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Querying and Merging Heterogeneous Data by
Approximate Joins on Higher-Order Terms

Simon Price and Peter Flach

Department of Computer Science, University of Bristol, Bristol BS8 1UB, United Kingdom.
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Abstract. Integrating heterogeneous data from sources as diverse as web pages,
digital libraries, knowledge bases, the Semantic Web and databases is an open
problem. The ultimate aim of our work is to be able to query such heterogeneous
data sources as if their data were conveniently held in a single relational database.
Pursuant to this aim, we propose a generalisation of joins from the relational
database model to enable joins on arbitrarily complex structured data in a higher-
order representation. By incorporating kernels and distances for structured data,
we further extend this model to support approximate joins ofheterogeneous data.
We demonstrate the flexibility of our approach in the publications domain by
evaluating example approximate queries on the CORA data sets, joining on types
ranging from sets of co-authors through to entire publications.

1 Introduction

An increasingly important problem is the integration of data from sources as diverse
as web pages, digital libraries, knowledge bases, the Semantic Web and databases that,
collectively, are referred to as heterogeneous data. Integration allows an application to
query the data using a single query language, just as if the data were a single homoge-
neous data source.

In this paper we combine two contrasting knowledge representational approaches
into a single coherent formalism that is well suited to the integration of heterogeneous
data. The first of these representational approaches, the relational model, is widely used
as the basis for relational databases and is accompanied by awell-defined algebra for
manipulating relational data. However, relational representations of complex structured
data can be difficult to design and even more difficult for a human to read. The second
representational approach, terms in a higher-order logic,offers a more human-readable
representation of structured data than the relational model but has no well-defined ana-
logue of the relational algebra for the querying of its terms. The formalism we introduce
here is a subset of relational algebra upgraded for terms in ahigher-order logic, bring-
ing the well known and widely used join operator of relational algebra to the knowledge
representational formalism of higher-order terms. This new algebra incorporates a gen-
eralisation of the relational model to higher-order terms and we show that a join operator
from the relational model may be viewed as a special case of the higher-order join.

Data integration typically transforms heterogeneous dataformats into a single ho-
mogeneous data format, usually into the format which has themost convenient algebra
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for data integration rather than the format with the most natural representation of the
data. In an ideal data integration scenario, where no uncertainty exists in the correspon-
dences between individuals from different data sources, the homogeneous data format
chosen is merely a technical implementation detail and places no restrictions on what
may be reliably integrated. Unfortunately, the more diverse the sources of data being
integrated, the more likely it will be that the integration involves a degree of uncer-
tainty – for example, in identifying correspondences between individuals from different
data sources. In order to automate such integration tasks, approximate matching tech-
niques from statistics, machine learning and data mining may be employed. However,
the transformation of data to the most widely used homogeneous format, relational
data, obscures the data’s natural type and structure, unnecessarily complicating the ap-
plication of approximate matching techniques. In this paper, we show that approximate
matching can take place without this obfuscating transformation to a relational repre-
sentation. Our approach to approximate matching for data integration uses kernels and
distances applied directly to representations of indivuals as (closed) terms in a higher-
order logic.

The outline of the paper is as follows: Section 2 reformulates the traditional rela-
tional join from the relational model. Section 3 introducesthe knowledge representa-
tional formalism and describes a family of kernels and distances on that formalism.
Section 4 upgrades the relational join to handle structureddata. Section 5 investigates
the application of joins for structured data. The remainingsections review related work
and future directions before concluding.

2 Relational Joins

We first define the relational join in its exact form and then adapt this to define the
approximate relational join. Our definitions differ from those of the traditional relational
model in that we have not embedded attribute names, which arein fact database-specific
schema metadata, into the data representation. We assume throughout that there is an
associated schema for each relation. By keeping the metadata separate from the data we
achieve a more elegant upgrade from the relational model to the structured data model.

2.1 Exact Relational Joins

An n-tuple(x1, . . . , xn) is an element inD1 × · · · × Dn wherex1, . . . , xn are values
drawn from domainsD1, . . . , Dn respectively. We refer ton-tuples astuplesunless
the value ofn is significant. Itemi ∈ {1, . . . , n} of a tuplet = (x1, . . . , xn) is the
valuexi and is writtent|i. A relationR of degreen is a finite set ofn-tuples such that
R ⊆ D1 × · · · × Dn whereD1, . . . , Dn are domains, which need not necessarily be
distinct. Therelation indexIR of a relationR of degreen is the set{1, . . . , n}.

Definition 1 (θ-Restriction). Let θ be a predicateθ : D × D → B for some domain
D. If A and B are relations with tuple itemsa|i ∈ D and b|j ∈ D respectively for
some(i, j) ∈ IA × IB , then theθ-restrictionσiθj is defined onT ⊆ A × B as follows:
σi θj(T ) = {(a, b) | a|i θ b|j ∧ (a, b) ∈ T }.
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The infix θ in the subscript ofσ follows the historical convention from the relation
database literature and soi θj, or equivalentlyθ(i, j), does not mean thatθ applies
to i and j ; insteadi θj is shorthand notation for the membership testa|i θ b|j for
all (a, b) ∈ T . The operatorθ is typically drawn from the set{=, 6=, <,≤, >,≥} but
does not necessarily have to come from this set.θ-restriction is often just referred to
as restriction and in such casesθ is assumed to be the equality operator. The name
selectionis often used instead ofrestriction, but the latter avoids confusion with the
similarly named and better knownselect operator from SQL which has a somewhat
different meaning. Restriction is also sometimes defined asgeneralised restriction: Let
ϕ be a proposition that consists of atoms as allowed inθ-restriction and the logical
operators∧, ∨ and¬, then if A andB are relations, the generalised restrictionσϕ is
defined onT ⊆ A × B asσϕ(T ) = { t | ϕ(t) ∧ t ∈ T }. Standard results show
that generalised restrictions can always be expressed as combinations ofθ-restrictions.
θ-restriction is thus the basis of the following fundamentalrelational join operator.

Definition 2 (θ-Join). Let θ be a predicateθ : D × D → B for some domainD. If A

andB are relations with tuple itemsa|i ∈ D andb|j ∈ D respectively for some(i, j) ∈
IA × IB , then theθ-join 1i θj of A andB is defined asA 1i θj B = σi θj(A × B).

Whenθ is equality theθ-join is called theequi-join. By replacing theθ-restriction oper-
ator in theθ-join by the generalised restriction operator we arrive at the definition of the
generalised join: Letϕ be a proposition that consists of atoms as allowed inθ-restriction
and the logical operators∧, ∨ and¬. If A andB are relations then therelational join
1ϕ is defined asA 1ϕ B = σϕ(A × B). Other non-fundamental joins include the
natural join, semijoin, antijoin, outer joinsand inner joins [1, 2]. For the purposes of
upgrading relational joins to handle structured data, it issufficient to consider just the
θ-join and optionally, as a useful syntactic convenience, the generalised join.

2.2 Approximate Relational Joins

In order to turn an exact relational join into an approximateone it is necessary to replace
the exactθ operator inθ-restriction with a suitable approximate version. For example,
substituting exact equality= with an approximate equality≈ enables joining on tuple
items that are either the same or in some way sufficiently similar.

One method of implementing approximate equality≈ is to use a distance metric or
pseudo-metricdist, defined on the domain of a pair of relational tuple items, together
with a thresholdδ to define aproximity relation.

Definition 3 (Proximity). If the function dist: D × D → R is a distance on pairs
of values from some domainD andδ ∈ R (δ ≥ 0) is a threshold thenproximity is a
predicate≈ : D × D → B defined by

∀x, y ∈ D (x ≈ y) ⇐⇒ {(x, y) | dist(x, y) ≤ δ ∧ x, y ∈ D}.

By the definition of distance, the co-domain ofdist is not constrained to have an
upper bound. Some normalising functionϕ may be used to apply an upper bound to a
distance. The functionϕ : R → R must be a non-decreasing function from the positive
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reals into some closed interval, typically[0, 1], such thatϕ(0) = 0, ϕ(v) > 0 if v > 0,
andϕ(v + u) ≤ ϕ(v) + ϕ(u), for eachv andy. Example choices ofϕ from [3] are
ϕ(v) = min(v, 1) orϕ(v) = v

v+1 . Alternatively, the normalisation may be performed in
the feature space ofx, y ∈ D so thatdist(x, y) is inherently normalised. For example,
if the distance is derived from a kernel then a normalising kernel may be used [4].

Definition 4 (Proximity-Join). Let≈ : D × D → B be a proximity for some domain
D. If A andB are relations with tuple itemsa|i ∈ D andb|j ∈ D respectively for some

(i, j) ∈ IA × IB, theproximity-join
∼

1i≈j of A andB is A
∼

1i≈j B = σi≈j(A × B).

The same historical notational convention is followed herefor the subscripted≈ as
for the subscriptedθ described earlier for the exactθ-join. The proximity-join as de-
fined here is an approximate analogue of the exact relationalequi-join. By choosing
other proximity relations that are approximate analogues of exact relations, for example
whereθ ∈ {=, 6=, <,≤, >,≥}, an approximate version of the relationalθ-join might
be defined. In this paper we restrict our attention to the proximity-join.

3 Representing Structured Data

The relational model is now the de facto standard for database-driven applications in
data mining and computing in general, but it is not ideally suited for representing semi-
structured data such as Web pages and XML, nor structured data such as the Semantic
Web and RDF. However, the representation of such structuresin relational databases is
commonplace using a multitude of (often tortuous) representations and querying pat-
terns. By contrast, theindividuals-as-termsmodel offers straight forward representa-
tions of both structured and semi-structured data while at the same time having the rep-
resentational capacity to represent relations from the relational model. The individuals-
as-terms representation is a generalisation of the relational model’s attribute-value rep-
resentation and collects all information about an individual in a single term.

We are not advocating the individuals-as-terms repesentation as a replacement for
the general purpose relational representation. But in the context of querying and merg-
ing heterogeneous data, the individuals-as-terms representation more transparently mod-
els the structure of the data in a way that is both human-readable and that explicitly
exposes that structure to machine learning and data mining algorithms.

The knowledge representational formalism we use as our individuals-as-terms rep-
resentation isbasic terms, a family of typed terms in higher-order logic, which is based
on Church’s simple theory of types [5] with several extensions [3]. This formalism has
been chosen over the possible alternative of first-order logic because terms in the higher-
order logic natively support a variety of data types that areimportant for representing
individuals, including sets, multisets and graphs. Being astrongly typed logic, helps to
reduce search spaces and the type of terms provides useful metadata. The theory behind
the logic and the individuals-as-terms formalism is set outin [3] and we give only a
brief overview here.

We assume analphabetconsisting of:T the set of type constructors of various ari-
ties,P the set of parameters,C the set of constants, andV the set of variables. Included
in T is the constructorΩ of arity 0 with a corresponding domain of{True, False}, the
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booleans. Types are constructed from type constructors inT and type variables inP
using the symbols→ for function types and× for product types. Atypeis defined in-
ductively as follows: (1) Each parameter inP is a type. (2) IfT is a type constructor
in T of arity k andα1, . . . , αk are types, thenT α1 . . . αk is a type. (Fork = 0, this
reduces to a type constructor of arity 0 being a type). (3) Ifα andβ are types, then
α → β is a type. (4) Ifα1, . . . , αn are types, thenα1 × · · · × αn is a type. (Forn = 0,
this reduces to1 being a type). A type isclosedif it contains no parameters.SC denotes
the set of all closed types obtained from an alphabet.

The set of constantsC includes⊤ (true) and⊥ (false). Asignatureis the declared
type for a constant. A constantC with signatureα is often denotedC : α. Let [] be
the empty list constructor with signatureList a wherea is a parameter andList is a type
constructor. Let# be the list constructor with signaturea → List a → List a.

Thetermsof the logic are the terms of typedλ-calculus and are formed in the usual
way by abstraction, tupling and application from constantsin C and a set of variables.
The set of all terms obtained from a particular alphabet is denotedL. A basic term is the
canonical representative of an equivalence class of terms [4, 3]. The set ofbasic terms,
B, is defined inductively as follows: (1)Basic structures– If C is a data constructor
having signatureσ1 → · · · → σn → (T ai . . . ak), t1, . . . , tn ∈ B (n ≥ 0), andt is
C t1 . . . tn ∈ L, thent ∈ B. (2) Basic abstractions– If t1, . . . , tn ∈ B, s1, . . . , sn ∈
B (n ≥ 0), s0 ∈ D andt is λx if x = t1 thens1 else . . . if x = tn thensn elses0 ∈
L, thent ∈ B. (3) Basic tuples– If t1, . . . , tn ∈ B (n ≥ 0) andt is (t1, . . . , tn) ∈ L,
thent ∈ B. See section 4 for examples and diagrams of basic terms.

3.1 Kernels and Distances for Basic Terms

Kernel functions [6] are an effective way of inducing distances on a wide variety of data
structures. One promising recent kernel function for structured data is the default kernel
for basic terms introduced in [4].

Definition 5 (Default Kernel for Basic Terms [4]). The functionk : B × B → R is
defined inductively on the structure of terms inB as follows.

1. If s, t ∈ Bα, whereα = Tα1 . . . αk, for someT, α1, . . . , αk, then

k(s, t) =

{

κT (C, D) if C 6= D

κT (C, C) +
∑n

i=1 k(si, ti) otherwise

wheres is C s1 . . . sn andt is D t1 . . . tm.

2. If s, t ∈ Bα, whereα = β → γ, for someβ, γ, then

k(s, t) =
∑

u∈supp(s)
v∈supp(t)

k(V (s u), V (t v)) · k(u, v).

3. If s, t ∈ Bα, whereα = α1 × · · · × αn, for someα1, . . . , αn, then

k(s, t) =

n
∑

i=1

k(si, ti),
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wheres is (s1, . . . , sn) andt is (t1, . . . , tn).

4. If there does not existα ∈ Sc such thats, t ∈ Bα, thenk(s, t) = 0.

The definition, assumes that for each type constructorT ∈ T, κT : XT ×XT → R is a
kernel on the set of data constructorsXT associated withT . Below we give an example
of the calculation of the default kernel for an example data structure: sets of strings.

Example 1 (Default Kernel on Sets of Strings).Let S be a nullary type constructor for
strings andA, B, C, D : S. ChooseκS andκΩ to be the matching kernel. Lets be the
set{A, B, C} ∈ BS→Ω , t = {A, D}, andu = {B, C}. Then

k(s, t) = k(A, A)k(⊤,⊤) + k(A, D)k(⊤,⊤) + k(B, A)k(⊤,⊤)

+k(B, D)k(⊤,⊤) + k(C, A)k(⊤,⊤) + k(C, D)k(⊤,⊤)

= κS(A, A)κΩ(⊤,⊤) + κS(A, D)κΩ(⊤,⊤) + κS(B, A)κΩ(⊤,⊤)

+κS(B, D)κΩ(⊤,⊤) + κS(C, A)κΩ(⊤,⊤) + κS(C, D)κΩ(⊤,⊤)

= κS(A, A) + κS(A, D) + κS(B, A) + κS(B, D)

+κS(C, A) + κS(C, D)

= 1 + 0 + 0 + 0 + 0 + 0

= 1.

Similarly,k(s, u) = 2 andk(t, u) = 0.

Noting that valid positive semi-definite kernels induce pseudo-metrics [4], this al-
lows the derivation of a distance from any such kernel, including the kernel for basic
terms, as follows. Letk : X ×X → R be a kernel onX . The distance measure induced
by k is defined asdk(s, t) =

√

k(s, s) − 2k(s, t) + k(t, t). If k is a valid kernel the
dk is well behaved in that it satisfies the conditions of a pseudo-metric. Continuing the
earlier sets of strings example, the following example illustrates the calculation of a
distance from the default kernel for basic terms.

Example 2 (Default Distance on Sets of Strings).Let s = {A, B, C}, t = {A, D}, and
u = {B, C} wheres, t, u ∈ BS→Ω . We havek(s, s) = 3, k(t, t) = 2 andk(u, u) = 2.
Then,dk(s, t) =

√
3 − 3 + 2 = 1.73, dk(s, u) =

√
3 − 4 + 2 = 1, anddk(t, u) =√

2 − 0 + 2 = 2.

However, one of the strengths of the default kernel is that itallows any other valid
kernel to be associated with a specific type. For example, thefollowing p-spectrum
kernel, defined on strings, is used in our experiments later in the paper.

Definition 6 (p-Spectrum Kernel [6]). The feature spaceF associated with thep-
spectrum kernel is indexed byI = Σp, with the explicit embedding from the space of
all finite sequences over and alphabetΣ to a vector spaceF and is given byφp

u(s) =
|{(v1, v2) : s = v1uv2}|, u ∈ Σp. The associated kernel is defined asκp(s, t) =
〈φp(s), φp(t)〉 =

∑

u∈Σp φp
u(s)φp

u(t).
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4 Relational Joins for Structured Data

We now upgrade both exact and approximate relational joins for structured data. The
way we achieve this is to first upgrade the knowledge representation of the relation to
be a set of basic terms rather than the traditional set of tuples. We then upgrade the
relation index so that it indexes parts of a basic term ratherthan the traditional parts of
a tuple. Once these two steps are completed, upgrading the exact relational join follows
almost automatically with only modest changes to the definitions of theθ-restriction
and joins. The final step then brings together the default kernel for basic terms and
the approximate join to arrive at the main result of an approximate relational join for
structured data. So to begin, we first upgrade the relation from section 2.1 to become
thebasic term relation, which is a basic term of typeα → Ω.

Definition 7 (Basic Term Relation).A basic term relationR ⊆ Bα is a finite set of
basic terms of the same type.

In order to upgrade the relation index from section 2.1 so that it is applicable to the
basic term relation, a suitable method of indexing sub-parts of a basic term is required.
Recall that well-formed basic terms can consist of basic structures (e.g. lists, trees),
basic abstractions (e.g. sets, multisets), basic tuples orarbitrary combinations of these
three.

4.1 Indexing Basic Terms

In the logic, sub-parts of a term are referred to as subterms and so we are concerned
with indexing the subterms of a basic term. The standard method for indexing subterms
in the logic enumerates a decomposition of a given term such that every subterm is
labelled with a unique string [3].

However, we introduce an alternative approach to indexing that, instead of enumer-
ating all subterms of a term, defines atype tree index setover all subtypes of the type
of a basic term. To do this we first adopt the definition of a typetree from [7] and then
define a different annotation of the tree such that every member of the type tree index
set identifies a set of terms rather than a single term. This ensures any index defined
on a type is meaningful across all terms of that type. Furthermore, the set of subterms
identified is guaranteed to consist entirely of well-formedbasic terms.

To achieve this we follow the same interpretation of subtypes as [3] and restrict our
attention to basic terms whose basic structures are in canonical form as defined below.

Definition 8 (Basic Structures in Canonical Form).A typeτ = T α1 . . . αk is a basic
structure in canonical form when, for all data constructorsCi : τi1 → · · · → τin → τ

that are associated withT , all the types ofτij are subtypes ofτ .

We begin our definition of the type tree index set with some preparatory notation. Let
Z

+ denote the set of positive integers and(Z+)∗ the set of all strings over the alphabet of
positive integers, withε denoting the empty string.io denotes the string concatenation
of i with o wherei ∈ Z

+ ando ∈ (Z+)∗.
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Definition 9 (Type Tree Index Set).The type tree index setof a canonical typeτ ,
denotedO(τ), is the set of strings in(Z+)∗ defined inductively on the structure ofτ .

1. If τ is an atomic type, thenO(τ) = {ε}.
2. If τ is a basic structure typeτ = T α1 . . . αn in canonical form, with data con-

structorsCi : τi1 → · · · → τim
→ τ for all i ∈ {1, . . . , l}, thenO(τ) =

{ε} ∪ ⋃p
v=1{ vov | ov ∈ O(ξv)}, whereξ1, . . . , ξp are the types fromαk where

αk = τij
andτij

6= τ , and assuming that for everyτij
6= τ there exists anαk such

thatαk = τij
.

3. If τ is a basic abstraction typeβ → γ, thenO(τ) = {ε} ∪ { 1o | o ∈ O(β)} ∪
{ 2o | o ∈ O(γ)}.

4. If τ is a basic tuple typeτ = τ1 × · · · × τn, thenO(τ) = {ε} ∪
⋃n

i=1{ ioi | oi ∈
O(τi)}.

Part 1, the base case, states that types for which all the associated data structures have
arity zero, such asΩ (the type of the booleans),Int (the type of the integers), andChar
(the type of characters), have a singleton index set containing the empty string. Part 2
states that each subtype that occurs in the signatures of theassociated data constructors,
and that is not itself of typeτ of the basic structure, is labelled with a unique string. Part
3 labels theβ andγ types of basic abstractions with a pair of unique strings. Similarly,
part 4 labels each tuple item in a basic tuple with a unique string.

The significance of defining indexing on the type tree of basicterms rather than
on the terms themselves is that each member of a type tree index set o ∈ O(τ) is
not uniquely tied to any individual term of typeτ . This increases the generality of the
indexing such that each member of the type tree index set for typeτ identifies, for any
basic termt : τ , an equivalence class of subterms rather than a single term.ThusO(t)
induces a set of equivalence classes on the subterms oft. We refer to the set of subterms
identified with a given member (index) of the type tree index set as thebasic subterm
setat that index.

Definition 10 (Basic Subterm Set).If t is a basic term of typeτ ando ∈ O(τ) then
thebasic subterm set oft at type tree indexo, denotedt|o, is defined inductively on the
length ofo as follows.

1. If o = ε, thent|o = {t}.
2. If o = jo′, for someo′, and t has the formC t1 . . . tm, with associated type

T α1 . . . αn, thent|o = sj |o′ wheresj = ti : τi such thatτi 6= τ andτi = αj .
3. If o = 1o′, for someo′, andt has the formif thenelse(u, v, s), thent|o = u|o′∪s|o.
4. If o = 2o′, for someo′, andt has the formif thenelse(u, v, s), thent|o = v|o′∪s|o.
5. If o = io′, for someo′, and t has the form(t1, . . . , tn), thent|o = ti|o′ , for i =

1, . . . , n.

A basic subterm setis a set of basic subterms of a basic term at some type tree index. A
basic subterm isproperif it is not at type tree indexε.

Basic subterms indexed in part 1, the base case, are singleton sets containing an
atomic term. Basic subterms indexed in part 2 are basic structures. Basic subterms in-
dexed in parts 3 and 4 are the support and value of basic abstractions, i.e. respective
instances ofα andβ, fromα → β. Basic subterms indexed in part 5 are basic tuples.
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Below we give examples of a type tree index set and basic subterm sets for each
of basic tuples, basic structures, and basic abstractions.Starting with basic tuples in
Example 3 where it can be seen that type-based indexing identifies all the tuple items,
but as singleton sets, and in addition it identifies the reflexive term att|ε.

Example 3.If basic tuplet ∈ BM×N×O×P is the termt = (A, B, C, D), whereA : M,
B : N, C : O, D : P, then the type tree index set oft is O(t) = {ε, 1, 2, 3, 4},
the derivation of which can be seen from Fig.1. The basic subterm sets oft aret|ε =
{(A, B, C, D)}, t|1 = {A}, t|2 = {B}, t|3 = {C} andt|4 = {D}.

α1 × · · · × αn

ε

α1

1

. . . αn

n

(a)

M × N × O × P

ε

M

1

N

2

O

3

P

4

(b)

(A, B, C, D)

A

1

B

2

C

3

D

4

(c)

Fig. 1: Type-based indexing for basic tuples. (a) Type tree index forn-tuples of typeα1 × · · · ×
αn. (b) Type tree index for4-tuples of typeM × N × O × P. (c) Basic subterm tree for term
(A, B, C, D) whereA : M, B : N, C : O, D : P.

Representing basic structures, the usual right branching representation of lists is given
in Example 4, where the basic subterm set att|1 captures one meaning of a list as a set
of values andt|ε captures the meaning of a list as a set of sequences.

Example 4.If τ is a type of lists such thatτ = List M, whereM ⊆ B is a nullary type
constructor, with associated data constructors# and [], having signatures[] : List M,
and# : M → List M → List M, then the type tree index set ofτ is O(τ) = {ε, 1}.
If basic termss, t ∈ BList M are the listss = [A, B, C] andt = [A, D], then as can be
seen from Fig.2, the basic subterm sets ofs andt ares|ε = {[A, B, C], [B, C], [C], []},
s|1 = {A, B, C}, andt|ε = {[A, D], [D], []}, t|1 = {A, D}.

For basic abstractions, a set is given in Example 5 and a multiset in Example 6. For both
sets and multisets,t|1 captures the meaning as a set of values whereast|2 will always
be{⊤} for sets and a set of multiplicities for multisets. A corollary of Definition 9 is
that the type tree index set of a basic abstraction type is always{ε, 1, 2}.

Example 5.If τ is a basic abstraction type representing sets such thatτ = M → Ω,
whereM ⊆ B is a nullary type constructor, then the type tree index set ofτ is O(τ) =
{ε, 1, 2}. If basic termt = {A, B, C}, whereA, B, C : M, then the basic subterm sets
aret|ε = {{A, B, C}}, t|1 = {A, B, C} andt|2 = {⊤}.

Example 6.If τ is a basic abstraction type representing multisets such that τ = M →
Nat, whereM ⊆ B is a nullary type constructor andNat, then the type tree index set
of τ is O(τ) = {ε, 1, 2}. If basic termt = {A, A, A, B, C, C}, whereA, B, C : M,
then the basic subterm sets aret|ε = {{A, A, A, B, C, C}}, t|1 = {A, B, C} and
t|2 = {1, 2, 3}.
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List α

ε

α

1

(a)

#

A

1

#

B

1

#

C

1

[]

(b)

#

A

1

#

D

1

[]

(c)

Fig. 2: Type-based indexing for basic structures. (a) Type tree index forList α. (b) and (c) Basic
subterm trees for terms[A, B, C] and[A, D] of typeList M whereA, B, C, D : M.

α → β

ε

α

1

β

2

(a)

{A, B, C}

A

1

⊤

2

B

1

⊤

2

C

1

⊤

2

(b)

〈A, A, A,B, C, C〉

A

1

3

2

B

1

1

2

C

1

2

2

(c)

Fig. 3: Type-based indexing for basic abstractions. (a) Type tree index for typeα → β. (b) Basic
subterm tree for set{A, B, C}, typeM → Ω, whereA, B, C : M and⊤ : Ω. (c) Basic subterm
tree for multiset〈A, A,A, B, C, C〉, typeM → Nat, whereA, B, C : M and1, 2, 3 : Nat.

A useful and straight forward reformulation of type-based indexing istype name-
based indexingthat, instead of enumerating the edges of the type tree, directly labels
the vertices of the type tree. The simplest approach being toassign a unique type name
to every vertex in the type tree. If the names assigned have nounderstandable meaning
to humans then this method offers no advantages over type-based indexing. However,
if the knowledge representational formalism used to define types and data instances
uses human-understandable names then type name-based indexing provides a useful
notation for referring to basic subterm sets, as illustrated in Example 7.

Example 7.Let Author be the type of authors from the publications domain, which
define declaratively in the Haskell style syntax from [4] as follows.

type Author = (Name,Publications);
type Name = String;
type Publications = List Publication;
type Publication = (Mode,Coauthors,Title,Venue,Year);
data Mode = Journal | Proceedings | ... | Book;
type Coauthors = Coauthor -> Bool;
type Coauthor = String;
type Title = String;
type Venue = String;
type Year = Int;
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This states thatAuthor is a pair ofNameandPublications, whereNameis an alias for
String the type of strings, andPublicationsis a list of publications, which in turn is
a 5-tuple ofMode, Coauthors, . . . , Year, whereModehas the nullary data constructors
Journal, Proceedings, . . . , Book, and so on through toYearwhich is an alias for the type
Int, the type of the integers.Coauthorsis a basic abstraction fromCoauthorto Bool,
whereBool is the typeΩ, i.e. Coauthorsis a set ofcoauthors. To ensure the required
uniqueness of type namesCoauthor, Title, Venueand Nameare aliases for the type
String. The type tree index set is thus{Author, Author.Name, Author.Publications.Publi-
cation.Mode,. . . , Author.Publications.Publication.Year}.

A type tree index set generated using this method is isomorphic with that produced
by Definition 9, as illustrated informally in Fig.4. The constraint that all basic subtypes
must be uniquely named permits the following simpler definition of a basic subterm set.

Definition 11 (Basic Subterm Set (with named types)).If t is a closed basic term
of typeτ andα ⊆ τ then thebasic subterm set oft at typeα, denotedt|α, is t|α =
{s | s occurs in t with typeα}. A basic subterm setis a set of basic subterms of a basic
term at some type treeα ⊆ B. A basic subterm isproperif α 6= τ .

Author= Name× Publications

ε

Name= String

1

Publications= List Publication

2

Publication = Mode× Coauthors× Title× Venue× Year

1

Mode

1

Coauthors= Coauthor→ Ω

2

Coauthor= String

1

Ω

2

Venue= String

3

Year= Int

4

Fig. 4: Type name-based and type-based indexing for typeAuthor.

4.2 Indexing Basic Term Relations

Having upgraded our representation of a relationR : τ to handle structured data rep-
resented as basic terms, and having chosen a suitable indexing method for the basic
subterm setO(τ), we are now able to conveniently define thebasic term relation index
as the structured data counterpart of the relation index.

Definition 12 (Basic Term Relation Index).The basic term relation indexIR of a
basic term relationR of typeτ is IR = O(τ).
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4.3 Exact Relational Join for Structured Data

The upgraded definitions of an exact relation join for structured data closely follow the
earlier relational definitions but now using basic term relations and indexing.

Definition 13 (Basic Term Projection).If t ∈ τ , whereτ ⊆ B, then thebasic term
projectionπ of t on i ∈ It is πi(t) = {s | s is the basic subterm at type tree indexi}.

A basic term projectionπi(t) may also be written ast|i.

Definition 14 (Basic Term Generalised Projection).If t ∈ B then thebasic term
generalised projectionπ of t onρ ⊆ It is the setπρ(t) = { t|i | i ∈ ρ }.

Definition 15 (Basic Term θ-Restriction). Let θ be a predicateθ : (Bα → Ω) →
(Bα → Ω) → Ω for someα ∈ Bα. If A andB are basic term relations with basic
termsa|i ⊆ Bα andb|j ⊆ Bα respectively for some(i, j) ∈ IA×IB, thenbasic termθ-
restrictionσiθj is defined onT ⊆ A×B asσiθj(T ) = {(a, b) | a|i θ b|j ∧ (a, b) ∈ T }.

The predicateθ : (Bα → Ω) → (Bα → Ω) → Ω is defined on sets of basic terms. In
other words,θ is a predicate on basic term relations.

Definition 16 (Basic Term Generalised Restriction).Letϕ be a proposition that con-
sists of atoms as allowed in basic termθ-restriction and the logical operators∧, ∨ and
¬. If A andB are basic term relations then thebasic term generalised restrictionσϕ is
defined onT ⊆ A × B asσϕ(T ) = { t | ϕ(t) ∧ t ∈ T }.

Definition 17 (Basic Term θ-Join). Let θ : (Bα → Ω) → (Bα → Ω) → Ω be a
predicate for some typeα ∈ B. If A andB are basic term relations with basic terms
a|i ⊆ Bα andb|j ⊆ Bα respectively for some(i, j) ∈ IA × IB then thebasic term
θ-join 1i θj of A andB is defined asA 1i θj B = σi θj(A × B).

Definition 18 (Basic Term Generalised Join).Letϕ be a proposition that consists of
atoms as allowed in basic termθ-restriction and the logical operators∧, ∨ and¬. If A

andB are basic term relations then thebasic term joinA 1ϕ B = σϕ(A × B).

4.4 Approximate Relational Join for Structured Data

We assume some distance for basic terms and note that positive semi-definite kernels
induce pseudo-metric distances. One suitable kernel is thekernel for basic terms from
[4] and described earlier, but other kernels and distances may also be suitable.

Definition 19 (Basic Term Proximity-Join). Let≈ : Bα × Bα → Ω be a proximity
for someBα of typeα. If A andB are basic term relations with subtermsa|i ∈ Bα

andb|j ∈ Bα respectively for some(i, j) ∈ IA × IB , then theproximity-join
∼

1i≈j of

A andB is defined asA
∼

1i≈j B = σi ≈j(A × B).
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This definition closely parallels that of the approximate relational join on account of the
following: the basic term relation is a set which allows the same set theoretic operators
from the relational case to apply; the basic term relation index fulfills the same role as
the relation index from the relational case; and, finally, the kernel for basic terms’ own
inductive definition implicitly handles the often recursive nature of structured data. The
closeness in form of the definition of the basic term join to that of the relational join
facilitates the following result.

Proposition 1. Relational joins are a special case of basic term relationaljoins.

Proof. Assume relationR ⊆ D1 × · · · × Dn for some domainsD1, . . . , Dn. Assume
appropriate type constructors and data constructors such that D1, . . . , Dn ⊆ B. Let
basic term relationS ⊆ D1 × · · · × Dn. Let IR be the relation index ofR andIS

be the basic term relation index ofS. Clearly there is a surjection fromIR into IS

and thus from the set of tuple items in each tuple inR to the set of subterms in each
corresponding basic term tuple inS. Assume theθ operators are available for basic
terms and the result follows. ⊓⊔

5 Applications

We have implemented the higher-order relational projection, restriction and join opera-
tors and a range of supporting kernels, including the kernelfor basic terms, in Prolog.
Although Prolog does not natively support the higher-orderlogic necessary to represent
data as basic terms, emulation of typed data, basic tuples, basic structures and basic ab-
stractions (including sets and multisets) has proven to be unproblematic in practice. We
are currently working to characterise and evaluate this framework using the application
domain of bibligraphic publications. Heterogenous data sets within this domain include
CORA, DBLP, Citeseer and Google Scholar. Interesting higher-order approximate joins
between pairs(A, B) of these datasets might, for instance, include the following.

– A
∼

1Author.nameB, authors inA andB that have similarly names

– A
∼

1Author.affiliation B, authors inA andB affiliated to the same institution

– A
∼

1Author B, authors inA andB similar across all their properties

– A
∼

1Publication.venueB, publications inA andB from the same venue

– A
∼

1Publication.coauthorsB, publications inA andB with similar coauthors

For the sake of evaluation we require the ground truthV for each join to be evalu-
ated, whereV ⊆ A

∼

1 B and, for the case where the individuals as terms represent pub-
lications,V = {(a, b) | a ∈ A∧ b ∈ B ∧ a andb are variants of the same publication}.
The goal is to reconstructV asV ′ = A

∼

1s B by choosing an appropriates from the
intersection of the basic subterm sets ofA andB. In reality,V is not usually available
for pairs of different data sets. For this reason we narrow down our initial evaluation to
consider self-joins,A

∼

1s A, on a single data setA = CORA, for which ground truths
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are available [8].CORAconsists of bibliographic citations, hand-labelled with unique
identifiers so that variant citations of the same paper sharethe same identifier1.

Given this supervised learning setting, a number of distance-based methods could
be used to implement the approximate join, includingk-means,k-NN, and agglom-
erative hierarchical clustering. We chose the latter for this initial investigation on the
basis that it produces a dendrogram that is useful in visualising and charactering the
join. Although this is a clustering method more normally associated with unsupervised
learning, here we are able to make use of the ground truth labelling to achieve a su-
pervised setting. A dendrogram represents a progressive series of joins (or clusterings),
with instances in the same cluster being leaves of the same sub-tree. The distance value
at each non-terminal node represents a potential thresholdδ at which to ‘cut’ the tree
and arrive at set of clusters.δ is the threshold from the proximity predicate from Def-
inition 19. To evaluate the quality of the clustering at a given δ we consider whether
each pair of instance data is correctly classified as being inthe same cluster or in differ-
ent clusters; in other words we evaluate a binary classification on all pairs of instances
to determine if the two instances in a pair refer to the same publication or to different
publications. A confusion matrix is then calculated in order to determine precision and
recall for this specific value ofδ. To characterise a proximity-join across a range of
thresholds we varyδ across the length of the tree and plot a precision-recall chart.

To represent the publications we choose the following type structure2.

type Publications = Publication -> Bool;
type Publication = (Coauthors,Title,Venue,Year);
type Coauthors = Coauthor -> Bool;
type Coauthor = String;
type Title = String;
type Venue = String;
type Year = String;

Hence by representing CORA as a basic terms relation of typePublications, where
BPublications∈ B, we are able to execute the following basic term proximity-joins:

– CORA
∼

1Publication.TitleCORA, a self join on only the publication’sTitle subterm;
– CORA

∼

1Publication.VenueCORA, a self join on only the publication’sVenuesubterm;
– CORA

∼

1Publication.CoauthorsCORA, a self join on only the publication’sCoauthors
subterm, which is in turn a set ofCoauthorsubterms;

– CORA
∼

1Publication CORA, a self join on the entirePublicationterm.

For each join, to keep results comparable, we choose thep-spectrum(2) kernel for
strings and accept the default kernels for all other types. We do not optimise the de-
fault kernel for basic terms by choosing weighting modifiersthat, for example, might
be used to encode the intuition that a year of publication is less discriminating than the
title of a publication when aggregated into an overall kernel on publications.

1 The specific CORA data set used is an aggregation of all three CORA-REFS citation match-
ing data sets (fahl-labeled, kibl-labeled, andutgo-labeled). The raw CORA-REF files have
numerous XML mark-up errors which we have manually corrected to enabled parsing.

2 Yearis string rather than a numeric type due to non-numeric characters in the data. Also,Venue
is constructed as a concatenation of venue-related fields; CORA has no venue field.
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Fig. 5: Dendrogram (above), showing clusterings at successive thresholds for a proximity-joins
on the CORA publication type, and (below) a close-up showinglabelled ground truths.

For each of these four joins we constructed a dendrogram suchas Fig.5 and cal-
culated the corresponding precision-recall chart in Fig.6. Note that the trivial reflexive
pairs, i.e. cluster sizes of 1, are ignored in the plots as they convey no useful information
here and so lines are not interpolated to the top left of the chart (recall=0, precision=1).
As would intuitively be expected, joins onPublication.Titleis generally a better dis-
criminator of publications thanPublication.Coauthorsand Publication.Venue. How-
ever, the default kernel for basic terms clearly effectively aggregates the information
contained the subterms ofPublicationto outperform any single one of the three sub-
terms taken in isolation. The only exception beingPublication.Title, which sometimes
outperforms its parentPublicationabove recall values greater than0.9.

6 Related Work

Our work, to the best of our knowledge, is a unique combination of the relational model
with a higher-order representation and distance-based methods. Thus we now describe
our work with respect to related work in three related fields:relational learning, knowl-
edge representation, and distances for structured data.
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Fig. 6: Precision and recall for various decompositions of CORA publication type.

In database literature and more recently, particularly since the advent of the Web,
within the relational learning literature, there has been considerable interest in the data
integration aspects of database deduplication and record linkage [9, 10]. However, in
addition to dealing with heterogeneous data structures, our work adopts anindividuals
as termsrepresentation so that both type and structure of data is notobfuscated by tra-
ditional relational representations. Therefore our approach has the advantage of simpli-
fying data modelling and the application of approximate matching techniques. Despite
this, it should be noted that we propose the higher-order relational representation solely
as an approach for data integration tasks, not as a replacement for general purpose re-
lational databases. Our present implementation certainlyhas none of the optimisations
of a modern relational database. Ultimately though, a higher-order view could be lay-
ered on top of a traditional relational database system, efficiently combining the two
approaches, so that higher-order queries are automatically translated into and executed
as equivalent relational queries.

Our goal of integrating and querying heterogeneous data is also a goal shared by the
Semantic Web community [11]. The fundamental data model of the Semantic Web is
the directed labelled graph, represented as RDF triples, which may be queried using the
SPARQL query language [12]. Data structures such as lists, sets, multisets, trees and
graphs are readily supported through RDF Schema and the OWL ontology language
[13] and as such have similar representational advantages to basic terms as compared
to the relational model. SPARQL queries can be used to retrieve a subgraph describing
an individual that is analogous to a representation of that individual as a basic term.
Conversely, it is straight forward to transform the same subgraph into a basic term in
order to apply our own approach to RDF data. For RDF data integration, orsmushingas
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it is informally known, the emphasis in the Semantic Web languages to-date has been
on exact matching, using inverse-functional properties such as email addresses, home-
page URLs or entity URIs. This is an obvious shortcoming in the presence of noisy
data or representational variations between data from different sources. To address the
consequent data integration problem, work has been done in the area of ontology match-
ing, including work on measuring proximity between ontologies [14]. Our approximate
matching work differs from this explicit semantic integration approach in that we rely
primarily on the implicit semantics of the type structure and data instances themselves.
This is an advantage in cases where detailed ontological information is not available but
potentially a disadvantage in other cases because background knowledge encoded in an
ontology is not exploited in our approximate joins. The incorporation of background
knowledge into our approximate joins is an area for future work.

Turning now to related work on distances, we first note that kernels and distances
used in this paper are not of themselves a contribution of ourwork. Also, the choice
of the default kernel for basic terms is not a specific requirement for the approximate
relational join; any distance for basic terms would be suitable. Prior work on distances
for logical terms includes distances between Herbrand interpretations [15] and between
first-order terms (including structures and lists) [16–18]. None of these directly apply
to basic terms and while it may be possible to apply distanceson first-order terms to our
first-order representation of basic terms, the semantics ofbasic abstractions would be
lost as a result. Most closely related to our work, are various similarity-based methods
that have been upgraded to handle structured data [4, 19, 20]. Contrasting approaches
apply probabilistic models to take account of dependenciesbetween resolution deci-
sions [21, 22]. Most recently, a family of pseudo-distancesover the set of objects in a
knowledge base has been introduced although not specifically for basic terms [23].

7 Conclusion

In this paper we have combined two contrasting knowledge representational approaches,
the relational model and basic terms, into a single coherentformalism that is well suited
to the integration of heterogeneous data. This, in conjuction with the default kernel for
basic terms has been shown to have potential for data integration and to be worthy of
further investigation.
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