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Effects of freeplay on the dynamic stability of

an aircraft main landing gear
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A study is made into the occurrence of shimmy oscillations in a dual-wheel

main landing gear. Nonlinear equations of motion are developed for the

system and various effects are considered including gyroscopic coupling,

nonlinear tyre properties, geometric nonlinearities and fluid shock damp-

ing. Of particular interest in this study is the presence of freeplay — this

is introduced as a lateral play at the apex of the torque link joints. Using

bifurcation analysis methods, the dynamics of this system are explored as

the forward velocity and loading force acting on the gear are varied. For

the zero freeplay case the system is found to be stable over its physical

operating range with shimmy oscillations appearing only for extreme load-

ing forces and speed. However, with the introduction of freeplay, shimmy

may be observed over more typical operating conditions and the resulting

oscillations are found to scale linearly with freeplay magnitude. The param-

eter plane of forward velocity and loading force is then further subdivided

into areas of different types of dynamics. With the inclusion of freeplay

we observe the appearance of low-frequency and high-frequency shimmy

oscillations, bi-stable behaviour and stationary solutions of non-zero yaw.

Considering the desirable case where no shimmy occurs we define the set

of allowable freeplay profiles that satisfy a conservative stability criteria.
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I. Introduction

Self-sustained oscillations may appear in the dynamics of a wide variety of rolling systems.

These oscillations — termed shimmy — are the result of the transfer of energy to the oscilla-

tory degrees of freedom (DoFs) of the system, via the interaction between wheel and ground.

This is generally a highly nonlinear phenomenon and, as such, may be very hard to predict,

as it only appears under specific circumstances. Shimmy oscillations may occur in the land-

ing gear of civil aircraft.1 Past studies have successfully applied nonlinear analysis methods

for determining the characteristics of this type of oscillation and the parameter ranges over

which they occur for a nose landing gear (NLG).2 Our focus here is on main landing gear

(MLG) shimmy.3 In a previous study4 we used a nonlinear model with three DoFs to express

the dynamics of a MLG of dual-wheel configuration, using numerical continuation methods to

study the onset of shimmy oscillations. This model allowed for a single side-stay of arbitrary

orientation and we found its positioning to be highly influential on the complexity of the

behaviour observed, owing to additional geometric coupling between the different oscillatory

DoFs. In this work we extend this model to allow for the presence of mechanical freeplay.

Such mechanical freeplay — usually torsional in nature — has long been regarded as an

important mechanism in the appearance of shimmy oscillations, and there are a number of

studies in the literature concerning its role in their development. Considerations of possible

freeplay are particularly important to the long term feasibility of an aircraft landing gear

design, as it often develops within the mechanical joints of a landing gear over its service life.

Sura and Suryanarayan5 point out that freeplay may appear from a multitude of sources

including lateral play in the steering collar, the wheel axle, freeplay in the steering system,

the fuselage attachment points and the interlinkages of the torque links. Their study con-

siders a nonlinear model of a typical aircraft nose landing gear with freeplay in the steering

DoF. By numerical simulation they find that with the introduction of freeplay the amplitude

of shimmy oscillations increases and there is a reduction in the critical velocity at which

they develop. Similar conclusions are also drawn by Sateesh and Maiti6 through the analysis

of a nonlinear NLG model with torque link freeplay; moreover, the effect of a magneto-

rheological damper is investigated and shown to improve the critical shimmy velocity of the

system. Woerner and Noel7 consider shimmy of a dual-wheel MLG system incorporating a

multitude of nonlinear effects, including torsional freeplay, nonlinear viscous damping and

Coulomb friction. Here, freeplay and friction are both found to have significant effects on

the development of shimmy oscillations.
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Figure 1. Parameterisation of dual-wheel main landing gear geometry, shown with zero rake angle ϕ.

The MLG model of our previous work4 is also extended to include an additional axial degree

of freedom representing the telescopic compression of the landing gear under load. This

compression has a number of effects on the dynamics of the system — particularly regard-

ing the dynamics of the tyres — but is also required to correctly model the appearance of

mechanical freeplay in the torque links. In section II we present this extended model, which

also includes gyroscopic coupling of the spinning wheel and brake assembly (see §II.B.6) and
the variation of system parameters with axial deflection (§II.A) and dynamic loading force

(§II.B). In section III we introduce freeplay to the system, and discuss the validity of smooth

and non-smooth representations of its characteristics. In section IV we use bifurcation anal-

ysis techniques to perform a sensitivity study into the presence of this freeplay and its effects

on the shimmy stability of the MLG. Results and conclusions of this work are then presented

in section V, where we also point to directions in which this research may be extended further.

II. Four degree-of-freedom dual-wheel MLG model

We consider here a dual-wheel aircraft MLG as shown in figure 1, consisting of a main strut

with upper (shock strut) and lower (oleo piston) parts, allowing for telescopic extension and

compression of the gear. These upper and lower parts are connected via a pair of torque

links that permit this telescopic motion but resist twisting of the MLG; they are discussed

in detail in section III. At the base of the gear sits the axle assembly providing a mounting

point for the brakes and wheels, which are able to rotate independently. A single side-stay

locks the system in place; it is attached both at the aircraft wing and the shock strut. The

MLG is also attached to the aircraft at a hinged point at the top of the shock strut. To aid

with the definition of geometric parameters we introduce the global axis system (X,Y,Z) with
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Figure 2. The torsional ψ (a), lateral δ (b), longitudinal β (c) and axial η (d) DoFs used to express the MLG
dynamics. Local coordinates (x, y, z) are defined with z aligned with the main strut, x perpendicular to the
main strut and side-stay, and y chosen to complete the right-handed coordinate system. For the zero rake
angle case shown here z = Z.

X aligned in the forward velocity direction, Z pointing vertically upwards and Y, pointing

to the left to complete the right-hand set of coordinates.

We express the dynamics of the MLG system in terms of several oscillatory degrees of free-

dom, aligned with the side-stay orientation; these are shown in figure 2. In addition to the

torsional, lateral and longitudinal motion allowed previously4 and expressed by the angles

ψ, δ and β, we extend our model to include compression of the main strut. This motion is

represented by the addition of an axial degree of freedom expressed by the variable η. We

note that the inclusion of this axial motion has a number of effects on the MLG system,

changing not only the physical length of the gear but also resulting in substantial variation

in the loading force acting through the main strut. This results in a large number of pa-

rameters — particularly those associated with the tyre dynamics — changing dynamically

with variations in η. The dependencies between these parameters (previously fixed4) and the

additional axial degree of freedom are discussed in more detail in sections II.A – II.B. By

considering the motion of the MLG system in terms of the angles ψ, δ, β and η, as well as

two additional degrees of freedom λL and λR describing the lateral deflection of the left and

right tyres4,8 we write the mathematical model of the MLG system as the set of equations:

. .Iψψ̈ + Ia(δ̇ sin θa + β̇ cos θa cos p)(δ̇ cos θa − β̇ sin θa cos p)

+Mcψ +Mkψ =Mψ(q , q̇) , (1)

Iδ δ̈ − Ia(β̇(2 cos
2 θa − 1) cos p+ 2δ̇ sin θa cos θa)θ̇a

+
dIδ
dη

η̇δ̇ + cδ δ̇ + kδδ =Mδ(q , q̇) , (2)
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Iββ̈ + Ia(δ̇ sin θs + β̇ cos θa cos p)(δ̇ cos θa − β̇ sin θa cos p) sin p

−Ia(δ̇(2 cos2 θa − 1)− 2β̇ sin θa cos θa cos p)θ̇a

+MḦLβ(−H1 sin β +H2 cos β)

+
dIβ
dη

η̇β̇ + (cββ̇ +Mcψ sin p) + (kββ +Mkψ sin p) =Mβ(q , q̇) , (3)

−MḦ cosϕ− 1

2

dIβ
dη

β̇2 − 1

2

dIδ
dη

δ̇2 + Fcη + Fkη = Fz cosϕ , (4)

λ̇L + (VLCF · uf )λL/LL + (V∗
LCF · uλ) = 0 , (5)

λ̇R + (VRCF · uf )λR/LR + (V∗
RCF · uλ) = 0 , (6)

where

θa = ψ + β sin p+m q = [ ψ, δ, β, η, λL, λR ] ,

Ḧ = (−H1 sin β +H2 cos β)(Lββ̈ − 2η̇β̇) + (−H1 cos β −H2 sin β)Lββ̇
2 − η̈ cosϕ ,

cosϕ = H1 cos β +H2 sin β +H3 ,

H1 = cosϕ0 cos
2 ρ+ sinϕ0 sin ρ cos ρ sinµ ,

H2 = − sinϕ0 cos ρ cosµ ,

H3 = cosϕ0 sin
2 ρ− sinϕ0 sin ρ cos ρ sinµ ,

ViCF = uψ× (PiCF −P0)ψ̇+ uδ × (PiCF −Pδ )δ̇ + uβ × (PiCF −Pβ)β̇ + uηη̇ + eXV ,

V∗
iCF = uδ × (PiCF −Pδ)δ̇ + uβ× (PiCF −Pβ)β̇+ uηη̇ + eXV . i ∈ {L,R}

In particular equation (4) describes the new vertical dynamics of the main landing gear.

This vertical variation of the landing gear cannot be neglected in light of the inclusion of the

axial degree of freedom η, and the effects of axial acceleration enter the system through the

terms Ḧ, where H = Lβ(η) cosϕ .

Here, the parameters Iψ, Iδ, Iβ, M are the inertial coefficients of the torsional, lateral,

longitudinal and axial DoFs, respectively (M corresponding to the modal mass associated

with vertical motion of the MLG); Ia is the roll inertia of the wheels/axle assembly; H is the

vertical distance between the top and bottom of the main strut; cδ, cβ, kδ, kβ are the damping

and stiffness coefficients for the lateral and longitudinal DoFs;Mcψ,Mkψ, Fcη, Fkη are nonlin-

ear functions giving the damping and stiffness forces acting on the torsional and axial DoFs

respectively; Mψ,δ,β are moments in the torsional, lateral and longitudinal directions (§II.C);
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Figure 3. Position (a) and unit (b) vectors used in the derivation of the dual-wheel MLG model. The
attachment point orientation is given by the angles m and p where p is applied first; ϕ is the rake angle of the
main strut.

V and Fz are the forward velocity and applied loading force, respectively; Lδ is the radius of

lateral bending; Lβ the gear length; λL and λR give the lateral deflection of the left and right

tyres; ϕ0 = ϕ|
β=0

is the initial rake angle; (m, p, µ, ρ) are angular parameters expressing the

orientation of the side-stay such that the unit vector uβ = (− cos ρ sinµ,− cos ρ cosµ,− sin ρ)

in the global frame of reference; (m, p) are as shown in figure 3. We note here that through-

out the model formulation we use the position and unit vectors {PiCF , P0, Pδ, Pβ, uf , uλ,

uψ, uδ, uβ, uη} to aid in the expression of the MLG geometry and to simplify the resolution

of force terms into the oscillatory degrees of freedom. Expressions for these vectors in the

global frame of reference are reproduced below from our previous work4 for completeness of

the model; they are also shown graphically in figure 3.

Pδ = (0, 0, 0) , PLC = PL + (r − dL)ur ,

Pβ = R(uβ, β)R(−e
Y
, ϕ0)(0, 0, Lβ − Lδ) , PRC = PR + (r − dR)ur ,

P0 = R(uβ, β)R(uδ0, δ)R(−e
Y
, ϕ0)(0, 0,−Lδ) , PLCF = PLC + 1/2huf ,

PL = R(uβ, β)R(uδ0, δ)R(uψ0, ψs)R(−e
Y
, ϕ0)(−e, a,−Lδ) , PRCF = PRC + 1/2huf ,

PR = R(uβ, β)R(uδ0, δ)R(uψ0, ψs)R(−e
Y
, ϕ0)(−e,−a,−Lδ) ,
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uβ =


− cos ρ sinµ

− cos ρ cosµ

− sin ρ

 , uψ0=


− sinϕ0

0

cosϕ0

 , uη = R(uβ, β)


− sinϕ0

0

cosϕ0

 ,

uδ0=


cosm cosϕ0

− sinm

cosm sinϕ0

 , uδ = R(uβ, β)uδ0 , uψ = R(uβ, β)R(uδ0, δ)uψ0 ,

uλ =
1

|(ua,X ,ua,Y , 0)|
(ua,X ,ua,Y , 0) , ua = R(uβ, β)R(uδ0, δ)R(uψ0, ψs)eY

,

uf =
1

|(ua,Y ,−ua,X , 0)|
(ua,Y ,−ua,X , 0) , ur = R(uf ,−π/2)ua .

Here the lengths Lβ and Lδ are as shown in figure 2; a is half the distance between the

left and right wheel centres and ψs = ψ+β sin p gives the rotation of the wheel axle relative

to the side-stay plane. The notation R(v, θ) denotes the rotation matrix corresponding to a

rotation of θ radians about the unit vector v.

Equations (5) and (6) express the tyre dynamics of the MLG system, using a stretched-

string representation of the tyres. Specifically we employ the von Schlippe approximation9

of the carcass deflection profile to obtain separate equations for the left and right wheels.

These equations are written in terms of the lateral deflection of the forward contact patch

points, given by λL and λR for the left and right wheels, respectively. Here, LL and LR

denote the relaxation length of each tyre and eX, eY, eZ are unit vectors in the global X, Y

and Z directions, respectively. We remark that the von Schlippe approximation is not able to

capture the pure twisting motion of the tyre contact patch produced by the torsional degree

of freedom. This results in a loss of accuracy of the tyre model at lower forward velocities

where torsional motion has a greater overall influence on the lateral tyre displacement. To

remedy this, we do not allow ψ̇ to directly affect the lateral deflection of the contact patch

(rather the torsional DoF is able to act on the lateral tyre displacement through secondary

effects, e.g. by aligning the lateral tyre vector uλ with the forward velocity vector); this is

achieved through the use of the modified term V∗
iCF . This modification has minimal effect

on the tyre dynamics at higher forward velocities, but alleviates low-speed inaccuracies such

as sustained tyre oscillations at zero velocity. For more information on the implementation

of this tyre model we refer to.4
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Symbol MLG parameter Value Units

Geometric parameters

ρ attachment point inclination 0.0 rad

µ horizontal attachment point orientation 0.0 rad

ϕ0 initial rake angle -0.1222 rad (−7
◦
)

e caster length 0.0 m

a half track width 0.46 m

l
tlk

torque link length 0.35 m

a
tlk

upper torque link offset 0.15 m

b
tlk

lower torque link offset 0.14 m

r undeflected tyre radius 0.58 m

Structural parameters

M vertical modal mass 3× 104 kg

Iψ torsional inertia 150 kg m2

I0 wheel yaw inertia 11 kg m2

I wheel polar inertia 19 kg m2

cψ torsional damping 410 N m s rad-1

cβ longitudinal damping 3100 N m s rad-1

k
tlk

torque link stiffness 3.90× 107 N m-1

kβ longitudinal stiffness 1× 107 N m rad-1

Continuation parameters

V forward velocity 0 – 600 m s-1

y
fp torque link freeplay 0 – 2.0 mm

F ∗
z dimensionless loading force 0 – 3.5 –

Table 1. Parameters and their values as used in the analysis of the MLG.

II.A. Effects of Axial DoF

From inspection of the equations of motion (3) and (4) we note that, since the modal mass

M is large, the axial DoF will couple strongly with the longitudinal DoF through the MḦ

terms, which both act to produce vertical variation of the attachment points. Axial deflec-

tion of the MLG also has a direct effect on certain parameters of the system, such as the gear

length and inertia. In this paper we broadly categorise parameters into those that depend

explicitly on this axial variation, either directly through the gear length η or through changes

in the loading force acting through the gear, and those that do not. Table 1 lists parameter

values for the main landing gear model that remain fixed in value and independent of η.

Their values — as well as all other parameters throughout this study — are chosen from

available industrial data to represent the dual-wheel MLG of a typical mid-sized passenger

aircraft. Note that the dimensionless parameter F ∗
z = Fz (9.807 × 3 × 104)−1 is used to

express the loading force acting on the MLG as a proportion of the nominal loading force

when the aircraft wings are producing zero lift.
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In addition to the values given in Table 1 there are also further parameters in the model

representing physical characteristics of the system that are affected directly by the gear

compression η. These represent quantities such as gear length and strut stiffness, and their

definitions with respect to η are written:

z
tlk

= 0.605− η , [m]

Lβ = 2.915− η , [m]

Lδ = 1.266− η , [m]

Iβ =
(
640L2

β − 100Lβ + 260
)
cos2 p , [kg m2]

Iδ = 630L2
δ − 140Lδ + 60 + Ia cos

2 θa , [kg m2]

kδ = KkδL
2
δ

(
3bkδckδ(bkδ + ckδ) + akδ(b

2
kδ + c2kδ) + (b3kδ +Rkδc

3
kδ) + 2akδbkδckδ

)−1
, [N m rad-1]

cδ = 1.66× 107
√
Iδkδ , [N m s rad-1]

Fkη =
1

π

(
akηe

(bkηη) + ckη
) [

tan−1(+1× 105 (η − 0.34)) +
π

2

]
,

+
1

π

(
dkηe

(ekηη) + fkη
) [

tan−1(−1× 105 (η − 0.34)) +
π

2

]
− 40

η
, [N]

Fcη = sign(η̇)

(
4× 104

π
tan−1(1× 104(η − 0.18)) + 7.5× 104

)
η̇2 + 1000η̇ , [N]

θa = ψ + β sin p+m Ia = 440a2 + 5 + 2I0

akδ = 1.649 bkδ = 0.611 ckδ = 0.655− η Kkδ = 6.067× 106 Rkδ = 8/3 ,

akη = 612.4 bkη = 16.72 ckη = 2483 dkη = 0.3851 ekη = 31.39 fkη = 1.885× 105 .

Here kδ is the lateral stiffness of the MLG — increasing as the gear is compressed, 2I0 is

the yaw inertia of the rotating wheels/brakes, and subscripts kδ and kη refer to constants

fitted to data for the lateral and axial stiffness functions, respectively. Moreover, cδ is chosen

such that the lateral damping remains a constant proportion of the critical damping over all

axial deflections; Fkη and Fcη describe the force characteristics of the shock strut assuming

a two-stage oleo with fluidic damping. The linear part of Fcη represents a small correction

to the axial damping, required to ensure non-conservatism of the linearised solution about

η = 0. This allows for the identification and continuation of Hopf bifurcation curves in our

later analysis.
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II.B. Influence of dynamic vertical force

A further consequence of the addition of the axial DoF is that the loading force acting on the

MLG changes dynamically with any vertical excitation of the system. Therefore, variation

of system parameters that depend explicitly on the applied loading force must be considered

when capturing the overall dynamics of the system. In particular, we find that the properties

of the pneumatic tyres prove very sensitive in this respect; for example, larger loading forces

result in greater tyre inflation pressures influencing multiple aspects of the tyre dynamics.10

Below we outline extensions to the deflection, effective radius, contact patch, relaxation

length and reactive force characteristics of the rolling tyres, which we allow to vary with the

applied dynamic load. Since the left and right tyres are assumed to have equal properties,

we use the subscript i ∈ {L,R} to refer to parameter definitions that may be applied to

either wheel.

II.B.1. Tyre deflection

We split the loading force acting through the landing gear into separate components FL and

FR acting on the left and right wheels. This is achieved by using a static force balance on

the wheel axle, satisfying the expressions

FL + FR = Fdyn ,

dL + 2aε = dR ,

Fdyn =MḦ + Fz ,

i ∈ L,R

where dL and dR are the deflection of the left and right tyres, respectively, and ε is the

angle (assumed small) between the wheel axle ua and the ground (X, Y )-plane. For each

tyre the deflection is related to the applied load by the following quadratic relation fitted to

proprietary industrial data:

di = adi
√

(Fi + bdi)− adi
√
bdi , [m]

adi = 4.221× 10−4 ,

bdi = 5.107× 104 .

II.B.2. Effective tyre radius

In the absence of slip, the effective radius reff of a tyre is related to its angular velocity ω̇

and forward velocity V by

reff ω̇ = V .
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Figure 4. Parameters used to express the deflected geometry of a pneumatic tyre.

Therefore, for a pneumatic tyre subject to a deflection di one might expect the effective

radius to be equal to the geometric radius of the deflected tyre reff = r − di; see figure 4.

However, in general this is not the case and for most tyres the effective radius is larger than

this geometric radius. For this study we use the relation for effective radius as suggested by

Daugherty,11

reff,i = r − 1

5
di . [m]

II.B.3. Contact patch length

In a similar manner to the effective radius, the contact patch length hi for a deflected pneu-

matic tyre is not equal to what one would suspect from consideration of a circle of equal

radius to the tyre. Rather the contact patch length is typically less than the chord length at

distance r − di from the wheel centre; see figure 4. Experimental data12 suggests a contact

patch length of 85% of the geometric chord length. Therefore, hi may be written as

hi = 0.85× 4r

√(
di
2r

)
−

(
di
2r

)2

. [m]

II.B.4. Relaxation length

The relaxation length is particularly important in determining the delay characteristics of

a pneumatic tyre, expressing the distance the tyre must travel to realise the restoring force

resulting from a lateral or torsional deformation. This relaxation length usually increases

with increasing vertical load. Here we assume that LL and LR scale with the contact patch
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length.13 Therefore, based on available tyre data, we use the expression

Li = 0.7hi . [m]

II.B.5. Tyre contact forces

The slip angle (αi = tan−1(λi/Li) ) given by equations (5) and (6), is used to calculate the

cornering force and self-aligning moment produced by each tyre.4 For this study we use the

Pacejka magic tyre formula14 to give expressions for these reaction forces, which take the

following form.

Lateral tyre force:

Fkλi = D
Fkλ i sin

(
C

Fkλ i tan
−1(B

Fkλ iα− E
Fkλ i(BFkλ iα− tan−1(B

Fkλ iα)))
)
uλ . (7)

Self-aligning moment:

Mkαi = D
Mkα i sin

(
C

Mkα i tan
−1(B

Mkα iα− E
Mkα i(BMkα iα− tan−1(B

Mkα iα)))
)
eZ . (8)

Again, these tyre forces depend strongly on loading force. We therefore define the con-

stants in the equations above as functions of Fi. Using tyre data and suggested empirical

expressions15 we write the constants as:

CFkλi = 1.34 , a1Fkλ
= −2.828×104, a5Fkλ

= 4.126×104,

DFkλi = a1Fkλ
+ (a2Fkλ

+ a3Fkλ
Fi)

0.5 , a2Fkλ
= 7.9978×108, a6Fkλ

= −1.486×10−11,

EFkλi = a6Fkλ
F 2
i + a7Fkλ

Fi + 0.95 , a3Fkλ
= 7.7459×104, a7Fkλ

= −7.036×10−6,

BFkλi =
(a4Fkλ

sin(1.8 tan−1(Fi/a5Fkλ
)))

(CFkλDFkλi)
, a4Fkλ

= 6.789×105,
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CMkαi = 3.6 , a1Mkα
= 9.524×10−8, a5Mkα

= −3.1×10−11,

DMkαi = a1Mkα
F 2
i +a2Mkα

Fi , a2Mkα
= 9.364×10−3, a6Mkα

= 2.34×10−5,

EMkαi = a5Mkα
F 2
i +a6Mkα

Fi+0.95+
a26Mkα

4.0 a5Mkα

, a3Mkα
= 1.167×10−6,

BMkαi =
(a3Mkα

F 2
i + a4Mkα

Fi)

(CMkαDMkαi exp(10−6Fi))
, a4Mkα

= 1.39×10−1.

II.B.6. Gyroscopic moment

In addition to the forcing terms detailed above we also consider the gyroscopic effect of the

spinning wheel/brake assembly8 and its impact on the dynamics of the MLG system. These

gyroscopic moments are indirectly related to the loading force acting through the gear in the

sense that a larger loading force results in a smaller effective tyre radius and, therefore, a

greater angular velocity of the wheels and brake rotors. We express this gyroscopic coupling

in terms of the axle velocity vector Ω and the wheel spin vector ωi, writing the gyroscopic

moments acting on the system as given by

Mgyri = Ω× Iωi , (9)

with the vectors

Ω = ψ̇uψ + δ̇uδ + β̇uβ , ωi =
(ViCF · uf )

reff,i
ua .

Here, I is the axial inertia of the spinning wheels and brake elements, where we assume

deflection of the tyres to have a negligible effect on this inertia.

II.C. Forcing terms

For our system the forcing terms Mψ, Mδ, Mβ and Fη derive from the resolution of the

lateral tyre forces (FkλL, FkλR), self-aligning moments (MkαL, MkαR), gyroscopic restoring

moment (MgyrL, MgyrR) and vertical reaction forces (FL, FR), into the four directions uψ,
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Figure 5. Parameterised representation of the MLG torque link geometry, shown for the zero caster length
case e = 0. The translational freeplay yfp , introduced at the torque link apex, acts over the radius rtlk (η) to
produce an angular freeplay in the torsional DoF ψfp .

uδ, uβ and uη. This allows these moment terms to be written as

Mψ =
∑

i∈{L,R}

(
(PiC −P0) × (Fi + Fkλi)−Mkαi −Mgyri

)
· uψ , (10)

Mδ =
∑

i∈{L,R}

(
(PiC −Pδ) × (Fi + Fkλi)−Mkαi −Mgyri

)
· uδ , (11)

M∗
β =

∑
i∈{L,R}

(
(PiC −Pβ) × (Fi + Fkλi)−Mkαi −Mgyri

)
· uβ ,

Mβ =M∗
β −Mψ(uβ · uψ) , (12)

Fη =
∑

i∈{L,R}

( Fi + Fkλi ) · uη , (13)

with Mβ taking a modified form due to geometric coupling between the DoFs ψ and β.

III. Introduction of freeplay

It now remains to define the torsional stiffness and damping functions Mkψ and Mcψ, and it

is through these terms that we will introduce torsional freeplay to the system. In particular,

we consider a freeplay source originating from the torque links of the MLG. These torque

links are responsible for preventing the relative rotation between the upper and lower part
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of the landing gear whilst still allowing for telescopic extension and retraction of the system;

their geometry and placement on the MLG system are shown in figure 5. The freeplay that

we consider enters the system at the apex of these torque links, representing a lateral play

in the mechanical joint between them. Past studies have found such freeplay to have an

important role in the appearance of shimmy oscillations.5–7,16 From the geometry of the

torque links shown in figure 5 we can see that the translational freeplay y
fp

will result in an

angular freeplay ψ
fp

in the torsional degree of freedom, which is dependent on the distance

r
tlk
(η) from the torque link apex to the central strut axis. An important consequence of this

is that, as the loading force acting on the landing gear increases and the MLG compresses,

this distance changes, resulting in a torsional freeplay that is dependent on the axial DoF.

The magnitude of torsional freeplay ψ
fp

may be written as

ψ
fp

= y
fp
r
tlk

,

r
tlk

= a
tlk

+ l
tlk

sin

cos−1


√
z2
tlk

+ (a
tlk

− b
tlk
)2

2l
tlk

− tan−1

(
a

tlk
− b

tlk

z
tlk

) ,

where a
tlk
, b

tlk
, l

tlk
, z

tlk
are constants defining the geometry of the torque link assembly as

shown in figure 5.

A similar argument applies to the torsional stiffness of the system whereby we consider

a lateral stiffness of the MLG torque links of k
tlk

acting at a distance r
tlk
(η) from the tor-

sional centre line. For constant r
tlk

and zero freeplay ψ
fp
, y

fp
= 0 we model these torque

links as a constant linear stiffness between the shock strut and oleo piston. However, this

stiffness varies with the introduction of freeplay and axial deflection of the MLG. For this

study we assume negligible torsional stiffness while the torque links are not in contact, and

initially consider a non-smooth transition to linear stiffness at the boundaries of the freeplay

region. This results in the following non-smooth representation of torsional stiffness:

Mkψ =


k

tlk
(y

tlk
+ y

fp
)r

tlk
y
tlk

< −y
fp

0 |y
tlk
| < y

fp

k
tlk
(y

tlk
− y

fp
)r

tlk
y
tlk

> y
fp

,

(14)

y
tlk

= r
tlk
ψs ,

ψs = ψ + β sin p .
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Whilst this non-smooth model of torque link freeplay gives a simple representation of the

contact dynamics over the region of torque link freeplay, we note that in practice the tran-

sition between the freeplay and contact regions for a physical system is unlikely to be truly

non-smooth. Instead, factors such as the presence of dirt, grease and the degradation and

wear of torque link components will all lead to the creation of resistive and dissipative forces

within the apex joint. As a result, the true dynamics of the system will differ from the

idealised non-smooth case. In particular, this will result in a very rapid transition from zero

to non-zero stiffness that will, nonetheless, still occur over a small finite range of y
fp
. To

reflect this behaviour we therefore consider the smoothed representation of equation (14),

parameterised by the smoothing parameter ϵ as

Mkψ(ϵ) = k
tlk

1

π

(y
tlk

+ y
fp
)
[
tan−1

(
− (y

tlk
+ y

fp
)/ϵ

)
+
π

2

]

+(y
tlk

− y
fp
)
[
tan−1

(
+ (y

tlk
− y

fp
)/ϵ

)
+
π

2

] r
tlk
, (15)

Equations 15 approaches the non-smooth case (14) as ϵ → 0. The solid curves in figure

6 illustrate this approximation for five values of ϵ, where the non-smooth case Mkψ(0) of

equation (14) is represented by the dashed line. In particular, we note that ϵ has units of

length and visually spans about half of the smoothing region as shown in figure 6(b). The

effect of this smoothing is explored in more detail in section IV.D, where we explore the

quantitative effect of freeplay magnitude on the dynamics of the system. This is achieved by

varying the parameters y
fp

and ϵ in one of two ways. The first of these is treated in section

IV.D.1 wherein ϵ is chosen such that the quantity (y
fp
/ϵ) remains constant as torque link

freeplay is varied. This ensures that the smoothing region of the freeplay stiffness profile is

held as a constant proportion of the freeplay width, hence preserving the shape of the stiff-

ness profile. This is later seen to produce a simple scaling of the shimmy oscillations present

in the system; however, this type of freeplay variation is somewhat non-physical with ϵ ap-

proaching zero as y
fp

→ 0, tending towards the non-smooth case. A second and more realistic

method of scaling is considered in section IV.D.2, where ϵ prescribes a finite smoothing region

that is held fixed as torque link freeplay is varied; in a modelling context such a region could

correspond to the physical presence of dirt, grease or other material at the torque link apex.

For the torsional damping Mcψ of the system, we assume that damping forces originate

largely from viscous dissipation within the shock absorber assembly and energy loss from
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Figure 6. (a) Torsional stiffness profile for ϵ = 2yfp mm, ϵ = yfp mm, ϵ = 0.5yfp mm, ϵ = 0.2yfp mm and ϵ = 0.1yfp

mm. The non-smooth case is shown by the dashed curve. The smoothing parameter ϵ visually corresponds to
about half of the smoothing region as shown in panel (b).

the tyres. Therefore, this damping remains independent of freeplay magnitude and is mod-

elled here as a linear damping of the torsional DoF, taking the form

Mcψ = cψψ̇ , (16)

where the constant cψ is given in table 1.

This completes the description of the MLG dynamics, as modelled by the equations of

motion (1)–(6), with individual terms as defined in sections II.A–III.

IV. Bifurcation analysis of MLG system

To study the dynamics of the MLG system we perform a bifurcation analysis with the

software package AUTO,17 focusing on the effects of the forward velocity and loading force

on the stability of the the system. Throughout this paper we consider the simplest geometric

case in which the chord between the MLG attachment points is horizontal and perpendicular

to the direction of travel (ρ = µ = 0).

IV.A. Zero freeplay case

We begin by considering the zero freeplay case and construct one-parameter bifurcation

diagrams for the velocity V as the principle continuation parameter. These diagrams are

shown in figure 7 for loading values of F ∗
z = 0.2 and F ∗

z = 1. Solution curves are shaded

in accordance with their stability and the point H indicates a point of Hopf bifurcation.

These solutions are expressed in terms of their torsional and lateral amplitudes only. This

is because for the simplest geometric case (ρ = µ = 0) the longitudinal and axial DoFs
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Figure 7. One-parameter bifurcation diagrams for zero torque link freeplay. Panels (a1) and (a2) show the
bifurcation diagrams for a loading force of F ∗

z = 0.2 expressing solutions in terms of their torsional and lateral
amplitudes respectively. Panels (b1) and (b2) show the F ∗

z = 1 case. Throughout, green/light curves and
red/dark curves correspond to stable and unstable solutions, respectively.

remain uncoupled from the MLG dynamics, passively following oscillation of the torsional

and lateral DoFs.4

We see that in both cases, the zero amplitude straight-rolling solution is stable for lower ve-

locity values. As V is increased however, the solution loses stability at a super-critical Hopf

bifurcation, beyond which the system will experience shimmy oscillations. These shimmy

oscillations have a larger torsional than lateral amplitude and hence, we refer to them as tor-

sional shimmy. However, looking at the velocity range shown we note that for both F ∗
z = 0.2

and F ∗
z = 1, the velocity above which the MLG system loses stability is far in excess of

the realistic operating region for the landing gear of up to 80 m/s. An example of shimmy

oscillation within this high-velocity region is shown in figure 8 where we perform a numerical

simulation for a forward speed of V = 300 m/s and a loading force of F ∗
z = 0.2 with initial

conditions on the unstable solution branch. The resulting time series is shown in terms of

its amplitude in the ψ, δ, β and η DoFs and spans a period of 15 seconds. A zoom of the

final second of simulation is also shown to the right of each time series to indicate the settled

response. In figure 8 we observe the growth of shimmy oscillations, eventually settling to

the amplitude indicated by the solution curves of figure 7(a1) and 7(a2); as predicted the

torsional DoF constitutes the largest component of these oscillations. We also observe from

figure 8 that the longitudinal and axial DoFs β and η show only a weak coupling throughout,
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Figure 8. Simulation results in ψ, δ, β and η for (V, F ∗
z ) = (300, 0.2)

oscillating with very small amplitude. However, as the amplitude of oscillation grows we note

a reduction in the equilibrium values of β and η, which is a consequence of the increased

drag acting on the system at the onset of shimmy.

We note from figure 7 that the critical velocity above which the system experiences shimmy

is given by the Hopf bifurcation point H and, moreover, the location of this point varies with

the applied load F ∗
z . This agrees with the discussions in section II.B highlighting the sensi-

tivity between the MLG parameters and the loading force. We therefore proceed by plotting

the Hopf bifurcation point of figure 7 over a range of loading forces. This is achieved by

continuing this Hopf bifurcation in the additional parameter F ∗
z , yielding the two-parameter

bifurcation diagram in the (V, F ∗
z )-plane shown in figure 9. We see that the resulting Hopf

bifurcation curve bounds a region of stable non-oscillatory behaviour in this plane; however,

for higher speeds and loading forces to the right of the curve H the system loses stability and

torsional shimmy may be observed in the dynamics. In agreement with the one-parameter

diagrams in figure 7, this torsional shimmy only occurs well outside of the typical MLG

operating range, which is indicated by the dashed lines. Therefore, despite the existence of

a region of instability, one would not expect to observe sustained shimmy oscillation of the

MLG for the case shown in figure 9.

IV.B. Non-zero freeplay case

Having established that the MLG remains stable over its operating range for the zero freeplay

case, we now explore the effect of a non-zero freeplay at the torque link apex. Figure 10 shows

the one-parameter bifurcation diagram for the MLG with ±1 mm of torque link freeplay.

The loading force is fixed at F ∗
z = 1 and oscillatory solutions are expressed in terms of their
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Figure 9. Two-parameter bifurcation diagram for the zero freeplay case.

torsional amplitude in panel (a) and their frequency in panel (b). The zero freeplay solution

is given by the dashed curve for reference. Figure 10(a) shows — with the introduction

of freeplay — a shift in the Hopf bifurcation point H of figure 7 from V = 346.1 m/s to

V = 142.5 m/s, as well as the creation of a second pair of Hopf bifurcations, also labelled H,

at V = 1.5 m/s and V = 28.1 m/s. This is because, as freeplay is introduced into the MLG,

the nature of the system near to the zero-amplitude solution changes, with the torsional

stiffness approaching zero as ϵ → 0. This results in a rapid change of the bifurcation dia-

gram near the zero-amplitude solution; indeed the bifurcation diagram in figure 10(a) differs

greatly from the zero freeplay case of figure 7(a1) in terms of the small amplitude behaviour

close to the x-axis. For large amplitude responses, away from the zero-amplitude solution,

the freeplay region has a much smaller influence on the dynamics, with periodic solutions

approaching the zero freeplay case as their amplitudes increase. This may also be observed

in figure 10(b), wherein we see the frequency of the stable solution curve approaching the

zero freeplay solution with increasing velocity V .

As a consequence of the freeplay, we now see a greater velocity range over which oscilla-

tory solutions exist and, hence, shimmy may be observed; we note that this range now lies

within the realistic operating region of the MLG. Furthermore, for V ∈ (41.5, 142.5) the

zero-amplitude solution remains stable, despite the presence of a stable oscillatory solution
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Figure 10. One-parameter bifurcation diagram for F ∗
z = 1 and ±1 mm of torque link freeplay. Panel (a) shows

the torsional magnitude of solutions (including a zoom of the small ψ-amplitude features) and panel (b) their
frequency. The dashed curve indicates the solution branch for the zero freeplay case.

branch bounded by the new saddle node bifurcation point S in figure 10. Therefore, within

this region the MLG may experience both stable and shimmy behaviour with the possibility

that — in the presence of perturbing forces — the system may jump between these two

behaviours. The two additional Hopf bifurcation points at V = 1.5 m/s and V = 28.1 m/s

connect a second stable periodic solution. Although this solution also indicates torsional

shimmy of the MLG, we see from panel (b) that the resulting oscillations are of lower fre-

quency and are ‘gentler’ in nature, owing to the small amplitude of this solution branch.

Hence, each individual periodic orbit lies almost entirely inside the freeplay region, thereby

experiencing a lower overall restorative stiffness force and lower frequency of oscillation.5

We now proceed as before and continue the bifurcation points observed in figure 10 in the

additional parameter F ∗
z , producing the two-parameter bifurcation diagram shown in figure

11; regions of oscillation are shaded as indicated in the key. The curve y
fp

= 0 illustrates
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Figure 11. Two-parameter bifurcation diagram for ±1 mm of torque link freeplay.

the Hopf bifurcation curve for the zero freeplay case. We note here that the other two Hopf

curves are in fact both part of a single curve that enters and exits the displayed region twice.

As freeplay is introduced into the torque links, the Hopf bifurcation curve quickly shifts to

take this shape. We also observe the creation of two fold curves, forming part of the stability

boundary between regions of shimmy oscillation.

As a result of the addition of torque link freeplay, the total parameter range over which

shimmy oscillations may be observed increases substantially. In particular, this behaviour

may now be observed over typical operating velocities and vertical loads. Equivalently, the

non-shaded region indicating straight-line stability now spans a much smaller parameter

range and is bounded by the Hopf and lower fold bifurcation curves. Crossing the Hopf

bifurcation curve from this stable region we note a loss in stability of the zero-amplitude

solution, and the creation of low frequency oscillations (wide shading). These oscillations

have small amplitude, lying mostly inside the torsional freeplay region. However, if we start

within the stable region and instead cross the fold bifurcation curve we observe a different

type of dynamics. This time the zero-amplitude solution remains stable but there also exists

a high-frequency torsional solution. We call this the bi-stable region within which the MLG
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may experience either stable or oscillatory dynamics. We note that this second oscillatory

solution has a higher amplitude and frequency and, therefore, a much greater power than

the first, inflicting a greater stress on the MLG and representing a larger risk of damage

to the system. Consequently, the presence of perturbing forces proves especially critical

within this linearly stable region, with the right disturbance capable of moving the system

between stable straight-rolling and high-frequency shimmy oscillation. Other features of in-

terest include a region of bi-stability to the top left of figure 11 where both low-frequency

and high-frequency solutions co-exist. Again, given the right perturbation it is possible to

move the response between these two types of solution.

IV.C. Steady non-zero yaw

At the bottom of figure 11 we see a shaded region of off-centre yaw bounded by two pitchfork

bifurcation curves. This region is due to the small negative rake angle of the MLG, resulting

in the zero-amplitude solution (ψ = 0) becoming geometrically unstable; thus, the wheel

axle experiences a small destabilising moment. Usually this instability is strongly resisted

by the torque link stiffness; however, within the freeplay region this stiffness falls to zero and

the destabilising moment is opposed only by the restoring torque produced by the tyres. In

fact, there exists a range of loading forces for which this self-aligning torque is insufficient

to counter the geometric instability and, therefore, we observe the creation of two pitchfork

bifurcation curves. These curves are functions of vertical force only and so appear as hori-

zontal lines in the two-parameter bifurcation diagram. This reflects the assumptions on the

tyre model parameters, which vary only with applied loading force, independent of forward

velocity.

To illustrate the effect of this region of off-centre yaw, we take F ∗
z as a bifurcation pa-

rameter to produce the one-parameter bifurcation diagram shown in figure 12. Here V is

fixed at 50 m/s and solutions are expressed in terms of their torsional amplitude. Bifurcation

points are as labelled, the dot-dash curves indicate non-zero stationary solution branches,

and the boundary of torsional freeplay is given by the thicker grey curve. Increasing the

loading force from zero we see that at the first pitchfork bifurcation the zero-amplitude

solution loses stability and two stationary non-zero solutions are created. Due to the sym-

metry of the MLG system for µ = ρ = 0 these solutions are symmetric about ψ = 0 and

quickly grow in amplitude, approaching the boundary of torsional freeplay. However, note

that due to the smoothing of the freeplay profile these solutions experience an increasing

torsional stiffness as they approach this freeplay boundary and, therefore, they do not reach

the grey curves shown. At the second pitchfork bifurcation the self-aligning moment pro-

duced by the tyres is once again sufficient to oppose the geometric instability of the MLG
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Figure 12. One-parameter diagram for a freeplay of ±1 mm, where F ∗
z is the bifurcation parameter and V is

fixed at 50 m/s. Solutions are expressed by their torsional amplitudes (a) and frequency (b). The boundary
of torsional freeplay is also indicated by the thicker grey curve in panel (a).

and the zero-amplitude solution regains stability. As F ∗
z is increased further this solution

undergoes a supercritical Hopf bifurcation leading to the creation of a branch of torsional

shimmy solutions spanning the entire F ∗
z range considered. Panel (b) of figure 12 shows the

frequency of oscillation along the solution branch. The branch has stable segments of both

low and higher frequency behaviour, reflecting the amplitude of oscillation, and these are

separated by an unstable section of the same branch. In addition, we see in panel (a) that

for (V = 50, F ∗
z ∈ (0.01, 1.54)), this unstable section separates straight-rolling and torsional

shimmy oscillations, and we note that this corresponds to the region of bistability shaded in

figure 4.8. In particular we see that for (V = 50, F ∗
z ∈ (0.01, 1.54)), straight-rolling behaviour

is separated from torsional shimmy by the unstable solution branch, and this corresponds

to the region of bi-stability shaded in figure 11. It is within this region that the appearance

of pitchfork bifurcations proves particularly significant to the dynamics of the MLG. Here,
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Figure 13. Variation of torsional shimmy amplitude with freeplay magnitude for the case ϵ = yfp × 10−1 mm;
torque link freeplays of yfp = 0.2 mm (i), 0.5 mm (ii), 1 mm (iii) and 2 mm (iv) are considered.

relatively small perturbations to the system from the non-zero stationary solutions are suffi-

cient to set up transient oscillations in the dynamics that eventually settle into self-sustained

torsional shimmy oscillations.

IV.D. Quantitative effect of torque link freeplay

As it was demonstrated that torque link freeplay destabilises the small amplitude response

of the MLG system, we now wish to gauge the quantitative influence of freeplay magnitude

on the observed shimmy oscillations. We therefore consider the one-parameter bifurcation

diagram of figure 10 for F ∗
z = 1 over a variety of torque link freeplay magnitudes. As

discussed in section III, this variation is modelled in two ways: by maintaining a fixed scaled

freeplay profile {(ϵ, y
fp
) : ϵ/y

fp
= const}, or by keeping a smoothing region of constant size

{(ϵ, y
fp
) : ϵ = const, y

fp
∈ ℜ+}.

IV.D.1. Fixed scaled freeplay profile

Figure 13 shows the results for ϵ/y
fp

= const. Keeping the loading force fixed at F ∗
z = 1, we

show in panel (a) simultaneously the one-parameter bifurcation curves for freeplay values

y
fp

of 0.2, 0.5, 1 and 2 mm producing solutions of increasing amplitude, respectively. For

each case we also plot the corresponding torque link stiffness profile of (Mkψ/rtlk) vs (y
tlk
)

in panel (b); see equation (15). These profiles become less ‘sharp’ with a more gradual
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change in curvature along their length, as the magnitude of torque link freeplay is increased.

However, when rescaled such that x∗ = x/y
fp
, y∗ = y/k

tlk
and plotted together, as shown

in figure 15(a), the same scaled stiffness profile is maintained over all cases. This type of

freeplay variation produces a pure scaling of the solution curves in panel (a), and we see that

the forward velocities at which the bifurcation points occur remain fixed.

To gauge the rate at which the amplitude of these shimmy oscillations grows with increasing

freeplay we consider four stable periodic orbits for V = 15, 50, 80, 110 m/s and plot their

torsional magnitude as the torque link freeplay is varied. This is shown in figure 13(c), where

the amplitude of these oscillations — created with the introduction of freeplay — shows an

overall linear scaling with respect to freeplay magnitude. In figure 13(d) we also note that the

frequency of these oscillations remains largely independent of torque link freeplay. Therefore,

from these results we infer that, providing the same scaled freeplay profile is maintained,

the parameter subsets spanned by the bifurcation curves and shaded regions of figure 11,

as well as their frequency characteristics, will remain effectively unchanged as the freeplay

magnitude is varied. Only the amplitude of shimmy oscillations will change, and these scale

linearly with torque link freeplay.

IV.D.2. Constant size smoothing region

Results for a constant smoothing region, inferring constant ϵ are shown in figure 14; again

F ∗
z = 1 throughout as y

fp
is varied. Panels (a)–(f) correspond to torque link freeplays y

fp
of

0.05, 0.098, 0.11, 0.15, 0.35 and 1.0 mm, respectively; for each case the corresponding stiff-

ness profile is shown to the right of the one-parameter bifurcation diagram. The smoothness

of the transition as the torque links come into contact remains constant for each profile as

a consequence of the constant ϵ condition. These profiles are again rescaled and are shown

together in figure 15(b) and we see that, unlike the previous case ϵ/y
fp

= const, the rescaled

curves do not coincide for different y
fp
. As before, we focus on four periodic orbits for V of

15, 50, 80 and 110 m/s, which we continue in y
fp
. Resulting projections of their torsional

amplitude and frequency are shown in panels (g) and (h) of figure 14, respectively. The

dot-dash curves in panel (h) indicate the Hopf bifurcation curves from which the periodic

orbits bifurcate.

Figure 14(g) shows that the amplitude of oscillation again increases with greater torque

link freeplay; however, now these oscillations do not exist for all values of freeplay. Instead,

for each curve there exists a freeplay threshold beyond which oscillatory solutions are cre-

ated. These solutions quickly grow in amplitude, eventually settling to the trends observed

for the linear scaling case in figure 13; again the frequency of oscillation along these solution
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Figure 14. Variation of torsional shimmy amplitude with freeplay magnitude for the case of fixed ϵ = 0.1 mm.
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Figure 15. Rescaled plots of torque link force vs. deflection for the two freeplay variation methods. Panel (a)
shows the rescaled curves of figure 13 for the fixed scaled freeplay profile discussed in section IV.D.1. Panel
(b) shows the curves of figure 14 for a constant size smoothing region; section IV.D.2.

curves remains largely constant; see panel (h) of figure 14. We therefore note that for this

case, where we allow the scaled freeplay profile to vary (15(b)), the presence and location of

the bifurcation points now depends on the magnitude of torque link freeplay. This represents

a key difference from the results of section IV.D.1.

IV.E. Allowable freeplay threshold

Figure 16 shows the oscillatory solutions for the cases ϵ/y
fp

= const (a) and ϵ = const

(b), plotted as surfaces parameterised by (V, y
fp
). As in the previous sections we express

the amplitude of oscillations on these surfaces in terms of their torsional amplitude ψ. The

one-parameter bifurcation diagrams of figures 13 and 14 are slices through these surfaces

for constant y
fp
, and example cross sections are highlighted in both panels of figure 16.

Curves of Hopf and saddle node bifurcations are shown as dot-dash curves. We saw that for

ϵ/y
fp

= const the location of the bifurcation points remain independent of freeplay magni-

tude and, hence, these bifurcation curves appear as straight lines with constant V in figure

16(a). In panel (b) we observe that this is not the case, with bifurcation curves depending

on V and y
fp
. Consequently, there exist values of y

fp
for which the zero-amplitude solution

remains stable over a range of typical operating speeds.

To illustrate this point we consider an absolute upper limit for the MLG forward veloc-

ity of 120 m/s and in figure 16(b) highlight two rectangular regions R1 and R2 over which

the zero-amplitude solution is stable up to this limit. Together these regions show that for

a loading force of F ∗
z = 1 and a smoothing region of size ϵ = 0.1 mm the landing gear may

remain stable up to forward speeds of V = 120 m/s, providing the magnitude of torque
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Figure 16. Surface plots of oscillatory solutions as forward velocity V and freeplay magnitude yfp are varied,
where the vertical force is fixed at F ∗

z = 1. Panels (a) is for constant ϵ/yfp = 0.1 and panel (b) for constant
ϵ = 0.1 mm.

link freeplay remains in the range y
fp

∈ (0, 0.055) ∪ (0.22, 0.32). However, we may further

generalise these results by considering the points discussed earlier in sections IV.D.1 and

IV.D.2. We recall that for constant (y
fp
/ϵ) bifurcation points remain fixed, occurring at the

same parameter values. This result may be extended to figure 16(b) whereby we note that,

providing the y-axis is scaled to span the same range of (y
fp
/ϵ), the orthogonal projection

of the bifurcation curves onto the (V, y
fp
)-plane will remain unchanged and only the height

(maximal amplitude of ψ) of the solution surfaces will change.

This insensitivity with respect to the quantity (y
fp
/ϵ) allows the planar projection of fig-

ure 16(b) in (V, y
fp
) to be plotted as shown in figure 17. This time the rectangular regions

represent ranges of (y
fp
/ϵ), prescribing an allowable set of freeplay ‘shapes’ depending on y

fp

and ϵ, rather than simply a maximal freeplay width. These regions are bounded by three
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Figure 17. Projection of the bifurcation curves of figure 16(b) onto the plane (V, yfp/ϵ).

points a, b and c as indicated and, with the package AUTO, we may continue these points in

the loading parameter F ∗
z . Figure 18 shows projections of the resulting three curves in the

(y
fp
,F ∗
z )-plane. These curves divide this parameter plane into regions of different behaviour

over the velocity range V ∈ [0, 120] m/s. There are two regions where the straight-rolling

solution is stable, which are labelled R1 and R2; a lightly shaded region — reached by cross-

ing the curve c from R2 — in which the system may experience ‘gentle’ oscillations, and

an unshaded region bound by the curves a and b, where high-frequency shimmy may be

observed.

From the diagram in figure 17 we are able to determine the range of allowable torque link

freeplays ensuring stability over V ∈ [0, 120]. This is equivalent to finding a rectangular op-

erational envelope in (y
fp
, F ∗

z ) that lies entirely within the set {R1∪R2}. However, looking
back to figure 16 one notes that above R2 there also exists a stable oscillatory branch for

high forward speeds, where the system may be perturbed from straight-rolling to oscillatory

behaviour. Therefore, R2 represents the less desirable of the two stable regions and so, in

practice, one would wish the operating conditions of the system to remain in R1. We now

impose a second stability condition on the system, requiring that the MLG system is to

remain stable over a suitable range of loading forces as well as forward speeds. We again

choose a conservative estimate, this time for the maximum loading experienced by the land-

ing gear; specifically we require stability up to a loading force of F ∗
z = 2. To meet this

stability condition we therefore highlight in figure 18 a maximal envelope covering R1 for

loading forces in the range F ∗
z ∈ [0, 2].
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Figure 18. Regions of stability in the (yfp/ϵ, F
∗
z )-plane.

We see here that to ensure the absence of shimmy oscillations over the operating regime

requires a freeplay quantity (y
fp
/ϵ) significantly smaller than the value of 10 considered in

section IV.B; namely one must satisfy the condition

y
fp

ϵ
< 0.13 , (17)

which defines the range of permissible freeplay profiles. This range is indicated in figure

19: a given freeplay profile satisfies condition (17) if, when rescaled, it lies entirely within

the shaded region. Looking back at figure 18 we note that increasing the freeplay quantity

(y
fp
/ϵ) beyond this value will result in shimmy oscillations appearing for low F ∗

z . Therefore,

beyond this maximal freeplay threshold one would expect shimmy oscillations to appear first

under light landing scenarios or just prior to take off, when loading forces are minimal.

y
tlk

0 y
fp

-y
fp

M
k
ψ

0

.

.

Figure 19. Shaded region indicating the range of allowable scaled freeplay profiles satisfying the condition
yfp < 0.13ϵ. The dashed curve indicates the limit ϵ→ ∞
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V. Conclusions

In this study we employed numerical bifurcation techniques to analyse a model of a nonlinear

dual-wheel main landing gear (MLG) with freeplay at the torque link apex. By continuing

key bifurcation points in both the forward velocity V and the vertical loading F ∗
z we were

able to divide the (V, F ∗
z )-plane into regions of different dynamical behaviour. For zero

freeplay this highlighted the presence of torsional shimmy oscillations in the dynamics of the

system, but only well beyond the range of likely operating conditions. This changed with

the introduction of freeplay to the system which permitted the appearance of shimmy oscil-

lations within the typical envelope of MLG operating conditions. The variety of observable

dynamics also increased, with the appearance of regions of low-frequency and high-frequency

shimmy oscillations. We also note that the amplitude of oscillation in these regions varied

with freeplay magnitude and two methods of freeplay variation were investigated. The first,

in which the smoothing region was held as a constant proportion of freeplay magnitude (thus

maintaining a constant scaled freeplay profile), produced a linear scaling of the periodic solu-

tion amplitudes. Furthermore, this scaling did not affect the location of bifurcation points or

the frequency of oscillations, and consequently the corresponding two-parameter bifurcation

diagram was preserved with the regions of observed shimmy remaining unchanged. This

was not the case for the second method of scaling, where the size of the smoothing region

was held constant regardless of freeplay magnitude. This represents the more realistic of

the two scaling methods, where the constant smoothing region may represent the physical

presence of material (dirt, grease, etc.) at the torque link apex. Again, under this type of

variation, the amplitude of shimmy oscillations increased with freeplay magnitude; however

their scaling was no longer linear for small amplitudes. The location of bifurcation points

in the system also proved sensitive to the magnitude of torque link freeplay for this case.

Consequently, we were able to identify freeplay ranges in which the MLG system remains

stable over an acceptable operational envelope. Furthermore, we found that in fact, when

considered along with variation of the smoothing region ϵ, the condition of stability imposed

a condition on the allowable shape of the freeplay stiffness profile with sufficiently smooth

profiles ensuring stability over the prescribed operating region. For freeplay ‘shapes’ just

outside this stability condition the results suggested the appearance of shimmy oscillations

given lightly loaded, high-velocity conditions.

We note that these findings may be used to draw more general conclusions regarding the

investigation of torque link freeplay. For this study we chose to represent freeplay as a region

of low stiffness using inverse tangent functions to approximate the smooth transition to con-

tact. However, for any generic torque link stiffness model, expressed as a function of torque
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link deflection alone, one would expect the same invariance of the bifurcation curves to hold

when maintaining a constant scaled profile. Therefore, one may apply a similar methodology

to a broad family of different freeplay representations, using continuation methods to specify

conditions that satisfy a given desired stability criterion.

Throughout the study we considered the effect of a variable loading force and this influ-

enced a number of parameters in the MLG model, including modal inertias, gear stiffness

and torsional freeplay. The tyre dynamics were particularly sensitive in this respect and

we observed a range of loading forces for the non-zero freeplay case over which the self-

aligning moment produced by the tyre dynamics was insufficient to oppose the geometric

instability created by the negative rake angle of the system. This resulted in a stationary

solution of non-zero yaw that, when occurring within the region of linearly stable shimmy

oscillations, reduced the threshold between non-oscillatory and shimmy behaviour. This,

increased the sensitivity of the system to external perturbation and thus illustrated the pos-

sible influence of load dependent parameters on the MLG dynamics. This result highlights

the importance of considering relevant nonlinearities in the MLG system and demonstrates

the role that nonlinear analysis techniques can play in analysing their effect on the dynamics.

With regards to future work we remark that our previous study results4 indicate strongly that

the complexity of the observed dynamics increases considerably with a change in side-stay

orientation. This orientation is varied in the model simply by assigning (non-zero) values

to the µ and ρ model parameters. Thus, a natural extension to the analysis presented here

would be the investigation of variations of these side-stay angles. There are also a number of

additional effects that could be modelled. For example, the presence of Coulomb friction has

been found to be an important factor in the development of shimmy in previous studies.7,16

Its inclusion could present an interesting extension to the current work, as the friction force

produced between the oleo piston and shock strut will produce a restorative force even within

the region of torsional freeplay. Therefore it may prove to have a significant effect alongside

the freeplay phenomenon detailed in this paper.
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