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Dynamic transconductance dispersion measurements coupled with device physics 

simulations were used to study the deep level acceptor center in iron-doped 

AlGaN/GaN high electron mobility transistors (HEMTs). From the extracted 

frequency dependent trap-conductance, an energy level 0.7eV below the conduction 

band and a capture cross section of 10-13 cm2 were obtained. The approach presented 

in this work avoids the non-equilibrium electrical or optical techniques that have been 

used to date and extracts the device relevant trap characteristics in short channel 

AlGaN/GaN HEMTs. Quantitative prediction of the trap induced transconductance 

dispersion in HEMTs is demonstrated. 
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GaN-based high electron mobility transistors (HEMT) deliver highly promising 

performance in high-power switching, RF, and microwave applications. To achieve such 

performance short channel effects are commonly controlled via the introduction of deep level 

acceptors1. The introduction of Fe or C, for example, prevents punch-through, buffer leakage 

current and provides insulation and carrier confinement2,3. However, the beneficial effect of 

such intentional doping can be deleterious in terms of electrical performance in some 

circumstances causing an increase in on-resistance under transient conditions, or a DC-RF 

dispersion (or current-collapse) in microwave devices limiting the available current and 

output power4,5,6,7. Despite the fact that Fe is now widely used during growth of GaN buffer 

layers for HEMTs, knowledge about its detailed trap characteristics is surprisingly still 

sparse. So far, only non-equilibrium electrical and optical techniques on GaN layers have 

been used to study this trap center, reporting energy levels for the Fe2+/Fe3+ in the range 

between 0.28 eV and 1 eV below the GaN conduction band8,9,10. However, the trap level 

which is normally important for transistor operation is that which is determined under 

equilibrium conditions. A common approach for the determination of trap response time is 

the conductance technique11
 or related approaches12. These normally rely on capacitance 

measurements, but cannot be straightforwardly used either in short channel HEMT devices 

due to the small capacitance or in large area devices due to the lateral channel resistance13. 

In this work we take advantage of the dynamic transconductance dispersion technique14 that 

has been recently proven to be a powerful tool to extract trap details in AlGaN/GaN HEMTs 

in quasi-equilibrium conditions15,16. In particular, Fe trap characteristics are determined using 

short-channel devices for a range of buffer Fe doping concentrations. 

Fe-doped AlGaN/GaN HEMTs with 4µm source-drain gap, 0.25-µm channel length, and 

silicon nitride passivation were studied. The epitaxial layer structure was grown by metal-
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organic vapor phase epitaxy and had a 26-nm Al0.22Ga0.78N barrier, a 1.9 µm  GaN layer, and 

an AlN nucleation layer on a semi-insulating 4H-SiC substrate.  Intentional iron doping was 

implemented during GaN growth by a surface segregation mechanism17 with three residual 

channel concentrations, namely ~7x1015 cm-3, ~3.6x1016 cm-3, and ~1.5x1017 cm-3, denoted in 

the following as low-, medium- and high-Fe, respectively. Fig. 1 shows a secondary ion mass 

spectroscopy (SIMS) analysis for the three different wafers. The iron density is constant in 

the bulk and then decreases exponentially towards the surface, once the Fe doping is switched 

off during growth at depths between 0.5 µm and 1.1 µm. Carbon contamination during 

growth was measured by SIMS for similar wafers to those used for device fabrication and 

was found to be below the background of a few times 1016 cm-3, as can be seen in Fig. 1.   

For the dynamic transconductance measurement, the devices were operated in the sub-

threshold region to avoid the influence of the inversion layer capacitance and in the ohmic 

regime, with a drain bias of 50 mV, to probe the whole gated channel area. The drain current 

was measured with a low noise current to voltage converter and the dynamic 

transconductance dispersion measurements have been performed with a frequency response 

analyzer in the range 1 Hz – 10 kHz and with different base plate temperatures.  

The dynamic transconductance dispersion technique probes traps below the gated region of 

the device relying on a direct correlation between the inverse of the imaginary part of the 

transconductance and the trap conductance through Gp/ω=-IdqCb(kT)-1Im(1/gm) where Id is 

the drain current, q is the elementary charge, Cb is the AlGaN barrier capacitance, k the 

Boltzmann constant, and T the temperature in Kelvin and the device is operated below pinch-

off13,14. The resulting trap conductance amounts to a measurement of the dispersion or loss in 

the transconductance, with observed phase angles of up to a few degrees and a system 

resolution of better than 10-1 degree. The technique is sensitive to traps within a few kT/q 

around the Fermi level, avoiding unwanted trapping phenomena and associated transient 
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effects during measurement. Discrimination between buffer and interface traps is also 

possible by studying the bias dependence of the conductance. As opposed to buffer traps that 

do not show any bias dependence, interface states would show a strong variation of the 

electron concentration with bias and hence would show a resulting change in response 

frequency11. The ability of this technique to discriminate between such traps avoids 

misleading interpretations associated with false trap-related signatures from different 

locations in the device18. More details on the technique can be found in Ref. 14. 

Simulations were performed with the Silvaco ATLAS code considering an AlGaN/GaN 

HEMT with the same dimensions as the measured devices. The net charge at the AlGaN 

surface was set to zero corresponding to full compensation of the surface polarization charge 

by surface donor states, and the polarization charge at the AlGaN/GaN interface and GaN 

mobility were adjusted to give reasonable agreement with the DC transconductance and 

pinch-off voltage. Self-heating and impact ionization were not implemented, which is 

justified due to the low currents and low fields applied during the measurements, as was gate 

tunneling, excluding all surface or gate related effects. Shockley-Read-Hall and Fermi-Dirac 

statistics were enabled. The buffer Fe doping profile was varied according to Fig. 1, and as in 

reference 4, 1015 cm-3 shallow compensating donors were included in all cases representing 

the effect of background contamination by species such as Si.  

Figure 2 illustrates the trap conductance Gp/ω for a representative high Fe-doped device for 

different baseplate temperatures. The Gp/ω exhibits a loss peak around 10 Hz at 293 K. From 

the shift of the Gp/ω peak with temperature an activation energy, EA, of ~0.7 eV was 

determined, (inset of Fig. 2). The capture cross section was estimated at room temperature to 

be ~4x10-13cm2  through the relation σ=1/(Nbvtτ) where Nb=Ncexp(-EA/kT) is the carrier 

concentration in the bulk with Nc the density of states in the GaN conduction band, vt=2x107
 

cm·s-1 is the thermal velocity, and assuming a uniform energy distribution of traps the 
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characteristic time τ=1.98/(2πfpeak) with fpeak the Gp/ω peak frequency value11. As shown in 

Fig. 2 the conductance peak shape agrees well with the commonly used Lehovec theoretical 

model representing the conductance Gp/ω for a continuum of trap energy levels where the 

trap areal density and the time constant have been varied to achieve the fit11.  

Measurements were performed for AlGaN/GaN HEMTs with different buffer Fe 

concentrations, and are reported in Fig. 3. In the case of the high Fe concentration (Fig. 3a) 

the trap conductance was almost one order of magnitude higher than the lowest Fe density 

considered (Fig. 3c). The correlation with the iron doping concentration and the fact that no 

gate bias dependence to the peak frequency was observed implies that these are iron-related 

buffer traps rather than interface states. The trap activation energies extracted from the 

temperature sweeps of the three wafers were found to be all consistent and around 0.7 eV. 

This is within the range of 0.28 eV – 1 eV reported in the literature, however performed here 

on application relevant devices in a quasi-static way.  

Figure 3 illustrates the result of the ATLAS device simulation. A small-signal AC 

simulation was performed and the imaginary part of the transconductance was extracted from 

the transistor Y-parameters. Simulations captured the behavior of the measured dispersion 

using as input the iron doping profiles shown in Fig. 1, a common Fe energy level, 0.72 eV 

below the conduction band that leads to an activation energy of 0.7 eV, and capture cross-

section that best fits the conductance peak frequency as summarized in Table I. No further 

fitting parameters were used.  

TABLE I. Extracted activation energies and capture cross sections of Fig. 3 at 293K  

Low Fe Medium Fe High Fe  

Data Sim. Data Sim. Data Sim. 

Activation energy [eV] 0.72 0.7 0.66 0.7 0.68 0.7 

Capture cross section [cm2] 8x10-13 5x10-14 1x10-13 8x10-14 4x10-13 1x10-13 
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Good agreement was achieved for all the devices considered in this work. In particular the 

simulation accurately predicted the magnitude of the dispersion confirming the physical 

mechanism at the root of the phenomenon and the trap modeling technique. All the 

simulations were performed under the assumption of fully active iron doping and given the 

excellent agreement to the data we can infer that the iron in and near the device channel is 

mostly active in contrast to reference 19 where a compensation ratio of 34% was found.   

The measurement probes the Fe doping concentration where the Fermi level crosses the 

iron level in the buffer. Figure 4 shows the simulated GaN conduction band and the iron 

acceptor trap level of 0.72 eV below the conduction band for the three iron concentrations as 

a function of the depth below the AlGaN layer. This figure is plotted for a common drain 

current of 10-6 A and at 293 K to enable easy comparison. The Fermi level crosses the Fe 

level at different bias dependent depths: the low, medium, and high Fe concentration sampled 

at depths of 200 nm, 95 nm, and 55 nm, respectively. The measured variation in dispersion 

magnitude seen in Fig. 3 is fully consistent with this doping concentration variation.  

Simulations were also carried out using an active carbon concentration of 1016 cm-3 in line 

with Fig. 1 and no shallow compensating donors, so that the Fermi level was pinned deep in 

the bulk of the GaN near the C level which is reported to be 0.9 eV above the valence band20. 

This still resulted in a very similar Fe-trap response. The reason why the Fe related response 

appears to be broadly unaffected by low densities of these other impurities is that the Fermi 

level must always cross the Fe trap level in the bulk of the GaN and thus will always respond 

to the AC excitation.   

The Fe acceptor in GaN is reported as having a wide variety of energy levels, however the 

measurements are consistent with the conclusion that the Fermi level is tied to the Fe2+/Fe3+ 

transition located 0.72eV below the conduction band. The large capture cross-section of 10-13 

cm2 is suggestive of a Coulomb attractive center and again is consistent with this attribution21. 



 7 

This trap characterization for GaN has allowed a device physics based simulation to be 

undertaken and a key transistor property to be quantitatively predicted: the small-signal 

transconductance dispersion. This understanding of the GaN buffer will give increased 

confidence in the ability to design and specify future GaN transistors. 
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Figure 2: Trap conductance as a function of frequency for different baseplate temperatures for a 

representative high Fe-density AlGaN/GaN HEMT. The inset displays the activation energy 

extraction. 
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Figure 1: GaN buffer iron density profiles of the investigated AlGaN/GaN devices from SIMS 

analysis. The dashed lines show the profiles used in the simulation. The carbon profile measured 

in a similar wafer is also shown.  
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Figure 3: Measured (symbols) and simulated (solid lines) trap conductance as a function of 

frequency for different baseplate temperatures for (a) high, (b) medium, and (c) low residual GaN 

channel iron doping concentration. 
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Figure 4: Simulated GaN conduction band diagram for the three iron doping concentrations at 

room temperature for a drain current around 10-6 A. The iron level EFe is located 0.72 eV below 

the conduction band.  

 


