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Abstract 
 

The ability to characterize and control matter far away from equilibrium is a frontier 

challenge facing modern science. In this article, we sketch out a heuristic structure for 

thinking about different ways in which non-equilibrium phenomena can impact molecular 

reaction dynamics. Our analytical schema includes three different regimes, organized 

according to increasing dynamical resolution: at the lowest resolution, we have conformer 

phase space, at an intermediate resolution we have energy space, and at the highest resolution 

we have mode space. Within each regime, we discuss practical definitions of non-equilibrium 

phenomena, mostly in terms of the corresponding relaxation timescales. Using this analytical 

framework, we discuss some recent non-equilibrium reaction dynamics studies spanning 

isolated small-molecules, gas phase ensembles, and solution phase ensembles. This includes 

new results that provide insight into how non-equilibrium phenomena impact the solution 

phase alkene-hydroboration reaction. We emphasize that interesting non-equilibrium 

dynamical phenomena often occur when the relaxation timescales characterizing each regime 

are similar. In closing, we reflect on outstanding challenges and future research directions to 

guide our understanding of how non-equilibrium phenomena impact reaction dynamics. 
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Introduction 
 

 Understanding how physical processes far from equilibrium impact systems within 

physics, chemistry, and biology is a current ‘grand challenge’ facing 21st century science.1 

Indeed, many of the most commonly utilized physical laws invoked across a wide range of 

scientific applications are derived from equilibrium thermodynamics. Despite a well-

developed mathematical apparatus for understanding equilibrium systems and our increasing 

ability to accurately predict the equilibrium properties of specific systems, most phenomena 

in the natural world occur in a non-equilibrium regime. It is often said that life is a non-

equilibrium process, and this applies both to living organisms and the systems in which they 

are embedded: e.g., the delicately balanced reaction cycles that happen inside a cell, the firing 

of electrical impulses that cause our heart to beat, the formation and dissipation of 

perturbations within local and global weather systems, the time-evolution of social networks 

and stock markets, the spread of epidemics, etc.1  

Non-equilibrium phenomena may be observed at all levels at which matter is 

organized, from electron dynamics to cellular processes to star formation. With applications 

to chemistry, a substantial quantity of work has been done examining non-equilibrium 

phenomena imposed by boundary conditions and external fields.2 However, the focus of this 

article is transient non-equilibrium phenomena within molecular reaction dynamics and 

kinetics – and in particular how such phenomena impact chemical reactions. The most 

commonly invoked models in the field of molecular reaction dynamics are dominated by 

references to free energies and transition state theory (TST), both of which have foundations 

in equilibrium thermodynamics. However, an increasing number of studies are revealing 

important non-equilibrium effects that cannot be captured by the standard equilibrium 

frameworks and which significantly impact chemical reactions. An exhaustive review citing 

all the work that has contributed to progress in non-equilibrium reactivity would require space 

far beyond what is available here and is not therefore possible. Rather, this article outlines an 

analytical schema divided into regimes that provide increasing dynamical resolution: 

conformer phase space, energy space, and mode space. These offer a useful organizational 

structure for thinking about different ways in which non-equilibrium phenomena can impact 

molecular reaction dynamics. Using this framework, we highlight a range of well-established 

and recent developments within reaction dynamics and kinetics, spanning isolated small-
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molecule studies, gas phase studies, and liquid phase studies, including new results for the 

alkene-hydroboration reaction. At the close of this article, we reflect on challenges and future 

research directions. 

 

 
Figure 1: different regimes of non‐equilibrium phenomena. At the lowest level of resolution, population may flow 
within conformer phase space between C1 and C2. At an intermediate level of resolution, conformer phase space may 
be further partitioned to reveal different regions within molecular energy space. With higher resolution, energy space 
may be resolved into mode space, with energy flow amongst different molecular modes. The figure illustrates a kinetic 

network for flow of energy amongst a set of six molecular vibrations v1 – v6.  

Identifying Non-Equilibrium Regimes 
 

Conformer Phase Space 
 

Figure 1 presents a useful schematic for thinking about different regimes of molecular 

non-equilibrium phenomena discussed in this article. The lowest level of resolution shown in 

Fig 1 concerns population flux that occurs as a molecular ensemble explores different regions 

of its available phase space on a single electronic potential energy surface (PES), indicated as 

a kinetic transformation wherein some conformer C1 may interconvert to some conformer C2. 

From small molecules to proteins, this is perhaps the most common way in which chemists 

think about reactivity, and essentially amounts to distinguishing between ‘chemically 

significant’ changes in the coordinates, q, used to represent molecular systems. In the limit of 

canonical equilibrium, pi, the probability of finding the system in conformer i (e.g., i = 1,2 in 

Fig 1) may be written as: 
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        (E1) 

where Qi(T) is the partition function for conformer i at some temperature T, and the 

summation is over all N conformers within the molecule’s total phase space. ‘Non-

equilibrium’ within conformer phase space refers to a situation where the ensemble 

populations of molecular conformers do not follow what we would expect on the basis of 

(E1). 

 

Energy Space 
 

A molecule’s conformer phase space may be further resolved into microcanonical 

‘energy space’. Different regions within this space may be identified by the total (kinetic + 

potential) energy of the molecular system, a conserved quantity within both classical and 

quantum mechanics. Figure 1 represents this space as a set of discrete energy states along the 

y-axis. Population flow between different regions of energy space (represented by a set of 

vertical arrows) is facilitated by interactions with some sort of bath. The total energy of some 

molecular conformer i is typically described by some Hamiltonian function H, which may be 

expressed as a function of displacement within the modes of which the system is composed, 

or some other set of characteristic internal coordinates, q. The energy-resolved picture may be 

linked to molecular phase space via the partition function of a particular molecular conformer 

as follows: 

€ 

Qi(T) = ρi(E)exp(−βE)dE
E= 0

E=∞

∫       (E2) 

where ρi(E) is the density (or degeneracy) of states for conformer i at some energy E, and β = 

(kT)-1. The corresponding probability of finding conformer i with a total energy E at some 

temperature T may be written as:  

 

€ 

pi(E) =
ρi(E)
Qi(T)

        (E3) 

Within the energy space of conformer i, ‘non-equilibrium’ often refers to a situation in which 

the energy distribution function pi(E) does not follow what we would expect based on (E3). 

 

Mode Space 
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 Microcanonical energy space is composed of a set of microstates, each of which has a 

particular energy E. For small and medium sized molecules at low energies, there are usually 

only a few such microstates; however, the density of states increases rapidly with energy. Any 

given microstate may be distinguished from any other microstate by resolving the constituent 

modes whose combination makes up a particular microstate. These modes may represent any 

of a number of types of molecular motion including normal mode vibrations, local mode 

vibrations, librations, etc. While the choice of framework for describing the modes depends 

on the system under investigation, the important point is that there is some set of molecular 

motions (i.e., modes) whose combinations result in a set of microstates. This level of 

resolution we refer to as ‘mode space’. One of the utilities of the mode space perspective is 

that it easily allows us to identify and analyze the specific microscopic motions characterizing 

a molecule’s dynamics. Fig 1 shows a schematic for population flow between six different 

vibrational modes (v1 – v6) using a simple kinetic scheme where the arrows respresent some 

different pathways that energy may take. For a polyatomic molecule with a total energy E, 

there are usually a number of different states with energy E. Each state corresponds to a 

different of way of partitioning the available molecular energy amongst all the different 

modes (the number of modes goes as 3n – 6 where n is the number of atoms in the molecule). 

Within the ergodic limit, the assumption is that intramolecular energy transfer between modes 

is rapid, and every state is equally likely. Statistically, for a molecule with S states that have a 

total energy E, we may calculate , the average energy in a particular mode j at some 

total molecular energy E, as follows: 

        (E4) 

where k runs over all S states with a total molecular energy E, and Ej,k is the energy within 

mode j for state k. Summing over the average energy in each mode then recovers the total 

molecular energy – i.e.: 

€ 

E j E
= E

j=1

3n−6

∑          (E5) 

Mode space is amongst the most fundamental perspectives from which to analyze molecular 

behavior, since it relates to the fundamental motions that drive chemical change. Within mode 

space, non-equilibrium often refers to circumstances in which the energy content in some 

mode differs substantially from what we would expect based on (E4). Indeed, such 

perturbations and corresponding localization of significant energy in some small subset of 
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modes is often a prerequisite for any molecule to undergo reactive change.3 This leads us to 

an important point: all of chemical reactivity fundamentally depends on how molecules 

shuffle energy between modes. 

 

Population Flux in Conformer Space, Energy Space, and Mode Space 
 

(E1) – (E5) provide a useful lens for resolving different regimes of non-equilibrium 

phenomena within molecules. In the simplest limit, non-equilibrium systems are 

characterized by population distributions that deviate from what we would expect in the 

equilibrium ensemble limit. More detailed analyses are able to reveal the microscopic physical 

mechanisms responsible for these deviations and the corresponding pathways by which non-

equilibrium systems relax to equilibrium. It is important to note that statistical mechanics not 

only provides frameworks for calculating populations in equilibrium systems; it also allows 

us to calculate population flux within equilibrium systems. For example, at canonical 

equilibrium, where it is appropriate to invoke free energy descriptions, rate coefficients 

describing flux between different regions of conformer phase space may be estimated using 

transition state theory (TST): 

€ 

k(T) = Γ(T) kT
h
QTS

QR

exp(−βE0)      (E6) 

where QTS and QR are the respective transition state (TS) and reactant (R) partition functions, 

E0 is the potential energy of the transition state with respect to that of the reactant, and Γ(T) is 

a coefficient which accounts for both in the effect of both quantum tunnelling and recrossing 

due to friction.4 At microcanonical equilibrium, Rice-Ramsperger-Kassel-Marcus (RRKM) 

theory provides a similar description of the rate coefficient for population transfer between 

different regions of conformer phase space: 

        (E7) 

where ρTS(E) and ρR(E) are the respective densities of states for the transition state and 

reactant. Within mode space, intramolecular vibrational energy redistribution (IVR) for larger 

polyatomic molecules is typically expressed in terms of Fermi’s golden rule as follows:5,6 

  

€ 

ki→ j = (2π /)< j |H | i >
2
δ(Ei − E f )       (E8) 
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where ki→j is the rate coefficient for energy transfer from mode i to mode j, < j | H | i > is the 

corresponding mode-mode matrix coupling element, and Ei, Ej are the energies of states i and 

j. The total rate coefficient for energy flow out of a particular mode requires summing over all 

possible j acceptor modes in (E8). The availability of frameworks like (E6 – E8) for 

calculating population flux across the regimes shown in Fig 1 highlights an additional 

criterion for identifying non-equilibrium phenomena: namely, cases in which the rate of 

population transfer differs substantially from what we would predict using equilibrium 

frameworks – e.g., TST, RRKM theory, or Fermi’s golden rule. 

 

Relaxation Timescales 
 

The partitioning shown in Fig 1 is partially motivated by the fact that each regime 

tends to have its own characteristic timescale, τeq, on which perturbations relax to 

equilibrium, with the most common assumption that 

€ 

τmode space
eq  << 

€ 

τ energy space
eq <<

€ 

τ configuration space
eq . 

However, it is important to note that several of the most interesting non-equilibrium 

molecular phenomena (including the examples discussed below) concern cases wherein 

€ 

τmode space
eq , 

€ 

τ energy space
eq , and 

€ 

τ configuration space
eq  are competitive.  

Specification of characteristic relaxation timescales is an important basis for 

developing Markov models of chemical dynamics,7 which rely on the assumption that 

memory effects within a dynamical system need not be considered. Hence, evolution from 

time t to t + ∆t depends only on a system’s state at time t, irrespective of its state at time t – 

∆t. Insofar as (E6) – (E8) only require knowledge of the system at time t, they are all built on 

this assumption.  

On a small enough timescale, classical and quantum mechanics specify that the time 

evolution of any system from t – ∆t → t → t + ∆t is entirely deterministic, so that different 

time dependent states are highly correlated. Given this fact, the ubiquity of Markov models in 

describing dynamical ensembles may come as a bit of surprise. The key is a judicious 

definition of the magnitude of ∆t. For complex systems with coupled degrees of freedom, it is 

generally possible to find values of ∆t where dynamical properties measured at t + ∆t have 

decorrelated from those measured at time t.8 Quantitatively, we may define ∆t as the timescale 

required for an ensemble averaged time-correlation function to decay to zero.  

Each of the regimes shown in Figure 1 has a characteristic decorrelation timescale, 

leading us to another useful criterion for identifying circumstances during which molecular 
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systems are not likely to be in equilibrium with respect to some initial perturbation: namely, 

at times shorter than the decorrelation timescale, i.e. when ∆t < τeq.   

Non-Equilibrium Effects in Chemistry 
 

Isolated small molecule dynamics and kinetics 
 

 For isolated systems within the gas phase, studies on small molecule systems have 

shown that chemical reactions and molecular dynamics often occur in a regime which is far 

from equilibrium. Early observations made on A + BC reactions were synthesized by Polanyi, 

who observed that PES topologies govern the extent to which products are produced in 

excited non-equilibrium quantum state distributions.9 The qualitative rules he introduced for 

predicting non-equilibrium product distributions come from recognizing that reaction 

outcomes can be rationalized using a system’s trajectory. Trajectory-based models have since 

become a staple within chemical dynamics, and sophisticated theoretical models built on both 

classical and quantum mechanics are able to reliably rationalize and predict non-equilibrium 

outcomes of small molecule experiments.10  

Recognizing that chemical reactions produce excited products raises an interesting 

question if one considers the reverse direction – i.e., is it possible to control chemistry by 

selectively exciting modes that are strongly coupled to the reaction coordinate?11,12 For small 

molecules the answer certainly appears to be affirmative.13,14 For example, Crim and co-

workers examined the H + HOD reaction, and showed that vibrational excitation of the H–OD 

stretch led to H2 + OD products, while excitation of the HO–D stretch led to OH + HD 

products.14 For larger polyatomics efforts to control chemistry using mode selective excitation 

is significantly more complicated owing to the fact that IVR is extremely rapid,5,15 with the 

result that initially localized energy can quickly flows into other molecular modes, where it is 

little more useful than heat in driving a chemical reaction.12 Despite these challenges, 

considerable advances have been made controlling chemical reactions using exquisitely 

tailored ultrafast optical pulses, both experimentally and theoretically.16 

In the thermal regime, a number of recent theoretical and experimental studies have 

highlighted polyatomic systems in which the outcomes of chemical reactions, as reflected in 

the relative product yields, are very different than one would predict using the equilibrium 

frameworks discussed above.17-20 Recent work has highlighted a number of systems in which 

the observed reaction rates are faster than would be predicted based on equilibrium statistical 
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mechanics.20 In general, these observations arise because 

€ 

τmode space
eq  is similar to 

€ 

τ configuration space
eq . 

In a number of these systems, it is possible to rationalize the non-equilibrium behavior 

according to the structure of the underlying PES governing atomic rearrangement. For 

example, the assumed separation in equilibrium timescales often breaks down in the 

neigborhood of valley-ridge inflection points.19 These sorts of PES topologies often give rise 

to largely ballistic dynamics with long decorrelation timescales in mode space. This allows 

the system to traverse chemically distinct regions of the conformer phase space in relatively 

short times on the order of a few molecular vibrations. In such cases, Markov models 

generally provide a poor description of the rates for transfer between different regions of 

molecular phase space. Other well-known circumstances in which 

€ 

τmode space
eq ~ 

€ 

τ configuration space
eq  

include cases where energy is localized in a particular mode or subset of modes that are 

spectrally distinct from and only weakly coupled to other modes in the system.17,21  

 

Gas‐Phase Dynamics and Kinetics 
 

Gas phase chemical reactions are usually embedded in an ensemble of weakly 

interacting collision partners. In these cases, we can distinguish the system from the bath as 

follows: the system contains the molecule(s) undergoing the chemical reaction of interest, and 

the bath contains the ensemble of inert collision partners that exchange energy with the 

system through inelastic collision processes. This is effectively the picture described by the 

simple mechanism shown below: 

 

A + B  AB*        (R1a) 

AB* + M  AB + M       (R1b) 

 

where A and B are bimolecular reactants that form AB*, an encounter complex with a non-

equilibrium distribution in energy space. AB* has one of two fates: it may undergo (1) fast 

dissociation back to A + B, or (2) a series of weak collisions with the bath gas M that 

ultimately stabilize it to AB.22 

The R1a/R1b kinetic scheme qualitatively encapsulates one of the most ubiquitous 

manifestations of non-equilibrium phenomena within energy space – namely fall-off curves, 

in which experimental association rate coefficients show strong non-linear dependences on 

pressure.23 To understand these observations, there are two important limits to consider: 
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(1) At low pressures, the phenomenological rate coefficient for A + B association is small 

because redissociation to A + B dominates. This arises because 

€ 

τ energy space
eq  (the timescale 

for relaxation of AB* to AB) is competitive with 

€ 

τ configuration space
eq . In this limit, the system 

closely follows the RRKM model of (E7).  

(2) At high pressures, collisions with bath molecules quickly relax AB* to AB, and 

€ 

τ energy space
eq << 

€ 

τ configuration space
eq . This decreases the probability of dissociation, increasing the 

phenomenological association rate coefficient. In this limit, free-energy descriptions are 

appropriate, and the system closely follows canonical TST specified in (E6).  

 

At terrestrial temperatures and pressures, many important chemical reactions take place 

in an intermediate pressure regime where 

€ 

τ energy space
eq  is similar to 

€ 

τ configuration space
eq .24-26 For 

example, recent work investigating atmospheric association reactions to form peroxy radicals 

clearly shows that O2 “intercepts” vibrationally hot addition complexes.27 As shown in Fig 2, 

association of OH + acetylene in the atmosphere (298K, 760 torr) forms beta-hydroxy-vinyl 

(BHV) isomers with a strongly non-equilibrium energy distribution. In Fig 2, these are 

denoted CT** and CC**. At times less than 630 ps, relaxation within energy space is 

minimal, and the CT** to CC** ratio is 1:1. Full relaxation within both energy and 

conformer phase space are complete (blue curve) at times longer than 20 ns, and the 

equilibrium CT:CC ratio is 78:22. In between the short and long time limits, the BHV 

isomers are in an intermediate state of relaxation, a state denoted in Fig 2 as CT* and CC* 

(red curve). This matters because the different BHV isomers lead to different products, with 

CT + O2 giving glyoxal + OH products, and CC + O2 giving formic acid + HCO products. 

The atmospheric OH yield (298K, 760 torr) reflects the fact that O2 ‘intercepts’ ~25% of CT* 

and CC* prior to relaxation to CT and CC. More generic analysis indicates that O2 is capable 

of “intercepting” a range of different organic radicals prior to their relaxation in the 

atmosphere,27,28 revealing atmospheric bimolecular reactions as a new area in which non-

equilibrium effects matter. 



  11 

 
Figure 2: Illustration of how O2 “intercepts” vibrationally hot addition complexes in the atmosphere.27 OH + acetylene 

association forms two different vibrationally hot BHV isomers: CT** and CC**, both of which have a fast equilibrium. At 
times less than 0.63 ns (black curve), little relaxation occurs and the CT**:CC** ratio is 1:1. By ~20 ns, relaxation is 

complete (blue curve), and the thermal 298K CT:CC ratio is 78:22. Under atmospheric conditions, O2 efficiently intercepts 
the BHV isomers at range of energies over an intermediate state of relaxation, denoted CT* and CC*. 

 

A useful framework for quantitative analysis of competition between energy space 

relaxation and conformer phase space population flux is provided in the form of the energy 

grained master equation (EGME).22,25,29 The EGME is a Markov state model that describes 

population evolution within a set of energy-resolved regions of conformer phase space. On 

the assumption that relaxation within mode space is fast and the system is ergodic, the EGME 

partitions different regions of conformer space into different energy states (or ‘grains’), as 

shown in Figure 1.  Population flux between grains are then modeled as follows: 

(1) Amongst energy grains of the same energy, transitions between different regions of 

conformer phase space are modeled using (E7).  

(2) Amongst grains of different energy within the same region of conformer phase space, 

upward and downward transitions are modeled by combining collision theory with a 

function describing the probability that any given collision transfers some quantity of 

energy.  

Fundamental questions remain regarding the appropriate form for the energy transfer 

functions used in the EGME. Nevertheless, its achievements are impressive, and it has been 

successfully utilized to rationalize and predict large quantities of experimental data spanning a 

range of conditions that includes both adiabatic and (more recently) non-adiabatic kinetics.30 

  

Solution phase dynamics and kinetics 
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 With developments in experimental methods, computational resources, and theoretical 

frameworks, an increasingly studied aspect of non-equilibrium dynamics concerns chemical 

reactions in liquids.5,31,32 The system/bath partition in such systems is naturally defined with 

reference to the solute and solvent. At atmospheric temperatures and pressure, for example, a 

cubic box with a side length of 34.4 Å contains an average of one molecule. For typical 

organic solvents, the same sized box contains hundreds of molecules. Understanding non-

equilibrium reaction phenomena in liquids is complicated because: (1) the densely packed 

solvent environment can substantially modify the solute PES with consequences for 

population flux between different regions of conformer phase space;5 (2) ‘crowding’ 

substantially impacts molecular motion with knock-on effects for dynamics;3,33 (3) the 

dynamically significant fractions of both mode and energy space expand considerably owing 

to the close proximity of solvent molecules and crowding. 

A number of experimental and theoretical studies have provided insight into relaxation 

dynamics and unimolecular dissociation following relatively high-energy photo-excitation 

pulses.33,34 But far fewer studies have been designed to examine non-equilibrium relaxation 

that follows in the wake of thermal reactions in solution.35 Hence, it is commonly assumed 

that 

€ 

τ energy space
eq  and 

€ 

τmode space
eq  are rapid enough for non-equilibrium effects to be negligible.36 

However, recent work aimed at developing a microscopic picture of non-equilibrium 

dynamics in solution phase reactions suggests otherwise. For example, recent studies 

examining thermal bimolecular reactions of CN with both cyclohexane and THF in a range of 

organic solvents have shown significant vibrational excitation in the nascent HCN 

products.3,31,37-39 One of several interesting new insights from this work has been the direct 

observation of two distinct post-reaction non-equilibrium relaxation timescales within energy 

space.3,39 The first relaxation timescale (panel A of Fig 3) follows in the immediate wake of 

the reaction, when the nascent HCN is in close proximity to its cyclohexyl co-product, and 

strong interaction between co-products facilitates rapid energy transfer and correspondingly 

fast HCN relaxation. The second relaxation timescale (panel B of Fig 3) occurs once HCN 

and cyclohexyl have diffused away from one another and into the bulk solvent. HCN 

relaxation is considerably slower following diffusion, owing to weaker interactions between 

HCN and the CH2Cl2 solvent. Beyond being an interesting observation, these two-timescale 

relaxation dynamics actually have a non-trivial impact on the interpretation of the 

experimental data: neglecting the fact that there are two different relaxation timescales leads 

to underestimation of the fraction of vibrationally hot HCN produced in the immediate 
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aftermath of the CN + C6H12 abstraction reaction.3 Related time-resolved studies of HCN 

produced from reaction of CN + THF in THF solvent similarly show reveal two relaxation 

timescales, but their separation is rather less dramatic.38  

 

 
Figure 3: Illustration of the two different HCN relaxation timescales that follow in the wake of a bimolecular reaction 
wherein CN abstracts a hydrogen from C6H12. Panel A shows the fast relaxation regime, where HCN and C6H11 are in 
close proximity immediately following abstraction. Panel B shows the slow relaxation regime, where the co‐products 

have diffused away from one another. 

 

 Given this strong evidence of non-equilibrium phenomena in thermal bimolecular 

reactions, it is worth considering whether such effects impact chemical reactions. For a 

growing set of systems, recent work has identified solution-phase organic reactions in which 

non-equilibrium relaxation phenomena directly impact product yields.40,41 For example, it was 

recently shown that the relative yields of Markovnikov vs. anti-Markovnikov products in the 

well-known alkene hydroboration reaction are well described by EGME models of the sort 

discussed above. The relevant reaction scheme is as follows: 

BH3

BH3

BH3

BH3   +

Markovnikov
product

anti-Markovnikov
product

 
The key to the product partitioning concerns the nascent BH3–alkene complex (shown in Fig 

4 embedded in a tetrahydrofuran (THF) solvent) which initially has a strongly non-

equilibrium distribution in energy space with ~46 kJ mol-1 excess energy. As equilibrium sets 

in, anti-Markovnikov product formation increasingly dominates. EGME analysis suggests that 

the experimental product yields42 arise from the BH3–alkene complex having an intermediate 

energy distribution, somewhere between the equilibrium and strongly non-equilibrium limits, 

with owing to the fact that 

€ 

τ energy space
eq  and 

€ 

τ configuration space
eq  are very similar. 
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Figure 4: MD snapshot of the BH3‐alkene complex embedded in a THF solvent 

 

To explain the experimental results, EGME calculations performed on the BH3-alkene 

complex using a binary collision model required minimum energy relaxation rates on the 

order of 25 kJ mol-1 ps-1.41 To provide further microscopic insight into the origin of these 

values, we carried out solution phase MD modeling of the BH3-alkene complex embedded in 

an explicit solvent (a snapshot is shown in Fig 4). These calculations were carried out using 

the TINKER MD package along with the MM3 force field modified to include five-fold 

coordinated Carbon and Boron, as well as bonding, angle, and dihedral terms for modeling 

the interaction between BH3 and propene. Parameters for the additional molecular mechanics 

terms were adjusted to give a set of vibrational frequencies for the BH3-alkene complex which 

agreed with B3LYP/6-31G(2df,p) calculated frequencies to better than 12%. To monitor 

energy dissipation in the BH3-alkene complex, we constructed time-averaged internal energy 

correlation functions as follows: 

 

€ 

C(t) = 2KEavg (0) ⋅ 2KEavg (t) − 2KEavg (t)
2
     (E9) 

where the angled brackets indicate an average over the entire ensemble, KEavg(t) is the total 

kinetic energy of the BH3-alkene complex at time t averaged over 0.5 ps time windows, and 

€ 

KEavg
eq  is the equilibrium average of the kinetic energy in the complex, again averaged over 

0.5 ps time windows. The values required in (E9) were obtained from analyzing 5 ns of MD 

simulations, which were sufficient to achieve convergence in the correlation functions. In the 

limit of a purely harmonic potential, the virial theorem states that the time averaged kinetic 
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energy is equal to the time averaged potential energy. For the preliminary results reported 

herein, we calculated an approximation to this harmonic virial limit, simply treating the total 

internal energy of the complex as 2KEavg. We anticipate that the most significant errors in this 

approach arise from neglecting to project out translational and rotational motion. But based 

on equilibrium statistical mechanics and previous work,39 these components should contribute 

no more than 15% percent to the total kinetic energy of the complex. Using linear response 

theory (LRT)43 along with the (E9) correlation functions, we calculated time-dependent 

decays of excess internal energy within the BH3-alkene complex, 

€ 

Ecomplex(t) − Ecomplex , as 

follows: 

€ 

Ecomplex(t) − Ecomplex =
C(t)
C(0)

Ecomplex(0) − Ecomplex[ ]     (E10) 

Fig 5 shows results obtained by setting the initial excess internal energy within the 

complex, 

€ 

Ecomplex(0) − Ecomplex , to 46 kJ mol-1. The results give an average energy decay rate 

of ~3.5 kJ mol-1 ps-1 (obtained from a single exponential fit). These results are broadly 

consistent with the EGME results; however, further work is required to explore: (1) the 

physical origin of the short-time deviations from a single exponential decay shown in Fig 5; 

(2) the extent to which more accurate treatments of the solvent-solute force field impact the 

vibrational energy relaxation rate (previously shown to be important with THF as a solvent38), 

and (2) how the correlation function relaxation profile in energy space relates to non-

equilibrium population flux within mode space. 

 
Figure 5: time dependent internal energy of the BH3‐alkene complex embedded in a THF solvent, calculated using (E9) 

– (E10). The initial excess energy in the complex is 46 kJ mol‐1. 



  16 

Conclusions and Challenges 
 

Non-equilibrium phenomena are the subject of increasing attention within the physical 

sciences. This article outlines a heuristic organizational framework for thinking about non-

equilibrium phenomena as they relate to adiabatic chemical reaction dynamics. The 

framework partitions non-equilibrium phenomena based on relaxation timescales in mode 

space, energy space, and conformer phase space. While we believe this schema to be useful, it 

is important to point out the following: within molecules, it is often the case that each of these 

domains couple to one another – i.e., mode space dynamics affect the dynamics within energy 

space, and both subsequently impact dynamics within conformer phase space. In general, 

many of the most interesting non-equilibrium cases occur when relaxation timescales within 

these regimes are similar, and this article highlights a number of such cases. 

Our understanding of adiabatic non-equilibrium phenomena in isolated small 

molecules is relatively advanced compared to other fields, and has led to the development of 

sophisticated theoretical models that are able to predict and explain a range of experimental 

results.44 Significant challenges in the small-molecule field remain – for example, in 

understanding non-adiabatic dynamics and testing efficient approaches for obtaining accurate 

PESs. Nevertheless, successes in understanding non-equilibrium dynamics in small molecules 

have paved the way for us to tackle increasingly complex systems with some degree of 

confidence. Regarding our understanding of how non-equilibrium phenomena impact simple 

elementary reactions within gases, progress has also been made; however, a number of 

questions remain, and we continue to uncover surprises.26,27 For example, our fundamental 

understanding of the appropriate form for generic energy transfer models remains lacking,45 

particularly for the relaxation of molecules with significant vibrational excitation in regimes 

where dynamics are significantly anharmonic. Additionally, the extent to which non-

equilibrium phenomena impact chemical reactions in coupled kinetic networks (e.g., in the 

atmosphere) remains an exciting question. 

Growing evidence suggests non-equilibrium phenomena impact a range of chemical 

reactions within liquids in a manner that cannot be captured using simple free energy pictures 

and canonical TST; however, many open questions remain. Similar to the gas phase, there is a 

lack of fundamental understanding regarding generic functional forms able to describe 

solute/solvent energy transfer in both energy and mode space.46 Developing multi-

dimensional “maps” of mode specific energy transfer pathways during chemical reactions 

would go some way to helping us to visualize relaxation processes and develop our 



  17 

fundamental understanding of energy flow during the course of a chemical reaction. This will 

provide insight into IVR processes, solvent-solute interactions, and solvent crowding effects 

(e.g., friction). Just like in the small molecule field, an important challenge involves 

developing generic and efficient approaches for evaluating the solvent/solute PES. Detailed 

experiments and dynamics simulations will enable progress here. Ultimately, the aim is 

coarse-grained transferable models with predictive power. 

Beyond liquids, biochemical reactions offer exciting territory for investigating non-

equilibrium phenomena. For small peptides, studies of reaction and folding dynamics have 

highlighted cases where non-equilibrium phenomena significantly impact population flux 

within different regions of conformer phase space.47 Detailed studies of how biomolecules 

relax in mode and energy space are challenging owing to biomolecular heterogeneity, size and 

natural variability.48 Nevertheless, it will be fascinating to explore whether studies carried out 

along these lines49 lead to the development of transferable physical models that provide 

insight into how living systems manage microscopic non-equilibrium phenomena. 
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