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Abstract 
 

This paper extends existing models for multilevel multivariate data with mixed response 

types to handle quite general types and patterns of missing data values in a wide range of 

multilevel generalised linear models. It proposes an efficient Bayesian modelling approach 

that allows missing values in covariates, including models where there are interactions or 

other functions of covariates such as polynomials. The procedure can also be used to produce 

multiply imputed complete datasets. A simulation study is presented as well as the analysis of 

a longitudinal dataset. The paper also shows how existing multi-process models for handling 

endogeneity can be extended by the proposed framework. 
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1. Introduction 
Estimation and inference for statistical models fitted to partially observed data has been a 

subject of considerable interest with a large literature and different approaches implemented 

in a range of software packages. Following the work of Rubin (1987), multiple imputation  

has become a particularly popular procedure. In very large datasets, such as census data, this 

may be done non-parametrically, using hot-deck or related donor methods. However, in 

typical social science settings imputation using parametric methods is likely to be much more 

efficient and avoids issues that arise with small donor pools.  Furthermore, parametric 

imputation methods are  relatively easy to implement, at least in their basic form. More 

generally, a key attraction of multiple imputation is that after imputation we fit our model of 

interest to the imputed ‘complete’ data using standard software.  

Two versions of multiple imputation are widely used. The first, developed by Rubin (1987) 

uses the joint posterior distribution of all the variables with missing data when sampling 

values to fill in the data gaps. The second, (van Buuren, 2007) known as imputation by 

chained equations  uses the conditional distribution for each variable in turn, conditioned on 

the remaining variables in the model of interest. One advantage of the latter approach is that 

non-normal variables, in particular discrete variables are readily handled. Goldstein, 

Carpenter, Kenward and Levin, ((GCKL), 2009) and Carpenter, Goldstein and Kenward, 

(2011)  show how such variables can also be handled by using a latent normal approach that 

links the different response types through an underlying multivariate normal distribution, that 

is thus consistent with a range of response distributions. Imputation by chained equations also 

has the drawback that for multilevel data structures it cannot readily handle variables 

measured at higher levels. The GCKL approach is specifically designed to handle such cases.  

Neither of these procedures has been able to properly handle interaction terms, including 

polynomials. Data analysts have tended to adopt different approaches. In one commonly used 

approach, which has come to be known as ‘passive imputation’, all non-linear and interaction 

terms are omitted from the imputation algorithm, and re-created from the imputed values 

immediately prior to fitting the model of interest. This approach was criticised by Von Hippel 

(2009), who instead proposed simply treating each interaction or polynomial term as ‘just 

another variable’. However, Seaman, Bartlett and White (2012) show that under the missing 

at random (MAR) assumption this performs poorly, especially for binary responses.   

In the present paper we extend the GCKL approach to handle covariates in the model of 

interest which can be quite general functions of other covariates. This includes interactions 

and polynomial terms, and the covariates can be continuous or discrete. A fully Bayesian 

modelling procedure is proposed which can also be used to produce multiply imputed 

datasets for analysis in standard software. We shall refer to this procedure as ‘missing 

covariate data’ (MCD). 

One motivation for this approach was an analysis of the 1958 birth cohort data (Carpenter 

and Plewis, 2011), exploring the effects of early life and socio-economic variables on 

educational achievement in early adulthood. Attrition and wave non-response mean that only 

around 65% of the records are complete, making this a natural candidate for analysis via 

imputation. Preliminary analysis of the complete records indicates a potentially important 

non-linear effect of mother’s age, which further interacts with social housing provision. 

However, as discussed above, existing imputation procedures do not perform acceptably in 

this setting. After presenting and evaluating our proposal, we return to this example in 

Section 8.   
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In the next section we introduce a simple version of our model for normally distributed 

covariates. This is followed by an extension to a general framework that allows for 

categorical covariates and responses and a discussion of endogeneity. A simulation is 

presented, followed by an analysis of data from the National Child Development Study. We 

conclude with a summary and discussion. 

2. Normal responses and predictors: a simple model 
Consider first a simple linear regression model for Y on X   where the joint distribution of 

(Y,X) is bivariate normal and their joint posterior distribution is  

 (   |      )   ( |        ) ( |      )       (1) 

We can write the model as 

           |  

                   (2) 

We assume missing data are MAR, so we do not need to model the missingness mechanism. 

We additionally assume   |     are independent. If this is not the case (often known as 

endogeneity since it implies that the predictor X in the model is correlated with the residual) 

then the model lacks identifiability: we return to this in Section 7 below.  

The case where we have missing values in Y is standard, assuming MAR. We sample any 

missing values in Y by drawing them from the posterior predictive distribution. Within a 

Bayesian framework we have a Gibbs step at each iteration that samples the missing value 

from  (          | 
 ) using the current MCMC chain parameter values. GCKL (2009) 

extend this to the case where Y is multivariate, and includes models where the responses are 

of different types, for example normal and binary. For a wide range of models of interest with 

missing data, including multilevel  models, GCKL show that we can carry out the multiple 

imputation by setting up an imputation model where any X variables that have missing values 

are treated as responses, imputations are carried out and a set of complete, imputed, datasets 

are returned.  

The X variables can be normal or categorical (ordered or unordered) or non-normal 

continuous where a transformation to normality, such as the Box-Cox transformation, is 

available. The MCMC estimation algorithm, at each cycle, samples a ‘latent’ normally 

distributed variable for each non-normal variable in such a way as to ensure multivariate 

normality, and then randomly imputes normally distributed missing values. For the original 

non-normal missing values the imputed values are then obtained on the original scales.  Each 

of the imputed datasets is then used to estimate the model of interest and the resulting 

parameter estimates are combined according to Rubin’s rules (Rubin, 1987) to form final 

estimates with associated standard errors. For model (2) this imputation model can be written  

(
 
 
)  (

  

  
  )        (

  
 

     
 )        (3) 

While (3) is satisfactory in this and other cases, it cannot deal with models where there are 

polynomial terms in the model of interest. Likewise, where there are several covariates, 

model (3) cannot deal with interaction terms. If the original joint distribution of covariates is 

multivariate normal, as in the GCKL procedure, then the joint distribution that includes 

polynomial or interaction terms will not have a multivariate normal distribution, so that the 
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imputation model assumptions are not satisfied. Likewise, as pointed out in the introduction, 

other procedures, such as imputation using chained equations, give unsatisfactory results for 

such models.  In this paper we propose an extension to the GCKL procedure that does allow 

such terms to be included and which provides estimates that are unbiased as well as making 

efficient use of the data through multiple imputation. 

3. A fully model based approach for missing data in explanatory variables  
 

We shall illustrate our approach using (1) & (2) first and then describe how this generalises. 

From (1) the likelihood for the ith data record in the sample can be written as  

 (  )   (  |     ) (     )   (    | 
 )

    
    ( 

   (          ) 

  | 
 )  (    

 )        ( 
   (     ) 

  
 )} (4) 

where (     ) are parameter vectors and we assume independence as described above.  

We note that the two components of (4) can be combined into a single, normal likelihood 

term that will allow a Gibbs sampling step for drawing a missing X value, but this does not 

extend to the case where there are interactions, since we do not have a normal likelihood 

corresponding to the term  (    
 )        ( 

   (     ) 

  
 )  since this will now include both X and 

the interactions with X. We shall therefore utilise a Metropolis-Hastings (MH) step. Thus, 

using, for example, a suitable normal proposal distribution  (            
 ) centered on the 

current value, we would accept a proposed value with probability 

   {  
 (  )

 ( )
}          (5) 

which is a Metropolis random walk step and where * denotes the new proposed value. We 

shall use a scaling factor c=1 in our examples. 

In this formulation we have specified a distribution for X with a mean and variance, and we 

therefore need to incorporate steps to update these parameters also; in the present case this 

can be done using standard Gibbs steps. 

Most importantly, we now have a procedure that in the present case allows us automatically 

to handle terms that are functions of X such as powers, since these are incorporated only in 

the likelihood contribution from the model of interest (i.e. the likelihood for the model of Y|X 

in our notation above).  

4. Several covariates 
Consider now the following model with several covariates some or all of which may have 

missing values. We assume the missing data are MAR. We shall, for simplicity, consider a 

single normal response and a single level model of interest, since the fitting of multiple 

responses of different types and further levels of nesting with random effects introduces no 

new considerations. GCKL (2009) show how this can be done for models without interaction 

terms and the same additional steps apply for the present model.  

Suppose we have p covariates, and that the model of interest is 

    (    )        where    are        (    | 
 )                 (6) 

and    is a      vector of covariate values for unit i. We further assume X is multivariate 

normal. 
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We can allow any pattern of missing values in X across units. Suppose unit i is missing an 

observation,      on covariate l. We factor the joint distribution of X as  

 (      )   (  |                   ) (                   )    

and again use a Metropolis-Hastings step, adopting a symmetric normal proposal distribution 

for    . The MH likelihood ratio (5) now only involves the conditional distribution 

 (  |                   ) and the likelihood of the response model derived from (6),   

since the joint distribution of the remaining X’s cancels from the ratio. In particular, as 

before, we can handle general functions of the covariates including interaction terms and 

polynomials since these only occur in the likelihood contribution from the model of interest 

where they are covariates.  

We apply this procedure to each missing     in turn. Then, we update all the other parameters 

in the model using the appropriate Gibbs sampling steps. Thus, adopting suitable priors, we 

have a fully Bayesian procedure for estimating the parameters in (6) (as well as the 

parameters of the joint distribution of X). As with all such Bayesian procedures, we obtain 

both the posterior distribution of the parameters of interest and the draws of the missing data 

given the observed, which can be used to form imputed datasets, by taking the values every 

nth iteration, for use with multiple imputation. Clearly, if (6) is the model of interest the use 

of multiple imputation is not necessary. However, we may have models such as (6) which 

include variables that we do not wish to condition our model of interest on, or where we are 

only imputing a part of the dataset (say a specific treatment or exposure group). In such cases 

it will often be convenient to generate imputed datasets and to adopt a multiple imputation 

approach. This may also be preferred if completed datasets are to be provided for secondary 

analysis excluding sensitive variables, or where data analysts have access only to standard 

computational software. 

5. Non-normal covariates 
 

As pointed out above, GCKL (2009) show how the joint distribution of a set of variables of 

different types can be sampled using MCMC steps to produce a (latent) multivariate normal 

distribution. We apply the same approach to partially observed covariates of different types in 

the present model. Once we have a latent normal structure, missing values on the latent 

normal scale can be imputed and then converted back to the original scale, and used to 

evaluate the model of interest component of the likelihood in the Metropolis Hastings ratio. 

The particular advantage of the latent normal model is that the specification of the conditional 

distributions in (6) is straightforward.  

We illustrate this for a binary covariate, say    corresponding to a latent normal variable 

    (    ).  The steps involved are as follows, and further details are given by GCKL 

(2009): 

1. Given the current estimate of the covariance matrix    and known values of    , draw 

a sample value    
  from 

  (  |             )   (  
 )  (   

     
 

 ) 

where    
  is sampled from the truncated normal distribution on       if         and 

the truncated normal        if      . The parameters    
     

 
  are updated at each 

iteration, along with all the other parameters in the model. Alternatively, we can 

sample     from  (   
     

 
 ) and accept if                 or if     

           , otherwise retain current value. 
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2. For missing data values propose a new value using a normal proposal distribution 

centered on the current value with, say, unit variance.  

3. In a Metropolis step compare each new value for    with the existing value, using the 

Metropolis ratio as described in section 3, evaluated at the proposed and current 

value. If accepted, derive the corresponding value of    as                       
          . 

4. The remaining steps are as for normal data. In our examples below we have chosen, 

for the normally distributed X variables, a normal proposal distribution with variance 

equal to that estimated from the non-missing values of the variable. 

If data are multicategory, ordered or unordered, similar latent normal transformations are 

available. GCKL also describe the use of Box-Cox transformations for skewed continuous 

distributions and Goldstein and Kounali (2009) describe a transformation for the Poisson 

distribution. Thus a very wide class of covariates can be accommodated within the present 

framework.  

6. Non-normal responses for the model of interest 
So far we have considered normal response variables for the model of interest. Suppose, 

however, that we have non-normal responses. For example, if we have a binary response 

then, assuming a probit link, we can add an extra step at each iteration in the algorithm to 

sample a latent normal variable, as in GCKL (2009) which then becomes the response. This 

is as in step 1 in Section 5 above. The steps for sampling any covariate values which are 

missing are then as described in Sections 4 & 5. Thus the likelihood component for the 

response in the model of interest,  ( |    )  is based on the multivariate latent normal 

distribution of the responses, including any imputed responses and the steps are as for the 

case with observed multivariate normal responses. 

Putting this altogether, we have a multilevel multivariate response model, with responses of 

different types, with a covariate structure with the flexibility to handle non-linear 

relationships and interactions, also of different types. Within this framework, missing values 

can be handled in either responses or covariates.   

In the next section we discuss briefly the case where our model is miss-specified with a 

dependency between the residual terms of the model of interest and the model for the 

covariates, the ‘endogeneity’ case. 

7. Endogenous models of interest 
 

For simplicity, consider model (2) and the case where   |     are not independent. In terms 

of the mean and covariance structure we now have a model with 3 fixed coefficients, 2 

variances and a covariance, i.e. 6 parameters. In fact there are only 5 free parameters from the 

joint distribution  (   ), two means, two variances and a covariance, so that the separate 

parameters cannot be identified. If, now, we introduce a further variable so that we have a 

joint distribution  (       ) with the model of interest as before, not depending on   , and a 

model for    then we can write 

            |  
 

               
      

         
            (7) 

 (  |  
    

)          (    
   

)   (  |  
   

)    
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This yields 5 coefficients, three variances and a covariance for the lack of independence 

between   |  
 and      

, giving 9 parameters, and the joint distribution has 3+6=9 parameters 

so that we do now have identifiability. This can be extended to include further auxiliary 

variables to increase efficiency, and these can also have missing values that can be imputed, 

given that identifiability is assured for the parameters in the model of interest. What we have 

done is to introduce an ‘auxiliary’ or ‘instrumental’ variable into the model for    that does 

not appear in the model of interest and is uncorrelated with the residuals in the models for 

    . If we have such auxiliary variables then we can estimate models where the assumption 

of independence between specific covariates and the residual in the model of interest can be 

relaxed, so called endogenous variable models.  

Model (7) is a multi-process model and a special kind of multivariate model that can in fact 

be fitted directly, for normal as well as non-normal variables, using the methods described in 

GCKL (2009). The extension described in the present paper allows missing values to occur in 

any of the variables, including the case where there are interaction terms.  

8. Examples 
In section 8.1 we describe a simple simulation that demonstrates the properties of our 

proposed MCD procedure, and in Section 8.2 we then apply it to a real dataset that contains 

appreciable amounts of missing data in main effects and interaction terms. 

 

8.1 A simulation 
We simulate data based loosely upon the structure of a real educational dataset that has been 

used extensively to illustrate multilevel models – the ‘tutorial dataset described by Goldstein 

(2011, Chapter 3). This consists of 4059 students grouped within 65 schools in Inner London. 

We simulate from the following two-level model of interest with a zero intercept and two 

explanatory variables having a bivariate normal distribution: 

                          (8) 

(
    

    
)  (

 
 
  )        (  

    
)             (    

 )            (    
 )     

                        
            

       

where we assume that the residuals are independent. 

Default (diffuse) priors are used as follows: 

 ( )          ( )           

  (  
 )    (           )      (  

 )    (           ) 

 

In the literature there are several commonly used diffuse priors for such models (see Browne 

and Draper (2006) and Gelman (2006) for discussion on this) but this is not of prime interest 

in this paper and the dataset is large enough for choice of prior to be less important. 

We introduce, at random, 20% missing values in both covariates, giving, on average, 36% of 

records with at least 1 missing value and 4% with missing values in both variables. There are 

no missing values for Y. The first four columns of table 1 show the means and standard errors 

of the means for the parameter estimates from 100 replications of  fitting the model to data 

simulated from (8), with each run using a burn in of 500 and chain of 1000 iterations. The 
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first column shows results of using listwise deletion when a record contains any missing 

values, and as expected, shows no discernible biases. The results in the second column of this 

table also show no discernible biases for the MCD procedure. The third column of results 

provides estimates when we ignore the correlation (0.5) between the covariates and update 

the missing values using only the marginal covariate distributions. The fourth column shows 

the results from model (8) where    becomes a binary variable by treating all values greater 

than zero as 1 and values less than or equal to zero as 0, using a latent normal formulation so 

that the probability of a 1 is 0.5. In addition we use a binary response (Z) with a probit link 

function, so that                       The level 1 variance is now set to 1.0 to match 

the assumption made for the latent normal distribution.  The fifth column of Table 1 gives 

results for the following extension of (8):  

                                   
           (9) 

                                               
            

       

We also simulated, in column 6, the ‘just another variable’ procedure where the interaction 

term and the squared term were given missing values whenever one of the constituent 

variables were missing and normality is assumed for the interaction and squared terms.  

 

Finally we simulated model (8), with no missing data. Running 100 simulations as in Table 1 

we obtain values (standard errors) for         
  of 0.498 (0.003), 0.506 (0.004), and 0.104 

(0.004) respectively. 

For the procedures proposed in the present paper these simulations give results that are not 

significantly different from the expected population values. In the marginal sampling case 

there are biases in the fixed coefficients of about 5% that result from assuming uncorrelated 

covariates and these biases increase as the correlation increases so that for a correlation of 0.9 

the biases are of the order of 8%. For the case where listwise deletion is used, we expect the 

coefficient estimates to be unbiased, but the average standard errors to be higher. Thus for the 

model in the second column of Table 1 the average standard errors for the fixed coefficients 

were 0.0385, 0.0140 and 0.0142 and for the listwise deletion model in the first column they 

were 0.0411, 0.0160 and 0.0161, an average increase of 11%. For the ‘just another variable’ 

analysis there are downward biases in the estimates for    and   , about 3.5% for the 

interaction term, and an upward bias of 4% for the level 1 variance estimate.  

 

(Table 1 here) 

 

8.2 Data from the National Child Development Study (NCDS) 
 

Our second example uses data from the National Child Development Study (Carpenter and 

Plewis, 2011).  

The NCDS target sample size at birth in 1958 was 17,634 and this had reduced, as a result of 

death and permanent emigration, to 15,885 by age 23. The size of the observed sample at age 

23 was 12,044 with 1,837 cases lost from the target sample as a result of attrition and wave 

non-respondents. Thus 24% of the target sample at age 23 were missing, and the pattern of 

missing data in the NCDS is not monotone, with more than half the missing cases at age 23 

reappearing in the observed sample at later waves. Of the missing cases at age 23, about one-

third were due to non-cooperation, while two-thirds were either not located or not contacted. 
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Of the 15,885 possible cases, 22 have all covariates and the response missing and these have 

been omitted from the analysis. 

 

Table 2 shows the results of fitting the model given in Table 23.3 of Carpenter and Plewis 

(2011) using MCMC with diffuse priors as described above.  

The model is as follows, using a probit link function 

 

 

  (    |(  ) )  ∫  ( )  
 

(  ) 
        (10) 

 

where  ( ) is the standard normal density function.  The response    for person i  is whether 

or not the respondent has an educational qualification at age 23 and the predictors (X) are 

measures of ‘in care status at age 7’ (binary), ‘In social housing at age 7’ (binary), ‘inverse 

birth weight’ (continuous in ounces multiplied by 100), and ‘mother’s age at birth of cohort 

member’ (continuous years centered at age 28 years). Inverse birthweight has been rescaled 

(by multiplying it by 100) in order to avoid a very unbalanced covariance matrix for the 

covariates which can result in very poor chain mixing. For the complete case analysis A, 

there is an interaction between mother’s age and housing, and an interaction between 

mother’s age squared and housing. The response has 24% of values missing and the 

predictors range from 1.3% to 13.6% having missing values. All these missing values are 

imputed using an extra MCMC step (on the latent normal scale) at each iteration, as described 

in Section 6. 

 

(Table 2 here) 

 

The parameter chains all mix well, with moderate first order correlations between successive 

sampled parameter values.  

Of particular interest is the interaction between age and social housing, because this suggests 

that for mothers in social housing, the linear component of age is removed (coefficient for 

mother’s age -0.016, coefficient for interaction, 0.014).  

Carpenter and Plewis (2011) report a number of multiple imputation analyses using a full 

conditional specification approach. In the first, non-linear and interaction terms are omitted 

from the imputation model. Resulting coefficients for age, age-squared and their interactions 

with social housing are all attenuated. In a second analysis, age-squared is included in the 

imputation model, which alleviates the attenuation of the age coefficients. However, since the 

interaction involves social housing, which is itself partially observed, imputation congenial 

with the full interaction structure is problematic under full conditional specification. Instead, 

Carpenter and Plewis disregarded individuals with missing social housing before imputing 

separately in each social housing category, including additionally in the imputation model, 

auxiliary variables recorded while children were at school. Our results from model B are 

similar, although this does not include auxiliary variables. However, our approach here does 

not require imputation. Note that if we wish, we can include additional auxiliary variables in 

the model, generate imputed datasets, and then fit the simpler model of interest to the 

imputed data, combining the results for inference using Rubin’s rules (Rubin, 1987). 

In this analysis, there is little difference in the parameter estimates. However, with our fully 

Bayesian missing data procedure we include information from all individuals with missing 

data, resulting in generally smaller standard errors, by up to about 30%.  In particular, the 

significance of the interaction of mother age and social housing is confirmed.  
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9. Discussion 
 

We have shown how quite general multilevel models with missing response and covariate 

data can be fitted. The model of interest can be multivariate with different types of responses, 

continuous and discrete, and covariates that likewise can be of mixed types and can include 

interactions and general functions of variables that have missing data values. The MCD 

model also allows multiply imputed datasets to be created and fitted in the usual way using 

suitable combination rules. This may be useful in some circumstances, for example where 

secondary analysis is to be carried out with only standard software packages, or where the 

model of interest does not include auxiliary variables used as covariates in the MCD model, 

which may also be in a causal pathway. Alternatively, we may consider instead including 

auxiliary variables as additional responses, without conditioning on them as covariates in the 

model of interest. From the classic two-stage multiple-imputation point of view, our 

procedure ensures that the model of interest and the imputation model are congenial (Meng, 

1994). This is because the imputation model is defined as the analyst’s model of interest (ie a 

conditional distribution of response given covariates) multiplied by the joint distribution of 

the covariates. Ensuring congeniality in this way avoids the problems of existing approaches, 

which often attenuate the interaction or non-linear effects, at the expense of overestimating 

the main effects or residual variance. This is borne out by our simulation study (Table 1), and 

in our example, where the attenuation reported by Carpenter and Plewis (2011) is avoided 

without recourse to discarding records with missing social housing values. 

In most situations (Carpenter and Kenward, 2013, Ch 2) we wish the imputation model to be 

at least as rich as the model of interest, although in certain settings (Mitra and Reiter, 2011) 

this may not be appropriate. One interesting extension of our approach would be to link with 

the approach proposed by Mitra and Dunson (2010), who demonstrate potential gains of 

model averaging over a set of imputation models, possibly specifying appropriate priors for 

parameters in the imputation model.  

We consider that our procedure overcomes a number of major issues that have been discussed 

in the literature, as follows: 

First, as demonstrated by GCKL (2009), there is no need to assume multivariate normality for 

the variables entering the model. The latent normal formulation can handle mixtures of 

discrete, normal and non-normal continuous variables in either the responses or covariates. 

Secondly, in a general multilevel framework, we can have variables defined at any level of a 

data hierarchy or within cross classifications or multiple membership structures (Goldstein, 

2011, Chapter 13). Thirdly, the ability to handle interactions and general functions of 

variables overcomes existing difficulties in multiple imputation procedures about how to 

handle these. Generally speaking these currently are either treated as separate variables to be 

imputed or the basic variables are imputed and functions of them formed from the imputed 

values. Seaman et al., (2012) have shown that neither approach is satisfactory.  

We have also demonstrated in our simulation that it is necessary to utilise the joint 

distribution of covariates when imputing, rather than using just the marginal distributions. 

 Finally, we have shown how auxiliary variables can be used to model endogeneity whereby 

one or more covariates may be correlated with the residual vector in the model of interest. 
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Our procedures allow such endogeneity models to handle missing values in any of the 

variables involved in the joint model. 

 

In our simulations we have used both normal and probit models of interest. In fact, our 

procedure is designed for quite general response distributions in the model of interest. As 

regards imputation of the covariates, the probit link functions, used by GCKL and in the 

present paper, facilitate the computations through the use of a latent multivariate normal 

distribution. The alternative use of logistic link functions could potentially be accommodated 

through formulating a latent multivariate logistic distribution. This would, however, entail the 

assumption of a logistic distribution for the continuous variables also, which does not seem to 

us a useful line to pursue. Furthermore, in practice, imputed data from these two alternatives 

are practically indistinguishable unless the fitted probabilities are very close to 0 or 1 

(Carpenter and Kenward, 2013, p. 95).   

 

The software used is an extension of the freely available REALCOM software (Realcom, 

2011) which was designed to fit the models described in GCKL (2009). The procedures 

described in the present paper are being incorporated in new software, Stat-JR (Charlton et 

al., 2012), being developed at the Universities of Bristol and Southampton (see 

http://www.bristol.ac.uk/cmm/software/statjr/index.html for more details).  

  

http://www.bristol.ac.uk/cmm/software/statjr/index.html
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 Table 1. Average parameter estimates over 100 replications with data simulated under  models described in the text. Burn 

in=500, iterations=1000. Standard errors across simulations in brackets. 

Parameter  

(true value) 

Listwise 

deletion from 

model (8) 

Data from 

Model (8) using 

conditional 

sampling 

Data from 

Model (8) using 

marginal 

sampling 

Data from Model (8) 

with binary response 

using  conditional 

sampling,    binary  

Data from model (9) 

with interactions 

(conditional sampling) 

Data from model (9) with 

interactions (conditional 

sampling) using ‘just 

another variable’ 

   ( ) -0.003 (0.005) 0.005 (0.004) 0.010  (0.005) -0.005 (0.005) 0.000 (0.004) 0.006 (0.005) 

    (   ) 0.498 (0.002) 0.498 (0.001) 0.521  (0.001) 0.501 (0.001) 0.498 (0.001) 0.499 (0.002) 

    (   ) 0.501 (0.002) 0.501 (0.001) 0.524  (0.001) 0.501 (0.003) 0.501 (0.001) 0.490 (0.002) 

     (   )     0.496 (0.002) 0.483 (0.002) 

    (   )     0.503 (0.002) 0.501 (0.001) 

  
   (   ) 0.102 (0.002) 0.101  (0.002) 0.106   (0.002) 0.098 (0.002) 0.100 (0.002) 0.103 (0.002) 

  
    (   ) 0.502 (0.001) 0.500  (0.001) 0.496  (0.001) 0.501 (0.001) 0.501 (0.001) 0.521 (0.001) 
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Table 2.  Fitting the NCDS data. Burn in =1000, iterations =2500.  Probit link function. 

Standard errors in brackets. 

Estimate (% missing) A B 

Intercept -1.568 (0.103) -1.544 (0.074) 

In care  (12.6) 0.650 (0.096) 0.639 (0.085) 

Social Housing  (13.6) 0.574 (0.037) 0.572 (0.034) 

(100 *) Inverse birth weight (4.5) 0.745 (0.109) 0.737  (0.081) 

Mothers age at birth (1.3) -0.016 (0.004) -0.016 (0.003) 

Mothers age squared 0.0019 (0.0005) 0.0019 (0.0005) 

Age * housing 0.013 (0.0053) 0.013 (0.0053) 

Age squared * housing -0.00065 (0.00067) -0.00078 (0.00066) 

Model A is a complete case analysis N=10,279 (65% of sample).  Model B uses the MCD model. 

Response is whether respondent had an educational qualification at age 23 (24% missing values). 

Note that, as a result of our rescaling, the inverse birthweight coefficient is smaller by a factor of 

100 than the value given by Carpenter and Plewis (2011). Carpenter and Plewis use maximum 

likelihood estimation for the complete records analysis that yields slightly smaller standard error 

estimates for some parameters. 

 


