
 Price, S., & Flach, P. A. (2013). A Relational Algebra for Basic Terms in a
Higher-Order Logic: Technical Report CSTR-13-004. University of Bristol.

Link to publication record in Explore Bristol Research
PDF-document

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published
version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms.html

Take down policy

Explore Bristol Research is a digital archive and the intention is that deposited content should not be
removed. However, if you believe that this version of the work breaches copyright law please contact
open-access@bristol.ac.uk and include the following information in your message:

• Your contact details
• Bibliographic details for the item, including a URL
• An outline of the nature of the complaint

On receipt of your message the Open Access Team will immediately investigate your claim, make an
initial judgement of the validity of the claim and, where appropriate, withdraw the item in question
from public view.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Explore Bristol Research

https://core.ac.uk/display/29026845?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://research-information.bristol.ac.uk/en/publications/a-relational-algebra-for-basic-terms-in-a-higherorder-logic(13579164-a7f9-4505-aa0f-db968e1a2f19).html
http://research-information.bristol.ac.uk/en/publications/a-relational-algebra-for-basic-terms-in-a-higherorder-logic(13579164-a7f9-4505-aa0f-db968e1a2f19).html

A Relational Algebra for Basic Terms in a Higher-Order Logic

Simon Price and Peter A. Flach

Department of Computer Science, University of Bristol, Bristol BS8 1UB, UK

simon.price@bristol.ac.uk

Technical Report CSTR-13-004

July 2013

Abstract

We define a relational algebra on basic terms, strongly typed terms in a higher-order logic, that are well

suited to the representation of heterogeneous data, irrespective of whether the data originated from relational,

unstructured, semi-structured or structured sources. This higher-order generalisation of the relational model has

potential applications in NoSQL databases and Big Variety, Big Data applications.

Contents

1 Introduction 1

2 Relational Model 2

2.1 Relational Representation . 2

2.2 Relational Operations . 3

2.2.1 Fundamental Relational Operations . 3

2.2.2 Derivative Relational Operations . 5

2.3 Relational Algebra . 6

3 Upgrading the Relational Model to Higher-Order Logic 6

3.1 Individuals as Terms in a Higher Order Logic . 6

3.2 Indexing Basic Terms . 8

3.2.1 Term-based Indexing . 8

3.2.2 Type-based Indexing . 10

3.2.3 Type Name-based Indexing . 13

4 Basic Term Relational Model 14

4.1 Basic Term Relational Representation . 14

4.2 Basic Term Relational Operations . 14

4.2.1 Fundamental Basic Term Relational Operations . 14

4.2.2 Derivative Basic Term Relational Operations . 15

4.3 Basic Term Relational Algebra . 16

5 Summary and Future Work 16

1 Introduction

The relational model is the de facto standard for database-driven applications but is not ideally suited for repre-

senting semi-structured data such as Web pages, XML and numerous other annotated textual document formats.

Neither is the relational model convenient for representing structured data such as trees, lists, bags and so on,

although the representation of such structures in relational databases is commonplace using a multitude of (often

tortuous) representations and querying patterns [6, 7, 9, 13].

1

The individuals-as-terms representation is a generalisation of the relational model’s attribute-value representa-

tion and collects all information about an individual in a single term. As such, the individuals-as-terms represen-

tation has much in common with the various hierarchical and object database models that were the forerunners of

the highly successful relational model that all but replaced them – until the recent Big Data driven emergence of

NoSQL databases caused a resurgence of interest in non-relational data models.

In contrast to the relational model, the individuals-as-terms model offers straight forward representations of

both structured and semi-structured data while at the same time having the representational capacity to represent

relations from the relational model. This representational flexibility makes the individuals-as-terms model a con-

venient representation of heterogeneous data, enabling the collection of all information about an individual in a

single term irrespective of whether that information is relational, semi-structured or structured.

This paper is motivated by a practical requirement to not only represent heterogeneous data as terms but

also to be able to query and merge those terms with all the convenience of the relational algebra. The terms in

question are the basic terms of a strongly-typed, higher-order logic [11]. We show that the relational model can be

lifted to a more general, higher-order relational model that has promising applications for querying and merging

heterogeneous data [14].

The remainder of this paper is organised as follows: in Section 2 we review the traditional relational model,

presenting the relational algebra and its operations in a form that neatly maps to our higher-order generalisations;

in Section 3 we introduce the higher-order representation and various methods of referring to sub-parts of basic

terms; in Section 4 we lift the relational algebra and its operators to our higher-order relational model; Section 5

gives a brief summary and suggests future work.

2 Relational Model

The relational model for database management was first introduced by Edgar Codd at IBM Research [2, 3] and

was subsequently refined by him and others over the following two decades [4, 5]. The relational model provides

a precise specification for what a relational database should do but, deliberately, does not specify how such a

relational database should be built. Most of today’s database management systems, including all those which

employ variants of the SQL query language, are based on ideas drawn from the relational model. Underpinning

the relational model is a principled theoretical foundation that draws on the mathematical topics of set theory,

first-order predicate logic, and the theory of types. For the purposes of this paper, the most important aspects of

the relational model are the relational representation along with its associated operations and algebra, which we

recall below.

2.1 Relational Representation

Surveying the relational database literature can initially be confusing because authors adopt one of two alternative

definitions of the relational representation. Indeed Codd himself switched from one representation to the other

early on in his development of the relational model. The competing representations differ in their definition of

the tuple: the earlier representation follows the conventional mathematical definition of a tuple whereas the later

representation defines the, so called, unordered labelled tuple. In this paper we follow Codd’s original relational

representation for reasons that we discuss below.

An n-tuple (x1, . . . , xn) is an element in the Cartesian product D1 × · · · ×Dn where x1, . . . , xn are values

drawn from domains D1, . . . , Dn respectively, n ∈ N and n ≥ 1. We refer to n-tuples as tuples unless the value

of n is significant. The core of the relational representation is the relation, which is a homogeneous set of such

tuples defined as follows.

Definition 2.1 (Relation) A relation R of degree n is a finite set of n-tuples such that R ⊆ D1 × · · · ×Dn where

D1, . . . , Dn are domains.

The schema (or scheme) of a relationR ⊆ D1×· · ·×Dn is denotedR(D1, . . . , Dn) andR is said to be a relation

on that schema. The domains D1, . . . , Dn in a relation need not necessarily be distinct. All domain values are

considered to be atomic, meaning that they are indivisible as far as the relational model is concerned. Also a

special value called NULL is included in every domain1.

1The multiple roles of NULL values in the relational model fall outside the scope of this paper but a comprehensive discussion appears in [7].

2

Being a set, duplicate tuples are not permitted in a relation. This is a notable difference between the relational

model and typical implementations of relational databases, where duplicate tuples are permitted in relations be-

cause a multiset (or bag) representation is used instead of a set representation2. In the relational database literature

a relation is often referred to as a table, and a tuple as a record or row in a table. By definition, the rows of a table

occur in a specific order whereas the elements of a set are entirely unordered and so a table is a rather inaccurate

representation of a relation.

Prior to defining the relational operations and algebra it is first necessary to define some means for identifying

values at specific positions within a tuple. Item i ∈ {1, . . . , n} of a tuple t = (x1, . . . , xn) is the value xi and is

referred to as t|i. The set of tuple item indices for a given relation is the relation index of the relation.

Definition 2.2 (Relation Index) The relation index IR of a relation R of degree n is the set {1, . . . , n}.

The relation index, and other indexes to be described, in this paper should not be confused with the sorts of

indexes used to increase record access speed within relational database implementations.

The relation index IR for some relation R is isomorphic with the set of attribute names {A1, . . . ,An} in the

traditional name-based schema R(A1, . . . ,An), where R is the relation name associated withR, and A1, . . . ,An

are attribute names associated with domains D1, . . . , Dn respectively. For example, if author(firstname,

lastname, email) is the name-based schema for a relation R representing authors in a bibliographic database

then the set of attribute names {firstname, lastname, email} is trivially isomorphic with the relation index

IR = {1, 2, 3}. Hence, without loss of generality, we use the relation index instead of the name-based schema in

order to simplify the upgrading of the relational model to higher-order logic.

In keeping with our choice of the relation index, we also adopt Codd’s original definition of the tuple for

the elements of the relation as opposed to his subsequent alternative of the unordered labelled tuple. The latter

relaxes the definition of a tuple so that the order of its items becomes irrelevant. More formally, an unordered

labelled tuple u is defined as a set of name-value pairs such that u = {(A1, x1), . . . , (An, xn)}, where each Ai

and xi pair is a corresponding attribute name and item value. Pairing each value with an identifying attribute

name brings the convenience of set operations on tuple items in defining the relational operations. Associativity

and commutativity of various relational operations is achieved as a consequence but at the cost of the complexity

of maintaining the attribute name uniqueness constraint, ∀i, j ∈ 1 . . . n,Ai = Aj =⇒ i = j, which in turn

gives rise to a requirement for a rename operation [13]. In our higher-order setting, as we later explain, operation

associativity and commutativity cease to be relevant and so we are able to avoid this unnecessary complexity

through our choice of tuple.

2.2 Relational Operations

The relational algebra defines eight operations on relations. Five of these operations (union, difference, product,

projection and restriction) are considered fundamental, or primitive, as they can not be derived from combinations

of the other relational operations. The remaining three (intersection, divide and join) can each be derived by

combining the fundamental operations. The following sections define all eight of operations, beginning with

the fundamental ones. Practical implementations of the relational algebra also include additional convenience

operations, aggregate operations and update operations that are not strictly part of the algebra and which we do

not consider here.

2.2.1 Fundamental Relational Operations

The relational algebra defines the following five operations.

• relational union (∪)

• relational difference (−)

• relational product (×)

• relational projection (π)

• relational restriction (σ)

2Relational databases typically follow SQL standards and consequently deviate from the relational model by allowing duplicate elements

in relations, thereby invalidating the model’s theoretical results [5].

3

The definitions of relational union and difference (and, later when we discuss the non-fundamental operations,

intersection) accord with the usual definition of the corresponding operations from set theory but apply solely

to sets that are relations union compatible. Relations A and B are union compatible if and only if A,B ⊆
D1 × · · · ×Dn. As would be expected from the normal definition of a set, all duplicate tuples are removed from

the result (co-domain) of any of the following operations.

Definition 2.3 (Relational Union) The relational unionA∪B of relations A,B ⊆ D1× · · ·×Dn is the relation

A ∪B = {t | t ∈ A ∨ t ∈ B}.

Definition 2.4 (Relational Difference) The relational difference A − B of relations A,B ⊆ D1 × · · · × Dn is

the relation A−B = {t | t ∈ A ∧ t /∈ B}.

The definition of the relational product operation differs from the normal Cartesian product in that the result is a

set of single tuples rather than a set of pairs of tuples. The single tuple is formed by applying a tuple concatenation

function to the pair of tuples that would result from a conventional Cartesian product. Tuple concatenation is

a binary function, conc, on tuples such that for tuples a = (a1, . . . , an) and b = (b1, . . . , bm), conc(a, b) =
(a1, . . . , an, b1, . . . , bm). The tuples a and b need not be union compatible.

Definition 2.5 (Relational Product) The relational productA×B of relationsA andB isA×B = {conc(a, b) |
a ∈ A, b ∈ B}.

One consequence of our definition of relations is that the relational product is neither associative nor com-

mutative. There does however exist a bijection between the tuple items of the different concatenated tuples. So

A × B ≡ B × A up to isomorphism. However, we will address the lack of associativity and commutativity later

in this paper.

Definition 2.6 (Relational Projection) Let A be a relation with corresponding relation index IA. Let ρ be a

list of relation index items drawn from IA such that ρ = [i1, . . . , in]. The relational projection π on ρ of A is:

πρ(A) = {(a|i1 , . . . , a|in) | a ∈ A}.

Relational projection corresponds quite closely to SELECT DISTINCT in SQL.

Definition 2.7 (θ-Restriction) Let θ be a predicate θ : D ×D → B for some domain D. For a relation A, with

corresponding relation index IA, the θ-restriction σϕ of A is defined as follows.

1. If ϕ has the form i θj where, i, j ∈ IA and a|i, a|j ∈ D, then

σi θj(A) = {a | a ∈ A ∧ a|i θ a|j }.

2. If ϕ has the form i θ(v), where i ∈ IA and a|i, v ∈ D, then

σi θ(v)(A) = {a | a ∈ A ∧ a|i θ v }.

The infix θ in the subscript of σ follows the historical convention from the relation database literature and so

i θj, or equivalently θ(i, j), does not mean that θ applies to i and j ; instead i θj is shorthand notation for the

membership test a|i θ a|j for all a ∈ A. Also, the parenthesised subscript (v) is our notation to distinguish v as a

literal value as distinct to the index of a tuple item, such as i, where no parentheses are used.

The predicate θ is typically drawn from the set {=, 6=, <,≤, >,≥} but does not necessarily have to come

from this set. θ-restriction is often just referred to as restriction and in such cases θ is assumed to be the equality

operation. The name selection is often used instead of restriction in the literature but we will not use this synonym

here to avoid confusion with the select operation from SQL which has a somewhat different meaning. In fact,

restriction corresponds more closely to the WHERE clause in SQL.

Definition 2.8 (Generalised Restriction) Let ϕ be a proposition that consists of atoms as allowed in θ-restriction

and the logical operations ∧, ∨ and ¬. If A is a relation then the generalised restriction σϕ is defined on A as

follows:

σϕ(A) = { a | a ∈ A ∧ ϕ(a) }.

4

Proposition 2.9 Generalised restriction does not increase the expressive power of the relational algebra if the

algebra already includes θ-restriction.

Proof 2.10 Let ϕ and ψ be propositions on elements of relation A and let them consist only of atoms as allowed

in θ-restriction. If we assume the usual set intersection, union and difference operations then the result follows

directly from the equivalences: σϕ∧ψ(A) = σϕ(A) ∩ σψ(A), σϕ∨ψ(A) = σϕ(A) ∪ σψ(A) and σ¬ϕ(A) =
A− σϕ(A).

2.2.2 Derivative Relational Operations

Definition 2.11 (Relational Intersection) The relational intersectionA ∩B of relations A,B ⊆ D1 × · · · ×Dn

is the relation A ∩B = {t | a ∈ A ∧ t ∈ B}.

Expressed in terms of the fundamental relational operations A ∩B = A− (A−B), A ∩B = B − (B −A)
and A ∩B = A ∪B − (A−B)− (B −A).

Relational division is the reverse of the relational product.

Definition 2.12 (Relational Division) The relational division A÷B of relation A ⊆ D1 × · · · ×Dn ×Dn+1 ×
· · · ×Dm and relation B ⊆ Dn+1 × . . . Dm, where n ≤ m, is the n-ary relation

A÷B = { t | ∀b ∈ B, conc(t, b) ∈ A}.

Expressed in terms of the fundamental relational operations,

A÷B = π1,...,n(A)− π1,...,n((π1,...,n(A) ×B)−A).

Definition 2.13 (θ-Join) Let θ be a predicate θ : D × D → B for some domain D. If A and B are relations

with tuple items a|i ∈ D and b|j ∈ D respectively for some (i, j) ∈ IA × IB , then the θ-join ✶i θj of A and B is

defined as

A ✶i θj B = σi θj(A×B).

When θ is equality the θ-join is called the equi-join. By replacing the θ-restriction operation in the θ-join by the

generalised restriction operation we arrive at the definition of the generalised join.

Definition 2.14 (Generalised Join) Let ϕ be a proposition that consists of atoms as allowed in θ-restriction and

the logical operations ∧, ∨ and ¬. If A and B are relations then the relational join ✶ϕ is defined as

A ✶ϕ B = σϕ(A×B).

For the purposes of upgrading relational joins to handle structured data, it is sufficient to consider just the

θ-join and, optionally as a useful syntactic convenience, the generalised join. However, a description of relational

joins would not be complete without mentioning the, so called, natural join. The natural join is the result of a

projection of an equi-join such that duplicate tuple items are removed from the resulting relation.

Definition 2.15 (Natural Join) Let A and B be relations with tuples a ∈ A and b ∈ B. If tuple items a|i ∈ D
and b|j ∈ D for some domain D and some (i, j) ∈ IA × IB then the natural join ✶(i,j) of A and B is

A ✶(i,j) B = πρ(σi=j(A×B)),

where ρ = IA ∪ { |IA|+ ℓ | ℓ ∈ IB ∧ ℓ 6= j }.

When unqualified reference is made in the literature to a “relational join”, this typically refers to the natural join.

The literature also defines several other types of join, including semijoin, antijoin, outer joins and inner joins.

These may all be expressed in terms of the fundamental operations described in this paper but are not discussed

further here and the interested reader is instead referred to standard texts such as [5, 6]. For the purposes of

upgrading relational joins to handle structured data, it is sufficient to consider just the θ-join and optionally, as a

useful syntactic convenience, the generalised join.

Natural joins as traditionally defined in Codd’s relational algebra [3, 4] are both commutative, i.e. A ✶ B =
B ✶ A, and associative, i.e. (A ✶ B) ✶ C = A ✶ (B ✶ C). Neither of these properties holds for the

5

relational joins described in this paper. In the context of traditional database applications, both of these properties

are of practical importance. By contrast, in the context of joining structured data rather than relational data, the

resultant structured data would not typically be expected to have the same structure as the original data and thus

commutativity and associativity become less relevant.

For an exact relational join, the behaviour of the natural join in removing duplicate tuple items after joining on

them is appropriate because the presence of duplicates adds no information to the data. However, in the context of

an approximate relational join, the joined-on tuple items need not be identical – approximate equality is sufficient

– and so both values may hold useful information. For our intended machine learning and data mining application

domain, we choose not to remove this information.

2.3 Relational Algebra

Given the relational representation and fundamental operations defined above we can now define the relational

algebra along similar lines to [13] but with alterations to accommodate our choice of representation.

Definition 2.16 (Relational Algebra) Let D be a set of domains. Let dom be a total function from values v ∈ D
to their associated domain D ∈ D such that dom(v) = D. Let R be a set of relations such that R = {R | R ⊆
D1 × · · · × Dn ∧ Di ∈ D, i = 1..n}. Let ind be a total function from relations R ∈ R to relation indexes

IR ⊆ N
+. Let Θ be a set of predicates over domains in D, and the logical operations ∧, ∨ and ¬ over the

booleans. Let O be the set of operations: relational union ∪, relational difference −, relational product ×,

relational projection π, and relational restriction σ. The relational algebra over D, dom, R, ind, Θ and O is the

6-tuple R = (D, dom,R, ind,Θ,O). An algebraic expression over R is any expression formed legally, according

to the definitions of the operations, from the relations in R using the operations in O.

The derivative operations, such as relational intersection (∩), θ-join (✶θ), relational division (÷) and the natural

join (✶), are not defined as members of O because they may be defined from combinations of the fundamental

operations.

Index set IR of each relation R ∈ R does not appear in the definition directly, as would be the case with

name-based relational schema, but is instead obtained through the function ind so that an association between

relation and index is maintained.

The function dom ensures that every value in every domain in D is associated with its domain. This association

between a value and its domain is an important feature in the upgrading of relational algebra to the higher-order

logic where we exploit a similar relationship between a value and its type (to be defined).

3 Upgrading the Relational Model to Higher-Order Logic

3.1 Individuals as Terms in a Higher Order Logic

The setting is a typed, higher-order logic which is based on Church’s simple theory of types [1] with several

extensions. This formalism has been chosen over the possible alternative of first-order logic because terms in the

higher-order logic natively support a variety of data types that are important for representing individuals, including

sets, multisets and graphs. Furthermore, selecting a typed logic enables type inference on heterogeneous data

about an individual, which simplifies the integrated representation in a term. The theory behind the logic and

the individuals-as-terms formalism is set out in [11, 12] and a brief overview is given here. First, we assume an

alphabet defined as follows.

Definition 3.1 (Alphabet [12]) An alphabet consists of four sets.

1. T the set of type constructors of various arities.

2. P the set of parameters.

3. C the set of constants.

4. V the set of variables.

Included in T is the constructor Ω of arity 0 with a corresponding domain of {True,False}, the booleans.

Types are constructed from type constructors in T and type variables in P using the symbols → for function types

and × for product types.

6

Definition 3.2 (Type [12]) A type is defined inductively as follows.

1. Each parameter in P is a type.

2. If T is a type constructor in T of arity k and α1, . . . , αk are types, then T α1 . . . αk is a type. (For k = 0,

this reduces to a type constructor of arity 0 being a type.)

3. If α and β are types, then α→ β is a type.

4. If α1, . . . , αn are types, then α1 × · · · × αn is a type. (For n = 0, this reduces to 1 being a type.)

A type is closed if it contains no parameters. Sc denotes the set of all closed types obtained from an alphabet.

We admit the usual nullary type constructors, including:

• 1,

• Ω, the type of B,

• Nat, the type of N,

• Int, the type of Z,

• Float, the type of floating-point numbers,

• Real, the type of R,

• Char, the type of characters,

• String, the type of strings.

The set of constants C includes ⊤ (true) and ⊥ (false). A signature is the declared type for a constant. A

constantC with signatureα is often denotedC : α. Let [] be the empty list constructor with signature List awhere

a is a parameter and List is a type constructor. Let # be the list constructor with signature a→ List a→ List a.

The terms of the logic are the terms of typed λ-calculus and are formed in the usual way by abstraction, tupling

and application from constants in C and a set of variables. The set of all terms obtained from a particular alphabet

is denoted L and is called the language given by the alphabet. A basic term is the canonical representative of an

equivalence class of terms [8, 12].

Definition 3.3 (Basic terms [12]) The set of basic terms, B, is defined inductively as follows.

1. Basic structures – If C is a data constructor having signature σ1 → · · · → σn → (T ai . . . ak),
t1, . . . , tn ∈ B (n ≥ 0), and t is C t1 . . . tn ∈ L, then t ∈ B.

2. Basic abstractions – If t1, . . . , tn ∈ B, s1, . . . , sn ∈ B (n ≥ 0), s0 ∈ D and t is λx. if x = t1 then s1
else . . . if x = tn then sn else s0 ∈ L, then t ∈ B.

3. Basic tuples – If t1, . . . , tn ∈ B (n ≥ 0) and t is (t1, . . . , tn) ∈ L, then t ∈ B.

The abstractions in part 2 of Definition 3.3 represent a key-value lookup table where ti are the keys and si are

the values, for i = 1 . . . n, with a default value of s0 ∈ D, where D is the set of terms that do not already occur in

{t1, . . . , tn}. The order of the terms ti and si in basic abstractions always in a canonical lexical total ordering to

avoid syntactically different terms that are semantically equivalent.

Basic terms can represent a wide range of data structures using basic structures, basic abstractions and basic

tuples, or arbitrarily nested combinations of these. We give a few important examples of data structures as basic

terms below.

Let M be a nullary type constructor and A,B,C,D : M . Let [] be the empty list constructor with signature

List awhere a is a parameter and List is a type constructor. Let # be the list constructor with signature a×List a→
List a. In Fig. 5, the lists [A,B,C] and [A,D] are represented as right-descending binary trees, using nested basic

structures.

Basic abstractions are key-value associations of type Bβ→γ , for some key of type β and value of type γ, with

a default value s0 : γ. The value ti associated with key si for some basic abstractions t is V (t si) = ti for

i = 1, . . . , n. The set of keys si that occur in t is supp(t). With suitable choices of γ and s0, basic abstractions

7

#

A #

B #

C []

#

A #

D []

Figure 1: Lists [A,B,C] and [A,D] as basic structures.

can represent sets and multisets (bags). A set of terms {A,B,C} of type M can be represented extensionally as

basic abstractions of type BM→Ω, where Ω is the type of booleans, and the default term s0 = ⊥.

λx . if x = A then ⊤ else if x = B then ⊤ else if x = C then ⊤ else ⊥

A multiset 〈A,A,A,B,C,C〉 = 〈(A, 3), (B, 1), (C, 2)〉 can be represented as basic abstractions of type BM→Nat,

where Nat is the type of natural numbers and the default term s0 = 0.

λx . if x = A then 3 else if x = B then 1 else if x = C then 2 else 0

When working with terms and basic terms it is useful or, as in the context of the relational algebra on basic

terms, necessary to be able to refer to sub-parts of a term either individually or collectively. We refer to the process

of specifying a specific sub-part or set of sub-parts as indexing.

3.2 Indexing Basic Terms

In the logic, sub-parts of a term are referred to as subterms and so we are concerned with indexing the subterms

of a basic term. The standard method for indexing subterms in the logic enumerates a decomposition of a given

term such that every subterm is labelled with a unique string [12]. However, we introduce an alternative approach

to indexing that, instead of enumerating all subterms of a term, defines a type tree index set over all subtypes of

the type of a basic term. To do this we first adopt the definition of a type tree from [10] and then define a different

annotation of the tree such that every member of the type tree index set identifies a set of terms rather than a single

term. This ensures any index defined on a type is meaningful across all terms of that type. Furthermore, the set of

subterms identified is guaranteed to consist entirely of well-formed basic terms.

Below we consider two subterm indexing methods which we call term-based indexing and type-based index-

ing, the latter of which has a variant which we also discuss.

3.2.1 Term-based Indexing

We refer to term-based indexing as the approach taken in [12], whereby the occurrence set O(t) of a term t is

defined to enable subterm indexing such that the subterm of t at occurrence o ∈ O(t) may be referenced as t|o.

Each occurrence is either a numeric string that uniquely labels a subterm of a given term, or is the empty string ε,
labelling the reflexive subterm. Example 3.4, using the trivial case of a basic tuple, informally illustrates subterm

indexing based on a term’s occurrence set as defined in [12].

Example 3.4 If basic term t is the tuple t = (A,B,C,D) such that A,B,C,D ∈ B, then the occurrence set of t
is O(t) = {ε, 1, 2, 3, 4}, and the subterms of t are indexed as t|ε = (A,B,C,D), t|1 = A, t|2 = B, t|3 = C and

t|4 = D.

For the case of basic tuples, such a scheme is a suitable analogue of the relation index, because indexing over the

items of basic tuples corresponds closely with numeric indexing over the items of tuples in the traditional relation

index. If, however, we move beyond indexing basic tuples and onto basic structures or basic abstractions, then

indexing directly on the terms themselves has two undesirable consequences, in our context, which we outline

below.

Firstly, indexes over basic structures and basic abstractions requires foreknowledge of the extension of data

instances in order to select a meaningful occurrence that applies to all the basic terms in a basic term relation, as

illustrated for basic structures in Example 3.5. In other words, some occurrence values are local to a subset of the

basic terms in the relation: possibly even local to a single term.

8

Example 3.5 If basic terms s, t ∈ BList M are the lists s = [A,B,C] and t = [A,D], where A,B,C,D : M,

and M is a nullary type constructor, then the occurrence sets of s and t are O(s) = {ε, 1, 2, 21, 22, 221, 222} and

O(t) = {ε, 1, 2, 21, 22}, the derivation of which can be seen from Figure2. The occurrence sets correspond to the

subterms s|ε = [A,B,C], s|1 = A, s|2 = [B,C], s|21 = B, s|22 = [C], s|221 = C, s|222 = [], and t|ε = [A,D],
t|1 = A, t|2 = [D], t|21 = D, t|22 = []. So, for instance, occurrence 21 can be used to index both s and t
because 21 ∈ O(s) ∩ O(t). In contrast, occurrence 221 can only be used to index s because 221 ∈ O(s), but

221 /∈ (O(s) ∩O(t)). Thus occurrence 221 is local to s with respect to t.

#

A

1

#

2

B

1

#

2

C

1

[]

2

#

A

1

#

2

D

1

[]

2

Figure 2: Term-based indexing for basic structures representing lists [A,B,C] and [A,D], which is notational

sugar for A#B#C#[] and A#D#[], where # and [] are the usual list data constructors, A,B,C,D : M, and M

is a nullary type constructor.

This indexing locality problem increases as the complexity and nesting of basic terms increases. Notably for

abstractions, representing sets and multisets etc., the locality of occurrences is total; an occurrence has little or no

meaning as an index outside of the abstraction term itself, as can be seen from Example 3.6.

Example 3.6 Let basic terms s, t ∈ Bα→Ω be the sets s = {A,B,C} and t = {B,D}, represented by the basic

abstractions

s =λx. if x = A then ⊤ else if x = B then ⊤ else if x = C then ⊤ else ⊥, and

t =λx. if x = B then ⊤ else if x = D then ⊤ else ⊥,

where A,B,C,D : M, and M is a nullary type constructor. Given that “if p then q else r” is infix notation for

if then else(p, q, r), these basic abstractions may also be rewritten as follows, additionally shortening “if then else”

to “if” for conciseness:

s =λ(x, if(=(x,A),⊤, if(=(x,B),⊤, if(=(x,C),⊤,⊥)))), and

t =λ(x, if(=(x,B),⊤, if(=(x,D),⊤,⊥))).

Their occurrence sets are O(s) = {ε, 1, 2, 21, 22, 23, 211, 212, 231, 232, 233, 2331, 2332, 2333, 23311, 23312}
and O(t) = {ε, 1, 2, 21, 22, 23, 211, 212, 231, 232, 233, 2311, 2312}, the derivation of which can be seen from

Figure3. Out of these occurrences, the only ones likely to be of practical use in a join operation correspond to the

subterms s|212 = A, s|2312 = B, s|23312 = C and t|212 = B, t|2312 = D. These occurrences are clearly local to

the term upon which they are defined.

The second undesirable consequence, in our context, of indexing directly on the terms using the occurrence

set defined in [12] is that subterms are not guaranteed to be basic terms. For example, for any basic abstraction the

variable x from λ.x is a subterm but is not a basic term. In the context of exact relational joins, and leaving aside

issues of redundancy or the semantics of joining on such subterms, this is not of itself problematic because the logic

has a well defined equality operation over all terms, and all subterms are terms. However, for approximate joins,

admitting subterms that are not basic terms prevents the application of existing approximate equality operations

defined only for the subset of terms that are basic terms.

9

λ

x

1

if then else

2

=

1

x

1

A

2

⊤

2

if then else

3

=

1

x

1

B

2

⊤

2

if then else

3

=

1

x

1

C

2

⊤

2

⊥

3

λ

x

1

if then else

2

=

1

x

1

B

2

⊤

2

if then else

3

=

1

x

1

D

2

⊤

2

⊥

3

Figure 3: Term-based indexing for basic abstractions representing sets {A,B,C} and {B,D}, whereA,B,C,D :
M, and M is a nullary type constructor.

3.2.2 Type-based Indexing

To solve both of the aforementioned problems of term-based indexing, we introduce an alternative approach to

indexing that, instead of defining an occurrence set over all subterms of a term, defines a type tree index set over

all subtypes of the type of a basic term. To do this we first adopt the definition of a type tree from [10] and then

define a specific annotation of the tree such that every member of the type tree index set identifies a set of terms

rather than a single term. The set of terms identified is guaranteed to consist entirely of basic terms. Moreover,

this type-based indexing overcomes the indexing locality problem of term-based indexing.

To achieve this we follow the same interpretation of subtypes as [12] and restrict our attention to basic terms

whose basic structures are in canonical form as defined below.

Definition 3.7 (Basic Structures in Canonical Form) A type τ = T α1 . . . αk is a basic structure in canonical

form when, for all data constructors Ci : τi1 → · · · → τin → τ that are associated with T , all the types of τij are

subtypes of τ .

We begin our definition of the type tree index set with some preparatory notation. Let Z+ denote the set of positive

integers and (Z+)∗ the set of all strings over the alphabet of positive integers, with ε denoting the empty string. io
denotes the string concatenation of i with o where i ∈ Z

+ and o ∈ (Z+)∗.

Definition 3.8 (Type Tree Index Set) The type tree index set of a canonical type τ , denoted O(τ), is the set of

strings in (Z+)∗ defined inductively on the structure of τ .

1. If τ is an atomic type, then O(τ) = {ε}.

2. If τ is a basic structure type τ = T α1 . . . αn in canonical form, with data constructors Ci : τi1 → · · · →
τim → τ for all i ∈ {1, . . . , l}, then O(τ) = {ε} ∪

⋃p
v=1{ vov | ov ∈ O(ξv)}, where ξ1, . . . , ξp are the

types from αk where αk = τij and τij 6= τ , and assuming that for every τij 6= τ there exists an αk such

that αk = τij .

3. If τ is a basic abstraction type β → γ, then O(τ) = {ε} ∪ { 1o | o ∈ O(β)} ∪ { 2o | o ∈ O(γ)}.

4. If τ is a basic tuple type τ = τ1 × · · · × τn, then O(τ) = {ε} ∪
⋃n
i=1{ ioi | oi ∈ O(τi)}.

Part 1, the base case, states that types for which all the associated data structures have arity zero, such as Ω (the

type of the booleans), Int (the type of the integers), and Char (the type of characters), have a singleton index set

containing the empty string. Part 2 states that each subtype that occurs in the signatures of the associated data

constructors, and that is not itself of type τ of the basic structure, is labelled with a unique string. Part 3 labels the

β and γ types of basic abstractions with a pair of unique strings. Similarly, part 4 labels each tuple item in a basic

tuple with a unique string.

10

Definition 3.9 (Subtype at a given type tree index) The subtype of a canonical type τ at type tree index o ∈
O(τ), denoted τ]o, is the type that occurs in τ at o.

The significance of defining indexing on the type tree of basic terms rather than on the terms themselves is that

each member of a type tree index set o ∈ O(τ) is not uniquely tied to any individual term of type τ . This increases

the generality of the indexing such that each member of the type tree index set for type τ identifies, for any basic

term t : τ , an equivalence class of subterms rather than a single term. Thus O(τ) induces a set of equivalence

classes on the subterms of t. We refer to the set of subterms identified with a given member (index) of the type

tree index set as the basic subterm set at that index.

Definition 3.10 (Basic Subterm Set) If t is a basic term of type τ and o ∈ O(τ) then the basic subterm set of t
at type tree index o, denoted t|o, is defined inductively on the length of o as follows.

1. If o = ε, then t|o = {t}.

2. If o = jo′, for some o′, and t has the form C t1 . . . tm, with associated type T α1 . . . αn, then t|o = sj |o′

where sj = ti : τi such that τi 6= τ and τi = αj .

3. If o = 1o′, for some o′, and t has the form if then else(u, v, s), then t|o = u|o′ ∪ s|o.

4. If o = 2o′, for some o′, and t has the form if then else(u, v, s), then t|o = v|o′ ∪ s|o.

5. If o = io′, for some o′, and t has the form (t1, . . . , tn), then t|o = ti|o′ , for i = 1, . . . , n.

A basic subterm set is a set of basic subterms of a basic term at some type tree index. A basic subterm is proper if

it is not at type tree index ε.

Basic subterms indexed in part 1, the base case, are singleton sets containing an atomic term. Basic subterms

indexed in part 2 are basic structures. Basic subterms indexed in parts 3 and 4 are the support and value of basic

abstractions, i.e. respective instances of α and β, from α → β. Basic subterms indexed in part 5 are basic tuples.

Below we give examples of a type tree index set and basic subterm sets for each of basic tuples, basic structures,

and basic abstractions. Starting with basic tuples in Example 3.11 where it can be seen that in comparison to the

term-based indexing from Example 3.4, type-based indexing identifies all the same terms, but as singleton sets

and in addition it identifies the reflexive term at t|ε.

Example 3.11 If basic tuple t ∈ BM×N×O×P is the term t = (A,B,C,D), where A : M, B : N, C : O, D : P,

then the type tree index set of t is O(t) = {ε, 1, 2, 3, 4}, the derivation of which can be seen from Figure4. The

basic subterm sets of t are t|ε = {(A,B,C,D)}, t|1 = {A}, t|2 = {B}, t|3 = {C} and t|4 = {D}.

α1 × · · · × αn

ε

α1

1

. . . αn

n

(a)

M × N × O × P

ε

M

1

N

2

O

3

P

4

(b)

(A,B,C,D)

A

1

B

2

C

3

D

4

(c)

Figure 4: Type-based indexing for basic tuples. (a) Type tree index for n-tuples of type α1 × · · · × αn. (b) Type

tree index for 4-tuples of type M×N×O×P. (c) Basic subterm tree for term (A,B,C,D) where A : M, B : N,

C : O, D : P.

Representing basic structures, the usual right branching representation of lists is given in Example 3.12, where the

basic subterm set at t|1 captures one meaning of a list as a set of values and t|ε captures the meaning of a list as a

set of sequences.

Example 3.12 If τ is a type of lists such that τ = List M, where M ⊆ B is a nullary type constructor, with

associated data constructors # and [], having signatures [] : List M, and # : M → List M → List M, then the type

tree index set of τ is O(τ) = {ε, 1}. If basic terms s, t ∈ BList M are the lists s = [A,B,C] and t = [A,D], then as

can be seen from Figure6, the basic subterm sets of s and t are s|ε = {[A,B,C], [B,C], [C], []}, s|1 = {A,B,C},

and t|ε = {[A,D], [D], []}, t|1 = {A,D}.

11

#

A #

B #

C []

#

A #

D []

Figure 5: Lists [A,B,C] and [A,D] as basic structures.

List α

ε

α

1

(a)

#

A

1

#

B

1

#

C

1

[]

(b)

#

A

1

#

D

1

[]

(c)

Figure 6: Type-based indexing for basic structures. (a) Type tree index for List α. (b) and (c) Basic subterm trees

for terms [A,B,C] and [A,D] of type List M where A,B,C,D : M.

For basic abstractions, a set is given in Example 3.13 and a multiset in Example 3.14. For both sets and multisets,

t|1 captures the meaning as a set of values whereas t|2 will always be {⊤} for sets and a set of multiplicities for

multisets. A corollary of Definition 3.8 is that the type tree index set of a basic abstraction type is always {ε, 1, 2}.

Example 3.13 If τ is a basic abstraction type representing sets such that τ = M → Ω, where M ⊆ B is a

nullary type constructor, then the type tree index set of τ is O(τ) = {ε, 1, 2}. If basic term t = {A,B,C}, where

A,B,C : M, then the basic subterm sets are t|ε = {{A,B,C}}, t|1 = {A,B,C} and t|2 = {⊤}.

Example 3.14 If τ is a basic abstraction type representing multisets such that τ = M → Nat, where M ⊆ B

is a nullary type constructor and Nat is the type of the natural numbers, then the type tree index set of τ is

O(τ) = {ε, 1, 2}. If basic term t = {A,A,A,B,C,C}, where A,B,C : M, then the basic subterm sets are

t|ε = {{A,A,A,B,C,C}}, t|1 = {A,B,C} and t|2 = {1, 2, 3}.

α → β

ε

α

1

β

2

(a)

{A,B,C}

A

1

⊤

2

B

1

⊤

2

C

1

⊤

2

(b)

〈A,A,A,B,C,C〉

A

1

3

2

B

1

1

2

C

1

2

2

(c)

Figure 7: Type-based indexing for basic abstractions. (a) Type tree index for type α → β. (b) Basic sub-

term tree for set {A,B,C}, type M → Ω, where A,B,C : M and ⊤ : Ω. (c) Basic subterm tree for multiset

〈A,A,A,B,C,C〉, type M → Nat, where A,B,C : M and 1, 2, 3 : Nat.

Proposition 3.15 If τ is a basic abstraction type such that τ = α → β, where α, β ∈ B, then the type tree index

set of τ is O(τ) = {ε, 1, 2}.

Proof 3.16 The result is a corollary of part 3 of Definition 3.8.

12

3.2.3 Type Name-based Indexing

A useful and straight forward reformulation of type-based indexing is type name-based indexing that, instead of

enumerating the edges of the type tree, directly labels the vertices of the type tree. The simplest approach being

to assign a unique type name to every vertex in the type tree. If the names assigned have no understandable

meaning to humans then this method offers no advantages over type-based indexing. However, if the knowledge

representational formalism used to define types and data instances uses human-understandable names then type

name-based indexing provides a useful notation for referring to basic subterm sets, as illustrated in Example 3.17.

Example 3.17 Let Author be the type of authors from the publications domain, which define declaratively in the
Haskell style syntax from [8] as follows.

type Author = (Name,Publications);

type Name = String;

type Publications = List Publication;

type Publication = (Mode,Coauthors,Title,Venue,Year);

data Mode = Journal | Proceedings | ... | Book;

type Coauthors = Coauthor -> Bool;

type Coauthor = String;

type Title = String;

type Venue = String;

type Year = Int;

This states that Author is a pair of Name and Publications, where Name is an alias for String the type of strings,

and Publications is a list of publications, which in turn is a 5-tuple of Mode, Coauthors, . . . , Year, where Mode

has the nullary data constructors Journal, Proceedings, . . . , Book, and so on through to Year which is an alias

for the type Int, the type of the integers. Coauthors is a basic abstraction from Coauthor to Bool, where Bool is

the type Ω, i.e. Coauthors is a set of coauthors. To ensure the required uniqueness of type names Coauthor, Title,

Venue and Name are aliases for the type String. The type tree index set is thus

{ Author, Author.Name, . . . , Author.Publications.Publication.Year }.

A type tree index set generated using this method is isomorphic with that produced by Definition 3.8, as

illustrated informally in Figure8. The constraint that all basic subtypes must be uniquely named permits the

following simpler definition of a basic subterm set.

Definition 3.18 (Basic Subterm Set (with named types)) If t is a closed basic term of type τ and α ⊆ τ then

the basic subterm set of t at type α, denoted t|α, is t|α = {s | s occurs in t with type α}. A basic subterm set is a

set of basic subterms of a basic term at some type tree α ⊆ B. A basic subterm is proper if α 6= τ .

Author = Name × Publications

ε

Name = String

1

Publications = List Publication

2

Publication = Mode × Coauthors × Title × Venue × Year

1

Mode

1

Coauthors = Coauthor → Ω

2

Coauthor = String

1

Ω

2

Venue = String

3

Year = Int

4

Figure 8: Type name-based and type-based indexing for type Author.

13

4 Basic Term Relational Model

We now upgrade the relational model for structured data. The way we achieve this is to first upgrade the knowledge

representation of the relation to be a set of basic terms rather than the traditional set of tuples. We then upgrade

the relation index so that it indexes parts of a basic term rather than the traditional parts of a tuple. Once these two

steps are completed, upgrading the relational operations follows almost automatically with only modest changes to

the definitions of the θ-restriction and joins. So to begin, we first upgrade the relation from section 2.1 to become

the basic term relation.

4.1 Basic Term Relational Representation

Definition 4.1 (Basic Term Relation) A basic term relation R ⊆ Bα is a finite set of basic terms for some given

type α ∈ Sc.

In the above definition of the basic term relation we describe R as a subset of Bα in order to emphasise

the intended meaning of R as a set. Doing so also maintains a clear syntactic similarity to the definitions from

the traditional relational algebra. However, in the higher-order logic we could equally have written R ∈ Bα→Ω

because, being a set, R is a basic abstraction of type α → Ω, where Ω is the type of the booleans. Thus a basic

term relation is itself a basic term.

Having upgraded our representation of a relation R : τ to handle structured data represented as basic terms,

and having chosen a suitable indexing method for the basic subterm set O(τ), we are now able to conveniently

define the basic term relation index as the structured data counterpart of the relation index.

Definition 4.2 (Basic Term Relation Index) The basic term relation index IR of a basic term relation R of type

τ is IR = O(τ).

4.2 Basic Term Relational Operations

4.2.1 Fundamental Basic Term Relational Operations

The basic term relational algebra defines five operations that directly correspond to the same five fundamental

operations defined in relational algebra.

• basic term union (∪)

• basic term difference (−)

• basic term product (×)

• basic term projection (π)

• basic term restriction (σ)

Each of these operations on basic term relations is defined and discussed throughout the remainder of this section.

The definitions of basic term union and difference (and, later when we discuss the non-fundamental operations,

intersection) accord the usual set theory but apply solely to sets that are basic term relations and are relations of

the same type.

Definition 4.3 (Basic Term Union) The basic term union A ∪ B of basic term relations A ⊆ Bα and B ⊆ Bα,

for some α ∈ Sc, is the basic term relation A ∪B = {t | t ∈ A ∨ t ∈ B}.

Definition 4.4 (Basic Term Difference) The basic term difference A − B of basic term relations A ⊆ Bα and

B ⊆ Bα, for some α ∈ Sc, is the basic term relation A−B = {t | t ∈ A ∧ t /∈ B}.

The basic term product is, potentially, more troublesome to define than its corresponding operation from

traditional relational algebra in that there is no single natural structure for combining an arbitrary pair of tuples

that is the analogue of concatenating a pair of relational tuples into a single relational tuple. As no one structure

seems more appropriate than another here, we simply adopt the traditional mathematical Cartesian product as this

is both sufficient and straight forward.

14

Definition 4.5 (Basic Term Product) The basic term product A×B of basic term relations A ⊆ B andB ⊆ B

is their Cartesian product such that A×B = {(a, b) | a ∈ A, b ∈ B}.

Note that duplicates are removed from the basic term relational product, as is normal for sets, and so |A × B| ≤
|A||B|. Also, there is no requirement for A and B to be of the same type; if the type of A is α and of B is β then

the type of A×B is α× β.

Definition 4.6 (Basic Term Projection) If t ∈ B then the basic term projection π of t on i ∈ It is

πi(t) = {s | s is the basic subterm of t at type tree index i}.

A basic term projection πi(t) may also be written as t|i.
Basic term projection is defined over basic terms rather than just a basic term relation and so is more general

than relational projection from traditional relational algebra. Thus, the same basic term projection operation may

be applied to both an entire basic term relation or to an individual member of a basic term relation.

Definition 4.7 (Basic Term θ-Restriction) Let θ be a predicate θ : (Bα → Ω) → (Bα → Ω) → Ω for some

α ∈ Sc. If A and B are basic term relations with basic terms a|i ⊆ Bα and b|j ⊆ Bα respectively for some

(i, j) ∈ IA × IB , then basic term θ-restriction σiθj is defined on T ⊆ A×B as

σiθj(T) = {(a, b) | a|i θ b|j ∧ (a, b) ∈ T }.

The predicate θ : (Bα → Ω) → (Bα → Ω) → Ω is defined on sets of basic terms. In other words, θ is a binary

predicate on basic term relations. The basic term restriction, like its counterpart in traditional relational algebra,

produces relations of the same type as the type to which it is applied and of cardinality such that |σiθj(T)| ≤ |T |.

Definition 4.8 (Basic Term Generalised Restriction) Let ϕ be a proposition that consists of atoms as allowed

in basic term θ-restriction and the logical operations ∧, ∨ and ¬. If A and B are basic term relations then the

basic term generalised restriction σϕ is defined on T ⊆ A×B as

σϕ(T) = { t | ϕ(t) ∧ t ∈ T }.

4.2.2 Derivative Basic Term Relational Operations

The remaining three operations on basic term relations are also counterparts of their corresponding operations

in traditional relational algebra and may be defined solely in terms of the five fundamental basic term relational

operations.

• basic term intersection (∩)

• basic term division (÷)

• basic term join (✶)

In the remainder of this section we define and discuss each of these non-fundamental operations and explain why

they are conceptually useful in their own right.

Definition 4.9 (Basic Term Intersection) The basic term intersectionA∩B of basic term relationsA ⊆ Bα and

B ⊆ Bα, for some α ∈ Sc, is the basic term relation A ∩B = {t | t ∈ A ∧ t ∈ B}.

Expressed in terms of the fundamental relational operations A ∩B = A− (A−B), A ∩B = B − (B −A)
and A ∩B = A ∪B − (A−B)− (B −A).

Basic term division is the reverse of basic term product3.

Definition 4.10 (Basic Term Division) The basic term division A ÷ B of basic term relations A ⊆ Bα × Bβ

and B ⊆ Bβ , for some α ∈ Sc, is the basic term relation

A÷B = {a | ∀b ∈ B, (a, b) ∈ A}.

Expressed in terms of the fundamental relational operations,

A÷B = π1(A)− π1((π1(A)×B)−A).

3We denote division as ‘÷’ rather than ‘/’ to avoid confusion with the latter’s use in parameter / type binding notation from type substitu-

tions in the higher-order logic.

15

Recall that the type tree index set for a pair (a, b) is {ε, 1, 2}with the corresponding basic subterm set {(a, b), a, b}.

Hence the projection π of (a, b) on 1 is π1 = (a, b)|1 = a.

Definition 4.11 (Basic Term θ-Join) Let θ : (Bα → Ω) → (Bα → Ω) → Ω be a predicate for some type

α ∈ Sc. If A and B are basic term relations with basic terms a|i ⊆ Bα and b|j ⊆ Bα respectively for some

(i, j) ∈ IA × IB then the basic term θ-join ✶i θj of A and B is defined as

A ✶i θj B = σi θj(A×B).

Note that the basic term θ-join, unlike its traditional relational counterpart, does not include a projection on the

selection.

Definition 4.12 (Basic Term Generalised Join) Let ϕ be a proposition that consists of atoms as allowed in basic

term θ-restriction and the logical operations ∧, ∨ and ¬. If A and B are basic term relations then the basic term

join ✶ϕ is defined as

A ✶ϕ B = σϕ(A×B).

The closeness in form of the definition of the basic term join to that of the relational join facilitates the

following result.

Proposition 4.13 Relational joins are a special case of basic term relational joins.

Proof 4.14 Assume relation R ⊆ D1 × · · · × Dn for some domains D1, . . . , Dn. Assume appropriate type

constructors and data constructors such that D1, . . . , Dn ⊆ B. Let basic term relation S ⊆ D1 × · · · ×Dn. Let

IR be the relation index of R and IS be the basic term relation index of S. Clearly there is a surjection from IR
into IS and thus from the set of tuple items in each tuple in R to the set of subterms in each corresponding basic

term tuple in S. Assume the θ operators are available for basic terms and the result follows.

4.3 Basic Term Relational Algebra

Given the basic term representation and fundamental basic term operations defined above we can now define the

basic term relational algebra closely mirroring our earlier definition the relational algebra.

Definition 4.15 (Basic Term Relational Algebra) Let D be a collection of non-empty domains {Bα}α∈Sc . Let

R be a set of basic term relations such that R = {R | R ⊆ Bα, α ∈ Sc ∧ Bα ∈ D}. Let ind be a total function

from basic term relations R ∈ R to basic term relation indexes IR ⊆ N
+. Let Θ be a set of predicates over

domains in D, and the logical operations ∧, ∨ and ¬ over the booleans. Let O be the set of operations: basic

term union ∪, basic term difference −, basic term product ×, basic term projection π, and basic term restriction

σ. The basic term relational algebra over D, dom, R, ind, Θ and O is the 6-tuple R = (D, dom,R, ind,Θ,O).
An algebraic expression over R is any expression formed legally, according to the definitions of the operations,

from the relations in R using the operations in O.

5 Summary and Future Work

The relational model that underpins SQL databases systems is not well suited to the representation of many com-

monly occurring unstructured, semi-structured or structured data types. The individuals as terms representation,

using basic terms from the higher-order logic, facilitates representation of such heterogeneous data types without

the convoluted schemes entailed in their relational representation. The relational algebra for basic terms intro-

duced in this paper has the potential to offer similar convenience to the original relational algebra, but exchanging

data normalisation for increased representational power. The subterm indexing methods presented here could be

further developed to, for example, admit XPath-like traversal of arbitrary data. Also, given the syntactic and se-

mantic heterogeneity of data from diverse sources, there is considerable scope for approximate, rather than exact,

basic term joins. Potential application areas are in the de-normalised settings of NoSQL and Big Variety Big Data.

16

References

[1] Alonzo Church. A formulation of the simple theory of types. Journal of Symbolic Logic, 5(2):56–68, June

1940.

[2] E. F. Codd. Derivability, redundancy, and consistency of relations stored in large data banks. Technical

Report JR599, IBM, San Jose, 1969.

[3] E. F. Codd. A relational model of data for large shared data banks. Communications of the ACM, 13(6):377–

387, June 1970.

[4] E. F. Codd. Extending the database relational model to capture more meaning. ACM Transactions on

Database Systems, Vol. 4, No. 4, December 1979., 4(4):397–434, December 1979.

[5] E. F. Codd. The Relational Model for Database Management, Version 2. Addison Wesley, 1990.

[6] C. J. Date. An Introduction to Database Systems. Addison-Wesley Longman Publishing Co., Inc., Boston,

MA, USA, 1991.

[7] Ramez Elmasri and Shamkant B. Navathe. Fundamentals of Database Systems. Addison Wesley, 5th edition,

March 2006.

[8] Thomas Gaertner, John W. Lloyd, and Peter A. Flach. Kernels and distances for structured data. Machine

Learning, 57(3):205–232, December 2004.

[9] Herve Gallaire, Jack Minker, and Jean-Marie Nicolas. Logic and databases: A deductive approach. ACM

Computing Surveys, 16(2):153–185, 1984.

[10] Elias Gyftodimos and Peter A. Flach. Combining bayesian networks with higher-order data representations.

In Proceedings of the 6th International Symposium on Intelligent Data Analysis (IDA’06), pages 145–157.

Springer-Verlag, September 2005.

[11] John W. Lloyd. Higher-order computational logic. In Antonis C. Kakas and Fariba Sadri, editors, Compu-

tational Logic: Logic Programming and Beyond, volume 2407 of Lecture Notes in Computer Science, pages

105–137. Springer, 2002.

[12] John W. Lloyd. Logic and Learning. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2003.

[13] David Maier. The Theory of Relational Databases. Computer Science Press, Rockville, Md., USA, 1983.

[14] Simon Price and Peter Flach. Querying and merging heterogeneous data by approximate joins on higher-

order terms. In Inductive Logic Programming, 18th International Conference, ILP 2008, Prague, Czech

Republic, September 2008, Proceedings, volume 5194 of LNCS/LNAI, pages pp. 226–243. Springer-Verlag

Berlin Heidelberg, 2008.

17

