
 McIntosh-Smith, S. N., Price, J. R., Sessions, R. B., & Avila Ibarra, A.
(2014). High performance in silico virtual drug screening on many-core
processors. International Journal of High Performance Computing
Applications. 10.1177/1094342014528252

Link to published version (if available):
10.1177/1094342014528252

Link to publication record in Explore Bristol Research
PDF-document

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published
version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms.html

Take down policy

Explore Bristol Research is a digital archive and the intention is that deposited content should not be
removed. However, if you believe that this version of the work breaches copyright law please contact
open-access@bristol.ac.uk and include the following information in your message:

• Your contact details
• Bibliographic details for the item, including a URL
• An outline of the nature of the complaint

On receipt of your message the Open Access Team will immediately investigate your claim, make an
initial judgement of the validity of the claim and, where appropriate, withdraw the item in question
from public view.

http://dx.doi.org/10.1177/1094342014528252
http://research-information.bristol.ac.uk/en/publications/high-performance-in-silico-virtual-drug-screening-on-manycore-processors(9a90a05e-96ae-41c6-82ea-ff0c85468197).html
http://research-information.bristol.ac.uk/en/publications/high-performance-in-silico-virtual-drug-screening-on-manycore-processors(9a90a05e-96ae-41c6-82ea-ff0c85468197).html

 http://hpc.sagepub.com/
Computing Applications

International Journal of High Performance

 http://hpc.sagepub.com/content/early/2014/04/14/1094342014528252
The online version of this article can be found at:

DOI: 10.1177/1094342014528252

 published online 9 April 2014International Journal of High Performance Computing Applications
Simon McIntosh-Smith, James Price, Richard B Sessions and Amaurys A Ibarra

 virtual drug screening on many-core processorsin silicoHigh performance

Published by:

 http://www.sagepublications.com

 can be found at:International Journal of High Performance Computing ApplicationsAdditional services and information for

Immediate free access via SAGE ChoiceOpen Access:

 http://hpc.sagepub.com/cgi/alertsEmail Alerts:

 http://hpc.sagepub.com/subscriptionsSubscriptions:

 http://www.sagepub.com/journalsReprints.navReprints:

 http://www.sagepub.com/journalsPermissions.navPermissions:

 http://hpc.sagepub.com/content/early/2014/04/14/1094342014528252.refs.htmlCitations:

 What is This?

- Apr 9, 2014OnlineFirst Version of Record

- Apr 14, 2014OnlineFirst Version of Record >>

 by Simon McIntosh-Smith on April 15, 2014hpc.sagepub.comDownloaded from by Simon McIntosh-Smith on April 15, 2014hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/
http://hpc.sagepub.com/
http://hpc.sagepub.com/content/early/2014/04/14/1094342014528252
http://hpc.sagepub.com/content/early/2014/04/14/1094342014528252
http://www.sagepublications.com
http://www.sagepublications.com
http://hpc.sagepub.com/cgi/alerts
http://hpc.sagepub.com/cgi/alerts
http://hpc.sagepub.com/subscriptions
http://hpc.sagepub.com/subscriptions
http://www.sagepub.com/journalsReprints.nav
http://www.sagepub.com/journalsReprints.nav
http://www.sagepub.com/journalsPermissions.nav
http://www.sagepub.com/journalsPermissions.nav
http://hpc.sagepub.com/content/early/2014/04/14/1094342014528252.refs.html
http://hpc.sagepub.com/content/early/2014/04/14/1094342014528252.refs.html
http://hpc.sagepub.com/content/early/2014/04/14/1094342014528252.full.pdf
http://hpc.sagepub.com/content/early/2014/04/14/1094342014528252.full.pdf
http://hpc.sagepub.com/content/early/2014/04/09/1094342014528252.full.pdf
http://hpc.sagepub.com/content/early/2014/04/09/1094342014528252.full.pdf
http://online.sagepub.com/site/sphelp/vorhelp.xhtml
http://online.sagepub.com/site/sphelp/vorhelp.xhtml
http://hpc.sagepub.com/
http://hpc.sagepub.com/
http://hpc.sagepub.com/
http://hpc.sagepub.com/

Original Article

The International Journal of High
Performance Computing Applications
1–16
� The Author(s) 2014
Reprints and permissions:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/1094342014528252
hpc.sagepub.com

High performance in silico virtual drug
screening on many-core processors

Simon McIntosh-Smith1, James Price1, Richard B Sessions2

and Amaurys A Ibarra2

Abstract
Drug screening is an important part of the drug development pipeline for the pharmaceutical industry. Traditional, lab-
based methods are increasingly being augmented with computational methods, ranging from simple molecular similarity
searches through more complex pharmacophore matching to more computationally intensive approaches, such as mole-
cular docking. The latter simulates the binding of drug molecules to their targets, typically protein molecules. In this
work, we describe BUDE, the Bristol University Docking Engine, which has been ported to the OpenCL industry stan-
dard parallel programming language in order to exploit the performance of modern many-core processors. Our highly
optimized OpenCL implementation of BUDE sustains 1.43 TFLOP/s on a single Nvidia GTX 680 GPU, or 46% of peak
performance. BUDE also exploits OpenCL to deliver effective performance portability across a broad spectrum of differ-
ent computer architectures from different vendors, including GPUs from Nvidia and AMD, Intel’s Xeon Phi and multi-
core CPUs with SIMD instruction sets.

Keywords
Molecular docking, in silico virtual drug screening, many-core, GPU, OpenCL, performance portability

1 Introduction

In silico molecular docking is a computational tech-
nique for predicting the structure of a complex formed
between two molecules and estimating the strength of
their interaction (Halperin et al., 2002). Until recently,
the computational cost of applying this method to
libraries of millions of candidate drug molecules (or
ligands) has been prohibitive, as each ligand-protein
docking is itself a computationally expensive operation.
With the relentless march of Moore’s Law, however,
this technique is becoming increasingly important to
the pharmaceutical industry. Halperin et al. (2002)
observed that docking is computationally challenging
because of the many different ways in which two mole-
cules may be arranged together to form a complex
(three translational and three rotational degrees of free-
dom), while Shoichet et al. (1992) observed that the
number of the potential arrangements between the two
molecules being docked grows exponentially with the
size of the components. Further, interacting all patches
of the surface of one protein molecule with all patches
of a second molecule requires on the order of 107 trials,
each one of which is a computationally expensive oper-
ation (Cherfils and Janin, 1993).

More traditional virtual screening approaches use
simplified representations (pharmacophores) of the
candidate ligands and sometimes part of the protein
surface. This allows very rapid selection or filtering of
extremely large datasets of candidate drug molecules.
These kinds of approaches can also be used for detect-
ing molecular similarity between known binders and
candidate ligands, ranging from simple properties that
can be coded into bit-strings (Tanimoto fingerprints
(Willett, 2006)), through more detailed information
coded into pharmacophores (Leach et al., 2010), to
detailed descriptions of the electric field around mole-
cules (Cheeseright et al., 2008). As computer perfor-
mance and methodologies advance, we can envisage
molecular docking augmenting or even replacing tradi-
tional virtual screening methods. We are currently
near a crossing point where the number of available

1Department of Computer Science, University of Bristol, Bristol, UK
2School of Biochemistry, University of Bristol, Bristol, UK

Corresponding author:

Simon McIntosh-Smith, Department of Computer Science, University of

Bristol, Merchant Venturers Building, Woodland Road, Bristol, BS8 1UB,

UK.

Email: simonm@cs.bris.ac.uk

 by Simon McIntosh-Smith on April 15, 2014hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/
http://hpc.sagepub.com/

drug-like molecules (1� 2 3 107 compounds) can now
be screened by docking in just a few days using HPC
systems. Growth in known drug-like chemical space is
expected to be slower than growth in computer perfor-
mance, hence attention can be focused back onto
improving the accuracy of predictions. In turn, rapid
(traditional) virtual screening methods will be able to
probe the vast, untapped chemical space of unknown
but tractable small molecules yet to be synthesized
(Reymond et al., 2010). Likewise, more accurate calcu-
lation of binding free energies (Woods et al., 2011) can
be applied to the small number of ligands (O(102))
identified as most promising by molecular docking
techniques.

1.1 The overall aims and achievements of our work

In this work, we present an optimized version of
BUDE, the Bristol University Docking Engine. BUDE
enables true in silico virtual drug screening by docking,
by exploiting a unique combination of techniques:

� a genetic algorithm-based search of the six degrees
of freedom in the arrangement of the protein and
drug molecules, which evaluates only a small frac-
tion of the overall search space;

� extremely fast implementations of the docking and
scoring computational kernels using the OpenCL
parallel programming language to exploit the latest
CPU and GPU hardware;

� a tuned empirical free-energy forcefield for predict-
ing the binding pose and energy of the ligand with
the target protein.

BUDE was one of the first applications to be
adapted for modern day accelerators. A port to
ClearSpeed’s CSX parallel architecture was demon-
strated on a cluster of 120 CSX600 accelerators on the
exhibition floor at the International Conference for
High Performance Computing, Networking, Storage
and Analysis in Reno in 2007 (a cluster so energy effi-
cient it was able to run off a small battery backup sys-
tem for five minutes during a power cut). Up to 12
CSX600 accelerators could be packed into a 1U
ClearSpeed Accelerated Terascale Server (CATS) chas-
sis. A single 1U CATS system achieved a BUDE
speedup of 213 over an at-the-time contemporary
dual socket, dual core (four cores total) 2.6 GHz x86-
based 1U server (McIntosh-Smith and Sessions, 2008).
BUDE was later ported to GPUs in 2010, when it was
used to compare the performance and energy efficiency
of a range of different CPUs and GPUs, with an
Nvidia C2050 delivering a speedup of 4.03 compared
to an eight core (dual socket, quad core) x86 system
(McIntosh-Smith et al., 2012).

The new contributions presented in this paper are:

1. Highly optimized computational kernels for the
docking and scoring functions using OpenCL,
which are capable of sustaining a significant frac-
tion of the hardware’s peak performance. We
believe the performance we have achieved is
amongst the highest sustained performance for any
real application on a GPU.

2. Techniques exploiting OpenCL to enable perfor-
mance portability across a wide range of different
computer architectures, including CPUs, GPUs and
accelerators. The results we present demonstrate
that OpenCL can enable effective performance port-
ability across a diverse range of parallel architec-
tures, an increasingly important requirement in
HPC, especially during the current proliferation of
CPU, GPU and accelerator architectures.

3. An in-depth analysis of the performance of our
molecular docking application, BUDE, comparing
performance across a diverse range of the latest
performance-oriented processors from Intel,
Nvidia and AMD.

1.2 Related work

Due to the value of molecular docking in terms of dis-
covering or designing new potential drugs, a wide range
of different molecular docking codes have been devel-
oped (Muegge and Rarey, 2003; Fan et al., 2009). As
yet, only a relatively small subset of molecular docking
applications have been ported to use many-core high
performance architectures, such as GPUs or Intel’s
Xeon Phi.

Van Court et al. (2004) undertook one of the earliest
projects to accelerate a molecular docking program,
when they ported ZDOCK to FPGAs in 2004. They
achieved a speedup of about 2003 for the 3D FFT
portion of the code, when compared to a single CPU
core (Van Court et al., 2004). Subsequent projects also
explored porting docking codes to FPGAs (Sukhwani
and Herbordt, 2008). After these early explorations
with FPGAs, and not long after the first port of BUDE
to a many-core architecture (ClearSpeed’s CSX archi-
tecture in 2006), other projects explored porting dock-
ing codes to the emerging many-core architectures,
such as IBM’s Cell processor (May, 2008; Servat et al.,
2008). Sukhwani and Herbordt (2009) at Boston
University were, in 2009, among the first to adopt
GPUs for molecular docking, porting the PIPER pro-
duction code and achieving a 6.13 speedup compared
to optimized code on a quad core CPU. PIPER was fol-
lowed by a number of GPU ports for other docking
codes (Kannan and Ganji, 2010; Macindoe et al., 2010;
Korb et al., 2011; Simonsen et al., 2011).

Our own work accelerating BUDE on many-core
architectures differs from that described above in a
number of key areas. First, we have ported BUDE’s

2 The International Journal of High Performance Computing Applications

 by Simon McIntosh-Smith on April 15, 2014hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/
http://hpc.sagepub.com/

entire functionality to the accelerator, only leaving the
initial application startup and final shutdown on the
host. Most of the previous work ported just the top few
computationally intensive functions to the accelerator.
Second, BUDE’s port has been designed to be perfor-
mance portable across a wide variety of many-core
architectures, including GPUs from multiple vendors,
Intel’s Xeon Phi, and even multi-core CPUs with wide
SIMD instruction sets. This is in contrast to previous
projects which have tended to focus on FPGAs or
GPUs from one vendor. Third, BUDE has received
extensive optimization, and can sustain over 40% of
floating point peak performance on a wide range of dif-
ferent architectures. To the best of our knowledge, this
high level of optimization exceeds that of all other
molecular docking codes, and indeed, BUDE is sustain-
ing performance at a level only exceeded by very few
other codes of any kind (vendor-optimized BLAS being
one of the few such examples). This combination of a
full port of all functionality to the accelerator, perfor-
mance portability and a very high level of optimization,
sets BUDE apart from previous work in porting mole-
cular docking codes to many-core architectures.

Performance portability is becoming an increasingly
important research area in HPC, as the range of pro-
cessor architectures continues to diversify, and the
effort required to port an application to run efficiently
on a many-core platform can be significant. In the early
days of GPU programming, the scientific software
community had no choice but to use proprietary lan-
guages such as Nvidia’s CUDA (Nvidia, n.d.). With
the emergence and maturing of open standards for
many-core programming, such as OpenCL (Khronos
Group, n.d.), developers now have more flexible
options open to them which avoid proprietary lock-in
to one vendor. Today’s HPC applications ideally need
to be able to run efficiently on multi-core CPUs with
SIMD instruction sets, many-core GPUs, heteroge-
neous APUs, and even more exotic hardware such as
accelerators and FPGAs. OpenCL is one of the few
parallel programming models available today that has
been developed with both performance portability and
heterogeneous computing as design goals. A 2013 study
by Zhang et al. (2013) investigated how OpenCL pro-
grams can be parametrized in order to optimize perfor-
mance on different target hardware, including CPUs
with SIMD instruction sets, CPUs with integrated
GPUs, and discrete GPUs. In 2011, Fang et al. (2011)
performed an in-depth study across 16 benchmarks of
the performance penalty of using a platform portable
parallel programming language such as OpenCL, over
a platform specific equivalent, such as CUDA. They
concluded that, while the platform specific language
had some advantages in certain circumstances, on the
whole OpenCL’s platform portability had little to no
detrimental impact on its performance. In 2012, Du

et al. (2012) and Agullo et al. (2009) presented their
findings for a performance portable version of the tri-
angular solver and matrix multiply kernels from the
MAGMA BLAS/LAPACK library. They exploited
OpenCL in combination with autotuning techniques to
deliver performance portability across a range of GPUs
from Nvidia and AMD. In 2012, Kim et al. (2012)
described their performance portable platform for
OpenCL programs called SnuCL. This framework
exploits OpenCL to deliver performance portability
across heterogeneous hardware, and across multiple
devices. At around the same time, Pennycook et al.
(2013) examined the performance portability of an
OpenCL implementation of LU from the NAS Parallel
Bench Suite (Bailey et al., 1991) and saw that, with
appropriate autotuning techniques, it was possible for
the OpenCL implementation to achieve performance
competitive with native FORTRAN 77 and CUDA
implementations running on the same hardware, while
Herdman et al. (2012) compared the performance of a
Lagrangian-Eulerian explicit hydrodynamics mini-
application and found that OpenCL delivered similar
performance to CUDA and OpenACC. Finally, the
PEPPHER European FP7 project (The PEPPHER
Consortium, n.d.), at the time of writing, is exploring
the performance portability of parallel and heteroge-
neous programs, reporting a comparison of three differ-
ent approaches, all of which could make use of OpenCL
to deliver the required portability (Kessler et al., 2012).

2 Background

2.1 BUDE: Docking procedure

The energy minimization algorithm employed by
BUDE is based on the Evolutionary Monte Carlo
(EMC) techniques described by Gibbs et al. (2001).
The problem domain is defined as a six dimensional
search space across the potential positions and rota-
tions that the ligand can take relative to the target
molecule, also known as the receptor. A single point in
this domain is referred to as a ‘‘pose’’, which is indexed
by the pose’s transformation descriptor. The search
comprises a sequence of generations, each of which
involves evaluating the binding energy between the
receptor and the ligand in a number of poses (the popu-
lation). Figure 1 shows the search space around the
active site of an NDM-1 protein molecule. The first
generation evaluates a population of poses generated
uniformly at random over the search space, and each
subsequent generation uses a population containing
poses which are randomly mutated from some number
of the best poses in the previous generation. The algo-
rithm terminates after a fixed number of generations;
the number of iterations is determined experimentally
and is chosen so that it is large enough for the popula-
tion to converge. Figure 2 shows a ligand docked to the

McIntosh-Smith et al. 3

 by Simon McIntosh-Smith on April 15, 2014hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/
http://hpc.sagepub.com/

active site of an NDM-1 protein molecule with a high
binding affinity. A pseudo-code representation of
BUDE’s algorithm is given in Figure 3.

For a detailed explanation of the set of equations
that make-up BUDE’s empirical free energy forcefield,
the interested reader is referred to McIntosh-Smith
et al. (2012). BUDE’s atom-based forcefield is derived
from the coarse-grained forcefield developed for protein

folding with RAFT (Gibbs et al., 2001). The molecular
interaction energy calculated by BUDE approximates
to a free energy of binding.

BUDE’s ‘soft-core’ forcefield is designed to accom-
modate the geometric approximation inherent in the
method of rigid-body docking of a relatively small
number of ligand variations, or conformations (1–50
per compound), on a relatively coarse grid (typically
1Å grid spacing and 10 8 rotations). The functions are
simple to calculate but computationally challenging
since they are discontinuous and need to be evaluated
many times.

The critical characteristic of the equations that con-
stitute BUDE’s forcefield is that they naturally employ
a large degree of conditional behavior. Indeed, of the 50
or so operations per atom–atom interaction, 20% of
these would be branches (the remaining operations are
single precision floating point operations such as adds,
multiplies, reciprocals and square roots). This is a very
high ratio of branches for an application we wish to
optimize for a many-core architecture. What is more,
many of these branches are conditionally based on the
distances between the two atoms under test, and so the
branches are likely to be highly divergent; that is, when
the code is executed in a data-parallel manner, there is
a high probability of conditional branches in different
‘lanes’ of the data parallelism wanting to execute down
different paths, causing both paths of the branch to be
executed. In general we wish to avoid branching in data
parallel code as the control flow hazards they generate
severely impact the performance of many-core pipe-
lines. Divergent branches are even worse, as not only
do they disrupt the efficient use of the pipeline, but they
cause both paths of an ‘if-else’ to be executed.

2.2 The OpenCL programming model

When deciding which parallel programming language
to use for BUDE, we had a number of design goals we
wished to meet. First, we wanted a language which
would work across all the hardware platforms we might
wish to target. Rewriting BUDE was a major undertak-
ing that has taken several years to bring to fruition, so
we did not want to resort to using a language that
would only work on a small subset of our target hard-
ware. Second, we wanted a language which would allow
us to express all the natural parallelism in the BUDE
docking application. BUDE is solving a naturally very
parallel problem, and so we wanted to be able to
express this parallelism in the new implementation. We
therefore required support for different levels of paral-
lelism, including both data and task level parallelism.
Finally, we wanted a parallel language that made it as
easy as possible for us to incrementally port our exist-
ing code, rather than having to rewrite everything from
scratch. Based on these design goals, we analyzed all of

Figure 1. The EMC search space around the active site
of an NDM-1 protein molecule. Each point in the grid
represents a potential pose, which has a position and rotation in
three dimensional space.

Figure 2. The predicted structure of a ligand docked to
an NDM-1 protein molecule. The ligand is shown in
turquoise, with the protein in purple.

4 The International Journal of High Performance Computing Applications

 by Simon McIntosh-Smith on April 15, 2014hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/
http://hpc.sagepub.com/

the available parallel programming languages, includ-
ing OpenCL, CUDA, OpenACC, Threaded Building
Blocks and CILK. Only one clearly met all of our cri-
teria: OpenCL.

OpenCL is an open standard for cross-platform par-
allel programming (Khronos Group, n.d.). Its central
premise is to provide the programmer with a means to
expose the parallelism in their application in order to
exploit the highly parallel nature of modern computer
hardware. The portions of the program that will exe-
cute in parallel are contained in kernels which define
the computation for a single element in the problem
domain. A single instance of this kernel is known as a
work-item. Work-items can be grouped together into
work-groups, with work-items in the same work-group
able to synchronize with one another and share a small
amount of local memory. At runtime, the application
can launch a one, two or three dimensional grid of
work-items to execute the kernel across the full prob-
lem domain in parallel. The programming language
used for OpenCL kernels is a modified version of C99.

OpenCL includes a conceptual model for the hard-
ware on which it will run. The primary compute com-
ponent in the OpenCL hardware model is an OpenCL
device, for example a GPU or CPU. Devices consist of
one or more compute units (CUs), each of which con-
tains one or more processing elements (PEs). The PEs
within one CU operate in a data parallel fashion.
Work-groups execute on a single CU, while work-items
are executed on PEs. Work-items within a work-group

can share access to the CU’s local memory. All work-
items can access a device’s global memory. For more
details on OpenCL’s programming model, see Khronos
Group (n.d.), Munshi et al. (2011) and Gaster et al.
(2011).

OpenCL is widely supported by most parallel hard-
ware vendors. There are optimized implementations
available for CPUs from Intel and AMD, optimized
implementations for GPUs from Nvidia, AMD, ARM,
Imagination Technologies, Intel and Qualcomm, and an
implementation for Intel’s Xeon Phi, amongst others.

2.3 Nvidia’s Kepler architecture

The primary GPU targeted in this work was an Nvidia
GTX 680 (Nvidia, 2012a), based on the GK104 variant
of the Kepler architecture. This GPU contains 1536
single precision floating point units, which Nvidia
terms CUDA cores. These are grouped together into 8
units of 192, called Streaming Multiprocessors, or
SMXs. Programs are run on the Kepler architecture in
a single instruction multiple threads (SIMT) style.
These threads are executed in groups of 32, known as a
warp. Threads within a warp execute instructions in
lockstep. Each SMX unit contains four warp schedu-
lers, and each of these schedulers can dispatch up to 2
independent instructions per cycle from a single warp.
Each SMX can execute up to 6 different 32 element
wide SIMD instructions at a time. When a warp stalls
due to a high latency instruction (for example, a read

Figure 3. Pseudo-code description of the docking algorithm employed by BUDE.

McIntosh-Smith et al. 5

 by Simon McIntosh-Smith on April 15, 2014hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/
http://hpc.sagepub.com/

from DRAM), the SMX will swap in another warp to
maintain core utilization. Each SMX also contains a
small amount of on-chip memory that can be shared
between its CUDA cores. The GTX 680 is capable of
3.09 TFLOP/s theoretical peak performance (single
precision).

Transcribing the GTX 680’s characteristics into
OpenCL terminology, the SMX cores are CUs, the
CUDA cores are PEs, and the SMX memory is local
memory. A GTX 680 therefore has 1536 PEs grouped
together into 8 CUs of 192 PEs each.

3 Methods

3.1 Overview

In this work we had two specific goals. First, we wanted
to discover just what fraction of peak performance it
was possible to sustain for a real molecular docking
application, BUDE, on a specific target GPU, the
Nvidia GTX 680. Second, we wanted to explore perfor-
mance portability for our highly optimized BUDE
implementation, and in particular to discover whether
OpenCL would enable us to have a single implementa-
tion which would perform well on a wide variety of
highly parallel computer architectures. This perfor-
mance portability investigation was particularly inter-
esting to us, because many of the GPU optimization
studies performed to date have focused on only a spe-
cific platform, such as CUDA on an Nvidia Tesla
GPU, or OpenMP with MPI on an Intel Xeon Phi. The
ability to port an application once and then have it run
fast everywhere is extremely attractive to software
developers, and the maturing of the OpenCL standard
represents a unique opportunity to develop a cross-
platform many-core application.

3.2 Optimization approach

The evaluation of free energy for a population of poses
(the COMPUTE_ENERGIES function in Figure 3) represents
the vast majority of the computation required to dock
a ligand molecule with a receptor molecule, and this
functionality was implemented as a single, highly opti-
mized OpenCL kernel. A typical BUDE in silico virtual
drug screening run will require docking every ligand
from a database of millions of molecules, each consist-
ing of around 15–40 non-hydrogen atoms. Receptor
molecules are typically much larger, consisting of a few
thousand atoms. To dock a single ligand conformation
to a receptor we need to evaluate the binding energies
for hundreds of thousands of poses. Therefore to pro-
cess an entire database of millions of virtual ligands, we
will need to calculate the docking energies of potentially
billions of poses. Each pose can be evaluated indepen-
dently of the others, and we exploit this data paralle-
lism in OpenCL by assigning each pose to a separate

work-item. Compared to the previously published ver-
sion of BUDE (McIntosh-Smith et al., 2012), in this new
work we focused on significantly improving the through-
put of the primary kernel and in porting the remaining
computation from the host to the OpenCL device. We
have achieved significant performance improvements,
first by considering the memory access patterns the pri-
mary kernel exhibits, and then by heavily optimizing the
instructions used for energy calculations to maximize the
utilization of the GPU’s floating point units.

The individual optimizations that we have made in
this work are not unique in themselves. However, the
extent to which we have optimized BUDE’s code, suc-
cessfully eliminating all of the branches from what is
otherwise a naturally highly branch-dependent code, is
one novel aspect of this work. Our approach involved
analyzing the assembly code being generated for
BUDE’s computational kernels on a specific architec-
ture, before going back to modify the higher level
OpenCL code in order to assist the compiler in generat-
ing the best possible output. This is an extreme form of
code optimization which, to the best of our knowledge,
has not been applied to a molecular docking code
before. In addition, we have avoided the potential pit-
fall of a code which is highly optimized for just a small
range of target devices. Instead we have achieved a
resulting code which is both highly optimized and
highly performance portable across a diverse range of
many-core architectures. This is in contrast to most
prior work in this area, which tended to focus on opti-
mizations for just one specific architecture or range of
GPUs from one vendor.

3.3 Memory access patterns

Our previous implementation of BUDE (McIntosh-
Smith et al., 2012) assigned forcefield parameters to
atoms during initialization, packing these parameters
together with the position of each atom into a single
structure. The motivation for this original design was
that this assignment of values into a per-atom structure
would be performed only once, after which the para-
meters would be readily available in each atom’s data
structure during energy evaluation. However, the result-
ing atom structure was 40 bytes in size, suboptimal for
most memory subsystems, which are typically opti-
mized for memory accesses which are multiples of pow-
ers of two in size. By instead performing parameter
assignment on demand inside the energy evaluation ker-
nel, we were able to reduce the atom structure to a posi-
tion (three 32-bit floats) and type (one 32-bit integer).
This new atom structure was just 16 bytes in size, which
aligned much more efficiently with most hardware’s
memory interfaces.

The forcefield used in this work comprised seven dif-
ferent parameters, and was defined for approximately

6 The International Journal of High Performance Computing Applications

 by Simon McIntosh-Smith on April 15, 2014hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/
http://hpc.sagepub.com/

35 atom types. With each parameter stored as a single-
precision floating point number or a 32-bit integer, the
resulting look-up table was ;1 KByte in size. This
allowed us to explicitly copy the forcefield into the
GPU’s fast on-chip (local) memory, instead of relying
on caches to minimize the latency of retrieving force-
field parameters from DRAM. This optimization miti-
gated the cost of repeatedly assigning forcefield
parameters within the energy evaluation kernel and
yielded small performance gains over pre-assigning
parameters into packed atom structures. We also
noticed that the forcefields we used typically had some
parameters that were equal for all 35 atom types (e.g.
interaction cut-off distances). For these cases, we were
able to exploit a form of metaprogramming, removing
the parameters from the look-up table, and instead
building them into the kernel as constant values that
were set when the OpenCL kernel was compiled at
runtime.

Each work-item operated on a different pose, and
therefore requested a separate six-float transformation
descriptor (TD) before computing the resulting trans-
formation matrix used to calculate each ligand atom’s
position and orientation. Our previous implementation
stored these TDs as contiguous 24 byte blocks in an
array-of-structures (AoS) data layout. In this new work
we optimized the code to instead use a structure-of-
arrays (SoA) format, which in turn enabled more
efficient, coalesced memory accesses in very parallel
memory subsystems, such as those found in GPUs and
in the Xeon Phi. On the GTX 680 which was our focus
for this work, overlapping the memory accesses to these
data structures with arithmetic instructions allowed the
SMX warp-scheduler to hide the DRAM access latency
with computation, and using SoA format for the TDs
increased the coalescence of the memory accesses,
resulting in a higher overall throughput and a more
efficient use of the memory subsystem.

3.4 Instruction sequence optimization

As described at the end of Section 2.1, the equations
which constitute BUDE’s forcefield contain many
branches, and thus the evaluation of atom–atom ener-
gies naturally exhibits a high degree of conditional
behavior: each forcefield function only contributes an
energy value to the binding affinity for certain combi-
nations of atom type and pairwise distance. Since
groups of 32 work-items (warps) execute in a SIMD
fashion on Kepler, these work-items are sensitive to
divergent branches, during which some PEs may sit idle
while other PEs in the same warp are executing a diver-
gent branch body. Even conditional branches that are
uniform, that is, where all the work-items in the same
warp branch the same way, will have a large and typi-
cally detrimental impact on performance, as GPUs

tend to have very simple branch predictors and deep
pipelines. In these circumstances, even in the best case
a branch will cause pipeline stalls and lose perfor-
mance. To alleviate the performance impact of condi-
tional branches in general, and divergent branches in
particular, the inner loop body of the energy evaluation
kernel was rewritten to transform conditional branches
into combinations of predicated selection and multipli-
cation to achieve semantically equivalent behavior, but
without the control flow.

For example, the conditional accumulation shown
in Figure 4 can be replaced with the code in Figure 5
which multiplies the expression by zero if the condition
is not met. While both examples compile to the same
number of instructions, the latter removes the overhead
of branching by unconditionally evaluating the expres-
sion. Another benefit of the predicated approach is that
it exposes some instruction level parallelism (the sub
and setp instructions can be executed independently),
which can be exploited by the dual-issue capability of
the Kepler architecture. Replacing the branches with
predicated code had the additional benefit of increasing
the size of the basic block with which the compiler
could schedule instructions, enabling it to make more
efficient use of the instruction pipeline, with fewer pipe-
line stalls caused by a lack of appropriate instructions
that can be issued and executed in parallel.

Parallel thread execution (PTX) is an intermediate
assembly language used by Nvidia as a proprietary,

Figure 4. Conditional accumulation of an expression.
Shown in OpenCL C, with the corresponding assembly code
(Nvidia PTX).

Figure 5. Predicated accumulation of an expression.
Shown in OpenCL C, with the corresponding assembly code
(Nvidia PTX).

McIntosh-Smith et al. 7

 by Simon McIntosh-Smith on April 15, 2014hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/
http://hpc.sagepub.com/

device-agnostic assembly code representation for GPU
kernels (Nvidia, 2012b). In order to identify which lines
of code were causing the OpenCL kernel compiler to
generate branch instructions, we generated the PTX
output for our primary OpenCL kernel by passing the
CL_PROGRAM_BINARIES flag to the clGet
ProgramInfo() OpenCL command. By analyzing
the PTX and identifying which parts of the kernel were
causing branches to be generated, we were able to
incrementally modify the code, replacing each branch-
generating sequence in the kernel with a semantically
equivalent sequence which was more amenable to pre-
dicated execution. Proceeding in this manner, we were
able to successfully remove all branch instructions from
the inner loop of the kernel, significantly improving
GPU utilization and overall performance. Guided by
our analysis of the PTX, we also made further changes
to enable the compiler to generate single-cycle multiply
add (FMA/MAD) instructions where possible.

To increase data reuse within the OpenCL kernel,
and thus increase arithmetic intensity and overall per-
formance, the code was modified to process multiple
poses within each work-item. This optimization meant
that more energy evaluations could be performed for
each protein atom loaded in the inner loop, which
served to amortize the cost of loading atom data from
DRAM. For the GTX 680, we found that processing
four poses per work-item gave the highest performance.
Figure 6 shows the instruction mix for the innermost
loop of the kernel when computing a single pose per
work-item compared to four poses per work-item. This
approach reduced the number of memory accesses per
pose by more than half. Instructions for pointer arith-
metic and predicate generation were also amortized by
this approach, leading to further performance gains.
The vast majority of instructions in the final version of
the kernel were floating point operations, and with the
exception of the unavoidable branch at the end of the
loop, all of the conditional behavior in the loop body

had been transformed into predicated execution via use
of the setp and selp PTX instructions; see Figure 7.

3.5 Host performance

Although the energy evaluation kernel was the perfor-
mance critical component of BUDE, we had to keep
Amdahl’s Law in mind, and ensure that, as we opti-
mized this kernel, we were not merely moving the bot-
tleneck to the generation and evolution of poses during
the EMC. These additional parts of the docking pro-
cess (lines 2, 5 and 6 in Figure 3) were therefore also
ported to OpenCL in order to minimize their contribu-
tion to the overall runtime. This optimization removed
the need for any data transfer between the host and
OpenCL device other than the initial data (16 bytes per
atom, 15–40 atoms per ligand, ;1000 atoms per recep-
tor) and final results (six float transformation descrip-
tors and a four byte ligand identifier per best result,
;100 best ligands returned), between them a trivial
amount of data.

The generation and evolution of the population of
poses used in the EMC relied on a random number gen-
erator (RNG). In order to efficiently generate random
numbers in parallel, we produced an OpenCL imple-
mentation of WarpStandard (Thomas, n.d.), a GPU
specific RNG that provides one generator per work-
item (thread). This RNG was selected due to its balance
of speed and statistical quality, and we verified that the
accuracy of the docked structures predicted by BUDE
was no worse when using this RNG.

To evolve a population of poses in the EMC, one
needs to select the subset of poses from the current pop-
ulation that have the lowest energies (line 5 in Figure
3). The genetic algorithm in BUDE needs to select the
best K elements from an unsorted list of size N , where
K is O(102) and N is O(105). In the previous implemen-
tation of BUDE, this partial sorting operation was per-
formed on the host using a variant of quicksort. The

Figure 6. Instruction mix for the innermost loop in the energy evaluation kernel. (a) shows the mix for one pose per
work-item, while (b) shows the impact of unrolling the pose loop four times.

8 The International Journal of High Performance Computing Applications

 by Simon McIntosh-Smith on April 15, 2014hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/
http://hpc.sagepub.com/

recursive nature of the quicksort algorithm means that
it is not well suited for GPUs, and so a new approach
was required in this work. Our solution to this sorting
problem was based on an approach devised by Felipe
Cruz at the University of Nagasaki, using a two stage
algorithm.

In the first stage, we split the list into equal partitions
of size B (which we call bins), where we chose B= 1024

to suit the target architecture. We assigned a work-
group to each of the dN=Be bins, and used an imple-
mentation of Batcher’s bitonic merge sorting algorithm
(Batcher, 1968; Knuth, 1998) to sort the contents of
each bin, using local memory to store the intermediate
results. We chose merge-sort for several reasons. The
first reason is merge-sort’s low parallel time complexity
of O(log2 N). Secondly, the merge-sort procedure is
non-recursive so it is straight-forward to implement effi-
ciently on a wide range of architectures, including our
target GPU. Fast merge-sort implementations consist of
a set of comparators with no data-access conflicts, an
important performance consideration for very parallel
memory subsystems, such as those found in GPUs and
Xeon Phi (otherwise, conflicts in accessing local memory
would occur, which would then be serialized).

In the second stage, after the merge-sort of the indi-
vidual bins, we merge the sorted bins, but only needed
the first K elements of the sorted list. To achieve this
without needing to wastefully merge the bins com-
pletely, we ran a second kernel comprising a single
work-group, with a work-item assigned to each bin.
Each work-item examined a single element in their bin,
and the work-item with the lowest element wrote this
pose as output, before that work-item moved on to the

next element. This step iterated K times, and we again
used local memory for all of the intermediate data.

With all of the computation ported to the OpenCL
device (in this case the GTX 680 GPU), we needed to
address BUDE’s disk access to avoid this becoming the
new bottleneck. At the beginning of a BUDE docking
run, the data describing the target protein (receptor)
and the database of ligands to be docked all begin on
disk. Care was taken to minimize the data transfer
requirements on the filesystem. A preprocessing step
was introduced to parse the protein and ligand mole-
cules from the text-based Tripos Mol2 format (Tripos,
2005) into the raw binary data required by the docking
kernel. This reduced the average amount of data
required to store a single ligand conformation from
1720 bytes to just 430 bytes, a reduction of 75%. This
drastically reduced the strain on the filesystem during
large screening runs, when all 160 million conforma-
tions of the 8 million ligands in the ZINC database
would need to be processed. In our new binary format
this still required ;69 GBytes of disk space. This final
optimization also removed the need for the host to
parse the atom data during screening, thus further
reducing the load on the host.

4 Performance results

All of the GPU benchmarks presented in the following
section were performed on the same host system, listed
in Table 1. Our benchmark docked a total of 128
conformations from 10 different ligands in the ZINC
database (UCSF, n.d.) to a target protein molecule
(NDM-1, PDB code 3Q6X) with 938 atoms in the

Figure 7. PTX instruction histogram for innermost loop in energy evaluation kernel. The y-axis indicates the number of
instructions executed within the main energy evaluation kernel. Results shown are for the four poses per work-item scheme.

McIntosh-Smith et al. 9

 by Simon McIntosh-Smith on April 15, 2014hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/
http://hpc.sagepub.com/

docking site. BUDE’s EMC docking process was set to
consider eight generations, each requiring 65,536 poses
to be evaluated. The primary metric for measuring per-
formance was the number of atom–atom pairwise inter-
actions computed per second (line 18 in Figure 3). This
metric was independent of the size of the EMC and
molecules, and bears some relation to other molecular
modeling applications (although the amount of work
to perform a single interaction will likely be very differ-
ent for other docking codes).

In order to determine how well our code was utiliz-
ing the GPU, we also measured the number of FLOP/s
performed. Since all conditional execution was removed
from the inner loop of the optimized version of the
energy evaluation kernel, the number of FLOPs exe-
cuted when docking a particular ligand was dependent
only on the number of atoms in the ligand and protein,
and the number of poses in the EMC. Our baseline
(original) version of the code contained data-dependent

conditional execution however, and so we instrumented
both versions of the docking kernel with a counter to
calculate the total number of FLOPs that were actually
performed. We counted each floating point arithmetic
instruction as a single FLOP, including comparisons
and special instructions (sqrt, sin and cos). The only
exceptions were the FMA and MAD instructions,
which we counted as two FLOPs each.

Figure 8 shows the incremental effects of our main
optimizations to BUDE. Our baseline code for perfor-
mance comparisons was our original OpenCL port of
the energy evaluation kernel, with the remainder of the
application running in Fortran (sequentially). This was
the version of BUDE previously described in our work
on measuring the energy efficiency of GPUs
(McIntosh-Smith et al., 2012). All speedups are
reported for the wall-clock time for the complete dock-
ing run, not simply for the kernel times. Also, all speed-
ups are reported cumulatively, i.e. a speedup of 10%

Table 1. Benchmark system specifications.

Nvidia AMD Intel

OpenCL device(s) GTX 680,
GTX 780 Ti,
Tesla K20c

Radeon HD7970,
Radeon R9 290X,
FirePro S10000

Xeon Phi SE10P,
Xeon E5-2687W (x2)

CPU model Intel Core i5-3550 Intel Core i5-3550 Intel Xeon E5-2687W (x2)
CPU specs 4 cores, 3.3 GHz 4 cores, 3.3 GHz 16 cores, 3.1 GHz
Main memory 16GB 16GB 32GB
Operating system Ubuntu 12.04 Ubuntu 12.04 RHEL Server 6.3
Driver/SDK Driver 331.20 fglrx 13.25.5 Intel SDK for OpenCL Applications

XE 2013 R3 (3.2.1.16712), MPSS 2.1.02.0390,
Intel Fortran compiler (ifort) 13.1.0 20130121

Figure 8. Effect of individual optimizations on performance and utilization on a GTX 680.

10 The International Journal of High Performance Computing Applications

 by Simon McIntosh-Smith on April 15, 2014hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/
http://hpc.sagepub.com/

followed by another speedup of 10% represents a total
speedup of 21%, not 20%, over the starting
performance.

For this new work, we ported the small-ligand dock-
ing host code to Python, using PyOpenCL (Klöckner,
n.d.) to interface with OpenCL. The EMC code previ-
ously running on the host was ported to the GPU dur-
ing this conversion. During our experiments, we found
that explicitly targeting an older version of the Nvidia
architecture by adding -cl-nv-arch sm_13 to the
OpenCL kernel build options yielded a 10% increase in
performance. This is likely due to a difference in compi-
ler technology: older versions of Nvidia’s toolchain
used a proprietary compiler, but more recently they
have migrated to LLVM. This newer toolchain will still
be maturing, and therefore may not produce as optimal
code as the previous compiler. Similar behavior has
been observed by others (Kurzak et al., 2012). At this
stage we also reordered the nesting of the protein and
ligand loops in the energy kernel (lines 16 and 17 in
Figure 3) in order to remove the need to precompute
and store the transformed ligands. These improvements
together yielded a total speedup of 34.2%.

Next we performed the modifications to memory
layout, creating a forcefield look-up table and coales-
cing accesses to transformation data. At this stage in
the optimization process, this optimization did not
have as big an impact on performance as we initially
expected, giving only a 1.7% increase in speed. After
some investigation, we concluded that this was largely
due to the majority of BUDE’s memory accesses being
broadcasts from global memory: every work-item oper-
ated on the same atom data at the same time. This
meant that the total cost of memory accesses was
already small in the baseline code, and so optimizing
this part of the code yielded a relatively small improve-
ment to overall performance.

Replacing conditional branches with predicated exe-
cution and processing multiple poses per work-item
had much more significant effects on both performance
and device utilization. Replacing all the conditional
branches with predicated execution yielded a 54.1%
speedup, while the multiple poses per work-item opti-
mization resulted in a further 79.6% performance
improvement (both measured in atom–atom interac-
tions per second). The combined benefit of these two
optimizations resulted in a 2.83 speedup.

With all of these optimizations applied, we revisited
the memory layout optimization in order to quantify
its importance in supporting the later optimizations.
Taking the final version of the code and then undoing
just the memory layout optimization resulted in a
14.0% reduction in the sustained TFLOP/s and a
15.0% reduction in the delivered atom–atom interac-
tions per second, proving that the memory layout opti-
mization was critical to the eventual performance of
the fully optimized code.

With all of these optimizations applied, our highly
optimized code achieved 44 billion atom-atom interac-
tions/s on the GTX 680, taking 37 s to dock the 128
conformations (;0.3 s per conformation). It achieved a
sustained performance of 1.43 TFLOP/s when measured
across the entire BUDE run, representing 46% of the
peak single precision performance of the device.
Compared to our baseline code, this improved device
utilization by 10.23 , resulting in an overall increase to
docking throughput of 3.83 (see Table 2). Just over
96% of the overall runtime was spent inside the energy
evaluation kernel, and the amount of time the GPU was
idle was negligible. It is interesting to observe how our
modifications from conditional code to predicated code
have affected performance and FLOP counts, the latter
having to increase by ;103 to deliver a ;43 increase
in the former. This seems a reasonable tradeoff; many-
core processors have FLOPs in abundance, and we have
successfully exploited them in this work to deliver signif-
icant real-world performance improvements.

The 3.09 TFLOP/s of theoretical peak performance
of the target GPU was computed on the basis that on
every clock cycle, every processing element in the device
can perform two single precision floating point opera-
tions (a multiply and an add). Clearly this peak perfor-
mance is unlikely to be reached in reality; to achieve
the theoretical peak performance an application would
have to consist entirely of FMA/MAD instructions,
with negligible overheads due to memory accesses and
conditional behavior.

In order to understand our achievement of sustain-
ing 46% of peak performance for BUDE, consider the
GEMM set of matrix multiply subroutines in the Basic
Linear Algebra Subprograms library (BLAS) (National
Science Foundation and Department of Energy, n.d.).
Matrix multiplication is a fundamental building block
for many other scientific routines, and since it consists

Table 2. Relative speed-up for individual optimizations on a GTX 680.

Code version Relative interactions/s Relative TFLOP/s Energy evaluation time (%)

Baseline 1.00 1.00 94
Python + EMC on GPU 1.34 1.74 99
Memory access patterns 1.36 1.79 99
Removal of conditional execution 2.09 7.11 98
Multiple poses per work-item 3.76 10.21 96

McIntosh-Smith et al. 11

 by Simon McIntosh-Smith on April 15, 2014hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/
http://hpc.sagepub.com/

of a high degree of multiply and accumulate opera-
tions, it typically gets closer to peak performance than
almost any other function. As such, GEMM is often
used to benchmark hardware for HPC, and for exam-
ple, DGEMM is the most performance critical subrou-
tine in the LINPACK benchmark (Dongarra et al.,
n.d.) used to compile the TOP500 list of supercompu-
ters (Meuer et al., n.d.). Recent performance results for
single precision, complex matrix multiply (CGEMM)
running on a GTX 680 show that this GPU can achieve
up to 56% of peak performance, the highest sustained
performance we have found in the literature for this
GPU (Kurzak et al., 2012). The BUDE application is
much more complex than matrix multiply: it contains
complex conditional behavior, and some of the floating
point operations in the inner loop are square roots and
reciprocals. Since we were measuring performance
across the whole application as opposed to a single ker-
nel, we believe that our sustained performance of 46%
is an excellent result and amongst the highest sustained
performance achieved for a real application on a GPU.

4.1 Performance portability with OpenCL

An important feature of the OpenCL framework is its
portability; the same OpenCL code will run on devices
from a wide variety of hardware vendors. One of the
main goals of our work was to explore the performance
portability potential of OpenCL. Figure 9 shows the
maximum sustained FLOP/s that the new OpenCL ver-
sion of BUDE presented in this paper achieved on a
selection of devices, and the corresponding fraction of
their theoretical peak floating point performance this
represents. In the optimized version of BUDE, the
docking throughput is roughly proportional to the sus-
tained floating point performance; the sustained

performance of 1.43 TFLOP/s on the GTX 680 trans-
lates to approximately 44 billion atom–atom interac-
tions per second.

In all runs across all devices, all of the BUDE source
code, including the OpenCL kernel code, was identical;
the only change made when benchmarking each device
was to tune three simple parameters. First, we chose the
number of poses per work-item, typically four. Second,
we chose the work-group size to suit each device. Third,
we selected a total number of poses such that the total
number of work-groups was exactly divisible by the
number of compute units. Finally, we ensured that the
total number of poses (and therefore the total problem
size) was as close to 65,356 as possible. The systems
used to benchmark each device are listed in Table 1.

Perhaps unsurprisingly, the highest fraction of peak
performance was achieved on the GTX 680, as most of
our optimizations were developed on this device.
However, the same code also performed well across all
the other devices in the test, averaging 40% efficiency
(i.e. sustaining on average 40% of peak floating point
performance across the whole application).

The standout device was the AMD S10000, which
sustained 2.50 TFLOP/s for BUDE, 42% of its peak
performance. This performance translates to an atom–
atom interaction rate of 76.1 billion, 73% greater than
the GTX 680. The other AMD GPUs also performed
well for BUDE, with the Radeon R9 290X sustaining
2.13 TFLOP/s, a 38% efficiency, and the Radeon
HD7970 sustaining 1.60 TFLOP/s at an efficiency of
42%. All of these GPUs outperformed our original tar-
get device, Nvidia’s GTX 680, even though they were
executing the code as optimized for the latter device.

Nvidia’s recent high-end consumer GPU, the GTX
780 Ti, proved to be the fastest Nvidia device in the
study, sustaining 1.92 TFLOP/s at an efficiency of

Figure 9. Performance comparison across various devices. Reported as sustained TFLOP/s on the bottom, and as a
percentage of peak performance sustained on the top.

12 The International Journal of High Performance Computing Applications

 by Simon McIntosh-Smith on April 15, 2014hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/
http://hpc.sagepub.com/

38%. The performance on the Nvidia K20c was per-
haps a little lower than we expected. The K20c has a
slightly higher peak single precision floating point per-
formance than the GTX 680 (3.52 TFLOP/s vs 3.1
TFLOP/s), and yet it delivers a lower performance for
BUDE, both in terms of absolute performance and as a
percentage of peak (37% vs 46%). We believe part of
the reason is that the K20 is only supported by the
newer Nvidia drivers and SDK, and so is forced to use
their newer, less mature LLVM-based compiler. We
have already seen how this factor alone can result in a
10% performance decrease on the GTX 680. One can
also observe that the degree of parallelism in a K20c is
much larger than the GTX 680 (2496 PEs vs 1536), and
so the K20 may require larger problem sizes to deliver
greater performance.

The Intel Xeon Phi achieved a respectable efficiency
of 32%, not far behind the Nvidia K20c’s 37%. There
were a number of reasons for the Phi’s slightly lower
performance than the other devices, including a lower
single precision floating point peak performance, a
younger and therefore less mature software stack, and
the Xeon Phi having more significant architectural dif-
ferences to the Nvidia GPU which had been our pri-
mary optimization target. It is possible that with
further modifications to our kernel code we may have
been able to improve its efficiency on Xeon Phi devices;
we plan on pursuing this line of inquiry in future work.
We have also observed significant improvements in the
performance of the code being generated by Intel’s
OpenCL implementations during the writing of this
paper, and based on this experience, we would expect
further improvements to come.

The Intel Xeon CPU impressively achieved a similar
fraction of peak performance to the GTX 680 GPU
when running the same OpenCL code (44%). The high

percentage of peak performance that was sustained on
the CPU indicated that Intel’s OpenCL SDK was able
to successfully vectorize the main kernel, exploiting the
CPU’s SIMD AVX instruction set. By comparison, the
sequential Fortran version of BUDE was 2.63 slower
than the OpenCL implementation in terms of atom–
atom interactions per second when run on the same
dual CPU configuration (with 32 concurrent instances
employed by the Fortran version to utilize all of the
hardware threads). The improved vectorization was
likely due the OpenCL compiler having much more
explicit information about the available parallelism
than the Fortran compiler.

The optimizations for BUDE presented in this work
improved its performance on the target device, the
Nvidia GTX 680, by a factor of 3.83 . We thought it
interesting to examine the effect of the optimizations
on the other devices in this study. A chart of the impact
of the optimizations, essentially showing the ‘before’
and ‘after’ cases, is shown in Figure 10.

Perhaps surprisingly, the optimizations developed for
the GTX 680 actually had a bigger positive impact on
most of the other devices in the study. The GTX 780 Ti
saw the biggest improvement of the Nvidia GPUs, with
a 4.53 increase over the baseline version of BUDE,
while the AMD GPUs saw an average improvement of
4.73 , a significantly larger improvement than the GTX
680’s 3.83 . The Xeon Phi and Xeon CPU saw smaller
gains from this work, seeing improvements of 2.03

and 1.33 respectively. Given the relatively high frac-
tion of peak performance these devices are sustaining,
this result suggests that the Xeon Phi and Xeon CPU
were performing better, relative to the other devices, on
the original version of BUDE.

As a final experiment, we re-implemented our
OpenCL kernels as a direct port into CUDA and

Figure 10. Performance improvements as a result of the optimizations developed in this work. Speedup is measured relative to the
atom–atom interactions/s of the baseline BUDE code.

McIntosh-Smith et al. 13

 by Simon McIntosh-Smith on April 15, 2014hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/
http://hpc.sagepub.com/

re-ran them on our Nvidia platforms. Interestingly,
performance using CUDA was 5–10% worse than with
OpenCL, despite the intermediate PTX code that was
generated being very similar. Thus in this instance
OpenCL has delivered the dual benefits of greater per-
formance and performance portability.

4.2 Future work

We intend to investigate extending our use of metapro-
gramming to further improve the efficiency of the
energy evaluation kernel. By pre-sorting the atoms of
the receptor and/or ligand, we can group interactions
that exhibit the same forcefield behavior together.
Since these interactions will use the same functions for
computing the energy, we can produce a simplified
code sequence for them. We will then be able to gener-
ate a kernel at runtime that has specialized loop bodies
for the most common atom types, only using the gener-
alized form of the loop for the remaining atoms. This
approach should result in an overall increase in dock-
ing throughput.

A further improvement we wish to test is the ability
to use all the heterogeneous resources in a given sys-
tem. OpenCL makes it relatively straightforward to use
all the devices in a node, including CPUs, GPUs and
coprocessors such as Xeon Phi. The new version of
BUDE presented in this paper requires very little per-
formance from the host CPU, which only has to start
the OpenCL kernels on the target device before being
left to manage a very small amount of data transfer.
We should therefore be able to harness the perfor-
mance of the host as an OpenCL device itself, with neg-
ligible performance impact on the GPU devices in the
system.

Finally, we believe this version of BUDE should
exhibit strong scalability across many OpenCL devices,
due to the porting of all of the remaining computation
from the host CPU to the target devices. We plan on
testing this multi-device scalability and reporting the
results in a subsequent paper.

4.3 Conclusion

In this work, we have presented a highly optimized ver-
sion of BUDE, a molecular docking application used
for in silico virtual drug screening. Using OpenCL, we
have achieved high levels of performance on an Nvidia
GTX 680 GPU, which we believe can significantly
improve the turn-around time of a virtual drug-design
pipeline, whilst retaining state-of-the-art levels of accu-
racy. The sustained performance we have achieved of
46% of peak, or 1.43 TFLOP/s on a single GTX 680, is
amongst the highest reported in the literature for a real
application running on a GPU. We have also demon-
strated strong performance portability across an

architecturally diverse range of devices, from CPUs to
GPUs, with an average efficiency across all eight
devices in the study of 40%. We believe this is one of
the first demonstrations of a real application that sus-
tains a very high fraction of peak performance while
being highly performance portable across a diverse
range of many-core architectures. This result shows
that the use of OpenCL combined with simple parame-
terization techniques can enable performance portable
applications.

Acknowledgements

The authors would like to thank the University of Bristol’s
Advanced Computing Research Centre (ACRC) for provid-
ing access to some of the hardware required for this study,
including the Blue Crystal supercomputer. We would also like

to thank AMD, Intel and Nvidia for the donation of some of
the hardware used in our experiments. Finally, the authors
would like to thank Tsuyoshi Hamada and Felipe Cruz from
the Nagasaki Advanced Computing Center for their help with
part of the Python port and for porting some of the additional
non-energy evaluation functions to OpenCL.

Funding

The optimizations for the Intel Xeon and Xeon Phi received
support from the University of Bristol’s Intel Parallel
Computing Center. This work was supported by the UK’s
Biotechnology and Biological Sciences Research Council
(BBSRC) (grant number BB/K004050/1).

References

Agullo E, Demmel J, Dongarra J, et al. (2009) Numerical lin-

ear algebra on emerging architectures: The PLASMA and

MAGMA projects. Journal of Physics: Conference Series

180(1). Available at: http://stacks.iop.org/1742-6596/
180/i=1/a=012037 pp.1–5.

Bailey D, Barszcz E, Barton JT, et al. (1991) The NAS paral-

lel benchmarks summary and preliminary results. In: Pro-

ceedings of the ACM/IEEE conference on supercomputing,

Albuquerque, NM, 18–22 November 1991, pp.158–165.

doi: 10.1145/125826.125925.
Batcher KE (1968) Sorting networks and their applications.

In: Proceedings of the AFIPS Spring joint computer confer-

ence (AFIPS ‘68), 30 April–2 May, pp.307–314. doi:

10.1145/1468075.1468121. Atlantic City, New Jersey.
Cheeseright TJ, Mackey MD, Melville JL, et al. (2008)

FieldScreen: Virtual screening using molecular fields:
Application to the DUD data set. Journal of Chemical

Information and Modeling 48(11): 2108–2117. doi:

10.1021/ci800110p.
Cherfils J and Janin J (1993) Protein docking algorithms:

Simulating molecular recognition. Current Opinion in

Structural Biology 3(2): 265–269. doi: 10.1016/S0959-440X
(05)80162-9.

Dongarra J, Bunch J, Moler C and Stewart P (n.d.) LIN-

PACK. Available at: http://www.netlib.org/linpack/.
Du P, Weber R, Luszczek P, et al. (2012) From CUDA to

OpenCL: Towards a performance-portable solution for

14 The International Journal of High Performance Computing Applications

 by Simon McIntosh-Smith on April 15, 2014hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/
http://hpc.sagepub.com/

multi-platform GPU programming. Parallel Computing

38(8): 391–407.
Fan H, Irwin JJ, Webb BM, et al. (2009) Molecular docking

screens using comparative models of proteins. Journal of

Chemical Information and Modeling 49(11): 2512–2527.

doi: 10.1021/ci9003706.
Fang J, Varbanescu AL and Sips H (2011) A comprehensive

performance comparison of CUDA and OpenCL. In: Pro-

ceedings of the IEEE international conference on parallel

processing (ICPP), Taipei, Taiwan, 13–16 September

2011, pp.216–225.
Gaster B, Howes L, Kaeli DR, et al. (2011) Heterogeneous

Computing with OpenCL. 1st edition. Waltham, MA: Mor-

gan Kaufmann.
Gibbs N, Clarke A and Sessions R (2001) Ab initio protein

structure prediction using physicochemical potentials and

a simplified off-lattice model. Proteins: Structure, Function

and Genetics 43(2): 186–202.
Halperin I, Ma B, Wolfson H, et al. (2002) Principles of

docking: An overview of search algorithms and a guide to

scoring functions. Proteins: Structure, Function, and Bioin-

formatics 47(4): 409–443.
Herdman J, Gaudin W, McIntosh-Smith S, et al. (2012) Accel-

erating hydrocodes with OpenACC, OpenCL and CUDA.

In: Proceedings of the international conference for high per-

formance computing, networking, storage and analysis

(SCC), Salt Lake City, Utah, USA, November 10–16th

2012, pp.465–471. doi: 10.1109/SC.Companion.2012.66.
Kannan S and Ganji R (2010) Porting Autodock to CUDA.

In: Proceedings of the 2010 IEEE congress on evolutionary

computation (CEC), Barcelona, Spain, 18–23 July 2010,

pp.1–8. doi: 10.1109/CEC.2010.5586277.
Kessler C, Dastgeer U, Thibault S, et al. (2012) Programmabi-

lity and performance portability aspects of heterogeneous

multi-/manycore systems. In: Proceedings of the design,

automation test in Europe conference exhibition (DATE),

Dresden, Germany, 12–16 March 2012, pp.1403–1408. doi:

10.1109/DATE.2012.6176582.
Khronos Group (n.d.) Khronos OpenCL Standard. Available

at: http://www.khronos.org/opencl/.
Kim J, Seo S, Lee J, et al. (2012) SnuCL: an OpenCL frame-

work for heterogeneous CPU/GPU clusters. In: Proceed-

ings of the 26th ACM international conference on

supercomputing (ICS ‘12), Venice, Italy, June 25–29, 2012,

pp.341–352. doi: 10.1145/2304576.2304623.
Klöckner A (n.d.) PyOpenCL. Available at: http://mathema.

tician.de/software/pyopencl.
Knuth DE (1998) The Art of Computer Programming: Sorting and

Searching, Vol. 3. 2nd edition. Reading, MA: AddisonWesley.
Korb O, Stützle T and Exner TE (2011) Accelerating molecu-

lar docking calculations using graphics processing units.

Journal of Chemical Information and Modeling 51(4):

865–876. doi: 10.1021/ci100459b.
Kurzak J, Luszczek P, Tomov S, et al. (2012) Preliminary

results of autotuning GEMM kernels for the Nvidia

Kepler architecture. LAPACK Working Note (LAWN)

267. http://www.netlib.org/lapack/lawnspdf/lawn267.pdf
Leach AR, Gillet VJ, Lewis RA, et al. (2010) Three-dimensional

pharmacophore methods in drug discovery. Journal of Medic-

inal Chemistry 53(2): 539–558. doi: 10.1021/jm900817u.

Macindoe G, Mavridis L, Venkatraman V, et al. (2010) Hex-

Server: An FFT-based protein docking server powered by

graphics processors. Nucleic Acids Research 38: W445.
McIntosh-Smith S and Sessions RB (2008) An accelerated,

computer assisted molecular modeling method for drug

design. In: International Supercomputing.
McIntosh-Smith S, Wilson T, Ibarra AA, et al. (2012) Bench-

marking energy efficiency, power costs and carbon emis-

sions on heterogeneous systems. The Computer Journal

55(2): 192–205. doi: 10.1093/comjnl/bxr091.

May M (2008) PlayStation Cell speeds docking programs.

Bio-IT World. http://www.bio-itworld.com/issues/2008/

july-august/simbiosys.html
Meuer H, Strohmaier E, Dongarra J, et al. (n.d.) TOP500

Project. Available at: http://www.top500.org/project/

top500_description/.
Muegge I and Rarey M (2003) Small molecule docking and

scoring. Reviews in Computational Chemistry 17: 1–60.
Munshi A, Gaster B, Mattson TG, et al. (2011) OpenCL

Programming Guide. Upper Saddle River, NJ: Addison-

Wesley Educational Publishers.

National Science Foundation and Department of Energy

(n.d.) BLAS. Available at: http://www.netlib.org/blas/.
Nvidia (n.d.) CUDA. Available at: http://www.nvidia.com/

object/cuda_home_new.html.
Nvidia (2012a) Nvidia GeForce GTX 680 Whitepaper. Avail-

able at: http://www.nvidia.com/content/PDF/product-speci-

fications/GeForce_GTX_680_Whitepaper_FINAL.pdf.
Nvidia (2012b) Parallel Thread Execution ISA Version

3.1. Available at: http://docs.nvidia.com/cuda/pdf/ptx_

isa_3.1.pdf.
Pennycook S, Hammond S, Wright S, et al. (2013) An investi-

gation of the performance portability of OpenCL. Journal

of Parallel and Distributed Computing 73(11): 1439–1450.

doi: http://dx.doi.org/10.1016/j.jpdc.2012.07.005.
Reymond JL, van Deursen R, Blum LC, et al. (2010) Chemi-

cal space as a source for new drugs. Medical Chemistry

Communications 1: 30–38.
Servat H, González-Alvarez C, Aguilar X, et al. (2008)

Drug design issues on the Cell BE. In: Stenström P,

Dubois M, Katevenis M, et al. (eds) High Performance

Embedded Architectures and Compilers (Lecture Notes in

Computer Science, Vol. 4917). Berlin; Heidelberg: Springer,

pp.176–190.
Shoichet BK, Kuntz ID and Bodian DL (1992) Molecular

docking using shape descriptors. Journal of Computational

Chemistry 13(3): 380–397. doi: 10.1002/jcc.540130311.
Simonsen M, Pedersen CN, Christensen MH, et al. (2011)

GPU-accelerated high-accuracy molecular docking using

guided differential evolution: Real world applications. In:

Proceedings of the 13th annual conference on genetic and

evolutionary computation, Dublin, Ireland, July 12–16

2011. doi = {10.1145/2001576.2001818} pp.1803–1810.
Sukhwani B and Herbordt M (2008) Acceleration of a produc-

tion rigid molecule docking code. In: Proceedings of the

international conference on field programmable logic and

applications (FPL 2008), Heidelberg, Germany, 8–10 Sept.

2008. doi = 10.1109/FPL.2008.4629955 pp.341–346.
Sukhwani B and Herbordt MC (2009) GPU acceleration of a

production molecular docking code. In: Proceedings of the

McIntosh-Smith et al. 15

 by Simon McIntosh-Smith on April 15, 2014hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/
http://hpc.sagepub.com/

2nd workshop on general purpose processing on graphics

processing units (GPGPU-2), Washington, DC, USA,
March 8th, 2009, doi = {10.1145/1513895.1513898}
pp.19–27.

The PEPPHER Consortium (n.d.) Performance portablity
and programmability for heterogeneous many-core archi-
tectures. Available at: http://www.peppher.eu.

Thomas DB (n.d.) The Warp Generator: A Uniform Random
Number Generator for GPUs. Available at: http://cas.ee.i-
c.ac.uk/people/dt10/research/rngs-gpu-warp_generator.
html.

Tripos (2005) Tripos Mol2 format. Available at: http://
www.tripos.com/data/support/mol2.pdf.

UCSF (n.d.) ZINC Compound Database. Available at:
http://zinc.docking.org.

Van Court T, Gu Y and Herbordt M (2004) FPGA accelera-
tion of rigid molecule interactions. In: Becker J, Platzner

M and Vernalde S (eds) Field Programmable Logic and

Application (Lecture Notes in Computer Science,

Vol. 3203). Berlin; Heidelberg, Germany: Springer,

pp.862–867.
Willett P (2006) Similarity-based virtual screening using 2D

fingerprints. Drug Discovery Today 11(23–24): 1046–1053.

doi: 10.1016/j.drudis.2006.10.005.
Woods CJ, Malaisree M, Hannongbua S, et al. (2011) A

water-swap reaction coordinate for the calculation of abso-

lute protein-ligand binding free energies. The Journal of

Chemical Physics 134(5): 054114. doi: 10.1063/1.3519057.
Zhang Y, Sinclair II M and Chien AA (2013) Improving per-

formance portability in OpenCL programs. In: Kunkel J,

Ludwig T and Meuer H (eds) Proceedings of the interna-

tional supercomputing conference (ISC 2013), Leipzig,

Germany, 16–20 June 2013, pp.136–150.

16 The International Journal of High Performance Computing Applications

 by Simon McIntosh-Smith on April 15, 2014hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/
http://hpc.sagepub.com/

