estimating absolute silica production rates in 245 

the past. 246 

4. Challenges and Caveats 247 

4.1. Is there such a thing as a constant fractionation factor? 248 

In order to fully understand the fractionation occurring during the biomineralization  249 

of Si, further work needs to be conducted on understanding the biochemical pathways 250 

involved in biosilicification.  This is challenging as the biochemistry of biosilicification is 251 

largely unknown making it difficult to obtain a mechanistic understanding of how Si isotope 252 

fractionation arises in both diatoms and sponges. The fractionation of Si isotopes can 253 

potentially occur at several stages of the biosilicification process: uptake of Si(OH)4 from 254 

seawater; polymerisation of SiO2 within the Silica Deposition Vesicle (SDV); and efflux of 255 

excess Si from the cell. In diatoms, the efflux of Si does not impact  (Milligan et al., 2004), 256 

which suggests that efflux does not discriminate among isotopes of Si.  257 

The cumulative effect of these processes can be modelled for sponges assuming the 258 

fractionation occurs in several steps: firstly as the Si is transported into the cell, secondly as 259 

the Si is polymerized, and thirdly as Si is lost from the cell. The fractionation process can be 260 

expressed mathematically following Milligan et al., 2004: 261 

      
I

E
tEptIfSi




 )(30      (4) 262 

Where f = the total Si isotopic fractionation factor, tI = Si isotopic fractionation associated 263 

with transport into the cell, p = Si isotopic fractionation associated with polymerization and 264 

tE = Si isotopic fractionation associated with transport out of the cell; E = rate of Si efflux 265 

and I = rate of Si influx: 266 
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where p = (p - tE); Km are the half saturation constants and max are the maximum 268 

incorporation rates.  In the case of sponges, the half saturation constant and maximum 269 

incorporation rate for polymerization have been investigated in two sets of experiments and 270 

were found to be 46.41 M and 19.33 mol h
-1

 g
-1

  (dry weight) based on explants i.e. tissue 271 

transferred to laboratory culture (Reincke and Barthel, 1997) or 74 M and 1.7 mol h
-1

 g
-1 

272 

(dry weight) based on whole specimens (Maldonado et al,. 2011).   The mathematical solution 273 

of Eq. 5 produces non-zero values for the fractionation associated with uptake, efflux and 274 

deposition (Hendry & Robinson, 2012).  Application of a similar model to diatoms is 275 

challenging in the case of diatom field studies due to the difficulties in deconvolving apparent 276 

changes in  due to water mass mixing (Egan et al., 2012), species variation (Sutton et al., 277 

2013), or a possible environmental control on diatom as there is for sponges (Hendry & 278 

Robinson, 2012). 279 

There have been recent developments in mixed layer modelling approaches to 280 

investigate possible mechanisms behind the apparent variation in diatom   Classic Rayleigh 281 

or steady state fractionation models, assuming a constant  and a uniform upwelling water 282 

starting composition, fail to capture the range of apparent  in the modern ocean, or the 283 

greater  estimated from core tops (Egan et al., 2012).  However, these can be reconciled in a 284 

number of ways:   i) modelling uptake from waters with 
30

Si(OH)4 compositions that lie on 285 
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mixing lines between different water masses (as discussed above, Egan et al., 2012); ii) 286 

modelling mixed layer processes that occur in the Southern Ocean to take into account higher 287 

dissolution rates relative to opal production, and greater supply of Si(OH)4 relative to the 288 

uptake by diatoms  (Fripiat et al., 2012). 289 

4.2. Alteration of the production signal by fractionation during silica dissolution  290 

One of the most significant outstanding questions in understanding the marine silicon 291 

cycle, and the role of the Southern Ocean in the distribution of Si(OH)4 and silicon isotopes, 292 

is the impact of dissolution of biogenic opal on apparent isotopic fractionation as this process 293 

removes 97% of surface-produced opal leaving only 3% buried in the sediment record. There 294 

has been only one published laboratory study addressing Si isotope fractionation during opal 295 

dissolution, based on mixed-assemblage plankton trawl and sediment trap samples from the 296 

Southern Ocean (Demarest et al., 2009).  The dissolution of this material under controlled 297 

conditions preferentially released the lighter isotopes of Si with a fractionation factor of -0.55 298 

‰.  This would suggest that the progressive dissolution of sinking opal would result in a 299 

trend towards increasing 
30

Si within opal with depth.   The limited data on the isotopic 300 

composition of suspended opal with depth in the water column (e.g. Fripiat et al., 2012), and 301 

the limited core top studies of biogenic opal (Egan et al., 2012; Wetzel et al., in review), show 302 

no indication of this trend. One hypothesis to explain this apparent discrepancy is that the 303 

dissolution of opal is not congruent among frustules with the majority of frustules found at 304 

depth or buried in sediments being relatively well preserved (note that <30% opal loss results 305 

in a non-detectable change in 
30

Si , Demarest et al., 2009) with the remainder being nearly 306 

completely dissolved.  Nelson et al (2002) found that in the Southern Ocean the opal that 307 

survives dissolution in the upper 1,000 m is nearly entirely delivered to the sea floor, 308 

consistent with the lack of changes in opal 
30

Si over this depth range in the Southern Ocean 309 

(Fripiat et al., 2012).   310 
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A dichotomy between frustules that completely dissolve and those that are well 311 

preserved would largely eliminate the effect of dissolution in the water column from the 312 

sediment record.  However, other factors may be involved.  Preliminary data on fractionation 313 

of frustules recovered from sediments show little sign of fractionation during dissolution in 314 

seawater (Beucher & Brzezinski, unpublished) suggesting the possibility of fundamental 315 

differences in the effect of dissolution on fresh (Demarest et al, 2009) and preserved opal.  316 

Other sedimentary processes such as precipitation of Si on diatom frustules (Ren et al., 2013) 317 

have yet to be explored, along with the possibility of isotopic exchange with the high 318 

concentrations of silicic acid in pore waters.  It is clear that the question of the impact of 319 

dissolution and abiotic precipitation/ isotope exchange on 
30

Si signatures must be addressed 320 

with further studies of monospecific diatom cultures and different types of biogenic silica 321 

(diatoms, sponges, radiolarians etc.) from different sources (fresh, preserved).  322 

5. Southern Ocean Influence on the Modern 
30

Si(OH)4 distribution 323 

Dynamics in the Southern Ocean are a major control on the distribution of Si(OH)4, 324 

and its isotope composition, on a global scale.  South of the SACCF (Antarctic Divergence) 325 

upwelled waters flow poleward and subduct with little biological removal of Si(OH)4 326 

resulting in the high dissolved Si concentrations of  Circumpolar Deep Water (CDW) and  327 

Antarctic Bottom Water (AABW) (e.g. Marinov et al., 2006). North of the Divergence Ekman 328 

transport is equatorward and biological productivity is strong.  Diatoms remove a high 329 

fraction of the dissolved Si from surface waters, then sink with a portion of frustules 330 

dissolving into the southward propagating deeper waters, returning to the Divergence as 331 

dissolved Si(OH)4. This recycling loop traps Si(OH)4 in the Southern ocean water column.  332 

Frustules that escape dissolution accumulate on the sea floor forming the Southern Ocean 333 

opal belt, which – in the modern ocean – is the largest single locus of opal accumulation in 334 

the sea and is located within the Antarctic sector of the Southern Ocean to the south of the 335 
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Polar Front. 336 

 Antarctic Intermediate Water (AAIW) and Sub-Antarctic Mode Water (SAMW) form by a 337 

combination of deep winter convection between the Polar Front and the Subantarctic Front 338 

(Bostock et al., 2013) and wind-driven mixing (Holte et al., 2012), forming the northward 339 

flowing shallow limb of the Meridional Ocean Circulation (MOC).  AAIW and SAMW 340 

(collectively referred to as Southern Ocean Intermediate Waters, SOIW, after Pena et al., 341 

2013) contain at least 10-15 µM silicic acid, but are depleted in Si(OH)4 relative to other 342 

macronutrients (nitrate and phosphate), and it is these relatively low-silicon Mode Waters that 343 

feed into the thermocline in the lower latitudes. This can be traced by the parameter Si*, 344 

where Si*=[Si(OH)4]-[NO3
-
]. SOIW have negative Si* values, which can be seen far into the 345 

North Atlantic, Indian and Pacific Oceans (Sarmiento et al., 2004).    346 

There has been recent attention paid to the role of MOC in oceanic silicon isotope 347 

distribution (de Souza et al., 2012a; de Souza et al., 2012b).  In the high latitudes, in 348 

particular the Southern Ocean, uptake of the lighter isotopes of Si by diatoms imparts a heavy 349 

isotope signature (up to +2‰) in surface waters during the growth season, which is thought to 350 

be preserved in the winter mixed layer.  The heavy isotope signature is transferred to the 351 

global thermocline via Mode Waters (
30

Si(OH)4 ~ +1.8‰), and mixed into North Atlantic 352 

Deep Water (NADW, 
30

Si(OH)4 ~ +1.6‰) (Cardinal et al., 2005; Cardinal et al., 2007; de 353 

Souza et al., 2012b; Hendry et al., 2010).  This is in contrast to deep waters in the Southern 354 

Ocean and Pacific, which have lighter 
30

Si(OH)4 signatures (
30

Si(OH)4 ~ +1.2‰) as a result 355 

of opal remineralisation and the influence of the “production-free” signature of  CDW and 356 

AABW (Beucher et al., 2008; De La Rocha et al., 2000; de Souza et al., 2012a). 357 

 5.1. Modelling global Si isotope distributions 358 

Modelling of the global marine silicon isotope distribution requires special consideration of 359 
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deep remineralisation of opal compared to organic matter, and the important role played by 360 

the Southern Ocean and, in particular, Mode Waters, which are poorly represented in many 361 

climate models.  The absolute isotope values obtained in simulations are also sensitive to the 362 

δ
30

Si of the Si entering the oceans, although the relative differences between ocean basins and 363 

water masses are robust against the isotopic value of the assumed source.  Rivers are the main 364 

source of Si to the ocean (Tréguer et al. 1995) and have an average δ
30

Si of +0.8‰ (De La 365 

Rocha et al., 2000; Georg et al. 2006).  The δ
30

Si of river waters is mainly controlled by 366 

weathering (Ziegler et al., 2005) and could vary under large climatic or tectonic changes on 367 

time scales of 100,000 years or longer (De La Rocha and Bickle, 2005).  Hydrothermal waters 368 

are another source of Si to the sea (~10% the magnitude of the river source).  Few δ
30

Si(OH)4 369 

data from hydrothermal fluids are available; two samples collected from vents on the East 370 

Pacific Rise show negative values of -0.2 and -0.4‰ close to the average value for igneous 371 

rock -0.3‰ (De La Rocha et al., 2000).  372 

Wischmeyer et al. (2003) published the first simulation of the global distribution of 373 

silicon isotopes in the world ocean using the Hamburg Model of the Ocean Carbon Cycle, V4. 374 

This simulation relied on the assumptions that 1) fractionation during silica production is 375 

constant with εDSi-BSi = -1.1‰, 2) river inputs balance permanent Si burial in sediments and 3) 376 

the dissolution of diatom frustules does not affect their isotopic composition (the study was 377 

conducted prior to the discovery of fractionation during opal dissolution). Model output 378 

showed the δ
30

Si(OH)4 distribution in the surface waters to be inversely related to the 379 

Si(OH)4 concentrations in accordance with the expectation from Rayleigh fractionation of 380 

increasing δ
30

Si(OH)4 with greater Si(OH)4 consumption.  Plotting the two variables against 381 

each other revealed that their relationship was not a simple Rayleigh distillation curve as the 382 

isotopic composition of dissolved silicon not only traces its biological consumption, but also 383 
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the mixing of water masses with different δ
30

Si(OH)4 signatures (Wischmeyer et al., 2003).  A 384 

puzzling result of the Wischmeyer et al. (2003) model was its failure to reproduce the 385 

observed decrease in δ
30

Si(OH)4 between the deep Atlantic and Pacific basins (De La Rocha 386 

et al 2000), possibly due to an excess of nutrient drawdown in the Southern Ocean due to the 387 

lack of iron limitation (Reynolds, 2009).   388 

Multi-box models have been more successful in simulating silicon isotope 389 

distributions (De La Rocha and Bickle, 2005; de Souza et al., 2012b; Reynolds, 2009), and 390 

new generation GCMs are showing themselves to be promising with respect to reconstructing 391 

the Si cycle. Reynolds (2009) used a seven box model (Toggweiler, 1999) and the ten-box 392 

PANDORA box model (Broecker and Peng, 1987) to examine global marine silicon isotope 393 

distributions.  The results of the seven box model are presented here (Figure 4) although the 394 

results from the PANDORA model are similar. Incomplete Si(OH)4 use in the surface waters 395 

of the Southern Ocean is a major driver of the model results. The dissolution of diatom 396 

frustules formed under incomplete Si(OH)4 consumption impart similarly light δ
30

Si(OH)4 397 

values to CDW/AABW.  The northward flow of Southern Ocean water masses strongly 398 

influences the isotopic composition of bottom waters in the Atlantic and Pacific basins.  399 

Outside the Southern Ocean the isotopic signature of NADW in the model is largely set by 400 

the strong ventilation in the north Atlantic.   401 

5.1.1. Agreement and discrepancies between simulations and measurements 402 

Comparison of the model results of Reynolds (2009) with the few measurements 403 

available from the deep Atlantic and Southern Oceans shows both agreement and significant 404 

anomalies between model predictions and data.  The model predicts the observed relatively 405 

heavy δ
30

Si(OH)4  values in NADW and lighter values in CDW (Figure 5). The mechanisms 406 

in the model leading to this gradient are the strong biological consumption of Si(OH)4 in the 407 
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surface waters feeding into the well ventilated NADW combined with the effects of 408 

incomplete Si consumption in Southern Ocean surface waters mentioned above.  The model 409 

was not constructed in a way to predict δ
30

Si(OH)4 values of the deep waters of the Pacific 410 

(Figure 4, 5), but the PANDORA version of the model predicts a decrease in δ
30

Si(OH)4 with 411 

increasing [Si(OH)4] along the MOC (Reynolds 2009).  412 

Beucher et al. (2008)’s examination of the global deep water δ
30

Si(OH)4 data set indicates 413 

that key mechanisms are operating in the Pacific that are not captured in current models.   414 

When data from waters >2,000 m in the Southern and Pacific Oceans are plotted as a function 415 

of 1/[Si(OH)4] most data fall along a single straight line suggesting that a simple mixing 416 

model can explain most results (Figure 5).  The high concentration end member is the 417 

Northeast Pacific Silicic Acid Plume that originates in the Cascadia Basin (Johnson et al., 418 

2006) that has [Si(OH)4] >150 µM corresponding to a 1/[Si(OH)4] value of ~0.005 in Figure 419 

5.  The other end member lies in the Southern Ocean.  In contrast, the data from the North 420 

Pacific and the Northwest Pacific fall on a trajectory of decreasing δ
30

Si(OH)4 with increasing 421 

[Si(OH)4] from the Atlantic to the Southern Ocean and Pacific as predicted by models 422 

(Reynolds 2009). 423 

A hypothesis that explains the anomalous isotope patterns in the Pacific is that the Northeast 424 

Pacific Si(OH)4 Plume (Johnson et al. 2006) exerts a major influence on Si isotopes in this 425 

region.  The flux of Si(OH)4 from the sediments beneath the Plume is large (1.5  Tmol Si a
-1

) 426 

equivalent to a third of that supplied to the global ocean by rivers (Johnson et al. 2006).  Its 427 

influence extends to the west and to the south, but apparently not as far west as the stations in 428 

the North Pacific (23°N, 158°W, De La Rocha 2000) and NW Pacific (24.3°N, 170.3°W) 429 

presented in Figures 5.  This feature has not been incorporated into models of Si isotope 430 

distributions. Note that the δ
30

Si(OH)4 of the waters in the Plume, +1.4‰, is much more 431 
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positive than hydrothermal sources (~ -0.3‰, De La Rocha et al., 2000) suggesting a biogenic 432 

source.  The δ
30

Si(OH)4 of the Plume is similar to that in the North Atlantic (Figure 5) so that 433 

it’s influence essentially eliminates contrasts in δ
30

Si(OH)4 between the deep Atlantic and 434 

deep Northeast Pacific.  435 

The main point to be taken from this analysis is that the spatial resolution of the 436 

present δ
30

Si(OH)4 data set is inadequate to evaluate mechanisms leading to even the first-437 

order distribution of isotopes of Si in the global ocean although strong anomalies point to 438 

possible explanations.  The level of variability in δ
30

Si(OH)4 within Pacific deep waters far 439 

exceeds that predicted by current models and trends between Si isotopes and Si concentration 440 

are opposite of model predictions, possibly due the Northeast Pacific Silicic Acid Plume, but 441 

other unanticipated mechanisms may be involved.  New data from the International 442 

GEOTRACES program that is producing sections of δ
30

Si(OH)4 distributions along several 443 

major ocean sections should  help resolve these issues. 444 

6. Paleoceanographic applications and multi-proxy approaches 445 

In addition to the whole-ocean concentration, biogenic opal production is controlled by the 446 

distribution of Si(OH)4 in the global ocean.  Since their evolution, diatoms have dominated 447 

the marine silicon cycle and opal formation, such that they have effectively stripped Si(OH)4 448 

out of surface waters (Falkowski et al., 2004), resulting in pervasive Si limitation of silica 449 

production (or co-limitation with other nutrients e.g. iron) in low latitude regions (e.g. 450 

Brzezinski et al., 2008; Brzezinski and Nelson, 1996).  Net diatom production relies on 451 

upwelled sources of dissolved silicon; changes in ocean circulation and upwelling are 452 

therefore key to controlling opal production and carbon drawdown by diatoms.   453 

Particular hypotheses that have received attention over the last decade are the Silicic 454 

Acid Leakage Hypothesis (SALH; Brzezinski et al., 2002; Matsumoto et al., 2002) and the 455 
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related silica hypothesis (Harrison, 2000; Nozaki and Yamamoto, 2001).  The silica 456 

hypothesis states that diatom productivity was promoted during glacials as a result of an 457 

increase in Si supplied from dust, contributing to the drawdown of CO2 (Harrison, 2000).  In 458 

contrast, the SALH posits that, during Pleistocene glacials, the addition of iron via enhanced 459 

dust deposition in the Southern Ocean results in a change in diatom physiology, such that 460 

diatoms take up macronutrients at a lower Si:N ratio.  This arises from the combination of 461 

decreased cellular N content in most, if not all diatoms, and the thickening or thinning of the 462 

siliceous frustules in response to low Fe (Hutchins & Bruland 1998, Takeda, 1998, Marchetti 463 

& Harrison 2007). Even in cases where diatoms thin their frustules in response to low Fe 464 

(Marchetti & Harisson 2007) the reduction in cellular N is even greater such that increased 465 

Si:N is a universal response.  The addition of Fe to modern day Southern Ocean waters shifts 466 

Si:N uptake ratio from a value of 4-8 under ambient conditions to a value of 2 (Frank et al. 467 

2000).  Given the [Si(OH)4[:[NO3
-
] ratio of ~2.3 in upwelling waters at the Antarctic 468 

Divergence, release from Fe stress during glacial times would cause approximately half of the 469 

upwelled silicic acid to remain in surface waters upon nitrate depletion (Brzezinski et al, 470 

2002). The net result is that the water which subducts to form the all-important SOIW that 471 

ultimately feed the lower latitude thermocline, would have both higher [Si(OH)4] and a higher 472 

Si:N ratio.  Ventilation of the relatively Si-rich SOIW at low latitude would promote the 473 

growth of diatoms relative to carbonate producers, altering the Corg/CaCO3 rain ratio and 474 

ocean alkalinity to lower atmospheric CO2 (Matsumoto and Sarmiento, 2008; Rickaby et al., 475 

2007).  Opal-based silicon isotope proxies are ideal tools for investigating the SALH, and to 476 

investigate other past changes in the marine silicon cycle (Figure 6). 477 

6.1. Silicic acid leakage from the Southern Ocean 478 

6.1.1. Opal mass accumulation rates and 
231

Pa/
230

Th 479 

For the SALH to be accepted, there has to be evidence for a change in Si utilization in the 480 
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Southern Ocean, which would have provided the excess Si(OH)4 to escape to lower latitudes.  481 

Records of Southern Ocean opal mass accumulation rates (MAR) since the Last Glacial 482 

Maximum (LGM) provide a consensus view that the main belt of opal deposition around 483 

Antarctica shifted northwards compared to today, into the subantarctic zone (reviewed by 484 

Bradtmiller et al., 2009).  These records also imply that there was no net increase in opal 485 

production that could have contributed to a drawdown of atmospheric pCO2 in either the 486 

Atlantic or Indian Sectors of the Southern Ocean (Frank et al., 2000; Kumar, 1995).  487 

However, there was a decrease during the LGM of total mass flux in the Pacific Sector, which 488 

is the main candidate for potential leakage of Si(OH)4 to the lower latitudes (Bradtmiller et 489 

al., 2009; Chase et al., 2003a). 490 

6.1.2. Opal isotope proxies 491 

Si isotope records 492 

Glacial-interglacial changes in Si utilization by diatoms south of the modern Antarctic 493 

Polar Front was the first paleoclimate question to be addressed using the diatom opal 
30

Si 494 

proxy (De La Rocha et al., 1998).  These first diatom 
30

Si records showed that there was a 495 

lower Si utilization south of the Antarctic Polar Front at the LGM compared to today, and this 496 

finding has also been mirrored in sediment cores from the subantarctic (Beucher et al., 2007), 497 

supporting the SALH.  A reduction in utilization is consistent with a decline in Si uptake by 498 

diatoms, relative to other nutrients, as a result of the alleviation of Fe stress.  However, 499 

changes in dissolution and water column recycling processes, as a result of the alteration of 500 

the recirculation that produces the modern silicon trap, could also be responsible for the 501 

observed shifts in diatom 
30

Si. 502 

Si-N isotope records  503 

The preferential and variable uptake of Si(OH)4 over NO3 in the low-iron waters of 504 

the Southern Ocean seawater results in a decoupling of the dynamics of these two 505 
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macronutrients and the preferential depletion of Si(OH)4 over NO3 in the modern Southern 506 

Ocean (Pondaven et al., 2000).  The relative utilization of the two nutrients has been 507 

constrained over time using combined Si and N isotope records from diatom opal and opal-508 

bound organic matter respectively.  One of the principal aims to date has been to investigate 509 

changes in Si:N uptake rates in the Southern Ocean over glacial-interglacial timescales as a 510 

test of the SALH (Beucher et al., 2007; Crosta et al., 2007; Horn et al., 2011; Robinson et al., 511 

2005b).  Although there are analytical challenges surrounding the robust application of 512 

diatom-bound N isotopes (Robinson et al., 2004), these studies generally agree that there was 513 

relatively higher utilization of N in surface waters compared to Si(OH)4 during the Last 514 

Glacial Maximum, suggesting a relatively high Si:N ratio in Mode Waters, and supporting the 515 

SALH (e.g. Horn et al,. 2011).  More recent studies are beginning to delve into Si(OH)4 516 

leakage deeper in time, such as an investigation of the role of southern sourced water in 517 

driving the highly productive Matuyama Diatom Maximum in the Benguela Upwelling 518 

System (Ocean Drilling Program Site 1082, 21.1 ºS, 11.8 ºE, 1279m water depth) from 2-3 519 

Ma (Etourneau et al., 2012).  The heaviest diatom 
30

Si signal corresponded with the highest 520 

opal accumulation rate, and the lightest diatom-bound 
15

N, which could be explained by the 521 

growth of mat-forming diatoms due to an increased Si(OH)4 supply from southern sourced 522 

water, but weak upwelling.  The mat-forming diatoms efficiently utilised a large proportion of 523 

the available Si, resulting in Si-limitation of surface waters and relatively low N utilization 524 

(Etourneau et al., 2012). 525 

Paired diatom-sponge Si isotopes  526 

In an analogous fashion to paired benthic-planktonic foraminifera carbon isotopes, 527 

paired sponge-diatom silicon isotope records can be used to quantify the marine silicon cycle 528 

of the whole water column: the supply of dissolved Si(OH)4 from deep waters, and the 529 

utilization of silicon in surface waters by diatoms in the Southern Ocean.  To date, the multi-530 



23 

 

proxy approach has been used to investigate the SALH since the Last Glacial Maximum 531 

(Hendry et al., 2010; Hendry et al., 2012; Horn et al., 2011).  These studies have been able to 532 

constrain deep water Si(OH)4 concentrations (Hendry et al., 2010) and the upwelling rate of 533 

Si(OH)4 (Horn et al,. 2011).  The records show a dramatic increase in upwelling supply, 534 

confirmed an increase in the utilization of Si (Horn et al,. 2011), and a slight transient 535 

decrease in the concentration of Si(OH)4 in deep waters across the last glacial termination 536 

(Hendry et al., 2010).   537 

Paired Si-Ge records  538 

One important caveat that needs to be considered when reconstructing [Si(OH)4] from 539 

sponge spicule 
30

Si  using equation 5 is that the  isotopic composition of the Si(OH)4 is 540 

required to calculate 
30

Si.  Thus the estimated Si(OH)4 concentration is a function of the 541 

measured spicule 
30

Si and for paleo - reconstructions, the assumed deep water 
30

Si(OH)4.  542 

As discussed above deep water 
30

Si(OH)4 is tied to water mass distributions within the MOC 543 

in the modern.  Deviations from the modern in the past will depend both on i) the secular shift 544 

in whole ocean 
30

Si through time, on timescales greater than the residence time of Si in the 545 

global oceans (~10 ka, Georg et al., 2009; Tréguer and De la Rocha, 2013), for example due 546 

to changes in subglacial weathering processes and meltwater inputs to the ocean (Opfergelt et 547 

al., 2013); and ii) on changes in the distribution of silicon isotopes in the oceans resulting 548 

from ocean circulation changes, on timescales of thousands of years or more.   549 

Previous studies have taken these changes into account through simple modelling 550 

efforts (e.g. Hendry et al., 2012; Griffiths et al., 2013) or by pairing with diatom 
30

Si (Egan 551 

et al, 2012).  However, an alternative approach is to use, in addition to spicule 
30

Si, sponge 552 

and diatom Ge/Si ratios.  Spicule Ge/Si will record not only secular changes in seawater 553 

Ge/Si, which can be corrected for using diatom Ge/Si (thought to be a recorder of secular 554 
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changes in whole ocean Ge/Si, although there needs to be a more thorough assessment of 555 

vital effects (Froelich et al., 1992), but also a component of Si(OH)4 concentration.  In other 556 

words, spicule 
30

Si and Ge/Si provide complementary access to past ocean Si(OH)4 557 

concentrations.  This approach has been used to investigate the SALH: Ge/Si and Si isotope 558 

proxies in sediment cores from the Atlantic and Pacific Sectors (~41ºS, ~10ºE, 4600m water 559 

depth, and ~53ºS, ~120ºW, 2700m water depth) of the Southern Ocean show that there was a 560 

build-up of nutrients during glacial periods in the Pacific Sector only, consistent with opal 561 

accumulation records (Bradtmiller et al., 2009; Chase et al., 2003a; Ellwood et al., 2010).   562 

6.2. Impact of silica leakage on the low latitudes 563 

6.2.1. Opal accumulation rates 564 

Records of opal mean accumulation rate (MAR), 
230

Th-normalised opal MAR, and 565 

downcore 
231

Pa/
230

Th do not reveal a clear picture of changes in low latitude diatom 566 

productivity over glacial-interglacial and millennial timescales in response to Si(OH)4 567 

leakage, pointing towards multiple controls in Si supply and uptake. In the Central and 568 

Eastern Equatorial Pacific, and the Peru upwelling zone, 
230

Th-normalised opal fluxes are 569 

higher at Marine Isotope Stage (MIS) 3 (~30-60 ka) than during MIS2 (~20-30 ka), with 570 

either similar or lower opal fluxes during the Last Glacial Maximum compared to the 571 

Holocene, which is inconsistent with the SALH (Bradtmiller et al., 2006; Kienast et al., 2006; 572 

Richaud et al., 2007). However, records going back further into the Pleistocene show higher 573 

230
Th-normalised opal fluxes at the glacial terminations than at full glacial conditions or 574 

during interglacials, but these peaks are not observed for all terminations, and there are peaks 575 

in opal flux not associated with terminations (Bradtmiller et al., 2006; Dubois et al., 2010; 576 

Hayes et al., 2011). In contrast, the Eastern Tropical North Pacific (ETNP) shows higher opal 577 

MAR at the glacials compared to the interglacials (Arellano-Torres et al., 2011).  In the 578 

Western Pacific, large diatom mats in the  Phillipines Sea, comprising Ethmodiscus rex, have 579 
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been carbon dated to MIS2 (Zhai et al., 2009).  However, 
231

Pa/
230

Th and 
230

Th-normalised 580 

opal fluxes from another core in the Western Equatorial Pacific indicates lower productivity 581 

in glacial periods (Pichat et al., 2004). 582 

Similar inconsistencies occur in the Atlantic.  In the Equatorial Atlantic, the sediment 583 

cores that have been analyzed to date show higher opal accumulation and corresponding 584 

231
Pa/

230
Th during the last glacial, with peaks occurring at the deglaciation, although these 585 

cores do not have sufficient sedimentation rates to resolve fully Heinrich Stadials, the abrupt 586 

climate events of the late glacial and deglacial (Bradtmiller et al., 2007).  Other sites in the 587 

Eastern North Atlantic show clearer abrupt increases in opal export during the deglacial, 588 

which correspond with oceanic and/or atmospheric reorganisation during the Heinrich 589 

Stadials (Meckler et al., 2013; Romero et al., 2008).   590 

In addition to inherent preservation bias, there are a number of reasons why the low 591 

latitude opal accumulation rate records need to be treated carefully in the context of the 592 

SALH.  Firstly, the opal MAR records reveal complex temporal and spatial patterns, 593 

reflecting a number of regional and local controls on productivity. Secondly, tropical opal 594 

burial reconstructions cannot distinguish between the silica hypothesis of Harrison (2000) and 595 

the SALH senso stricto (Brzezinski et al., 2002) i.e. opal records cannot provide a 596 

mechanistic interpretation for productivity changes. Thirdly, Si(OH)4 leakage may not 597 

manifest in an increase in opal accumulation rate, per se, but an increase in the productivity 598 

of opal-producers relative to carbonate producers, and still produce a shift in ocean alkalinity 599 

and pCO2 drawdown (Matsumoto & Sarmiento, 2008).  In other words, the lack of a coherent 600 

change in low latitude opal accumulation rates is not sufficient to reject the SALH. Instead, a 601 

multi-proxy approach allows the various interacting controls on productivity to be 602 

deconvolved, and specific hypotheses regarding the SALH to be tested. 603 

6.2.2. Multi-proxy isotope records of low latitude changes in water mass and ecology 604 
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Sponge spicule silicon isotopes 605 

An important concept that follows from the SALH is that intermediate waters 606 

subducting away from the Southern Ocean must have increased in Si(OH)4 during the glacial.  607 

Sponge spicule 
30

Si records of benthic Si(OH)4 concentrations provides one of the most 608 

direct methods for testing this assertion.  Spicule isotopic records from core site GeoB2107-3 609 

(27°S, 46°W, 1050 m water depth), which is bathed in modern AAIW, show that the Si(OH)4  610 

concentrations were not significantly different at the LGM compared to today.  However, the 611 

records show pulses of heavy  
30

Si – indicative of high  Si(OH)4  concentrations – during the 612 

abrupt events of the late glacial and deglacial, Heinrich Stadials (HS) One and Two, and the 613 

Younger Dryas (Hendry et al., 2012). In other words, leakage of high Si waters from the 614 

Southern Ocean to lower latitudes occurs, but during abrupt climate change events rather than 615 

on glacial-interglacial timescales. 616 

Paired Si-Nd isotopes 617 

Due to biogeographical variations and ocean circulation, Southern Ocean deep waters 618 

are characteristically Si(OH)4 -rich, and changes in their Si(OH)4 content can be traced by the 619 


30

Si of benthic sponge spicules (Hendry et al., 2010).  The Nd isotope composition (Nd) of 620 

bottom water, recorded in fish teeth, sediments, and Fe-Mn coatings of planktonic 621 

foraminifera in some oceanographic settings (e.g. Pahnke et al., 2008; Piotrowski et al., 2008; 622 

Roberts et al., 2010), provides an additional method of “labelling” southern sourced waters, 623 

due to a distinctive radiogenic signature from mixing with Pacific waters (Albarede et al., 624 

1997).  However, one key problem with the Nd proxy is that the Nd southern and northern 625 

end members could change over relevant timescales (Pahnke et al., 2008).  The part of the 626 

water column that is represented by planktonic foraminiferal coatings is also apparently 627 

variable (Pena et al., 2013; Roberts et al., 2010).  A combination of these benthic 
30

Si and 628 
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Nd can, however, provide a more robust means of tracing southern sourced water. 629 

To date, this has been used to investigate the SALH across MIS4 (~60-70 ka) in the 630 

tropical Atlantic (Griffiths et al., 2013), and more localised processes in the Peruvian 631 

upwelling zone of the South Pacific (Ehlert et al., 2013).  Of relevance to the SALH, Griffiths 632 

et al. (2013) found that both “tracers” indicated an increase in the presence of southern 633 

component water in a sediment core off the coast of Brazil (core site MD99-2198, 12.09ºN; 634 

61.23ºW; 1330m water depth) across the MIS 5/4 boundary, consistent with a modest leakage 635 

of relatively Si-enriched water from the Southern Ocean at this time via SOIW.  However, 636 

further work is required to understand the relationship between these two proxies, given the 637 

slight differences in the timing and nature of the changes recorded in core MD99-2198.   638 

Si-N isotopes  639 

Diatom Si and diatom-bound N isotopes from a core in the Eastern Equatorial Pacific 640 

support a reduction in Si uptake relative to other nutrients due to the alleviation of Fe stress – 641 

and limitation by Si and N - during the glacial.  The authors argue for a fundamental change 642 

in nutrient limitation in the region, with a likely glacial switch to phosphorus limitation away 643 

from Si-Fe co-limitation (Pichevin et al., 2009). 644 

7. Silicic Acid Leakage form the Southern Ocean – New Insights and Changing 645 

Perspectives 646 

The SALH has been tested repeatedly over the past few years.  One of the key issues, 647 

and the main defining difference between the silica hypothesis (Harrison , 2000) and the 648 

SALH senso stricto (Brzezinski et al., 2002), is the extent to which SOIW distributions have 649 

changed over glacial-interglacial and millennial timescales.  Other geochemical archives have 650 

been used to investigate changes in intermediate water formation and distribution, including 651 

stable carbon isotopes (Spero and Lea, 2002; Bostock et al., 2004; Pahnke & Zahn, 2005; 652 

Bostock et al., 2010), diatom-bound carbon isotopes (Xiong et al., 2013), radiocarbon (Burke 653 



28 

 

and Robinson, 2011; Keigwin, 2004; Mangini et al., 2010; Robinson et al., 2005a; Thornalley 654 

et al., 2011), Nd  (Pahnke et al., 2008; Pena et al., 2013; Xie et al., 2012), and biomarkers 655 

(Calvo et al., 2004; Calvo et al., 2011; dos Santos et al., 2012; Higginson and Altabet, 2004). 656 

Some coherent pictures have begun to arise of expanded AAIW during glacials, especially in 657 

the Pacific (Bostock et al., 2004, 2010), with intense deep mixing with CDW and Glacial 658 

Antarctic Bottom Water (GAABW), expanded oligotrophic surface waters in the Subantarctic 659 

and so a strong subsurface nutrient gradient (Bostock et al., 2004, 2010). Furthermore, carbon 660 

isotopes suggest widespread pulses of well-ventilated SOIW formation during the Heinrich 661 

Stadials and Younger Dryas (Pahnke & Zahn, 2005).  662 

Other lines of evidence point towards expanded SOIW during abrupt climate events of 663 

the deglacial e.g. Nd isotope record from the Tobago Basin and East Equatorial Pacific 664 

(Pahnke et al,. 2008; Pena et al,. 2013). Another  Nd record from the Florida Straits points 665 

towards reduced SOIW presence in the North Atlantic during Heinrich Stadial One and the 666 

Younger Dryas (Xie et al., 2012).  However, this study assumed almost pure AAIW filled the 667 

study site basin, an assumption that is not supported by modern hydrographic data (Pena et 668 

al., 2013).  These disagreements highlight the complex nature of reconstructing oceanic 669 

circulation, and the problems with geochemical proxies, for example in terms of signal 670 

redistribution (Gutjahr et al., 2008) and changing water mass end-members (Pahnke et al., 671 

2008).  672 

The opal-based evidence from the Southern Ocean discussed above, combining opal 673 


30

Si records with other palaeoproxies, indicates that there were major ecological changes in 674 

the Southern Ocean over glacial-interglacial timescales, which would have led to a change in 675 

the composition of SOIW.  The Si:N ratio would increase during glacials either due to a 676 

change in i) utilization of Si relative to N as a result of Fe fertilization (Brzezinski et al., 677 

2002), or ii) the location of the opal belt such that dissolution and regeneration of opal occurs 678 
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in the region of SOIW subduction (Bradtmiller et al., 2007).  However, proxy evidence from 679 

low latitudes suggests that, on glacial-interglacial timescales, the impact on lower latitude 680 

ecology, and climate, was minimal.  A reduction in the rate of SOIW supply, or indeed a 681 

change in the depths to which the subducted waters penetrated, over glacial-interglacial 682 

timescales may have limited the extent to which the southern sourced preformed nutrients 683 

could upwell in the low latitudes (Crosta et al., 2007).  Rather, it was changes on abrupt 684 

(millennial) timescales in ocean circulation and wind-driven upwelling (Anderson et al., 685 

2009; Moreno et al., 2002) during glacial terminations that enhanced the supply of – most 686 

likely – southern sourced Si-rich water that drove the major ecological changes observed in 687 

lower latitude sedimentary cores (Pahnke et al., 2008; Hendry et al., 2012; Calvo et al., 2011; 688 

Bradtmiller et al., 2008).   The most-cited sources for these southern-component waters are 689 

SOIW (e.g. Pahnke et al., 2008; Calvo et al., 2011; Pena et al., 2012; Hendry et al., 2012), 690 

which are known to feed the lower thermocline with nutrients in the low latitudes (Sarmiento 691 

et al., 2004).  However, it has also been speculated that the Si(OH)4 feeding the low latitude 692 

peaks in opal production seen in the Equatorial and North Atlantic originated from upwelling 693 

deep southern component water through a large-scale change in ocean circulation (Meckler et 694 

al., 2013). However, the similarity of the deglacial opal peaks in the low-latitude Atlantic and 695 

Pacific Oceans (Bradtmiller et al., 2006, 2007) would require a process that could operate in 696 

both basins despite the different deep-water mass configurations, and so could be used to 697 

argue against a deep southern component water mechanism. 698 

  Could changing nutrient dynamics in the Southern Ocean alter southern-sourced 699 

Mode Waters to cause major changes in nutrient distribution during abrupt climate change?  700 

Whilst a speculative twist on the SALH, such events may be the logical outcome of the shifts 701 

in Southern Ocean circulation and nutrient supply during glacial terminations.  Glacial 702 

periods are characterized by the northward shift in the westerly winds in the Antarctic coupled 703 
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with strong stratification south of the Polar Front due to buoyancy-forcing and reduced wind-704 

stress (Marshall & Speer, 2012).  Diatom productivity and the opal belt also shifted northward 705 

supported mainly by upwelling within the Subantarctic (Beucher et al., 2007, Bostock et al., 706 

2004).  Upwelling and mixing to the north of the Polar Front in the Subantarctic would not be 707 

as efficient in tapping high-nutrient deeper waters compared to the circulation associated with 708 

the Antarctic Divergence, diminishing nutrient supply during glacials.  The northward shift in 709 

the opal belt may have been coupled with a reduction in residual silicic acid concentrations as 710 

a result of a lower supply of Si to the Subantarctic surface waters and significant diatom 711 

production. Combined with high atmospheric Fe supply this would result in SOIW with high 712 

Si:N ratio, but diminished Si concentrations. Hence, SOIW mixing with low-latitude 713 

thermocline waters did not promote significant diatom growth, especially in regions where 714 

wind-driven upwelling was also weakened during glacial times (e.g. Moreno et al., 2002). 715 

However, during HS1, sustained Fe supply to the Southern Ocean, continued mixing in the 716 

Subantarctic (e.g. Bostock et al., 2004), together with a breakdown of stratification and 717 

increased upwelling in the Antarctic (e.g. Anderson et al., 2009; Burke & Robinson, 2011) 718 

would re-establish the Antarctic Divergence and - once again – lead to the efficient tapping of 719 

deeper waters.  Such an increase in upwelling would result in an increase in both Si and 720 

oceanic Fe supply to surface waters (Ayers & Strutton, 2013), despite reducing atmospheric 721 

Fe input (Lambert et al., 2008). Strong wind-driven mixing would result in deep winter 722 

convection (Holte et al., 2012) and formation of SOIW with high Si concentrations and high 723 

Si:N.  At the same time, enhanced wind-driven upwelling in the lower latitudes increased the 724 

supply of these waters to the thermocline and so supported enhanced diatom growth. Whilst 725 

the atmospheric Fe supply to the surface of the Southern Ocean had declined by the Younger 726 

Dryas (Lambert et al., 2008), and the Southern Ocean Si trap was re-established, low-latitude 727 

diatom pulses still occurred in places of enhanced wind-driven upwelling as a response to 728 
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enhanced mixing of oceanic Fe in the Subantarctic and changes in the vertical structure of 729 

SOIW (Hendry et al., 2012). 730 

 Key to this scenario is the change in the efficiency with which Southern Ocean 731 

circulation brings abyssal waters with high nutrients to the surface where opal formation 732 

occurs. During the glacials, that efficiency is low due to increased stratification and reduced 733 

mixing in Antarctic waters coupled with the northwards shift in the opal belt from the 734 

Antarctic Divergence to the Subantarctic, where entrainment of high-nutrient abyssal water is 735 

less pronounced. A southwards shift in the opal belt and enhanced upwelling and mixing in 736 

the Antarctic Divergence during Heinrich Stadials would increase the efficiency of oceanic 737 

nutrient supply from deep waters, and both the Si content and Si:N ratio of mode waters 738 

(Ayers & Strutton, 2013).   Together these factors form the basis of  a “Silicic Acid 739 

Ventilation Hypothesis” (SAVH) (Figure 7) where the change in oceanic and atmospheric 740 

circulation that occurred during the Heinrich Stadials would lead both to the ventilation of 741 

waters near the Antarctic Divergence, resulting in Si-enriched SOIW, and the low-latitudes, 742 

leading to the supply of these high Si waters to the surface and triggering the widespread and 743 

abrupt ecological changes that are observed.   Further investigation into intermediate depth 744 

water composition, using high-resolution records of diatom and spicule 
30

Si, in addition to 745 

the other proxies discussed above, will be able to test the plausibility of such a mechanism.   746 

The original SALH proposed that Si leakage during glacial times contributed to global 747 

cooling by lowering atmospheric pCO2 during glacial periods.  The more recent evidence that 748 

Si leakage from the Southern Ocean occurred predominately during deglaciations has 749 

profound implications for the effect of this mechanism on climate.  Si leakage during 750 

deglaciations would drive low latitude flora towards diatoms when atmospheric pCO2 levels 751 

were rising.  This suggests that the ecological effects that would favour a decline in 752 

atmospheric pCO2 was overwhelmed by other, possibly physical processes, such as the 753 
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increased evasion of CO2 from the ocean due to increased upwelling at the Antarctic 754 

Divergence (Anderson et al 2009).  755 

8.Synthesis and Conclusions 756 

The Southern Ocean plays a key role in the climate system, through heat and nutrient 757 

transfer to the global oceans.  The “biogeochemical divide” formed by the Antarctic 758 

Divergence, and the formation of Mode Waters, essentially sets the global levels of preformed 759 

nutrients and stored carbon (Marinov et al., 2008; Marinov et al., 2006; Sarmiento et al., 760 

2004; Sigman et al., 2010).  Understanding Mode Water nutrients, and how they have 761 

changed in the past, is essential for understanding past changes in both Southern Ocean and 762 

low latitude biological productivity.  Diatoms dominate the phytoplankton communities in 763 

most regions of the Southern Ocean, and they impart distinctive Si(OH)4 concentrations and 764 

isotope signatures on the subducting waters that form the Mode Waters.  The established 765 

relationship between isotopes of Si and the MOC allows the proxy to be used as both a 766 

nutrient proxy and an indicator of water mass changes.  Furthermore, biogenic opal provides 767 

an important archive of past ocean biological productivity and environmental conditions in 768 

the Southern Ocean and beyond.  In particular, when used in conjunction with other 769 

sedimentary proxies, biogenic opal 
30

Si has shown itself to have great potential in 770 

deconvolving past signals of climatic, biogeochemical and ecological change. 771 
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Figure 1: 776 

Schematic of the transport of Si(OH)4 in the ocean and the relationship with the MOC, after 777 

Marinov et al. (2008).  The double-headed arrows show the major water masses, shaded 778 

according to Si(OH)4 concentration. The dashed line shows the thermocline depth. 779 

Figure 2: 780 

Apparent fractionation factors estimated from a number of culture, water column and 781 

sediment core top studies.  (Beucher et al., 2008; Cao et al., 2012; Cardinal et al., 2005; De 782 

La Rocha et al., 1997; De La Rocha et al., 2011; Egan et al., 2012; Ehlert et al., 2013; Fripiat 783 

et al., 2012; Fripiat et al., 2011; Milligan et al., 2004; Reynolds et al., 2006; Sutton et al., 784 

2013; Varela et al., 2004). 785 

Figure 3:786 

δ
30

Si for all sponges from different ocean basins.  The modern sponges (open symbols) were 787 

measured without Mg doping, with error bars showing 2SD (~±0.2 ‰ for 30
Si and 0.4 ‰ 788 

for 30
Si). The core-top spicules (solid symbols) were measured with Mg doping, with error 789 

bars showing 2SD (~±0.1 ‰ for 30
Si).  Unless specified, data are from Hendry & Robinson, 790 

2012. 791 

Figure 4:   792 

Results using a seven box model simulating Si(OH)4 concentrations and δ
30

Si (OH)4 793 

distributions (italics in parentheses).  Surface boxes from left to right correspond to the 794 

Antarctic, Subantarctic, Low Latitude surface waters and the Subarctic.  Adapted from 795 

Reynolds (2009).  Abbreviations taken from Reynolds (2009): AAIW = Antarctic 796 

Intermediate Water (essentially Mode Waters comprising Antarctic Intermediate Waters and 797 

Subantarctic Mode Water); CDW = Circumpolar Deep Water; NADW = North Atlantic Deep 798 

Water. 799 
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Figure 5: 800 

δ
30

Si versus 1/[Si(OH)4] for waters below 2000 m (adapted from Beucher et al., 2008). EEP, 801 

Eastern equatorial Pacific; AZ, Antarctic Zone; SAZ, Subantarctic Zone; PFZ, Polar Frontal 802 

Zone; HOTS, Hawaiian Oceanic Time Series; BaTS, Bermuda Time Series. Linear regression 803 

of data from Southern Ocean and Eastern Pacific. Gray line drawn by eye.  Model results 804 

from Reynolds (2009). 805 

Figure 6: 806 

Map showing location of studies specifically aimed at investigating the SALH.  Drawn using 807 

Ocean Data View.  (Arellano-Torres et al., 2011; Beucher et al., 2007; Bradtmiller et al., 808 

2006, 2007, 2009; Calvo et al., 2004; Calvo et al., 2011; Chase et al., 2003a; Crosta et al., 809 

2007; De La Rocha et al., 1998; dos Santos et al., 2012; Dubois et al., 2010; Ehlert et al., 810 

2013; Ellwood et al., 2010; Frank et al., 2000; Hayes et al., 2011; Hendry et al., 2010; Hendry 811 

et al., in revision; Hendry et al., 2012; Higginson and Altabet, 2004; Horn et al., 2011; 812 

Kienast et al., 2006; Kumar, 1995; Meckler et al., 2013; Pena et al., 2013; Pichat et al., 2004; 813 

Pichevin et al., 2010; Pichevin et al., 2009; Richaud et al., 2007; Robinson et al., 2005b; 814 

Romero, 2010; Romero et al., 2011; Zhai et al., 2009) 815 

Figure 7: 816 

Cartoon illustrating the “Silicic Acid Ventilation Hypothesis” (SAVH).  LCDW = Lower 817 

Circumpolar Deep Water; GNAIW = Glacial North Atlantic Intermediate Water; GAABW = 818 

Glacial Antarctic Bottom Water; SOIW = Southern Ocean Intermediate Water. The black 819 

triangle shows the location of the Southern Ocean opal belt. 820 

During the LGM, Mode Waters formed with a high Si:N ratio, due to changes in utilization 821 

and dissolution processes resulting from Fe fertilization and a northwards movement of the 822 

opal belt (Bradtmiller et al., 2009).  Buoyancy-driven stratification in the Southern Ocean and 823 
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weaker mixing in the Subantarctic , coupled with weaker upwelling in key regions (e.g. 824 

Benguela Upwelling System, (Romero, 2010)) increases the ratio of Si:N in SOIW, but 825 

reduces the concentration of Si, and so reduces the supply of Si to low-latitude thermocline 826 

waters.  827 

At Heinrich Stadial 1 (HS1, 16-18 ka), ice-rafting in the North Atlantic drives a collapse of 828 

GNAIW (McManus et al., 2004), a southwards shift of the Atlantic Intertropical Convergence 829 

Zone (ITCZ), a strengthening of the NE Trade Winds (Vink et al., 2001) and a southwards 830 

shift in the Southern Ocean Westerlies (Anderson et al., 2009).  These atmospheric changes 831 

could have resulted in stronger upwelling in some regions of the North Atlantic and Pacific 832 

Oceans (Koutavas and Sachs, 2008; McClymont et al., 2012).  Enhanced wind-driven 833 

upwelling, and greater mixing in the Subantarctic, together with a breakdown of buoyancy-834 

driven stratification in the Southern Ocean, would have led to high Si:N and high Si 835 

concentration SOIW. A concurrent increase in ventilation in the Southern Ocean and the low-836 

latitudes would have led both to an export of these high Si:N and high [Si] waters and an 837 

increase in their supply to thermocline and surface waters, promoting low-latitude diatom 838 

production. 839 
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