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A self-healing, high performance, fibre reinforced polymer (FRP) composite material is 

demonstrated by employing a Lewis acid-catalysed epoxy self-healing agent (SHA) within a 

laminate manufactured using existing industrial methods. Thermal cure analysis and 

mechanical testing is employed to characterise the self-healed polymer. A bio-inspired series 

of vascules incorporated into an FRP composite material facilitates the delivery of self-

healing agents to exposed fractured crack planes. Healing is effected by ring-opening 

polymerisation (ROP) of an epoxy resin using novel metal triflate catalysts injected after 

Mode I crack opening displacement. Strong adhesive compatibility with the host matrix 

confers full recovery of mechanical properties (>99% healing).  
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1. Introduction  

Lightweight structures for transport sectors are becoming increasingly prevalent to improve 

energy efficiency, reduce fuel consumption, increase range, sustain current costs and 

incorporate sustainable materials.[1-4] The aerospace and automotive industries have led the 

development and implementation of lightweight fibre reinforced polymer (FRP) materials 

over the past few years, changing the design envelope to implement new materials[5] and 

incorporate novel technologies.[6] 

As with any relatively ‘new’ material there are certain design challenges to meet pre-existing 

operating parameters.[7] Conservative design philosophies for FRP materials are traditionally 

applied to prevent propagation of any sub-surface structural micro-cracking, which can 

significantly limit the inherent lightweight nature of such a material. Incorporating a self-

healing system capable of restoring mechanical efficiency after damage formation has the 

potential to reduce maintenance and inspection costs (i.e. non-destructive testing (NDT)) and 

eliminate challenging, costly and complicated repairs to ultimately realise lighter composite 

structures. 

Micro-cracking in FRP materials can ultimately lead to catastrophic failure by rapid 

propagation throughout the laminated structure. For example, this damage can occur between 

stacked laminae, manifest itself as fibre-resin interfacial debonding or arise from 

manufacturing defects, causing stress concentrations which lead to the onset of premature 

component failure.[8]  In this research the focus has been on the implementation of previously 

developed self-healing agents by Coope et al.,[9] to achieve a self-healing FRP material using 

typical industrial composite manufacturing techniques. This has the potential to address the 

issues of internal damage highlighted above and prolong the useful life of materials currently 

difficult and expensive to repair or recycle through traditional methods.[10]     

A bio-inspired vascule approach[11] to self-healing in high performance thermoset composite 

materials has been extensively researched by Bond, Trask and co-workers over the past 10 
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years, primarily due to the integration challenges and volume limitations of microcapsule-

based systems. Hollow glass fibres (HGFs)[12-16] and microvascular channels[17-20] have 

successfully demonstrated reliable methods for self-healing agent (SHA) delivery to damaged 

areas through multiple mixed-mode testing. Norris et al. have further developed this concept 

with the stimuli triggered delivery of a pre-mixed commercial epoxy SHA into an aerospace 

grade composite material, when subject to low energy impact damage, to recover compression 

after impact (CAI) strength.[21-23] 

As previously discussed,[9] the SHAs implemented in this study offer significant 

improvements over alternative well documented self-healing systems, for example those 

employing Grubbs’ catalyst,[24] polydimethylsiloxane (PDMS)/di-n-butyltin dilaurate 

(DBTL)[25] and epoxy/maleimide.[26] These improvements include host matrix compatibility, 

catalytic activity under mild conditions, relatively low cost and toxicity, high stability, 

commercial availability and system tailorability. In this study, we have further developed the 

solid phase scandium(III) triflate-epoxy system and also considered other similar metal triflate 

catalysts to initiate epoxide ring-opening polymerisation (ROP).  

Initially, the thermal cure and mechanical properties were assessed to establish the most 

suitable polymer-solvent formulation for achieving a significant recovery of material 

properties in FRP epoxy-based composite materials. Ultimately, this demonstrated the 

system’s potential and tailorability as SHA can be successfully delivered by various means, 

including microvascular networks, HGFs or microcapsules.  

Herein, is a demonstration of a self-healing FRP composite material using a double cantilever 

beam (DCB) coupon specimen geometry, facilitated by the delivery of novel epoxy-metal 

triflate SHAs via embedded microvascular channels (Scheme 1). The focus of this research 

was a ‘proof of concept’ study for fracture repair in FRP test specimens using conventional 

industrial composite material manufacturing techniques and the aforementioned novel SHAs. 

As reported below, results have shown a significant recovery of fracture toughness (>99%) 
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that matches the initial fracture mechanism of the host FRP material and an ability to create a 

repair with superior toughness than the original host polymer matrix material. 

 

2. Experimental Section  

Materials:  

Ethyl phenylacetate (EPA), diethylenetriamine (DETA, (NH2CH2CH2)2NH), scandium(III) 

triflate (Sc(OTf)3), aluminium(III) triflate (Al(OTf)3) and copper(II) triflate (Cu(OTf)2) were 

purchased from Sigma-Aldrich and used as received. EPON 828 was purchased from 

Polysciences, Inc.. E-glass/epoxy preimpregnated tape was purchased from Hexcel. 

 

Differential Scanning Calorimetry (DSC): 

Samples for the DSC experiments were prepared by mixing catalyst (Sc(OTf)3, Al(OTf)3 or 

Cu(OTf)2) at the prescribed loading with EPON 828 and EPA solvent. The following wt% of 

EPA was added to EPON 828; 0 wt% (EPON), 10 wt% (E10) or 25 wt% (E25). The solution 

was thoroughly mixed at ambient temperature and quickly transferred (approximately 10 mg) 

to aluminium Tzero hermetic pans. A TA Instruments Q200 DSC was used to study non-

isothermal curing via dynamic scans. Samples were heated from 0 to 250 °C at a heating rate 

of 10 °C/min under a flow rate of 50 mL/min of nitrogen as the purge gas. Glass transition 

temperatures (Tg) were obtained using a temperature range of -30 to 100 °C at a heating rate 

of 3 °C/min under a flow rate of 50 mL/min of nitrogen as the purge gas. 

 

Fibre-Reinforced Polymer (FRP) Composite Material Manufacture: 

E-glass/epoxy (Hexply 913, Hexcel Composites) unidirectional (UD) plates (300 mm x 220 

mm x 3.8 mm) were manufactured using hand lay-up (28 ply). Cure was undertaken 

according to the manufacturer’s recommendations of 125 °C for 1 hour and a pressure of 700 

kPa. Stainless steel wire (ca. 0.5 mm in diameter) pre-coated with PTFE release agent was 
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placed parallel to the fibre direction in pre-cut 0.5 mm channels (equal to the thickness of 4 

plies) centred on the mid-plane.  

Release film (15 µm thickness) was placed from the laminate edge to 25 mm before the start 

of the vascules. Cured composite plates were cut into DCB coupon specimens using a water-

cooled diamond grit saw (195 mm x 20 mm x 3.8 mm). Piano hinges were bonded in place 

using Hexcel Redux 810 adhesive onto grit-blasted surfaces as preparation for mechanical 

testing. 

 

Fibre-Reinforced Polymer (FRP) Composite Material Testing: 

An Instron 3343 fitted with a 1kN load cell was used to initiate and propagate Mode I crack 

opening. Double cantilever beam (DCB) E-glass composite test specimens fixed via attached 

piano hinges (Scheme 1) were loaded at a displacement rate of 2 mm/min in accordance with 

ASTM 5528-01.[27] Cracks were propagated for 75 mm from the point of initiation and crack 

length recorded with a video camera. 

Specimens were healed after initial fracture using the prescribed healing agent, delivery 

method and cure temperature (Table 1). SHAs were delivered via the edge-located vascules 

using 26 gauge hypodermic needles. Healed specimens were re-tested as outlined above for 

initial fracture. 

 

3. Results and Discussion 

3.1. Differential Scanning Calorimetry (DSC) 

The catalytic activity of scandium(III) triflate (Sc(OTf)3) with an oligomeric DGEBA epoxy 

resin (EPON 828) was investigated using differential scanning calorimetry (DSC). A number 

of variables were identified for analysis such as solvent quantity [ethyl phenylacetate (EPA)] 

blended with EPON 828 resin, catalyst loading and catalyst type.  
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Dynamic experiments in the range 0-250 °C at a rate of 10 °C/min used an initial medium (M) 

catalyst loading [3.125 pph]. Cure onset temperatures for ROP of EPON 828 containing 10 

wt% EPA (E10) and 25 wt% EPA (E25) gave values of 34.6 °C and 49.8 °C respectively, a 

significant reduction when compared with the solvent free EPON 828 derivative (81.6 °C) 

(Figure 1). Modifying the catalyst concentration to higher (H) [6.25 pph] and lower (L) 

[1.5625 pph] loadings confirmed predictions of a retrospective decrease (27.9 °C) and 

increase (79.3 °C) of cure onset temperature for E10 Sc derivatives.  

In addition, dynamic scans of isothermal cured polymer were undertaken after their respective 

healing duration (i.e. 24 hr: 45/80 °C; 7 days: RT) to determine glass transition temperatures 

(Tg). These conditions were investigated due to the comparison to commercially available 

epoxy systems typically used in composite material manufacture and repair. Furthermore, this 

experimental data highlighted complete cure after these isothermal cure durations. The Tg 

values are summarised in Table 2. 

Alternative metal triflates such as aluminium(III) triflate (Al(OTf)3) and copper(II) triflate 

(Cu(OTf)2) were also investigated as commercially readily available and lower cost 

alternatives to Sc(OTf)3. Experiments containing Al(OTf)3 and Cu(OTf)2 with a E25 

monomer-solvent solution resulted in similar cure onset temperatures to Sc(OTf)3 for all three 

catalyst loadings. However, a reduction in solvent quantity (i.e. from E25 to E10) reduces the 

activity of Al(OTf)3 and more significantly for Cu(OTf)2 (Table 3). This is attributed to 

catalyst solubility in EPA solvent. Therefore, Sc(OTf)3 and Al(OTf)3 catalysts were pursued 

as SHAs in this study. These results are further summarised in the Supporting Information.    

This DSC study was carried out to identify the most reliable low temperature or autonomous 

ROP-based self-healing system by considering the catalytic activity of metal triflates and 

EPON 828 with respect to solvent and catalyst loadings. Solvent inclusion in a non-solvated 

system has a significant effect on achieving low temperature curing. Increasing solvent 

concentration further, for example, from 25 wt% to 50 wt% dilutes this effect due to increased 
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mobility and reduced contact of active sites in the reagent mixture. Furthermore, increasing 

catalyst loading also reduces the onset temperature for polymerisation where catalyst 

solubility is permitted. 

 

3.2. Fracture Testing 

Self-healing performance was assessed in an FRP material using a microvascular double 

cantilever beam (DCB) test specimen arrangement as developed by Norris et al..[19] This 

method is based on the ASTM D5528-01 standard for Mode I crack opening displacement of 

FRP composite materials,[27] a unidirectional (UD) glass fibre reinforced epoxy composite 

(HexPly 913, Hexcel Composites) was manufactured with two 0.5 mm longitudinal vascules 

along the central mid-plane to facilitate external self-healing agent injection (Figure 2). Mode 

I crack opening displacement has been thoroughly investigated to provide successful crack-

microvascule interconnectivity to allow SHAs to wet out the crack planes and re-bond 

fractured surfaces.[19,20] Test specimens were initially fractured, unloaded from the test 

machine, allowed to heal and subsequently re-tested to failure following the same protocol.  

Mode I strain energy release rate, GIC, values were calculated from load (P), displacement (δ), 

delamination length (a) and specimen width (b) values using the modified beam theory 

(MBT) method (Equation 1). As the beam is not perfectly built-in, rotation may occur at the 

delamination front; therefore a correction factor, Δ, is incorporated which treats the DCB 

specimen as if it contained a slightly longer delamination (a + |Δ|). Δ was calculated 

experimentally by generating a least squares plot of the cube root of compliance, C1/3, as a 

function of delamination length. [27]  Healing efficiencies (ζ) were calculated for each 

individual test specimen using the initial (PInitial) and healed (PHealed) fracture load values 

(Equation 2) and crack initiation fracture toughness values in terms of the strain energy 

release rate (GIC) (Equation 3). The data presented here corresponds to average data points 

obtained from at least 5 replicates.  
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Mechanical testing of the cured bulk self-healed polymer was carried out using the previously 

documented modified TDCB test specimen arrangement to initially identify a suitable 

polymer formulation to achieve the required self-healing functionality in FRP composite 

materials.[9,28] Inclusion of a higher wt% of EPA solvent resulted in a ductile failure 

mechanism, an important parameter when healing such an inherently brittle host material. 

These results are summarised in the Supporting Information. Specimen derivatives including 

SHA reagent combinations, healing conditions and delivery methods used in the DCB testing 

are outlined in Table 1. A summary of strain energy release rates (GIC) with respect to crack 

length (a) is outlined in Figures 3 and 4. 

 

3.2.1. Benchmark Commercial Healing System 

A commercially available epoxy-amine thermoset, consisting of EPON 828 and 

diethylenetriamine (E25 DETA), was selected as a benchmark resin system for this study. 

EPA solvent (25 pph) was added to reduce viscosity and aid resin infusion via the 

microvascular channels.[21] Initial fracture toughness testing of five baseline FRP specimens at 

a displacement rate of 2 mm/min resulted in progressive crack propagation along the mid-

plane at an average load of 27.2 N; a failure mode typical of Mode I loaded UD test 

specimens. An average strain energy release rate (GIC) value of 218 J/m2 for delamination 

initiation was derived from these results. 

The fractured test specimens were subsequently prepared for healing by applying one-sided 

adhesive release tape (63 micron thickness), 1.5 mm across the crack plane from the perimeter 
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edges of fractured surfaces, and areas to be non-bonded (i.e. the starter pre-crack region of the 

specimen). This is primarily to constrain the injected SHA on the crack plane and prevent 

leaching during cure. Furthermore, the void (126 micron thickness) created between the 

fractured surfaces, by the presence of the tape, is representative of that formed when internal 

barely visible impact damage (BVID) is generated in FRP composite materials after an 

impact. This feature has recently been characterised and investigated using micro-CT.[29] 

The E25 DETA pre-mixed SHA was introduced via the edge-located vascules and left to cure 

in accordance with the manufacturer’s specifications (7 days, 25 °C). The SHA was allowed 

to wet out the crack plane with no external intervention to influence SHA distribution on the 

fracture surfaces. This factor is critical in trying to replicate the likely SHA delivery 

mechanism in large-scale FRP components.  

Healed specimens achieved an average recovery of greater than 95% initial fracture toughness 

and 86% peak load. The average healed failure load value corresponded to 23.5 N.  

 
 
 
3.2.2. Low Temperature (45 °C) Healing System 

A low temperature healing cure cycle consisting of 45 °C for 24 hours was selected as being 

easily achievable during existing maintenance schedules for a FRP composite structure. 

Furthermore, results from DSC thermal cure analysis highlighted that healing with a medium 

catalyst loading (M) [3.125 pph] is achievable at temperatures marginally above ambient. In 

addition, the effect of different quantities of EPA solvent on the ability to infuse SHA and the 

resulting polymer and mechanical performance was investigated by considering E10 and E25 

monomer solutions. 

Sc(OTf)3 [3.125 pph] combined with E10 monomer (E10 Sc (M)) achieved a healed average 

recovery of greater than 119% initial fracture toughness and 104% peak load. Therefore, the 

material properties of the resulting healed polymer are at least equal to the material properties 
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of the host matrix. If damage were to occur in the same region it is likely that the crack would 

deviate away from the healed region and propagate through the existing host matrix. Due to 

the small quantity of solvent present, the resulting polymer is inherently brittle, similar to 

most cured epoxide materials, resulting in a ‘sawtooth’ load-displacement plot (Figure 5). 

This behaviour is supported using microscopic techniques in Section 2.3. 

In comparison, mechanical testing of the same polymer formulation using E25 monomer (E25 

Sc (M)) revealed a very different fracture pattern. Due to the high boiling point (229 °C) of 

the EPA solvent, it effectively acts as a plasticiser in the healed polymer. Therefore, a ductile 

load-displacement plot is observed which is similar to the initial fracture response of the host 

material (Figure 6). This also results in an average of 26% and 81% increase in peak load and 

fracture toughness healing efficiencies, respectively, when compared to the lower solvated 

derivative, E10 Sc (M) (Figure 7). Additionally, in this study, environmental testing has 

confirmed this as not being a transitional state. 

To consider the end-user usability of such a system, experimentation into the catalyst loading 

was sought to establish if healing efficiencies could be maintained at higher (H) [6.25 pph] 

and lower (L) [1.5625 pph] catalyst concentrations. Therefore, test specimens were healed 

with double and half catalyst concentrations of the E25 Sc (M) derivative. From five test 

replicates, an increase of 46% healed peak load and 152% healed fracture toughness was 

observed when doubling catalyst concentration (E25 Sc (H)). Subsequently, test specimens 

(5) healed with a reduced catalyst concentration (E25 Sc (L)) achieved comparable results to 

E25 Sc (M), with a 1% healed load decrease and a 22% healed fracture toughness decrease. 

When taking into account the standard deviation of these values it can be concluded that a 

reduction in catalyst concentration can achieve comparable healing efficiencies at the point of 

delamination initiation. Therefore, a healthy reserve factor could be applied to E25 Sc (M) in 

an industrial application to achieve a minimum healing efficiency value in line with E25 Sc 

(L) test specimen results.   
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As confirmed from the DSC results, Al(OTf)3 has a similar reactivity although a slight 

reduction in solubility in comparison to Sc(OTf)3. Therefore, E10 and E25 Al(OTf)3 3.125 

pph (E10 Al (M), E25 Al (M)) were employed as healing agents to establish if similar 

mechanical properties could be achieved by using this significantly more economically viable 

catalyst.  

From a total of five test replicates, E10 Al (M) specimens achieved a marginal decrease in 

healing efficiency for fracture toughness (-10%) and peak load (-6%) when compared to 

Sc(OTf)3. Similarly, E25 Al (M) specimens achieved a decrease in healing efficiency for 

fracture toughness (-59%) and peak load (-19%). Therefore, additional catalyst could be 

employed to achieve higher healing efficiencies and improved reactivity than Sc(OTf)3, but at 

a much lower cost. 

 

3.2.3. High Temperature (80 °C) Healing System 
 
Curing of Sc(OTf)3 healed specimens at a higher temperature was investigated to establish if 

significant improvements in healing efficiencies could be achieved. The most promising 

formulations (E10 Sc (M) and E25 Sc (M)) from the low temperature study were healed at 80 

°C for 24 hours and subsequently re-tested at ambient temperature. From a total of five test 

replicates, E10 Sc (M) specimens achieved a negligible change in healing efficiency for 

fracture toughness (-7%) and peak load (+2%) when compared to the lower temperature 

counterpart.  

In comparison, healed E25 Sc (M) specimens achieved on average a 29% and 106% increase 

in peak load and fracture toughness healing efficiencies. Therefore, the average healed peak 

load value (44.2 N) was significantly higher than the initial fracture peak load value (27.8 N), 

resulting in an overall healing efficiency of 159%.   
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3.2.4. Ambient Temperature Healing System 
 
To achieve an autonomous self-healing composite material, test specimens were infused with 

a pre-mixed solution and left to cure at ambient temperature (RT) for 7 days. This healing 

scheme is typical of ambient temperature cured epoxy systems. The derivatives demonstrated 

in this study include E10 Sc (M), E25 Sc (M) and E25 Sc (H) as these were highlighted as the 

best overall analogues in the 45 °C / 24 hour healing scheme. DSC analysis of the resultant 

SHP showed complete cure in this time period. 

Firstly, E25 Sc (M) was evaluated, giving a load healing efficiency of 113% and a fracture 

toughness healing efficiency of 121%. Comparing these values with the 45 °C cured 

derivative reveals a 17% reduction in load healing efficiency and a 79% reduction in fracture 

toughness healing efficiency. Furthermore, these ambient temperature results are comparable 

with E25 Al (M) healed at 45 °C for 24 hours. On increasing catalyst concentrations the 

maximum load (127%) and fracture toughness (185%) healing efficiencies become 

comparable to E25 Sc (L) healed at 45 °C for 24 hours with values of 129% and 178%, 

respectively.  

Lastly, evaluating E10 Sc (M) healed at ambient temperature reveals a decrease in healing 

efficiency of 32% for maximum load (72%) and a decrease in healing efficiency of 35% for 

fracture toughness (84%). Therefore, it was observed that to maintain healing efficiencies 

close to the fracture toughness of the host matrix at ambient temperature, a higher quantity of 

solvent (E25) is required. This is attributed to reagent migration within the solvated healing 

polymer during cure.  

The complete data set for the fracture toughness of all test specimen derivatives are listed in 

Table 4. 
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3.2.5. Autonomous Delivery System 

An autonomous delivery system was investigated to demonstrate self-healing functionality 

where separate solutions of Sc(OTf)3-EPA and EPON 828-EPA were introduced via parallel 

microvascular networks (AUTO - AUTO E25 Sc (M)). The total solvent and catalyst loading 

was analogous to E25 Sc (M) and cured at 45 °C for 48 hours. A longer cure time was 

prescribed to account for catalyst infusion throughout the monomer solution. Ultimately, if 

this were to occur in a pressurised system the rate of autonomous mixing would greatly 

increase and would, therefore, be comparable to derivatives healed using a pre-mixed 

solution.  

From five test replicates, healing efficiencies for load and fracture toughness at delamination 

initiation were 100% and 88%, respectively. However, as the extension was increased from 

this point the load carrying capability also increased until a reduction in maximum load was 

observed at ~20 mm extension. Therefore, AUTO specimens showed a higher degree of 

ductility to achieve a maximum load comparable to the host matrix at >100% increase in 

extension. Therefore, the fracture toughness was considerably higher (2-3 times) at the point 

of maximum load than observed for pre-mixed samples. 

 

3.3. Microscopy 

Fractured crack planes from healed E25 and E10 specimens were imaged using a Zeiss EVO 

MA 25 scanning electron microscope (SEM). DCB specimens were clamped open and 

mounted in the large chamber under variable pressure to observe the fractured surfaces.  

Fracture surface evaluation revealed a cohesive failure in both sample sets, highlighting 

strong adhesive bonding between the self-healed polymer (SHP) and the exposed untreated 

crack plane. Figure 8 shows hackle marks parallel to the line of propagation running in bands 

across the test specimen width in E10 test specimens. These fracture lines are present at the 

point at which a significant load drop occurs and form part of the energy dissipation 
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mechanism to prevent further propagation in the extension loaded test specimen. This is 

attributed to the brittle nature of this low solvated SHA polymer. The initial fracture surface is 

annotated for comparison with the SHP, representing a fracture plane with loose fibres and 

debris, which is typical of pre-impregnated manufactured composite materials tested under 

Mode I.   

Conversely, the micrograph from an E25 specimen (Figure 9) confirms the ductile failure as 

observed in Figure 6. This is identified by ductile-hackle features around loose glass fibres 

and the SHP and is primarily caused by the solvated polymer inducing greater plasticity as it 

is peeled apart during testing. 

 

3.4. Research Focus and Summary 

The previously demonstrated DGEBA-EPA + scandium triflate catalyst self-healing system 

was further developed and refined to facilitate self-healing in high performance FRP 

composite materials. By incorporating bio-inspired vascular channels into the material, 

autonomous delivery of healing agent was possible without having a detrimental effect on the 

host material mechanical properties. 

Evaluating the mechanical properties for solvated metal triflate-initiated epoxide polymers 

was sought by using a FRP composite material DCB geometry. In total, two EPA solvent 

concentrations, three healing temperatures, three catalyst loadings, two metal triflate catalysts 

and two delivery methods were investigated in order to achieve high performance healing 

using a low temperature-short healing time protocol. Solvent concentration had the greatest 

influence with regards to the resultant fracture of the healed polymer. Although a cohesive 

failure in all specimens was observed, the inclusion of a low solvent quantity (i.e. E10 

derivatives) facilitated a brittle fracture whereas E25 derivatives with more solvent failed in a 

ductile manner, similar to the host material behaviour. Both solvated derivatives achieved 

comparable peak load values at the point of delamination initiation.  
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Achieving self-healing in FRP composite materials at ambient temperature, restoring 

mechanical properties comparable to the host matrix, was the predominant focus for this 

study. Similar to the findings for test specimens healed at low temperature, there was a direct 

correlation between solvent quantity and fracture pattern and also between catalyst loading 

and healing efficiencies. This is attributed to the solvent acting as a plasticiser, enhancing 

ductility and facilitating SHA migration between fracture surfaces to achieve high cross-

linking density from metal triflate-initiated epoxide sites. Healing at a higher temperature 

does not induce a significant increase in healing performance over specimens healed at low or 

ambient temperatures when considering the extra energy required. 

E25 Sc (M) was highlighted as the best overall specimen derivative to achieve reliable healing 

performance equal or greater than the host material mechanical properties. Therefore, a 

medium catalyst loading [3.125 pph] was chosen as a representative value to evaluate 

Al(OTf)3 as a catalytic curing agent for FRP composite materials. This also represented a cost 

effective, active quantity capable of curing at low and ambient temperatures. Modified 

catalyst loadings were limited to E25 Sc derivatives cured at 45 °C and ambient temperatures 

due to reduced solubility of Al(OTf)3 in EPA solvent. Furthermore, healing temperatures were 

limited to 45 °C, 80 °C and ambient temperature in line with previously investigated self-

healing systems and the aim of this study, i.e. to maintain minimum external energy input for 

healing to occur. In addition, the resultant failure loads for healed specimens correlated well 

with the Tg values obtained from DSC thermal analysis. Higher failure loads were achieved 

from SHPs with higher Tg values and vice versa.  

 

4. Conclusion 

Aerospace-grade FRP composite materials were self-healed via injection of EPON 828 and 

Lewis-acid metal triflate catalysts. A 26% minimum healing efficiency increase was observed 

for implementing these SHAs compared with the commercial-based EPON 828/DETA 
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system. DCB test specimens were fabricated with 0.5 mm microvascular channels as an 

integral non-detrimental network for the delivery of SHAs to damaged regions in the material. 

Test specimen derivatives independently considered monomer-solvent content, healing 

temperature, catalyst type and catalyst loading. 

E25 Sc healed test specimens achieved a minimum healing efficiency of 129% via the 

injection of a pre-mixed solution at 45 °C, demonstrating full recovery of fracture toughness. 

Ultimately, autonomous curing was one of the main objectives for this self-healing system. 

Thus, curing at ambient temperature provided a minimum healing efficiency of 113% for this 

same system. A modest increase of 30% healing efficiency resulted from healing at 80 °C 

when compared with healing at low temperature.  The highest healing efficiency was 

achieved by introducing a higher catalyst concentration to E25 Sc cured at 45 °C. This 

resulted in a 176% load recovery and a 352% fracture toughness recovery. Furthermore, an 

autonomous delivery method facilitated by infusion of separate Sc(OTf)3-EPA and EPON 828 

solutions via parallel vascules achieved a 100% load recovery and 88% fracture toughness at 

delamination initiation. 

Healing a load bearing high performance material remains one of the key challenges in 

developing and implementing self-healing materials. In this study we have successfully 

demonstrated high healing efficiencies for fracture toughness recovery at modest raised and 

ambient temperatures in a FRP composite material manufactured using conventional 

industrial methods. This research further demonstrates the application and tailorability of the 

underpinning chemistry of this self-healing system across a variety of delivery systems. 

Therefore when coupled with structural health monitoring (SHM) systems and a pressurised 

pumping system it is potentially capable of multiple healing cycles and being truly 

autonomous in nature.[23] 
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Scheme 1. A schematic of a bio-inspired microvascular self-healing system incorporated into 
an aerospace structure, representing (i) self-healing between fractured crack planes, (ii) 
microvascular-fracture plane interconnectivity and (iii) concept demonstration using a FRP 
composite material DCB coupon specimen. 
 
 
 
 
 
 
 
 

	  
(i) 

(ii) 
(iii) 
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Figure 1. DSC curves for E10 Sc (M), E25 Sc (M) and EPON Sc (M) samples. 
 
 

 
 
Figure 2. Double cantilever beam (DCB) Mode I specimen geometry. Note: all dimensions in 
mm; dashed lines represent internal features.  
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Figure 3. Representative Mode I strain energy release rate (GIc) data for healed E10 Sc 
derivatives and E25 DETA.  
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Figure 4. Representative Mode I strain energy release rate (GIc) data for healed E25 Sc 
derivatives and E25 Al (M) 45 °C. 
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Figure 5. Representative load-displacement curves for E10 Sc (M) DCB test specimens 
healed at 45 °C for 24 hours. 
 

 
 
Figure 6. Representative load-displacement curves for E25 Sc (M) DCB test specimens at 45 
°C for 24 hours.   
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Figure 7. Healing performance for maximum load. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



    

 - 24 - 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8. Scanning electron micrograph of the fracture 
plane for an E10 Sc (M) healed specimen after re-test. 
Inset image: Hackle marks, parallel to the line of 
propagation running in bands across the test specimen 
width. 
 
Figure 8. Microscopy investigation of the fracture plane for an E10 Sc (M) healed DCB 
specimen after re-test. Main image: Scanning electron micrograph (SEM) of the fracture 
plane. Lower inset image: Macro image of the DCB specimen indicating the position of the 
SEM image. Upper insert image: SEM of the fracture plane at higher magnification 
illustrating 'hackle' marks parallel to the line of crack propagation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Initial fracture surface 

Crack Direction 

Hackle 

10 mm 
DCB test specimen 

Micrograph locality 
in test specimen 



    

 - 25 - 

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 9. Microscopy investigation of the fracture plane for an E25 Sc (M) healed DCB 
specimen after re-test. Main image: Scanning electron micrograph (SEM) of the fracture 
plane. Lower inset image: Macro image of the DCB specimen indicating the position of the 
SEM image. Upper insert image: SEM of the fracture plane at higher magnification 
illustrating ductile-hackle features around loose glass fibres and the self-healed polymer 
(SHP). 
 
 
 
Table 1. Specimen derivatives used to demonstrate self-healing performance. 

Designation Monomer  
 Solutiona) Catalyst 

Catalyst  
Loading 
[pph]b) 

Healing Temperature [°C] 

       45              80                RT 

E10 Sc (M) 
      E10 

Sc(OTf)3 3.125 (M)   X X X 

E10 Al (M) Al(OTf)3 3.125 (M) X   

E25 Sc (M) 

      E25 

Sc(OTf)3 

3.125 (M) X X X 

E25 Sc (H) 6.25 (H) X  X 

E25 Sc (L) 1.5625 (L) X   

AUTO E25 
Sc (M) 3.125 (M) X   

E25 Al (M) Al(OTf)3 3.125 (M) X   

E25 DETA DETA 12   X 
a) E10: 90 wt% EPON 828, 10 wt% Ethyl phenylacetate (EPA); E25: 75 wt% EPON 828, 25 
wt% EPA. b) (L) = low loading, (M) = medium loading, (H) = high loading 

Ductile-hackle 

Crack Direction 

10 mm 
DCB test specimen 

Micrograph locality 
in test specimen 
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Table 2. Glass transition temperatures (Tg) for self-healing polymers. 

Designation 
           Healing 

Temperature 
           [°C] 

Glass transition   
  temperature (Tg)  

         [°C] 

E10 Sc (M) 

45 57 

80 63 

RT 51 

E10 Al (M) 45 56 

E25 Sc (M) 

45 29 

80 48 

RT 28 

E25 Sc (H) 
45 46 

RT 21 

E25 Sc (L) 45 23 

E25 Al (M) 45 30 

E25 DETA RT 49 
 
 
 
 
Table 3. DSC Data for E10 Metal Triflate Catalysts. 

Designation Heat of Reaction 
[J/g] 

Onset 
Temperature 
[°C] 

Maximum 
Temperature 
[°C] 

E10 Sc (M) 337.9 34.6 129.2 

E10 Al (M) 408.2 78.0 157.9 

E10 Cu (M) 392.9 47.1 155.6 
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Table 4. Summary of GIc healing efficiencies 

Designation Initial GIc 
   [J/m2] 

Healed GIc  
   [J/m2] 

Healing 
Efficiency  
     [%] 

Healing 
Temperature  
      [°C] 

E10 Sc (M) 

257 ± 23 307 ± 49 119 ± 15 45 

251 ± 13 279 ± 39 112 ± 20 80 

271 ± 22 228 ± 32 84 ± 10 RT 

E10 Al (M) 215 ± 36 231 ± 62 109 ± 31 45 

E25 Sc (M) 

286 ± 9 571 ± 163 200 ± 53 45 

245 ± 24 743 ± 235 306 ± 103 80 

253 ± 12 308 ± 51 121 ± 19 RT 

E25 Sc (H) 
222 ± 18 780 ± 91 352 ± 38 45 

250 ± 18 459 ± 45 185 ± 24 RT 

E25 Sc (L) 247 ± 19 433 ± 95 178 ± 50 45 

AUTO E25 Sc (M) 241 ± 34 210 ± 63 88 ± 28 45 

E25 Al (M) 232 ± 30 327 ± 90 141 ± 36 45 

E25 DETA 218 ± 41 197 ± 52 95 ± 32 RT 
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material. Mechanical testing of the healed material clearly shows a ductile failure, a failure 
mechanism not typically associated with inherently brittle materials such as epoxy.   
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Table S1. DSC Data for Sc(OTf)3 cured EPON 828 

Designation 
Heat of 
Reaction 
[J/g] 

Onset 
Temperature 
[°C] 

Maximum 
Temperature 
[°C] 

EPON Sc (M) 464.7 81.6 199.3 

E10 Sc (M) 337.9 34.6 129.2 

E25 Sc (M) 280.4 49.8 143.2 
 
 
 

 
Figure S1. DSC curves for E10 Sc (H), E10 Sc (M) and E10 Sc (L) samples 
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Table S2. DSC Data for Sc(OTf)3 cured EPON 828 

Designation 
Heat of 
Reaction 
[J/g] 

Onset 
Temperature 
[°C] 

Maximum 
Temperature 
[°C] 

E10 Sc (L) 381.9 79.3 166.9 

E10 Sc (M) 337.9 34.6 129.2 

E10 Sc (H) 320.6 27.9 112.8 
 

 
 

 
Figure S2. DSC curves for E10 Sc (M), E10 Al (M) and E10 Cu (M) samples 
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Figure S3. DSC curves for E25 Sc (M), E25 Al (M) and E25 Cu (M) samples 
 

 

Table S3. DSC Data for Metal Triflate cured EPON 828 

Designation 
Heat of 
Reaction 
[J/g] 

Onset 
Temperature 
[°C] 

Maximum 
Temperature 
[°C] 

E25 Sc (M) 280.4 49.8 143.2 

E25 Al (M) 321.7 76.7 142.5 

E25 Cu (M) 366.5 57.4 162.2 
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Self-Healed Polymer Testing:  

Self-healed polymers (SHPs) were evaluated using a modified TDCB geometry to include a 

grooved short central trench (CT) section exclusively to contain the cured SHP.[9] SHP 

samples were prepared using precast CT sections, cured at 45 °C for 24 hours, with medium 

catalyst loading (Sc (M)). The precast SHP CT was placed in closed silicon moulds and the 

main geometry prepared from mixing 100 parts EPON 828 with 12 parts curing agent DETA 

into the prepared mould and left to cure for 24 hours at ambient temperature and 24 hours at 

40 °C. A sharp razor blade was used to precrack cured samples prior to being pin-loaded on 

an Instron 3343 1 kN load cell at a displacement rate of 5 µm s-1. Test specimens were 

cracked along the complete CT length until complete failure. 

 

Figure S4. Representative load-displacement curve for initial fracture of E10 Sc (M) and E25 
Sc (M) polymeric TDCB test specimens cured at 45 °C for 24 hours. 
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Figure S5. Representative load-displacement curves for Sc(OTf)3 DCB test specimens healed 
at 45 °C and 80 °C for 24 hours. 
 

 
Figure S6. Representative load-displacement curves for Al(OTf)3 DCB test specimens healed 
at 45 °C for 24 hours and Sc(OTf)3 DCB test specimens healed at ambient temperature (RT) 
for 7 days. 
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