
                          Trigg, M. A., Michaelides, K., Neal, J. C., & Bates, P. D. (2013). Surface
water connectivity dynamics of a large scale extreme flood. Journal of
hydrology, 505, 138 - 149. 10.1016/j.jhydrol.2013.09.035

Link to published version (if available):
10.1016/j.jhydrol.2013.09.035

Link to publication record in Explore Bristol Research
PDF-document

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published
version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms.html

Take down policy

Explore Bristol Research is a digital archive and the intention is that deposited content should not be
removed. However, if you believe that this version of the work breaches copyright law please contact
open-access@bristol.ac.uk and include the following information in your message:

• Your contact details
• Bibliographic details for the item, including a URL
• An outline of the nature of the complaint

On receipt of your message the Open Access Team will immediately investigate your claim, make an
initial judgement of the validity of the claim and, where appropriate, withdraw the item in question
from public view.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Explore Bristol Research

https://core.ac.uk/display/29026893?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.jhydrol.2013.09.035
http://research-information.bristol.ac.uk/en/publications/surface-water-connectivity-dynamics-of-a-large-scale-extreme-flood(49cdf627-5927-4011-8056-d70d8d672212).html
http://research-information.bristol.ac.uk/en/publications/surface-water-connectivity-dynamics-of-a-large-scale-extreme-flood(49cdf627-5927-4011-8056-d70d8d672212).html


Surface water connectivity dynamics of a large scale 
extreme flood 

 

 

Mark A Trigg a,* 

Katerina Michaelides a 

Jeffrey C Neal a 

Paul D Bates a 

 

 

* Corresponding author: Tel: +44 (0)117 928 8290; Fax: +44 (0)117 928 7878; E-mail address: 
mark.trigg@bristol.ac.uk 

a Hydrology Group, School of Geographical Sciences, University of Bristol, University Road, Bristol,  
BS8 1SS, UK.  

 

  



Abstract 
During flood inundation, river water passes from the main channel into the floodplain through 
floodplain channels and diffusive overbank flow. This flood water is then distributed within the 
floodplain depending upon internal connections, barriers and storage, and finally returns back to the 
river through drainage connections. This surface water connectivity can be complex and is important 
to many aspects of floodplain functioning, including ecology, sediment movement and flood risk. 
However, there is currently no accepted way of quantifying this connectivity objectively. We 
quantify surface water connectivity geostatistically as an objectively measurable characteristic of an 
observed flood event using a time series of MODIS (Moderate Resolution Imaging 
Spectroradiometer) surface water product for an extreme large scale flood event (11,000 km2 
flooded area and 6 month duration) during 2011 in Bangkok, Thailand. We develop and apply a new 
gap filling method that better preserves the dynamic information of the event than simple 
aggregation methods. Comparison of MODIS results with the higher resolution Earth Observer 1 
shows fundamental differences in the resolved connectivity with scale despite similar flooded area. 
The effect of the passage of the flood wave is directly observable in the river reach, as out-of-bank 
flooding progresses and increases connectivity along the river during rising water. Around peak flow, 
there is an increase in connectivity of the floodplain adjacent to the river as low lying areas fill. A 
step increase in connectivity is correlated with a major levee breach. During recession there is a 
rapid reduction in along river connectivity in the first week after the peak. This rapid reduction 
contrasted with a slow decrease in the floodplain connectivity as flooded depressions gradually 
drained reducing depth, while flood extent remained static for long periods. The connectivity 
analysis of the threshold in floodplain draining indicates that although spatial flood extent changes 
are small at this time, there is a reorganisation of the internal surface water connectivity within the 
flooded area. Thus through this measure of connectivity, we can see a clear structure to the event 
progression with new insights into flood dynamics that were not anticipated a priori. 
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1 Introduction 
Connectivity in this paper refers to the dynamic flow interactions between a river and its floodplain, 
as well as between different areas within the floodplain. During large floods these flow connections 
occur through two main surface water processes, channelized flow through floodplain channels and 
diffusive overbank flow. To a lesser extent, but still important in some systems are groundwater flow 
connections and evaporation. The timings and flow input through floodplain channels and diffusive 
overbank flow affect the rate of floodplain filling and the final extent of inundation. The relative 
difference between water levels and channel bed and bank elevations controls flow rates and  
provides connection and disconnection thresholds within the system. Thus the movement of flood 
water from the river to the floodplain, within the floodplain, and back to the river is strongly 
dependent on how connected the two bodies are. This surface water connectivity can be complex 
and arises from the physical topography of the system (e.g. channels and topographic barriers) as 
well as dynamic hydraulic gradients from the passage of the flood wave. For a detailed description 
and discussion of the floodplain inundation and recession sequence, we refer the reader to Zwolinski 
(1992). 

Surface water connectivity during inundation has been identified as important to many aspects of a 
floodplain’s functioning. For example, the flood pulse concept introduced by Junk et al. (1989) and 
extended by Tockner et al. (2000) shows that floodplain habitat heterogeneity is mainly a product of 
shifting water sources and different flow paths as well as the relative importance of autogenic 
processes. Disruption to the connectivity that is vital to ecology and river management schemes 
invariably leads to reductions in biodiversity (Ward and Stanford, 1995; Ward et al., 1999; Pringle, 
2001). Floodplain channels providing important sediment distribution pathways onto a floodplain 
(Mertes et al., 1996; Day et al., 2008) as well as the deposition and erosion of sediment altering the 
structure and morphology of floodplain (Trigg et al., 2012), thus connectivity is both created by, and 
creates, the morphology of the floodplain. Flow connectivity between the river and its floodplain, as 
well as within the floodplain, has important consequences for flood risk management and river 
engineering (Gilvear, 1999). Floodplains that are well connected to the river channels provide water 
storage progressively during the rising limb of an event which reduces peak flood flows and levels, 
and, conversely, an artificially confined river with poor connectivity leads to higher channel water 
levels and the danger of sudden and catastrophic flooding through levee collapse or overtopping. 

Despite the accepted importance of floodplain flow connectivity for flood dynamics, it has thus far 
been challenging to quantify due to a lack of event data of sufficiently detailed spatial and temporal 
resolution. However, recent advances in remote sensing datasets and new processing methods are 
providing new opportunities to study rivers and their floodplains at unprecedented levels of spatial 
and temporal detail (Smith, 1997; Marcus and Fonstad, 2010). Also, increasingly, remotely sensed 
flood extent data are being successfully used to build, calibrate and validate complex large scale 
hydraulic models where the correct representation of dynamic flow processes are crucial (e.g. Bates 
et al., 2006; Wilson et al., 2007; Schumann et al., 2011; Bates, 2012; Neal et al., 2012). In addition, 
these remote sensing data are now being made readily available pre-processed, allowing wider use 
within the hydrological community. One such flood extent dataset is that provided by Dartmouth 
Flood Observatory (DFO), derived from the internationally available and free rapid response data 
from NASA's two MODIS (Moderate-resolution Imaging Spectroradiometer) sensors (Brakenridge 
and Anderson, 2006). DFO in collaboration with NASA have been processing and archiving imagery 
acquired twice daily for several  years and these data are made freely available at their websites. 
These datasets can also provide new opportunities to apply new analysis methods that were not 
previously possible due to lack of data at sufficient temporal and spatial resolutions.  

The availability of sequences of flood extent provided by these methods are now allowing the 
validation of hydraulic models through a wider dynamic range of an event (Bates et al., 2006; 
Schumann et al., 2011), rather than just at a single point in the event, as well as being used in near 



real time to monitor floods (Chien et al., 2011; Auynirundronkool et al., 2012; McLaren et al., 2012). 
There are many potentially important flow processes active on a floodplain, such as floodplain 
channels and ditches providing flow connections (Nicholas and Mitchell, 2003) as well as barriers 
such as embankments, floodplain channel levees and woody debris blocking flow connections 
(Jeffiries et al., 2003). If a model lacks sufficient detail in the topography data used to represent the 
floodplain, many of these connection details of the floodplain system can be missing (Trigg et al., 
2012) and this commonly leads models having  difficulties in filling and draining the floodplain at the 
correct point in the flood cycle (Wilson et al., 2007; Neal et al., 2011). The increasing availability of 
airborne laser altimetry (LiDAR) data has been shown to improve connectivity within flood models, 
although Bates et al. (2003) note that its optimum assimilation requires good flood observation data 
to discriminating between competing approaches.  In addition, these connection/ disconnection 
processes can occur at different times during the event and at different threshold levels and 
locations, and may only be active in the rising or recession periods of an event. Thus this wealth of 
new temporal and spatial flood observation data can help with the assessment of what flow 
processes are important during a flood and at which scales, presenting opportunities for the 
modeller to understand and improve the process representation within models.   

Within flood dynamics related research, there is a growing body of research that focuses on 
connectivity to biodiversity (Ward et al., 1999),  lake levels (Pavelsky and Smith, 2008), hillslope 
runoff  and geomorphology (Bracken and Croke, 2007; Smith et al., 2010). However, we are unaware 
of any research attempting to specifically quantify connectivity as an objectively measurable 
characteristic of an observed flood event. Indeed, the lack of universal measures of river-floodplain 
connectivity limits the comparison of the response of aquatic assemblages to hydrological 
connectivity and impedes the understanding of floodplain functioning across different systems 
(Gallardo et al., 2009). Although it is possible to assess connectivity of a particular part of a 
floodplain by measures such as time or duration of connection, water levels synchronous within 
adjacent areas etc. (e.g. Karim et al., 2012), all these measures suffer from a location and scale 
specific bias. Recent work has developed frameworks for more robust and objective quantification of 
connectivity based on spatial data that transcend individual complexities in hydrological response 
and that allow comparisons between locations and events (Pardo-Iguzquiza and Dowd, 2003); 
Michaelides and Chappell (2009).  

In this paper we use geostatistical connectivity analysis in conjunction with remotely sensed flood 
data from MODIS (Moderate Resolution Imaging Spectroradiometer) and Earth Observer 1 (EO-1, 
Advanced Land Imager (ALI)) for the large scale (11,000 km2 flooded area and 6 month duration) 
flood event that occurred during 2011 in Bangkok, Thailand. The geostatistical connectivity function 
quantifies the probability that any two points separated by a specified distance are connected and 
hence enables mapping of the points and their likelihood in being connected to a specific location 
(Pardo-Iguzquiza and Dowd, 2003). The aim of this paper is to quantify the observed spatial and 
temporal changes in surface water connectivity on the floodplain in order to provide insights into 
flood dynamics. We also assess geostatistical connectivity as a tool for quantification of flood 
dynamics and evaluate the utility of the MODIS flood mapping product for a post-event analysis of a 
time-series of flood extents, exploring issues such as data completeness and spatial and temporal 
event scales. 

  



2 Methodology and Data 

2.1 Geostatistical connectivity 
The geostatistical connectivity function is a multi-point statistic based on binary state data which 
quantifies the probability that any two points separated by a specified distance are connected and 
hence enables mapping of points and the likelihood of  their connection  to a specific location 
(Pardo-Iguzquiza and Dowd, 2003). This function, therefore, quantifies the more subtle differences 
in the data fields associated with increasing connectedness and spatial organisation, and enables 
characterisation of spatio-temporal patterns that can be used to interpret transitions and thresholds 
in flow processes (Michaelides and Chappell, 2009). 

The connectivity function expresses the probability that n points along a given direction are all 
valued above the threshold value zc (Journel et al., 2000): 

 

 

(1) 

where I(uj;zc) is an indicator of the variable Z(uj) at location uj that exceeds the threshold value zc, 
defined as I(uj;zc) = 1 if Z(uj) > zc , zero if not, and ∏ is the product operator. It is estimated when the 
starting location u1 takes all possible positions within the field. The greater the spatial entropy of the 
field, the faster the decrease to zero of P(n;zc) as n increases. Thus the value of the connectivity 
function at any given distance is the fraction of points along a given direction at that distance that 
are connected. 

The connectivity analysis applied in this paper is based on a Matlab rewrite of the FORTRAN 
software CONNEC3D developed by Pardo-Iguzquiza and Dowd (2003). The Matlab connectivity 
function is provided with this paper as supplementary material. The software performs the analysis 
on a 2D binary grid of cells and calculates the connectivity function for a chosen binary phase (e.g. 0 
or 1) in four directions, along the two orthogonals (North-South and West-East) and the two 
diagonals (NW-SE and NE-SW). As well as the outputting the connectivity function itself, the analysis 
also results in metadata regarding the images analysed: the number of connected components (ncc), 
the average size of a connected component (cc), the mean length of a cc in the N-S and W-E 
directions, the size of the largest cc, the maximum length of a cc along N-S, W-E directions and the 
numbers of percolating components (components that connect from one edge of the analysis 
domain to the other) along N-S, W-E directions. In addition, the program provides as output a grid in 
which each cc is identified by an integer number ranging from 1 to ncc. Analysis can use 4-way 
connectivity (D4), which assumes cells connect by shared edge only or 8-way connectivity (D8), 
which allows cells to connect by edge and corner vertex. 

The application of geostatistical connectivity in one direction to a very simple binary grid of 9 cells is 
illustrated in figure 1. This highlights some key aspects of the application of geostatistical 
connectivity to flood extent data sets: 

(1) The analysis is based on the assumption that the binary grid of cells represents a wet/dry 
binary characterisation of flooding. This could be from a model output or observed data. 
Analysis is applied to the wet cells only, i.e. there is no explicit representation of flow depth. 

(2) The analysis identifies all the separate (i.e. not connected) objects on the floodplain. This 
shows which flooded areas are connected and which are not, in terms of the binary map 
provided. Note, all wet cells that connect along any pathway (including non-direct routes) 
are considered part of the same connected object. 

(3) Assuming at least one cell is wet; the connectivity function always starts at a value of 1 at 
zero distance because a wet cell is always connected to itself.  



(4) The value of the connectivity function at any given distance is the fraction of wet cell pairs at 
that distance that are connected. Thus, a connectivity function value of 0.5 at 100 m would 
mean that half of the wet pairs of cells 100 m apart are connected. This also means the 
connectivity function value can never be greater than 1 (all wet cell pairs are connected). 

(5) The distance at which the connectivity function finally reaches zero is the maximum length 
of any of the “strips” of connected cells in the analysis direction (even if there are gaps in the 
strips because the connection is via a parallel strip) (figure 1d). 

(6) The connectivity function will eventually decrease with distance to zero. However, 
connectivity function can decrease and then increase again with distance. This means that a 
larger fraction of the wet cell pairs at the greater distance are connected, not that there are 
more wet cells at that distance. (figure 1b). 

 

 

Figure 1 - Illustration of the connectivity function (CF) in the X direction (West-East), assuming 8-
way connectivity. Grey shaded cells are wet and white cells are dry. CF(h)= (pairs of connected wet 

cells / pairs of wet cells) at distance h apart for the direction under consideration. 



For the application of geostatistical connectivity to the Bangkok flood, we used wet-dry binary raster 
grids derived from the remote sensing data observations, and assessed using 8-way connectivity. As 
the Bangkok flood was principally an event draining North to South, with floodplains on the West 
and East, we only present results in this paper for the surface water connectivity in the N-S and W-E 
directions. 

 

2.2 Site and event description 
We analysed an extreme flood event that took place in Thailand from July 2011 and lasting through 
to February 2012. The 2011 flood was the maximum ever recorded in Thailand (Komori et al., 2012), 
and predominantly involved the Chao Phraya River which drains 30% of the country and passes from 
the North of the country through a topographical narrowing at Nakhon Sawan and then through to 
the low-lying and relatively flat coastal plain that contains Bangkok city (Figure 2). This flood caused 
tremendous damage, including 813 dead nationwide, inundation damage and business interruption 
to seven industrial estates and 804 companies, and total losses estimated at 43 billion dollars 
(Komori et al., 2012). 

The event began at the end of July 2011, with unusually heavy monsoon rains and a tropical cyclone 
bringing 143% of average monsoon seasonal rainfall (Komori et al., 2012), swelling rivers and filling 
reservoirs throughout the country. The flow in the Chao Phraya River entering the Bangkok coastal 
plain at Nakhon Sawan peaked at 4,686 m3/s on 14 October 2011 with the floods reaching Bangkok 
city mainly through the Chao Phraya River as well as numerous canals and smaller waterways by 25 
October 2011. The downstream part of the Chao Phraya River has diminished flow capacity, causing 
floodwater to pool in low lying areas adjacent to the river and tributaries to flood due to backwater 
effects preventing their drainage. A series of high tides at the end of October prevented the draining 
of the floodwaters to the sea and exacerbated flooding further, resulting in maximum flood extent 
around the 3 November 2011. Flood waters and full-to-capacity dams then slowly drained until 
January 2012. (Komori et al. (2012) provide  a detailed hydrological review of the event). 

The study area for this analysis (Figure 2) was confined to the lower plains of the Chao Phraya River, 
below Nakhon Sawan, defined by the 30 m elevation contour (~30,000 km2). A set back from the 
coast of 25 km was used to exclude the low lying areas on the very edge of the coast as they are not 
part of the river flooding that is being assessed. Flow data for comparison with the flood extent in 
the lower plains (Figure 3) were downloaded for the Nakhon Sawan gauging station from the 
Thailand Royal Irrigation Department website (http://water.rid.go.th/). The bankfull discharge 
capacity of the lower watershed of the Chao Phraya River (to sea) above which flooding occurs in the 
lower plains is ~2,000 m3/s (Komori et al., 2012). 



 

Figure 2 – Study area (a) Location of basin within Thailand. (b) Detailed inset of the analysis area 
defined by 30 m elevation contour and offset of 25 km from coast. Also shows Nakhon Sawan 
gauging station, the Bangkok City central urban area, main rivers, elevation and image EO-1 

footprint. 

  

2.3 MODIS data 
Connectivity analysis of the extreme flood event over 203 days was carried out using MODIS data. 
The MODIS (Moderate Resolution Imaging Spectroradiometer) near real-time global flood mapping 
project, operated by NASA Goddard's Office of Applied Science, produces global daily surface and 
flood water maps at approximately 250 m resolution, in 10x10 degree tiles 
(http://oas.gsfc.nasa.gov/floodmap/home.html). The flood water maps build on the efforts of the 
Dartmouth Flood Observatory (DFO) to map floodwater extent in detail for floods in near real-time 
(http://floodobservatory.colorado.edu/). The data used for this study were downloaded from the 
DFO website (Brakenridge et al., 2012).  

Flood mapping with the MODIS data is based on twice daily, wide-swath space-borne optical 
sensors, operating at a spatial resolution of 250 m (Syvitski et al., 2012). An automated processing 
algorithm for the MODIS band 1 and 2 data from instruments aboard NASA's Terra and Aqua 
spacecraft provides near-real time measurements of floodplain inundation (Brakenridge and 
Anderson, 2006). The algorithm used to produce the data for 2011, uses four images (Terra and 
Aqua, each day, for two days). A cloud shadow filter removes this source of error (shadow can 
otherwise be misclassified as water), and a filling process takes advantage of moving cloud 
obscuration to increase spatial coverage. Use of the two day composite thus sacrifices some 
temporal resolution but provides more complete spatial coverage and less "false positive" water 
classification error. During flood events, the evolving flood wave can be tracked down the basin 
through a moving flood extent, or the data can be aggregated temporally to provide total inundation 
over the event.  

http://oas.gsfc.nasa.gov/floodmap/home.html
http://floodobservatory.colorado.edu/


For the 2011 Bangkok flood event, there are two data products available from the NASA Goddard 
MODIS Global Flood Mapping Project: (1) MFW: MODIS Flood Water and (2) MSW: MODIS Surface 
Water (MFW before subtracting the reference water which is usually inundated, e.g. lakes.). We 
used the MSW product as we were interested in the connectivity of the rivers and floodwaters. The 
data files are identified using a year and day of year stamp, YYYYDOY. Where YYYY is a 4-digit year 
and DOY is a 3-digit day of year (001 to 365 or 366). The products are multi-day aggregates, to 
reduce issues of cloud cover. The product date is the last day of the composite period, so for the 
standard two day composite we used (2D2OT: 2 Days imagery, 2 Observations required, Terrain 
shadow masking applied), a product dated 2012015 includes data from the day before i.e. 2012014, 
and 2012015. The product is available as a vector dataset, with polygons covering identified wet 
areas. 

The MODIS global flood mapping data used extended from 14 August 2011 (2011226) to 3 March 
2012 (2012063). This covered the period from before out-of-bank flooding began, to well after 
drainage of the lower plains below Nakhon Sawan. The study area covers two 10 degree product 
tiles (mostly 100E020N with some to the West on 090E020N), which were merged, reprojected to a 
local UTM 47N co-ordinate system and converted to binary rasters (1 denoting wet and 0 
dry/unknown) before analysis. There are 203 days in the analysis period, but only 176 of these had 
any MODIS flood data available, with missing data presumably due to complete cloud cover for the 
two day composite period.  Even days with data available are not necessarily complete spatial 
coverages and can contain gaps due to clouds. Data completeness is important when analysing the 
dynamics of a flood event, so some way of assessing what is missing and, if possible, accounting for 
it is needed.  As no information regarding missing data due to clouds or shadows is provided with 
the MODIS floodmap data for the Bangkok 2011 flood event, a visual assessment of the raw MODIS 
images was undertaken to qualitatively assess the cloud cover for the assessment area for the 
dataset. From this assessment, a low cloud dataset was identified. It should be noted here that a 
missing data flag is now provided in the new raster product (MWP – MODIS Water Product) as of 
March 2012. A common method employed to allow for missing data when using MODIS data is to 
aggregate the data for a period longer than two days, such as 8 or 16 days (e.g. Xiao et al., 2005). We 
created one and two week aggregate datasets using this method for analysis. 

As well as analysing low cloud/high quality data days and weekly and two weekly aggregates, we 
developed and applied an alternative “gap-filling” method to account for missing data that utilises 
knowledge of typical flood dynamics. The method fills gaps in the time series of data by allowing for 
the fact that a given area is unlikely to be wet one day, dry the next and then wet again the following 
day. Thus the non-wet day/s (dry or missing data) in-between two wet days is marked as likely to be 
wet and included as wet in the infilled dataset. This gap filling method uses the full time series 
dataset of the flood event and includes days with no data by assuming all cells in those images are 
missing data. Each cell is examined in turn, starting at the beginning of the time series.  Once a cell is 
wet, the length of gap in days to the next time the cell is wet is counted. If the time gap is smaller 
than the chosen infill gap period, then all the missing days in the period are marked as probably wet 
so that it can be included in the flooded area analysis. A detailed analysis of where and when the 
gaps occur in the dataset (i.e. gap structure) was undertaken and a full time series of gap filled 
extents was produced for 6, 13 and 27 day gap intervals, i.e. 1, 2, 4 weeks.  

2.4 EO-1 processing 
In order to provide a high resolution comparison to the MODIS 250 m resolution product, an Earth 
Observer 1 (EO-1, Advanced Land Imager (ALI)) image at 30 m resolution was used. The image from 
26 November 2011, covering part of the North of Bangkok city (image footprint in figure 2), shows 
near peak flood extent and is cloud free. The EO-1 image was obtained from USGS EarthExplorer 
website (http://earthexplorer.usgs.gov/). Initial standard Normalised Difference Water Index (NDWI) 
processing (McFeeters, 1996) revealed issues resolving the wet areas where there were significant 



urban structures. Instead, application of the modified method (MNDWI) (Xu, 2006) to allow for the 
urban effect was applied to derive a wet/dry binary raster. 

  



3 Results 

3.1 Flooded area 
A time series of flooded area over the Bangkok basin for the full event gives a good overview of the 
quality of the original MODIS product as well as allowing comparison with that of the various 
aggregation and gap filled datasets (Figure 3). As would be expected for a flood event on this scale, 
the peak flood extent lags the peak input flow to the system by ~3-4 weeks. The original flood area 
for the MODIS product dataset shows large and hydraulically inconsistent variation in flood area 
from day to day throughout the event. This is related to cloud obscuring the images and is a well 
explained and understood aspect of MODIS data. It should be noted here that recently the Flood 
Observatory product is also provided routinely as a 14 day, running forward composite to address 
this issue. 

The low cloud dataset  represents  a subset of the MODIS product which coincides with the outside 
envelope of the flooded area (Figure 3) and is useful in identifying the most complete images. From 
August to early October, monsoon weather patterns and the resulting clouds obscure the image on 
many days during the rising limb of the event, resulting in many data gaps. From the end of October 
through November, clouds are less common and there are more clear periods. Finally, December to 
March has patchy cloud resulting in numerous gaps again.  

Summing all wet pixels for the entire event results in a total event flooded area of 11,000 km2. While 
useful for an overall scale of the flooding, this number does not capture the dynamic aspects of the 
event. The low cloud dataset shows a peak flooded area during the event of 7,670 km2 on the 3 
November 2011 (week 45, 2011). However, close inspection of low cloud days shows there are still 
some missing areas of data from one day to the next, which appear, disappear and reappear 
inconsistently in a manner unlikely to be linked to the dynamics of such a smoothly increasing and 
decreasing flood event over such a long timescale. The data aggregation methods attempt to 
overcome this missing data problem and result in a larger flooded area for all weeks in the event. 
Data aggregated to one week results in a peak flood extent of 9,260 km2 and 9,810 km2 for a 2 week 
aggregate. The weekly aggregate time series shows a drop in flooded area for week 40, 2011 that is 
inconsistent with the flow input and our expectation of a steadily increasing event, and this reflects 
the fact there are very few parts of the study area unaffected by clouds for that week.  

Results from the gap filling method also show an increase in flooded area throughout the event, 
although not as pronounced as the aggregation method and with a smoother transition from one 
week to the next. The peak flooded areas are 8,320, 8,690 and 8,940 km2 for the 6, 13 and 27 day 
gap size filled datasets respectively. 



 

Figure 3 - Flooded areas for the analysis datasets and flow hydrograph. Upstream flow is the main 
inflow to the Bangkok basin measured at Nakhon Sawan gauging station. Note, only areas for low 

cloud days are shown for the low cloud and gap filled dataset plots. 

Summing the wet pixels from daily flood extent data, using the 13 day gap filled dataset for 
illustration purposes, allows an examination of flood duration for the study area (Figure 4). The areas 
subject to the longest duration of flooding coincide with the low elevation bowl shaped depressions 
in the floodplain to the Northwest of the city, but also areas to the East of the main river channel in 
the North of the study area. Some of these areas provide flood storage on an almost annual basis; 
however the duration of this event and limited ability of the river to remove the flood water 
extended the area of the flooding severely.   



 

Figure 4 – Flooded duration in months derived from the 13 day gap fill dataset. 

3.2 Surface water connectivity 
Application of geostatistical connectivity analysis to the MODIS product data results in a series of 
connectivity function curves that reflect the continually changing connectivity of the surface water 
flooding throughout the event. For clarity, this is illustrated for three key points during the flood 
hydrograph in Figure 5, mid-rising, peak and mid-recession. As expected, the highest flow 
connectivity occurs during the flood peak. N-S flow connectivity extends over a longer distance (the 
point at which the connectivity function reaches zero on the axis) than W-E connectivity, due to the 
North-South orientation of the main river. Comparing the rising limb with the recession limb 
inundation extents shows the progression of the flood from the North of the area to the centre, in 
line with the movement of the flood wave southwards. The well connected large bodies of water 
show clearly the dominant inundated areas (black and red to yellow in Figure 5). 



 

Figure 5 – Connected object plots (top 4 boxes) and associated North-South and West-East 
connectivity function plots for the MODIS Product, 13 day gap fill, 1 week aggregate and 2 week 

aggregate datasets. (a) Rising limb on 12 October 2011, day 285, week42; (b) Flood peak on 3 
November 2011, day 307, week45; (c) Recession limb on 13 December 2011, day 347, week51. 

Connected object plots show the top ten largest connected objects coloured individually, with the 
largest object as black through red and then to yellow for the tenth largest object. All other 

objects, most of which are very small, are all coloured blue. Connectivity function plot colours 
match the associated label colours. Connected object plots are orientated with North in the up 

direction. 

Daily plots of connectivity function (Figure 6) indicate that there are important thresholds in the 
surface water connectivity that are not obvious from static views of the flood extents. These 
thresholds are evident from clustering of the connectivity function curves for a period of time during 
the event. Particularly noticeable is the clustering of curves on the recession limb of the event, 
where the connectivity function reaches zero at around 80 km (N-S) - 85 km (W-E) on the x-axis. This 
clustering during recession occurs for around 60 days (10 November 2011-10 January 2012) and 
examination of the corresponding flood extents shows this clustering relates to the large low-lying 
depression in the centre of the Bangkok basin, which is slowly draining during this time, reducing 
flood levels but remaining at the same extent. 



 

 

Figure 6 – Daily connectivity function plots for original MODIS product (MP) and 6, 13 and 27 day 
gap fill length datasets. Connectivity function curves are grouped into four by timing and direction; 

(a) Rising limb for North-South direction [64 days], (b) Rising limb for West-East direction, (c) 
Recession limb for North-South direction [100 days], and (d) Recession limb for West-East 

direction. The start curve is 31 August 2011, peak 3 November 2011, and end curve 11 February 
2012. 

 

 

Comparing results from the different datasets highlights the effect that the different processing, 
aggregating or gap filling has on the basic connectivity of the inundation data. All the data filling 
methods result in an increase in connectivity for the three event times, as they all add information to 
the basic low cloud image data. The 2 week aggregate produces the most connectivity to the point 
where its rising-limb connectivity function is greater than that of the low cloud peak dataset. Plots of 
the ten largest disconnected flood areas in each flood extent (Figure 5) show the extra connectivity 
produced by the filling methods link up areas which in the original data were not connected. This 
added connectivity is primarily along the main line of flooding N-S in the centre of the image. It is 
most notable during the more dynamic rising limb, where the flood wave is still moving south, so 
aggregating over this time has a bigger effect. In contrast, the recession plots show very little change 
in connectivity, as the flood is consolidating in the low lying and slow draining areas in the centre of 
the study area, either side of the river. Daily plots of connectivity (Figure 6) show large changes in 
connectivity function as the event progresses, with connectivity function increasing and decreasing 



with no obvious mechanism other than a correlation with the cloudiness. This scatter is most 
noticeable on the rising limb connectivity functions and reduces as more of the gaps are filled. The 6 
day gap fill shows a small reduction in the scatter, but it is not until the 13 day gap fill results that a 
steady progression in connectivity is observed. The 27 day gap fill dataset also shows a smooth 
progression in connectivity function, but also includes large increases in for some low cloud days, 
potentially showing over connectivity for the longer gap fill duration. 

Comparing connectivity metadata for the different processed datasets show strong similarities in the 
overall dynamics indicating these are not likely to be a result of the processing method (Figure 7). 
Maximum component size (largest wet area) increases proportionately with total flood area. There is 
a point around week 51-52 where the number of disconnected components drops and coincides 
with a noticeable mean component size increase. Close inspection of the daily data shows this can 
be related to the drying or draining of outlying small flood areas that are disconnected from the 
main flood bodies, leaving the larger ponded flood volumes in lower lying basin areas that remain to 
be drained. 

 

Figure 7 – Connectivity function metadata for three of the analysis datasets. Solid lines for low 
cloud MODIS product (MP), dashed for 13 day gap fill (13d) and dotted for one week aggregate 
(1w). Grey dotted is the flow hydrograph, the black lines represent the flooded area, green the 
maximum component size (max cs), blue is the total number of components (num c), and red is 

the mean component size (mean cs). 

3.3 Gap structure analysis 
A Matlab tool was developed that allows the full time series of flood extents to be visualised in three 
dimensions, with the vertical dimension representing time (Figure 8). In addition to stepping through 
the two dimensional extents and animation of extents, the tool allows vertical cross-sections 
through the data to be extracted representing the NS or WE axes along the x axis and time along the 
y axis (Figure 8 c and d). Gaps are flagged by their length to allow colouring of the gaps by size along 
with the observed flooded areas. Using this tool, close inspection of the flooded areas shows some 
missing areas of data from one day to the next that do not appear to be cloud related when 



inspected in conjunction with the original MODIS image. These gaps appear, disappear and reappear 
inconsistently in a manner unlikely to be linked to the dynamics of such a smoothly increasing and 
decreasing flood event over such a long timescale.  

Observed flooding, represented as a blue colour, shows a significant quantity of consistent flood 
data available from the MODIS product for this event (Figure 8). The days where most or all of the 
flood extent are missing, are shown as horizontal striping in the cross-sections represented by the 
corresponding gap colour. The other observation of the gap locations is that there are many data 
gaps around the periphery of the flooded areas. Finally, plotting cumulative gap count against gap 
size shows most of the gaps identified in the dataset are of a small size, with ~57% of the total gap 
count being 6 days or less in length (Figure 8c). Approximately ~78% of the gap count is <= 13 days 
and 92% of the gap count <= 27 days in length. 

 

 

Figure 8 – MODIS product data gap structure. (a) peak extent (day 307, 3 November 2011) showing 
time-slice locations, (b&d) N-S and W-E time-slice cross-section through event data stack, (c) 

cumulative fraction of total gap area. Gap lengths used in the processed datasets are illustrated by 
colour in the time-slices and dotted lines in the gap area plot. 

3.4 Spatial scale of observed data  
In order to assess the effect of the spatial scale of the observed data on the connectivity function 
analysis, we compared results from different observation instruments. This comparison used wet-
dry binary maps derived from an EO-1 image and MODIS product data for the same day and location 
(Figure 9 a&b). Flooded area for the overlapping analysis location (5,500 km2) for the MODIS product 
and EO-1 were 2,003 km2 and 1,927 km2 respectively, a difference of 4%. While the flooded area 



from the two datasets is very similar, there are fundamental differences in the connectivity (figure 
9).  Connected objects plots show underlying differences in what is resolved as connected in the 
images (figure 9a&b). Whilst the EO-1 image clearly shows the river channels, these are mostly 
missing from the MODIS data as the channels are ~160-180 m in width and the banks are lined with 
houses and levees, which other than at breach locations are dry. However, the higher resolution in 
the EO-1 image also breaks up the surface water connectivity by resolving the strips of housing along 
the roads (which were flooded internally). While the connectivity method allows for none direct 
connections (eg around the buildings), if these regions of unobserved connections completely divide 
a flooded area into smaller areas, this will result in a reduction of the connectivity function. In this 
case, this results in the lowest resolution image having the highest connectivity. Majority resampling 
the EO-1 30 m data to 150 m shows a small decrease in N-S connectivity function and an increase in 
W-E connectivity function (Figure 9e). Resampling the EO-1 30 m data to 250 m shows an increase in 
N-S connectivity function and in W-E connectivity function (Figure 9f) almost to the same level as 
that observed in the MODIS product. 

 



Figure 9 – MODIS product comparison with EO-1 for 26 November 2011. (a, b, e & f) Connected 
object extent plots for MODIS Product (MP), EO-1 original 30 m resolution, EO-1 resampled to 

150m and 250m respectively. (c & d) N-S and W-E connectivity function plots. Connected object 
plots show the top ten largest connected objects coloured individually, with the largest object as 
black through red and then to yellow for the tenth largest object. All other objects, most of which 
are very small, are all coloured blue. Connectivity function plot colours match the associated label 

colours. The image footprint is 47 km x 117 km.  



4 Discussion 
 

4.1 Surface water connectivity  
The connectivity analysis of the 2011 flood event in Bangkok demonstrates a clear structure to the 
dynamics of the event through time and space. The combined river and floodplain surface water 
connectivity in the North–South direction increased during the rising limb of the event as the flood 
wave passes through the river reach. This was followed by increasing connectivity on the floodplain 
in the W-E direction around the event peak, as the low lying basin areas fill. During the recession 
there was a rapid reduction in N-S connectivity in the first week after the passage of the flood wave 
peak. This rapid reduction in N-S connectivity contrasted with a slow decrease in the W-E 
connectivity as the flooded depressions gradually drained reducing flood depth while flood spatial 
extent remained static for long periods. The movement of a flood wave passing down a river system 
has been observed with remote sensing data before (e.g. Smith and Pavelsky, 2008; Frazier and 
Page, 2009; Syvitski et al., 2012), but this is the first time that the effect of its passage on surface 
water connectivity has been objectively quantified.  

There are two key characteristics of the connectivity function curve that can be used to identify 
important changes in a system. These characteristics are; (i) the distance at which the curve reaches 
zero, indicating the maximum extent that is connected, and (ii) the shape of the  curve, with a 
concave curve indicating poor internal connectivity within the flooded extent and a convex curve 
indicating good connectivity. If large changes in these characteristics are observed from one day or 
week to the next in a time series, this indicates there must be a mechanism which has altered  
connectivity between the two times. This is observed with the Bangkok flooding where the N-S 
connectivity function curves (Figure 6a) show step changes in the maximum distance of connection 
from 80 km to 180 km over a week, as well as increasing curve convexity, that can be correlated with 
a major levee breach on 24 October 2011, allowing water to progress into the North of Bangkok city. 
Unplanned structural modifications to flood defences were a notable characteristic of this particular 
flood event, as there were large amounts of levee construction during the event as well as forced 
removal of levees by residents trying to prevent increasing flood levels outside protected areas 
(Yuvejwattana and Suwannakij, 2011). 

Where the characteristic of the connectivity function curves do not change much over time, this 
could indicate the system is in steady state, or that there is a threshold in the system preventing a 
change in connectivity. We observe such a threshold during the recession period with the clustering 
of the connectivity function curves for around 60 days (Figure 6c), and this correlates with a period 
where the large flooded low lying areas in the floodplain are no longer connected to the river 
through overland flow, but slowly drain through the floodplain channel network. This is similar to  
phase 5 of the flood sequence described by Zwolinski (1992), where there is a cessation of 
floodwater transport across the floodplain. Thus through these changes and thresholds in the 
connectivity, we can see a clear structure to the event progression. These observations demonstrate 
new insights into flood event dynamics and were not anticipated a priori. Changes in the 
connectivity function provide clear indications of thresholds within the system, and crucially provide 
a time and location to look for a causal mechanism. The importance of these mechanisms, e.g. 
overtopping of topographical barriers and flow in floodplain channels, on the dynamics of floodplain 
inundation is crucial to the modelling of those dynamics in rural (Nicholas and Mitchell, 2003; Bates 
et al., 2006; Alsdorf et al., 2007) and urban areas (Schumann et al., 2011).  

Flood inundation extent varies during the event with a similar triangular shape to that of the 
upstream flow input. Connectivity analysis shows that this flood extent is a relatively simple 
reflection of the dynamics occurring during the event, with more detail of the dynamics available 
when the flood extent is assessed as connected areas.  This assessment reveals that during mid-



recession, the number of separately wet floodplain objects reduces and the average area of each 
object increases identifying the point in the recession where the outer floodplain areas are drying up 
and consolidating into a few large ponded areas, which are slow to drain. Bates et al. (2006) also 
showed this falling limb disconnect between channel and floodplain and ponding in a smaller 
number of floodplain areas for a much smaller floodplain in the UK.  This might suggest that this 
process is common across different scales and climatic regimes. 

This marked difference in connectivity function between rising and receding limb dynamics, as well 
as the observed thresholds, emphasise the different mechanisms for filling (eg. levee overtopping 
and water moving down slope) and draining (eg. pumped drainage of ponded flood storage) of this 
type of floodplain. This kind of information may be useful for planning of future infrastructure, but 
also highlights that flood consequences for Bangkok will be exacerbated by delta subsidence and sea 
level rise, as well as future development in these areas, irrespective of whether future events are 
bigger due to climate change or not (Syvitski et al., 2009). 

Whilst application of the connectivity function metric is demonstrably useful, we also note that it is 
sensitive to slight differences in observed flood extent, particularly if those differences occur at 
locations that result in disconnection of one large flooded area from another. This can be seen with 
the comparison with the EO-1 image and MODIS. The lower resolution MODIS images are probably 
better as an overall representation of connectivity than the EO-1 image, as we know from field 
reports that most of the flooded areas are well connected through the extensive channel network. It 
is important to consider what flood connectivity is being measured, as even at higher resolution 
there will still be connectivity that is not in the observed image. This may make it unsuitable to 
compare a connectivity function from a hydrodynamic model, to a connectivity function from an 
observed flood extent as what is being compared is fundamentally different. The model may have 
missing processes which alter the resulting connectivity function, but the output has no missing 
data. In contrast, the observed flood extent has complete real-world connectivity, but may be 
missing data or have unobservable detail due to limitations in the observation method, which also 
resulting in an altered connectivity function.  

Geostatistical connectivity proved to be an easily applied tool and an objective way of assessing the 
large datasets assembled for this study. The sensitivity of the method does make it useful in 
comparing different processing techniques, where comparisons are relative to the baseline dataset. 
For example, this means that the method may also be useful for comparing the effect of different 
Digital Elevation Models (DEMs) resampling techniques on connectivity. It may also be a useful way 
of assessing the importance of the implementation of the 4 or 8 way connectivity used in different 
hydrodynamic models. Direction of analysis is also important for the application of the connectivity 
function and here the N-S orientation allowed a straightforward assessment. If the orientation is not 
clearly orthogonal, the diagonal connectivity function results will need to be used or a rotation of 
the grid applied for even more flexibility. Finally, although we confined our analysis here to the 
overall study area, the connectivity function of different parts of the floodplain could also be usefully 
compared, such as left and right bank. Resampling tests with the EO-1 image show some sensitivity 
of the method in application to different scales, even from the same dataset. This undermines the 
use of geostatistical connectivity as a scale independent tool, however, this sensitivity may be more 
related to the gridded data structure and resampling methods than the connectivity function itself 
and will require further investigation.  

 

4.2 Data quality 
A pre-processed, global, regular and low latency dataset like the MODIS flood product has real 
potential to help monitor and understand complex large scale flood dynamics. Much has been said 
on this in other papers (e.g.Brakenridge and Anderson, 2006; Brakenridge et al., 2012) and the focus 



here is on attempting to understand the issues related to using the data to study the detailed spatio-
temporal connectivity of a globally important (in terms of damage and loss of life) flood. A key 
finding in terms of the quality of the product is that missing data is a significant issue when assessing 
detailed dynamics through an event. This issue with MODIS data is not a new one and is well 
documented on the NASA download website. However, our biggest criticism of the original 
vectorised product is that there was no indication of where data were missing, so it was not clear 
whether a location was dry or just missing data. This has been recognised and explicitly addressed by 
the provision of a new raster dataset product, available since March 2012, which flags missing data 
(MODIS Water Product, MWP). Also for users more interested in the overall extent rather than 
detailed dynamics, composited data over a longer period avoids some of these data gap problems.  

Even with the data gap issues we encountered, at the scale of the event being studied, the MODIS 
product data captures the changing flood extent dynamics. Given the high cloud cover, particularly 
during the early part of the event, it was impressive that MODIS managed to resolve any flood 
information at these points.  However, these clouds still resulted in long gaps in the data when trying 
to assess the development of the connectivity on a daily basis. Even low cloud days showed 
inconsistent discontinuities in connectivity that could be related to the edges of the flooded areas 
upon examination of the gap structure. This was identified as likely to be related to a pixel changing 
from wet to dry and back again as it alternates either side of a MODIS processing threshold. Other 
than a detailed study of the method of generating the wet/dry mask, we will still need to allow for 
this characteristic.  

We have shown that aggregating data to allow for gaps can be useful but can lead to overestimation 
of the flood extent and an averaging of the daily dynamics that are of interest here, particularly 
when the aggregation period becomes overly large for the scale of event (i.e. two weeks for 
Bangkok). We implemented a more subtle method of filling the gaps in the data based on a basic 
assumption related to flood processes, namely that an area will not usually oscillate between wet 
and dry repeatedly. The gap fill method is constrained by the information content of the original 
dataset spatially and so does not artificially combine different spatial areas that are not flooding at 
the same time, like the aggregation method, i.e. the gap fill method is more true to the observed 
dynamics. The size of gap, measured in days, which can be reliably filled with this method will be 
dependent upon the type and duration of the event and how much original data there are. In this 
event, the allowable gap size could tend towards the higher end due to the extensive flooding, and 
the long and slow dynamics. An objective method of choosing an appropriate gap length for the fill 
method and assessing the improvement in quality of the resulting time series would require access 
to an independent dataset that provides high quality data for cloudy days, such as high resolution 
SAR or ground based survey. 

  



5 Conclusions 
The connectivity for a large scale flood event has been quantified using a geostatistical method 
applied to a daily remote sensing MODIS product. The connectivity function has been shown to be a 
reliable and objective method of assessing surface water flood connectivity. The method can be 
sensitive to small areas of missing data, however, within the same dataset and with a sufficiently 
robust and thorough analysis, this makes geostatistical connectivity a useful tool for relative 
comparison of different processing methods. Comparing connectivity of extent data for the same 
time and location, from different instruments with a large disparity in spatial resolution (MODIS & 
EO-1) shows that differences in how the flooded area is resolved resulting in fundamentally different 
connectivity functions, despite the two products showing similar flooded area (4% difference). This 
implies that using geostatistical connectivity for comparison between different data types, for 
example observed and modelled extent, will require further investigation to fully understand the 
implications, particularly if there is a difference in spatial resolution. 

 This study demonstrates that the MODIS surface water product is a valuable dataset for assessing 
observed flood dynamics for spatially and temporally large scale events. Provided that allowance is 
made for the missing data due to clouds and other factors, it can provide useful information. 
Analysis of the structure of the gaps within the MODIS product, rather than just the data can lead a 
useful understanding of the quality of the data for a given event and can suggest how best to allow 
for those gaps. The gap filling method implemented here is a better method for filling the MODIS 
data gaps than a simple aggregation, as it better preserves the dynamic information of the event 
while resulting in a complete daily dataset for analysis. 

The results of the connectivity analysis demonstrate a clear structure to the dynamics of the event 
through time and space. Connectivity changes continually throughout the event and the use of daily 
data allows us to study these dynamics in detail, revealing new insights into flood inundation 
processes, both for this particular event and perhaps more generally. Specifically, the effect of the 
passage of the flood wave is directly observable in the progression of out-of-bank flooding, 
increasing and decreasing connectivity dynamically along the river. During rising water, along river 
connectivity increases first, followed by an increase in connectivity into the floodplain. There are 
also sudden increases in connectivity correlated with a major levee breach. During recession, there is 
a rapid reduction in along river connectivity contrasted with a much slower decrease in the 
floodplain connectivity, as the flooded depressions gradually drained reducing flood depth while 
flood spatial extent remained static for long periods (60 days). Analysis of this recession threshold in 
the floodplain inundation indicates that although spatial flood extent changes are small at this time, 
there is a reorganisation of the internal connectivity within the overall flooded area. Through these 
quantified changes and thresholds in the connectivity, we can observe a clear structure to the flood 
event progression. These observations demonstrate new insights into flood event dynamics that 
were not anticipated a priori and also present the prospect that geostatistical connectivity may 
provide a new method for quantifying and studying flood inundation. 
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