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Abstract 

 

Discontinuous reinforcement phases are often observed in high toughness natural 

materials, for example, nacre. The aim of this study is to introduce a degree of 

‘pseudo-ductility’  to  fibre  reinforced  polymer  materials  by  exploiting  such  

discontinuities. The work presented aims to take a simple concept of discrete 

material sections and apply it in the form of ply cuts in a carbon fibre reinforced 

polymer. A variety of specimen types which encompass the principles inspired by the 

architecture of nacre were tested in four point bend flexure and the failure processes 

investigated. Finite element analysis was also carried out to understand stress 

conditions around ply cuts and their role in the observed failure. It was observed that 

ply cut spacing and ply cut density were important parameters in achieving 'pseudo-

ductile' failure. 
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1 Introduction 

1.1 Nacre 

Nacre is a composite material found in the inner layers of mollusc exoskeleton and 

features a highly discontinuous structure. The main function of this exoskeleton is 

the protection of the inner soft tissue from external damage. Nacre is a hierarchical 

material  and  it’s  remarkable  physical  properties  are  the  subject  of  ongoing debate 

[1–7]. The structure of nacre comprises lamellae of discontinuous platelets. The 

platelets are discrete hexagonal calcium carbonate (aragonite) tiles, embedded in a 

viscoelastic  protein  matrix  arranged  in  a  ‘brick  and  mortar’  microstructure,  resulting  in  

two levels of hierarchy [8], shown in Figure 1 (adapted from [9]). The tiles of 

aragonite are typically 300-500nm thick with the organic layer being 20-30nm in 

thickness. An interesting feature of nacre is the very high percentage of the mineral 

phase, with values of around 95% of the total weight. In nacre, the unique 

viscoplastic deformation of the organic interface and the crack delocalisation of the 

layered microstructure of the inorganic aragonite leads to an increase in fracture 

toughness; this is typically 20-30 times that of synthetic aragonite and fracture 

strength three orders of magnitude higher than monolithic calcium carbonate [10]. 

This remarkable toughness and strength, from a relatively simple arrangement of 

‘tiles’  and  ‘glue’,  demonstrates  the  importance  of  structural  design  over  base material 

properties. As observed by Knipprath et. al. [11], an exact representation of nacre, 

experimentally or with finite element analysis (FEA) is extremely challenging due to 

the multi-level hierarchy material intricacies and complex pseudo-ductile failure 

mechanisms at different length scales, such as interlayer deformation, crack 

deflection, microbuckling and delamination [12]. Direct mimicry of this system is 

currently beyond the scope of engineering composite materials but the synthesis of 
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these  ‘design  rules’  to  yield  ‘graceful  degradation’  within  a  brittle based system is 

possible and the motivation behind this study.  

1.2 Fibre reinforced polymers 

Unidirectional (UD) fibre reinforced polymers (FRP) are generally considered to be 

continuous in nature, with the reinforcing fibre tows essentially uninterrupted along 

the length of the laminate. There are exceptions to having a continuous fibre 

arrangement, which are a necessity of real component design and manufacture 

(Figure 2). 

- Automatic lay up; during manufacture of large components, the spool of pre-

impregnated tape will need periodic replacement resulting in a discontinuous 

ply region, often a butt joint. Figure 2a shows two ply terminations sandwiched 

between two continuous plies. 

- Tapering; if a reduction in component thickness is required, this is achieved 

by a series of ply-drops.  Figure 2b shows a single ply drop reducing the 

thickness of the laminate by one lamina. 

- Embedment; occasionally features such as health monitoring devices (e.g. 

fibre optics or strain measurement), Figure 2c.  

The work presented herein discusses research conducted into the effect of ply 

terminations on the fracture behaviour of laminated FRPs. By selectively introducing 

controlled discontinuities it has been shown that the catastrophic failure commonly 

observed in UD composites can be reduced by creating a number of sub-critical 

fractures sites distributed throughout the structure.  

In contrast to continuous FRPs, discontinuous FRP systems in the form of sheet-

moulding  compounds  (e.g.  Hexcel  HexMC)  consist  of  short  ‘chips’  of  pre-preg cut to 

various sizes and oriented in various directions. The benefit of such a material 
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architecture is an ability to mould very complex 3D components which would not be 

possible with continuous fibre systems. The nature of discontinuous fibre systems 

means that there are many ply terminations and resin rich areas. Work by Feraboli 

et.al. [13] identified resin rich areas as well as resin-starved areas to be causes of 

laminate failure. The work herein takes a fundamental approach to understanding ply 

discontinuities and their effect on fracture properties. 

1.3 The influence of ply cuts on fracture behaviour 

Within a laminate, resin rich areas are often avoided as they can act as crack 

initiation sites due to localised stress concentrations [9][10]. However, this property 

can be utilised to control the location of crack initiation as well as controlling the 

subsequent propagation. If a ply cut is introduced within a laminate there will be a 

resin pocket at the location of the cut, as seen in Figure 2. To the authors knowledge 

the effect of this resin pocket geometry/ply cut spacing on flexural fracture properties 

of a FRP laminate has not been investigated. By altering the width of separation 

between the two  ply  ends  a  simple  way  of  understanding  the  resin  pocket’s  influence  

on fracture behaviour can be studied. It is believed that these ply terminations 

essentially  introduce  a  number  of  ‘weak’  links within the laminate. By correctly 

coordinating  these  ‘weak’  links it is possible to generate sequential or ‘graceful’ 

failure by replacing a single large catastrophic crack with a number of smaller sub-

critical cracks.  

Literature shows that cut plies can be used to understand tapering effects, therefore, 

the work presented may be applicable to tapered laminates as well as those with a 

uniform thickness [16]. The idea of a 'weak link', which essentially states that each 

ply cut acts independently unless the distance separating adjacent cuts is less than a 

critical value, has also been suggested [17–19]. Richards et al. [18] determined a 
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loss in tensile strength of about 15% in CFRP irrespective of the number of ply cuts, 

given that the separation distance between ply cuts was above this critical value. 

The work of Darby et al. [17] would suggest that for IM7/8552 (the material used in 

this study) this length would be approximately 0.15mm. This criticality may, 

therefore, be exploited and allow for laminate designs capable of exhibiting 

progressive failure. An alternative study on the tensile fracture of a different material 

system by Taketa et al. [20] showed the benefits of including ply cuts distributed 

within pre-preg to permit complex part geometries to be compression-moulded. The 

authors also derive an accurate strength calculation for laminates containing ply 

cuts. It is apparent from these studies [15-18],  that  the  control  of  a  number  of  ‘weak  

links’  within  a  brittle  material  has  the  potential  for  graceful  failure  in  engineering  

materials, as observed in the biological kingdom. 

2 Specimen manufacture and test procedure 

2.1 Specimen manufacture 

All specimens were manufactured from UD IM7/8552 CFRP pre-impregnated 

carbon/epoxy tape (Hexcel Composites, UK) of nominal cured ply thickness 

0.125mm and autoclave cured according to manufacturers guidelines. Ply lay up was 

carried out in a clean environment and plies debulked for 15 minutes every 4 plies to 

remove entrained air. Post cure, laminates were cut on a diamond wheel, ground to 

specified dimensions and then polished using 400/800/1200 grade SiC to minimise 

edge effects. For specimens which had embedded ply cuts, the ply termination 

spacing was a control variable and investigated for its influence on the failure 

process. Preliminary testing showed that hand lay-up was not refined enough to 
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allow for precise control over the ply termination spacing. To overcome this problem, 

a vacuum assisted lay-up positioning guide was developed, show in Figure 3. 

The guide allowed for precise alignment of the pre-preg prior to consolidation of 

stacked plies. Double plies were chosen over individual plies in all of the specimens 

to aid optical measurement of the crack propagation as well as allowing for more 

consistent alignment of individual cut plies. It is expected that all of the behaviour 

observed in this study will also apply to single thickness ply cuts.   

2.2 Test procedure 

All the specimens manufactured were tested under quasi-static flexure in four point 

bending. The testing procedure followed the ASTM standard D7264/D7264M [21]. 

For all the flexural experiments the major and minor spans were 150mm and 75mm, 

respectively. The mid-span deflection of the specimens was recorded via a linear 

potentiometric displacement transducer (LPDT) (Sakae 13FLP, 25mm range). All 

tests were performed at a cross-head displacement of 1mm/minute and performed 

on an Instron 3343 screw driven electromechanical test machine with a 1kN load 

cell. For each specimen design 8 replicates were tested. 

2.3 Effect of ply cut on laminate 

Microscopy of prototype laminates showed a significant deformation of fibres due to 

the void induced by a ply cut. This deformation of surrounding fibres arising from the 

autoclave manufacturing process for different ply cut spacings in each laminate prior 

to testing is shown in Figure 4.  

With small ply spacings (<1mm) surrounding fibres were not observed to deform 

significantly (Figure 4a,b) and the resin pocket was able to maintain a rectilinear 

shape, although Figure 4b shows some lateral movement during autoclave cure. It is 
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interesting to note that the corners of the resin pockets are very sharp and are 

expected to cause significant stress concentrations within the resin pocket. For 

larger spacings (Figure 4c,d) the ply spacings have become highly deformed and 

almost prismatic in shape. This warping is attributed to the lack of fibres in the space 

between the ply ends and resin flowing from the surrounding areas to fill the void. 

This warping will have a large effect on the local fibre fraction and be detrimental to 

properties such as compressive strength. Given this added complexity of 

geometry/material property change this study was limited to studying the more 

rectilinear resin pockets caused by ply cut spacings of 0.2, 1.0 and 2.0mm 

respectively. 

3 Specimen design and testing 

Five specimen designs, A-E, were manufactured and tested to evaluate flexural 

failure (see Figure 5). The design strategy was based on an iterative approach 

where desired failure processes observed in one design were incorporated into the 

next.   

For all of the 5 designs the beam dimensions were identical, with the location and 

number of ply cuts varying between each. Figure 5 shows the beam dimensions as 

well as ply cut locations for each of the five designs.  All specimens were 24 plies in 

thickness and had cured average thicknesses of 2.91mm. Specimens were 12.7mm  

in width and cut to 200mm in length. No ply cuts were positioned outside of the minor 

span and as such all ply cuts were located within the uniform bending moment of the 

four point bend test.      
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3.1 Testing and Observed Failure 

3.1.1 Design A 

Design: 

Specimens comprised 24 UD plies with no ply terminations, shown in Figure 5A. 

These specimens served as a baseline and to observe flexural failure mechanisms 

in conventional UD laminates. Testing to failure was expected to be catastrophic.  

Failure: 

All specimens failed with a catastrophic load drop with the specimen either; 

fracturing on the tensile surface with a large irregular delamination around the 

neutral axis of the specimen, or, into 2-3 individual fragments by way of explosive 

fracture. The location of initial failure was difficult to establish in all specimens but 

appeared to originate near one of the minor span supports. The average strength 

(calculated at peak load) of the specimens, as calculated according to the ASTM 

standard, is shown in Table 1. A representative load displacement curve is shown in 

Figure 6. 

3.1.2 Design B 

Design: 

From preliminary prototype testing it was found that specimens with ply cuts showed 

a significant sensitivity to the ply cut spacing. Design B allowed a simple scenario 

whereby the effect of ply cut spacing could be investigated. Laminates were 

manufactured with a single ply cut on the tensile surface, as shown in Figure 5B. 

Specimens were loaded until a significant delamination (length>40mm) had 

developed on the tensile surface. Ply spacings of 0.2, 1.0 and 2.0mm were tested, 

with 0.2mm being the limit of ply end separation achievable during manufacture.  
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Failure: 

During loading two distinct failure events occurred, a resin pocket failure and a 

subsequent delamination. The resin pocket failure was identified by a small (<1N) 

load drop as well as a concurrent audible 'snap', in agreement with the findings of 

Cui et al. [22]. The loads at which both events occurred as well as the strength 

(calculated at the deflection at which delamination occurred) are shown in Table 2. 

The delamination loads are consistent between all three ply cut spacings, as would 

be expected given that delamination load is governed by the critical strain energy 

release rate, Gc. The significant difference in resin pocket failure for each ply cut 

spacing is investigated with finite element analysis (FEA) in a section 4. A 

representative load displacement curve is shown in Figure 6. 

3.1.3 Design C 

Design: 

As a first attempt to introduce a number of 'weak links' into a laminate, Design C was 

conceived. The design, shown in Figure 5C, has 4 ply cuts in a design similar to that 

seen in nacre. This specific design hoped to achieve pseudo-ductile failure as it was 

expected that the failure would initiate on the tensile surface and propagate steadily 

from one cut to the next. Spacings of 0.2, 1.0 and 2.0mm were tested until the top 

resin pocket (closest to the neutral axis) was visually observed to be the source of 

delamination. It was expected that failure would occur sequentially, as illustrated in 

Figure 7. Failure was expected to progress in the following order; (i) linear elastic 

response of the beam, (ii) fracture of the resin pocket nearest the tensile surface 

(greatest in-plane strain), (iii) delamination initiates at top of resin pocket, (iv) resin 

pocket failure at one of the two resin pockets on delamination interface, (v) 

delamination from second resin pocket to final resin pocket, (vi) resin pocket failure 
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and (vii) final delamination failure. Upon reaching point (vii), the test was terminated. 

The remaining 18 continuous plies were assumed to be undamaged other than 

minor surface damage caused by delamination.  

Failure: 

A 1.0mm prototype specimen at the point considered final failure is shown in Figure 

8. Specimens with a ply termination spacing of 0.2mm were observed to fail very 

differently to larger spacing specimens. The 0.2mm spacing samples all failed with a 

single load drop. There were no progressive or individual failures at the ply cuts. Of 

the 8 samples tested all 8 failed with a single load drop. The 1.0 and 2.0mm spacing 

samples however all showed a level of progressive failure with 2-4 small individual 

load drops. Of the 1.0mm spacings all 8 samples exhibited more than 2 individual 

load drops, while 6 of 8 samples of the 2.0mm spacing samples exhibiting more than 

2 individual load drops. This variation in consistency is believed to be due to the 

complex morphology of resin pockets with ply spacings >1.0mm. There is a clear 

separation of failure process between the two ply cut spacing groups, smaller 

(0.2mm) and larger (>1.0mm). Figure 9 shows representative load displacement 

curves for all three tested ply cut spacings and strengths (calculated at the point of 

first visible delamination) are given in Table 1.  

3.1.4 Design D 

Design: 

Based on the multiple load drops observed in the failure of design C and knowing the 

importance of ply cut spacing it was hoped that a simple scaling of the design would 

allow for a large number of distinct load drops without catastrophic failure. Laminates 

were manufactured with 18 ply termination regions with the central portion of the 

beam shown in Figure 5D. The specimen design is effectively three lower sections of 
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flexural type C specimens stacked together. Following results obtained from flexural 

type C specimens, three ply spacing values were chosen; 0.2, 1.0 and 2.0mm, with 

the hope of achieving stepped failure throughout the sample.  

Failure: 

Contrary to the expected failure process all samples, of all ply separations, failed 

without individual load drops or identifiable delaminations. All of the samples failed 

with a single large load drop resulting in a complex delamination pattern. Out of the 8 

replicates, 3 showed delaminations on the compressive surface, 3 on the tensile 

surface and 2 on both. This suggests both compressive and tensile failures within 

the laminate. While untested, we hypothesise the mixed failure modes to be 

indicative of interaction between individual resin pockets. The alignment and number 

of ply terminations in a relatively small volume of material may give rise to complex 

stress field interactions. The strengths of design D specimens are given in Table 1 

and a representative load displacement curve is shown in Figure 6.  

3.1.5 Design E 

Design: 

Combining principles learnt from previous designs and considering the possible ply 

cut interactions, a final design process was undertaken.   

-Design B showed that the ply cut spacing was an important factor in determining the 

failure load of the resin or resin/ply interface. 

-Design C showed that sequential failure in flexure could be achieved to some 

extent. It also indicated that a ply cut spacing of 0.2mm did not fail progressively, 

while 1.0mm was more consistent in providing a stepwise failure than a 2.0mm 

spacing. 
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-Design D showed that simply scaling the effect observed in design C does not allow 

for multiple sub-critical failures. While the exact failure of design D remains unclear, 

it is felt likely that the number of ply cuts was too high for the volume of space which 

they occupied and/or the ply cuts were too close to one another thereby creating an 

interference effect. This interference may result in the magnification of stress found 

within a single ply spacing. Thus, Design E was based upon; (a) a ply cut spacing of 

1.0mm, (b) ply cuts would be located in such a way as to avoid bunching or 

unnecessarily close proximity between ply cuts, (c) a nacre inspired arrangement of 

ply cuts. The designed laminate is shown in Figure 5E. 

Failure: 

Samples were loaded until only the continuous plies on the compressive surface 

remained un-fractured. The average strength of the design is given in Table 1. 

Failure of all 8 specimens was progressive and did not exhibit any large load drops. 

The specimens all failed with between 5 and 8 individual small load drops, as 

indicated in Figure 10 and a prototype sample shown at various stages of failure in 

Figure 11. 

4 Finite Element Analysis 

In order to help explain the difference between failures observed for samples with 

different resin pocket spacings, especially design B, simple linear elastic FEA was 

undertaken (Comsol 4.3a). The aim of the FEA was to understand the nature of 

internal stresses around the ply cuts at a single resin pocket prior to any failure. The 

test procedure of design B (1 single resin pocket on the tensile surface of the beam) 

was replicated for this FEA study, at a number of ply cut spacings. 
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4.1 Model details 

The models were static 2D linear orthotropic elastic with geometric non-linearity 

activated. The elements were six noded plane-strain quadratic free triangular type. 

The laminate was modelled as an orthotropic solid, the resin pocket and rollers as 

isotropic solids, with material properties given in Table 3. The model replicated the 

loading conditions of the real beam as shown in Figure 12. In order to maintain an 

equal mesh density for each of the three resin pockets, the resin pocket area was 

contained within a rectangular section of 8mm width and  0.5mm height, which is 

simply a way of ensuring consistent element size (and density) which may be 

affected by the meshing algorithm, this section is shown in Figure 12. The rollers 

were modelled as mild-steel with contact conditions between the roller-composite 

surfaces. The lower rollers were fixed with the upper rollers given a negative vertical 

displacement of 2mm which is a displacement well below the displacement at which 

failure occurred in real samples. It is important to remember that actual stress values 

at corners predicted by FEA are highly dependant upon the mesh density [23]. As 

there is a relatively sharp resin pocket corners in the model, peak stresses will occur 

at the corners and will increase with increasing mesh density. The numerical 

singularities found at the corners of the resin pocket were avoided by taking an offset 

enquiry line 25µm away from the resin composite boundary, a technique used by 

other authors [23], as shown in Figure 12. 

A mesh sensitivity study was undertaken to ensure that peak stresses were 

independent of element size and were based on a ply cut spacing of 1mm, the 

results of which are included in the appendix. The complete model comprised of 

112k elements.  
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4.2 Results 

σ11, σ12 and σ22 stresses were probed at the top and at the side of the resin pocket 

(as illustrated with the red and blue lines in Figure 12, respectively). The σ11 stresses 

at the top of the resin pocket (both above and below the top of the resin pocket) were 

on average an order of magnitude higher than the σ12 and σ22, and were thus chosen 

as the stresses to be reported and discussed. The stress values for different ply cut 

spacings are shown in Figure 13 and Figure 14. Figure 13 clearly shows a strong 

relationship between the stress intensity as well as the stress distribution above the 

resin pocket. The σ11 values below the top of the resin pocket do not show such a 

significant dependence on the ply cut spacing. The σ11 stress distributions for each 

of the tested spacings are shown in Figure 15. 

An interesting feature arises from the stress distributions shown in Figure 13 and 

visually in Figure 15. The 1.0, 2.0 and 4.0mm spacings have two separated peaks 

while the 0.2 and 0.5mm appears to have a single peak. It should be noted that 

given the element size of approximately 3µm in and around the resin pocket, 167 

and 67 elements represent the width of the resin pocket for 0.5 and 0.2mm spacings 

respectively. Given this fine mesh around the resin pocket it would be expected that 

a double peak, if present, would be observed. A further mesh refinement was carried 

out with 4 times the number of elements spanning the resin pocket and no double 

peak was identified. The lack of the double peak suggests that the high stress 

regions found at the corners of the 0.2 and 0.5mm resin pockets have superimposed 

to form a single high stress region, with the average stresses between the stress 

peaks being higher than the larger resin pockets. Therefore, it can be hypothesised 

that a reduction in ply cut spacing increases not only the peak stress but also the 

average stress around the resin pockets. This suggests that the reason for the lower 
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resin pocket failure loads for design B is due to the stress state around the smaller 

resin pocket reaching its failure stress at a lower displacement.  

5 Discussion 

Experimental work was aimed at improving upon the catastrophic failure observed in  

UD design A specimens. This has been achieved by allowing for multi-stage fracture 

which comes at a sacrifice in ultimate flexural strength, as indicated in Table 1.  

Fracture of design B laminates showed that the ply cut spacing had a significant 

effect on resin pocket geometry and flexural failure. The suggestion as to the origin 

of this effect is explained by the FEA analysis where it is shown that the peak stress 

and average stress is proportional to the ply cut spacing, with smaller spacings 

resulting in higher stresses. This suggests that the reason for the difference in failure 

load for design B, Table 2, is due to a geometric effect of the resin pockets on the 

surrounding stress field. In effect the smaller resin pockets do not need to 

experience as much strain to fail due to their geometrical susceptibility to higher 

stress states. 

Design C further explored the effect of ply cut spacing and the subsequent fracture 

process. The design also showed a highly significant effect of ply cut spacing on 

observed failure, as expected from the FEA analysis. The embedded resin pockets 

can be seen to act as crack stoppers which prevent delamination. Therefore, for 

small spacings the delamination which originates on the tensile surface is free to 

delaminate through the specimen without constraint. However, for larger ply 

spacings the delaminations will encounter resin pockets which will inhibit the 

delamination until the resin pocket itself fails allowing the delamination to continue. 
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The failure of design D suggests that a simple scaling of design C does not work. 

The exact reason for the interlaminar failure is unknown, the authors suggest that it 

may be due to alignment and/or ply cuts interacting within the localised volume 

which they occupy.  

Design E achieved a progressive failure characterised by a number of small load 

drops, very different to the failure observed in design A, as shown in Figure 10. 

However, there is a consequent reduction in global flexural strength caused by the 

inclusion of ply cuts.    

6 Conclusion 

It has been shown that the catastrophic flexural failure observed in monolithic UD 

laminates can be mitigated by the judicious introduction of ply cuts within the 

laminate. By coordinating the location of ply cuts and taking ply cut separation into 

account a single large catastrophic fracture can be replaced with a number of 

smaller fractures. The reduction in flexural strength suggests that the utilisation of 

such a design strategy would need to be suited to an environment where pseudo-

ductile fracture is a greater necessity than ultimate strength or situations where resin 

pockets are an inevitable outcome of the layup design e.g. ply drops. The FEA work 

conducted also suggests ply cut spacing to have a very significant effect on the 

stress field around the resulting resin pocket. This result is expected to be of 

significant importance in the design for manufacture via automatic tape lay-up 

machines.  
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8 Appendix 

Using the stress enquiry line 25µm above the top of the resin pocket and probing the 

peak stresses, the element size at which convergence occurred corresponded to an 

element size of 8.3µm within the resin pocket region, as shown in Figure 16.  

This gives 80 elements in the thickness (250µm) of the resin pocket.  
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Figure Captions 

Figure 1 - The multiscale structure of nacre: (a) inside view of shell; (b) cross-section 

of a red abalone shell; (c) schematic of brick wall like microstructure; (d) optical 

micrograph showing tiling of tablets; (e) SEM of fracture surface. (Adapted from [9].) 

 

Figure 2 - Ply terminations (a) butted ply ends (b) single ply drop (c) feature in butted 

joint. 

 

Figure 3 - Vacuum assisted positioning guide allowing neighbouring plies to be 

positioned accurately before irreversible contact of the adhesive plies. (a) Exploded 

schematic view showing components of the guide. The base holds the bottom plies 

while the top section holds the top plies via vacuum. The plies on the top section are 

positioned, the backing material removed and then consolidated with the plies blow. 

(b) Three plies on the top section held in position by vacuum. (c) The top section 

(without plies or vacuum hose) and the base section with the consolidated plies.  

 

Figure 4 - Micrograph of surface and internal ply cuts of a) 0.2mm, 

b) 0.5mm, c) 2.0mm and d) 3.0mm ply cut spacing in unloaded 

laminates. Each micrograph shows two double stack height resin pockets, one at a 

surface and one embedded within the central region.  

 

Figure 5 - Beam dimensions of tested designs. Side and plan views (showing design 

C). Sections (equal to minor span of 75mm) of each design A-E shown with locations 

of ply cuts. Not to scale. 

 

Figure(s)



 

Figure 6 - Representative examples of load displacement curves for designs A, B 

and D (1.0mm ply cut spacing shown). The arrow indicates the resin pocket failure 

load in design B. 

 

Figure 7 - Sequential failure (i-vii) of beam with a ply cut spacing >0.2mm at 

increasing cross head displacement. Delamination at C shown to propagate to the 

left of the sample, experimentally the delamination would propagate left or right. 

Delaminations shown in red. The illustrated failure was observed in-situ in real 

laminates,  using of a macro-video camera. 

 

Figure 8 - Prototype 1.0mm ply cut spacing specimen under flexural failure showing 

various delaminations. The LPDT has been removed from the experimental set-up 

for clarity. 

 

Figure 9 - Representative load displacement curves for design C samples. 

 

Figure 10 - Load displacement curves for all specimens of design E. 

 

Figure 11 - Stills images of fracture progression in a prototype design E sample at 

increasing crosshead displacements (i-vi). LPDT removed for clarity. Scale bar: 

50mm. 

 

Figure 12 - Illustration of FEA model. Top: Beam and loading condition. Mid-left: 

Mesh refinement area around resin pocket. Mid-right: Mesh around roller-beam 



contact. Bottom: Stress enquiry lines 25µm away from material boundary within 

mesh refinement area. 1mm ply cut spacing shown in illustration. 

 

Figure 13 - σ11 stresses above resin pockets of various sizes. 

 

Figure 14 - σ11 stresses below resin pockets of various sizes. 

 

Figure 15 - σ11 stress distributions for different ply cut spacings. Scale bar in MPa. 

 

Figure 16 - Peak σ11 stresses above resin pocket as a function of total model 

element number. 
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Tables 

Table 1 – Flexural strengths of designs A-E as calculated at the first observable delamination/fracture. 
Standard deviations given in parentheses. 

Design 

Ply cut spacing / mm 

UD 0.2 1.0 2.0 

A 1427 (151)  
MPa 

- - - 

B - 921 (71)  
MPa 

781 (65) 
MPa 

802 (69) 
MPa 

C - 829 (100) 
MPa 

821 (61) 
MPa 

797 (79) 
MPa 

D - 750 (36) 
MPa 

756 (27) 
MPa 

745 (15) 
MPa 

E - - 672 (28)  
MPa 

- 

 

Table 2 - Single resin pocket fracture loads. Standard deviations given in parentheses. 

Failure Event 

Ply cut spacing / mm 

0.2 1.0 2.0 

Resin pocket failure / N 434 (106) 688 (53) 711 (77) 

Delamination onset / N 908 (62) 862 (65) 883 (81) 

Strength / MPa 921 (71) 781 (65) 802 (69) 

 

Table 3 - Material properties used for FEA. 

Material property Composite Resin Pocket  Rollers 
Cured ply thickness / mm 

mm 

0.13 - - 
Number of plies 24 - - 

E11 / GPa 163.00 4.67 200.00 
E22=E33 / GPa 10.00 - - 

G12= G13 / GPa 4.8 - - 
G23 / GPa 3.2 - - 
V12= V13 0.31 0.35 0.30 

V32 0.52 - - 

 

Table(s)


