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Summary:

The correct formation of primary cilia is central to the development and function of nearly all cells
and tissues. Cilia grow from the mother centriole by extension of a microtubule core, the axoneme,
which is then surrounded with a specialized ciliary membrane that is continuous with the plasma
membrane. Intraflagellar transport moves particles along the length of the axoneme to direct assembly
of the cilium and is also required for proper cilia function. The microtubule motor, cytoplasmic
dynein-2 mediates retrograde transport along the axoneme from the tip to the base; dynein-2 is also
required for some aspects of cilia formation. In most cells, the Golgi lies adjacent to the centrioles and
key components of the cilia machinery localize to this organelle. Golgi-localized proteins have also
been implicated in ciliogenesis and in intraflagellar transport. Here, we show that the transmembrane
Golgi matrix protein giantin (GOLGB1) is required for ciliogenesis. We show that giantin is not
required for the Rab11-Rabin8-Rab8 pathway that has been implicated in the early stages of ciliary
membrane formation. Instead we find that suppression of giantin results in mis-localization of the
intermediate chain of dynein-2, WDR34. Highly effective depletion of giantin or WDR34 leads to an
inability of cells to form primary cilia. Partial depletion of giantin, or of WDR34, leads to an increase
in cilia length consistent with the concept that giantin acts through dynein-2. Our data implicate

giantin in ciliogenesis through control of dynein-2 localization.
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Introduction:

Primary cilia are required for many aspects of development (Drummond, 2012) and aberrant cilia
formation or function underlies many disease states (Tobin and Beales, 2009). The formation and
function of primary cilia are entirely dependent on a coordination of membrane and cytoskeletal
dynamics. The microtubule motor protein cytoplasmic dynein-2 is one of the principal drivers of
intraflagellar transport (IFT) (Ishikawa and Marshall, 2011). Dynein-2 is built around the specific
dynein heavy chain, DHC?2, also called DHC1b (gene name DYNC2H1). DHC?2 is widely expressed
in ciliated epithelial cells and its expression level increases during ciliogenesis (Criswell et al., 1996).
In Chlamydomonas, dynein-2 knockout leads to the formation of very short flagella that fail to extend
(Pazour et al., 1998; Pazour et al., 1999; Porter et al., 1999; Hou et al., 2004). In Tetrahymena dynein-
2 is not required for ciliogenesis per se but for proper ciliary length control (Asai et al., 2009;
Rajagopalan et al., 2009). Dynein-2 knockout in several other organisms including mice causes major
defects in cilia formation (Rana et al., 2004; Huangfu and Anderson, 2005; May et al., 2005).
Additional subunits co-assemble with DHC2 to produce a functional dynein-2 motor. These include
the intermediate chain FAP133 (Rompolas et al., 2007) (WDR34 in humans, (Ishikawa and Marshall,
2011)), a specific light intermediate chain, D2LIC or LIC3 (Grissom et al., 2002; Perrone et al., 2003;
Hou et al., 2004), and the dynein light chains LC8 (Rompolas et al., 2007) and Tctex-1 (Palmer et al.,
2011). Dynein-2 has been shown to localize to the Golgi (Vaisberg et al., 1996) but is not required to
maintain normal Golgi morphology (Pazour et al., 1999; Hou et al., 2004; Palmer et al., 2009).

Other components of the ciliary machinery have also been localized to the Golgi. IFT20 localizes to
the Golgi, basal body and cilium (Follit et al., 2006); it is targeted there through an interaction with
GMAP210 (also called TRIP11) (Follit et al., 2008). GMAP210/TRIP11 itself is not directly required
for cilium formation in vitro (Yoshimura et al., 2007) or in vivo (Follit et al., 2008; Smits et al.,
2010), however, recent data (published while this manuscript was in revision) have implicated the
Caenorhabditis elegans ortholog of GMAP210/TRIP11 (called SQL-1) in the process of
intraflagellar transport (Broekhuis et al., 2013). GMAP210/TRIP11 is a member of the golgin family
of proteins that act in functional organization of the Golgi complex (Cardenas et al., 2009; Ramirez
and Lowe, 2009). The structure of the Golgi complex is highly ordered and is maintained in most
cells by the action of a series of Golgi matrix proteins that includes the golgins. One such golgin,
giantin, is a 300 kDa tail anchored membrane protein. Little is known about its function in cells but it
appears to act in maintenance of normal Golgi structure (Nizak et al., 2003). Its large rod-like
structure makes it an obvious candidate to form part of the "tentacular network" that likely functions

in docking of incoming vesicles from other compartments (Sinka et al., 2008).
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Given the links between GMAP210/TRIP11 and ciliary function, we sought to explore how the
structure and function of the early secretory pathway, including the Golgi, was linked to ciliogenesis.
Using RNA interference we found that the transmembrane Golgi matrix protein giantin (GOLGB1) is
required for ciliogenesis. In contrast the functionally related golgin GM130 was not required for cilia
formation. We show that giantin is required to maintain the pericentrosomal location of WDR34. Loss
of either giantin or WDR34 results in a defect in ciliary length control and ultimately in ciliogenesis,

likely because of defective retrograde intraflagellar transport.
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Results

We used RNA interference to suppress expression of the transmembrane Golgi matrix protein giantin
in cultured cells. We found that depletion of giantin from cells resulted in a dramatic failure of human
telomerase immortalized retinal pigment epithelial (WTERT-RPE1) cells to form primary cilia upon
serum starvation (Fig. 1A,B). Validation of the efficacy of suppression was demonstrated by
immunoblotting (Fig. 1C) and by immunofluorescence (Fig. 1D). Note that giantin siRNA #2 is much
less effective than #1. This difference is recapitulated in terms of the percentage of ciliated cells (Fig.
1E). It is important to note that in our hands, our most effective siRNA targeting giantin is as effective
as one against the Golgi-localized IFT component IFT20 which is itself known to be required for
ciliogenesis (Fig. 1E). Validation of IFT20 suppression is shown in Fig. 1F. The high variability of
results using siRNA #2 led us to test further siRNAs to validate this finding. Fig. 1G shows
immunoblots showing efficacy of two further siRNA duplexes targeting giantin (#2 and #4) and the
effects on cilia formation are shown in Fig. 1H. In addition, we validated the specificity of the giantin
depletion phenotype by simultaneous suppression and re-introduction of a siRNA resistant cDNA
(Fig. 2A, enlarged in 2B). Here, transient expression of FLAG-giantin only resulted in robust Golgi
localization in ~5% of transfected cells. However, in all cells with rim like Golgi labelling of FLAG-
giantin, we observed the formation of primary cilia in response to serum starvation. These data show
that giantin is required for ciliogenesis. In contrast, expression of [IFT20-GFP was not able to rescue
the ciliogenesis defect in giantin depleted cells (Fig. 2C, enlarged in 2D). Immunoblots showing
overexpression of IFT20-GFP as well as siRNA mediated knockdown of IFT20-GFP using an anti-
GFP antibody are shown in Fig. 1F.

We further validated this role for giantin in ciliogenesis with five different shRNAs (Fig. 3). Effective
suppression was demonstrated by immunofluorescence (Fig. 3A, quantified in 3B). These data also
demonstrate that targeting of GM 130 to the Golgi is not affected by giantin depletion (Fig. 3A). Four
of five shRNAs caused a significant reduction in giantin expression and a concomitant inhibition of
ciliogenesis. It is important to note that these data come from scoring ciliogenesis across a whole
experiment. If one looks on a cell-by-cell basis, this correlation between efficacy of knockdown and
failure of cells to generate cilia is much higher. By example, Fig. 3D shows cells with a robust
reduction in giantin expression fail to extend an axoneme. We also repeated these experiments in pig
kidney epithelial cells (LLC-PK1) that generate primary cilia on reaching confluence and do not
require serum starvation (supplementary material Fig. S1). Here, four siRNA duplexes targeting Sus
scrofa giantin are all effective as determined by immunoblotting and as shown for two of these, result

in a strong inhibition of ciliogenesis (Fig. S1C).
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To determine whether the role for giantin in ciliogenesis was specific, we depleted cells of GM130
(supplementary Fig. S2), another golgin that acts in combination with giantin in docking and fusion of
transport vesicles at the early Golgi (Sonnichsen et al., 1998; Seemann et al., 2000; Alvarez et al.,
2001). Supplementary figures S2A and S2B show that depletion of GM 130 using two independent
siRNA duplexes was effective. GM130 depletion does not affect expression or localization to the
Golgi of giantin. Golgi structure is perturbed as shown by GalT and giantin labelling (supplementary
Figs. S2B and S2C) but ciliogenesis is not affected (supplementary Fig. S2D, quantified in S3E). Cilia
length is also unaffected (supplementary Fig. S2F).

Previous work has characterized a Rab11-Rabin8-Rab8 pathway that acts at these earliest stages of
ciliogenesis (Westlake et al., 2011). We sought to determine whether giantin was involved upstream
of this endosomal network. Fig. 4A shows that giantin depletion affects the early phase of ciliogenesis
detectable following only 1-2 hours of serum withdrawal. Fig. 4B,C show that despite a robust effect
on ciliogenesis, depletion of giantin did not affect the accumulation of Rabin8 around the centrosome.
Rabl11A and Rab11B were depleted as a positive control and, as expected, effectively inhibited the
centrosomal localization of Rabin8. Cells in this experiment show lower levels of cilia formation
since these cells, stably expressing GFP-Rabin§, were grown at 50-70% confluence and starved for

only 1 hour to visualize the earliest stages of cilia formation.

Overall, in our hands, giantin depletion causes a reproducible loss of cilia but typically 30-40% of
cells remain ciliated. In this population, notably those transfected with siRNA duplex #1, we
consistently noted an elongation of remaining cilia. Quantification (Fig. 5A, B) shows that depletion
of giantin with siRNA #1 resulted in a statistically detectable elongation of cilia compared to controls.
Fig. 5A shows the proportion of ciliated cells from the same data set used for Fig. 5B. This was not
detected in cells transfected with siRNA #2 which is less effective (Fig. 1) but is consistent with a
partial depletion of giantin resulting in elongated cilia. A whole animal knockout for giantin exists in
the form of the ocd/ocd rat. This rat has an insertional mutation in the GOLGBI1 (giantin) gene
(Katayama et al., 2011) that results in premature termination and loss of the majority of the protein
coding region including the C-terminal membrane anchor sequence. The ocd/ocd rat has severe
skeletal abnormalities associated with osteochondrodysplasia (Suzuki et al., 1988; Katayama et al.,
2011) as well as severe kidney abnormalities (Kikukawa et al., 1989), systemic oedema, and gross
defects in extracellular matrix secretion and assembly (Kikukawa et al., 1990; Kikukawa et al., 1991a;
Kikukawa et al., 1991b; Kikukawa and Suzuki, 1992; Katayama et al., 2011). Fig 5C,D show that
fibroblasts from ocd/ocd rats generated cilia following serum starvation to the same degree as controls
(29% ciliated cells). Cilia >3.5 um are only seen in ocd/ocd cells and these show an increase in mean

cilia length (2.24 +/- 0.86 um) compared to controls (2.10 +/- 0.54 um), however there was no
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statistically detectable difference overall (Fig. 3E). While these data suggest that giantin might not be

essential for ciliogenesis in vivo, they are consistent with a role in ciliary length control.

In our search for a mechanistic explanation for the role of giantin in cilia function, we examined its
role in a number of processes at the Golgi and centrosome (supplementary material Fig. S2). As seen
following shRNA depletion of giantin (Fig. 3A), siRNA mediated suppression of giantin did not
affect localization of GM 130 (supplementary material Fig. S3A). Similarly, expression and
localization of GMAP210/TRIP11 (supplementary material Fig. S3B), or of galactosyltransferase T
(not shown) to the Golgi was unaffected. Giantin is also not required for localization of ODF2 to the
mother centriole (supplementary material Fig. S3C), its depletion does not affect steady-state actin
organization (supplementary material Fig. S3D), or affect polarization of the centrosome and Golgi

following scratch wounding (supplementary material Fig. S3E).

Obvious candidates for control of cilia length are the microtubule-based motors that act in
intraflagellar transport. Indeed, our previous work has shown that siRNA depletion of dynein-2
components results in an increase in cilia length (Palmer et al., 2011), similar to that seen here (Fig.
5B). Therefore, we examined the localization of WDR34, the intermediate chain subunit of dynein-2.
Consistent with the known role for dynein-2 in other systems, WDR34 localizes at steady state to
pericentriolar material (Fig. 6A, arrows). We then depleted cells of WDR34 using siRNA
transfection. Depletion of WDR34 was verified by immunofluorescence (Fig. 6A-C) and
immunoblotting (Fig. 6D). As we observed following giantin depletion, the ciliogenesis defect in
WDR34 depleted cells was not complete (Fig. 6E) but was very similar to depletion of giantin in that
remaining cilia were significantly longer than in control cells (Fig. 6F). As shown in Fig. 6C, the level
of depletion of WDR34 correlates with the ability of cells to form primary cilia (compare insets). We
then found that giantin is required to maintain the localization of the dynein-2 intermediate chain
subunit WDR34 to the pericentrosomal region (Fig. 6G, quantified in 6H). We noted here that the
level of giantin suppression correlated well with pericentrosomal localization of WDR34 (compare
the two insets in the lower panels of Fig. 6I). Quantification of these data confirmed this correlation
(Fig. 6J). Despite extensive efforts, we have not been able to detect any interaction between giantin

and WDR34 by co-immunoprecipitation.
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Discussion

Our findings are consistent with known functions of dynein-2 in the formation of primary cilia and in
controlling axoneme length through IFT (Criswell et al., 1996; Pazour et al., 1999; Porter et al., 1999;
Signor et al., 1999; Grissom et al., 2002). Length control in primary cilia has been linked to several
developmental disorders, for example mutations in mks-3 (Tammachote et al., 2009) or nek-8 (Sohara
et al., 2008) lead to cilium elongation and polycystic kidney disease. Severe ciliopathy phenotypes
without overt morphological defects in cilia have been seen in both animal models (including deletion
of IFT-B component IFT80 (Rix et al., 2011)) and patient groups (such as those with mutations in
DYNC2H1 (Schmidts et al., 2013)).

GMAP210/TRIP11 is required to maintain the localization of IFT20 to the Golgi (Follit et al., 2008),
thereby implicating GMAP210/TRIP11 in ciliogenesis. More recent data have implicated
GMAP210/TRIP11 in the control of cilia length, perhaps through stabilization of IFT complexes
(Broekhuis et al., 2013). A second mouse model has been characterized with severe skeletal defects
resulting (at least in part) from an intracellular accumulation of perlecan (Smits et al., 2010).
Significantly, this work also showed that achondrogenesis type 1A in humans was also caused by
mutation of GMAP210/TRIP11. The key difference here is that while animal models with defects in
either giantin or GMAP210/TRIP11 show skeletal defects, only giantin appears to be required for
ciliogenesis in vitro (Yoshimura et al., 2007). GMAP210/TRIP11 is also not required for localization
of giantin to the Golgi (Follit et al., 2008). Further work will be essential to dissect the contributions
of giantin to extracellular matrix deposition, skeletogenesis and ciliary trafficking, processes that are

known to be linked (Huber and Cormier-Daire, 2012).

In our experiments, robust knockdown of giantin leads to a failure to produce cilia (at least as defined
by immunofluorescence). Incomplete suppression of giantin, or indeed of WDR34, leads to elongated
cilia, suggesting a failure of length control. Parallels can be drawn here to animal knockouts of
dynein-2 subunits. In mouse, dynein-2 light intermediate chain knockout results in both loss of cilia
and defects in those that remain (Rana et al., 2004). Knockout of DHC2 leads to deformed cilia rather
than a defect in their formation per se (Huangfu and Anderson, 2005; May et al., 2005). These data
suggest complex roles for dynein-2 (and by inference giantin) in ciliogenesis that could differ
depending on species, or tissue context. It is therefore perhaps less surprising that we do not see a

gross ciliogenesis defect in the ocd/ocd rat cells.

Giantin depletion causes a moderate dispersion of Golgi membranes concomitant with the defect in

ciliogenesis. Other perturbations that disrupt Golgi structure do not result in ciliogenesis defects (such
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as depletion of dynein-1 subunits, see (Palmer et al., 2009; Palmer et al., 2011) and so we do not infer
that Golgi structure is linked to ciliogenesis per se. Others have suggested that the connection between
the Golgi and centrosome is required for ciliogenesis (Hurtado et al., 2011) but in this case, disruption
of Golgi structure through expression of AKAP450 constructs does not always correlate with a defect
in ciliogenesis. Indeed, giantin suppression does not significantly disrupt the connection between
Golgi and centrosome. Nor is giantin required for cell polarization in response to scratch wounding
which is also linked to Golgi-centrosome coupling (Hurtado et al., 2011). Furthermore, we show here
that the disruption in Golgi structure caused by depletion of GM130 has no effect on the ability of

cells to form or control the length of primary cilia.

Controlling dynein-2 stability and/or localization at the Golgi complex could provide a mechanism to
link axoneme initiation to membrane dynamics at the Golgi. Alternatively, giantin could simply serve
as a platform for assembly of dynein-2 or of IFT particles prior to delivery to the cilium. As an
alternative to this more passive role it remains possible that giantin, as both a transmembrane
component of the Golgi and also one that localizes to the cis and medial cisterna, could link “early”
membranes of the Golgi to ciliogenesis through selective delivery of cargo. Other data have suggested
such specific transport routes for at least some cargo to the cilium including polycystin-2 (Hoffmeister
et al., 2011). Whether giantin plays a direct role in vectorial membrane trafficking to the newly
forming cilium, tethers membranes to centrioles via dynein-2, or acts in further as yet undefined ways

remains to be defined.
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Experimental Procedures

All reagents were purchased from Sigma-Aldrich (Poole, UK), unless otherwise stated. Antibodies
used: rabbit polyclonal anti-giantin (PRB-114C), mouse monoclonal anti-GFP (MMS-118P) and
rabbit polyclonal anti-pericentrin (PRB-432C) (all from Covance, California, USA); mouse
monoclonal anti-giantin ((ab37266) Abcam, Cambridge, UK); mouse monoclonal anti-GM130
((610822) BD Biosciences, Oxford, UK); rabbit polyclonal anti-lamin A/C ((2032) Cell Signaling
Technologies, Hitchin, UK) and mouse monoclonal anti-a-tubulin ((MS-581-PCL) Neomarkers,
Fremont, CA, USA). Cy™2-conjugated donkey anti-mouse (715-225-151) and Cy' "'3-conjugated
donkey anti-rabbit (711-165-152) were from Jackson ImmunoResearch (Baltimore, MD, USA).
IRDye 800CW donkey anti-mouse (926-32212), IRDye 680 donkey anti-rabbit (926-32223) were
from Licor (Cambridge, UK). Alexa-568-phalloidin was from Molecular Probes (Paisley, UK).
Transfections, immunoblotting, immunofluorescence and cell imaging were performed as described
previously (Townley et al., 2008). Immunblots in Fig. 1 were developed using ECL (GE Healthcare,
Cardiff, UK) and those in Figure 4 using a Odyssey Sa imager (Licor, Cambridge, UK).

RNA interference-mediated gene suppression
siRNA duplexes were purchased from MWG-Eurofins (Ebersberg, Germany) or Sigma-Aldrich
(Poole, UK). Targeted depletion of genes of interest was exacted with the following oligonucleotide
duplexes. Giantin was depleted in RPE1 cells with Giantin siRNA #1
(ACUUCAUGCGAAGGCCAAATT), Giantin siRNA #2 (AGAGAGGCUUAUGAAUCAATT),
Giantin siRNA #3 (GGAAGAGAGAAAAGCUGCU, described in (Kim et al., 2010)) and Giantin
siRNA #4 (ACUUCAUGCGAAGGCCAAAULU, described in (Nizak et al., 2003)). Giantin was
depleted from pig kidney epithelial cells (LLC-PK;) using the following siRNA duplexes: Ss-
GolgB1-a (GAAGCUACAGGAAGUAUUA), Ss-GolgB1-b (AGAGAGGCUUAUGAAUCAA), Ss-
GolgB1-c (GUUCAGUGAUGCUAUUCAA) and Ss-GolgB1-d (UCACAUGUGUACCGAGGUA).
GMAP210/TRIP11 was targeted with the following sequence (GCCAGAGACAAUCUAGCAC) and
IFT20 with the following duplex (GGAAGAGUGCAAAGACUUU), both described in (Yoshimura
et al., 2007). GM130 was depleted using siRNA duplexes #1 (AAGUUAGAGAUGACGGAACUC)
and #2 (AUGAGAACAUGGAGAUCACC). Duplexes for suppressing WDR34 were (#1)
SASI Hs01 00038845 (GAUGGUGUCUUGUCUGUAU), (#2) SASI Hs02 00361525
(GCUGUUUGAUCUCCAGAAA) and (#3) (UCCGAGAGCUGAACAAGAA). GL2
(CGUACGCGGAAUACUUCGAUU) and lamin A/C (CUGGACUUCCAGAAGAACA) were used
as negative and positive controls respectively. Giantin was stably suppressed in RPE-1 cells using
lentiviral particles (Mission shRNA) from Sigma-Aldrich with clone identifiers of (TRCNO0000)
146702, 147571, 147752, 147837, and 147838. For siRNA, cells were transfected using a modified

10
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calcium phosphate protocol (Watson and Stephens, 2006). For ciliogenesis experiments cells were

serum starved for the last 24 h of this 72 h period.

Ciliogenesis Assays
Confluent hTERT-RPEI cells were washed twice with PBS to remove serum and incubated at
37°C/5% CO,/24-48 h in serum-free medium to induce cell cycle exit and subsequent cilium
assembly. LLC-PK1 cells were grown to confluence and then cultured a further 24-48 h without
serum starvation to induce ciliogenesis. Cells were fixed and typically labelled with anti-acetylated

tubulin to mark primary cilia. Cilia lengths were measured using Imagel.

Rabin8 trafficking
RPE cells stably expressing GFP-Rabin8 (Westlake et al., 2011) were starved for 1 h followed by live
epifluorescence imaging using a 63x oil objective. GFP-Rabin8 accumulation was quantified from
time-lapse image series (1 frame/sec for 5 seconds) to help visualize vesicular pools of Rabin8
accumulating at the pericentriolar region of cells. Data are representative of three separate
experiments. Error bars indicate SD. Statistical analysis was by one-way ANOVA with Bonferroni’s

post hoc test.

11
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Figure legends

Fig. 1: Giantin is required for ciliogenesis. (A, B) Cells were transfected with either control (A,
GL2) or giantin (B, Giantin siRNA #1) siRNAs to suppress expression of giantin and serum starved
for 24 hours. Cells were immunolabelled for giantin and acetylated tubulin and images acquired at the
same settings for each slide. Boxed regions are enlarged in the lower panels; the lower box in the Gi
#1 suppression panels shows a contrast enhanced version to highlight the remaining giantin. Bar = 10
um. (C) Immunoblots showing effective suppression of giantin and lamin A/C as indicated. a-tubulin
serves as a loading control. (D) Immunofluorescence showing effective suppression of giantin using
siRNA #1 and #2. (E) Quantification of the percentage of ciliated cells following depletion of giantin
or IFT20. (F) Immunoblotting with an anti-GFP antibody shows overexpression of IFT20-GFP and its
effective suppression by siRNA. (G) Validation of suppression of giantin using siRNA transfection
with additional independent siRNAs. (H) All four giantin siRNA duplexes result in statistically
detectable reduction in ciliogenesis (n=3 independent labelling experiments on the same population of
labelled cells; * indicates p<0.01 using ANOVA with Dunnett’s post-hoc test). Note that results in
panels C-E comes from the same set of experiments. Results in E and F are from a distinct set of three
independent experiments. Giantin siRNA #2 gives a more variable level of suppression yet on average

still results in a decrease in ciliogenesis.

Fig. 2: Expression of FLAG-giantin but not IFT20-GFP rescues the ability of giantin depleted
cells to form primary cilia. (A) The defect in ciliogenesis (acetylated tubulin in red) is rescued by
expression of FLAG-giantin (green). (B) Shows enlargements from the boxed regions in (A). Note the
clearly defined rim-like labelling of the Golgi with FLAG-giantin and the presence of primary cilia in
these cells. (C, boxed regions enlarged in D) IFT20-GFP expression does not rescue the ability of
giantin depleted cells to form primary cilia. 50 cells were examined that showed localization of

IFT20-GFP to the Golgi and none contained a primary cilium. Bars = 10 pm.

Fig. 3: Stable suppression of giantin in \TERT-RPET1 cells using short hairpin RNAs. (A)
Immunofluorescence shows loss of giantin (green) while GM130 (red) remains localized to the
enlarged and more dispersed Golgi. (B) Quantification of loss of giantin in stably depleted cells. All
five shRNAs show a statistically detectable reduction in giantin labeling. (C) Stable suppression of
giantin expression results in defects in ciliogenesis (examples are shown only from shRNAs #1 and
#2. There is no statistically detectable difference between shRNA #4 and control. (D) Cells showing
the most effective depletion of giantin fail to generate primary cilia in response to serum withdrawal.

Bars = 10 um.
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Fig. 4: Giantin is required during the early stages of ciliogenesis independent of the Rab11-
Rabin8-Rab8 pathway. (A) Wild-type or giantin depleted cells were serum starved and the
emergence of the cilium measured using acetylated tubulin. (B) Depletion of giantin, unlike that of
Rabl11 A and B, does not disrupt the centrosomal accumulation of Rabin8. (C) Validation of

inhibition of ciliogenesis in those cells evaluated in (B).

Fig. 5: Giantin is required to maintain cilia length but is not required for ciliogenesis in vivo.
(A) Giantin depletion results in a partial reduction in the number of ciliated cells. (B) The length of
the remaining cilia from those experiments in (A) was measured. Note the statistically significant
increase in cilia length with giantin siRNA #1. (C) Fibroblasts from wild-type rats or (D) ocd/ocd rats
were serum starved for 24 hours and immunolabelled to detect acetylated tubulin. (E) Quantification
of cilia length in wild-type versus ocd/ocd fibroblasts. No statistical difference was detected using a

Mann-Whitney test but cilia >3.5 pm are only seen in ocd/ocd rat cells.

Fig. 6: WDR34 is required for ciliogenesis. Cells were transfected with siRNA duplexes to suppress
WDR34. (A-C) Silencing of WDR34 (red) causes a defect in ciliogenesis (acetylated tubulin
labelling, green). Boxed regions show enlargements. Note that in (C) the lower inset illustrates that a
robust loss of WDR34 correlates with a failure to form cilia. The upper box shows that those cells that
are less effectively suppressed still retain the ability to form primary cilia and that these remaining
cilia are longer than controls (compare with (A)). (D) Immunoblotting of WDR34 depleted cells and
lamin A/C depleted control, a-tubulin is used as a loading control. (E) Quantification of the
ciliogenesis defect on WDR34 suppression. Asterisks indicate statistical significance (p<0.01) using
ANOVA with Dunnett’s post-hoc test. (F) As seen in (C), remaining cilia in WDR34 depleted cells
were significantly longer than in control cells. (G) The typical pericentrosomal accumulation of
WDR34 seen in control cells (arrows) is lost on suppression of giantin. (H) Quantitation of loss of
pericentrosomal WDR34 in giantin depleted cells. Asterisks indicate p<0.01 from ANOVA with
Dunnett’s post-hoc test comparing samples to the GL2 control. (I) Images show that the level of
giantin remaining in cells correlates well with the pericentrosomal accumulation of WDR34. Insets to
the lower panels illustrate how very low effective suppression of giantin results in a near complete
loss of detectable WDR34 (arrowhead), while a less effective suppression of giantin correlates with
some faint but detectable pericentrosomal WDR34 labelling (arrow). (J) Quantification shows that the
level of expression of giantin correlates well with the pericentrosomal accumulation of WDR34 (red
dots indicate control, blue dots giantin depleted cells. The correlation (grey line) is significant

(Spearman’s correlation, p=0.016; Pearson’s correlation p=0.036). Bars (all panels) = 10 pm.
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Legends to supplementary figures.

Supplementary Figure S1: Giantin is required for the formation of primary cilia in LLC-PK1 pig
kidney epithelial cells. These cells form prominent primary cilia on reaching confluence and do not
require serum starvation. (A) Effective depletion of giantin in LLC-PK1 as assessed by
immunoblotting. (B) Deletion of giantin results in defective ciliogenesis. (C) Quantitation of

ciliogenesis defect in giantin depleted LLC-PK1 cells. Bars = 10 pm.

Supplementary Figure S2: Suppression of GM130 in hTERT-RPEL cells. (A) Immunoblotting
shows effective suppression of GM130 using two independent siRNA duplexes. (B) Effective
suppression is also shown by immunofluorescence. Targeting of giantin to the Golgi is unaffected. (C)
Localization of GalT and giantin shows that the Golgi structure is disrupted. (D) The ability of
GM130-depleted cells to form primary cilia is unaffected. (E) Quantitation of ciliogenesis in GM130-
depleted cells. (F) GM130 depletion does not affect cilia length. Bars = 10 pm.

Supplementary Figure S3: Giantin suppression in hTERT-RPEL cells does not affect localization of
(A) GM130 or (B) GMAP210/TRIP11 to the Golgi. The inset in (A) shows a contrast adjusted version
to demonstrate that some giantin remains. (C) Localization of ODF2/cenexin to the mother centriole
does not require giantin. (D) Giantin suppression has no obvious effect on the organization of
filamentous actin, or (E) Golgi or centrosome reorientation following scratch wounding of confluent

monolayers.
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