
                          P. Coon, J., Georgiou, O., & P. Dettmann, C. (2015). Connectivity of
Confined Dense Networks: Boundary Effects and Scaling Laws. IEEE
Wireless Communications Letters.

Peer reviewed version

Link to publication record in Explore Bristol Research
PDF-document

© © 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other
uses, in any current or future media, including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any
copyrighted component of this work in other works.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published
version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms.html

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Explore Bristol Research

https://core.ac.uk/display/29026797?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://research-information.bristol.ac.uk/en/publications/connectivity-of-confined-dense-networks(9b457475-32a8-4971-b809-55016ba5102a).html
http://research-information.bristol.ac.uk/en/publications/connectivity-of-confined-dense-networks(9b457475-32a8-4971-b809-55016ba5102a).html


1

Connectivity Scaling Laws in Wireless Networks
Justin P. Coon, Orestis Georgiou, and Carl P. Dettmann

Abstract—We present scaling laws that dictate both local and
global connectivity properties of bounded wireless networks.
These laws are defined with respect to the key system parameters
of per-node transmit power and the number of antennas exploited
for diversity coding and/or beamforming at each node. We
demonstrate that the local probability of connectivity scales like
O(zC) in these parameters, where C is the ratio of the dimension
of the network domain to the path loss exponent, which we term
the connectivity exponent. Our results point to an underlying
universality property of wireless networks, which can be useful
in characterizing network performance.

Index Terms—Networks, connectivity, boundaries, MIMO.

I. INTRODUCTION

Ad hoc wireless networks have found use in applications
ranging from environmental monitoring to vehicle-to-vehicle
communication. These networks possess commonality inso-
much as the number and distribution of nodes in the network
is often random. Fundamentally, it is of great interest to be
able to determine the probability that such a network is fully
connected [1], [2]. This understanding can lead to improved
protocols and network deployment strategies in practice [3].

For dense networks, several analytical results on connectiv-
ity have been published (see, e.g., [4]), particularly in the form
of insightful scaling laws. For example, in [5], the authors
derive a power scaling law that ensures full connectivity is
achieved almost surely as the number of nodes in the network
tends to infinity. In [6], the number of nearest neighbors
required to achieve full connectivity asymptotically is studied.
Related results are given in [7] for sectorized networks.

While early works considered unbounded networks, more
recent research has attempted to better quantify the role
that boundaries play in network analysis. Simple confining
geometries (e.g., cubes, spheres) were studied in [2], [4], [8],
[9]. Networks with nodes confined to a square lattice were
addressed in [10]. A more versatile framework based on a
cluster expansion approach was recently detailed in [11]. This
theory is capable of treating more complicated geometrical
network domains and encompasses several aspects of subse-
quently reported theories (cf. [2], [9]). The framework has also
been shown to yield more accurate results than conventionally
accepted approximations in some cases [2].

In this paper, we adopt the theory detailed in [11] to derive
new scaling laws that describe both local and global connectiv-
ity properties of bounded random geometric networks. These
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laws are defined with respect to two system parameters: the
per-node transmit power and the number of antennas employed
by each device. Our results are twofold. First, we show that the
local (pairwise) probability of connectivity scales like O(zC)
in terms of both system parameters, where C is the ratio of
the dimension of the network domain to the path loss expo-
nent. Second, we investigate two multi-antenna transmission
schemes – orthogonal space-time block coding (STBC) and
beamforming (multiple-input, multiple-output with maximum
ratio combining - MIMO-MRC) – and analyze their relative
merits with respect to antenna scaling. This contribution marks
the first time such a comparison has been made, particularly
in reference to global network performance.

II. NETWORK MODEL AND BACKGROUND THEORY

Consider a network of N uniformly distributed nodes with
locations ri ∈ V ⊆ Rd for i = 1, 2, . . . , N . The node density
is ρ = N/V , where V = |V| and | · | denotes the size of
the set. Here, we use the Lebesgue measure of the appropriate
dimension d. Any two nodes i and j a distance D(ri, rj) apart
are directly connected with probability H(D(ri, rj)), which
we write as H(rij) or Hij .

We are interested in observing network connectivity at
high node density, for which the full connectivity probability,
averaged over all possible node configurations in V , is [11]

Pfc ≈ 1− ρ
∫
V
e−ρ

∫
V H(r12)dr1(1 +O(N−1))dr2. (1)

For the approximation given in (1), we require that Pfc is
high, i.e., the smallest expected degree is large.

Taking a closer look at the integral in the exponent in (1),
which we denote by the functional

M [H; r2] =

∫
V
H(r12) dr1 (2)

we see that it defines the likelihood that a node located at
r2 will connect to some other arbitrary node in the network
domain. In previous work, this functional has been linked to
key network observables, such as the pair formation probabil-
ity, the mean degree, and the minimum network degree, each
increasing monotonically with M [12]. Due to its importance
and its physical meaning, we call M the connectivity mass.

The relationship between M and Pfc is clear from (1): as
M increases, the probability that the network is connected
increases. In the dense regime, we can observe this behavior
explicitly to leading order by expanding M at r2 situated on
a boundary, which yields the leading-order expression [11]

M ≈ ω
∫ ∞

0

rd−1H(r) dr (3)

where ω =
∫

dΩ is the solid angle as seen from r2, with
Ω = 2πd/2/Γ(d/2) being the full solid angle in d dimensions.
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Due to its direct link to Pfc, the connectivity mass, as
defined in (3), will be used to develop scaling laws in certain
parameters below. Although presented in a leading-order form
here, this form exactly dictates the global network connectivity
probability.

III. SCALING LAWS

Here, we exploit the connectivity mass M (see (3)1) to
develop local (pairwise) connectivity scaling laws with respect
to the per-node transmit power and number of antennas
exploited by each device in the network.

A. Transmit Power

To study the scaling behavior with respect to the per-node
transmit power PT (equivalently, the average received SNR),
we must define the pairwise connection function H . For the
sake of generality, we adopt a definition related to the SNR
outage probability, such that Hij is the probability that the
SNR at the destination node exceeds a threshold SNRth, i.e.,

Hij(r) = P (SNR(r) ·Xij > SNRth) (4)

where Xij denotes the random variable signifying the gain
of the channel between nodes i and j and SNR ∝ PT
is the average received SNR, which is a function of the
distance r between the nodes in question. Other definitions
can be adopted for Hij , including the complement of the
mutual information outage probability2. Often, such definitions
can often be expressed as the (complementary) cumulative
distribution function (CDF) of Xij as shown above.

For isotropically radiating nodes, the Friis transmission
formula stipulates that SNR ∝ r−η where η is the pass loss
exponent. Typically, η = 2 if propagation occurs in free space,
with η > 2 in cellular/cluttered environments. Consequently,

Hij(r) = 1− FXij (βrη) (5)

where FXij is the CDF of Xij and β ∝ P−1
T depends on

the center frequency of the transmission and the power of the
noise process at the receiver (β defines the length scale).

To derive the local scaling law with respect to PT , we begin
with (3). Substituting for H (and omitting i and j) yields

M = ω

∫ ∞
0

rd−1(1− FX(βrη)) dr

=
ω

βCη

∫ ∞
0

xC−1(1− FX(x)) dx (6)

where we define
C =

d

η
(7)

to be the connectivity exponent. Under the assumption that
E[XC ] < ∞, with E[·] denoting the expectation operator, the
integral in (6) is bounded, and it follows that we can write

M = K1P
C
T (8)

1Note that the impact that boundaries have on connectivity can be observed
from (3). Specifically, M ∝ ω, i.e., the ability of a given node to form a
connection is proportional to the “visible region” that is available. Linear
scaling in ω at a local level translates to exponential scaling in the global
sense according to (1). See [13] for a rigorous treatment.

2We touch on mutual information outage in section III-B3.

where K1 is a constant independent of PT .
The power law given above provides useful insight into

the behavior of random geometric networks, which can be
used to enhance network designs in practice. It is particularly
interesting to note the conditions under which power scaling
provides a progressive improvement to local connectivity,
versus those conditions under which diminishing returns are
experienced with an increase in PT . For example, a high-
dimensional network (e.g., d = 3) operating in low path loss
conditions will benefit from the former behavior as PT is
increased; however, a low-dimensional network located in a
cluttered environment where high path loss conditions prevail
will experience the latter. The critical transition point is C = 1.

We conclude this discussion by pointing out that the power
law (8) arises from the fact that M ∝ β−C . Thus, one can infer
that scaling laws in other key system parameters are affected
by the connectivity exponent in the same way (e.g., carrier fre-
quency/wavelength and antenna gain). This conclusion follows
directly from the Friis transmission formula.

B. Multi-Antenna Systems

Consider the case where each node in the network possess
m transmit antennas and n receive antennas, and one of two
signalling mechanisms is employed: diversity coding follow-
ing the conventional STBC scheme derived from generalized
complex orthogonal designs (GCODs) [14], and transmit-
ter/receiver beamforming, also known as MIMO-MRC [15].

1) Diversity Coding: It is well known that the performance
of a point-to-point STBC system is governed by the Frobe-
nius norm of the associated n × m channel matrix H. For
m ≥ 1, the post-processing received SNR is proportional to
ζm
m ‖H‖

2
F r
−η , where ζm = 1 if m = 1, 2 and ζm = 2 oth-

erwise. The factor of ζm/m arises from power normalization
and the fact that the rate of a code derived from a GCOD is
1/2 for m > 2 [14].

Now we can apply the definition for H(r) given by (5) by
letting X = ‖H‖2F =

∑
i,j |hij |2, where hij is the complex

coefficient modelling the transfer characteristics of the channel
between the jth transmit antenna (1 ≤ j ≤ m) and the
ith receive antenna (1 ≤ i ≤ n). Here, we make the fairly
standard assumption that hij is a circularly symmetric complex
Gaussian random variable with zero mean and unit variance.
Consequently, X is chi-squared distributed with 2mn degrees
of freedom, and its cumulative distribution function is given
by FX(x) = γ(mn, x)/Γ(mn), where Γ(·) and γ(·, ·) are the
standard and lower incomplete gamma functions, respectively.

We can now evaluate the connectivity mass (3) for the H
function given by (5) and observe its behavior as m,n grow
large. Using (6), M can be evaluated to yield

Mdc =
ω

d

(
ζm
mβ

)C
Γ(mn+ C)

Γ(mn)
(9)

where we have used a “dc” subscript to indicate the relation to
diversity coding. For large m and/or n, we can use the Stirling
formula Γ(x) ∼

√
2π xx+ 1

2 e−x to obtain the scaling law

Mdc =
ω

d

(
ζmn

β

)C (
1 +O

(
1
mn

))
, m, n→∞. (10)
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The connectivity exponent C arises in the expression given
above in a manner similar to the power scaling law. This
reinforces our assertion that the ratio has special importance,
and we surmise that a universality property exists for scaling
of locally defined system parameters.

2) Beamforming: For MIMO-MRC transmissions, the re-
ceived SNR (after MRC) is proportional to λmax(H′H)r−η ,
with λmax(·) denoting the maximum eigenvalue of the argu-
ment [15]. The behavior of λmax in the limit of large m,n is
required in order to make progress. Here, we can apply the
following result due to Edelman [16, Lemma 4.3]3:

Lemma 1: Let xn
p−→ x signify that for all ε > 0,

limn→∞ P (|x− xn| > ε) = 0. Now, suppose the n×m matrix
H has independent circularly symmetric complex Gaussian en-
tries, each with zero mean and unit variance. Then W = H′H
has a complex Wishart distribution and

(1/n)λmax(W)
p−→ (1 +

√
y)2, for

m

n
→ y, 0 ≤ y <∞.

(11)
For the definition of H given in (5), we draw inspiration

from this lemma and write

H(r) ≈

 1, r <
(

(1+
√
y)2n

β

) 1
η

0, otherwise
(12)

for large n. Consequently, letting µ(n) = (1 +
√
y)2n, we are

motivated to write

Mb

ω
=

∫ (µβ )
1
η

0

rd−1 dr + ε(n) =
1

d

(
(1 +

√
y)2n

β

)C
+ ε(n)

(13)
where a “b” subscript is used to indicate the relation to
beamforming. The error term is given by

ε(n) =

∫ ∞
(µβ )

1
η

rd−1H(r) dr︸ ︷︷ ︸
ε+(n)

−
∫ (µβ )

1
η

0

rd−1(1−H(r)) dr︸ ︷︷ ︸
ε−(n)

(14)
which increases like4 O(nC−

2
3 ). Thus, we have

Mb =
ω

d

(
(1 +

√
y)2n

β

)C (
1 +O

(
n−

2
3

))
,

m, n→∞, m
n
→ y. (15)

3) Comparison of the Two Multi-Antenna Schemes: Let
us compare (10) and (15). Suppose the number of transmit
antennas per node is fixed at m = 2, in which case ζm = 1
and y = 0, and thus the leading order of Mdc is the same as
that of Mb. However, we see that the first-order corrections
for the two observables differ. This is illustrated in Fig. 1,
where exact results for the connectivity masses of the two
systems are presented along with leading-order terms as a

3Edelman’s result assumed the complex Gaussian entries of H had unit
variance per dimension, whereas the result we use here is for the case where
each entry has unit variance in total, and thus this lemma is slightly different
from that found in [16].

4The proof of this statement is omitted due to space restrictions.
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Fig. 1. Connectivity mass vs. n for m = 2, d = 3, and various values of
η, corresponding to connectivity exponents C = 3

2
, 1, 3

4
, 3
5

. The solid lines
correspond to the leading-order term given in (15) (equivalently (10)), whereas
the data represented by markers was obtained from (9) for the diversity coding
scenario and by numerically calculating (6) for the beamforming case.

function of n. In the figure, the solid lines show the leading-
order behavior, while the marker data was obtained from the
direct calculation of (9) in the case of diversity coding and by
numerically calculating (6) for beamforming. The solid angle
ω and the proportionality constant β were set equal to π/4
and 1, respectively; however, the general conclusions drawn
here are independent of particular values of ω and β.

Three observations can be made from this example. The first
is that the difference in first-order corrections is apparent, and
beamforming actually provides a benefit over diversity coding
for finite numbers of receive antennas. Yet, convergence to
the leading order can be seen for both schemes. The second
observation is that the leading-order expression well approx-
imates the exact connectivity mass, even for small numbers
of antennas. For STBC, the approximation is very accurate.
The third observation is that the derivative of the connectivity
mass satisfies M ′(n) ∝ nC−1. Indeed, we can deduce from the
figure that progressive improvements are obtained for C > 1
and diminishing returns are experienced for C < 1.

For any other fixed m greater than two, Mdc > Mb to
leading order by a factor of 2C . However, STBC suffers from
a lower rate than MIMO-MRC in this case. Consequently, it
is informative to consider a modified view of the connectivity
mass based on pairwise mutual information outage. This can
be easily achieved by redefining Hij in (4) to be

Hij(r) = P

(
1

ζm
log2(1 + SNR(r) ·Xij) > R

)
(16)

where R is a target rate threshold and ζm = 1 if STBC is
employed and m ≤ 2 or if MIMO-MRC is considered, and
ζm = 2 otherwise. By rearranging to obtain the form given
in (4), it is clear that SNRth = 2ζmR − 1, and all subse-
quent calculations follow accordingly, but with β replaced by
β(2ζmR − 1) to explicitly account for the difference in rate
characterised by ζm. Thus, we deduce from (10) and (15) that
Mdc < Mb since (22R − 1) > 2(2R − 1) for R > 0.

Now, let m and n scale such that their ratio approaches y >
0, then the relation Mdc < Mb is maintained when considering
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Fig. 2. Connectivity mass vs. n for m ≈ ycn, d = 3, and various values of
η, corresponding to connectivity exponents C = 3

2
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4
, 3
5

. The solid lines
correspond to the leading-order term given in (15) (equivalently (10)), whereas
the data represented by markers was obtained from (9) for the diversity coding
scenario and by numerically calculating (6) for the beamforming case.

mutual information outage. But neglecting the rate differences
and focusing only on SNR outage (a proxy for reliability in
delay-tolerant networks) vis-à-vis (4), we see that when y =
(
√

2 − 1)2 ≈ 0.172 the leading orders of the two schemes
are equal. Denote this critical value yc. For y < yc, diversity
coding is favored over beamforming to leading order, with the
opposite being true for y > yc. Again, we must be careful
for finite n since the correction terms differ. To draw further
conclusions, we have plotted the connectivity mass against n
with y ≈ 0.172 in Fig. 2. The markers shown in the figure
correspond to the (m,n) pairs (2, 12), (3, 18), etc., noting that
we have not plotted the points corresponding to m = 2 for the
STBC scheme since the leading-order behavior differs for the
two schemes in this case. We see from Fig. 2 that diversity
coding is preferred over beamforming for small n. It is worth
noting that although the numbers of antennas considered here
are large in the conventional sense, new networking paradigms
such as large-scale antenna systems and nano networks suggest
that such an eventuality is not beyond the realms of possibility.

IV. CONCLUSIONS AND DESIGN IMPLICATIONS

In this paper, we studied how scaling the per-node transmit
power and the number of antennas affects network connectiv-
ity. We defined the connectivity exponent, C, to be the ratio of
the dimension of the network domain to the path loss exponent,
and showed that local connectivity scales like O(zC) in several
parameters of interest, pointing to a universality property in
random geometric network analysis. Our theory was validated
with simulations, and it was shown that the derived scaling
laws act as good approximations in finite systems.

The scaling laws developed herein can be exploited to
mitigate the deleterious effects that boundaries present in
confined networks. For example, in the case of transmit power
scaling, we can use this analysis to deduce that, for some
nominal transmit power PT0 that defines the target connectivity
probability of a homogeneous network, we must choose PT
for the bounded network to satisfy

PT = (Ω/ω)1/CPT0
. (17)

Similar results hold if we wish to mitigate boundary effects
using multiple antennas. Let our reference point be given by
the connectivity mass corresponding to a homogeneous net-
work connected by single-input single-output pairwise links,
which can be computed to be ΩΓ(1 + C)/(βCd) using (9). In
a bounded network, we can focus on a particular feature of
solid angle ω and use, for example, (15) to obtain the antenna
scaling law that will ensure the effect that this feature has on
local connectivity is mitigated. Specifically, we see that

wn ≈
(

Ω
ωΓ(1 + C)

)1/C
(18)

where w = ζm for diversity coding and w = (1 +
√
y)2 for

beamforming. This simple discussion hints at the possibility
of designing more sophisticated network optimisation methods
based on the framework presented here.
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