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CONVERGENT LEARNING ALGORITHMS FOR
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Abstract. In this paper, we address the problem of convergence to Nash equilibria in games with
rewards that are initially unknown and must be estimated over time from noisy observations. These
games arise in many real-world applications, whenever rewards for actions cannot be prespecified
and must be learned online, but standard results in game theory do not consider such settings. For
this problem, we derive a multiagent version of Q-learning to estimate the reward functions using
novel forms of the ε-greedy learning policy. Using these Q-learning schemes to estimate reward
functions, we then provide conditions guaranteeing the convergence of adaptive play and the better-
reply processes to Nash equilibria in potential games and games with more general forms of acyclicity,
and of regret matching to the set of correlated equilibria in generic games. A secondary result is that
we prove the strong ergoditicity of stochastic adaptive play and stochastic better-reply processes
in the case of vanishing perturbations. Finally, we illustrate the efficacy of the algorithms in a
set of randomly generated three-player coordination games and show the practical necessity of our
results by demonstrating that violations to the derived learning parameter conditions can cause the
algorithms to fail to converge.
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1. Introduction. The design and control of large, distributed systems is a major
engineering challenge. In particular, in many scenarios, centralized control algorithms
are not applicable, because limits on the system’s computational and communication
resources make it impossible for a central authority to have complete knowledge of the
environment and direct communication with all the system’s components (Jennings
(2001)). In response to these constraints, researchers have focused on decentralized
control mechanisms for such systems.

In this context, a class of noncooperative games called potential games (Monderer
and Shapley (1996)) have gained prominence as a design template for decentralized
control in the distributed optimization and multiagent systems research communi-
ties. Potential games have long been used to model congestion problems on networks
(Wardrop (1952); Rosenthal (1973)). However, more recently they have been used
to design decentralized methods of solving large-scale distributed problems, such as
power control and channel selection problems in ad hoc wireless networks (Scutari,

∗Received by the editors October 1, 2012; accepted for publication (in revised form) May 24, 2013;
published electronically August 6, 2013. Part of this work was carried out as part of the ALADDIN
(Autonomous Learning Agents for Decentralised Data and Information Systems) project, which was
jointly funded by a BAE Systems and EPSRC (Engineering and Physical Sciences Research Council,
UK) strategic partnership (EP/C548051/1).

http://www.siam.org/journals/sicon/51-4/89350.html
†School of Electrical and Information Engineering, and Discipline of Business Analytics, University

of Sydney Business School, Sydney, NSW 2006, Australia (archie.chapman@sydney.edu.au). This
author was supported by a University of Sydney Business School postdoctoral fellowship.

‡School of Mathematics, University of Bristol, University Walk, Bristol, BS8 1TW, United
Kingdom (david.leslie@bristol.ac.uk).

§Electronics and Computer Science, University of Southampton, Highfield, Southampton,
SO17 1BJ, United Kingdom (acr@ecs.soton.ac.uk, nrj@ecs.soton.ac.uk).

3154



LEARNING ALGORITHMS FOR UNKNOWN REWARD GAMES 3155

Barbarossa, and Palomar (2006)), task allocation, coverage and scheduling prob-
lems (Arslan, Marden, and Shamma (2007); Chapman et al. (2010)), and distributed
constraint optimisation problems (Chapman et al. (2011)). In more detail, given a
global target function, a potential game is constructed by distributing the system’s
control variables among a set of agents (or players), and each agent’s reward function
is derived so that it is aligned with the systemwide goals. That is, an agent’s reward
increases only if the global reward increases (as in Wolpert and Tumer (2002)). If the
agents’ rewards are perfectly aligned with the global target function, then the global
target function is a potential for the game, which in turn implies that the (pure) Nash
equilibria of the game are local optima of the global target function.

Given this framework for distributing an optimization problem, the second prob-
lem facing a designer of a decentralized optimization method is specifying a distributed
algorithm for computing a solution. This is addressed by the literature on learning
in games ; the dynamics of learning processes in repeated games is a well-investigated
branch of game theory (see Fudenberg and Levine (1998), for example). In particular,
the results that are relevant to this work are the guaranteed convergence to a Nash
equilibrium in potential games of adaptive play and the broad class of finite-memory
better-reply processes (Young (2004), (1993)) and of regret matching to correlated
equilibrium (Hart and Mas-Colell (2000), (2001)). Thus, decentralized solutions to
an optimization problem can be found by first deriving a potential game and then
using one of these algorithms to compute a Nash or correlated equilibrium.

There is, however, one major shortcoming to this model. As is standard in game
theory, there is an assumption that the value of each configuration of variables, or the
agents’ rewards for different joint action profiles, is known from the outset. Although
this is a sound assumption in some domains, in many of the large, distributed control
application domains to which the decentralized control methods described above are
targeted, it is not realistic to assume that the rewards for different variable configura-
tions can be prespecified. For example, in many monitoring and coverage problems,
the system’s task is to learn about the phenomena under observation, but the rewards
earned by the agents in the system are a function of the phenomena detected so can-
not be known before they are deployed. Similarly, latencies on a newly constructed
or reconfigured ad hoc network, which drive users’ routing policies, may be initially
unknown and can be estimated only after observing the network’s traffic flows.

Against this background, we address the problem of distributed computation
of equilibria in games with rewards that are initially unknown and which must be
estimated online from noisy observations. The algorithms derived allow agents to
effectively learn their reward functions while coordinating on an equilibrium. Be-
cause of their links to distributed optimization, we place particular focus on conver-
gence to pure Nash equilibria in potential games with unknown noisy rewards, but we
also derive an algorithm that converges to correlated equilibrium in generic games.
The adaptive processes we derive simultaneously perform (i) the recursive estimation
of reward function means using Q-learning (Sutton and Barto (1998)) employing a
novel greedy-in-the-limit-with-infinite-exploration (GLIE) randomized learning policy
(Singh et al. (2000)) constructed for multiagent problems, and (ii) the adjustment to
the strategies of others in the game using one of the learning processes enumerated
above, namely, adaptive play, better-reply processes, or regret matching.

Although Q-learning and the action adaptation processes above are well under-
stood independently, the combined problem of learning the equilibria of games with
unknown noisy reward functions is less well understood, and it is this shortcoming
that we address. Specifically, the main theoretic results in this paper are as follows:
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1. We derive a novel multiagent version of Q-learning with GLIE ε-greedy learn-
ing policies for which reward estimates converge to their true mean value. We
use this as a component of our novel action adjustment processes below.

2. As a preliminary step to our main results, we prove for the first time the
strong ergodicity of stochastic adaptive play and better-reply processes with
vanishing choice perturbations in games with known rewards.

3. We prove the convergence of novel variants of adaptive play and the better-
reply processes, employing Q-learned rewards and a GLIE ε-greedy learning
policy rule, to Nash equilibrium in repeated potential games with unknown
noisy rewards (and in other more general classes of acyclic games specific to
each process).

4. We prove the convergence of a novel variant of the regret matching algorithm,
employing Q-learned rewards and a GLIE ε-greedy learning policy rule, to the
set of correlated equilibrium in generic games with unknown noisy rewards.

One drawback of the Q-learning scheme we derive is that the size of the learning
problem faced by the agents grows exponentially with the number of players, thereby
reducing the usefulness of our algorithms in large games. To tackle this, we pro-
vide results similar to those above for games that can be encoded in two common
compact graphical representations, graphical normal form and hypergraphical nor-
mal form (Kearns, Littman, and Singh (2001); Gottlob, Greco, and Scarcello (2005);
Papadimitriou and Roughgarden (2008)). Specifically, we show how the sparse inter-
action structure that these representations encode can be exploited to derive efficient
exploration policies for Q-learning, such that the learning problem facing the agents
is significantly reduced.

In addition to the main theoretical contribution of the paper, we empirically
evaluate the algorithms in a simple three-player potential game with unknown noisy
rewards. By so doing, we seek to demonstrate the efficacy of the algorithms in solving
these problems and their advantages over other distributed methods previously pro-
posed for these problems (such as Claus and Boutilier (1998), Cominetti, Melo, and
Sorin (2010)). We also demonstrate the necessity of the conditions on the learning
parameters derived in our convergence results by showing that if they are violated,
the algorithms are more likely to fail to converge.

The paper progresses as follows. The next section contrasts our contributions to
existing work in the area of algorithms for games with unknown and/or noisy rewards.
Section 3 covers the necessary game-theoretic backgroundmaterial and formally states
the problem addressed by the paper. In section 4 we derive our multiagent versions
of Q-learning and the ε-greedy policy. Section 5 presents the main action adaptation
process convergence results. Following these theoretical results, in section 6 we com-
pare the performance of the algorithms in a test domain. Section 7 summarizes the
paper and discusses how our results may be extended to further algorithms.

2. Related work. Several authors have previously tackled the problem of learn-
ing Nash equilibria in games with unknown noisy rewards by applying Q-learning
based approaches. Most closely related to our work is that of Claus and Boutilier
(1998), who specify a joint action learner (JAL), in which each agent keeps track of
the frequency of other agents’ actions, as in fictitious play (Brown (1951); Fudenberg
and Levine (1998); Leslie and Collins (2006)), while updating the reward estimate for
the joint action played. However, the authors do not provide convergence conditions
for their algorithm in that they do not investigate the sampling probabilities required
to ensure that the reward function estimates converge, nor do they make the link



LEARNING ALGORITHMS FOR UNKNOWN REWARD GAMES 3157

between the convergence of these estimates and convergence of the actions played to
Nash equilibrium. Their investigation relies instead on experimental evidence of con-
vergence, and furthermore it is restricted to team games (games with a common payoff
function), whereas we consider several further classes of games. Additionally, other
authors consider independent action learners (IAL), in which agents use variants of
the Q-learning procedure independent of each other, oblivious to the effects of changes
in other agents’ actions on their own payoffs. In particular, under the IAL processes of
Claus and Boutilier (1998), Leslie and Collins (2005), and Cominetti, Melo, and Sorin
(2010), the agents update their estimate of the reward they receive for each of their
actions, independent of the other agents, using Q-learning. These algorithms all use
a Boltzmann distribution to select actions but differ in the specific manner in which
this is used, with Claus and Boutilier (1998) specifying an annealing schedule for the
temperature coefficient and Leslie and Collins (2005) and Cominetti, Melo, and Sorin
(2010) using a constant temperature. However, none of these works prove convergence
to Nash equilibrium; indeed with a constant temperature it is impossible to generically
achieve convergence to Nash equilibrium. In section 6, we demonstrate the superior
performance of our algorithms over the JAL and IAL processes discussed above.

Single-agent learning in unknown noisy game environments has also been in-
vestigated in the context of zero-sum games. In particular, Baños (1968) considers
two-player zero-sum games, in which one agent does not know the payoffs and receives
only a noisy observation of the mean payoff for the action it plays each time a move
is made. The author derives a class of strategies for this player that perform as well
asymptotically as if the player had known the mean payoffs of the games from the
outset. Auer et al. (1995) consider an adversarial multiarmed bandit (MAB) prob-
lem, in which an adversary has control of the payoffs of each of the MAB’s arms
and aims to minimize the player’s payoff. (These games contain the zero-sum games
studied by Baños (1968) as a subclass.) The authors provide an algorithm for general
multiplayer games that asymptotically guarantees a player its maximin value. For
two-player zero-sum games, this is the same guarantee as the strategy derived by
Baños; however, the authors also show that their algorithm is more efficient than that
of Baños. Both of these approaches converge to a Nash equilibrium only in two-player
zero-sum games (where the Nash equilibrium, minimax, and maximin concepts give
the same solution). Thus, they do not apply to multiplayer and/or potential games.

Evolutionary approaches to learning in games with noisy reward functions have
also been investigated, which draw conclusions similar to ours regarding the long-run
stability of Nash equilibria. For example, Mertikopoulos and Moustakas (2010) con-
sider a continuous-time evolutionary learning procedure in a noisy game, reminiscent
of JAL (discussed above) and show that under this process, the game’s strict Nash
equilibrium is asymptotically stable. Similarly, Hofbauer and Sandholm (2007) con-
sider evolutionary better-reply learning in population games with noisy payoffs and
derive a process that converges to approximate Nash equilibrium in stable games,
potential games, and supermodular games.

Several algorithms have been proposed for games where agents cannot monitor
their opponents’ actions, so the payoffs that they receive appear to be randomized
as the other players’ actions change. This is a different scenario from the situation
we consider: agents’ payoffs are corrupted by noise that is induced by their oppo-
nents’ unobservable switches in actions, whereas our work considers noise in rewards
that is caused by some exogenous random perturbation under the assumption that
opponents’ actions can be observed. One approach to games with unobservable ac-
tions is modified regret matching (Hart and Mas-Colell (2000)), for situations where
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the agents do not know the payoffs and cannot observe their opponents’ actions.
Asymptotic play of this algorithm is guaranteed to be in the set of correlated equilib-
ria in all generic games. A second relevant approach to games with unknown rewards
and unobserved opponent actions is given in Marden et al. (2009), who investigate
payoff-based dynamics that converge to pure-strategy Nash equilibria in weakly acyclic
games, one of which, sample experimentation dynamics, can admit perturbations in
agents’ rewards. This algorithm alternates between two phases—exploration and ex-
ploitation. However, it requires that several parameters be set in advance, which
control the exploration phase length, exploration rates, and tolerances on payoff dif-
ference and switching rates for deciding when to change strategies. These parameters
depend on the problem at hand, and if they are incorrectly set, then the algorithm
may fail to converge. This means that a user must have sufficient a priori knowledge
of the problem at hand or set them in a conservative manner, which slows the rate of
convergence.

The only algorithms proven to converge, in some sense, to a Nash equilibrium in
all games are the regret-testing algorithms of Foster and Young (2006) (see also Young
(2009)). These algorithms will stay near a Nash equilibrium for a long time once it
has been reached but perform what is essentially a randomized exhaustive search to
find an equilibrium in the first place. We sacrifice this convergence in all games in
order to improve the rate of convergence in the games we are interested in (i.e., classes
of games directly associated with distributed optimisation problems).

Finally, while our results rely on conditions for products of stochasitc matrices to
be strong ergodic derived by Anily and Federgruen (1987), we note that recent results
by Touri and Nedić (2010) may also be employed to the same end.

3. Game theory preliminaries. This section covers noncooperative games,
acyclicity properties for games, and games with unknown and noisy rewards. Through-
out, we use P(·) to denote the probability of an event occurring.

3.1. Noncooperative games. We consider repeated play of a finite noncooper-
ative game Γ = 〈N, {Ai, ri}i∈N〉, where N = {1, . . . , n} is a set of agents, Ai is the set
of actions of agent i, and ri : ×i∈NAi → R is i’s reward function. Let A = ×i∈NAi be
the set of all joint actions (also called outcomes) and a ∈ A be a particular joint action.
Agents can choose to play according to a distribution over pure actions, σi ∈ Δ(Ai),
known as a mixed strategy, where each element σi(ai) is the probability i plays ai.
The rewards of the mixed extension of the game are given by the expected value of
ri under the joint mixed strategy σ ∈ ×i∈NΔ(Ai) over outcomes:

(3.1) ri(σ) =
∑
a∈A

( ∏
j∈N

σj(aj)

)
ri(a).

We use the notation a = (ai, a−i), where a−i is the joint action chosen by all agents
other than i and, similarly, σ = (σi, σ−i), where σ−i is the joint independent lottery. In
this paper, we are interested two solutions, namely, Nash and correlated equilibrium.

Definition 3.1. A joint strategy, σ∗ ∈ ×i∈NΔ(Ai), is a Nash equilibrium if it
satisfies

ri(σ
∗)− ri(σi, σ

∗
−i) ≥ 0 ∀ σi ∈ Δ(Ai), ∀ i ∈ N.

If there is no player, i, that is indifferent between σ∗
i and another strategy (i.e., the in-

equality above is strict), then σ∗ is a strict Nash equilibrium. All strict Nash equilibria
are pure.
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Definition 3.2. A distribution ψ ∈ Δ(A) is a correlated equilibrium if it satisfies∑
a∈A : ai �=k

ψ(a) (ri(a)− ri(k, a−i)) ≥ 0 ∀ k ∈ Ai, ∀ i ∈ N.

In a Nash equilibrium, every agent plays a best response to its opponents’ strate-
gies, while in a correlated equilibrium, every agent plays a best response to its op-
ponents’ strategies conditional on the correlating signal ψ, which in a repeated game
may be the history of play. Note that every Nash equilibrium is a correlated equilib-
rium with ψ a product distribution (i.e., no correlation). Approximate δ-Nash and
δ-correlated equilibria are defined by replacing the right-hand side of the two expres-
sions above with δ > 0. A final technical definition is generic games: Γ is generic if
a small change to any single reward does not change the number or location of the
Nash equilibria of Γ. A sufficient condition for Γ to be generic is that a player is never
indifferent between its pure actions. An important implication is that all pure Nash
equilibria in generic games are strict.

3.2. Acyclicity properties for games. This section outlines a hierarchy of
acyclicity properties for games. The first property is characterized by constructing
a best-reply graph for a game Γ. This is a directed graph with vertices given by A
with an edge from a to a′ if and only if there is exactly one player i that changes its
action (i.e., ai �= a′i and a−i = a′−i) and a′i = argmaxai∈Ai

(ri(ai, a−i)). Note that
a pure Nash equilibrium of Γ is found at a sink of the best-reply graph, that is, a
vertex with no outgoing edges. Next, a sequence of steps (a0, a1, . . . , at . . .) is called
a best-reply path in Γ if each successive pair at, at+1 is joined by an edge from at to
at+1 in the best-reply graph. A game Γ is weakly acyclic under best replies (is a
WAG) if from every a ∈ A there exists a best-reply path that terminates in a Nash
equilibrium in a finite number of steps (Young (1993)). In a WAG, for each a ∈ A, let
La be the length of the shortest best-reply path from a to a pure Nash equilibrium,
and let LΓ = maxa∈A La; we will need this constant in relation to the adaptive play
algorithms.

A second, broader class is characterized by a similarly constructed better-reply
graph for Γ. Again, this is a directed graph with vertices A but with an edge from
a to a′ if and only if ai �= a′i and a−i = a′−i and the change causes i’s reward to
improve: ri(a

′
i, a−i) > ri(ai, a−i). As for the best-reply graph, pure Nash equilibria

are found at the sinks of the better-reply graph of Γ. A better-reply path is a sequence
(a0, a1, . . . , at . . .) such that each successive pair is joined by a directed edge in the
better-reply graph. A game Γ such that from every a ∈ A there exists a better-reply
path that terminates in a sink in a finite number of steps is called a weakly acyclic
under better-replies game (WABRG) (Young (2004)).

A third form of acyclicity is characterized using a potential function. A potential,
φ(a), is a function specifying the participants’ joint preference over A (Monderer and
Shapley (1996)), such that the difference in the potential induced by a unilateral
change of action equals the change in the deviator’s reward:

φ(ai, a−i)− φ(a′i, a−i) = ri(ai, a−i)− ri(a
′
i, a−i) ∀ ai, a′i ∈ Ai, ∀a−i ∈ A−i.

A game that admits such a function is called a potential game.1 Importantly, local
optima of the φ(a) are Nash equilibria of Γ (analogous to the sinks of the best- or

1Potential games include team games, in which agents have the same reward function and which
are often studied in distributed optimization and artificial intelligence (e.g., Claus and Boutilier
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better-reply graph); that is, the potential is locally maximized by myopic self-interested
players.

In order to highlight the connections to distributed optimization, assume now that
φ(a) represents the systems’ global objectives. If the players’ rewards are perfectly
aligned with φ(a) (i.e., an increase in a player’s reward improves the system reward
by the same amount), then φ(a) is a potential for the game. Thus, the game’s pure
Nash equilibria are local optima of the global target function.

In summary, the key relationships between the classes above are given by potential
game ⊂ WAG ⊂ WABRG (Monderer and Shapley (1996); Young (2004)). We will
refer to these classes of games in section 5 when considering our Q-learning algorithm
variants.

3.3. Games with unknown noisy rewards. We now introduce the model of
rewards received in a repeated learning situation that will be studied in the rest of
this article. Much work on learning in games assumes either that the reward functions
ri are known in advance (e.g., Hart and Mas-Colell (2000)) or that the observed re-
wards are deterministic functions of the joint action selected (e.g., Rosenthal (1973);
Cominetti, Melo, and Sorin (2010)). However, as argued in section 1, a more realistic
scenario is that the observed rewards are noisy and composed of an expected value
equal to the unknown underlying reward function ri(a) and a zero-mean random
perturbation. We call this scenario unknown noisy rewards. This situation there-
fore requires the individuals to estimate their underlying reward functions while also
adapting their strategies in response to the actions of other agents.

Definition 3.3. A game with unknown noisy rewards is a game in which, when
the joint action a ∈ A is played, agent i receives the reward

(3.2) Ri = ri(a) + ei,

where ri(a) is the true expected reward to agent i from joint action a ∈ A and ei is a
random variable with expected value 0 and bounded variance.

To avoid unnecessary overcomplication in this article, we assume that each real-
ization of each ei is independent of all other random variables.2 Note that a game
with unknown noisy rewards is a generalization of the bandit problem discussed by
Sutton and Barto (1998), and we shall use similar reinforcement learning strategies
to estimate the values of ri(·).

3.4. Problem definition. We are now in a position to precisely describe the
problem which we address. We imagine a game with unknown noisy rewards which is
repeated over time. On each play of the game, the individuals select an action, receive
rewards as per (3.2), and also observe the actions selected by the other players. Based
on this information, the individuals update their estimates of the reward functions
and adapt their actions.

For this scenario, we are interested in the evolution of strategies and, in par-
ticular, whether actions converge to equilibrium. Moreover, in the specific case of
a potential game corresponding to a distributed optimization problem, we want to

(1998); Chapman et al. (2011)). Note that the team models here are built from the ground up rather
than imposed on existing agents with private motivations. This is a key point of difference from
classic economic results on team decision making, such as the works of Marschak and Radner (1972)
and Groves (1973).

2We believe that this assumption can be significantly relaxed without compromising our results,
but significant effort is needed to explain how estimation is adapted to handle correlated errors,
which is beyond the scope of this paper.
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prove convergence to Nash equilibrium, thereby providing a distributed method of
computing (locally) optimal joint strategies with only noisy evaluations of the target
function.

4. Convergence of reward function estimates using Q-learning. In this
section we show that in a game with unknown noisy rewards, agents can form estimates
of the true reward functions that are sufficiently accurate to ensure that a Nash
equilibrium can be found. In noisy environments, reinforcement learning is often used
to estimate the mean value of a perturbed reward function (Sutton and Barto (1998)),
so this is the method we adopt here. In particular, if the agents update their estimates
of the expected rewards for joint actions using Q-learning and select actions using
an appropriate ε-greedy action selection policy, then with probability 1 the reward
function estimates will converge to their true mean values. Now, Q-learning can be
applied independently by each player of a game, who learns the expected reward for
each action ai ∈ Ai, ignoring the actions selected by the other agents (see section 2).
However, this can result in very slow adaptation of actions toward Nash equilibrium.
Instead, in this paper we allow the learning of reward functions of joint actions and
simultaneous explicit reasoning about the action selection of the other agents. This
is the JAL approach suggested (without analysis) in the context of fictitious play by
Claus and Boutilier (1998). The learning scheme we derive here will be used by all
the algorithms considered in section 5.

In particular, we consider a multiagent version of Q-learning for single-state prob-
lems, in which the agents select a joint action and each receives an individual reward.
This algorithm operates by each individual recursively updating an estimate of its
value of a joint action a. Specifically, after playing action ati, observing actions at−i,
and receiving reward Rt

i, each individual i updates estimates Qt
i using the equation

(4.1) Qt+1
i (a) = Qt

i(a) + λ(t)I{at = a} (Rt
i −Qt

i(a)
) ∀ a ∈ A,

where the indicator I{at = a} takes value 1 if at = a and 0 otherwise and where λ(t) ∈
(0, 1) is a learning parameter. In general, Qt

i(a) → E[Rt
i | at = a] with probability 1 if

the conditions

(4.2)

∞∑
t=1

λ(t)I{at = a} = ∞ and

∞∑
t=1

(λ(t))2 <∞

hold for each a ∈ A (Jaakkola, Jordan, and Singh (1994)). This can be achieved
under the condition that all Qi(a) are updated infinitely often if

(4.3) λ(t) =
(
Cλ +#t(a)

)−ρλ ,

where Cλ > 0 is an arbitrary constant, ρλ ∈ (1/2, 1] is a learning rate parameter, and
#t(a) is the number of times the joint action a has been selected up to time t. We
use the form of {λ(t)}t≥1 given by (4.3) in the remainder of the paper.

The condition that all actions a are played infinitely often can be met with prob-
ability 1 by using a randomized learning policy, in which the probability of playing
each action is bounded below by a sequence that tends to zero sufficiently slowly as t
becomes large. Furthermore, this learning policy can be chosen so that it is greedy in
the limit, in that the probability with which it selects maximal reward actions tends
to 1 as t→ ∞. These policies are the GLIE of Singh et al. (2000).

One common GLIE policy is known as ε-greedy, and the results derived in this
paper depend on the use of this particular rule. Under this policy, an agent selects a
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greedy action at time t with probability (1 − ε(t)) (although note that we have not
yet defined what a greedy action should be in this context) and chooses an action at
random with probability ε(t).In the single-agent case, if, for example, ε(t) = c/t with
0 < c < 1, then for any a,

∞∑
t=1

P(at = a) ≥
∞∑
t=1

ε(t)

|A| = C

∞∑
t=1

1

t
= ∞,

and so with probability 1 each action is selected infinitely often (Singh et al. (2000)).
In contrast to single-agent settings, in multiplayer games the choice of joint action

is made by the independent choices of more than one agent. As such, for each Q-value
to be updated infinitely often, the schedule {ε(t)}t→∞ that the sampling sequence
follows must reflect the fact that the agents cannot explicitly coordinate to sample
specific joint actions.

Lemma 4.1. In a game with unknown noisy rewards, if agents select their actions
using a learning policy in which for all i ∈ N and ai ∈ Ai, and t ≥ 1,

P(ati = ai) ≥ εi(t) with εi(t) = cεt
−1/|N|,

where cε > 0 is a positive constant, then for all i ∈ N and a ∈ A,

(4.4) lim
t→∞ |Qt

i(a) − ri(a)| = 0 with probability 1.

Proof. If the probability that agent i selects an action is bounded below by
εi(t) = cεt

−1/|N|, then the probability that any joint action a is played is bounded
below by

(
cεt

−1/|N|
)|N |

= (cε)
|N |t−1.

Since
∑∞

t=0(cε)
|N |t−1 = ∞, by a generalized Borel–Cantelli lemma (Jaakkola, Jordan,

and Singh (1994)), with probability 1 each joint action a ∈ A is selected infinitely
often, and the result follows.

This may result in a practical learning procedure if |N | is sufficiently small. How-
ever, in large games, visiting each joint action infinitely often is an impractical con-
straint. To achieve sufficiently high exploration rates through independent sampling,
as in the ε-greedy approach, would require the agents’ ε sequences to decrease so
slowly that in any practical sense the agents will never move into an exploitation
phase. To address this limitation, in Appendix A we consider sparse games in which
each agent interacts directly with only a small number of other agents, such that the
number of reward values each individual estimates can be significantly reduced. Here,
however, we move on to the main results of the paper.

5. Action adjustment process with learned reward functions. In this sec-
tion, we consider the convergence to Nash equilibria of adaptive play and better-reply
processes with inertia and of regret matching to the set of correlated equilibrium,
using the Q-learning approaches described above. Specifically, for the first two classes
of algorithm, we show that if the agents (i) update their estimates of the expected re-
wards for joint actions using Q-learning, (ii) update their beliefs over their opponents’
actions using an appropriate action adjustment algorithm, and (iii) select a new action
using an appropriate ε-greedy learning policy, then their actions converge to a Nash
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equilibrium in potential games with unknown noisy rewards. For regret matching, we
show that if the same conditions hold, then the agents’ action frequencies converge
to the set of correlated equilibria in all generic games. The first part of this section
comprises a brief recap of Markov chains, before the three subsequent sections cover
the main results of the paper for each of the algorithms listed above.

5.1. Markov chain basics. Our approach is to consider the ergodicity proper-
ties of Markov chains induced by time-inhomogeneous versions of adaptive play and
better-reply processes with inertia. We then show that Q-learning variants of the
processes eventually behave as if the reward functions have been correctly learned, so
that the same convergence results follow. We begin by recalling some definitions from
Markov chain theory.

Consider a nonstationary Markov chain {X0, X1, X2, . . .} on a finite state space
X with a sequence of transition matrices {P(t)}t≥1 such that P(Xt+1 = y |Xt =
x) = (P (t))xy . Ergodicity of this chain corresponds to properties of the products

P(s, t) =
∏t

τ=s P (τ). Following Isaacson and Madsen (1976) we distinguish between
weakly ergodic chains, where the effect of the initial state vanishes (i.e., the rows of
P(s, t) are near to identical for sufficiently large t), and strongly ergodic chains, which
converge to a steady state distribution (i.e., all rows of P(s, t) converge to a fixed
distribution).

Definition 5.1. A nonstationary Markov chain is weakly ergodic if for all s ≥ 1,
a sequence of vectors μ(s, t) exist such that

(5.1) lim
t→∞

(
P (s, t)xy − μ(s, t)y

)
= 0 ∀ x, y ∈ X .

A nonstationary Markov chain is strongly ergodic if a steady state distribution μ exists
such that for all s ≥ 1,

(5.2) lim
t→∞

(
P (s, t)xy − μy

)
= 0 ∀ x, y ∈ X .

Anily and Federgruen (1987) demonstrate how to show that a Markov chain
with a converging sequence of transition matrices satisfies these ergodicity properties.
This in turn can be used to show that as t gets large, the distribution of Xt is
approximately equal to the distribution that is the limit of the stationary distributions
of the transition matrices P (t). We will show that our learning processes generate a
strongly ergodic Markov chain with a converging transition matrix sequence, for which
the limiting stationary distribution places all its mass on the pure Nash equilibria of
the game.

5.2. Q-learning adaptive play. For both Q-learning adaptive play and better-
reply processes with inertia, each agent possesses a finite memory of lengthm, recalling
the history of the previous m actions taken by its opponents. Let h be a joint history
of length m, where h = (at−m, . . . , at−1), and let H of size |A|m be the collection of
all the possible joint histories. After observing an action profile at, the joint history
configuration moves from h to h′ by removing the leftmost element of h and adjoining
at as the rightmost element of h′. A successor to h is any history h′ ∈ H that
can be obtained in this way. For example, imagine a two-player game with A1 =
{a, b} and A2 = {A,B}. Let m = 2 and set h = (aA, aA); the successors to h are
h′ ∈ {(aA, aA), (aA, bA), (aA, aB), (aA, bB)}. Note that in the first m plays of the
game there will not be a full memory; since the whole point of the proofs is that the
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starting point is forgotten, we do not address this issue here. (One could assume that
an arbitrary initial history is selected, for example.)

Definition 5.2 (adaptive play (Young (1993))). At each time-step, each agent
samples k ≤ m of the elements of its memory of length m and plays a best response
to the actions in the sample.

If k ≤ m/(LΓ + 2), then adaptive play converges to a Nash equilibrium in games
that are WAGs (Theorem 1, Young (1993)). We consider the (stationary) Markov
chain on the state space H generated by adaptive play. Let pi(ai|h) be the best-reply
distribution for agent i with pi(ai|h) > 0 only if there exists a sample of length k
from h to which ai is a best reply for i. Then, if a is the rightmost element of h′, a
successor to h, the probability of moving from h to h′ is

(5.3) P 0
hh′ =

∏
i∈N

pi(ai|h),

while if h′ is not a successor to h, then P 0
hh′ = 0. The convergence proved by Young

is that this Markov process converges to an absorbing state, and each absorbing state
is a history consisting entirely of one strict Nash equilibrium.

However, for Q-learning variants we have seen that it is important to play all
(joint) actions infinitely often. Therefore we consider a perturbation, which we call
uniform sampling, applied to the adaptive play process. We begin by considering the
simpler case of games with known rewards before extending the analysis to unknown
noisy rewards.

Definition 5.3 (stochastic adaptive play). At each time-step, each agent acts
independently and uses the (unperturbed) adaptive play rule with probability 1 − ε(t)
or uniformly samples from Ai with probability ε(t).

For ε(t) = ε fixed, this process is considered by Young (1993). The transition
matrix of stochastic adaptive play at time t with perturbations ε(t) is Pε(t), where Pε

has hh′ entry

(5.4) P ε
hh′ = (1− ε)

|N |
P 0
hh′ +

∑
K⊆N, K �=∅

ε|K| (1− ε)
|N |−|K|

UK
hh′ ,

where

UK
hh′ =

⎧⎪⎪⎨
⎪⎪⎩
∏
i∈K

1

|Ai|I{a
′
i = ai}

∏
i/∈K

pi(a
′
i|h)

if h is a successor to h′ and ai (resp., a′i)
is the ith entry of the rightmost element
of h (resp., h′) and

0 otherwise.

Clearly, if ε(t) = ε for all, t then we have a stationary, irreducible, and aperiodic
Markov chain on a finite state space, which is then both weakly and strongly ergodic.
Denote the unique stationary distribution of Pε by με; this result tells us that P(ht =
h) → με

h as t→ ∞.
Young’s analysis of this process considers stochastic stability of states h; a state h

is called stochastically stable with respect to a family of processes Pε if limε→0 μ
ε
h > 0.

Theorem 2 of Young (1993) says that the stochastically stable states of stochastic
adaptive play with fixed ε are the histories consisting entirely of a single strict Nash
equilibrium in generic WAGs. One trivial implication of this result is that for any δ,
for sufficiently small fixed ε > 0, limt→∞ P(at is a strict Nash equilibrium) > 1− δ.

It is also clear that with a fixed ε, all joint actions will be played infinitely often,
so the Q-learned estimates of joint action rewards will converge. (In particular the
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conditions of Lemma 4.1 are trivially satisfied.) Hence we can consider the following
process.

Definition 5.4 (Q-learning adaptive play). At each time-step, actions are se-
lected according to Definition 5.3, with best responses calculated with respect to joint
action reward estimates that are updated according to (4.1) with {λ(t)}t≥1 following
(4.3) with Cλ > 0 and ρλ ∈ (1/2, 1].

Since the reward estimates converge almost surely, the following is straightfor-
ward.

Lemma 5.5. Let Γ be a WAG with unknown noisy rewards and k ≤ m/(LΓ + 2).
For any δ > 0 there exists an ε > 0 such that under Q-learning adaptive play with
fixed ε, for all sufficiently large t, P(at is a strict Nash equilibrium) > 1− δ.

Proof. Note that the only difference from standard stochastic adaptive play is
that the best responses are calculated using the estimated Q-values instead of the
true rewards. However, since the reward functions are bounded in absolute value, the
game is generic, and the action spaces and memory are finite, there exists an η > 0
such that if for all i ∈ N and for all a ∈ A,

(5.5) |Qt
i(a)− ri(a)| < η,

then the best responses are the same whether the individuals use ri or Q
t
i.

We know that (4.4) holds so that with probability 1 there exists a T <∞ such that
for all t ≥ T (5.5) holds. It follows that after T time-steps the actions of agents evolve
exactly as if they were using ri instead of Qt

i. Hence the result follows immediately
from the result on standard stochastic adaptive play.

However, we do not need to consider fixed ε(t), and with decreasing ε(t) we do not
need to preguess a “suitably small” value. We will show that a schedule similar to that
required for Lemma 4.1 also implies suitable ergodicity properties of stochastic adap-
tive play. Combining this result with the technique of Lemma 5.5 will give our result.

Lemma 5.6. Let Γ be a generic WAG. Consider stochastic adaptive play with
ε(t) = ct−1/mN . If k ≤ m/(LΓ + 2), then limt→∞ P(at is a Nash equilibrium) = 1.

Note that the ε schedule above is slightly different from that for Lemma 4.1;
however, if ε(t) satisfies the conditions here, then it necessarily satisfies those of
Lemma 4.1.

Proof. This result is proved in three steps, first showing that the process is
weakly ergodic, second, that it is strongly ergodic, and third, that the distribution of
histories converges to μ∗ = limε→0 μ

ε, with the consequence that in generic WAGs,
limε→0 μ

ε
h > 0 only if h consists only of a single pure Nash equilibrium.

Weak ergodicity is proved by examining the ergodic coefficients of the sequence
of matrices {Pε(t)(t)}t≥1. The ergodic coefficient of any stochastic matrix P, denoted
erg(P), is given by

erg(P) = min
xy

∑
w

min(Pxw, Pyw).

By Theorem V.3.2 from Isaacson and Madsen (1976), the nonstationary process
{Pε(t)(t)}t≥1 is weakly ergodic if the product Pε(1)(1) · Pε(2)(2) · · · can be divided
into blocks of matrices:

Pε(1)(1) ·Pε(2)(2) · · ·
= [Pε(1)(1) · · ·Pε(t1)(t1)] · · · [Pε(tk+1)(tk + 1) · · ·Pε(tk+1)(tk+1)] · · ·
= Pε(1,t1)(1, t1) · · ·Pε(tk+1,tk+1)(tk + 1, tk+1) · · ·
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such that

(5.6)
∞∑
k=0

erg
(
Pε(tk,tk+1−1)(tk, tk+1 − 1)

)
= ∞, where t0 = 1.

Stochastic adaptive play is shown to satisfy (5.6) by considering blocks of length
m.3 Let

∏
i∈N εi(t) = Ct−1/m be the minimum probability that any joint action is

played at time-step t. Consider blocks of lengthm such that tk = {1,m+1, 2m+1 . . .},
and observe that any state h′ can be reached from an initial state h by an appropriate

sequence of m random samples, which occurs with least probability
∏(k+1)m

t=km+1 Ct
−1/m.

Evaluating (5.6) then gives

∞∑
k=0

erg(Pε(tk,tk+m)(tk, tk +m)) ≥
∞∑
k=0

(k+1)m∏
t=km+1

Ct−1/m > Cm
∞∑
k=0

(
((k + 1)m)−1/m

)m
= ∞.

Thus, stochastic adaptive play with εi(t) = Ct−1/Nm is weakly ergodic.
We now prove that stochastic adaptive play is strongly ergodic by showing that

it meets the conditions of Theorem 2 of Anily and Federgruen (1987), which gives the
sufficient conditions for a weakly ergodic nonstationary Markov chain to be strongly
ergodic. This involves (i) constructing an extension ε̄(x) of the sequence {ε(t)}t≥1;
(ii) constructing a regular extension P̄ε̄(x)(x) of the nonstationary process Pε(t)(t);
and (iii) showing that all entries of the regular extension P̄ε̄(x)(x) are members of a
closed class of asymptotically monotone functions (CAM).

Definition 5.7. Let {a(t)}t≥1 be a sequence with a(t) ∈ R
m for some m ≥ 1.

The function ā(x) : (0, 1] → R
m is an extension of the sequence if ā(xt) = a(t) for

some sequence {xt}t≥1 with limt→∞ xt = 0.
To construct an extension of the sequence of sampling probabilities given in the

statement of Lemma 5.6, let ε̄(·) be a vector function whose ith component is given

3In contrast, if l < m transitions are considered, it is always possible to pick two starting states
h and g such that the set of reachable states from both h and g after l transitions is empty. Thus,
for every column of the associated l-step transition matrix, Pε(t,t+l)(t, t + l), if l < m, one or
the other rows’ entry is 0, so its ergodic coefficient is also 0. For example, consider a two-player
game with A1 = {a, b} and A2 = {A,B} and rewards ri(a, A) = ri(b, B) = 1 and ri(a, B) =
ri(b, A) = 0 for both players i = {1, 2}. Let both adjust their actions using stochastic adaptive
play with m = 2. Now imagine two copies of this process, one starting at h = (aA, aA) and the
other at g = (bBbB), where these starting points are chosen to contain no entries in common.
The successors to h are h′ = {(aA, aA), (aA, bA), (aA, aB), (aA, bB)}, while for g they are g′ =
{(bB, aA), (bB, bA), (bB, aB), (bB, bB)}, so h′ ∩ g′ = ∅, The one-step state transition probabilities
are given in the following rows of the transition matrix:

aA, bA, aA, bA, aB, bB, aB, bB, aA, bA, aA, bA, aB, bB, aB, bB,
aA aA bA bA aA aA bA bA aB aB bB bB aB aB bB bB

aA,
(1 − ε)2 0 (1− ε)ε 0 0 0 0 0 ε(1− ε) 0 ε2 0 0 0 0 0

aA
..
.

..

.
..
.

bB,
0 0 0 0 0 ε2 0 (1 − ε)ε 0 0 0 0 0 ε(1− ε) 0 (1 − ε)2

bB

All columnwise minimums of these two rows are 0, so the ergodic coefficient of the one-step transition
matrix is 0. It may be the case that the state space of the chain for a specific game may be reduced,
but we can say no more in general terms without knowing the game’s rewards, which are what the
players are trying to estimate. Only by considering blocks of length m or greater can this be avoided.
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by ε̄i(x) = cx1/Nl for all i ∈ N . To verify this, set xt = t−1 so that xt ∈ (0, 1]
for all t ≥ 1, limt→∞ xt = 0, and the ith component of ε̄(·) evaluated at xt gives
ε̄i(xt) = cx1/Nl = c(t−1)1/Nl = εi(t).

Definition 5.8. Let P̄(·) be an extension of a nonstationary Markov chain
{Pε(t)(t)}t≥1: P̄(·) is said to be a regular extension of {Pε(t)(t)}t≥1 if there exists a
x∗ ∈ R++ such that the collection of all subchains of P̄(x) is identical for all x < x∗.

Let P̄ε̄i(x)(x) be an extension to the Markov chain generated by stochastic adap-

tive play. This is regular if the set {(h, h′) : P̄
ε̄i(x)
hh′ (x) > 0} is identical for all x < x∗.

In the setting of known rewards, the values P 0
hh′ and QK

hh′ are independent of
x (or t), so the first term on the right-hand side of (5.4) is positive for all x if and
only if P 0

hh′ > 0, and similarly, the second term of (5.4) is positive for all x whenever
QK

hh′ > 0. Thus, setting x∗ = 1, we see that the set of transitions through the memory
configuration space with strictly positive probabilities is identical for all x < x∗.

Having constructed and verified a regular extension to Pε(t)(t), in order to prove
that stochastic adaptive play is strongly ergodic, we are now left to show that ev-
ery entry function in P̄ε̄i(x)(x) belongs to a closed class of asymptotically monotone
functions F .

Definition 5.9. A class F ⊂ C1 of functions defined on (1, 0] is CAM if (i)
f ∈ F ⇒ f ′ ∈ F and −f ∈ F; (ii) f, g ∈ F ⇒ (f + g) ∈ F and (f · g) ∈ F; and (iii)
all f ∈ F change signs finitely often in on (0, 1].

Definition 5.10. Let F be the class of real valued functions such that every

f ∈ F is of the form
∑K

k=1 (Vk(x))
1/ck with ck a given integer (including negatives)

and Vk(·) a given polynomial function that is positive on (0, 1].

Observe that the class F is CAM on (0, 1] (although not necessarily everywhere
on R). Regarding Pε(t)(t), in the first term of (5.4), the product

∏
i∈N (1−cεt−1/Nlx) is

a member of F , as are the two products in the second term. Thus, all elements of the
transition matrix of stochastic adaptive play are functions in the class F . Therefore,
stochastic adaptive play is strongly ergodic.

Finally, we characterize the supports of μ∗ by combining Theorem 2 of Young
(1993) and these ergodicity properties. Specifically, Theorem 2 of Anily and Feder-
gruen (1987) states that if a nonstationary Markov process is strongly ergodic, then
for large enough t, each transition matrix Pε(t)(t) is associated with a steady state

distribution over actions με(t)(t) with limt→∞ με(t)(t) = μ∗ and limt→∞ P
(s,t)
hh′ = μ∗

h′

for all h, h′ ∈ H , s ≥ 1. Theorem 2 of Young (1993) tells us that μ∗ puts mass only
on the stochastically stable states, which in generic WAGs are a subset of the strict
Nash equilibria. Therefore limt→∞ P(ht ∈ stochastically stable states of Γ) = 1, and
since the unique best reply to a strict Nash equilibrium is to continue playing the
same, the result follows.

Note that the players will move between strict Nash equilibria—that is, the mean-
ing of ergodicity in this context—but will spend increasingly long durations of play
at one strict Nash equilibrium as ε→ 0.

Theorem 5.11. Let Γ be a game with unknown noisy rewards with mean rewards
that are a generic WAG (a noisy generic WAG). Consider Q-learning adaptive play
with ε(t) = ct−1/mN . If k ≤ m/(LΓ+2), then limt→∞ P(at is a Nash equilibrium)= 1.

Proof. The proof follows exactly the same logic as Lemma 5.5. After an al-
most surely finite time T the reward estimates will be sufficiently close to the true
mean rewards that Q-learning adaptive play will make action selections with exactly
the same probabilities as a stochastic adaptive play. Hence the result follows from
Lemma 5.6.
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5.3. Q-learning better-reply processes with inertia. We now examine
Q-learning better-reply processes with inertia.

Definition 5.12 (better-reply processes with inertia (Young (2004))). At each
time step, with probability ξi an agent plays the same action as in the previous time
step, ati = at−1

i , while with probability 1− ξi the agent selects an action according to a
distribution that puts positive probability only on actions that are better replies to its
full memory of length m than at−1

i .
By Theorem 6.2 of Young (2004), if Γ is generic and weakly acyclic under better

replies (a generic WABRG) and each 0 < ξi < 1 for all i ∈ N , then the unperturbed
better-reply processes with inertia converges almost surely to a homogeneous state
consisting of one strict Nash equilibrium of Γ. Any algorithm that selects from the set
of better replies to its (full, undiscounted) memory falls into this class of algorithms.
Accordingly, it is a large class of algorithms that includes those that choose actions
based on either their expected reward (i.e., an improvement in expected reward over
the current action), such as the better-response dynamics of Friedman and Mezzetti
(2001) and the evolutionary-inspired process of Kandori, Mailath, and Rob (1993), or
based on regrets computed from a finite memory, as in Young (2004). Like adaptive
play, the better-reply processes with inertia generates a Markov chain on a state space
H . Now let pi(ai|h) be the better-reply distribution used by agent i with pi(ai|h) > 0
only if ai is a better reply to h for i. Let L ⊆ N be a set of players having inertia and
choosing not to update their action at the current time-step. The Markov process
transition function for a finite memory better-reply process with inertia, given a vector
of inertial constants ξ = {ξ1, . . . , ξn}, is then given by

(5.7) P 0
hh′ =

∏
i∈N

(1− ξi) pi(ai|h) +
∑

L⊆N, L �=∅

(∏
i∈L

ξi

)(∏
i/∈L

(1− ξi)

)
ILhh′ ,

where

ILhh′ =

⎧⎪⎪⎨
⎪⎪⎩
∏
i∈L

I{a′i = ai}
∏
i/∈L

pi(a
′
i|h)

if h is a successor to h′ and ai (resp., a′i)
is the ith entry of the rightmost element
of h (resp., h′) and

0 otherwise.

The first term in (5.7) is the product of the transition probability of the finite mem-
ory better-reply process without inertia and the probability that no agent has inertia,
while the second term captures the probabilities of transitions arising from all parti-
tions of the agents into those that do have inertia (L) and those that play according
to the unperturbed dynamics (N \L). Note that although this looks like the stochas-
tic adaptive play transition function, this is in fact the unperturbed dynamics of the
better-reply process. We will introduce experimentation as well to ensure sufficient
exploration of the joint action space.

We can analyze stochastic better replies with inertia in an identical way to the
earlier treatment of stochastic adaptive play. Specifically, substitute P 0

hh′(t) from (5.7)
into (5.4) and also treat pi(ai|h) as the better-reply distribution for agent i defined
earlier in this section. This gives the perturbed transition probability for stochastic
better replies with inertia, which looks identical to (5.4) but has different values
P 0
hh′(t) and pi(ai|h). Adding uniform sampling leads to the following definition.

Definition 5.13 (stochastic better-reply process with inertia). At each time-
step, each agent acts independently and follows the (unperturbed) better replies
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with inertia process with probability 1− ε(t), or uniformly samples from Ai with prob-
ability ε(t).

For fixed ε(t) = ε we again have a stationary, irreducible, and aperiodic finite
Markov chain, which is therefore strongly ergodic; denote the transition matrix Pε,
and its corresponding unique stationary distribution με, with P(ht = h) → μ∗

h as
t→ ∞.

The behavior of stochastic better replies with inertia has not been stated elsewhere
to date but can be analyzed using Theorem 4 of Young (1993).

Lemma 5.14. The stochastically stable states of the stochastic better-reply process
with inertia with fixed ε in generic WABRGs are the histories consisting entirely of a
single strict Nash equilibrium.

Proof. In order to show that stochastic better replies with inertia satisfies the
requirements of Theorem 4 of Young (1993), note that it is ergodic, and in the limit
as ε→ 0, its transition probabilities converge to those of the unperturbed process; that
is, limε→0 P

ε = P0. Next, recall that if Γ is a generic WABRG and 0 < ξ < 1, then the
unperturbed process converges almost surely to a homogeneous state consisting of one
strict Nash equilibrium of Γ. Given that the stochastically stable states of stochastic
better replies with inertia are a subset of the absorbing states of the unperturbed
process, the result follows.

Furthermore, it also follows that for any δ, there exists a sufficiently small fixed
ε > 0 such that limt→∞ P(at is a strict Nash equilibrium) > 1− δ.

With a fixed ε the conditions of Lemma 4.1 are satisfied, so we can consider a
version of better replies with inertia using Q-learned reward estimates.

Definition 5.15 (Q-learning better replies with inertia). At each time-step,
actions are selected according to Definition 5.13 with better replies calculated with
respect to reward estimates that are updated according to 4.1 with {λ(t)}t≥1 following
(4.3) with Cλ > 0 and ρλ ∈ (1/2, 1].

Lemma 5.16. Let Γ be a WABRG with unknown noisy rewards and 0 < ξ < 1.
For any δ < 0 there exists an ε > 0 such that under Q-learning better replies with
inertia with fixed ε, for all sufficiently large t, P(at is a strict Nash equilibrium) >
1− δ.

The proof of this result follows that of Lemma 5.5. However, we are not con-
cerned with choosing a δ, since we consider decreasing ε(t). We will show that a
suitable schedule implies the strong ergodicity of stochastic better replies with iner-
tia. Combining this result with Lemma 5.14 gives the following.

Lemma 5.17. Let Γ be a generic WABRG. Consider stochastic better replies with
inertia with ε(t)=ct−1/mN . If 0 < ξ < 1, then limt→∞ P(atis a Nash equilibrium) = 1.

Note that, as before, the ε schedule above necessarily satisfies the conditions of
Lemma 4.1.

Proof. The stochastically stable states of stochastic better replies with inertia
are a subset of the strict Nash equilibria in WABRGs. Regarding strong ergodicity
of stochastic better replies with inertia, since (5.7) is independent of the values of
{ε(t)}t≥1, the perturbed transition matrix for stochastic finite memory better reply
with inertia has the same properties as that for stochastic adaptive play with respect
to ε and, mutatis mutandis, the argument for strong ergodicity is the same. The proof
is completed by combining this result with Lemma 5.16.

Theorem 5.18. Let Γ be a game with unknown noisy rewards with mean rewards
that are a generic WABRG (a noisy generic WABRG). Consider Q-learning better-
reply process with inertia and ε(t) = ct−1/mN . If 0 < ξ < 1, then limt→∞ P(at is a Nash
equilibrium) = 1.
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Proof. Following Lemma 5.5, after an almost surely finite time T the reward
estimates will be sufficiently close to the true mean rewards that Q-learning bet-
ter replies with inertia will make action selections with exactly the same probabilities
as a stochastic better replies with inertia. Hence the result follows from
Lemma 5.17.

Remark 1. We note that a class of best-reply algorithms with inertia may be
defined and analyzed in a similar way to the better-reply processes above. Under
these processes, the set of best responses substitute for better replies, and convergence
is guaranteed in games that are generic and weakly acyclic under best replies.

We conclude this section with the following corollaries of Theorems 5.11 and 5.18
for these two learning algorithms in potential games.

Corollary 5.19. Q-learning adaptive play and Q-learning better replies with
inertia both converge to a pure Nash equilibrium in games with noisy unknown rewards
with mean rewards that are generic and admit a potential function.

5.4. Q-learning regret matching. We now consider a third class of algo-
rithms, called regret matching (Hart and Mas-Colell (2000)) and introduce a
Q-learning regret matching variant. Regret matching uses measures of average re-
gret rather than expected utility to evaluate action choices and has a state space
given by the set of joint actions A. Unlike adaptive play and finite better-reply pro-
cesses with inertia, which converge to a strict Nash equilibrium in various acyclic
games, the regret matching algorithm converges in long-run frequency of play to the
set of correlated equilibria in all generic games.

Formally, let

zta = 1/t

t−1∑
τ=0

I{aτ = a}

be the empirical frequency of play of joint action a at time t, and let zt be the vector
of length |A| containing all the components {zta}a∈A. Denote Ψ the set of correlated
equilibrium distributions over A (i.e., Ψ contains all ψ satisfying Definition 3.2). Re-
gret matching generates a sequence of distributions {zt}t≥1 whose distance from the
set Ψ converges to zero (Hart and Mas-Colell (2000)).

In order to calculate its action choice probabilities, an agent i, using regret match-
ing, computes the difference in its reward for switching to action a′i every time that
it played action ai in the past. Agent i updates each zta in its memory using the
recursion

(5.8) zta =
1

t

(
I{at−1 = a} + (t− 1) zt−1

a

)
.

The values in zt are interpreted as agent i’s belief over the joint actions. For every
pair of actions j, k ∈ Ai, the average difference in rewards for switching to k every
time that j was played is

Dj,k(t) =
1

t

t∑
τ=1

I{ati = j} (ri(k, at−i)− ri(j, a
t
−i)
)

=
∑
a∈A

zta I{ai = j} (ri(k, a−i)− ri(j, a−i)) .

Now let the average regret for not making the switch to k on every play of j be given
by

(5.9) Rj,k(t) = max{Dj,k(t), 0}.
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Finally, let

(5.10) ξi ≥ (|Ai| − 1)max
a,a′

{|ri(a)) − ri(a
′)|} ∀ i ∈ N

be an inertial constant. Action choice probabilities are calculated as follows.
Definition 5.20 (regret matching). At each time step, zt is updated by (5.8),

and the agent computes the regret for its actions by (5.9). Then, the agent chooses
an action with probability

P(ati = a′i) =

⎧⎪⎪⎨
⎪⎪⎩

1
ξi
Rat−1

i ,a′
i
(t) ∀a′i �= at−1

i ,

1− 1
ξi

∑
a′
i �=at−1

i

Rai,a′
i
(t), a′i = at−1

i .

Note that the choice of ξ ensures that at−1
i is repeated with positive probability and

that any other action is chosen if and only if it has positive regret. If all agents playing
a generic game use the procedure above, then sequence {zt}t≥1 “approaches” the set
of correlated equilibria, in the sense of Blackwell (1956), such that as t → ∞, P(zt ∈
Ψ) = 1; in other words, the distribution of the empirical history of play converges to
the set of correlated equilibria (Hart and Mas-Colell (2000)). Furthermore, for any
δ > 0, the algorithm enters the set of δ-correlated equilibria in a finite amount of time
with probability 1.

Definition 5.21 (Q-learning regret matching). Each time-step, each agent uni-
formly samples from Ai with probability ε(t) or follows the unperturbed regret matching
dynamics with probability 1 − ε(t) using reward estimates that are updated according
to (4.1) in which

• {λ(t)}t≥1 follows (4.3) with Cλ > 0 and ρλ ∈ (1/2, 1], and
• ε(t) = ct−1/N for all i ∈ N .

Theorem 5.22. Let Γ be a generic game with unknown noisy rewards. If
Q-learning regret matching with ε(t) = ct−1/mN is used by all players, then
P(limt→∞Rj,k(t) = 0) = 1; therefore, as t → ∞ the empirical distribution of play
zt converges almost surely to the set of correlated equilibrium distributions of the
game Γ, that is, P(zt → Ψ) = 1.

Proof (sketch). They two key elements of the convergence proof of regret match-
ing are that (i) by Theorem A and the associated proposition in Hart and Mas-Colell
(2000), the set of correlated equilibria are exactly the set of distributions over joint
actions with zero regret; and (ii) the set of correlated equilibria is nonempty and com-
pact, and therefore the set of approximate δ-correlated equilibria always has positive
measure. Building on this, Hart and Mas-Colell (2001) state three further properties
of regret matching, which we use to show the convergence of a Q-learning variant of
regret matching.

First, the standard regret matching procedure does not need to be employed
by the agents from the outset of the game, so that initially any finite number of
time-steps where play is arbitrary could precede the use of regret matching and play
would still converge to the set of correlated equilibria. We can use this property in
conjunction with Lemma 4.1 to analyze how Q-learning regret matching behaves in
games with initially unknown rewards. Specifically, after an almost surely finite time
T , the reward estimates will have indistinguishable better reply sets to the game in
true mean rewards and so will produce behavior that is an ε-perturbation of that
produced by the true mean rewards. (It is perturbed by the small differences in the
true and estimated rewards on the probabilities in Definition 5.20.) Thus, after this
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time we can treat Q-learning regret matching as an ε(t)-perturbation of standard
regret matching, and moreover, we can treat the T time-steps required to learn the
rewards “accurately enough” as arbitrary initial play; all time steps subsequently
discussed are beyond this T .

Second, when the play of regret matching is perturbed by applying uniform sam-
pling with a fixed ε, all regret values approach δ(ε) > 0, and consequently the historical
frequency of play, zt, approaches a δ(ε)-correlated equilibrium. Furthermore, for dif-
ferent fixed values of ε, this distance δ(ε) → 0 as ε → 0. Thus, in Q-learning regret
matching, if from time t the sampling purturbation is fixed so that ε(t + w) = ε(t),
then the process will converge to a δ(ε(t))-correlated equilibrium, as in the standard
procedure.

Third, with a decreasing ε, the set that standard regret matching approaches can
be “shrunk” as ε(t) → 0. This is shown by considering the approachable regret value
δ(ε(t)) and its associate approximate correlated equilibria for a large-enough block of
transitions t+ w, then resetting δ(ε(t+ w)), and so on.

Indeed, this is actually the same technique employed in the convergence proof for
the standard, unperturbed regret matching proceedure (Hart and Mas-Colell (2000)).
Specifically, in that proof the action transition probabilities over a block of time-steps
from t to t + w are approximated with the wth power of the transition matrix at t
(i.e., a stationary process). Regrets in the approximating process are shown to move
toward zero over the block’s duration. Using a judicious choice of w, the difference
between the approximation and the true process is shown to vanish as, at each reset
of the block length, both t and w go to ∞. In this step of the proof, the presence
of inertia in the players choice plays a key role, as the transition matrix always has
strictly positive diagonal elements; the same holds for process like Q-learning regret
matching with vanishing purturbations. Now, repeatedly applying the approximating
process shows that the regrets approach zero as t → ∞, and because the difference
between the approximate and true processes can be shown to vanish, the true regrets
also approach zero. Since the set of correlated equilibria are equivalent to the set of
distributions over joint actions with no positive regret, the historical frequency of play
of the process converges to the set of correlated equilibria.

6. Experimental validation. We now validate our theoretical results by com-
paring our algorithms’ performances to that of other algorithms proposed for games
with noisy rewards. In doing so, we investigate three different learning policies em-
ployed by the agents, which represent three different orders of magnitude on the rate
at which the sampling probability anneals to zero. These three settings correspond
to satisfying both the Q-learning and weak ergodicity conditions (Lemma 4.1 and
Theorem 5.11 or 5.18), only the Q-learning convergence conditions (i.e., only
Lemma 4.1), or neither condition. This is done in order to directly examine the use-
fulness of our theoretical understanding of how the algorithms explore action space,
update their reward estimates, and adapt their actions. Thus, the empirical results
in this section are used to highlight the practical consequences of our algorithms’
theoretical properties, in contrast to the benchmark algorithms’ performances, rather
than to explicitly evaluate the performance of various parameter settings.

6.1. Algorithms and benchmarks. We demonstrate adaptive play with mem-
ory length 8 and sample size 2 (AP(8,2)), better replies with inertia using memory
length 3 and ξ = 0.3 (BRI(3,0.3)), and regret matching (RM). We choose the memory
lengths for AP and BRI so that the effect of these values on the decay of the sampling
probability can be observed. The inertia for BRI is chosen as it represents the middle
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of a region of relative equal performance, ranging from 0.1 to 0.5. For RM, ξ is set
to satisfy (5.10), so it has no free parameters. For all three algorithms, the sampling
probabilities were ε(t) = 1/8 t−1/Nm for all i ∈ N . We use the same Q-learning param-
eters for all algorithms and benchmarks throughout the experiments with ρλ = 1 and
cλ = 0. We obtain similar results to those presented here for a range of configurations
of these three algorithms.

We compare these algorithms to six benchmarks. In the following, the suffix
“-A” means that the algorithm uses the ε-greedy policy with the schedule ε(t) =
1/8t−1/N , which satisfies Lemma 4.1 (Q-value convergence) but does not satisfy our
conditions guaranteeing weak ergodicity. The suffix “-B” means that the algorithm
uses a Boltzmann learning policy,

P(ati = a′i) =
eQ

t
i(a

′
i,z−i)/η(t)∑

ai∈Ai
eQt

i(ai,z−i)/η(t)
,

with the temperature parameter following η(t) = 16(0.9t). This learning policy does
not satisfy Lemma 4.1, so the Q-values are not guaranteed to converge.

Two of the benchmarks are variants of BRI with the different sampling sched-
ules, BRI-A and BRI-B. We examine these to directly test the effect of violating the
conditions for either weak ergodicity or Q-value convergence.

The next two benchmarks are variants of the JAL of Claus and Boutilier (1998),
which is based on standard fictitious play (as discussed in section 2). The JAL bench-
marks use a belief update very similar to that of regret matching except that an agent
separately stores each other agents’ joint action frequencies; that is, i updates each
zj , j �= i, individually. As in our algorithms, the agents use Q-learning to estimate
the rewards from each joint action, as in (4.1). Then, the expected value of i’s action,
Qt

i(ai, z−i), given its (joint) beliefs z−i, is computed by (3.1), where the Qt
i takes

the place of ri and (ai, z−i) that of σ. The specific variants are called JAL-A and
JAL-B and use the sampling schedules described above. Indeed, the schedule that
η(t) follows under JAL-B is chosen because it is the one used by Claus and Boutilier
(1998) in their original JAL description.

The final two benchmarks are IAL-A and IAL-B, under which agents use
Q-learning to estimate the their rewards for their own actions, oblivious to others’ ac-
tions (Claus and Boutilier (1998); Cominetti, Melo, and Sorin (2010)). We investigate
these two to demonstrate the effect of ignoring other agents in games with unknown
noisy rewards. If the reward distributions were stationary or the setting was a single-
agent learning problem, then the sampling schedule for IAL-A would converge slower
than is necessary for the reward estimates to converge to their true values. However,
an agent’s rewards may well be nonstationary (as a result of other players changing
their actions), and we wish to test if this schedule can account for any nonstationarity.
In IAL-B, proposed by Claus and Boutilier (1998) at the same time as JAL-B, the
sampling probability is driven to zero relatively quickly.

6.2. Test problem and results. We compare the algorithms in a three-player
two-action potential game so that their behaviors can be clearly contrasted and their
differences can be transparently analyzed without complications from a complex game
setting. Mean rewards for the game are given in Figure 6.1, in which Rowena selects
the row, Colin the column, and Matt the matrix. The agents receive rewards equal
to these values plus uniform noise e ∈ [−ē, ē], as in (3.2), where ē itself is uniformly
drawn from [5, 10] at the beginning of each scenario. The game in mean rewards
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Matt
Colin Colin

Left Right Left Right
Rowena Up (5,5,5) (0,1,0) (0,0,1) (1,0,0)

Down (1,0,0) (0,0,1) (0,1,0) (2,2,2)

Fig. 6.1. Three-player potential game.

has two strict Nash equilibria. The Nash equilibrium located at (U, L, L) is globally
optimal, while the other at (D, R, R) is suboptimal; the same number and length
of best response paths lead to each one. The metric of interest is the probability of
converging to different Nash equilibria, and the mean frequencies of convergence to
each equilibrium by the algorithms were recorded for 50 repetitions of 50 scenarios,
generated randomly as described above. We consider a duration of 800 time-steps, not
because all algorithms converge in this time but because most interesting behavior
occurs during this period and the clearest differentiations can be made. Since the
algorithms are guaranteed only to converge to a strict Nash equilibrium and not
necessarily to the optimum, we also use this game to informally investigate the quality
of their solutions.

The results are given in the plots in Figure 6.2, which illustrates the proportion
of play that is optimal Nash equilibrium, suboptimal Nash equilibrium (light), or
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Fig. 6.2. Action proportions over time, showing the optimal, suboptimal, and non-Nash equi-
librium play and intended play (without sampling) superimposed.
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a nonequilibrium outcome (medium) over time. (Standard errors were too small to
plot.) The bold dashed or dotted lines in the plots show the same proportions for
the agents’ intended play, that is, the actions given by following their unperturbed
dynamics, rather than sampling (e.g., with probability ε(t)), at that time-step. The
distance between the actual and intended play of a Nash equilibrium gives the pro-
portion of non-equilibrium play that is due to the sampling induced by the learning
policy.

Results for our three novel algorithms are in the top row of Figure 6.2. The most
noticeable feature is that AP, BRI, and RM all converge toward a Nash equilibrium
in a high proportion of simulations: 83%, 86%, and 83% of actual play at t = 800,
respectively, and more than 96% of intended play for both AP and BRI and 90% for
RM. These very high proportions validate our convergence results for these algorithms.
Additionally, the proportion of the globally optimal play is high, at greater than
80% for all three. Compared to BRI, the (slightly) lower proportion converged to
equilibrium for AP is expected, as the ε schedule goes to zero more slowly because
of its longer memory. The relatively lower proportion for RM is expected because
it converges to the set of correlated equilibria, which are a superset of the Nash
equilibria. A fairer measurement of the convergence of RM is the proportion of runs
in which it finds a correlated equilibrium; analysis of the results shows that RM is
within 1% of the payoff of a correlated equilibrium over the period t = 600 to 800
in more than 95% of runs. This is consistent with convergence to an approximate
correlated equilibrium and validates our convergence results for RM.

The remaining six plots regard benchmarks. The results for JAL-A and BRI-A
are particularly interesting, since they show performance almost as good as that of our
algorithms. The -A sampling schedule satisfies Lemma 4.1, so the algorithms’Q-values
should converge. This seems to be sufficient for JAL-A to converge (recalling that
fictitious play converges to a Nash equilibrium in potential games), although it does
converge to the optimal Nash equilibrium in only 76% of runs, which is significantly
less often than AP, BRI, or RM. On the other hand, the convergence of BRI-A may be
a result of the game in question admitting a more compact reduction in the states over
which its weak ergodicity can be shown (as noted in the discussion of weak ergodicity
in Lemma 5.6); however, this could not have been known to the agents before they
began to play the game.

Regarding JAL-B and BRI-B, the fact that the Q-values do not converge under
the -B sampling schedule is illustrated in their quick “freezing” into fixed proportions
of play, with actual and intended play taking almost the same values. This is because
they become mired with incorrect reward estimates in nonequilibrium outcomes and
do not sample new actions frequently enough to learn the true better replies in the
game. Even though the algorithms do reach Nash equilibrium outcomes in a good
proportion of runs (approximately 92% and 96%, respectively), a set of simulations
with a duration of 2500 time-steps showed that these proportions do not improved
noticeably beyond these levels.

Finally, both IAL variants suffer from not incorporating the actions of other
agents. IAL-A does, in fact, continue to improve its proportion of Nash equilibrium
convergence over the longer term: After 2500 time-steps it had a total Nash-converged
proportion similar to JAL-B over the same time and over 10,000 time-steps, it had
further reduced this to about 97%, which is comparable to the intended play of AP,
BRI, and RM, albeit over an order of magnitude longer duration. Nonetheless, the
-A sampling schedule does appear to be sufficient for its Q-values to eventually con-
verge. On the other hand, JAL-B freezes into fixed proportions of play within 100
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time-steps at a very low proportion of Nash equilibrium convergence (<60%) and does
not improve over longer durations.

These benchmark results are consistent with our theoretical analysis and corre-
spond with our understanding of the conditions under which the algorithms should
converge. In particular, the fact that by Lemma 4.1 the -A schedule is sufficient for
the Q-values to converge appears to enable the algorithms not directly covered by our
theoretical results to perform well. In contrast, the -B schedule is not sufficient for
the convergence of reward estimates, which prevents the associated algorithms from
converging. Collectively these results indicate that accurate learning of rewards, cou-
pled with principled reasoning over and appropriate responses to opponents’ actions,
are sufficient to drive convergence to equilibrium in practice. On the other hand,
dropping either Q-value convergence (i.e., using schedule -B) or explicit reasoning
over opponent actions (as in the IAL variants) prevents play from converging at an
acceptable rate.

7. Conclusions. In this paper, we proved the convergence to Nash equilibria
of variants of adaptive play and the better-reply processes in potential games and
other more general acyclic games with rewards that are initially unknown and which
must be estimated over time from noisy observations. We also derived a Q-learning
variant of regret matching and proved its almost sure converge to the set of corre-
lated equilibria. Finally, the necessity of the conditions on the algorithms’ sampling
rates that we derived were empirically verified. Our results guarantee the conver-
gence of several distributed optimisation methods for settings where reward functions
cannot be prespecified and that have constraints on communication between system
components.

There are a number of ways in which this work may be taken forward. One
particularly interesting direction is to put finite-time bounds on the algorithms’ per-
formance by employing different frameworks for analyzing online learning of noisy
rewards and the consequent convergence of an algorithm to Nash equilibrium, such as
PAC or KWIK learning (Valiant (1984); Li, Littman, and Walsh (2008)). A second
opportunity is to extend the convergence of the algorithms to more complicated set-
tings, and, in particular, we are interested in settings where the payoffs in the game
vary according to some state variable, such as is addressed for individual agents in
the growing literature on contextual MABs and MABs with covariates (Lu, Pál, and
Pál (2010)).

Appendix A. In section 4 we investigated a scenario where the individuals at-
tempt to estimate their expected reward ri(a) for each joint action in A. However, in
the standard normal form considered to date, the joint action space A grows expo-
nentially with the number of agents, so this estimation problem becomes impractical.
However, in systems with an inherent structure, such as those with a natural spatial
structure in which interaction directly occurs only between geographically close indi-
viduals, agents should only need to consider the actions of their neighbors. We now
show that if a game admits a compact form, then this representation can be exploited
to improve the agents’ learning rates for two compact forms.

This first is graphical normal form (GNF), which can represent games in which
some agents’ rewards are independent of others’ strategies (Kearns, Littman, and
Singh (2001)). In this form, the nodes of a graph correspond to the set of agents,
while edges connect an agent to the others with which it shares a reward dependency,
called its neighbors. The neighborhood of i is the smallest set νi of players such that
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agent i’s reward is entirely determined by ai and {aj : j ∈ νi}. We say an undirected
reward dependency exists between i and j(�= i) if either j ∈ νi or i ∈ νj .

Definition A.1. A game in GNF comprises a set of agents located on the nodes
of a graph. An agent is connected to those with which it shares an undirected reward
dependency, which includes its set of neighbors νi ⊆ N . Its reward function, ri(ai,νi),
is then given by an array indexed by tuples from the set ×j∈{i,νi}|Aj |. Games in GNF
with unknown noisy rewards are defined similarly, with the difference being that when
the joint action a ∈ A is played, agent i receives the reward

(A.1) Ri = ri(ai, aνi) + ei,

where ri(ai, aνi) is the true expected reward to agent i for the joint action (ai, aνi),
and ei is a random variable with zero mean and bounded variance.

Note that in GNF, ri(a) depends only on ai and aνi , where aνi is the joint action
of all the neighbors of i. Subsequently, we write ri as a function of the joint actions of
i and its neighbors, that is, ri(ai,νi ). Also, note that games in standard normal form
can be represented in GNF with a complete graph.

For games in GNF, each agent needs to learn only its rewards over the joint action
space of it and its neighbors’, given by Ai,νi = Ai ×j∈νi Aj . For large games, this
is a much more feasible task than estimating the full reward function on A. Each
individual i now updates its estimates Qt

i using the equation

(A.2) Qt+1
i (ai,νi) = Qt

i(ai,νi )+λ(t)I{ati,νi = ai,νi}
(
Rt

i −Qt
i(ai,νi )

) ∀ ai,νi ∈ Ai,νi .

In this case, the sequence {ε(t)}t→∞ can be altered to take advantage of the reduced
size of each agent’s joint action space, while still ensuring that eachQ-value is updated
infinitely often.

Lemma A.2. In a game in GNF, let i’s neighborhood size be the number of
neighbors of i plus 1 for i itself. Given this, let Ji be the size of the largest of the
neighborhoods of i or any j in νi. In a game with unknown noisy rewards, if agents
select their actions using a policy in which for all i ∈ N , ai ∈ Ai, and t ≥ 1,

P(ati = ai) ≥ εi(t) with εi(t) = cεt
−1/Ji ,

where cε > 0 is a positive constant, then for all i ∈ N , for all ai,νi ∈ Ai,νi ,

(A.3) lim
t→∞ |Qt

i(ai,νi )− ri(ai,νi )| = 0 with probability 1.

Proof. If P(ati = ai) ≥ cεt
−1/Ji , then for all ai,νi ∈ Ai,νi , a lower bound on

P(ati,νi = ai,νi) is

∏
j∈{i}∪νi

cεt
−1/Jj ≥

(
cεt

−1/(|νi|+1)

)|νi|+1

= (cε)
|νi|+1t−1,

because Jj ≥ |νi|+ 1. The result follows from observing that
∑∞

t=0(cε)
|νi|+1t−1 = ∞

within each neighborhood’s joint action space Ai,νi .
The second useful compact representation is hypergraphical normal form (HNF)

(Gottlob, Greco, and Scarcello (2005); Papadimitriou and Roughgarden (2008)), which
comprises hyperedges representing a set of local games that each contain several
agents. An agent is typically involved in more than one local game, and its neighbors
are those it is linked to via any local game.
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Definition A.3. A game in HNF comprises a set of agents located on the nodes
of a hypergraph. Each hyperedge represents a local game: Γ = {γ1, γ2, . . .}, where
γ = 〈Nγ , {Ai, ri,γ}i∈Nγ 〉, defined as in the standard normal form. Let Γi = {γ :
i ∈ Nγ} be the set of local games containing agent i. Player i’s action set, Ai, is
identical in all γ ∈ Γi, and it selects a single action ai ∈ Ai to play in all its local
games. Its neighbors in γ ∈ Γi are νi,γ = Nγ \ i, and its reward from γ, ri,γ(aγ) is
given by an array indexed by tuples from the set ×j∈Nγ |Aj |. Its full set of neighbors
is given by νi = ∪γ∈ΓiNγ \ i, and its reward is the sum of its rewards from γ ∈ Γi:
ri(ai, ai,νi) =

∑
γ∈Γi

ri,γ(ai, aνi,γ ), where aνi,γ is the joint action of i′s neighbors in
γ. For games in HNF with unknown noisy rewards, when the joint action a ∈ A is
played, agent i receives the (independently observable) rewards

(A.4) Ri,γ = ri,γ(aγ) + ei,γ ∀ γ ∈ Γi,

where ri,γ(aγ) is the true expected reward to agent i from local game γ for the joint
action aγ , and each ei,γ is a random variable with zero mean and bounded variance.

Again, since ri(a) now only depends on ai and aνi , we write ri(ai,νi). Any games
in standard normal form can be represented in HNF with a single local game γ.

In a game in HNF, each agent can learn the payoffs for joint actions in each of
its local games independently. Hence, an individual i now updates its estimate Qt

i,γ

of its reward function for each γ using the equation

(A.5) Qt+1
i,γ (aγ) = Qt

i,γ(aγ) + λ(t)I{atγ = aγ}
(
Rt

i,γ −Qt
i,γ(aγ)

) ∀ aγ ∈ Aγ .

For games in HNF, each joint action in each local game is guaranteed to be sampled
infinitely often by following the {ε(t)}t→∞ schedule given in the following lemma.

Lemma A.4. In a game in HNF, let Ji be the maximum number of participants
in any single local game in Γi (i.e., Ji = maxγ∈Γi |Nγ |). In a game with unknown
noisy rewards, if agents select their actions using a policy in which for all i ∈ N ,
ai ∈ Ai and t ≥ 1,

P(ati = ai) ≥ εi(t) with εi(t) = cεt
−1/Ji ,

where cε > 0 is a positive constant, then
(A.6)

lim
t→∞ |Qt

i,γ(aγ)− ri,γ(aγ)| = 0 with probability 1 ∀ i ∈ N, ∀ γ ∈ Γi, ∀ aγ ∈ Aγ .

The proof follows identically that of Lemma A.2 but with the appropriate defi-
nition of Ji for HNF and by observing that

∑∞
t=0(cε)

|νi|+1t−1 = ∞ within each local
game’s joint action space Aγ .

We have now derived techniques for estimating an agent’s reward functions that
can overcome the computational problems associated with learning rewards in large
games by exploiting structured interaction between the agents. When interleaved
with a suitable strategy adaptation process, this will result in an algorithm that
learns all rewards accurately and converges to equilibrium in games with unknown
noisy rewards.

Definition A.5 (compact Q-learning variants). Each of compact Q-learning
adaptive play, better replies with inertia, and regret matching is defined as their
noncompact counterparts (i.e., Definitions 5.4, 5.15, and 5.21), but with εi(t) =
ct−1/Ji�m/2�, where Ji is the neighborhood size as defined in GNF or HNF.
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Corollary A.6. Let Γ be a game with unknown noisy rewards:

• If Γ has mean rewards that are weakly acyclic under best replies (WAG), then
if k ≤ m/(LΓ + 2) compact Q-learning adaptive play almost surely converges
in round-by-round behavior to a pure Nash equilibrium in Γ.

• If Γ has mean rewards that are weakly acyclic under better replies (WABRG),
then compact Q-learning better replies with inertia almost surely converges in
round-by-round behavior to a pure Nash equilibrium in Γ.

Moreover, compact Q-learning adaptive play and Q-learning better replies with inertia
all converge to a pure Nash equilibrium in games with noisy unknown rewards with
mean rewards that are generic and admit a potential function. Finally, if Γ has
mean rewards that are generic, then compact Q-learning regret matching almost surely
converges in round-by-round behavior to a correlated equilibrium in Γ.
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B. Touri and A. Nedić (2010), When infinite flow is sufficient for ergodicity, in Proceedings of the

49th IEEE Conference on Decision and Control (CDC ’10), Atlanta, GA.
L. G. Valiant (1984), A theory of the learnable, Commun. ACM, 27, pp. 1134–1142.
J. G. Wardrop (1952), Some theoretical aspects of road traffic research, in ICE Proceedings: Engi-

neering Division, vol. 1, pp. 325–378.
D. H. Wolpert and K. Tumer (2002), Collective intelligence, data routing and Braess’ paradox,

J. Artificial Intelligence Res., 16, pp. 359–387.
H. P. Young (1993), The evolution of conventions, Econometrica, 61, pp. 57–84.
H. P. Young (2004), Strategic Learning and Its Limits, Oxford University Press, Oxford, UK.
H. P. Young (2009), Learning by trial and error, Games Econom. Behav., 65, pp. 626–643.


