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Abstract: An alternative theory of linguistic
variables is introduced based on voting model
semantics. This theory 1is then applied to
computing with words whereby a calculus is
introduced for inference from linguistic facts and
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1. Introduction

The use of fuzzy sets is clearly central to computing
with words as they provide a means of modelling the
vagueness underlying most natural language terms.
Their introduction should not, however, result in
large-scale increases in computational complexity.
Unfortunately such increases do seem to result from
the use of the extension principle in computing with
words [14]. In the sequel we shall introduce an
alternative approach to computing with words based
on mass assignment theory [2] that avoids
complexity problems of the above type. The theory
is based on the use of a restricted notion of linguistic
variable together with ideas taken from the mass
assignment theory of the probability of fuzzy events
[3]. To proceed, however, it is first necessary to give
a brief introduction to mass assignment theory.

2 Basic Mass Assignment Theory

A mass assignment for a fuzzy concept, introduced
by Baldwin [2], can be interpreted as the probability
distribution over possible definitions of the concept.
These varying definitions might be provided by a
population of voters where each is asked to give his
or her crisp definition of the concept.

Definition 2.1 (Mass Assignment)
Let f be a fuzzy subset of a finite universe Q such
that the range of the membership function of f, x;,

is {yl,...,yn} where vy, >Vi,; >0. Then the mass
assignment of f, denoted m;, is a probability
distribution on 2% satisfying m (F,) =Yy, —V;,; where

R={x0Qx()zy} for i=1..n{R}., are

referred to as the focal elements(sets) of m;.

The notion of mass assignment suggests a means of
conditioning a variable relative to a fuzzy constraint.
That is given a variable X and the constraint X is f
we can determine a conditional probability
distribution on X referred to as the least prejudiced
distribution of f (denoted Ip;) [2],[3]. The least
prejudiced distribution is a special case of the
pignistic  probability  distribution in  Smets
Transferable Belief Model [11].

Definition 2.2 (Least Prejudiced Distribution)

For f a fuzzy subset of a finite universe Q such that
f is normalised then the least prejudiced
distribution of fis a probability distribution on
Q given by

m; (R
Ox 0Q Ips (x) = ((R)
F, X0, |F,|
where m; is the mass assignment of f and {F,}i is
the corresponding set of focal elements.

The notion of least prejudiced distribution provides a
mechanism by which we can, in a sense, convert a
fuzzy set into a probability distribution. That is, in
the absence of any prior knowledge, we might, on
being told f, naturally infer the distribution Ip;. If,
however, fuzzy sets are to serve as descriptions of
probability distributions the converse must also hold.
In other words, given a probability distribution we
require it to hold that there is a unique fuzzy set
conditioning on which yields this distribution.

Theorem 2.3
Let Pr be a probability distribution on a finite
universe Q taking as a range of values {p1 pn}

n
where 0<p,, <p <1and Z p. =1. Then Pr is the
=1



least prejudiced distribution of a fuzzy set f if and
only if f has mass
mf( ) Y, = Vi fori=1,...,
F ={x0QPr(x)= p} and

y|:|F||p|+ Z(|FJ| J+l

j=i+l )
Proof (see [5])
Curiously this transformation is identical to the
bijective transformation method proposed by Dubois
and Prade [6] although the motivation here is
somewhat different.

assignment given by
n where

3 A Mass Assignment Theory of Linguistic
Variables

The concept of a linguistic variable was first
introduced by Zadeh (see [12]) as a model of how
words or labels can represent vague concepts in
natural language. More formally:

Definition 3.1 (Linguistic Variable)

A linguistic variable is a quadruple (L,T(L),Q,M);

in which L is the name of the variable, T(L) is a
finite term set of labels or words (i.e. the linguistic

values), Q is a universe of discourse and M is a
semantic rule.

The semantic rule M then is defined as a function
that associates a normalised fuzzy subset of Qwith
each word in T(L). In other words the fuzzy set
M(w) can be viewed as encoding the meaning of w
so that for x0Q the membership value X, (X)

quantifies the suitability or applicability of the word
w as a label for the value x. We can regard the
semantic function M as being determined by a group
voting model (see [2], [8] and [9]) across a
population of voters as follows. Each voter is asked
to provide the subset of words from the finite set
T(L) which are appropriate as labels for the value x.

The membership value Xy,,(X) is then taken to be

the proportion of voters who include w in their set of
labels.

Example 3.2
Consider the set of words {small(s) , medium(m),
large(l)} as labels of a linguistic variable SIZE

' [13] Zadeh originally defined a linguistic variable as a quintuple by
including a syntactic rule according to which new terms (i.e. linguistic
values) could be formed by applying hedges to existing words. This,
however, allows for the term set to be infinite.

describing values in U=[0,100]. Given a set of 10
voters a possible voting pattern for the value 25 is

1 2 3 4 5 6 7 8 9 10
s s s s s s s s s S
m m m m m

This gives Xy (gnan)(25) =1 and Xy (meqium)(25) = 0.5.

Now this voting pattern can be represented by a
mass assignment {small, medium}:0.5,{small}:0.5
on the power set of {small, medium, large}. This in
turn represents a fuzzy set on the set of words,
namely small/1+medium/0.5. This fuzzy set can be
viewed as a linguistic description of the value 25 in
terms of the words small, medium and large and is
denoted by desqz:(25). Notice that the linguistic
description of 25 can be expressed in terms of the
semantic function M in the following manner:
small /xM(Sma”)(ZS) + medium/xM(mdium)(ZS)

Hence, in practice we need only to define the fuzzy
sets M(small), M(medium) and M(large) from which
we can determine any linguistic description. The
idea of using fuzzy sets on words to describe values
was first proposed by Baldwin in [2]. More
formally, a linguistic description of a value is
defined by:

Definition 3.3 (Linguistic Description of a Value)
Let xOQ then the linguistic description of X
relative to the linguistic variable L is the fuzzy
subset of T(L)

des, (X) = ) W/ Xyw)(X)

wiT(L)

In cases where the linguistic variable is fixed we
drop the subscript L and write des(x). This notion
can be extended to the case where the value given is
a fuzzy subset of Q in which case the appropriate

linguistic description is defined as follows.

Definition 3.4 (Linguistic Description of a Fuzzy
Set)
Let fO; Q then the linguistic description of f

relative to the linguistic variable L is a fuzzy subset
of T(L), des, (f) satisfying

Ow OT(L) IPges, (1y(W) z

R

FI zl: des, (x
(W)

if Q isfiniteand IJ’ pdesL dx dy in the
y

continuous case.



Given these constraints des, (f) can be determined

according to the transformation described in theorem
2.3. The intuition underlying this definition is as
follows. For each focal set F (or o-cut f, in the

continuous case) we average the probability of w
being selected to label values in F. This is then
averaged across the focal sets to give the overall
probability of w. In general we take the expression
linguistic description to mean a fuzzy subset of the
term set of a linguistic variable.

4 Reasoning with Linguistic Syllogisms
Syllogisms are a well known classical inference
schema of the form

All XareY

AllYareZ

All XareZ
where X', Y and Z are properties. This schema was
extended in [13] and [7] to allow the use of
linguistic quantifiers such as most, few and several.
Here we adopt a different approach to Zadeh and
interpret linguistic quantifiers as words describing
probability values determined according to mass
assignment theory [3]. More specifically, let the set
of words describing probability values be

:{Ql,m,Qn} with corresponding semantic
function Mp, . Then for any variable o representing
the value of the probability of some specific event or
conditional event define the linguistic variable
describing a as (Ly,Tp ,[0,1],Mp, ). As is noted in
[7] and [4] the fact that probabilities are not truth
functional means that a schema for syllogisms with
linguistic quantifiers cannot be translated directly
from the classical schema. For instance, probability
theory does not allow us to make any inference
regarding the shoe size of Swedes from the facts
‘most Swedes are fall’ and ‘most tall people have
large shoe sizes’. In view of this we define a
linguistic syllogism schema along similar lines to [7]
as follows:
(Q) Xarey,

(@) (xand Y) arez,(Q.) (X and ~Y) are Z
(des) X arez

where Q,Q;,Q OTpand desO Tp,. This can be
translated into linguistic variable form in the
following manner. Let a = Pr(Y|X), B= Pr(Z|X,Y),
y= Pr(Z|X,—|Y) and 6= Pr(Z|X) then the linguistic
syllogism schema is equivalent to

La :QI’ L[} :Qj! Ly :Qk
Ly isdes
Now according to the theorem of total probability
Pr(z|X) = Pr(z|X,Y) Pr(Y|X) + Pr(z]X,=Y) Pr(=Y|X)

So we have that 6=pRa+y(l-a). Notice that if
Pr(z|X,Y)=Pr(z]Y) andPr(z|X,-Y) is unknown
then the classical form of the schema is retained.
Essentially, in this case, we are assuming that Z is
conditionally independent [10] of X given Y. This
assumption is likely to be most justifiable when the
populations sizes of objects satisfying X and Y are
similar.

Now given the above constraints posterior
distributions of o, and y can be determined. For
QUOT, the posterior density given Q is, from Bayes
theorem
0(|Q [Pr Q|0( ]/Pr

Now according to the voting model semantics
Pr (Q|0() is interpreted as being the probability that a
randomly selected voter will pick the label Q when
presented with value a. From section 3 we recall
that this is given by Ips (4)(Q)- Hence, assuming
that, a priori, all probability values are equally likely
(i.e. p(a) is the uniform distribution) then we have

p(alQ lpd%L (a) / .IO I pdesLu

Furthermore, since we may assume that the variables
o, and y are independent it follows that the
expected value of 0 is given by

E(e) = E(B)E(a) + E(v)(L- E())
)= [ plaiQ) da, E(B) = [ B r(EQ)
and E(y J’ yp(y|Qk) dy. Hence, we take as our

estimate for 6, ©=E(B)E(a)+E(y)(1- E(a)). From
this we can determine a linguistic description so that

des = (dasLe (é)) )

where E

Example 4.1
Consider the following linguistic syllogism.

most X are Y

most (X and Y) are Z, several (Xand -~Y) areZ
des X are Z

where Tp, ={ few, several, most} and Mp, is such that
Mp, (few) =[0:10.25:10.5:0], Mp, (several)
=[0:00.25:10.75:11: 0] and Mg, (most) =
[05:00.75:11:1].



For the sake of simplicity we shall take T, to be
defined in this way for all subsequent examples.

Now
IPges(e (MOSt) = 200 ~1for 0.5<a <1

= 0 otherwise
and hence

1
p(ajmost) = Ipd%Lu (u)(most)/J’Ipd%Lq (a)(rrost) do
0

=8a-4for05<a<1
=0 otherwise

From this we obtain that
E(a) = E(B) = I;S(SX - 4)x dx = 0.833333

Similarly, we find that E(y)=05. Therefore,

0=0.77777 and des= des'-‘e (0.77777)=several/0.8889

+most/1. In other words, from a voting model
perspective, around 89% of voters believe that either
several or most are suitable as labels for the
probability of Z given X and around 11% think that
only most is appropriate.

It is also possible that there is uncertainty regarding
the labels for Pr(Y|X), Pr(z|X,Y) and Pr(z|X,-Y).
For instance, consider the natural language
constraints regarding a number of batches of a
certain type of component produced by a rather poor
factory.

Several or quite possibly most of the components
checked were faulty

Few although in some cases several of the
components were checked

Query: What is the overall proportion of components
that are faulty?

In order to model such situations we introduce the
notion of a general linguistic syllogism characterised
by the following schema.

(desy)X are Y
(des,)(X and Y) are Z, (des;)(X and - Y) are Z
(des)X areZ
where des), des,, des; and des are linguistic

descriptions over T, .

The corresponding linguistic variable interpretation
is then given by
L, isdes, LB isdes,, L, isdes,
Lg isdes

Now as for standard linguistic syllogisms these
constraints determine posterior distributions on a,f3
and y. In this case, however, we are conditioning on
linguistic descriptions rather than words. We define

pleides) = 3 #{a;) (0

are the focal sets of my, and where

where { Dj} i
from Bayes theorem

1
p(ulDJ’) = Q;,l Paes, (cx)(Q) / _!Q%‘l Paes, (a)(Q) do

Expected values for o, and y can be determined
from the posterior distributions and an estimate for
6 determined as before.

Example 4.2
Consider the following general linguistic syllogism

(most /1+ several /0.8) X are Y
(few/ 0.2+ several /1) (X and Y) are Z

(few/1+several /0.5) (Xand-Y) are Z
(des) X are Z

NOW Mg /1+soveral /0.8 = { Most, several} : 0.8
, {most} : 0.2 so that

p(ajmost /1+ several /0.8) = p(af{ most, several})0.8
+p(ajmost)0.2

where p(af{ most, several}) =
IpdesLa (mOSt) + Ipdesl_u (several)
1
J’Ipd&% (most) + IPtes,. (several) da
0

0.5
1~ 1Py, (a)(feW)/l— J1Pes,, () { few)
0

where
IPges,_(a)(fEW) =1-20for 0<a <05

= 0 otherwise
and

p(almost) = IPges,_ (rr‘ost)/‘lrlpdeﬁLa (most) da

where



IPges,, () (MoSt) = 2a ~1for 05<a <1

= 0 otherwise
Hence, p(ajmost/1+ several) =
OSEEGE— 2.13333 for 0< a < 0.5
D4D ,
0.8 Tl 0.3(8a - 4) =1.6a + 0.266667 otherwise
Similarly we find that
p(B | few/0.2 + several /1)
=3.2B+0.266667 for 0<B < 0.5
= —3.73333 + 3.73333 otherwise
and
p(y| few/1+ several /0.5)
=2.66667 - 4yfor 0<y<0.5
= -1.33333y +1.33333 otherwise
From these distributions we obtain that
E(a)=0.655556, E(B)=0477778 and E(y)=

0.277778 so that © = E(a)E(B) +(1- E(at))E(y)
= 0.655556(0.477778) + (1 - 0.655556)0.277778
=0.40889and des = des;  (0.40889) =
few/0.364 + several /1

The linguistic syllogism schema only provides a
model for a rather restricted form of computing with
words. In the following sections we shall attempt to
provide more general models of reasoning with
linguistic variables. The framework will be based on
ideas taken from the Fril programming language

[1].

5 Inference from Linguistic Facts.

A linguistic fact will be an instantiation of a
linguistic variable qualified by a linguistic
description acting as a quantifier. More specifically,
let X be a variable with universe Q and L, is a
linguistic variable describing X such that T(LX) =

{Wl,--- ,Wm} then a linguistic fact describing X has

((LX :wi)):(deﬁ)

where des O; Tp, . Now given a knowledge base of

the form

such constraints ((LX =w, )) :(des) fori =1,---,m

and letting a; = Pr(LX :Wi) we can express this in
terms of constraints on linguistic variables as
follows:

m
Ly, isdes fori=1,--,m and ZO(i =1

Let this set of constraints be denoted by K. Now
conditional  distributions p(ai|deﬁ) can be

determined as before and assuming independence up
n

to the constraint z 0; =1 a joint posterior
=1
distribution on ay,---,0, is given by 0a OV(m)

CORECT / I [] e s vt
where V(m) = % oo™ iai :1E

From this joint distribution posterior marginal
distributions can be determined for ay,---,a,, such
that

p(6(|K)dV(m)
{6( ov(m)| a; =a}

p (oK) =
Hence, we can obtain the estimate
1
a; :J'cx p (a[K) da
0

Converting the probability distribution w; :a; for
i=1,---,m into a fuzzy set according to theorem 2.3
we can infer a linguistic description of X
Alternatively, a numerical estimate of the value of X

m
can be determined by X= z E(Xw)a; where

E(Xw;) = I X p(X/w;) dX and where

)

p( XlW =1 pdes

Example 5.1
Consider the following statement with associated
query adapted from an example given by Baldwin

[4]:

The examination marks of a good project student
will be excellent in most subjects good in several
subjects and poor in only a few subjects.

What is the average exam mark of a good project
student?

Let MARK be the percentage mark of a good project
student so that Q=[0,100] and let Lyagc be the

linguistic ~ variable  describing MARK with
T(LMARK) {poor, mediocre, good, excellent}. The
associated semantic function is defined by
Myarc (PoOr) =[0:145:150:0],  Myarg (mediocre)

=[40:045:155:160:0], Myarc(g00d) =



[50:055:165:170:0] and  Myapg(excellent) =
[60:065:1100:1]. The problem can be expressed
by the following linguistic facts:

((Laarx = poor)):(few)
((Lyargx= mediocre)):(few/1+several/1+most/1)

((Lyarx= good)):(several)
((Lamurx = excellent)):(most)
Let o, = Pr(poor), a, = Pr(mediocre),
o5 =Pr(good) and o, = Pr(excellent) then we have

the following constraints denoted by K:
Ly, = few, Ly, isfew/1+several /1+most/1

Ly, =several, Ly, =most

and o, +a,+oz+0, =1

Given this knowledge we obtain a joint posterior
distribution.
Doy, 0,) OV(4) p(al,az,or3,a4|K) =

p(orl| few) p(u 3|se'veral) p(cx4|most)

‘!’ p(a 1l few) p(a 5fseveral ) p(a 4|most)dV(4)
V(4)

Now
4!’ p(a 1l few) p(a sfseveral ) p(a 4|rnost)dV(4) =
V(4)
:f p(cx 1 few)o._!'u;)(a sfseveral )1 aj:;(a 4|rnost) da ,da zdor,

05 05-ay 1—0(1-03

:J'(4—8a1) IEE J’(8a4—4)d0(4d0(3d0(1:]/36

Hence, O(0;,+,0,) OV(4) p(al,az,or3,u4|K) =
36(4 -8, )(405)(8a, —4) for 0<a; <05
0<a3;<05and05<a,<1
=0 otherwise

From this
distributions

pi(alK) =
-384a° + 480a? — 1200 + 960a* — 960a° +12
for0<a <05

=0 otherwise

we obtain the following marginal

p,(a|K) = ~76.8650° +1920? ~1920° + 720 + 9.6
for0<sa<05
= 0 otherwise

ps(a|K) = —384a° - 3840® + 576a° + 720
for0O<a <05
=0 otherwise

p4(G|K) =
-384a° - 76802 + 9600 * — 3840 + 7680 —192
for0.5<a<1

=0 otherwise

Taking the expected values of these distribution
gives us;  0,=00714286, 4, =0.0857143,
03=0.171429 and a, =0.671429. Converting the
resulting distribution into a fuzzy set yields the
following linguistic description of the average mark
of a good project student.

excellent /1+ good / 0.5+ mediocre/ 0.329 + poor / 0.286

If a numerical value is required we can use Bayes
theorem to determine conditional distributions on
MARK, take expected values and finally evaluate a
linear combination of these expected values relative
to the above distribution. In this case we obtain that
E(MARK|poor) = 22.5926 , E(MARK|mediocre) = 50,

E(MARK|good) =60 and E(MARK|excellent) = 82.38.

Hence, the estimated value for MARK is given by
0.0714286(22.5926) + 0.0857143(50) + 0.171429(60)

+0.671429(82.38) = 71.498%

6 Linguistic General Rules

In addition to the ability to reason from linguistic
facts it is also desirable to be able to make
inferences from knowledge bases consisting of
linguistic rules and facts. Here we introduce a type
of linguistic rule based on the Fril general rule [1]
and [2] with the following form:

(('—x = Wi)
(CYRCHR(CSMEICEN)
where {Cj};:1 are a set of mutually exclusive and
exhaustive constraints, w, DT(LX) and des ; O Tp,.
If o= Pr(LX :Wi|CJ-) for j=1,--,r then a
knowledge base of such rules where i =1,---,m can
be interpreted as generating the following

constraints:
L, J_isdeqj fori=1,---,mandj=1,---,r

o

m
Zcxi,j =1forj=1,--,r
=



Now for a fixed j the constraints, denoted K;, have

the same form as those generated by a knowledge
base of linguistic facts and hence we can determine a
posterior distribution on V(m) of the form;

p(al’j,... m]|K

r_np |J|de$J/{ Ij |,j|de$,j)dv(m)
I( i,j|KJ-) can then be

determined as before and expected values obtained

[y

Marginal distributions

in order to obtain estimates q; :E(ai,j|Kj).

Furthermore, according to Jeffrey’s rule we have

that
}
Pr(Ly =w,) = > Pr(LX :Wi|CJ)Pr(Cj)
=

Let a; = Pr(Ly =w;) for i=1,-
for j=1,---,r.

,m and B; = Pr(Cj)
Now the values of B; might be
specified directly by means of standard Fril rules

((Cj)):Bj for j =1,---,r in which case q; =i&i’ij.

Alternatively, we may have a set of linguistic facts
((Cj)):(des;) where des; O¢ T, for j=1,--,r. In
this case we take B j to be the expected value of the

distribution p( -|d&sf) so that a; —Zal JB] As

before the distribution generated on T(LX) can be

transformed into a fuzzy set to obtain a linguistic
description of X or a numerical estimate can be

m
obtained according to X = Z&iE(x|vvi). Notice that
=1
the linguistic facts regarding X may be inferred form
a direct fuzzy constraint on X. For instance, the
fuzzy constraint Xisf generates the linguistic facts;

((LX = Wi)) : IpdesLx(f)(wi) fori=1,---,m
where des, (f) is the linguistic description of f
determined according to definition 3.4

Example 6.1
Consider the following rule base and associated
query relating to the income of project managers.

Most senior project managers have good salaries and
at least several have very good salaries.

Most experienced project managers have moderate
salaries and several have good salaries. However,
few have very good salaries.

Few junior project managers have low salaries.

Query: A certain project manager has been
employed for about fifteen years. What will be his
expected salary ?

Let SAL be the project manager’s salary with
T(LSA,_)= {low, moderate, good, very good}. Also,

let YRS be the project manager’s number of years of
experience defined on the universe [0,40].
T(LYRS) = {junior, experienced, senior}where
M(junior) = [0:1 5:1 10:0], M(experienced) = [0:0
5:1 15:1 20:0] and M(senior)=[10:0 15:1 40:1]. The
knowledge base can be expressed in terms of
linguistic general rules by:

((LSAL: ZOW)
(Lygrs= junior)
(Lyrs= experienced)
(Lygs= senior)
: ((few)({few, several, most})({few, several, most}))

((Lsgz=moderate)
(Lygs= junior)
(Lyrs= experienced)
(Lyrs= senior)
: (({few, several, most})(most)({few, several, most}))

((Lsar=good)
(Lygs= junior)
(Lyrs= experienced)
(Lygs= senior)
1 (({few, several, most})(several)(most))

((Lsar=good)
(Lygs= junior)
(Lyrs= experienced)
(Lyrs= senior)
: (({few, several, most})(few)({several, most}))

From these rules we generate the following three
sets of linguistic constraints from which we use the
methods described above to estimate the relevant
probability values. For example,

K;For a,, = Pr(lovv]junior),

a,, = Pr(moderatdjunior), o, = Pr(good|junior)
and 04, = Pr(very good|junior)

Lo, = few, L, Df{ few,several, most}

Ly, O{ few, several, most}, L, O few, several, most}

Opq+0,5 05, +0,, =1



From which we obtain
O,y =05, =0, =0.288235

d,, =0.135294and

Similarly we find from K, that a;, =0.0857134,
d,,=0671429, d,,=0171429, d,,=0.0714286
and from Kj that o, ; =0, = 0.0837997,

035 = 0.665734,0 , 5 = 0.1666667

Now let about fifteen (abft) be a fuzzy subset on
[0,40] such that about fifteen = [12:0 15:1 18:0] then
according to definition 3 4 we have that:

IPges,_()(€XP.)

IPees,. j aJt j—)ﬁ oy oy

1wwyp s, (4 (exp.) oy
0 3y+12 6(1 -Y)

11 18- 3y

6.[1 y.[

3y+12

dxdy 0.5

Similarly we find that IpdSLYRS(abﬂ)(junior) =0 and
IPies,_(abit) (senior) = 0.5 giving us the linguistic facts
YRS
((Lyrs= junior)):0

((Lyrs= experienced)):0.5
((Lygs= senior)):0.5

Hence, we infer that Pr(low) = 0.5a , +0.50 5
= 0.5(0.0857143 + 0.0837997) = 0.0847565

In  the same way = we obtain  that
Pr(moderate) = 0.3776,  Pr(good) =0.4186  and
Pr (very good) =0.11905. Transforming this

distribution into a fuzzy set gives the following
linguistic description of the expected salary of the
project manager:

low/ 0.339 + moderate/0.959 + good/1 + very good / 0.442

7 Conclusion

We have outlined an approach to computing with
words based on a mass assignment theory of
linguistic variables. The methods described have a
clear interpretation in terms voting model semantics
and avoid many of the complexity problems
associated with other approaches.
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