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Querying and Merging Heterogeneous Data by
Approximate Joins on Higher-Order Terms

Simon Price and Peter Flach

Department of Computer Science, University of Bristol sBsl BS8 1UB, United Kingdom.
{sinon. price, peter.flach}@ristol.ac. uk

Abstract. Integrating heterogeneous data from sources as diverselapages,
digital libraries, knowledge bases, the Semantic Web amabdaes is an open
problem. The ultimate aim of our work is to be able to quernyhsheterogeneous
data sources as if their data were conveniently held in desietptional database.
Pursuant to this aim, we propose a generalisation of joios fthe relational
database model to enable joins on arbitrarily complex sired data in a higher-
order representation. By incorporating kernels and déigtarfior structured data,
we further extend this model to support approximate joinsedérogeneous data.
We demonstrate the flexibility of our approach in the pubigz domain by
evaluating example approximate queries on the CORA dagajegting on types
ranging from sets of co-authors through to entire publizeti

1 Introduction

An increasingly important problem is the integration ofalfiom sources as diverse
as web pages, digital libraries, knowledge bases, the S&mieb and databases that,
collectively, are referred to as heterogeneous data. fatieg allows an application to
query the data using a single query language, just as if tteevdere a single homoge-
neous data source.

In this paper we combine two contrasting knowledge reptasenal approaches
into a single coherent formalism that is well suited to thegmation of heterogeneous
data. The first of these representational approaches,|ti®ral model, is widely used
as the basis for relational databases and is accompanieavbil-defined algebra for
manipulating relational data. However, relational repreations of complex structured
data can be difficult to design and even more difficult for a hanto read. The second
representational approach, terms in a higher-order loffiers a more human-readable
representation of structured data than the relational ifmdédnas no well-defined ana-
logue of the relational algebra for the querying of its terfifse formalism we introduce
here is a subset of relational algebra upgraded for termsigheer-order logic, bring-
ing the well known and widely used join operator of relaticalgebra to the knowledge
representational formalism of higher-order terms. This akgyebra incorporates a gen-
eralisation of the relational model to higher-order termsdae show that a join operator
from the relational model may be viewed as a special casesdfitther-order join.

Data integration typically transforms heterogeneous ttataats into a single ho-
mogeneous data format, usually into the format which hastbgt convenient algebra



for data integration rather than the format with the mosuratrepresentation of the
data. In an ideal data integration scenario, where no uziogytexists in the correspon-
dences between individuals from different data sourceshtdmogeneous data format
chosen is merely a technical implementation detail andgslao restrictions on what
may be reliably integrated. Unfortunately, the more digeiree sources of data being
integrated, the more likely it will be that the integratiowolves a degree of uncer-
tainty — for example, in identifying correspondences betniadividuals from different
data sources. In order to automate such integration tapgsp®mate matching tech-
niques from statistics, machine learning and data mining beeemployed. However,
the transformation of data to the most widely used homogeséarmat, relational
data, obscures the data’s natural type and structure, aasadly complicating the ap-
plication of approximate matching techniques. In this paywe show that approximate
matching can take place without this obfuscating transétion to a relational repre-
sentation. Our approach to approximate matching for da¢giation uses kernels and
distances applied directly to representations of indivaal (closed) terms in a higher-
order logic.

The outline of the paper is as follows: Section 2 reformddte traditional rela-
tional join from the relational model. Section 3 introdutles knowledge representa-
tional formalism and describes a family of kernels and dists on that formalism.
Section 4 upgrades the relational join to handle structdegd. Section 5 investigates
the application of joins for structured data. The remairsagtions review related work
and future directions before concluding.

2 Relational Joins

We first define the relational join in its exact form and thema@atcdhis to define the
approximate relational join. Our definitions differ fronoge of the traditional relational
model in that we have not embedded attribute names, whidh &aet database-specific
schema metadata, into the data representation. We asstmagltbut that there is an
associated schema for each relation. By keeping the matadparate from the data we
achieve a more elegant upgrade from the relational modbktstructured data model.

2.1 Exact Relational Joins

An n-tuple(xy,...,x,) is an elementiD; x --- x D, wherex,...,z, are values
drawn from domaindDy, ..., D, respectively. We refer ta-tuples astuplesunless
the value ofn is significant. Itemi € {1,...,n} of atuplet = (x1,...,z,) is the
valuez; and is writter¢|;. A relation R of degreen is a finite set of.-tuples such that

R C Dy x--- x D, whereD,..., D, are domains, which need not necessarily be
distinct. Therelation indexy of a relationR of degreen is the sef{1,...,n}.

Definition 1 (#-Restriction). Let be a predicat®d : D x D — B for some domain
D. If A and B are relations with tuple items|; € D andb|; € D respectively for
some(i, j) € L4 x Ip, then thed-restrictiono;s; is defined oil” C A x B as follows:
O'igj(T) = {(a,b) | a|19b|j A (a,b) S T}



The infix 6 in the subscript ot follows the historical convention from the relation
database literature and $dj, or equivalentlyf(i, j), does not mean that applies
to ¢ andj; insteadid; is shorthand notation for the membership te$td b|; for

all (a,b) € T. The operatod is typically drawn from the sef=, #, <, <, >, >} but
does not necessarily have to come from this g&etestriction is often just referred to
asrestriction and in such case® is assumed to be the equality operator. The name
selectionis often used instead w@éstriction, but the latter avoids confusion with the
similarly named and better knovael ect operator from SQL which has a somewhat
different meaning. Restriction is also sometimes definegkagralised restriction_et
 be a proposition that consists of atoms as allowed-mestriction and the logical
operatorsh, V and—, then if A and B are relations, the generalised restrictign is
defined oI’ € A x B aso,(T) = {t| ¢(t) A t € T} Standard results show
that generalised restrictions can always be expressedwasitations ofj-restrictions.
f-restriction is thus the basis of the following fundamengddtional join operator.

Definition 2 (#-Join). Letd be a predicate : D x D — B for some domairD. If A
andB are relations with tuple items|; € D andb|; € D respectively for somg, j) €
I4 x Ig, then thed-join X, ¢, of A and B is defined asd X;9; B = 0;¢9;(A x B).

Whend is equality thed-join is called theequi-join By replacing theé-restriction oper-
ator in thef-join by the generalised restriction operator we arrivénatdefinition of the
generalised joinLet ¢ be a proposition that consists of atoms as alloweHriastriction
and the logical operators, v and—. If A and B are relations then theelational join
X, is defined asA X, B = o0,(A x B). Other non-fundamental joins include the
natural join, semijoin antijoin, outer joinsandinner joins[1, 2]. For the purposes of
upgrading relational joins to handle structured data, $uficient to consider just the
#-join and optionally, as a useful syntactic convenience glneralised join.

2.2 Approximate Relational Joins

In order to turn an exact relational join into an approxinte it is necessary to replace
the exac# operator ing-restriction with a suitable approximate version. For egm
substituting exact equality with an approximate equality enables joining on tuple
items that are either the same or in some way sufficientlyigimi

One method of implementing approximate equatitys to use a distance metric or
pseudo-metridist, defined on the domain of a pair of relational tuple itemsgetbgr
with a threshold to define gproximity relation

Definition 3 (Proximity). If the function dist: D x D — R is a distance on pairs
of values from some domai andé € R (§ > 0) is a threshold themproximity is a
predicatex~ : D x D — B defined by

Ve,y € D (x =y) < {(z,y) |dist(z,y) <& A x,y € D}.

By the definition of distance, the co-domaindibt is not constrained to have an
upper bound. Some normalising functiprmay be used to apply an upper bound to a
distance. The functiop : R — R must be a non-decreasing function from the positive



reals into some closed interval, typically, 1], such thatp(0) = 0, p(v) > 0if v > 0,
andp(v + u) < ¢(v) + ¢(u), for eachv andy. Example choices op from [3] are
p(v) = min(v, 1) orp(v) = 1. Alternatively, the normalisation may be performed in
the feature space of, y € D so thatdist(x, y) is inherently normalised. For example,

if the distance is derived from a kernel then a normalisingm&kemay be used [4].

Definition 4 (Proximity-Join). Let~: D x D — B be a proximity for some domain
D. If AandB are relations with tuple items|; € D andb|; € D respectively for some

(i,§) € 14 x Ip, theproximity-join X, ~; of Aand B is A X; ~; B = 0;~;(A x B).

The same historical notational convention is followed herethe subscripted: as
for the subscripted described earlier for the exaétjoin. The proximity-join as de-
fined here is an approximate analogue of the exact relatmmailjoin. By choosing
other proximity relations that are approximate analogdesact relations, for example
whered € {=,#, <, <, >, >}, an approximate version of the relatioajoin might
be defined. In this paper we restrict our attention to the ipniy-join.

3 Representing Structured Data

The relational model is now the de facto standard for dagldgisen applications in
data mining and computing in general, but it is not ideallgesiifor representing semi-
structured data such as Web pages and XML, nor structuradsdah as the Semantic
Web and RDF. However, the representation of such strucinmesdational databases is
commonplace using a multitude of (often tortuous) repriegems and querying pat-
terns. By contrast, thindividuals-as-termsnodel offers straight forward representa-
tions of both structured and semi-structured data while@stime time having the rep-
resentational capacity to represent relations from tregioglal model. The individuals-
as-terms representation is a generalisation of the raltimodel’s attribute-value rep-
resentation and collects all information about an indieido a single term.

We are not advocating the individuals-as-terms repedentas a replacement for
the general purpose relational representation. But in @inéext of querying and merg-
ing heterogeneous data, the individuals-as-terms reptasen more transparently mod-
els the structure of the data in a way that is both human-tdadand that explicitly
exposes that structure to machine learning and data mifgogitams.

The knowledge representational formalism we use as owrithdils-as-terms rep-
resentation iasic termsa family of typed terms in higher-order logic, which is baise
on Church’s simple theory of types [5] with several extensif8]. This formalism has
been chosen over the possible alternative of first-ordéc lmerause terms in the higher-
order logic natively support a variety of data types thatiamgortant for representing
individuals, including sets, multisets and graphs. Beistrangly typed logic, helps to
reduce search spaces and the type of terms provides useadate The theory behind
the logic and the individuals-as-terms formalism is setinyB] and we give only a
brief overview here.

We assume aalphabetconsisting of X the set of type constructors of various ari-
ties,J3 the set of parameter§,the set of constants, afidithe set of variables. Included
in T is the constructof? of arity 0 with a corresponding domain ¢flrue, False}, the



booleans. Types are constructed from type constructofsand type variables iff3
using the symbols-~ for function types andk for product types. Aypeis defined in-
ductively as follows: (1) Each parameterhis a type. (2) IfT" is a type constructor
in T of arity k anda, . .., a5 are types, thefl” a; ... a5 is a type. (Fork = 0, this
reduces to a type constructor of arity O being a type). (3) #ndj are types, then
a — pisatype. (4) lfay, ..., «, are types, then; x -+ x «, is a type. (Fon = 0,
this reduces td being a type). A type islosedif it contains no parameter&® denotes
the set of all closed types obtained from an alphabet.

The set of constant® includesT (true) andL (false). Asignatureis the declared
type for a constant. A consta6t with signaturen is often denoted” : «. Let[] be
the empty list constructor with signatucest « wherea is a parameter andst is a type
constructor. Let# be the list constructor with signatusie— List a — List a.

Thetermsof the logic are the terms of typedcalculus and are formed in the usual
way by abstraction, tupling and application from constami® and a set of variables.
The set of all terms obtained from a particular alphabetimtide. A basic term is the
canonical representative of an equivalence class of tetn®.[The set obasic terms
B, is defined inductively as follows: (Basic structures- If C' is a data constructor
having signaturey — -+ — o, — (T a;...ag), t1,...,tn € B (n > 0), andt is
Cty...t, € £, thent € B. (2)Basic abstractions If ¢1,...,t, € B, s1,...,8, €
B (n>0),s0 €D andtis Az if x = t; thens;y else. .. if x = ¢, thens,, elses, €
£, thent € 8. (3)Basic tuples-If t1,...,t, € B (n > 0) andtis (t1,...,t,) € £,
thent € 9B. See section 4 for examples and diagrams of basic terms.

3.1 Kernels and Distances for Basic Terms

Kernel functions [6] are an effective way of inducing distas on a wide variety of data
structures. One promising recent kernel function for $tmed data is the default kernel
for basic terms introduced in [4].

Definition 5 (Default Kernel for Basic Terms [4]). The functionk : 8 x %6 — R is
defined inductively on the structure of terms8ras follows.

1. Ifs,t € B,,wWherea = Ta; ...ay, for somel, aq,...,a, then
h(s.t) = kr(C, D) if C#D
" kr(C,0) + 30 k(s ti)  otherwise

wheresisC s1...s, andtis D ty...t,,.

2. Ifs,t € B, wherea = 5 — ~, for somes, ~, then
k(s,t)= > k(V(su),V(tv)) - k(u,v).

wESUP(s)
vESUp(t)

3. Ifs,t € B,, wherea = a1 X -+ - X ap, fOr somens, ..., oy, then

k(s,t) = Z k(si,ti),



wheres is (s1,...,s,) andtis (t1,...,t,).
4. If there does not exist € &° such thats, t € B, thenk(s,¢) = 0.

The definition, assumes that for each type construtters, kr : Xr x Xr — Risa
kernel on the set of data constructdafs associated with". Below we give an example
of the calculation of the default kernel for an example d&tacsure: sets of strings.

Example 1 (Default Kernel on Sets of Strinds)t S be a nullary type constructor for
strings and4, B, C, D : S. Choosexg andky, to be the matching kernel. Letbe the
set{A,B,C} € Bs_.n,t = {A,D}, andu = {B,C}. Then

k(s,t) = k(A, A)k(T,T)+ k(A D)E(T,T)+ k(B,A)k(T,T)

+k(B,D)k(T, T)+ k(C,A)k(T,T) + k(C,D)k(T,T)

=rs(A, A)ro(T, T)+ ks(A, D)k(T,T)+ ks(B, A)rn(T,T)
+r5(B,D)rn(T,T)+ ks(C,A)ka(T,T) + ks(C,D)ka(T,T)

=ks(A, A) + ks(A,D) + ks(B, A) + ks(B, D)
—i—lis(c, A) + Iis(C, D)

=1404+404+0+0+0

=1.

Similarly, k(s,u) = 2 andk(t, u) = 0.

Noting that valid positive semi-definite kernels induceyskemetrics [4], this al-
lows the derivation of a distance from any such kernel, idicig the kernel for basic
terms, as follows. Let : X x X — R be a kernel orit'. The distance measure induced
by k is defined asii(s,t) = \/k(s,s) — 2k(s,t) + k(t,t). If k is a valid kernel the
dy is well behaved in that it satisfies the conditions of a psemédtric. Continuing the
earlier sets of strings example, the following examplesillates the calculation of a
distance from the default kernel for basic terms.

Example 2 (Default Distance on Sets of Stringets = {4, B,C}, ¢t = {A, D}, and
u = {B,C} wheres,t,u € Bs_. We havek(s,s) = 3, k(t,t) = 2 andk(u, u) = 2.
Then,dy(s,t) = vV3—3+4+2 = 1.73, di(s,u) = v/3—4+2 = 1, anddy(t,u) =
V2-0+2=2.

However, one of the strengths of the default kernel is thalldws any other valid
kernel to be associated with a specific type. For examplefat@wving p-spectrum
kernel, defined on strings, is used in our experiments |latdra paper.

Definition 6 (p-Spectrum Kernel [6]). The feature spacé’ associated with the-
spectrum kernel is indexed y= X7, with the explicit embedding from the space of
all finite sequences over and alphalieto a vector spacé” and is given byp? (s) =
[{(v1,v2) : s = viuve}|,u € XP. The associated kernel is defined as(s,t) =

(97(s), 9 (1)) = 2w v Pu(8)PL (D).



4 Relational Joins for Structured Data

We now upgrade both exact and approximate relational ja@nstfuctured data. The
way we achieve this is to first upgrade the knowledge reptatien of the relation to
be a set of basic terms rather than the traditional set oEsupWe then upgrade the
relation index so that it indexes parts of a basic term rathan the traditional parts of
a tuple. Once these two steps are completed, upgrading #éoe rexational join follows
almost automatically with only modest changes to the dédimst of thed-restriction
and joins. The final step then brings together the defaultedefior basic terms and
the approximate join to arrive at the main result of an apjnaxe relational join for
structured data. So to begin, we first upgrade the relatiom fsection 2.1 to become
thebasic term relationwhich is a basic term of type — {2.

Definition 7 (Basic Term Relation). A basic term relatiok C 9, is a finite set of
basic terms of the same type.

In order to upgrade the relation index from section 2.1 soithsiapplicable to the
basic term relation, a suitable method of indexing subspairt basic term is required.
Recall that well-formed basic terms can consist of basiecsires (e.g. lists, trees),
basic abstractions (e.g. sets, multisets), basic tuplasbarary combinations of these
three.

4.1 Indexing Basic Terms

In the logic, sub-parts of a term are referred to as subterndssa we are concerned
with indexing the subterms of a basic term. The standard eddtir indexing subterms
in the logic enumerates a decomposition of a given term shahedvery subterm is
labelled with a unique string [3].

However, we introduce an alternative approach to indexiat) instead of enumer-
ating all subterms of a term, definegype tree index seaiver all subtypes of the type
of a basic term. To do this we first adopt the definition of a tirpe from [7] and then
define a different annotation of the tree such that every negmbthe type tree index
set identifies a set of terms rather than a single term. Thésres any index defined
on a type is meaningful across all terms of that type. Funtioge, the set of subterms
identified is guaranteed to consist entirely of well-fornbedic terms.

To achieve this we follow the same interpretation of subsyge[3] and restrict our
attention to basic terms whose basic structures are in ézaddorm as defined below.

Definition 8 (Basic Structures in Canonical Form).Atyper = T «; ... ay is a basic
structure in canonical form when, for all data constructéts: 7;; — -+ — 7j, — T
that are associated witlt, all the types of;; are subtypes of.

We begin our definition of the type tree index set with somepgaratory notation. Let
Z* denote the set of positive integers dfd )* the set of all strings over the alphabet of
positive integers, witlr denoting the empty stringo denotes the string concatenation
of i with o wherei € Z* ando € (Z*)*.



Definition 9 (Type Tree Index Set). Thetype tree index sedf a canonical typer,
denoted)(7), is the set of strings ifZ™)* defined inductively on the structureaf

1. If 7 is an atomic type, the®(r) = {e}.

2. If 7 is a basic structure type = T «; ..., in canonical form, with data con-
structorsC; : 7, — -+ — 1, — 7 foralli € {1,...,l}, thenO(r) =
{e} U W_{voy | 0, € O(&)}, wheregy, .. ., &, are the types fronay, where
ar = 7;; and;; # 7, and assuming that for every, # 7 there exists am; such
thatay, = 7.

3. If 7 is a basic abstraction typg — v, thenO(7) = {¢} U {lo|o € O(5)} U
{20]0€ O()}.

4. If 7 is a basic tuple type = 71 x - -+ x 7, thenO(7) = {e} U U, {io0; | 0; €

O(Ti)}.

Part 1, the base case, states that types for which all theiatesth data structures have
arity zero, such a® (the type of the booleandht (the type of the integers), ar¢har
(the type of characters), have a singleton index set cantpathe empty string. Part 2
states that each subtype that occurs in the signatures astoeiated data constructors,
and that is not itself of type of the basic structure, is labelled with a unique stringt Par
3 labels theg and~y types of basic abstractions with a pair of unique stringsil&ily,
part 4 labels each tuple item in a basic tuple with a uniquegstr

The significance of defining indexing on the type tree of b&sims rather than
on the terms themselves is that each member of a type treg sede € O(r) is
not uniquely tied to any individual term of type This increases the generality of the
indexing such that each member of the type tree index seyperrt identifies, for any
basic termt : 7, an equivalence class of subterms rather than a single TusO(t)
induces a set of equivalence classes on the subtertmg\efrefer to the set of subterms
identified with a given member (index) of the type tree indeias thebasic subterm
setat that index.

Definition 10 (Basic Subterm Set)If ¢ is a basic term of type ando € O(r) then
thebasic subterm set @fat type tree index, denoted|,, is defined inductively on the
length ofo as follows.

1. If o = ¢, thent|, = {t}.
2. If o = jo, for someo’, andt has the formC' ¢, ...t,,, with associated type
T ai ...apn, thent|, = s;|o Wheres; = ¢; : 7; such that; # 7 andr; = «;.
3. Ifo = 10, for some/, andt has the fornif _thenels€u, v, s), thent|, = |, Us|,.
4. Ifo = 20, for some’, andt has the fornif thenelsgu, v, s), thent|, = v|, Us|,.
5. If o = io, for someo’, andt has the form(ty,...,t,), thent|, = t;|,, fori =
1

N

A basic subterm sé$ a set of basic subterms of a basic term at some type tre&.iAde
basic subterm igroperif it is not at type tree index.

Basic subterms indexed in part 1, the base case, are singlete containing an
atomic term. Basic subterms indexed in part 2 are basictstes Basic subterms in-
dexed in parts 3 and 4 are the support and value of basic atisirs, i.e. respective
instances ofv and, froma — (. Basic subterms indexed in part 5 are basic tuples.



Below we give examples of a type tree index set and basic sulgets for each
of basic tuples, basic structures, and basic abstracti&tasting with basic tuples in
Example 3 where it can be seen that type-based indexingfiéerdll the tuple items,
but as singleton sets, and in addition it identifies the refieterm atz|...

Example 3.If basic tuplet € Buxnxoxp is the termt = (A, B, C, D), whereA : M,
B : N, C:0, D: P,then the type tree index set ofis O(t) = {¢,1,2,3,4},
the derivation of which can be seen from Fig.1. The basicesubsets of aret|. =
{(4,B,C, D)}, t}h = {A}, t]a = {B}, t|s = {C} andt|, = {D}.

£ £

:alx-uxanj (»MxNxOxP (A,B,C, D)

7 AN A

@ ©

Fig. 1: Type-based indexing for basic tuples. (a) Type tnelex forn-tuples of typen; x - - - x
an. (b) Type tree index fod-tuples of typeM x N x O x P. (c) Basic subterm tree for term
(A,B,C,D)whereA:M, B:N, C:0, D:P.

Representing basic structures, the usual right brancleimgsentation of lists is given
in Example 4, where the basic subterm sef ataptures one meaning of a list as a set
of values and|. captures the meaning of a list as a set of sequences.

Example 4.If 7 is a type of lists such that = List M, whereM C B is a nullary type
constructor, with associated data constructérand[], having signature§ : List M,
and# : M — List M — List M, then the type tree index set ofis O(1) = {¢,1}.
If basic termss, t € B st are the listss = [A, B, C] andt = [A, D], then as can be
seen from Fig.2, the basic subterm sets ahdt ares|. = {[4, B, C], [B, C], [C], [|},
Sll = {A,B,C}, andt|5 = {[AvD]’ [D]’ []}’ t|l = {AvD}

For basic abstractions, a set is given in Example 5 and asetiti Example 6. For both
sets and multisets|; captures the meaning as a set of values whefteasill always
be {T} for sets and a set of multiplicities for multisets. A corojlaf Definition 9 is
that the type tree index set of a basic abstraction type iayaife, 1, 2}.

Example 5.If 7 is a basic abstraction type representing sets suchrthatM — (2,
whereM C B is a nullary type constructor, then the type tree index setiefO(r) =
{e,1,2}. If basic termt = {A, B, C}, whereA, B, C : M, then the basic subterm sets
aret|. = {{4,B,C}},t}y ={A,B,C}andt|s = {T}.

Example 6.If 7 is a basic abstraction type representing multisets su¢hrtekaM —
Nat, whereM C 9 is a nullary type constructor ardat, then the type tree index set
of 7is O(1) = {e,1,2}. If basic termt = {A, A, A, B,C,C?}, whereA, B,C : M,
then the basic subterm sets ate = {{A, A, A, B,C,C}},t|s = {A,B,C} and
tle = {1,2,3}.
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Fig. 2: Type-based indexing for basic structures. (a) Tyge index forList . (b) and (c) Basic
subterm trees for ternisl, B, C] and[A, D] of typeList M whereA, B,C, D : M.

€

Ca—>ﬂ) {A,B,C} (A, A, A, B,C,C)

R, TR

(e%

(@)

Fig. 3: Type-based indexing for basic abstractions. (agTyge index for typex — . (b) Basic
subterm tree for setA, B, C}, typeM — 2, whereA, B,C' : MandT : (2. (c) Basic subterm
tree for multiset{ 4, A, A, B, C, C), typeM — Nat, whereA4, B,C : M andl, 2,3 : Nat.

A useful and straight forward reformulation of type-basedexing istype name-
based indexinghat, instead of enumerating the edges of the type treesthjirabels
the vertices of the type tree. The simplest approach beiaggign a unique type name
to every vertex in the type tree. If the names assigned havmderstandable meaning
to humans then this method offers no advantages over typedhiadexing. However,
if the knowledge representational formalism used to defyipes and data instances
uses human-understandable names then type name-basethgnpeovides a useful
notation for referring to basic subterm sets, as illusttéieExample 7.

Example 7.Let Author be the type of authors from the publications domain, which
define declaratively in the Haskell style syntax from [4] akoiws.

type Author = (Nane, Publications);

type Name = String;

type Publications = List Publication;

type Publication = (Mde, Coaut hors, Titl e, Venue, Year);
data Mbde = Journal | Proceedings | ... | Book;

type Coaut hors = Coaut hor -> Bool;

t ype Coaut hor = String;

type Title = String;

type Venue = String;

type Year = Int;
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This states thafuthoris a pair ofNameandPublications whereNameis an alias for
String the type of strings, an@ublicationsis a list of publications, which in turn is
a5-tuple ofMode, Coauthors, ..., YeawhereModehas the nullary data constructors
Journal Proceedings. . ., Book and so on through téearwhich is an alias for the type
Int, the type of the integer€£oauthorsis a basic abstraction frof@oauthorto Bool,
whereBoolis the typef?, i.e. Coauthorsis a set ofcoauthors To ensure the required
uniqueness of type nam&woauthor Title, Venueand Nameare aliases for the type
String The type tree index set is thfi8uthor, Author.Name, Author.Publications.Publi-
cation.Mode, . ., Author.Publications.Publication.Yepr

A type tree index set generated using this method is isonmowgith that produced
by Definition 9, as illustrated informally in Fig.4. The carant that all basic subtypes
must be uniquely named permits the following simpler deabfinibf a basic subterm set.

Definition 11 (Basic Subterm Set (with named types))If ¢ is a closed basic term
of typer anda C 7 then thebasic subterm set afat typeca, denotedt|,, is t|, =
{s| s occurs in t with typex}. A basic subterm sés$ a set of basic subterms of a basic
term at some type tree C B. A basic subterm iproperif o # .

€

(» Author= Namex Publications)
TN
Name= String Publications= List Publication
|

Publication = Modex Coauthorsx Title x Venuex Year

Mode Coauthors= Coauthor— (2  Venue= String Year= Int

1 2
» 4

Coauthor= String 2

Fig. 4: Type name-based and type-based indexing for Ayphor.

4.2 Indexing Basic Term Relations

Having upgraded our representation of a relatidon 7 to handle structured data rep-
resented as basic terms, and having chosen a suitable mgderdthod for the basic
subterm se© (), we are now able to conveniently define thesic term relation index
as the structured data counterpart of the relation index.

Definition 12 (Basic Term Relation Index). The basic term relation indeXy of a
basic term relationR of typer is I = O(7).
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4.3 Exact Relational Join for Structured Data

The upgraded definitions of an exact relation join for swed data closely follow the
earlier relational definitions but now using basic termtiefes and indexing.

Definition 13 (Basic Term Projection).If ¢ € 7, wherer C 9B, then thebasic term
projectionr oft oni € I, is;(t) = {s | s is the basic subterm at type tree indgx

A basic term projectiom; (t) may also be written as;.

Definition 14 (Basic Term Generalised Projection)If ¢ € 9 then thebasic term
generalised projectiom of t onp C I, is the setr,(t) = {t|; | i € p }.

Definition 15 (Basic Term 6-Restriction). Let § be a predicatd : (B, — ) —
(B, — ) — 2 for somex € B,. If A and B are basic term relations with basic
termsa|; C B, andb|; C B, respectively for somg, j) € 14 x I, thenbasic ternmo-
restrictionoy; is defined o’ C Ax B asoip,(T) = {(a,b) | al;0b|; A (a,b) € T}.

The predicatd : (B, — {2) — (B, — 2) — 2 is defined on sets of basic terms. In
other words{ is a predicate on basic term relations.

Definition 16 (Basic Term Generalised Restriction)Let be a proposition that con-
sists of atoms as allowed in basic teérnestriction and the logical operators, v and
-. If Aand B are basic term relations then thmsic term generalised restrictiop is
definedorl’ C A x Baso,(T) ={t|e(t) N teT}.

Definition 17 (Basic Term #-Join). Letd : (B, — 2) — (B, — 2) — N bea
predicate for some type € B. If A and B are basic term relations with basic terms
al; € B, andb|; C B, respectively for somg, j) € I4 x Ip then thebasic term
6-join X; 9; of A and B is defined asA M;9; B = 0;9;(A x B).

Definition 18 (Basic Term Generalised Join)Let ¢ be a proposition that consists of
atoms as allowed in basic teréarestriction and the logical operators, vV and—. If A
andB are basic term relations then thmsic term joinA X, B = 0,(A x B).

4.4 Approximate Relational Join for Structured Data

We assume some distance for basic terms and note that posétii-definite kernels
induce pseudo-metric distances. One suitable kernel iketreel for basic terms from
[4] and described earlier, but other kernels and distan@gsaiso be suitable.

Definition 19 (Basic Term Proximity-Join). Let~ : B, x B, — {2 be a proximity
for someB,, of typea. If A and B are basic term relations with subterms$ € B,

andb|; € B, respectively for som@, j) € I, x I, then theproximity-join X; ~; of
AandB is defined asi X, ~; B = 0, ~;(A x B).
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This definition closely parallels that of the approximatatienal join on account of the
following: the basic term relation is a set which allows theng set theoretic operators
from the relational case to apply; the basic term relatiaeinfulfills the same role as
the relation index from the relational case; and, finallg, kiernel for basic terms’ own
inductive definition implicitly handles the often recumsinature of structured data. The
closeness in form of the definition of the basic term join tattbf the relational join
facilitates the following result.

Proposition 1. Relational joins are a special case of basic term relatigoals.

Proof. Assume relatio® C D; x --- x D,, for some domain®, ..., D,,. Assume
appropriate type constructors and data constructors sttt , ..., D, C 8. Let
basic term relatior C D; x --- x D,,. Let Ir be the relation index o2 and Ig
be the basic term relation index 6f. Clearly there is a surjection frofiz into I
and thus from the set of tuple items in each tupleritio the set of subterms in each
corresponding basic term tuple /1 Assume the operators are available for basic
terms and the result follows. a

5 Applications

We have implemented the higher-order relational projectiestriction and join opera-
tors and a range of supporting kernels, including the kdordbasic terms, in Prolog.
Although Prolog does not natively support the higher-oldgic necessary to represent
data as basic terms, emulation of typed data, basic tu@ss; btructures and basic ab-
stractions (including sets and multisets) has proven taipeablematic in practice. We
are currently working to characterise and evaluate thimémork using the application
domain of bibligraphic publications. Heterogenous dats whin this domain include
CORA, DBLP, Citeseer and Google Scholar. Interesting higinder approximate joins
between pairgA, B) of these datasets might, for instance, include the follgwin

— A MauthornameB, authors ind and B that have similarly names

— A Nauthorafiiiaion B, authors ind and B affiliated to the same institution
— A Maumor B, authors ind and B similar across all their properties

— A Npypiication.venueB, publications inA and B from the same venue

— A Npypiication.coauthorsB, publications inA and B with similar coauthors

For the sake of evaluation we require the ground tiitfor each join to be evalu-
ated, wherd” C A X B and, for the case where the individuals as terms represént pu
lications,V = {(a,b) |a € AAb € B Aaandb are variants of the same publicatipn
The goal is to reconstruéf asV’ = A X, B by choosing an appropriatefrom the
intersection of the basic subterm setsdénd B. In reality, V' is not usually available
for pairs of different data sets. For this reason we narrowrdour initial evaluation to
consider self-joinsA X, A, on a single data set = CORA for which ground truths
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are available [8].CORAconsists of bibliographic citations, hand-labelled wittique
identifiers so that variant citations of the same paper sihareame identifiér

Given this supervised learning setting, a number of digteévased methods could
be used to implement the approximate join, includirgneansk-NN, and agglom-
erative hierarchical clustering. We chose the latter f@g thitial investigation on the
basis that it produces a dendrogram that is useful in visingliand charactering the
join. Although this is a clustering method more normallyaxsated with unsupervised
learning, here we are able to make use of the ground truthlitadpéo achieve a su-
pervised setting. A dendrogram represents a progressies g joins (or clusterings),
with instances in the same cluster being leaves of the samtrese. The distance value
at each non-terminal node represents a potential threghatdvhich to ‘cut’ the tree
and arrive at set of clusters.is the threshold from the proximity predicate from Def-
inition 19. To evaluate the quality of the clustering at aegiv we consider whether
each pair of instance data is correctly classified as beittgeisame cluster or in differ-
ent clusters; in other words we evaluate a binary classificain all pairs of instances
to determine if the two instances in a pair refer to the sanidigation or to different
publications. A confusion matrix is then calculated in argledetermine precision and
recall for this specific value of. To characterise a proximity-join across a range of
thresholds we vary across the length of the tree and plot a precision-recattcha

To represent the publications we choose the following typeture.

type Publications = Publication -> Bool;

type Publication = (Coauthors, Titl e, Venue, Year);
t ype Coaut hors = Coaut hor -> Bool;

type Coaut hor = String;

type Title String;

type Venue String;

type Year = String;

Hence by representing CORA as a basic terms relation of Byddications where
Bpublications € B, we are able to execute the following basic term proximitiyyg:

— CORAXippiication Tite CORA a self join on only the publicationitle subterm;

— CORAXippiication. venudlCORA a self join on only the publication'genuesubterm;

— CORA Mpypjication.coauthors CORA a self join on only the publication'€oauthors
subteer, which is in turn a set @foauthorsubterms;

— CORAXpypiication CORA a self join on the entir@ublicationterm.

For each join, to keep results comparable, we choosevtbigectrum(2) kernel for
strings and accept the default kernels for all other types.déd/ not optimise the de-
fault kernel for basic terms by choosing weighting modifigvat, for example, might
be used to encode the intuition that a year of publicatioass Hiscriminating than the
title of a publication when aggregated into an overall keamepublications.

! The specific CORA data set used is an aggregation of all th@RACREFS citation match-
ing data setsf@hl-labeled kibl-labeled and utgo-labeled. The raw CORA-REF files have
numerous XML mark-up errors which we have manually corittesnabled parsing.

2 Yearis string rather than a numeric type due to non-numeric chersin the data. Alsd/enue
is constructed as a concatenation of venue-related field®AChas no venue field.
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Fig.5: Dendrogram (above), showing clusterings at suéee#lsresholds for a proximity-joins
on the CORA publication type, and (below) a close-up showabglled ground truths.

For each of these four joins we constructed a dendrogram asi¢tig.5 and cal-
culated the corresponding precision-recall chart in Fib@e that the trivial reflexive
pairs, i.e. cluster sizes of 1, are ignored in the plots agdbavey no useful information
here and so lines are not interpolated to the top left of tlaetdhecall=0, precision=1).
As would intuitively be expected, joins dPublication.Titleis generally a better dis-
criminator of publications thafPublication.Coauthor&nd Publication.VenueHow-
ever, the default kernel for basic terms clearly effectivadigregates the information
contained the subterms &ublicationto outperform any single one of the three sub-
terms taken in isolation. The only exception belgplication. Title which sometimes
outperforms its parerublicationabove recall values greater the.9.

6 Related Work

Our work, to the best of our knowledge, is a unique combimeditthe relational model
with a higher-order representation and distance-basekadst Thus we now describe
our work with respect to related work in three related fietdtational learning, knowl-
edge representation, and distances for structured data.
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Fig. 6: Precision and recall for various decompositions OR2 publication type.

In database literature and more recently, particularigesithe advent of the Web,
within the relational learning literature, there has beensiderable interest in the data
integration aspects of database deduplication and reatkadde [9, 10]. However, in
addition to dealing with heterogeneous data structuresywotk adopts anndividuals
as termgepresentation so that both type and structure of data isbfascated by tra-
ditional relational representations. Therefore our apphchas the advantage of simpli-
fying data modelling and the application of approximatechatg techniques. Despite
this, it should be noted that we propose the higher-ordatioglal representation solely
as an approach for data integration tasks, not as a replatéonegeneral purpose re-
lational databases. Our present implementation certhadynone of the optimisations
of a modern relational database. Ultimately though, a higider view could be lay-
ered on top of a traditional relational database systentieffily combining the two
approaches, so that higher-order queries are automgticafislated into and executed
as equivalent relational queries.

Our goal of integrating and querying heterogeneous datagssegoal shared by the
Semantic Web community [11]. The fundamental data modeh@fSemantic Web is
the directed labelled graph, represented as RDF tripleishwhay be queried using the
SPARQL query language [12]. Data structures such as lists, multisets, trees and
graphs are readily supported through RDF Schema and the Qwdlogy language
[13] and as such have similar representational advantagessic terms as compared
to the relational model. SPARQL queries can be used to vetaesubgraph describing
an individual that is analogous to a representation of thdividual as a basic term.
Conversely, it is straight forward to transform the samegsaph into a basic term in
order to apply our own approach to RDF data. For RDF datalati&y, orsmushings
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it is informally known, the emphasis in the Semantic Web leages to-date has been
on exact matching, using inverse-functional propertiehsas email addresses, home-
page URLs or entity URIs. This is an obvious shortcoming & pinesence of noisy
data or representational variations between data froreréifit sources. To address the
consequent data integration problem, work has been dohe aréa of ontology match-
ing, including work on measuring proximity between ontoésj14]. Our approximate
matching work differs from this explicit semantic intedoat approach in that we rely
primarily on the implicit semantics of the type structurel@ata instances themselves.
This is an advantage in cases where detailed ontologiaahtion is not available but
potentially a disadvantage in other cases because badidjkmowledge encoded in an
ontology is not exploited in our approximate joins. The irmmration of background
knowledge into our approximate joins is an area for futurekwo

Turning now to related work on distances, we first note thanéds and distances
used in this paper are not of themselves a contribution ofamrk. Also, the choice
of the default kernel for basic terms is not a specific requémet for the approximate
relational join; any distance for basic terms would be $létaPrior work on distances
for logical terms includes distances between Herbrandpné¢ations [15] and between
first-order terms (including structures and lists) [16-M8jne of these directly apply
to basic terms and while it may be possible to apply distanodsst-order terms to our
first-order representation of basic terms, the semantit@eit abstractions would be
lost as a result. Most closely related to our work, are vargimilarity-based methods
that have been upgraded to handle structured data [4, 19CB@}rasting approaches
apply probabilistic models to take account of dependertoidween resolution deci-
sions [21, 22]. Most recently, a family of pseudo-distanmesr the set of objects in a
knowledge base has been introduced although not spegiffoalbasic terms [23].

7 Conclusion

In this paper we have combined two contrasting knowledgessmtational approaches,
the relational model and basic terms, into a single cohdoemialism that is well suited
to the integration of heterogeneous data. This, in corguatiith the default kernel for
basic terms has been shown to have potential for data iniegr@nd to be worthy of
further investigation.
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