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Abstract

The label semantics linguistic repre-
sentation framework is introduced as
an alternative approach to comput-
ing and modelling with words, based
on the concept of appropriateness
rather than graded truth. A possible
worlds interpretation of label seman-
tics is then proposed. In this model
it is shown that certain assumptions
about the underlying possible worlds
can result in appropriateness mea-
sures that correspond to well known
t-norms and t-conorms for conjunc-
tions and disjunctions of linguistic
labels.
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1 Introduction

The principle aim of the computing with words
paradigm as proposed by Zadeh [18] is to in-
crease the use of natural language for infor-
mation and knowledge processing in computer
systems. In practice this will require the de-
velopment of a formal representation frame-
work based on some restricted subset of nat-
ural language. Zadeh has suggested a form
of precisiated natural language [19] based on
the theory of generalised constraints and lin-
guistic variables. Label semantics, introduced
by Lawry [11], [12], provides an alternative
representation for computing and modelling

with words, which takes a somewhat different
perspective than Zadeh on the processing of
natural language information.

Zadeh’s approach is based fundamentally on
the notion of a linguistic variables [17] where
a semantic rule links natural language labels
to an underlying graded vague concept as rep-
resented by a fuzzy set on the domain of dis-
course. Label semantics on the other hand,
encodes the meaning of linguistic labels ac-
cording to how they are used by a population
of communicating agents to convey informa-
tion. From this perspective it is important
to consider the decision process an intelligent
agent must go through in order to identify
which labels or expressions can actually be
used to describe an object or instance.

It cannot be denied that in their use of lin-
guistic labels humans posses a mechanism for
deciding whether or not to make assertions
(e.g. Bill is tall) or to agree to a classification
(e.g. Yes, that is a tree). Further, although
the concepts concerned are vague this under-
lying decision process is fundamentally crisp
(bivalent). For instance, you are either will-
ing to assert that x is a tree given your current
knowledge, or you are not. In other words, ei-
ther tree is an appropriate label to describe
x or it is not. As humans we are continu-
ally faced with making such crisp decisions
regarding vague concepts as part of our every
day use of language. Of course, we may be
uncertain about labels and even express these
doubts (e.g. I’m not sure whether you would
call that a tree or a bush, or both) but the
underlying decision is crisp.



Given this decision problem, we suggest that
it is useful for agents to adopt what might be
called an epistemic stance, whereby they as-
sume the existence of a set of labelling con-
ventions for the population governing what
linguistic labels and expression can be ap-
propriately used to describe particular in-
stances. Of course, such linguistic conven-
tions do not need to be imposed by some out-
side authority like the Oxford English Dic-
tionary or the Academia Lengua Espanola,
but instead would emerge as a result of in-
teractions between agents each adopting the
epistemic stance. Hence, label semantics does
not attempt to link label symbols to fuzzy set
concept extensions but rather to quantify an
agent’s subjective belief that a label L is ap-
propriate to describe an object x and hence
whether or not it is reasonable to assert that
‘x is L’. In this respect it is close to the ‘anti-
representational’ view of vague concepts pro-
posed by Rohit Parikh [15] which focuses on
the notion of assertibility rather than that of
truth; a view that is also shared by Alice Ky-
burg [8].

Label semantics proposes two fundamental
and inter-related measures of the appropriate-
ness of labels as descriptions of an instance.
Given a finite set of labels LA from which can
be generated a set of expressions LE through
recursive applications of logical connectives,
the measure of appropriateness of an expres-
sion θ ∈ LE as a description of instance x is
denoted by µθ (x) and quantifies the agent’s
subjective belief that θ can be used to describe
x based on its (partial) knowledge of the cur-
rent labelling conventions of the population.
From an alternative perspective, when faced
with an object to describe, an agent may con-
sider each label in LA and attempt to identify
the subset of labels that are appropriate to
use. Let this set be denoted by Dx. In the face
of their uncertainty regarding labelling con-
ventions the agent will also be uncertain as to
the composition of Dx, and in label semantics
this is quantified by a probability mass func-
tion mx : 2LA → [0, 1] on subsets of labels.
The relationship between these two measures
will be described in the following section.

This paper will propose an interpretation
of the label semantics framework, where an
agent evaluates µθ (x) and mx by consider-
ing different labelling scenarios, these being
identified as possible worlds, and estimating
their respective likelihoods. The latter would
be based on the agent’s past experience of la-
belling behaviour across the population. As
a simplification it will be assumed that each
possible world provides complete information
as to which labels are and are not appropri-
ate to describe every element in the universe.
Clearly, this is unlikely to be the case in prac-
tice, not least because the underlying universe
may be infinite, but as an idealisation it pro-
vides a useful mechanism by which to study
those calculi for the measures µθ (x) and mx

consistent with a possible worlds model.

In probability theory the notion of possi-
ble world was used by Carnap [2] to ex-
plore the relationship between probability and
logic. In fuzzy set theory a number of pos-
sible worlds semantics have been proposed.
In particular, Gebhardt and Kruse [4] pro-
posed the context model for integrating vague-
ness and uncertainty. In this approach pos-
sible worlds correspond to different contexts
across which fuzzy concepts have different
(crisp) extensions. For example, Huynh etal.
[7] suggest that in the case where LA =
{very short, short, medium, . . . ,
tall, very tall} the contexts (i.e. possi-
ble worlds) might correspond to nationalities
such as Japanese, American, Swede, etc. An-
other possible worlds model for fuzzy sets is
the voting model, proposed by Gaines [3] and
later extended by Baldwin [1] and Lawry [9].
Here possible worlds correspond to individual
voters each of which is asked to identify the
crisp extension of the concept under consider-
ation. Alternatively, each voter is presented
with each instance, one at a time, and asked
to answer yes or no as to whether the instance
satisfies the concept.

A somewhat different approach is adopted by
Ruspini in [16] who defines a similarity mea-
sure between possible worlds and then de-
fines an implication and consistency function
in terms of this measure. These functions are



then used to provide a foundation for reason-
ing with possibility and necessity measures,
including Zadeh’s generalized modus ponens
law.

2 The Label Semantics Framework

Unlike linguistic variables, which allow for
the generation of new label symbols using a
syntactic rule [17], label semantics assumes a
fixed finite set of labels LA. These are the
basic or core labels to describe elements in a
underlying domain of discourse Ω. Detailed
arguments in favour of this assumption are
given in [10] [11]. Based on LA, the set of
label expression LE is then generated by re-
cursive application of the standard logic con-
nectives as follows:

Definition 1. Label Expressions
The set of label expressions of LA, LE, is

defined recursively as follows:

• (i) L ∈ LE : L ∈ LA

• (ii) If θ, ϕ ∈ LE then ¬θ, θ∧ϕ, θ∨ϕ, θ →
ϕ ∈ LE

A mass assignment mx on sets of labels then
quantifies the agent’s belief that any particu-
lar subset of labels contains all and only the
labels with which it is appropriate to describe
x.

Definition 2. Mass Assignment on Labels
∀x ∈ Ω a mass assignment on labels is
a function mx : 2LA → [0, 1] such that
∑

S⊆LA mx (S) = 1

The appropriateness measure, µθ (x), and the
mass mx are then related to each other on
the basis that asserting θ provides direct con-
straints on Dx. For example, asserting ‘x is
L1 ∧ L2’, for labels L1, L2 ∈ LA is taken
as conveying the information that both L1

and L2 are appropriate to describe x so that
{L1, L2} ⊆ Dx. Similarly, ‘x is ¬L’ im-
plies that L is not appropriate to describe
x so L /∈ Dx. In general we can recur-
sively define a mapping λ : LE → 22LA

from expressions to sets of subsets of la-
bels, such that the assertion ‘x is θ’ di-
rectly implies the constraint Dx ∈ λ (θ)

and where λ (θ) is dependent on the logi-
cal structure of θ. For example, if LA =
{low, medium, high} then λ(medium ∧
¬high) = {{low, medium}, {medium}} cor-
responding to those sets of labels which in-
clude medium but do not include high.
Hence, the description Dx provides an alter-
native to Zadeh’s linguistic variables in which
the imprecise constraint ‘x is θ’ on x, is rep-
resented by the precise constraint Dx ∈ λ(θ),
on Dx.

Definition 3. λ-mapping
λ : LE → 22LA

is defined recursively as fol-
lows: ∀θ, ϕ ∈ LE

• ∀Li ∈ LA λ(Li) = {T ⊆ LA : Li ∈ T}

• λ(θ ∧ ϕ) = λ(θ) ∩ λ(ϕ)

• λ(θ ∨ ϕ) = λ(θ) ∪ λ(ϕ)

• λ(¬θ) = λ(θ)c

• λ(θ → ϕ) = λ(¬θ) ∪ λ(ϕ)

Based on the λ mapping we then define µθ (x)
as the sum of mx over those set of labels in
λ (θ).

Definition 4. Appropriateness Measure

∀θ ∈ LE, ∀x ∈ Ω µθ (x) =
∑

S∈λ(θ)

mx (S)

Note that in label semantics there is no re-
quirement for the mass associated with the
empty set to be zero. Instead, mx(∅) quan-
tifies the agent’s belief that none of the la-
bels are appropriate to describe x. We
might observe that this phenomena occurs fre-
quently in natural language, especially when
labelling perceptions generated along some
continuum. For example, we occasionally en-
counter colours for which none of our available
colour descriptors seem appropriate. Hence,
the value mx(∅) is an indicator of the describ-
ability of x in terms of the labels LA.



Example 5. If
LA = {small, medium, large} then

λ (small ∧ medium) =

{{small, medium} , {small, medium, large}}

hence, µsmall∧medium (x) =

mx ({small, medium}) +

mx ({small, medium, large})

Also,

λ(small → medium) = {{small, medium},

{small, medium, large}, {medium, large},

{medium}, {large}, ∅} hence,

µsmall→medium (x) = mx ({small, medium})+

mx ({small, medium, large})+

mx ({medium, large}) + mx ({medium})

+mx ({large}) + mx (∅)

3 The Possible Worlds Model

In this section we introduce a possible world
interpretation of label semantics and then in-
vestigate the relationship between different
assumptions within this model and a number
of standard t-norms and t-conorms for com-
bining conjunctions and disjunctions of labels.
Notice, as is typically the case in label seman-
tics (see Lawry [12]), in such cases t-norms
and t-conorms can only be applied at the la-
bel level (i.e. to elements of LA) and not ar-
bitarily to label expressions from LE.

Let W be a finite set of possible worlds each
of which identifies a set of valuations on LA,
one for each value of x ∈ Ω. More formally,
for every x in Ω there is a valuation function
Vx : W × LA → {0, 1} such that ∀w ∈ W
and ∀L ∈ LA Vx (w, L) = 1 means that, in
world w, L is an appropriate label with which
to describe x. Alternatively, Vx (w, L) = 0
means that, in world w, L is not an appro-
priate label with which to describe x. The
valuation Vx can then be extended to a val-
uation Vx : W × LE → {0, 1} in the normal
recursive manner. Let P : W → [0, 1] be a
probability measure on W, where for w ∈ W
P (w) is the probability that w is the possible
world corresponding to reality. Also we as-
sume w.l.o.g that P (w) > 0 ∀w ∈ W. Then

in this model we can interpret appropriateness
measures and mass assignments as follows:

∀θ ∈ LE

µθ (x) = P ({w ∈ W : Vx (w, θ) = 1})

and

∀T ⊆ LA mx (T ) = P ({w ∈ W : Dw
x = T})

= P ({w ∈ W : Vx (w, αT ) = 1}) = µαT
(x)

where ∀x ∈ Ω,∀w ∈ W

Dw
x = {L ∈ LA : Vx (w, L) = 1}

and where ∀T ⊆ LA

αT =





∧

Li∈T

Li



 ∧





∧

Li /∈T

¬Li





Notice that as w varies then the set of ap-
propriate labels corresponds to a random set
Dx : W → 2LA such that Dx(w) = Dw

x . This
relates label semantics to the random set in-
terpretation of fuzzy membership function as
studied by Goodman [5], [6] and Nguyen [13],
[14]. The fundamental difference is that the
latter defined random sets of the universe Ω
whereas the former defines random sets of la-
bels. This has a major impact on the re-
sulting calculus allowing label semantics to
be functional (although not truth-functional).
See Lawry [11], [12] for a discussion of the
functionality of label semantics. A practical
advantage of this approach is that while the
universe Ω is often infinite the set of labels
LA remains finite, and hence the underlying
mathematics is considerably simplified.

Definition 6. Ordering on Worlds
For every x ∈ Ω the valuation Vx generates a
natural ordering on W according to:

∀wi, wj ∈ W wi ¹x wj iff

∀L ∈ LA Vx (wi, L) = 1 ⇒ Vx (wj , L) = 1

Theorem 7. If ∀x ∈ Ω ¹x is a total (linear)
ordering on W then ∀S ⊆ LA:

µ∧

L∈S
L (x) = min {µL (x) : L ∈ S} and

µ∨

L∈S
L (x) = max {µL (x) : L ∈ S}



Corollary 8. If ∀x ∈ Ω Vx satisfies the con-
ditions given in theorem 7 then:

∀L, L′ ∈ LA L 6= L′

µL→L′ (x) = min (1, 1 − µL (x) + µL′ (x))

Interestingly, the implication operator in
Corollary 8 corresponds to Lukasiewicz impli-
cation which, in fuzzy logic, is normally asso-
ciated with the bounded sum t-conorm. More
specifically, Lukasiewicz implication is the so
called S-implication generated from S(1−a, b)
where S is bounded sum. In fuzzy logic, it is
not typical for Lukasiewicz implication to be
associated with min and max as above.

A total ordering on words as assumed in the-
orem 7 would naturally occur in those situ-
ations where for each x ∈ Ω there is a to-
tal ordering on the labels LA with regards to
their appropriateness, and where this ordering
is invariant across all possible worlds. (i.e. for
every x there is no doubt regarding the order-
ing of the labels in terms of their appropriate-
ness). In this case the valuation Vx would be
consistent with this ordering on labels in that
if Vx (w, L) = 1 then Vx (w, L′) = 1 for any L′

which is at least as appropriate as L. Hence,
the only variation in the possible worlds will
be in terms of the generality of Dw

x ; this then
naturally generating a total ordering on W.
See [11] for more details.

Theorem 9. If ∀x ∈ Ω and ∀w ∈ W it holds
that:

∀Li ∈ LA

Vx (w, Li) = 1 ⇒ Vx (w, Lj) = 0 ∀Lj 6= Li

then ∀S ⊆ LA

µ∧

L∈S
L (x) = max

(

0,
∑

L∈S

µL (x) − (|S| − 1)

)

and µ∨

L∈S
L (x) = min

(

1,
∑

L∈S

µL (x)

)

According to the conditions on W imposed in
theorem 9 all possible worlds are very conser-
vative when identifying labels as appropriate
descriptions of an instance x ∈ Ω. In each

world at most one label is identified as being
appropriate with which to describe x. Notice
that in the case that all worlds select one label
so that ∀w ∈ W Dw

x 6= ∅ then µL(x) : L ∈ LA
forms a probability distribution on LA.

Theorem 10. If ∀x ∈ Ω and ∀w ∈ W it holds
that:

∀Li ∈ LA Vx (w,¬Li) = 1 ⇒ Vx (w,¬Lj) = 0

∀Lj ∈ LA : Lj 6= Li

then ∀S ⊆ LA

µ∧

L∈S
L (x) = max

(

0,
∑

L∈S

µL (x) − (|S| − 1)

)

and µ∨

L∈S
L (x) = min

(

1,
∑

L∈S

µL (x)

)

The conditions in theorem 10 are the dual of
those in theorem 9 such that in the former
each world is conservative in ruling out the
appropriateness of any label. For each pos-
sible world at most one label is ruled out as
inappropriate with which to describe x. In
the case where ∀w Dw

x 6= LA then µ¬L(x) :
L ∈ LA forms a probability distribution on
the set of negated labels { ¬L : L ∈ LA}.

Corollary 11. If ∀x ∈ Ω Vx satisfies the con-
ditions of either theorem 9 or theorem 10 then

∀L 6= L′ ∈ LA

µL→L′ (x) = max (1 − µL (x) , µL′ (x))

The implication in Corollary 11 corresponds
to the Kleene-Dienes implication operator.
Again this is different from the fuzzy logic
case where Kleene-Dienes is the S-implication
operator generated by the max t-conorm.

Theorem 12. Let Cx =
{L ∈ LA : ∀w ∈ W Vx (w, L) = 1}. If it holds
that:

∀w ∈ W ∀Li /∈ Cx

Vx (w, Li) = 1 ⇒ Vx (w, Lj) = 0

∀Lj /∈ Cx : Lj 6= Li

then

µ∧

L∈S
L (x) = TD (µL (x) : L ∈ S)

where TD is the drastic t-norm.



Corollary 13. If ∀x ∈ Ω Vx satisfies the con-
ditions of theorem 12 then:

∀L 6= L′ ∈ LA µL→L′ (x) =










1 : µL′ (x) = 1

µL′ (x) : µL (x) = 1, µL′ (x) ≤ 1

1 − µL (x) : µL (x) < 1, µL′ (x) < 1

The implication in corollary 13 does not cor-
respond to the S-implication for the drastic
t-conorm but it does correspond to the QL-
implication for the drastic t-norm/t-conorm
pair. In fuzzy logic the QL-implication oper-
ator is motivated by quantum logic and corre-
sponds to S(1−a, T (a, b)) for a t-norm T and
dual t-conorm S. In effect this corresponds to
the membership function for L → (L ∧ L′).

The condition on W imposed in theorem 12
means that for each x we can identify a set
of labels Cx that are certainly appropriate as
descriptions for x (i.e. they are judged ap-
propriate in all possible worlds). Outside of
Cx at most one other label is judged appro-
priate. Interestingly in the case where Cx = ∅
then this condition is identical to that of theo-
rem 9 and hence in such cases the drastic and
Lukasiewicz t-norms agree.

It is not the case that if ∀x ∈ Ω Vx satisfies
the conditions of theorem 12 that disjunctions
can be combined using the Drastic t-conorm
SD as can be seen from the following counter-
example:

Example 14. Let LA = {L1, L2, L3, L4} and
W = {w1, w2, w3} with probability measure P
defined such that P (w1) = 0.3, P (w2) = 0.1
and P (w3) = 0.6. Also for some x ∈ Ω
let Cx = {L1} and Dw1

x = {L1, L2}, Dw1

x =
{L1, L3} and Dw3

x = {L1}. This means that
the mass assignment mx is such that:

{L1, L2} : 0.3, {L1, L3} : 0.1, {L1} : 0.6

Hence we have that

µL2∨L3∨L4
(x) = 0.4 while µL2

(x) = 0.3,

µL3
(x) = 0.1 and µL4

(x) = 0

Therefore SD (µL2
(x) , µL3

(x) , µL4
(x))

= SD (0.3, 0.1, 0) = 1

Label semantics is consistent with the Dras-
tic t-conorm on disjunctions of labels when
the possible worlds model is as given in the
following theorem:

Theorem 15. Let Ix =
{L ∈ LA : ∀w ∈ W Vx (w, L) = 0}. If it holds
that:

∀w ∈ W

∀Li /∈ Ix Vx (w, Li) = 0 ⇒ Vx (w, Lj) = 1

∀Lj /∈ Ix : Lj 6= Li

then

∀S ⊆ LA µ∨

L∈S
L (x) = SD (µL (x) : L ∈ S)

Corollary 16. If ∀x ∈ Ω Vx satisfies the con-
ditions of theorem 15 then:

∀L 6= L′ ∈ LA µL→L′ (x) =










1 : µL (x) = 0

1 − µL (x) : µL (x) > 0, µL′ (x) = 0

µL′ (x) : µL (x) > 0, µL′ (x) > 0

The conditions imposed on W in theorem 15
means that ∀x ∈ Ω a set of definitely inap-
propriate labels Ix are identified (i.e. in all
worlds the labels in Ix are deemed inappro-
priate to describe x). Then in each world, at
most one other label not in Ix is judged inap-
propriate. In the case that Ix = ∅ then this
condition is equivalent to that in theorem 10.

Theorem 17. If ∀x ∈ Ω Vx is such that,
∀T ⊆ LA

mx (T ) = P ({w ∈ W : Dw
x = T}) =

[

∏

L∈T

P ({w ∈ W : Vx (w, L) = 1})

]

×

[

∏

L/∈T

P ({w ∈ W : Vx (w, L) = 0})

]

=

[

∏

L∈T

µL (x)

]

×

[

∏

L/∈T

(1 − µL (x))

]

then

µ∧

L∈S
L (x) =

∏

L∈S

µL (x) and

µ∨

L∈S
L (x) =

∑

T⊆S

(−1)|T |−1
∏

L∈T

µL (x)



The conditions on W imposed by theorem 17
means that across the possible worlds the ap-
propriateness of a particular label is not de-
pendent on the appropriateness of any other
label. This could be the case when differ-
ent labels refer to different facets of x. (e.g.
LA = {tall, rich, blonde})

Corollary 18. If ∀x ∈ Ω Vx satisfies the con-
ditions of theorem 17 then ∀L 6= L′ ∈ LA

µL→L′ (x) = 1 − µL (x) + µL (x)µL′ (x)

In corollary 18 the operator is Reichenbach
implication which is consistent with the fuzzy
logic S-implication based on the product t-
conorm.

4 Conclusions

In this paper we have introduced the la-
bel semantics framework for modelling and
reasoning with linguistic labels. This ap-
proach defines measures to quantify the ap-
propriateness of a label as description of a
given element of the underlying domain of
discourse. We have also proposed a possi-
ble worlds model for this framework and have
demonstrated that different assumptions re-
sult in different combination rules of labels,
as characterised by different t-norms and t-
conorms.

Acknowledgements

This research was carried out during exchange
visits between JAIST and the University of
Bristol, funded by a JAIST International
Joint Research grant.

References

[1] J.F. Baldwin, (1986), ‘Support Logic
Programming’, International Journal of
Intelligent Systems, Vol. 1, pp73-104

[2] R. Carnap, (1950), The Logical Founda-
tions of Probability, Univ. Chicago Press,
Chicago

[3] B.R. Gaines, (1978), ‘Fuzzy and Proba-
bility Uncertainty Logics’ Journal of In-
formation and Control Vol. 38, pp154-
169

[4] J. Gebhardt, R. Kruse, (1993), ‘The
Context Model: An Integrating View
of Vagueness and Uncertainty’, Interna-
tional Journal of Approximate Reason-
ing, Vol.9, pp283-314

[5] I.R. Goodman, (1982), ‘Fuzzy Sets as
Equivalence Classes of Random Sets’ in
Fuzzy Set and Possibility Theory (ed. R.
Yager), pp327-342

[6] I.R. Goodman, (1984), ‘Some New Re-
sults Concerning Random Sets and Fuzzy
Sets’, Information Science, Vol. 34, pp93-
113

[7] V.N. Huynh, Y. Nakamori, T.B. Ho, G.
Resconi, (2004), ‘A Context Model for
Fuzzy Concept Analysis Based on Modal
Logic’, Information Sciences, Vol.160,
pp111-129

[8] A. Kyburg, (2000), ‘When Vague Sen-
tences Inform: A Model of Assertability’,
Synthese, Vol. 124, pp175-192

[9] J. Lawry, (1998), ‘A Voting Mechanism
for Fuzzy Logic’, International Journal of
Approximate Reasoning, Vol. 19, pp315-
333

[10] J. Lawry, (2001), ‘ A Methodology for
Computing with Words’, International
Journal of Approximate Reasoning, Vol.
28, pp51-89

[11] J. Lawry, (2004), ‘A Framework for Lin-
guistic Modelling’ Artificial Intelligence,
Vol. 155, pp1-39

[12] J. Lawry, (2006), Modelling and Reason-
ing with Vague Concepts, Springer (in
Press)

[13] H.T. Nguyen, (1978), ‘On Random Sets
and Belief Functions’, Journal of Math-
ematical Analysis and Applications, Vol.
65, pp531-542

[14] H.T. Nguyen, (1984), ‘On Modeling
of linguistic Information using Random
Sets’ Information Science Vol. 34, pp265-
274



[15] R. Parikh, (1996), ‘Vague Predicates and
Language Games’, Theoria (Spain), Vol.
XI, No. 27, pp97-107

[16] E. H. Ruspini, (1991), ‘On the Semantics
of Fuzzy Logic’, International Journal of
Approximate Reasoning, Vol.5, pp54-99

[17] L.A. Zadeh, (1975,1976), ‘The Concept
of Linguistic Variable and its Application
to Approximate Reasoning Parts 1-3’ In-
formation Sciences Vol. 8,9, pp199-249,
pp301-357, pp43-80

[18] L.A. Zadeh, (1996), ‘Fuzzy Logic = Com-
puting with Words’ IEEE Transactions
on Fuzzy Systems Vol. 4, pp103-111

[19] L.A. Zadeh, (2004), ‘Precisiated Natural
Language (PNL)’, AI Magazine, Vol. 25,
No. 3, pp74-91


