
                          Javidpour, P., Bruegger, J., Srithahan, S., Korman, T. P., Crump, M. P.,
Crosby, J., ... Tsai, S-C. (2013). The Determinants of Activity and Specificity
in Actinorhodin Type II Polyketide Ketoreductase. Chemistry & Biology,
20(10), 1225-1234. 10.1016/j.chembiol.2013.07.016

Link to published version (if available):
10.1016/j.chembiol.2013.07.016

Link to publication record in Explore Bristol Research
PDF-document

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published
version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms.html

Take down policy

Explore Bristol Research is a digital archive and the intention is that deposited content should not be
removed. However, if you believe that this version of the work breaches copyright law please contact
open-access@bristol.ac.uk and include the following information in your message:

• Your contact details
• Bibliographic details for the item, including a URL
• An outline of the nature of the complaint

On receipt of your message the Open Access Team will immediately investigate your claim, make an
initial judgement of the validity of the claim and, where appropriate, withdraw the item in question
from public view.

http://dx.doi.org/10.1016/j.chembiol.2013.07.016
http://research-information.bristol.ac.uk/en/publications/the-determinants-of-activity-and-specificity-in-actinorhodin-type-ii-polyketide-ketoreductase(2a2c84bb-db95-49fe-822b-eadc66e53f57).html
http://research-information.bristol.ac.uk/en/publications/the-determinants-of-activity-and-specificity-in-actinorhodin-type-ii-polyketide-ketoreductase(2a2c84bb-db95-49fe-822b-eadc66e53f57).html


 1 

Title: The Determinants of Activity and Specificity in Actinorhodin Type II Polyketide 

Ketoreductase (ActKR) 

Running Title: Determinants of Activity and Specificity in ActKR 

 

Authors: Pouya Javidpour1, Joel Bruegger1, Supawadee Srithahan2, Matthew P. Crump2, John 

Crosby2, Michael D. Burkart3, Shiou-Chuan Tsai1,4,* 

 

Affiliations: 

1. Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, 

CA 92697, US 

2. School of Chemistry, University of Bristol, Bristol BS8 1TS, UK 

3. Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, 

CA 92093, US 

4. Departments of Chemistry and Pharmaceutical Sciences, University of California, Irvine, 

Irvine, CA 92697, US 

 

* Corresponding Author: Email sctsai@uci.edu, Phone (949) 824-4486, Fax (949) 824-8552 

 

Structure coordinates have been deposited with PDB codes 4DBZ, 4DC0, and 4DC1 for V151L, 

F189W, and Y202F actKR, respectively. 

 

Revised texts that address the reviewers comments are in red 



 2 

ABSTRACT 

Bacterial aromatic polyketides include many therapeutic agents and are biosynthesized by type II 

polyketide synthases (PKSs). In the actinorhodin type II PKS, the first polyketide modification is 

a regiospecific C9-carbonyl reduction, catalyzed by the ketoreductase (actKR). Our previous 

studies identified the actKR 94-PGG-96 motif as a determinant of stereospecificity (Javidpour, et 

al., 2011). The molecular basis for reduction regiospecificity is, however, not well understood. In 

this study, we examined the activities of 20 actKR mutants through a combination of kinetic 

studies, PKS reconstitution, and structural analyses. Residues have been identified which are 

necessary for substrate interaction, and these observations have suggested a structural model for 

this reaction. Polyketides dock at the KR surface and are steered into the enzyme pocket where 

C7-C12 cyclization is mediated by the KR before C9-ketoreduction can occur. These molecular 

features can potentially serve as engineering targets for the biosynthesis of novel, reduced 

polyketides. 

 

HIGHLIGHTS 

• ActKR surface arginines are important for ACP-binding and activity toward polyketides 

• In contrast to the S-specific P94L actKR, mutant V151L displays R-stereospecificity 

• ActKR is proposed to mediate C7-C12 polyketide cyclization prior to C9-ketoreduction 
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INTRODUCTION 

 Polyketide natural products are a large, diverse class of secondary metabolites with 

important biological activities (Crawford and Townsend, 2010; Zhan, 2009). Many 

pharmaceutical compounds are polyketide-based, including antibiotics (tetracycline), anti-cancer 

agents (daunorubicin), and immunosuppressants (FK506) (Cane, et al., 1998). Polyketide 

biosynthesis is driven by the polyketide synthase (PKS), which is genetically and functionally 

similar to fatty acid synthase (Hopwood, 1997). PKSs are generally divided into three classes 

(Shen, 2003), though the focus of this study are type II PKSs found in bacteria, which 

biosynthesize aromatic polyketides, such as actinorhodin (Malpartida and Hopwood, 1984). In 

the actinorhodin (act) type II PKS (Figure 1), a linear poly-β-keto chain is biosynthesized by the 

minimal PKS, consisting of the dimeric ketosynthase-chain length factor (KS-CLF) and an acyl 

carrier protein (ACP) (Malpartida and Hopwood, 1984). Biosynthesis is initiated by an acetate 

starter unit derived from CLF-mediated decarboxylation of a malonyl-ACP thioester. Subsequent  

chain elongation occurs through decarboxylative condensation of malonyl-based units to this 

starter, producing the final octaketide (16-carbon) intermediate (Das and Khosla, 2009). The first 

modification of the nascent polyketide chain is catalyzed by the actKR, which regiospecifically 

reduces a single carbonyl group (typically at C9) to a hydroxyl group. This modification is 

thought to occur after cyclization between C7 and C12 occurs, which forms the first ring, a 

process that may also be directed by the ketoreductase (McDaniel, et al., 1993). Heterologous 

expression and in vitro reconstitution experiments have demonstrated that, in the absence of 

modifying enzymes, the act minimal PKS produces both the correctly C7-C12 cyclized SEK4 as 

well as the aberrantly C10-C15 cyclized SEK4b. When actKR is present, however, the dominant 

product becomes mutactin (C7-C12 cyclized), further suggesting that correct cyclization is 
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dependent on reductase activity (Khosla, et al., 1993; McDaniel, et al., 1994; Zawada and 

Khosla, 1999). 

 Type II ketoreductases can potentially be utilized in organic synthesis applications and in 

engineered biosynthesis (Broussy, et al., 2009; Grau, et al., 2007; Jacobsen, et al., 1998; Truppo, 

et al., 2007). This would require an in-depth understanding of KR-substrate interactions, 

including the factors that dictate regio- and stereospecificity. Our previous structural and 

biochemical analyses led to the identification of the actKR 94-PGG-96 motif as a determinant of 

stereospecificity as well as residues that interact with the inhibitor emodin (Javidpour, et al., 

2011; Korman, et al., 2008). Furthermore, docking studies suggested a region on the actKR 

surface that could act as the site of interaction between KR and ACP (Javidpour, et al., 2011). In 

order to fully realize the potential of KR for engineered reduction, a detailed assessment of the 

molecular basis for C9-regiospecificity and the possible role of actKR in first-ring cyclization is 

required. 

 The aim of this work is to identify actKR residues that mediate interactions with the 

natural polyketide substrate, the NADPH cofactor and the carrier protein, as well as residues that 

direct C9-regiospecific ketoreduction. We present the molecular features of actKR involved in 

recognizing and directing the polyketide intermediate for C9-ketoreduction. This is supported by 

kinetic and in vitro PKS reconstitution assay data for 20 actKR mutants. High-resolution 

crystallographic structures for three of the mutants are also presented. We targeted specific 

actKR residues for mutagenesis based on previous structural and biochemical analyses of wild-

type (WT) and P94L actKR, both in the presence or absence of the inhibitor emodin (Javidpour, 

et al., 2011; Korman, et al., 2004; Korman, et al., 2008). These mutations can be subdivided into 

three groups associated with surface, substrate binding pocket, and the α6-α7 loop. Significantly, 
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we have shown that a single mutation in the actKR substrate pocket can switch the 

stereospecificity between S-dominant and R-dominant, which contradicts the results of type I 

polyketide KR mutations (Baerga-Ortiz, et al., 2006; Castonguay, et al., 2008; Holzbaur, et al., 

1999; Holzbaur, et al., 2001; Keatinge-Clay, 2007; Keatinge-Clay and Stroud, 2006; O'Hare, et 

al., 2006; Ostergaard, et al., 2002; Siskos, et al., 2005). These results form the basis for a new 

model of KR-mediated C7-C12 first-ring cyclization that occurs within the enzyme binding 

pocket prior to ketoreduction. 

 

RESULTS 

 

Overall Strategy 

 Based on previous structural and biochemical analyses of wild-type and P94L actKR 

(Javidpour, et al., 2011; Korman, et al., 2004; Korman, et al., 2008), we proposed three groups of 

mutations: surface mutations to evaluate protein-protein interactions and long-range effects on 

enzyme activity, substrate binding pocket mutations to assess stereospecificity and catalytic 

efficiency, and finally mutations in the α6-α7 loop to determine if this flexible region plays a 

significant role in catalysis. Trans-1-decalone and tetralol were used as substrate analogs to 

kinetically assay catalytic efficiency and substrate specificity of the reduction (Tables 1, 2, and 

S1). Trans-1-decalone, which has previously been used as a model substrate to assay 

ketoreductase activity in both fatty acid synthase and PKS (Dutler, et al., 1971; Ostergaard, et al., 

2002), was shown to be a more effective substrate for the actKR than 1-tetralone (Korman, et al., 

2008).  
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 Extensive studies of type I polyketide KRs have shown that their mutation often results in 

a mixture of enantiomeric reduced products and that multiple residues, located both within and 

distal to the active site, determine the stereospecificities of type I KRs (Baerga-Ortiz, et al., 

2006; Castonguay, et al., 2008; Holzbaur, et al., 1999; Holzbaur, et al., 2001; Keatinge-Clay, 

2007; Keatinge-Clay and Stroud, 2006; O'Hare, et al., 2006; Ostergaard, et al., 2002; Siskos, et 

al., 2005). In contrast, our previous studies of the type II polyketide KRs have shown that 

whereas wild-type actKR displays a 3:1 preference for S- over R-stereochemistry based on 

catalytic specificities for oxidation of tetralol enantiomers, the P94L mutation is sufficient to 

switch the in vitro stereospecificity of actKR to S-dominant, with no detectable activity toward 

R-tetralol. (Javidpour, et al., 2011). The term S-dominant herein is used to describe actKR 

mutants that display higher preference for S- over R-tetralol as compared to the wild-type 

enzyme. Our previous results also implied that long-ranged effects might be important for 

stereospecificity. We therefore constructed binding pocket mutants to determine how these 

residues affect KR stereospecificity. ActKR mutants were also assayed through in vitro 

reconstitution of the extended minimal PKS (act min PKS plus actKR). With the exception of 

evaluation of surface arginine mutants where actACP was used for accurate ACP-KR binding 

measurement, actACP was substituted with the orthologous frenN ACP for all reconstitution 

assays. The frenN ACP can be expressed at higher levels than the actinorhodin carrier protein 

and forms a stable protein complex (Khosla, et al., 1993). Products from mutant KR 

reconstitution experiments were compared to those from both the act min PKS or the extended 

minimal complex. Activity, relative to that of wild-type actKR, was assessed by comparing the 

ratio of the area of the mutactin peak to the average of both SEK4 and SEK4b peaks.  
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Surface Residue Mutants Display Greatly Diminished Activity and KR-ACP Interactions 

 Surface residues were mutated to assess whether R38A, R65A, R93A and D109E/R of 

actKR form a patch that interacts with ACP (Figure 2A). Previous in silico docking and 

mutational analyses suggested that the arginine residues, along with D109, form a charged 

groove that promotes complementary interactions with both helix II and the phosphopantetheine 

(PPant) group of the ACP (Korman, et al., 2008; Tang, et al., 2006). The D109 β-carboxyl group 

is within hydrogen-bonding distance of both the R65 and R93 side-chains. This interaction may 

maintain the structure of the phosphate-binding groove.  

 PKS reconstitution analysis showed that mutants R65A and R93A produced less mutactin 

than wild-type actKR, based on the respective mutactin:SEK4(b) ratios, while reconstitution 

with R38A actKR led to no detectable level of mutactin (Figure 3). To determine the dissociation 

constants (Kd) between actACP and actKR, separate fluorescence binding assays were measured 

(Figure S3). Here, the R38A actKR mutant displayed the weakest interaction (Kd 1.52 µM vs. 

0.20 µM for wild-type). Mutants R65A and R93A both displayed a Kd value of 0.53 µM. The 

D109E actKR mutation had little effect on mutactin production (Figure 3), catalytic turnover in 

the trans-1-decalone assay, or activity when assayed with S- and R-tetralol (Table 1). The D109R 

mutant, in comparison, shows a 30-fold reduction in trans-1-decalone turnover and is inactive 

when assayed with S- and R-tetralol (Tables 2 and S1). The conservative D109E mutation is 

therefore, tolerated, while D109R strongly influences catalysis and may destabilize the adjacent 

arginine patch. NADPH binding to both wild-type actKR and the three arginine mutants (R38A, 

R65A, and R93A) was also determined using a fluorescence binding assay. A Kd of 1.52 µM for 

wild-type actKR was obtained, a value similar to that previously determined (5 µM, Korman et 

al., 2008). The R38A and R93A actKR mutants showed approximately 3-fold and 8-fold 
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reductions in NADPH binding respectively, while R65A was unchanged. These results suggest 

that residues R38, R65, R93, and D109 are important for KR-ACP binding and activity. 

Mutations targeting the surface residues lead to disruption of the KR-ACP interaction and 

decreased activity toward the PPant-tethered polyketide substrates. 

 

KR Pocket Mutants: Non-Polar Side-Chains are Necessary for Substrate Interactions 

 The amphipathic nature of the polyketide intermediate requires both hydrophilic and 

hydrophobic residues for substrate-binding and the prevention of premature polyketide 

cyclization (Keatinge-Clay, et al., 2004). With this in mind, a number of substrate binding 

residues were identified, based on actKR-emodin co-crystal structures (Korman, et al., 2008). 

These mutated residues include S144C, T145A, G146V, V151A/L, A154G, F189A/W, M194W, 

and V198A/G (Figure 2B and 2C).  

 Mutants S144C and G146V were specifically designed to assess their role in C9-

oxyanion stabilization during polyketide reduction. The S144C mutant was constructed to test 

substitution of the serine β-hydroxyl with a weaker hydrogen-bonding functional group. Residue 

G146 is located behind catalytic residues S144 and Y157. Mutation of this glycine to the larger, 

non-polar valine residue is expected to sterically hinder polyketide binding in the active site by 

disrupting the arrangement of S144 and Y157. As expected, mutants S144C and G146V did not 

produce any detectable levels of mutactin (Figure 3). Both mutations exhibited low activity 

toward S- and R-tetralol, and were inactive when assayed with trans-1-decalone (Tables 1, 2, and 

S2).  

V151 is crucial for substrate recognition. The V151A mutant was inactive toward both 

trans-1-decalone and tetralol (Tables 1, 2, and S1). V151 is located ~5 Å from Y157 near the 
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base of the monomer cleft (Figure 2B). The branched side-chain of residue 151 extends into the 

binding pocket where non-polar interactions orient the substrate prior to reduction. In contrast, 

the conservative V151L mutation displayed kcat and Km values for trans-1-decalone and R-

tetralol turnover that were comparable to those of wild-type actKR, supporting the hypothesis 

that a large hydrophobic side-chain is required at this position to steer substrate-binding and 

sustain reductase activity. V151L did, however, produce 20-fold less mutactin than wild-type 

actKR (Figure 3). Here the leucine side-chain may interfere with polyketide-binding, further 

highlighting the requirement for precise steric control within the active site. This may explain the 

high sequence conservation of V151 amongst type II PKS KRs. 

 The value for kcat/Km of A154G actKR in the trans-1-decalone  assay was similar to that 

of the wild-type enzyme, while the activity using both S- and R-tetralol substrates was also 

relatively high compared to the other mutants (Tables 2 and S1). F189 mutations (F189A and 

F189W), however, displayed the lowest activity toward trans-1-decalone (Table 1). Activity of 

both mutants was also significantly reduced where R-tetralol was used as the substrate, though 

turnover of the S-enantiomer by the F189W mutant enzyme approached wild-type levels. The 

F189W mutant also produced much lower levels of mutactin when compared to wild-type 

actKR, while mutactin production in F189A was almost undetectable (Figure 3). Assay results 

for the F189 mutants suggest that, similar to V151, residue F189 is crucial for enzyme-substrate 

interaction. 

 Mutation M194W abolished mutactin production, and reduced trans-1-decalone turnover 

to 5% of wild-type. The actKR containing this methionine-tryptophan mutation was completely 

selective for the S-enantiomer of tetralol. Here the bulky tryptophan may sterically clash with the 

NADPH nicotinamide, residue P94, or with polyketide binding. 
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 The V198G mutation drastically reduces mutactin production and shows markedly 

decreased activity towards both S- and R-tetralol (Table 2). A V198A mutation in comparison 

only shows moderate changes in these assays, with a small increase in R-tetralol selectivity. 

Progressive reduction of the hydrophobic side chain at this position clearly exerts strong effects 

on enzyme activity and fidelity of polyketide chain processing.   

 

Aromatic Interaction in the α6-α7 Loop Region May Be Important for Substrate 

Recognition 

 The type II PKS KRs possess a distinctive 11-residue insertion in the α6-α7 loop (actKR 

residues 199-209) (Figure S2) (Korman, et al., 2008). This loop is the least conserved region in 

the short-chain dehydrogenase/reductase (SDR) superfamily of proteins, to which actKR 

belongs, and may contribute to SDR substrate specificity (Oppermann, et al., 2003). Residue 

Y202 is highly conserved among the type II KRs (Fig S2A). Our previous studies suggested that 

α6-α7 loop residues may play an important role in recognizing polyketide intermediates 

(Javidpour, et al., 2011). We therefore constructed mutants Y202A and Y202F in order to 

evaluate the respective contributions of an aromatic side-chain and a phenolic hydroxyl group 

toward substrate recognition and activity. 

 The Y202 mutants displayed activities toward trans-1-decalone and tetralol that are 

comparable to those of wild-type (Tables 1, 2, and S1). However, mutactin production by the 

Y202A mutant is reduced, suggesting that complete removal of the aromatic side chain 

negatively influences substrate turnover. Y202 may be involved in π-π interactions with W206 

that stabilize the α6-α7 loop conformation and might therefore play a structural rather than a 
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catalytic role. This may also explain why aromatic pairs are highly conserved amongst type II 

PKS KRs (Fig. S2A) at these positions. 

 Two further residues, R177 that packs against the α6-α7 loop from an adjacent KR 

subunit in the tetramer, and R220 that packs against Y202, were both mutated to alanine (Tables 

1-2, S1, Fig. 3). Neither mutation had a significant effect in any of the activity assays, or 

NADPH or ACP binding.  

 

Structural Analysis of V151L, F189W, and Y202F ActKR 

 Three of the mutants that displayed intriguing assay results were crystallized and their 

structures solved; V151L (for its R-tetralol specificity), F189W (for its S-tetralol specificity), and 

Y202F (to probe the long-range effect of the α6-α7 loop). Overall, the structures are very similar 

to the NADPH-bound structures of wild-type and P94L actKR (Javidpour, et al., 2011). The 

alignment root-mean-square deviations (RMSD) of the mutant structures relative to wild-type 

are: 0.41, 0.44, and 0.35 Å for V151L, F189W, and Y202F, respectively, and 0.41, 0.55, and 

0.40 relative to P94L. The alignments of the catalytic residues (N114, S144, Y157, and K161) 

and the NADPH cofactor have similar positions and conformations (Figure 4A). The three 

mutant structures show that while mutations significantly altered observed activities and regio- 

and stereospecificities in three different assays, the overall protein conformations are not 

changed.  

 Despite the high overall similarity, there are structural differences that distinguish the 

three mutants from the previously characterized crystal structures (Korman, et al., 2004) 

(Korman, et al., 2008). Alignment of the B subunits shows that in the V151L, F189W, and 

Y202F mutants, the α6-α7 loop adopts a more closed conformation than the wild-type (Figure 4 
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and S2B). In these mutants M194 becomes extended and is potentially involved in non-polar 

interactions with P94. When V151L is aligned to wild-type actKR, L151 of subunit A extends 

into the substrate pocket in a similar conformation to V151. In the mutated subunit B, however, 

L151 points toward the α6-α7 loop, thus creating a closed conformation and a smaller substrate 

pocket (Figure 4B). Similarly, in F189W the tryptophan aromatic ring overlaps with the wild-

type residue F189, while L258 interacts with W189, again resulting in a smaller substrate pocket 

in monomer A. In the wild-type enzyme, the Y202 side-chain potentially forms a water-mediated 

hydrogen bond with the H153 backbone carbonyl and consequently points away from the α6-α7 

loop. In the F202 mutant, however, the phenylalanine ring rotates back into the substrate binding 

pocket, possibly due to loss of this hydrogen bonding interaction (Figure 4D). The V151L, 

F189W, and Y202F mutations therefore result in a smaller substrate pocket for monomer B, 

which contributes to the observed low mutant enzyme activities. The altered pocket shape also 

imposes more steric hindrance in V151L, resulting in the observed substrate inhibition (Tables 2 

and S1). 

 

Docking Analyses: The Molecular Basis for V151L and F189W Tetralol Assay Results 

 Mutant V151L displayed unusual activity toward tetralol, with almost threefold higher 

activity toward the R-stereoisomer than that of wild-type (Tables 2 and S1). When assayed with 

S-tetralol, however, we observed substrate inhibition at high (> 2 mM) S-tetralol concentrations. 

Both tetralol stereoisomers were docked within the V151L actKR substrate binding pocket using 

the program GOLD (Verdonk, et al., 2003). The docking results yielded similar positions and 

conformations for each stereoisomer, whereas for the wild-type actKR structure, R-tetralol does 

not consistently dock. In the V151L mutant, the R-tetralol aromatic ring consistently docks 
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within the opening of the substrate binding cleft (Figure S1A), consistent with the high kcat/Km of 

this mutant for R-tetralol relative to the wild-type enzyme. In contrast, the simulations showed 

that S-tetralol docks with the aromatic ring near residues T145, F189, and L258, which avoids 

clashes with L151. S-tetralol may, therefore, be lodged between these three residues, causing the 

enzyme to be “trapped” in a substrate-bound state (ES) by the high affinity for S-tetralol and 

resulting in the observed substrate inhibition phenomenon. To the best of our knowledge, such a 

phenomenon has not been reported for type I polyketide KRs before. This result also 

demonstrates that the type II polyketide KR is unique in its ability to switch stereospecificity 

through a single mutation. 

 To ascertain the molecular basis for the high F189W stereospecificity, S- and R-tetralol 

were again docked within the enzyme binding pocket. Analysis suggests that the 

stereospecificity may arise from a combination of steric hindrance, (as for P94L or M194W 

actKR), as well as from the W189 indole group, which may adopt a different rotamer 

conformation upon substrate-binding.  This allows π-π interactions with the S-tetralol benzyl 

moiety, but not with the R-stereoisomer (Figure S1B). The adoption of a different rotameric state 

is supported by the crystallographic data, wherein there is well-defined 2Fo-Fc electron map 

density for W189 in subunit A of the mutant, but weaker density for the residue in subunit B. 

This suggests the presence of multiple rotamers in subunit B. The steric effect exerted by W189 

thus steers the mutant toward S-dominant stereospecificity. 

 

DISCUSSION 

 Based on the results of kinetic and reconstitution assays, structural analyses, docking 

simulations, and incorporation of previous studies (Javidpour, et al., 2011; Korman, et al., 2004; 
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Korman, et al., 2008), we propose the following model for polyketide docking, entrance into the 

substrate pocket, C7-C12 first-ring cyclization, and stereospecific ketoreduction by a type II 

polyketide KR that accounts for the observed properties of wild-type and mutant actKR (Figure 

5). 

PPant-Tethered Polyketide Docking 

 Docking results described in this paper, combined with studies of the homologous S. 

coelicolor SCO1815 KR (Javidpour, et al., 2011; Tang, et al., 2006), identify an arginine patch 

as the putative docking site of the PPant phosphate (Figure 2A). In the tetrameric actKR 

structure, the arginine patch is accessible on each monomer and is not hindered by any 

neighboring molecule. The assay results for the R38A, R65A, and R93A mutants, which 

displayed decreased reconstitution activity and interaction with ACP, lend further support to the 

importance of the arginine patch for enzyme activity. 

 

Access to the ActKR Substrate Pocket 

 The docked PPant carrying the polyketide intermediate must now access the actKR active 

site. Two openings are seen in the surface representation of wild-type actKR subunit A, 

separated by P94 and the M194, which hereafter are referred to as “gate” residues (Figure 5A). 

The importance of M194 is supported by assays of the M194W mutant, which produced less 

mutactin than expected based on the trans-1-decalone assay. The mutant tryptophan may 

sterically hinder polyketide docking, or block access to the active site. Entrance to the enzyme 

pocket from the opening immediately proximal to the arginine patch is further blocked by the 

NADPH pyrophosphate moiety. The polyketide must, therefore, enter the pocket through the 

cleft below the P94 and M194 gate residues. 
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Steering of Polyketide toward the Active Site and Monomer-Closing 

 The polyketide substrate must be directed by the “steering” residues, which include the 

hydrophobic V198, F189, and V151. These residues must be non-polar and not glycine as 

suggested by the assay results for V198G, which produced less mutactin than expected. The 

V198 side-chain protrudes into the enzyme cleft, effectively steering the PPant arm and 

polyketide intermediate toward the active site residues (Figure 5B). V198 may also participate in 

non-polar interactions with the end of the PPant arm distal from ACP. Furthermore, the V151 

and F189 side-chains define the narrow cleft and limit substrate movement. This is supported by 

assays of the V151 mutants: V151A is inactive toward trans-1-decalone, whereas V151L is 

active and leads to mutactin production, suggesting the need for a bulky residue at this position. 

Similarly, the need for a bulky residue at position 189 is supported by assays of F189A and 

F189W. The latter mutant produced more mutactin when compared to F189A, despite the 

presence of the bulky tryptophan. 

 

KR-Mediated C7-C12 First-Ring Cyclization and C9-Ketoreduction 

 Having been steered towards the active site, the linear polyketide is then positioned such 

that the C11-carbonyl can interact through hydrogen-bonding with T145, which is highly 

conserved among type II KRs. This interaction could sufficiently lower the pKa of the C12 α-

protons (Gerlt, et al., 1991) such that a proton can be abstracted by water in the substrate binding 

pocket. This leads to C7-C12 cyclization, with the C7-oxyanion stabilized by water-mediated 

hydrogen-bonding to the highly conserved S158. This mechanism is supported by assays of 

T145A, which displayed activity toward trans-1-decalone (Table 1), but intriguingly did not 
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produce any detectable level of mutactin. Other mutants less active toward trans-1-decalone than 

T145A were able to produce some mutactin (Figure 3). We therefore propose that T145 is 

involved in C7-C12 polyketide cyclization through hydrogen-bonding with the C11-carbonyl, 

which lowers the pKa of the C12-protons via enolate stabilization. 

 The model presented in this paper helps to explain how the actKR affects cyclization 

specificity such that all downstream products of the PKS are cyclized between C7 and C12. In 

the absence of KR, approximately equal amounts of SEK4 (C7-C12 cyclized) and SEK4b (C10-

C15 cyclized) are produced by the minimal PKS (Figure 1). The KR may, therefore, serve as a 

scaffold that steers the polyketide substrate toward T145 for C7-C12 cyclization, which then 

forces the C9-carbonyl within the active site for regiospecific ketoreduction (Figure 5C). If the 

polyketide intermediate were not cyclized, the C9-carbonyl would be able to adopt a number of 

orientations. In addition, C7-C12 cyclization would restrict the mode of polyketide binding 

within the active site, which explains why actKR may produce only one enantiomer of mutactin 

in vivo (Javidpour, et al., 2011). The absence of hydrogen bond donation from T145A would 

prevent directed-cyclization from occurring, which in turn would compromise ketoreduction. As 

a result, the ACP-bound polyketide may pull out of the KR pocket and spontaneously cyclize in 

solution to yield SEK4 and SEK4b. 

 We propose that during ketoreduction, actKR achieves a closed-state when the α6-α7 

loop moves toward the opposite side of the enzyme cleft, with π-π interactions between the 

highly conserved residues 202 and 206 maintaining the loop conformation as it closes in on the 

polyketide substrate (Figure S2). This motion effectively traps the polyketide within the enzyme, 

yet leaves openings for water to enter the binding site. The monomer opens once catalysis is 

complete, allowing the ACP-bound reduced polyketide to leave the enzyme. In this regard, the 
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binding site of actKR is distinct from that of actKS-CLF (Keatinge-Clay, et al., 2004), where an 

amphipathic tunnel is needed for polyketide elongation toward the KS-CLF gate residues (Tang, 

et al., 2003). The situation is arguably more complex for the actKR, however, as a tunnel would 

prevent KR from mediating cyclization. The actKR pocket must, therefore, be large enough to 

accommodate a monocyclized polyketide, yet still maintain tight interactions with the substrate 

so that release does not occur before reduction. The bulky residues, V151, F189, and V198, are 

necessary to both steer and cradle the polyketide in position until catalysis is complete. 

 

SIGNIFICANCE 

 Type II polyketides include many antibiotics and chemotherapeutic agents that are of 

interest to the pharmaceutical industry (Saleem, et al., 2010). The type II polyketide KR is an 

important modification enzyme that introduces chemical diversity in polyketides by reducing 

intermediates with high regio- and stereospecificity and possibly mediating a specific C7-C12 

first-ring cyclization. Previous biochemical and structural analyses have identified the “PGG” 

motif as important for in vitro stereospecificity (Javidpour, et al., 2011; Korman, et al., 2008). In 

this work, we depart from the status quo to elucidate the roles of surface, binding pocket, and 

loop-region residues of actKR through a suite of informative tools: site-directed mutagenesis, 

kinetic assays, and PKS reconstitution assays. Highly consistent results from three different 

assays of 20 mutants offer a rich array of information about the type II KR, such as the 

identification of bulky hydrophobic pocket residues that are necessary to serve as “gate” and 

“steering” residues for substrate binding. We have also shown that a single mutation (V151L) 

converts stereospecificity to R-dominant, as opposed to other single mutations that result in S-

dominant stereospecificity. Furthermore, the T145 mutant offered the first experimental support 
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to the suggestion that this type II KR fosters first-ring cyclization between C7 and C12. The 

results support a proposed model for polyketide docking, entrance into the KR enzyme pocket, 

cyclization, and ketoreduction that accounts for the high specificity of actKR. The molecular 

features identified in this work will serve as protein engineering targets for rational control of 

KR specificity to produce new polyketides with pharmaceutical potential. 

 

EXPERIMENTAL PROCEDURES 

 

ActKR, ActKS-CLF, Holo-FrenN ACP and MAT Protein Expression and Purification 

 Recombinant wild-type or mutant actKR, actKS-CLF, holo-ACP and MAT proteins were 

express and purified as described previously (Korman, et al., 2004; Korman, et al., 2008; 

Matharu, et al., 1998); (Li, et al., 2003); (Kumar, et al., 2003). Additional details can be found in 

the Supplemental Information. 

 

In Vitro trans-1-Decalone, Tetralol, and In Vitro PKS Reconstitution Assays for ActKR 

Activity 

 Steady-state kinetic parameters for wild-type and mutant actKR were determined by 

monitoring reduction of trans-1-decalone in the presence of NADPH, by monitoring oxidation of 

S-(+)- or R-(-)-tetralol in the presence of NADP+, and PKS reconstitution assay. Steady-state 

kinetic data are listed in Tables 1, 2 and S1. Additional details can be found in the 

Supplementary Information. 

 

In Vitro Tetralol Assay for ActKR Stereospecificity 
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 Steady-state kinetic parameters for wild-type and mutant actKR were determined by 

monitoring oxidation of S-(+)- or R-(-)-tetralol in the presence of NADP+. Summarized kinetic 

data are listed in Table 2 and detailed steady-state data in Table S1. Additional details can be 

found in the Supplemental Information. 

 

ACP Fluorescence Binding Assay.  To gauge interaction between ACP and either wild-type, or 

mutant KR, actACP was titrated into a solution of actKR containing 25 µM NADPH and 1 mM 

DTT. Fluorescence emission spectra were collected over the range of 320-380 nm at a 295-nm 

excitation wavelength (tryptophan fluorescence). For NADPH binding, increasing concentrations 

of NADPH (0-38µM) were titrated in actACP (1µM) and the NADPH fluorescence was excited 

at 340nm and monitored between 400-500nm. Additional details can be found in the 

Supplemental Information. 

 

Protein Crystallization, Data Collection, and Structure Solution 

Experimental procedures and statistics for structure determination of the V151L, F189W, 

and Y202F actKR mutants can be found in the Supplemental Information. 
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FIGURE LEGENDS 
 
Figure 1. Schematic of the Actinorhodin Type II PKS 
The minimal PKS synthesizes a 16-carbon polyketide intermediate that, in the absence of KR, 
spontaneously forms unreduced products SEK4 1 (C7-C12 first-ring cyclization) and SEK4b 2 
(C10-C15 first-ring cyclization). KR regiospecifically reduces C9 yielding a C7-C12 cyclized 
polyketide that forms mutactin 3 as the major product. That all downstream products, including 
SEK34 5, DMAC 6, and actinorhodin 7, are C7-C12-cyclized suggests that KR also plays a role 
in the determination of cyclization specificity. 
 
Figure 2. ActKR Residues Targeted for Site-Directed Mutagenesis 
(A) Arginines 38, 65, and 93 (green) are proposed to stabilize the PPT phosphate group during 
the binding of polyketide intermediate (yellow ball and sticks). 
(B) Pocket residues (green) near catalytic S144 and Y157 (magenta) that interact with 
cocrystallized emodin (orange). NADPH (green ball and sticks) and P94 (teal) are shown for 
perspective and the location of G146 is highlighted in blue. 
(C) Residues F189, M194, and V198 (green) relative to S144, Y157, and emodin. 
 
Figure 3. HPLC Chromatograms of Products from In Vitro PKS Reconstitution Assays 
The traces are divided into five panels for clarified viewing, with each panel including the traces 
for minimal PKS alone and with wild-type actKR as references. Products include SEK4 1, 
SEK4b 2, and mutactin 3. For each active KR, the number to the right of a trace denotes the 
respective mutactin:SEK4(b) ratio. The general mutation locations are also listed to the right of 
the panels. 
 
Figure 4. Mutant ActKR Structural Analysis 
(A) (Left) Alignment of monomer B of V151L (magenta), F189W (blue), and Y202F (yellow) to 
that of wild-type actKR (green). Although the catalytic residues and NADPH cofactors align 
well, the mutant monomers are in a closed conformation relative to wild-type, as seen by the 
shifts in the labeled α6-α7 loops and extended M194 side-chains (right). 
(B) Residue 151 extends into the substrate pocket similarly in monomer A of wild-type (green) 
and V151L (magenta) (left), but L151 in the mutant monomer B points more toward the α6-α7 
loop, creating a smaller substrate pocket (right) 
(C) The aromatic plane of W189 in the F189W mutant (blue) coincides with that of wild-type 
F189 (green). L258 may hydrophobically interact with W189, limiting the substrate pocket size. 
(D) Residue 202 overlaps when monomer A of wild-type (green) and Y202F (yellow) are 
aligned (left), but in monomer B (right), the wild-type Y202 points away from the substrate 
pocket while the mutant F202 points within the pocket. 
 
Figure 5. Stereo Images of Proposed Interactions between Polyketide and Wild-Type 
ActKR 
The polyketide chain is represented in yellow and actKR in transparent white surface. 
(A) Ligand docking results suggest that after the PPT phosphate binds within the arginine patch 
groove (blue surface), the polyketide chain enters the substrate pocket underneath the gate 
residues P94 and M194 (green spheres) in order to access the active site. 



 26 

(B) The polyketide intermediate is steered toward the active site by the bulky residues V151, 
F189, and V198 (purple sticks), which presumably constrain chain movement. 
(C) Ligand docking also suggests that T145 (teal) may stabilize the C11-oxyanion after C12 
deprotonation through hydrogen-bonding, thus lowering the C12-proton pKa and allowing C7-
C12 cyclization to occur. S158 (teal) may stabilize the resulting C7-oxyanion through water-
mediated hydrogen-bonding. Both T145 and S158 are highly conserved among type II KRs. 
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Fig. 5 
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Table 1. Kinetic Parameters for the Reduction of trans-1-Decalone and interaction with NADPH and 

ACP by Wild-Type and Mutants of Actinorhodin Ketoreductase 

 kcat (s-1) Km (mM) kcat/Km 
(s-1 mM-1) 

KD (µM) 
NADPH  

KD (µM) 
ACP 

WT 2.55 ± 0.12 0.76 ± 0.09 3.23 ± 0.32 - - 
D109E 1.17 ± 0.12 0.71 ± 0.18 1.64 ± 0.45 - - 
D109R 0.078 ± 0.01 1.25 ± 0.40 0.062 ± 0.021 - - 
S144C Inactive - - 
T145A 0.18 ± 0.008 0.42 ± 0.06 0.42 ± 0.06 - - 
G146V Inactive - - 
V151A Inactive - - 
V151L 1.24 ± 0.07 0.97 ± 0.12 1.28 ± 0.18 - - 
A154G 1.33 ± 0.16 0.50 ± 0.18 2.68 ± 1.03 - - 
F189A 0.049 ± 0.005 8.63 ± 2.01 0.0057 ± 0.0015 - - 
F189W Substrate Inhibition - - 
M194W 0.43 ± 0.06 3.22 ± 0.65 0.13 ± 0.03 - - 
V198A 0.24 ± 0.01 15.50 ± 1.49 0.016 ± 0.002 - - 
V198Ga 

1.3 ± 0.1 0.32 ± 0.06 5.36 ± 1.12 0.060 ± 0.017 - - 

Y202Aa 

2.0 ± 0.3 1.80 ± 0.09 1.07 ± 0.09 1.69 ± 0.16 - - 

Y202F 2.01 ± 0.17 0.40 ± 0.11 5.01 ± 1.44 - - 
      
WTb 2.00 ± 0.06 1.19 ± 0.02 1.68 ± 0.08 1.52 ± 0.09 0.20 ± 0.08 
R38A 0.16 ± 0.03 1.45 ± 0.02 0.11 ± 0.02 4.30 ± 0.40 1.52 ± 0.12 
R65A 1.97 ± 0.07 1.24 ± 0.02 1.59 ± 0.07 1.83 ± 0.21 0.53 ± 0.11 
R93A 1.13 ± 0.05 1.21 ± 0.01 0.94 ± 0.05 6.43 ± 0.68 0.53 ± 0.07 
R177A 1.99 ± 0.03 1.26 ± 0.01 1.58 ± 0.03 1.17 ± 0.10 0.49 ± 0.12 
R220A 1.78 ± 0.06 1.18 ± 0.02 1.51 ± 0.06 1.99 ± 0.16 0.61 ± 0.10 

a. Kinetic parameters determined using Hill equation: v = (Vmax × [S]n)/(K’ + [S]n). The Hill 
coefficient (n) is listed under the mutation identifier. 

b. Kinetic parameters determined independently. The relative rate parameters for the arginine 
mutations below should be compared to this value for WT. 
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Table 2. Oxidation of S-(+)-Tetralol and R-(-)-Tetralol by Wild-Type and Mutants of 
Actinorhodin Ketoreductase 

 
General 

Mutation 
Location 

S-(+)-Tetralol 
kcat/Km

a 
R-(-)-Tetralol 

kcat/Km
a S:R Activity Ratiob 

s-1mM-1 % s-1mM-1 % 
WT  0.035 100 0.010 100 3.5 

D109E Surface 0.0063 18 0.0012 12 5.3 
D109R Surface Inactive 
S144C Pocket Inactive 
T145A Pocket .0041 12 Inactive NA 
G146V Pocket Inactive 
V151A Pocket Inactive 
V151L Pocket Substrate Inhibition 0.026 260 NA 
A154G Pocket 0.018 51 0.0021 21 8.6 
F189A Pocket 0.0070 20 Inactive NA 
F189W Pocket 0.029 83 0.0026 26 11.2 
M194W Pocket 0.034 97 Inactive NA 
V198A Pocket 0.023 66 0.020 200 1.2 
V198G Pocket 0.0012 3 0.00083 8 1.5 
Y202A α6-α7 Loop 0.039 111 0.0078  22 5.0 
Y202F α6-α7 Loop 0.016 46 0.0048 14 3.3 

a. Catalytic specificity (kcat/Km) expressed as percentage of wild-type value. 
b. Ratio of S-tetralol to R-tetralol kcat/Km values. 
c. Summary of analyses 
See also Table S1 and Figure S1. 
 
 


