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We present a mathematical analysis of the finite-energy Airy beam with a sharply truncated spectrum, which can be
generated by a uniformly illuminated, finite-sized spatial light modulator, or windowed cubic phase mask. The
resulting “incomplete Airy beam” is tractable mathematically, and differs from an infinite-energy Airy beam by
an additional oscillating modulation and the decay of its fringes. Its propagation can be described explicitly
using an incomplete Airy function, from which we derive simple expressions for the beam’s total power and mean
position. Asymptotic analysis reveals a simple connection between the cutoff and the region of the beam with

Airy-like behavior.
OCIS codes:
http://dx.doi.org/10.1364/0L.38.001639

An increasing number of optical beams with remarkable
properties have been studied which, in a mathematical
sense at least, have infinite energies. Strictly, they have
transverse intensity profiles that cannot be normalized.
Bessel, Airy, and Pearcey beams [1-3] are three such
examples and only approximations of these beams are
realizable experimentally [3-6]. The question of how
such finite-energy beams are described mathematically
can be a subtle one, but often provides important physi-
cal insight into their behavior. Here we consider how it
limits the region of acceleration of finite-energy Airy
beams.

The most commonly considered finite-energy Airy
beam, introduced in [5], uses an exponential apodization
and relies on the rapid decay of the Airy function for
positive arguments. Alternatively, finite-energy can be
enforced by modulating the Airy function with a wide
Gaussian profile [6], or even by a sharp truncation [7-9].
These beams display good approximations of the trans-
verse acceleration of infinite-energy Airy beams over an
appreciable propagation distance.

However, finiteness of energy can also be enforced by
limiting the beam’s spectrum [8-12], which is more prac-
tical as the simple Airy spectrum is easy to generate and
manipulate [10,11] experimentally. In the laboratory, this
is done by illuminating a cubic phase mask (or spatial
light modulator) with a Gaussian beam [5,11], or using
a finite-sized cubic element or hard aperture [8-10].

In this Letter, we present a mathematical analysis
of the finite-energy Airy beam generated from a sharply
truncated Airy spectrum with uniform amplitude be-
tween its limits. Such beams have been studied numeri-
cally [8-10], but our new analysis reveals a simple
connection between the cutoff and the region of the
beam that exhibits Airy-like behavior, as well as giving
a limit for the extent of the main intensity lobe. The sharp
spectral cutoff causes the beam to differ from the ideal
Airy beam, having an extra oscillating modulation in
addition to the desired decay of its fringes. Physically,
sharp discontinuities may result in complicated analytic
expressions, but in the case we present, the results are
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pleasingly elegant, based on the definition of an incom-
plete Airy function [13,14].

The infinite-energy Airy beam is obtained from para-
xial propagation of the Airy function [15], which itself
is defined as an integral

1 [ 1
aicn =5 [ azexn i+ ex) |

where X = kx is the dimensionless transverse distance
and « is an inverse length which governs the transverse
scale of the beam. Equation (1) is interpreted as a
Fourier representation, so the spectrum of Ai(X) is
Ai(¢) = exp(i&3/3) /2x, with ¢ the Fourier partner of X.
The intensity of Ai(X) is shown in Fig. 1(a). The decay
of the intensity fringes is proportional to (-X)1/2, so
the integral of |Ai(X)|?> over all X does not converge.

The paraxial, infinite-energy Airy beam we write as
AiB(X,Z7), and it is given by

)

AIB(X,Z2) = ei(XZ‘223/3)Ai(X - 7?), 2
where Z = z«k?/2k is the (scaled) dimensionless propaga-
tion distance with wavenumber k. Figure 1(e) shows
|AiB(X, Z)|?, where the transverse acceleration is appar-
ent since the beam follows the parabola X = Z2, which is
plotted as a solid white line. The fringes of AiB(X, Z) ex-
tend indefinitely for the infinite-energy case, suggesting
that an arbitrarily large transverse acceleration is pos-
sible with increasing Z. This is a direct consequence
of the infinite power of the initial function.

To make its energy finite, the Airy function’s spectrum
can be sharply truncated [8-10]. Since the Airy beam is
defined as a Fourier integral over its entire spectrum, a
sharp cutoff gives the incomplete Airy function [13,14]

. 1 [M+W 1
Ai}ﬁ?w(X)E%[w_; d¢ exp [i(353+§X)} €)

where M is the center of the integration window and W
determines its width. This function is similar to Eq. (1)

© 2013 Optical Society of America
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Fig. 1. Comparison of infinite and incomplete Airy beams with
M=0,W =4 (a) JAIX)]?, (b) |Aigf§(X)|2 in blue, |Ai(X)[? in
dotted pink, (c) |Ki(§)| shading by hue indicates the phase,
(@ [Aig5 (&), (&) |AIB(X. Z)[?, and (f) |ABS (X, Z) |2, symmetric
about Z = 0; white dashed line shows Eq. (8), which meets the
solid white parabola X = Z2 at Eq. (9) (white square); purple
dots correspond to the complex planes of Figs. 2(a) and 2(b);

dotted lines at Z; and Z, indicate slices plotted in Figs. 2(c)
and 2(d); Eq. (5) is like Airy right of the white dashed line.

but with a finite domain of integration, and is incomplete
since only part of the spectrum is included.

Figure 1(c) shows |Ai(§)|2, which is nonzero for all £.
Figure 1(d) shows |Aig’(£)|” which agrees with Ai(&) in
the range -4 < £ < 4 and is zero otherwise. Figure 1(b)
shows the intensity of Eq. (3) as a shaded blue line for
M = 0and W = 4, compared with that of Ai(X). A visible
consequence of the sharp cutoff is a small oscillating
modulation of the Airy fringes before they die away. This
can result in a main lobe with increased intensity as
observed in [8,9]. The subsequent total intensity is given
elegantly by Parseval’s theorem as

/_ ™ XAl (X) 2 = W/, @

The simplicity of this exact result motivates our sub-
sequent analytic investigation. We call the paraxially
propagating form of Eq. (3) the incomplete Airy beam,
AiBI¢ v (X, Z), and it is given by

AIBEC, (X, Z) = X228l (X -27%).  (B)
The intensity of Eq. (5) is plotted in Fig. 1(f). The expect-
ation value of the transverse position of the beam is given
by Ehrenfest’s theorem as

X =-W2/3-M?+2MZ, (6)

which is linear in Z. This demonstrates that, despite the
appearance of acceleration in Eq. (5), the beam’s center
only moves linearly proportional to MZ.

A remarkable property of Eq. (5) is that the integration
limits of Ail¢, (X -Z%) change as M-Z+W,

continuously translating in the direction of negative &.
This is a consequence of shifting the integration variable
after propagation to recover an Airy-like function with no
& term. The significance of this shift becomes apparent
through a saddle point approximation of Eq. (5). Since
the exponent of Eq. (5) is cubic, in the oscillatory region
(Z? > X) it is necessary to sum contributions from two
saddles at

fo=+VZ2-X. 7

Importantly though, Airy-like oscillations only occur
when the finite integration contour crosses both saddles.
As Z increases, the endpoints move to exclude the sad-
dles from the integral and the oscillations decay as the
intensity becomes increasingly dependent on contribu-
tions to the integral from near the endpoints instead of
from Airy-like interference of two saddles.

A complex plane representation of the exponent in the
integral of Eq. (5) is shown in Fig. 2(a), which corre-
sponds to an Airy-like region of the beam since both
saddles are included on the integration contour between
the endpoints. As Z increases, the endpoints move in the
direction indicated by the white arrows. When the upper
endpoint crosses over the saddle, the contribution from
£, is excluded since it is no longer on the integration con-
tour, and the function stops being Airy-like. Figure 2(b)
shows the complex plane in this case.

We note that the dashed white lines in Figs. 2(a) and
2(b) are not the paths of steepest descent, but the usual
arguments still apply since approximation of the exact
path must still exclude saddles outside the endpoints.

It is then possible to determine explicitly the region
where the beam has Airy-like behavior, since the line
where the endpoint crosses the upper saddle can be found
by equating Eq. (7) to uy — Z, where y. = M + W is the
original cutoff. Therefore, the beam stops being Airy-like
outside the region bounded by the lines

X:I: = 2Z,Ll:|: —ﬂi (8)

(d) |ABYS (X, 22)|

MM
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Fig. 2. (a), (b) Complex planes Wlth real contours of
i8/3 +ié(X,, - Z2,), respectively, corresponding to lower
and upper purple dots of Fig. 1(f). Gray squares are saddles
of Eq. (7), white dots are endpoints, white dashed line shows
the integration contour. (a) Airy-like configuration and (b) non-
Airy-like configuration. (c), (d) Show intensity along
dashed purple lines of Fig. 1(f) at Z; and Z,, respectively,
the vertical black, dashed lines show intercepts X » of the line
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Fig. 3. |AiB}{}f"W(X ,Z)|? for M # 0; dashed lines are given by
Eq. (8 and enclose the Airy-like region of the beam.
(@) M=3 and W =4 with enhanced main lobe and
(b) M =4 and W = 3. Side plots show main lobe intensity
against that of (dashed) AiB(Xp,Z); Xp is the X coordinate
of the ideal beam’s peak intensity.

The white dashed line in Fig. 1(f) is Eq. (8) for u,.
AiBg_‘ji (X, Z) is Airy-like only to the right of this line, while
to the left its oscillations decay in both amplitude and
spacial frequency, far more rapidly than a standard Airy
pattern. Figures 2(c) and 2(d) show slices of intensity
along the purple dashed lines of Fig. 1(f) at distances
Z1 and Z,. The vertical dashed lines at X; and X, corre-
spond to Eq. (8) for Z; and Z, respectively, and they
therefore mark the transition between Airy-like and not.

The incomplete Airy beam also provides an explicit
expression for the maximum extent of the main lobe,
which follows the same path as for the infinite-energy
beam, but decays as it approaches the line of Eq. (8).
Therefore, the main lobe propagates no further than

(X.Z) = (i), ©
which is shown as a white square in Fig. 1(f). After this
point the main lobe’s intensity rapidly decays since the
saddles are excluded from the integral of Eq. (5). Accord-
ingly, the lobe forms after the point (x2, u_).

In the region of the main lobe, and away from the lines
of Eq. (8), the incomplete Airy beam can be approxi-
mated by the infinite-energy Airy beam, AiB(X, Z), plus
a first-order endpoint-correction term, Ej w(X,Z). In
the simplest case of M = 0, this correction term is

Buy.2) =% sin [wx + Jwa e, a0

which describes the additional oscillating modulation
visible in Fig. 1(b) and is valid for asymptotically large
W. The correction is more complicated for M # 0, but
is not difficult to calculate via endpoint asymptotics.
Choosing M # 0 for the incomplete Airy function se-
lects a different portion of the spectrum to generate
the incomplete Airy beam. It is therefore possible to
prescribe what region of the beam is Airy-like, since
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the endpoints will enclose the saddles in different places.
Figure 3(a) shows the incomplete Airy beam for an initial
spectral truncation of -1 < ¢ < 5, and Fig. 3(b) shows the
case for 1 < ¢ < 7. The dashed lines are given by Eq. (8)
and correspond to the intersections of endpoints with
saddles. The dynamics of both £, and £_ are important.
Airy oscillations occur only within the enclosed regions
and the beam is no longer symmetric about Z = 0. We
note that the dashed lines are always tangential to the
curve X = Z2, and so can also be thought of as the ex-
tremal rays of a fold caustic [16].

It is then possible to optimize the extent of the main
lobe for fixed W at the cost of symmetry about Z = 0.
Figure 3(a) shows an enhanced main lobe (produced
at the expense of secondary fringes) for the same
W as Fig. 1(f), but now with M = 3. Of course, the
resolution of a generating SLM might still impose some
limitations.

In previous studies, an Airy beam’s spectrum has
been manipulated to control the ballistic regime [11] and
secondary lobe intensity [10]. Our analytic results here
complement these by providing, for the incomplete Airy
beam, explicit expressions for the spatial extent of the
Airy-like behavior of the beam in terms of the cutoff
parameter, including the maximum extent of the main
lobe. Initial investigation indicates they also loosely
approximate the dynamics of less severe cutoffs.
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