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While Vardanega et al. (2012) present an interesting em-
pirical power law relationship for representing the stress–
strain response of clays under constant volume, they must
take care in the mixing and matching of different strength
modes. In particular, the observed increase of normally
consolidated undrained shear strength ratio (cu=s’v0)nc with
plasticity index (Ip) given by equation (4) was specifically
developed on the basis of raw (uncorrected) vane shear
strengths measured in the field on natural clays. The
general trend for the shear strength ratio from field vane
tests (FVTs) varying with Ip is reported by Bjerrum (1972),
Larsson (1980), Jamiolkowski et al. (1985), Chandler
(1988) and Leroueil & Hight (2003), albeit using non-linear
relationships such as power law rather than the original
linear form.

On the other hand, the general trend for the strength
ratio (cu=s’v0)nc from triaxial compression (TC) tests on
clays shows essentially no dependence on Ip (Larsson, 1980;
Jamiolkowski et al., 1985; Ladd, 1991; Ladd & DeGroot,
2003). As a consequence, this fact led Chandler (1988) to
recommend an Ip expression that inter-relates FVT
strengths to equivalent TC values.

Figure 9 shows the trends of (cu=s’v0)nc versus Ip using
the original FVT dataset of Skempton (1957) and the
laboratory dataset from TC, direct simple shear and
triaxial extension modes presented by Ladd & DeGroot
(2003). While the FVT data show a strong correlation with
Ip (r2 5 0?946), the TC data do not (r2 5 0?0002). These
trends have been supported by larger datasets including
over 200 vane shear test (VST) data and over 200 la-
boratory strength data (Mayne, 2012).

On the other hand, as per the theoretical link established
by critical state soil mechanics, the ratio (cu=s’v0)nc for TC
mode increases with the effective stress friction angle w9 of
the clay, as verified elsewhere (Mayne, 1988, 2012).

AUTHORS’ REPLY
We acknowledge the discusser’s recent re-evaluation of the
variation of undrained strength ratio (cu=s’v0)nc with
changes in plasticity index (Mayne, 2012) and his long
experience in developing soil parameter correlations and
their link to critical state soil mechanics principles (e.g.
Mayne, 1980; Kulhawy & Mayne, 1990; Mayne et al.
2009). Figure 9 is a provocative reminder of a variety of

influences on the strength of soils other than simply
changes in soil mineralogy.

We also recognise that differing test methodologies such
as triaxial extension and direct simple shear tests could be
used to characterise the normally consolidated behaviour
of clay. It should be noted that the undrained strength ratio
reported by Vardanega et al. (2012) was cu=p’0, consistent
with isotropic consolidation to mean effective stress p’0. The
theoretical and empirical differences between using cu=p’0
and cu=s’v0 in normalising soil test data were well discussed
by Wood (1990), who observed that Skempton (1954, 1957)
did not distinguish between the two when plotting the FVT
data shown Fig. 9, which were used to substantiate the
well-known equation (4).

Nevertheless, the strikingly different trend of FVT data
in the discusser’s Fig. 9 is worthy of reflection. The
discusser is right to warn against over-enthusiastic ‘mixing
and matching’ of diverse data from a variety of sources.
But, as the discusser will be well aware, any simple
relationship between two correlates inevitably masks other
sources of variation. In Fig. 9, for example, it seems likely
that the FVTs were conducted at an effective stress level at
least an order of magnitude smaller than the laboratory
tests that provided the remaining data. Highly structured
soils might be expected to display larger normalised
strengths at small effective stresses, with the ratio decreas-
ing at higher effective stress levels due to destructuration
(Baudet & Stallebrass, 2004). Furthermore, active clays of
high plasticity will be inherently more likely to develop
natural structure than would be the case for low-plasticity
clays. Figure 9 may therefore be masking the effects of
stress level and destructuration; it is possible that triaxial
and direct shear tests conducted on undisturbed samples
under low effective confining stresses would show a
stronger dependence on plasticity index, similar to the
FVTs. This view would seem to coincide with that of Mesri
(1975) who used the FVT data from Bjerrum (1973) to
derive a strength reduction factor m that reduces markedly
with Ip.

Pragmatically, it should be noted that the range of values
quoted by Vardanega et al. (2012) for (cu=p’0)nc of the
kaolin under investigation, 0?19–0?29, does not plot outside
the expected range for a soil of plasticity index 33% in
Fig. 9.

However, the original point of the letter was to show that
the mobilisation strain framework (MSF) as developed by
Vardanega & Bolton (2011a, 2011b) can be applied to
constant-volume tests on a remoulded soil and that the
overconsolidation ratio (OCR) strongly correlates to mobili-
sation strain (cM~2). Normally consolidated kaolin showed a
value cM~2 < 0?4%, whereas overconsolidated kaolin requir-
ed cM~2 < 2% at OCR 5 10 (equation (11)). This is almost an
order of magnitude increase for a somewhat modest OCR
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Vardanega, P. J. et al. (2013) Géotechnique Letters 3, 16–17, http://dx.doi.org/10.1680/geolett.13.00005

16



interval. This conclusion is not altered by the outcomes of the
discussion and this reply, and is important for geotechnical
engineers who want to simply model the stress–strain
behaviour of soils to perform serviceability calculations.
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Figure 9. Undrained strength ratio versus plasticity index for field vane test (FVT), triaxial compression (TC), simple shear (DSS) and
triaxial extension (TE). FVT data from Skempton (1957) and laboratory data from Ladd & DeGroot (2003)
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