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We study the stability conditions of a class of branching processes prominent in the analysis and modeling of
seismicity. This class includes the epidemic-type aftershock sequence (ETAS) model as a special case, but more
generally comprises models in which the magnitude distribution of direct offspring depends on the magnitude
of the progenitor, such as the branching aftershock sequence (BASS) model and another recently proposed
branching model based on a dynamic scaling hypothesis. These stability conditions are closely related to the
concepts of the criticality parameter and the branching ratio. The criticality parameter summarizes the asymptotic
behavior of the population after sufficiently many generations, determined by the maximum eigenvalue of the
transition equations. The branching ratio is defined by the proportion of triggered events in all the events. Based
on the results for the generalized case, we show that the branching ratio of the ETAS model is identical to its
criticality parameter because its magnitude density is separable from the full intensity. More generally, however,
these two values differ and thus place separate conditions on model stability. As an illustration of the difference
and of the importance of the stability conditions, we employ a version of the BASS model, reformulated to ensure
the possibility of stationarity. In addition, we analyze the magnitude distributions of successive generations of
the BASS model via analytical and numerical methods, and find that the compound density differs substantially
from a Gutenberg-Richter distribution, unless the process is essentially subcritical (branching ratio less than 1)
or the magnitude dependence between the parent event and the direct offspring is weak.

DOI: 10.1103/PhysRevE.88.062109 PACS number(s): 64.60.A−, 05.45.Tp, 02.50.Ey, 91.30.Dk

I. INTRODUCTION AND MOTIVATIONS

Clustering has been widely recognized as one of the
most dominant features of seismicity and has been modeled
with some success by branching processes (see, e.g., Kagan
and Knopoff [1], Musmeci and Vere-Jones [2], Kagan [3],
Ogata [4], and Ogata and Zhuang [5]). In particular, the
epidemic-type aftershock sequence (ETAS) model (see, e.g.,
Ogata [4,6]) has been widely accepted as a standard model
for describing clustering characteristics of earthquake occur-
rences. Several versions of this model have been proposed
for and applied to the studies of seismicity analysis and
forecasting in different regions of the globe (see, e.g., Kagan
and Knopoff [7], Console et al. [8], Helmstetter et al. [9],
Zhuang et al. [10], Zhuang [11], and Werner et al. [12]). Model
parameters are usually estimated by a maximum likelihood
estimation (MLE) (see, e.g., Daley and Vere-Jones [13])
or by the expectation-maximization (EM) algorithm (Veen
and Schoenberg [14]). The obtained model parameter values
can vary amongst study periods and regions, sometimes
substantially (see, e.g., Ref. [15], Table 1), and it is generally
recognized that parameter estimation remains a difficult issue
[14] with potentially serious consequences (e.g., over- or
underpredicting seismicity).

*zhuangjc@ism.ac.jp
†mwerner@princeton.edu
‡d.harte@gns.cri.nz

A strong constraint on reasonable estimates of model
parameters and model forecasts is provided by the prerequisite
that the model be stable. We therefore need a good under-
standing of the model stability conditions. More broadly, any
generalizations of the model or, indeed, any explicit branching
model for seismicity should be formulated with consideration
of stability conditions. These conditions are closely related
to the concepts of the criticality parameter and the branching
ratio. These two concepts for the ETAS model have already
been addressed in other papers (e.g., Refs. [16–18]). For the
ETAS model, as we prove below, these two quantities are
the same if the model is subcritical. But we also show that,
for a more general branching process, these two concepts are
not identical. Helmstetter and Sornette [15] discussed how
the population increases with time when the ETAS model
is subcritical, critical or supercritical. In the present paper,
we focus on how the population changes in the magnitude
dimension.

In the following sections, rather than discussing directly
the properties of the ETAS model, we focus on a more general
class of branching models in which the magnitude distribution
of direct offspring depends on the parent’s magnitude, and
derive the formulas for the criticality parameter and the
branching ratio. Next, we discuss the branching aftershock
sequence (BASS) model [19,20] and another branching model
proposed by Lippiello et al. [18] as instances of this general
class. Finally, we analytically and numerically analyze a
modified version of the BASS model, which is reformulated
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to allow for the possibility of stability, as an illustration of the
theory.

II. BRANCHING MODELS OF SEISMICITY

In this article, we only consider the process of earthquake
occurrences in the temporal and magnitude domain, which
can be described by a marked point-process model with a
conditional intensity (also called time-varying seismicity rate,
or stochastic intensity)

λ(t,m) = lim
�t↓0

lim
�m↓0

1

�t�m

Pr{N ([t,t + �t )

× (m − �m/2,m + �m/2)) � 1 |Ht }, (1)

where the history Ht represents the observed process of
earthquake occurrences before time t and N ([a,b) × (m1,m2))
denotes the number of earthquakes with occurrence times in
the interval [a,b) and magnitudes in the interval (m1,m2). The
conditional intensity of the ETAS model can be expressed as
(Ogata [6])

λETAS(t,m) = s(m)

⎡
⎣μ +

∑
i:ti<t

κ(mi)g(t − ti)

⎤
⎦ , (2)

where s(m) is the probability density function (PDF) of the
magnitudes, μ is a constant background seismicity rate, κ(m)
is the mean number of events triggered by an earthquake of
magnitude m, and g(t) is the PDF of the time lags between
the occurrence times of a parent event and its direct offspring.
The branching representation of this model is as follows: Once
an event, say, i, occurs, it triggers a Poisson process with rate
κ(mi)g(t − ti) starting from ti , and each offspring triggers
its own Poisson process (offspring) independently. Another
interpretation of this model is that the rate of earthquake
occurrence at time t consists of the contributions from the
background rate μ and all previous events.

In practice, s(m) is usually set equal to the PDF form
of the Gutenberg-Richter magnitude-frequency relation for
earthquakes above a threshold magnitude mc, i.e.,

s(m) = βe−β(m−mc), m � mc, (3)

where β is linked with the so-called Gutenberg-Richter’s b

value by β = b ln 10; the productivity function κ(m) takes the
form of a positive exponential law, i.e.,

κ(m) = Aeα(m−mc), m � mc, (4)

and the time distribution has a PDF of the form

g(t) = p − 1

c

(
1 + t

c

)−p

, t > 0, (5)

which corresponds to the Omori-Utsu formula for the fre-
quency decay of aftershocks [21,22].

In this article, we consider a more general form of branching
model than the ETAS model, where the magnitudes of the
direct offspring may depend on the magnitude of the parent.
That is, the conditional intensity can be written in the form

λ(t,m) = μs0(m) +
∑
i:ti<t

κ(mi)g(t − ti)s(m |mi), (6)

where μ, g, κ are the same as their counterparts in Eq. (2),
s0(m) is the magnitude probability density for the background
events, and s(m |mi) is the magnitude PDF of the direct
offspring produced by an event of magnitude mi . If we let
s0(m) = s(m |mi) = s(m), then the model in Eq. (6) is simply
the ETAS model.

The above class of models (6) is motivated by the interesting
question whether the magnitude of a triggered event depends
on the magnitude of its parent event. Zhuang et al. [23] found,
by using the stochastic reconstruction method, that there is an
indication of such dependence in the Japan Meteorological
Agency (JMA) catalog. Lippiello et al. [24] made similar
conclusions by evaluating the magnitude differences between
subsequent events in the Southern California Earthquake Data
Center (SCEDC) earthquake catalog.

It is worthwhile to mention that spatiotemporal versions
of the ETAS model and the other two models, which are
also discussed in following sections, have already been
implemented by introducing a spatial dependence between
the parent events and their direct offspring in the triggering
term (e.g., Ogata [4], Ogata and Zhuang [5], Console et al. [8],
Helmstetter et al. [9], Zhuang et al. [25], Zhuang [11], Werner
et al. [12], and Lippiello et al. [24]). In this article, without loss
of generality, we only consider the magnitude and temporal
components. The theory developed here also applies to the
spatiotemporal versions of these models.

III. CRITICALITY

The criticality parameter characterizes the asymptotic
behavior of the population size Gn(m) at the nth generation
when n is sufficiently large. Here we call the background
events generation 0, and the direct offspring of generation
n generation n + 1. It is easy to see from (6) that the
expected (magnitude) intensity function for the first generation
(earthquakes that are direct offspring of background events)
is

G1(m) =
∫
M

κ(m′)s(m |m′)G0(m′)dm′,

where M represents the range of magnitudes, say [mc,∞),
and G0(m′) = μs0(m) is the background intensity. Similarly,
the second generation is given by

G2(m) =
∫
M

κ(m′)s(m |m′)G1(m′)dm′,

and the (n + 1)th generation by

Gn+1(m) =
∫
M

κ(m′)s(m |m′)Gn(m′)dm′

=
∫
M

K [n+1](m; m′)G0(m′)dm′,

where K [n] (n � 1) is defined by induction

K [1](m; m′) = K(m; m′) = κ(m′)s(m |m′),

K [n+1](m; m′) =
∫
M

κ(m∗)s(m |m∗)K [n](m∗; m′)dm∗.

Suppose that a(m′) and b(m) are the left and right eigen-
functions of K corresponding to the maximum eigenvalue �,
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i.e.,

�a(m′) =
∫
M

a(m)K(m; m′)dm (7)

and

�b(m) =
∫
M

K(m; m′)b(m′)dm′. (8)

Let

�(m; m′) = a(m′)b(m), (9)

i.e., � is the projection operator of K corresponding to �, or∫
M

�(m; m∗)K(m∗; m′)dm∗ =
∫
M

K(m; m∗)�(m∗; m′)dm∗

= ��(m; m′). (10)

When both κ(m′) and s(m |m′) are piecewise continuous
functions, then the linear integral equations (7) and (8) can
be viewed as the continuum limit of eigenvalue equations of
the form ∑

j

Mi,j vj = �vi,

where (Mi,j ) is a matrix and (vj ) is a vector. When the dimen-
sion of (vj ) is n and of (Mi,j ) is n × n, there are n independent
orthonormal eigenvectors and at most n eigenvalues. When a
linear operator, which maps an element from one space into
the same space, is applied in a compound way repeatedly,
the behavior is similar to applying a projection operator
and a scaling operator for many times, where the projection
operator projects the element to the subspace spanned by the
eigenvectors corresponding to the maximum eigenvalue, if
this element is not orthonormal to these eigenvectors. When
n → ∞, there are at most a countable number of eigenvalues
and the maximum eigenvalue is separated from others. In our
case, the linear operator is K , the projective operator is �, and
the scaling operator is �. If the element is not orthonormal to
the eigenelement (invariant direction) corresponding to the
maximum eigenvalue, it will finally be projected into this
eigendirection. It follows from (10) that � is a solution of
the following fixed-point problem:

Find H : H (m,m′) = 1

�

∫
M

K(m; m∗)H (m∗,m′)dm∗.

Thus, when n → ∞,

K [n]

�n
→ � (11)

and

Gn(m) → �n

∫
M

�(m; m′)G0(m′)dm′. (12)

From (12), we can see that if � < 1, then Gn → 0 when n →
∞, and that if � > 1, then Gn → ∞ when n → ∞. Here � is
called the criticality parameter because if � < 1, the process
is stable and otherwise the population explodes to infinity.

Equation (12) can be rewritten as

Gn(m) → �n

∫
M

b(m)a(m′)G0(m′)dm′

= �nb(m)
∫
M

a(m′)G0(m′)dm′

= �nb(m) × const, (13)

implying that b(m) is asymptotically proportional to the
intensity of the population when n → ∞. The eigenfunction
a(m′) can be interpreted as the asymptotic ability in producing
offspring, directly and indirectly, from an ancestor {m′}
because

lim
n→∞

∞∑
i=n

∫
M

K [i](m; m′)dm

= lim
n→∞

∞∑
i=n

�i

∫
M

�(m; m′)dm

= lim
n→∞

∞∑
i=n

�ia(m′)
∫
M

b(m)dm

= lim
n→∞

�n

1 − �
a(m′) × const. (14)

Criticality of the ETAS model. For the ETAS model, whose
magnitude density is separable and the background rate is
constant, the eigenvalue equations are

�a(m′) = κ(m′)
∫
M

a(m)s(m)dm, (15)

�b(m) = s(m)
∫
M

κ(m′)b(m′)dm′, (16)

where M is the magnitude range. We can see

a(m′) = C1κ(m′) (17)

and

b(m) = C2s(m). (18)

Substituting a(m′) and b(m) back into (15) and (16),

� =
∫
M

κ(m)s(m)dm. (19)

For the ETAS model given in Eq. (2), substituting κ(m) =
Aeα(m−m0) and s(m) = β e−β(m−m0) into (19), the criticality
parameter is then

� =
∫ ∞

m0

s(m)κ(m)dm = Aβ

β − α
,

where the last equality requires α < β unless the magnitude
density is truncated or tapered (see, e.g., Eqs. (4) and (5) in
Sornette and Werner [26]).

Details of the behavior of the ETAS model were discussed,
for example, by Helmstetter and Sornette [15], Zhuang and
Ogata [27], Saichev and Sornette [28], Lippiello et al. [18],
and Vere-Jones and Zhuang [29].

IV. BRANCHING RATIO

The branching ratio is defined as the proportion of
triggered events amongst all events. Suppose that the process is
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stationary (which can be restricted only to the background
process) and ergodic. Taking expectations over the time
domain on both sides of (6),

λ̄s1(m) = E [λ(t,m)]

= μs0(m) + E

[ ∑
ti :ti<t

κ(mi)g(t − ti)s(m |mi)

]
, (20)

where E[·] means the expectation over the time domain, λ̄ is
the total average rate, and s1(m) is the marginal magnitude
density of all events. The summation on the right-hand side
can be written as

E

[ ∑
ti :ti<t

κ(mi)g(t − ti)s(m |mi)

]

=
∫
M

∫ t

−∞
κ(m∗)g(t − u)s(m |m∗) × λ̄s1(m∗)dudm∗

= λ̄

∫
M

κ(m∗)s(m |m∗)s1(m∗)dm∗
(

∵
∫ ∞

0
g(u)du= 1

)
,

(21)

i.e.,

λ̄s1(m) = μs0(m) + λ̄

∫
M

κ(m∗)s(m |m∗)s1(m∗)dm∗. (22)

In the above, (21) can be obtained from martingale theories
related to the properties of the conditional intensity (see, e.g.,
Zhuang [30] for justification).

Integrate both sides with respect to m, noting that s1, s0,
and s(· | ·) are PDFs,

λ̄ = μ + λ̄

∫
M

κ(m∗)s1(m∗)dm∗. (23)

The branching ratio is obtained by

ω = 1 − μ

λ̄
=

∫
M

κ(m∗)s1(m∗)dm∗, (24)

which is also the average number of events that are triggered
by an arbitrary event. This parameter is nonzero and less than
1 only when � < 1.

The difference between criticality and the branching ratio is
as follows: The criticality characterizes the average productiv-
ity of an arbitrary event after infinitely many generations, while
the branching ratio characterizes the average productivity
over all generations. For the ETAS model, the magnitude
density is completely separable from the whole intensity, i.e.,
s1(m) = s0(m) = s(m |m∗). By comparing (24) to (19), we
have ω = � (see also Ref. [31]).

V. THE BASS MODEL

The BASS model was developed by Turcotte, Holliday,
and colleagues (see, e.g., Turcotte et al. [19] and Holliday
et al. [20]), with the explicit consideration of the Båth law.
The BASS model is based on the following assumptions:

(a) The magnitude density of the direct offspring is
[Ref. [20], Eq. (15)]

s(m |m∗) = βd e−βd (m−mc). (25)

(b) The expected number of direct offspring from an event
of magnitude m∗ is [Ref. [20], Eq. (23)]

κ(m∗) = Abass eβd (m∗−mc), (26)

where Abass is a constant.
(c) Abass is restricted by the Båth law, i.e., [Ref. [20],

Eq. (12)]

No. (direct offspring � m∗ − δ) = 1, (27)

where δ is a constant magnitude difference between the main
shock and the largest aftershock, according to the Båth law,
usually taking a value of 1.2.

It is worthwhile to mention the following points: (1) The
Båth law can be derived as an asymptotic property of the
ETAS model and does not need to be specified explicitly. Here
we refer to Vere-Jones and Zhuang [29] and Vere-Jones [32]
for details. Helmstetter and Sornette [33] also showed that
the Båth law could be recovered through simulations based
on the ETAS model. (2) Turcotte and co-workers considered
self-similarity of the branching process a desirable or even a
necessary attribute of a model, and claim that the BASS model
is self-similar while the ETAS model is not. Their notion of
self-similarity appears to be that the model simply satisfies
the four scaling relations: Gutenberger-Richter of magnitudes,
Omori of time decay, modified Omori of spatial decay, and
a modified Båth’s law of the parent event (see the abstract
in Ref. [17]). They assert in the abstract of Ref. [17] that
this is not the case for the ETAS model. Their claim appears
to focus on the required condition that α < β in the ETAS
model (see Ref. [17], Sec. IV, and the second to last paragraph
in Sec. V). We show in the following that the stochastic
BASS model must be similarly constrained to enable the
existence of a stable version. (3) Vere-Jones [16] defined a
class of models using a tighter definition of self-similarity,
and showed that this places quite different constraints on
the magnitude. Vere-Jones’ self-similar ETAS model does
not impose hard (i.e., fixed) boundaries on the magnitude
distribution, but uses a normalized stability factor to constrain
the dependence between the magnitudes of the direct offspring
and the parent. A fixed upper magnitude boundary, as in the
truncated exponential distribution, is artificial and introduces
other problems.

In early papers of the BASS model [19,20], a deterministic
version is used, i.e., during simulations, the number of direct
offspring is obtained by rounding κ(m) in Eq. (26) to the
nearest integer. To formulate the BASS model as a (stochastic)
Poisson cluster process defined by the conditional intensity
(6), we assume in the following that the number of the direct
offspring is a Poisson distributed random variable. Moreover,
we also note that (27), together with (26) and (25), constrains
Abass = exp(−βdδ), although this requirement is dropped in
the discussion below.

In the original version of the BASS model proposed by
Turcotte et al. [19] and Holliday et al. [20], the magnitude
density of each triggered generation is the Gutenberg-Richter
magnitude-frequency relation without any truncations. This
may not cause any immediate issues when discussing or
simulating a single cluster from a particular main shock.
However, the average number of triggered shocks in the second
generation from an arbitrary first-generation shock is infinite,
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because∫
mc

Abass eβd (m′−mc)βd e−βd (m′−mc) dm′ = +∞. (28)

Therefore, to ensure that the average number of triggered
events remains finite, the productivity exponent must either
be smaller than the exponent of the magnitude density (e.g.,
α < βd , essentially recovering the standard ETAS model)
or the magnitude density must be a truncated (Sornette and
Werner [26]) or tapered exponential distribution (see, e.g.,
Kagan and Schoenberg [34]). A third solution, which is
pursued in more detail below and apparently used in the
simulations by Turcotte et al. [19] and Holliday et al. [20],
requires that the magnitudes of triggered events are restricted
to be less than the magnitude of their parent, or, similarly, the
magnitude differences between the triggered events and the
parent event do not exceed a certain level �.

When the BASS model is additionally endowed with a
background rate and background magnitude density, further
constraints are required. If the background magnitude density
is the nontruncated Gutenberg-Richter relation with exponent
β0, then the productivity exponent βd must be smaller than β0

to ensure a finite mean number of direct offspring triggered by
an arbitrary background event. This formulation of a stochastic
Hawkes process version of the BASS model is investigated in
detail in the following sections.

VI. LIPPIELLO ET AL.’S MODEL

Lippiello et al. [18,35,36] also proposed an alternative to the
ETAS model and studied its properties, including criticality.
The conditional intensity of this model is

λ(t,m) = μs0(m) +
∑
i:ti<t

�

(
t − ti

k 10−b(m−mi )

)
, (29)

where � is the response function. The above equation can be
normalized as

λ(t,m) = μs0(m) +
∑
i:ti<t

s(m)κ(mi)g(t − ti |m,mi), (30)

where

κ(m) = k10bm

b ln 10

∫ ∞

0
�(u)du,

s(m) = b10−bm ln 10,

and

g(t | m,m′) = �
(

t

k 10−b(m−m′ )
)

k10−b(m−m′)
∫ ∞

0 �(u)du
,

providing that
∫ ∞

0 �(u)du is finite.
The model is similar to the stochastic version of the BASS

model, except that the time distribution of triggered events also
depends on the magnitudes of both the parent and offspring
events. However, since the integral of g(t | m,m′) from 0 to
∞ is 1 for all the values of m and m′, the results throughout
this article also hold for this model. Lippiello et al. [18,35,36]
also considered the case of dependence between occurrence
times and locations. Without loss of generality, we can omit
the spatial component.

VII. RESULTS FROM A CLUSTERING MODEL WITH
TRUNCATED MAGNITUDE DISTRIBUTION

In this section, we consider a particular formulation of the
class given by (6) motivated by the BASS model. We assume
κ(m) = Aeβ(m−mc), s0(m) = β0 e−β0(m−mc),

s(m |m′) = f (m)H (m′ − m + �)/F (m′ + �), � � 0,

where f (m) = β e−β(m−mc), F (m) is the cumulative probabil-
ity distribution corresponding to f (m), H is the Heaviside
function, and A, β0, β, and � are constants. In the following
we take mc = 0 and use β instead of βd to shorten the notation.
It can be seen that there are two differences between this model
and the BASS model: (1) β0 is introduced for the background
seismicity and also constrained to be greater than β to ensure
a finite expected rate of first generation events, and (2) A and
� are free parameters, not restricted by (27).

A. Case � = 0

Here we first discuss the left eigenequation and then the
right eigenequation. The left eigenequation

�a(m′) = κ(m′)
F (m′)

∫ m′

0
f (m)a(m)dm (31)

can be rewritten as

�a(m)F (m) = κ(m)
∫ m

0
f (m′)a(m′)dm. (32)

Taking derivatives of both sides and using κ ′(m) = βκ(m),

�
da(m)

dm
F (m) + �a(m)f (m)

= β�a(m)F (m) + κ(m)f (m)a(m),

i.e.,

a′(m)

a(m)
= β + 1

�

κ(m)f (m)

F (m)
− f (m)

F (m)
.

The above equation has a solution

ln a(m) = βm + Aβ

�

∫
dm

1 − e−βm
− ln F (m)

or

a(m) = C exp

[
β

(
A

�
+ 1

)
m

]
(1 − e−βm)

A
�
−1

.

A meaningful a(m) requires that a(0) be finite. This condition
is equivalent to A

�
− 1 � 0, i.e., � � A.

The right eigenequation is

�b(m) =
∫
M

K(m,m′)b(m′)dm

=
∫ ∞

m

Aβeβ(m′−m)b(m′)
1 − e−βm′ dm′. (33)

Take derivatives of both sides,

�
db(m)

dm
= −β�b(m) − K(m,m)b(m)

= −β�b(m) − Aβb(m)

1 − e−βm
, (34)
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and so

b(m) = C e−βm[eβm − 1]−
A
� , (35)

where C could be any constant. Since b(m) is a PDF, we are
only interested in the cases that have a finite integral over
[0,∞]. The required condition for∫ ∞

0
b(m)dm = C

∫ ∞

0
e−βm[eβm − 1]−

A
� dm (36)

to be finite is � > A, since∫ ∞

0
e−βm[eβm − 1]−

A
� dm =

∫ ∞

0
e
−(1+ A

�
)βm(1 − e−βm)−

A
� dm

= 1

β

∫ 1

0
u

A
� (1 − u)−

A
� du

= 1

β
B

(
1 + A

�
,1 − A

�

)

= Aπ

�β sin(Aπ/�)
(37)

has a finite value only if A/� < 1, i.e., � > A, where B is the
beta function.

Together with the conclusion that for the left eigenfunction
a(m) is a finite value at a(0) only if � � A, we can see that the
meaningful criticality parameter � is the value κ(0) = A with
eigenfunction a(m) = C e2βm when � = 0.

The criticality parameter can be also obtained in the
following way. We apply the limit operation to both sides
of (31). When m → 0, notice that F (0) = 0 and f (m) =
dF (m)/dm. Therefore, by L’Hopital’s rule,

�a(0) = κ(0) lim
m′→0

∫ m′

0 f (m)a(m)dm

F (m′)

= κ(0) lim
m′→0

d
dm′

∫ m′

0 f (m)a(m)dm

d
dm′ F (m′)

= κ(0)a(0).

Thus, if a(0) is nonzero and finite, the criticality parameter �

is

� = κ(0)= A.

That is, the criticality of this model is determined by the aver-
age productivity of an earthquake at the threshold magnitude.
In other words, the restriction on the magnitudes of the direct
offspring stabilizes the model.

In this case, if κ(m) is a monotonically increasing function
of m, then the branching ratio given by (24) satisfies

ω =
∫
M

κ(m∗)s1(m∗)dm∗ �
∫
M

κ(0)s1(m∗)dm∗ = κ(0) = �,

since κ(m) � κ(0) for all m and
∫
M s1(m)dm = 1. In contrast

to the ETAS model, the criticality parameter of this model is
not identical to the branching ratio. We note that ω → 1 when
� = 1 since ω always lies between � and 1 when the process
is subcritical. We can also construct a model with � � ω, for
example, by setting κ(m) equal to a monotonically decreasing
function.

Note that condition ρ < 1 is only necessary but not
sufficient to ensure the stability of the model. For example,
in this model, if we set κ(0) = A < 0 and β � β0, then

ρ = κ(0) < 0, but ω → 1, since the expected number of events
in the first generation is infinity.

In the remainder of this section, we show that the marginal
magnitude distribution of all events is no longer a Gutenberg-
Richter (G-R) (exponential) distribution. From (22), the
magnitude density for all the events is determined by the
integral equation

s1(m) = μ

λ̄
s0(m) +

∫
M

κ(m∗)s(m |m∗)s1(m∗)dm∗, (38)

where

1 − μ

λ̄
=

∫ ∞

0
κ(m)s1(m)dm.

Substitute s(m |m∗) = f (m)H (m∗ − m)/F (m∗) into the
above, we have

s1(m) = μ

λ̄
s0(m) + f (m)

∫ ∞

m

κ(m∗)s1(m∗)

F (m∗)
dm∗. (39)

It is easy to see that s1(m) has the form Cs0(m) + f (m)q(m)
where C = μ/λ̄, and

q(m) =
∫ ∞

m

κ(m∗)s1(m∗)

F (m∗)
dm∗.

Substituting s1(m) = Cs0(m) + f (m)q(m) into the above
equation, we obtain

q(m) =
∫ ∞

m

κ(m∗)[Cs0(m∗) + f (m∗)q(m∗)]

F (m∗)
dm∗, (40)

which is equivalent to the differential equation

q ′(m) + f (m)κ(m)

F (m)
q(m) = −Cs0(m)κ(m)

F (m)
. (41)

Substituting κ(m) = Aeβm, f (m) = β e−βm, and F (m) =
1 − e−βm, the above equation has a solution

q(m) = CAβ0

β0 − (1 + A)β
e−(β0−β)m(1 − e−βm)−A

× 2F1

(
1 − A,

β0

β
− (1 + A),

β0

β
− A,e−βm

)
+C1 e−Aβm[1 − e−βm]−A, (42)

where C1 is an arbitrary constant, and 2F1 is the hypergeomet-
ric function defined by

2F1(a,b; c; z) ≡ �(c)

�(a)�(b)

∞∑
n=0

�(a + n)�(b + n)

�(c + n)�(n + 1)
zn

for |z| < 1, �(x) ≡
∫ x

0
ux e−u du

being the gamma function (e.g., Ref. [37]). From s1(m) =
s0(m) if A = 0, C1 = 0 can be obtained. Therefore,

s1(m) = Cs0(m) + CAβ0β

β0 − (1 + A)β
e−β0m(1 − e−βm)−A

× 2F1

(
1 − A,

β0

β
− (1 + A),

β0

β
− A,e−βm

)
. (43)

062109-6



STABILITY OF EARTHQUAKE CLUSTERING MODELS: . . . PHYSICAL REVIEW E 88, 062109 (2013)

The parameter C can be obtained by solving the equality∫ ∞
0 s1(m) = 1. By using MATHEMATICA, we can obtain

C =
[

1 + Aβ0B(1 − A,β0/β)

β0 − (1 + A)β
3F2

(
1 − A,

β0

β
,
β0

β
− 1 − A;

β0

β
− A,

β0

β
+ 1 − A; 1

)]−1

,

where

3F2(a1,a2,a3; b1,b2; z)

≡ �(b1)�(b2)

�(a1)�(a2)�(a2)

∞∑
n=0

�(a1 + n)�(a2 + n)�(a3 + n)

�(b1 + n)�(b2 + n)�(n + 1)
zn

for |z| < 1

is the generalized hypergeometric function and its value at
1 is defined by continuation. When m → 0, by the Gaussian
formula

2F1(a,b; c; 1) = �(c)�(c − a − b)

�(c − a)�(c − b)
, when �(c) > �(a + b),

hence

lim
m→0

2F1

(
1 − A,

β0

β
− (1 + A),

β0

β
− A,e−βm

)

= � (β0/β − A) �(A)

� (β0/β − 1)
(44)

is a finite value. Therefore, when m → 0,

s1(m) ∼ (1 − e−βm)−A ∼ m−A. (45)

It can be seen that s1(m) is singular at m = 0, but s1(m) still
integrates to 1 over the whole magnitude range if the process
is subcritical (A < 1). Also, when m → ∞, it is obvious that
s1(m) ∼ e−β0m.

Solution (44) is valid only if β0/β > 1 + A. When β0/β �
1 + A, the magnitude distribution of the background events is
overridden by the asymptotic magnitude distribution, i.e., by
the solution to a reduced version of (38) when μ/λ̄ = 0:

s1(m) =
∫
M

κ(m∗)s(m |m∗)s1(m∗)dm∗. (46)

Since the above equation is a special case of ρ = 1 of the right
eigenequation in Eq. (33), the solution is

s1(m) = C1 e−(1+A)βm[1 − e−βm]−A, (47)

where C1 = β sin Aπ

Aπ
is the normalizing constant. This solution

has asymptotes of m−A and e−(1+A)βm at 0 and ∞, respectively.
In summary, when background events have a constant

occurrence rate and a magnitude distribution of the G-R law
with parameter β0, beside � = A < 1, a further condition
β0 > (1 + A)β is required to ensure that the whole process
is stable. When β0 > (1 + A)β and A < 1, the process has a
finite occurrence rate and the magnitude distribution for all
events has an asymptote of an exponential law with parameter
β0; when β0 < (1 + A)β and A < 1, the process is not stable
with an infinite occurrence rate and the magnitude distribution
for all events has an asymptote of an exponential law with
parameter (1 + A)β.
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FIG. 1. Probability density functions for the magnitudes of all
simulated events. β0 is fixed at 5.0, 3.5, and 2.4 in (a)–(c), respectively,
while β is fixed at 2.3 and A changes from 0.1 to 0.9. The scatter points
represent the relative frequency of simulated magnitudes, the solid
lines represent the corresponding theoretic results, and the dashed
straight lines represent the slopes of β0 in the density s0(m) of the
background events.

We verify the above results through Monte Carlo sim-
ulation. We set the magnitude threshold m0 = 0 and run
three sets of simulations, all with model parameter β = 2.3
and the values of A changing between 0 and 1, but with
different β0 values. In the first set of simulations shown in
Fig. 1(a), β0 = 5.0, where the condition β0/β − 1 − A > 0
is always satisfied for 0 < A < 1, the higher end of the
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magnitude density function is controlled by the background
magnitude density, irrespective of the value of A. In the second
set [Fig. 1(b)], β0 = 3.5, the magnitude density functions
have asymptotes given by e−β(1+A)m if β0/β < 1 + A (i.e.,
A > 11/24) and, otherwise, e−β0m. In the third set [Fig. 1(c)]
with β0 = 2.4, where β0/β − 1 − A < 0 holds for all selected
A values, the high ends of the magnitude density functions
have an asymptote as e−β(1+A)m. In all three cases, there is a
singularity point at zero, the magnitude threshold. In summary,
the magnitude distribution for all events departs from the
empirical Gutenberg-Richter magnitude-frequency relation,
but in accordance with the theoretical results discussed
above.

B. Case � > 0

When � > 0, the left eigenequation in Eq. (7) becomes the
following functional equation,

�a(m) = κ(m)

F (m + �)

∫ m+�

0
f (m′)a(m′)dm. (48)

This equation suggests a possible way to solve it by iteration:

a(0)(m) = 1,

a(n+1)(m) = 1

�

κ(m)

F (m + �)

∫ m+�

0
f (m′)a(n)(m′)dm.

However, since a(m) is a monotonic increasing function, the
above iteration does not converge. We need to consider an al-
ternative such as c(m) = a(m)/κ(m) or c(m) = a(m)/[κ(m)]2.
It is easy to verify that c(m) = a(m)/κ(m) does not decay
quickly enough. Assuming that c(m) = a(m)/[κ(m)]2, the left
eigenequation (48) becomes

�c(m)[κ(m)]2

= κ(m)

F (m + �)

∫ m+�

0
f (m′)c(m′)[κ(m′)]2 dm′, (49)

i.e.,

�c(m) =
∫ m+�

0 f (m′)c(m′)[κ(m′)]2 dm′

κ(m)F (m + �)

= Aβ
∫ m+�

0 c(m′)κ(m′)dm′

κ(m)F (m + �)
, (50)

by noticing f (m)κ(m) = Aβ. Now consider the iterative
scheme

c(0)(m) = 1

c(n+1)(m) = Aβ

�

∫ m+�

0 c(n)(m′)κ(m′)dm′

κ(m)F (m + �)
, n = 1,2, . . . .

Then

c(1)(m) = Aβ

�

∫ m+�

0 c(0)(m′)eβm′
dm′

Aeβm[1 − e−β(m+�)]
= Aeβ�

�
,

c(2)(m) = Aβ

�

∫ m+�

0 c(1)(m′)eβm′
dm′

Aeβm[1 − e−β(m+�)]
= A2 e2β�

�2
,

and

c(n)(m) = An enβ�

�n
.

The convergence of {c(n)(m)} requires � � Aeβ�. Note that
� > Aeβ� corresponds to the trivial case of c(m) = 0 and
a(m) = 0, and � = Aeβ� corresponds to c(m) = 1 and a(m) =
[κ(m)]2 = A2 e2βm. In summary, the left eigenequation has a
nontrivial solution of a(m) = [κ(m)]2 = A2 e2βm with corre-
sponding eigenvalue � = Aeβ�.

The right eigenequation takes the form of

�b(m) =
∫
M

K(m,m′)b(m′)dm

=
∫ ∞

max{0,m−�}

Aβeβ(m′−m)b(m′)
1 − e−β(m′+�)

dm′. (51)

Take derivatives of both sides,

�
db(m)

dm
= −β

∫ ∞

max{0,m−�}

Aβeβ(m′−m)b(m′)
1 − e−β(m′+�)

dm′ − K(m, max{0,m − �})b(max{0,m − �})d max{0,m − �}
dm

= −β�b(m) −
{

0, for m < �,

K(m,m − �)b(m − �), for m � �. (52)

When m < �, according to (52),

�
db(m)

dm
= −�βb(m′) ⇒ b(m) = C0e

−βm, (53)

where C0 could be any positive constant, and for simplification,
we take C0 = 1. Substitute the above equation into (51), for
m � �,

� e−βm = Aβ e−βm

∫ ∞

max{0,m−�}

eβm′
b(m′)dm′

1 − e−β(m′+�)

= Aβ e−βm

∫ ∞

0

eβm′
b(m′) dm′

1 − e−β(m′+�)
, (54)

which gives

� = Aβ

∫ ∞

0

eβm′
b(m′)dm′

1 − e−β(m′+�)
. (55)

Now we consider the value of b(m) when m � 0. Assume

b(m) = Dn(m − n�)e−βm, for n� < m � (n + 1)�,

n = 0,1,2, . . . ,

where Dn+1(0) = Dn(�) is required for all non-negative
integers n. We only need to find the values of Dn(x) for
x ∈ (0,�] to determine b(m). Substitute the above form of
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FIG. 2. Subcritical and supercritical regimes for the case of
β = ln 10 (i.e., b = 1.0).

b(m) into (52), we have

�
dDn(m − n�)

dm
= −AβDn−1(m − n�)

1 − e−βm
, (56)

i.e.,

�
dDn(x)

dx
= − AβDn−1(x)

1 − e−β(x+n�)
, 0 < x � �, (57)

for n = 1,2, . . . , with D0(x) = C0 = 1 and Dn(0) =
Dn−1(�). The above equation can be solved iteratively,

D0(x) = 1, (58)

Dn+1(x) = Dn(�) − Aβ

�

∫ x

0

Dn(u)

1 − e−β[u+(n+1)�]
du. (59)

Considering � = Aeβ�, the above equation can also be written
as

Dn+1(x) = Dn(�) − β e−β�

∫ x

0

Dn(u)

1 − e−β[u+(n+1)�]
du. (60)

Figure 2 shows the theoretical curve (A = e−β�) of the
boundary between the subcritical and supercritical regimes
when β = ln 10. We can see from Fig. 2 that when � = 0,
the process is subcritical when A = κ(0) < 1, as derived
above. Moreover, when � increases, A should be decreased to
ensure that the process remains in the subcritical regime. The
magnitude density function for the overall events in this case
is more difficult to obtain than the case of � = 0. However,
we can still discuss its asymptotic properties in the following
way: Consider the integral equation related to the branching
ratio

s1(m) = μ

λ̄
s0(m) +

∫
M

κ(m∗)s(m |m∗)s1(m∗)dm∗

= μ

λ̄
s0(m) + f (m)

∫ ∞

max(0,m−�)

κ(m∗)s1(m∗)

F (m∗)
dm∗, (61)

where μ/λ̄ = 1 − ∫
M κ(m)s1(m) dm. Suppose that s1(m) ∼

D e−γm, when m is sufficiently large, where D and γ are
constants. When m is sufficiently large, F (m) ≈ 1, so the

above equation can be rewritten as

D e−γm ≈ μ

λ̄
β0 e−β0m + β e−βm

∫ ∞

m−�

AD e−(γ−β)m∗
dm∗

= μ

λ̄
β0 e−β0m + β e−βm AD e−(γ−β)(m−�)

γ − β
. (62)

The following conclusions can be drawn from the above
equation:

(1) γ � β0. This is because s(m |mi) is a truncated
probability density, and thus the tail of the magnitude density
function does not increase when the direct offspring of any
event are added into the population pool.

(2) When 0 < μ/λ̄ � 1, γ = β0. It is clear that s1 can be
written in the form of a mixture of two probability densities:

s1(m) = Cs0(m) + (1 − C)sd (m),

where C = μ/λ̄ and sd (m) is a magnitude density function. If
s1(m) ∼ e−γm, then so is sd (m). Also, if γ < β0, then

1 = lim
m→0

s1(m)

s1(m)
= C lim

m→0

s0(m)

s1(m)
+ (1 − C) lim

m→0

sd (m)

s1(m)
= 1 − C,

which conflicts with the assumption that C > 0.
(3) When μ/λ̄ = 0, i.e., λ̄ = ∞ or the whole process

has an infinitely large rate, by (62) the solution satisfies
γ = β[1 + Ae(γ−β)�].

We use simulations to obtain the magnitude distribution for
different cases of � and criticality parameters. Figures 3(a)–
3(c) show the magnitude PDFs for the cases of β0 = 5.0, 3.5,
and 2.4, respectively, while � is fixed as 0.1, β is fixed as 2.3,
and A changes between 0 and 1. Figures 3(d)–3(f) correspond
to Figs. 3(a)–3(c), respectively, except that � = 0.1 is replaced
by � = 0.5. When A is small enough, for example, A = 0.1 in
Figs. 3(a)–3(e) or A = 0.05 in Fig. 3(e), the overall magnitude
distribution can be well approximated by the G-R magnitude-
frequency relation. However, in this case, what controls the
global slope is β0 but not β. When A is big and � is small,
for example, A = 0.6–1.0 in Figs. 3(a)–3(c), the magnitude-
frequency (magnitude probability density) curves can be
divided into three parts: The tails have the asymptotic slopes as
we discussed above; the middle (transitive) part corresponds
to the transitive part in Fig. 4 from the singular point at m = 0
to the part with the asymptomatic slope; unlike the case of
� = 0, the starting part is not singular, but is replaced by a
short and approximately straight line segment. When A is big
and � is also big, e.g., A = 0.6–1.0 in Figs. 3(d)–3(f), the
transitive part disappears and the starting short line segments
are connected to the asymptotic-slope parts directly.

Based on the above analysis of Eq. (62) and the simulation
results, we can summarize the asymptotic behavior of s1(m)
as in Fig. 4. In this figure, the vertical dashed lines mark the
cases for β0 = 2.4, 3.5, and 5.0, the gray solid lines with
unit slope mark the function y = γ , and the other gray solid
curves mark the functions of y = β[1 + Ae(γ−β)�] with A

varying between 0 and 1. The black lines with arrows in each
panel show how the slope changes for different β0 when A

changes. For a more general discussion, we plot the cases of
� = 0, 0.1, 0.5 in Figs. 4(a)–4(c), respectively. We can draw
the following conclusions:
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FIG. 3. Magnitude PDFs for all the events obtained by simulation for the BASS model with different parameters: (a) � = 0.1 and β0 = 5.0,
(b) � = 0.1 and β0 = 3.5, (c) � = 0.1 and β0 = 2.4, (d) � = 0.5 and β0 = 5.0, (e) � = 0.5 and β0 = 3.5, and (f) � = 0.5 and β0 = 2.4,
while β is fixed as 2.3, and A changes between 0 and 1, represented by curves of different gray scales. The dashed lines represent the slope β0

in s0(m) of the background events.

(1) The asymptotic slope is determined by β0 and the first
intersection between y = γ and y = β(1 + Ae(γ−β)�), i.e.,
max{β0,γ0}, where γ0 is the smaller solution of γ = β(1 +
Ae(γ−β)�), if such solutions exist.

(2) When A is large enough such that a solution
of γ = β(1 + Ae(γ−β)�) does not exist, the asymptotic
slope is determined by the point at which y = γ cuts
γ = β(1 + A0 e(γ−β)�) for a certain A0, i.e., the asymptotic

slope is the corresponding γ if it is greater than β0, or
β0, otherwise. As shown in Fig. 4(c), the gray dashed
curve is the one tangent to y = γ among the set of curves
{y = β[1 + Ae(γ−β)�] : A ∈ [0, + ∞)} and P is the cutting
point. It can be shown that the solution at P is γ = β + 1

�
.

(3) If β0 is greater than all the values of γ0, which
correspond to the first intersection points between y = γ and
y = β(1 + Ae(γ−β)�) for possible values of A, then the slope
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FIG. 4. Illustrations of obtaining the asymptotic slopes of the magnitude PDFs in Figs. 1 and 3: (a) � = 0, (b) � = 0.1, and (c) � = 0.5.
The vertical dashed lines mark the cases for β0 = 2.4, 3.5, and 5.0, the gray solid lines with unit slope mark the function y = γ , and the other
gray solid lines mark the functions of y = β[1 + Ae(γ−β)�] with A varying between 0 and 1. The gray dashed curve in (c) is the one which is
tangent to y = γ among the set of curves {y = β[1 + Ae(γ−β)�] : A > 0} at P . The black lines with arrows in each panel show the paths of
how the slope changes for different β0.

always remains β0. For example, when � = 0.5, β0 = 5.0
and β = 2.3 in Fig. 4(c).

Moreover, there is a mode in the criticality regime where
ω = 1 and � < 1. Here at this mode, each family line in the
process eventually becomes extinct with probability 1 and
a finite total family size, but the whole process does not
have a finite occurrence rate. This shows again that � < 1
is only a necessary condition but not a sufficient one. To
distinguish different subcritical modes of the process, we say
that the process is essentially subcritical when � < 1 and
ω < 1, and semicritical or pseudosubcritical when � < 1 and
ω = 1. From the above analysis, we can see that the process
is semicritical when A takes values in (A1,A2) where A1 =
(β0/β − 1)e(β−β0)� corresponds to the first turning point on the
path of possible γ values in Fig. 4, and A2 = min{e−β�, 1

β�e
},

with A = e−β� corresponding to the case when the process
is critical (i.e., � = Aeβ� = 1), and A = 1

β�e
corresponding

to the case when y = γ cuts y = β[1 + Ae(γ−β)�] (i.e.,
γ = β + 1/�). If A2 < A1, then (A1,A2) is the empty set.

C. Magnitude intensity of the first generation

Unlike the magnitude distribution s1(m) of all events, the
magnitude distribution of the first generation can be derived
in explicit form and can provide us with some insights into
the overall magnitude distribution, especially in the subcritical
case where the first generation comprises the majority of all
the descendants. In this section, we will focus on the expected
magnitude intensity of the first generation triggered by the
background events, i.e.,

sf (m) =
∫
M

κ(m′) s(m|m′)s0(m′) dm′

=
∫ ∞

max(0,m−�)
Aeβm′ β e−βm

1 − e−β(m′+�)
β0e

−β0m
′
dm′

(let u = e−βm′
)

= Aβ0e
−βm

∫ e−β max(0,m−�)

0
u

β0
β

−2(1 − ue−β�)−1du (63)

= Aβ0 β

β0 − β
e−β min(m,�)−β0 max(0,m−�)

×2F1

(
1,

β0

β
− 1;

β0

β
; e−β max(m,�)

)
. (64)

A special case of the above equation is

sf (m) = −β0e
−β(m−�) ln[1 − e−β max(m,�)], when β0 = 2β,

(65)

obtained by using the equality ln(1 − z) = −z 2F1(1,1; 2; z)
for |z| < 1. To analyze the above equation, we consider the
two cases of large and small values of m:

(1) Large m. To obtain the asymptotic behavior of sf (m) for
large m, substitute the expansion (1 − ueβ�)−1 ∼ 1 + O(1)
into (63), and then

sf (m) ∼ e−β0m. (66)

This implies the tail of sf (m) is controlled by the magnitude
structure of the background events.

(2) Small m. When � = 0, it is easy to see sf (m) ∼ e−βm.
When � = 0, using the following from page 63 of Andrews
et al. [38],

lim
x→1− 2F1(a,b; a + b; x)/ ln[1/(1 − x)] = B(a,b),

where B is the beta function, we can obtain sf (m) ∼ − ln m

by using the approximation 1 − e−β max(m,�) ≈ βm. That is to
say, in this case, when � = 0, sf (m) has a singularity point at
0 with − ln m as the asymptote, and this singularity disappears
with � > 0 where the asymptote is replaced by e−βm.

VIII. SUMMARY

In this article, we considered the stability conditions and
some asymptotic properties of a general class of branching
processes in which the magnitude distribution of offspring
depends on the magnitude of the parent. This class includes the
ETAS model as a special case in which offspring magnitudes
are independent of parents, but the class also encompasses
more general models, such as the BASS model and other
recently proposed models.
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For this general class, we derived the equations that
determine the criticality parameter and the branching ratio,
each of them describing a different property of the process.
The criticality parameter characterizes the average number
of offspring of an arbitrary parent after infinitely many
generations, while the branching ratio describes the average
number of offspring over all generations. For the special case of
the ETAS model, where the magnitude component satisfies the
Gutenberg-Richter law and can be separated from the whole
process, these two quantities are identical, but they may differ
in the more general case.

To explore these quantities, we reformulated the BASS
model as a well-defined Poisson cluster process with a
background rate, a Poisson-distributed number of offspring,
and parent-dependent magnitude density of the offspring.
We found that the model is asymptotically unstable unless
exponents of the productivity law and the magnitude densities
are suitably modified, or unless other conditions are imposed,
such as a truncation of the magnitude density of the offspring.

We proposed one particular version of the BASS model
that ensures that the model can be subcritical, in which the
magnitude density of aftershocks is truncated from above
by m′ + �, where m′ is the parent’s magnitude and � is
a constant. We then explored the stability conditions of
this model, including the asymptotic properties of the com-
pound magnitude distribution. We analyzed these properties

analytically by deriving expressions for the left and right
eigenfunctions and the maximum eigenvalue of the equation
that describes the branching. Based on these results and on
numerical simulations of this modified BASS model, we
derived stability conditions and showed that in the subcritical
regime, there is a mode where the process is not stable
with a finite occurrence rate but where all family trees
still eventually become extinct. Furthermore, the compound
magnitude distribution of all events may differ substantially
from the Gutenberg-Richter distribution, unless the process is
essentially subcritical or � is relatively large.
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